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Making microscopy count: quantitative light 
microscopy of dynamic processes in living plants. 
 

Mark D. Fricker, Julian Moger, George R. Littlejohn, Michael J. Deeks 

 

Abstract 

 
Cell theory has officially reached 350 years of age as the first use of the word ‘cell’ in 
a biological context can be traced to a description of plant material by Robert Hooke 
in his historic publication “Micrographia: or some physiological definitions of minute 
bodies”. The 2015 Royal Microscopical Society Botanical Microscopy meeting was a 
celebration of the streams of investigation initiated by Hooke to understand at the 
sub-cellular scale how plant cell function and form arises. Much of the work 
presented, and Honorary Fellowships awarded, reflected the advanced application of 
bioimaging informatics to extract quantitative data from micrographs that reveal 
dynamic molecular processes driving cell growth and physiology. The field has 
progressed from collecting many pixels in multiple modes to associating these 
measurements with objects or features that are meaningful biologically. The 
additional complexity involves object identification that draws on a different type of 
expertise from computer science and statistics that is often impenetrable to biologists. 
There are many useful tools and approaches being developed, but we now need 
more inter-disciplinary exchange to use them effectively. In this review we show how 
this quiet revolution has provided tools available to any personal computer user. We 
also discuss the oft-neglected issue of quantifying algorithm robustness and the 
exciting possibilities offered through the integration of physiological information 
generated by biosensors with object detection and tracking.   
 
 

1  Introduction 

 
Cell theory originated from early microscopical observations of plant material (Hooke 
1665). The high contrast provided by the thickened cell walls of cork highlighted the 
precision of plant cell shape and the equally elegant higher-order arrangement of 
cells into tissue. These features were described and illustrated qualitatively in 1665 
by Robert Hooke’s Micrographia, but the mechanisms guiding plant cell development 
could only be hypothesised 300 years later. Upon reaching the 350th anniversary of 
the publication of Micrographia the field of plant cell biology has entered a new era of 
(semi-)automated quantitative light microscopy. Previously qualitative forms of 
micrographical data are being efficiently mined with the aid of algorithms to 
determine rates and co-ordinates of change at the sub-cellular level. Dynamic 
processes operating at microsecond scales and distributed at sub-micron distances 
are responsible for driving the emergence of the features first noted by Hooke. 
However, for the most part these analysis techniques do not require novel 
microscopes, high-performance computing or deep knowledge of computer science. 
For the botanical quantitative evolution to gain pace plant scientists must be 
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encouraged to use all of the analytical tools at their disposal. In this article we will 
explore some of these techniques, their implementation and their impact at the 
frontier of botanical microscopy. Our intention is to provide an overview of the 
computational approaches to data-extraction from dynamic micrographs so that plant 
biologists are aware of the powerful tools available and understand some of the core 
principles behind these methods. Increased knowledge of the workings of algorithms, 
combined with fluid communication between biologist and computer scientist, is 
needed to produce data of appropriate quality and practical algorithms for semi-
automated analysis. Cross-disciplinary training opportunities, from undergraduate 
years onward, may act to encourage these interactions and strengthen the standards 
and practices of both research communities by entrenching mutual understanding. 
We hope that a deeper appreciation of these methods and their robust evaluation will 
further catalyse the use of quantitative botanical microscopy.   
 

2 Removing boundaries (and finding them again) 

 
The quantitative analysis of images is truly trans-disciplinary. Diverse academic 
fields share a need to deconstruct images into formats suitable for quantitative 
analysis. Nevertheless, structures within images and transitions between structures 
fall into a small number of feature categories that can be detected by algorithms and 
then used in higher-order processes to define objects and events (Smith & Brady, 
1997, Lowe, 2004, Bay et al., 2008, Maver, 2010). The mathematical theories 
underpinning many common feature-detection algorithms have a long history. For 
example, the ‘watershed’ algorithm has its origins in 1979 and was initially applied to 
micrographs of steel fractures by Beucher and Lantuejoul (Beucher & Lantuéjoul, 
1979).  The digital imaging revolution and the developments predicted by Moore’s 
Law of computing-power now allow its application to complex datasets without the 
need for access to specialist hardware. Its descendants are commonly used to 
segment biological structures into their component parts, such as organelles within a 
cell or cells within a tissue. From steel fractures, to bubbles, to cell walls, the 
members of the watershed family interpret all grey scale images as topographical 
landscapes in which the ridges define boundaries.  Figure 1 demonstrates that the 
exact nature of the data is irrelevant. Both the copper-plate engravings of Hooke 
generated in 1665 and data from cutting-edge label-free fluorescence microscopy 
modalities can be segmented by software available to any PC user.  
 
As the feature-set found in images is universal, the strategies for measuring these 
features and algorithms to automate such tasks are transferable between different 
contexts and even between different fields of science. For instance, the detection of 
‘blob-like’ features within images can be exploited to track microscopic cellular 
organelles (Nelson et al., 2015) or, equally, suspicious human behaviour at railway 
stations (Elhamod & Levine, 2013). It should be noted however that each algorithmic 
approach must be carefully optimised to new contexts. For instance, the boundaries 
in diffraction-limited fluorescence micrographs have distinct qualities compared to 
object boundaries in CCTV footage. Scientific imaging is progressively becoming 
‘object-orientated’ in its methods. OBIA (Object Based Image Analysis) is a 
methodology developed during the last decade to analyse images of terrain 
generated by remote sensing techniques. This approach recognises and classifies 
objects into a defined hierarchy (reviewed by Blaschke, 2010).  OBIA’s key concept 
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is to move beyond quantifying the spectral attributes of individual pixels to instead 
consider groupings of pixels that define objects; a revolution enabled by the 
affordable pixel-packing of competitive digital camera markets.  Similar hierarchical 
strategies are being applied to micrographs of living multicellular organisms, such as 
the model nematode Caenorhabditis elegans to detect and quantify the attributes of 
specific organs and cells (Zhan et al., 2015). High-throughput digital biological 
imaging at all scales, from plantations to plastids, can benefit from automated feature 
detection and object-based quantitative analysis. Nevertheless, the challenge for 
plant scientists is how to navigate effectively from conceptually simple intensity-
based segmentation techniques to exploit ‘soft’ or ‘fuzzy’ segmentation based on 
multiple characters with decision boundaries determined by supervised or un-
supervised classifiers. Such approaches have been used extensively in high-
throughput screening of animal cells growing in culture or even at the EM-level to 
assign organelles or cells to different classes using neural network classifiers (e.g. 
Boland and Murphy, 2001), k-means clustering (Coelho et al., 2013), support vector 
machines (SVM, Misselwitz et al., 2010) or cascaded hierarchical models (Perez et 
al., 2014). Whilst classifiers have been used in specific segmentation tasks in plants 
for nuclei (e.g. Schmidt et al., 2014, Skibbe et al., 2012) and for cells (Marcuzzo et 
al., 2009), it is only with incorporation of classification tools in free-to-download 
platforms such as CellProfiler (e.g. CellProfiler Analyst, Jones et al., 2008 or 
Enhanced CellClassifier, Misselwitz et al., 2010) that more plant microscopists may 
be tempted to try such approaches. 
 

3 Increasing Scale and Complexity 

Whilst a superb array of sophisticated microscope imaging platforms and fluorescent 
probes are now available for cell and sub-cellular imaging (Swanson et al., 2011, 
Shaw & Ehrhardt, 2013, Fricker et al., 2006), what is especially exciting from a 
botanical perspective is the co-development of imaging techniques tailored to the 
challenges presented by macroscopic intact living plant tissues and scaling-up 
approaches to enable high-throughput phenotypic screening (e.g. Sozzani and 
Benfey, 2011). For example, displacement of air pockets from leaf spaces by air-
saturated perfluorocarbons provides significant improvements in image quality for 
live-cell plant microscopy (Littlejohn et al., 2014), whilst new techniques, such as 
fluorescence intensity decay shape analysis microscopy (FIDSAM) may help to 
obviate issues with autofluorescence that plague plant imaging (Schleifenbaum et al., 
2010). At an organ level, growing root systems can now be imaged in root arrays 
(Busch et al., 2012) or transparent soils (Downie et al., 2014, Downie et al., 2012) 
that allow long-term observation under minimal stress. This has in turn facilitated 
new optical approaches, such as light sheet tomography (Yang et al., 2013) which 
provides an extremely powerful approach for live-cell fluorescence microscopy to 
maximise fluorescence signal whilst minimising phototoxicity (Maizel et al., 2011) 
and can be combined with other modalities to quantify signalling and physiological 
dynamics across a developing root network (Costa et al., 2013). Alternatively, 
macroscopic imaging of intact plants in soil can be enhanced by constitutive 
expression of luciferase to aid root segmentation and analysis (GLO-roots, Rellán-
Álvarez et al., 2015),or by using other non-invasive imaging techniques, such as X-
ray tomography (Flavel et al., 2012, Mooney et al., 2012). Even relatively simple 
camera-based analysis of root architecture have now been extended to encompass 
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high-throughput phenotyping platforms (Slovak et al., 2014, Galkovskyi et al., 2012, 
French et al., 2009).  
 
 

4 Generic software environments versus bespoke tools 

The increased number, size, dimensions and complexity of botanical images from 
multi-channel, super-resolution images at the nanometer scale, to phenotypic 
screens operating on 1000s of accessions, would benefit from parallel improvements 
in automated image analysis tools (Rousseau et al., 2015). An increasing number of 
bioimage informatics resources (summarised in figure 2) are available (Lobet et al., 
2013), often through open, free-to-download platforms including ImageJ (Schneider 
et al., 2012), Fiji (Schindelin et al., 2012), CellProfiler (Kamentsky et al., 2011) and 
Icy (de Chaumont et al., 2012). In addition, bespoke software tools are available that 
integrate sub-cellular measurements of key parameters, such as cell geometry, 
nuclei volume and division state, in a tissue context defined by local co-ordinate 
systems that reflect the structure of the organ (French et al., 2009, Barbier de Reuille 
et al., 2015, de Reuille et al., 2014, Schmidt et al., 2014, Busch et al., 2012, 
Fernandez et al., 2010). These can be used to automatically build a complete 3D 
atlas of root structure (3DCellAtlas, Montenegro-Johnson et al., 2015, RootArray, 
Busch et al., 2012).  Whilst the range of solutions emerging is admirable, there is 
also significant benefit in integration within existing frameworks to ensure 
extensibility and interoperability (Eliceiri et al., 2012). In addition, algorithm 
development and optimisation benefits from publically-accessible databases with test 
images and, ideally, ground truth data (Mairhofer et al., 2015). Thus, open source 
datasets such as the Plant Organelles Database (Mano et al., 2013) or the Live 
Images of Plant Stomata (LIPS) database (Higaki et al., 2013, Higaki et al., 2012) 
are just beginning to become available, but do not yet have ground truth data 
included.  
 
The majority of cell-scale software development for bioimaging informatics has 
focussed on delineating cell boundaries, nuclear position and nuclear volume. For 
example, in root apices, Cell-Scale imaging (CellSeT, Pound et al., 2012) uses noise 
filtering, watershed segmentation, and active contours to refine the cell outlines from 
two-dimensional median root sections. Marcuzzo et al., (2009) also use watershed 
segmentation with region growing, but then extract a set of feature descriptors as 
input to a SVM to classify root cells. The iRoCS Toolbox (intrinsic root co-ordinate 
system, Schmidt et al., 2014) uses cylindrical co-ordinates with the origin at the 
quiescent centre (QC) and the main axes corresponding to the centreline of the root, 
the radial distance from the centreline, and the angle around the axis. Cells are 
identified by segmentation and additional features, such as the nuclei, are 
segmented using local 3D descriptors based on spherical harmonics that are then 
used to train a classifier (Schmidt et al., 2014, Skibbe et al., 2012). In shoot apices, 
multi-angle image acquisition, followed by three-dimensional reconstruction and cell 
segmentation with automated lineage tracking (MARS-ALT, Fernandez et al., 2010) 
or watershed-segmentation and local graph-matching (Liu et al., 2011) or tracking 
(Serrano-Mislata et al., 2015) can follow lineages in developing meristems. 
Alternatively, whilst MorphoGraphX is specifically designed to capture dynamics of 
epidermal layers that are extracted from three-dimensional data sets of roots or 
shoots, whilst correctly retaining their three-dimensional curvature (Barbier de 
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Reuille et al., 2015, Kierzkowski et al., 2012).This software is particularly well suited 
to analysing time series of cell growth as there is the option to co-segment multiple 
time points simultaneously, ensuring that segmented cell volumes are robustly 
paired across time. It is also possible to extract the growth anisotropy of each cell, 
quantifying the direction and amplitude of expansion. Quantification of cell anisotropy 
recalls the observation first described with Micrographia scheme xi: 
 

“if you cut off a piece from a board of Cork transversly, to the flat of it, you will, 
as it were, split the pores, and they will appear just as they are express'd in the 
Figure B of the XI. Scheme. But if you shave off a very thin piece from this 
board, parallel to the plain of it, you will cut all the pores transversly, and they 
will appear almost as they are express'd in the Figure A” 

 
Software solutions such as MorphoGraphX are being used to understand the 
actions driving and guiding this anisotropy at the tissue and cellular scale (Bassel et 
al., 2014). The attraction of these approaches is the ability to feed time-series data of 
cell size and shape into mathematical models that estimate the physical forces on 
the tissue (Hamant et al., 2008, Sampathkumar et al., 2014b, reviewed by Jensen & 
Fozard, 2015, Sampathkumar et al., 2014a, Ali et al., 2014)  
 
 

5 Skewed Mass Action: Tissue-scale features emerge from quantifiable 
asymmetries in dynamic sub-cellular structures and events.  

 
Bioimaging informatic approaches are being applied at much finer scales of space 
and time to investigate the molecular mechanisms shaping cell anisotropy. The cell 
expansion model of Paul Green and his contemporaries postulated that the ‘hoop-
like’ orientation of cellulose microfibrils in the plant cell wall that had been observed 
using electron microscopy must constrain the plane of cell growth, thus dictating 
anisotropy (Green, 1962). It was deduced that the orientation of these cellulose 
microfibrils must in turn be controlled by signal-responsive tracks within the cell 
interior. In 2006 Ehrhardt and colleagues showed that cellulose synthase complexes 
(CesA) utilise microtubule arrays immediately beneath the plasma membrane as 
guides (Paredez et al., 2006). In this seminal paper the authors also showed that 
light acted as a stimulus to re-orientate microtubules and cellulose synthase 
trajectories (Paredez et al., 2006, Lindeboom, 2013). More recently physical stress 
and the directional flux of the plant hormone auxin have been demonstrated to guide 
microtubule orientation and (consequently) cell morphogenesis (Hamant et al., 2008, 
Heisler et al., 2010, Sampathkumar et al., 2014b, Sampathkumar et al., 2014a), 
whilst the actin cytoskeleton helps to regulate delivery and lifetime of 
plasmamembrane CesA complexes (Sampathkumar et al., 2013).  The most recent 
of these high-impact studies utilises MorphographX (Barbier de Reuille et al., 2015).  
It is also relevant to note that quantification of the polar distribution of auxin efflux 
proteins is a feature within CellSeT, where the distribution of GFP fluorescence is 
plotted relative to the cell wall image to assign apical or basal distributions (Pound et 
al., 2012). The step-change achieved is the co-quantification of asymmetry in the 
distribution of specific molecules and the consequential development of asymmetries 
in cell morphology. The controlled pattern of growth emerges from a seemingly 
chaotic mass-action of molecular events such as the growth and shrinkage of 
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microtubules. Key advances in our understanding of these mechanisms are 
achieved when particular processes are identified as being crucial in skewing 
organelle or molecular flux so that asymmetries are established. For example, the re-
orientation of microtubule arrays in response to physical pressure has been linked to 
an increase in microtubule severing frequency through the protein katanin 
(Sampathkumar et al., 2014a). Accurate quantification of fleeting molecular events 
can therefore be key to deducing mechanism. 
 
 

6 Sub-cellular object detection 

Whilst many plant publications still rely on visual inspection with limited quantitation 
using manually-defined regions-of-interest (ROIs), here we are interested in the 
problem of quantifying classes of object at the subcellular or even molecular scale 
using feature detection. Specific classes of object can be artificially highlighted by 
probes and stains (e.g. using a fluorescence labelling method) to produce extremely 
high-contrast images, or even imaged using label-free methods (see Box 1).  
Fluorescent sub-cellular features can be reduced to three fundamental types (for 
review see Nelson et al., 2015): (1) Single molecules (Langhans et al., 2001); (2) 
‘Blobs’, defined as regions of shared image brightness that constitute an object; (3) 
Curvilinear / filamentous structures, such as the multiple networks contained within 
the eukaryote cytoplasm, including the endoplasmic reticulum and cytoskeletal 
arrays (for review see Nelson et al., 2015). 
 
In the case of blob-like organelles, segmentation approaches have progressed from 
simple intensity-thresholding, through adaptive thresholding, pattern-matching 
templates to multi-feature classifiers (Nelson et al., 2015). The advantage of object-
detection over pixel-based classifiers for co-localisation studies (e.g.  JACoP plugin 
for ImageJ, Bolte and Cordelieres, 2006), is a quantitative estimate of the distribution 
of distances between objects, rather than single statistical measure from the whole 
image. Distance metrics are also more relevant to analysis of spatial associations, 
such as organelles travelling on the cytoskeleton, than co-localisation indices 
(Nelson et al., 2015). 
 
In the case of filamentous structures such as the microtubule cytoskeleton, the ends 
of the microtubules are initially detected using microtubule plus-end binding proteins 
modelled as anisotropic Gaussians. Particle tracking is usually split into two steps; 
object detection and object linking. The optimal strategy for linking varies depending 
on the data (Smal & Meijering, 2015). The single particles that are detected in each 
frame are then linked to form a track segment based on current speed and direction, 
but using an algorithm that minimises the global cost of all connections made 
(Jaqaman et al., 2008). The track segments linked to form a trajectory using the 
same approach. Whilst plus-end proteins only reveal growing microtubules, it is 
possible to infer paused or shrinking microtubules from the same data if these events 
are collinear and separated by a short time interval (Applegate et al., 2011, Jaqaman 
et al., 2008, Matov et al., 2010).  
 
Less attention has focussed on analysis of the cytoskeletal network structure itself. 
The overall pattern of organisation can be inferred from macroscopic properties such 
as the texture, measured using empirical mode decomposition (Lu et al., 2014), 
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nematic tensors using FibrilTool (Boudaoud et al., 2014), which is based on the first 
derivative of the gradient, or maximum projection analysis using a virtual polariser, 
(MicrofilamentAnalyser (MFA) Jacques et al., 2013). The actin cytoskeleton in root 
hairs has been characterised by mathematical morphology techniques (Kimori et al., 
2016) and microtubule orientation has been identified using anisotropic intensity 
kernels applied over a range of angles (implemented as the Loco plugin for imageJ 
(Lindeboom et al., 2013). Sampathkumar (Sampathkumar et al., 2014a) used a 
nematic tensor based tool to characterise microtubule orientations in parallel with 
AFM measurement of wall mechanical properties and finite-element modelling to 
predict patterns of wall stress. They were also able to determine feedback between 
tissue stress and microtubule re-alignment using imposed pressure, cell ablation, 
pharmacological agents and katanin severing mutants (Sampathkumar et al., 2014a) 
 
Identification and segmentation of the network itself is more challenging. Most 
algorithms in network analysis were developed for tracing vasculature systems or 
neurons and typically include an image enhancement step that emphasises the 
‘ridge’ nature of the structure. The most common approaches use a second-order 
derivatives of a Gaussian over a range of angles and scales (e.g. Frangi et al., 1998), 
although pattern matching templates can also be used (Basu et al., 2015). 
Anisotropic kernels are more powerful as they emphasise the elongated shape of 
network segments (Lopez-Molina et al., 2015, Meijering et al., 2004). The maximum 
response of the filter provides information on the edge strength and its orientation, 
whilst additional measures, such as the anisotropy of the first three eigenvalues, 
gives a measure of the edge ‘vesselness’ (Frangi et al., 1998) or ‘neuriteness’ 
(Meijering et al., 2004). An alternative approach uses local phase-congruency to give 
an intensity-independent approach to edge enhancement, which is critical when the 
edges vary in intensity as well as scale and orientation. The phase-congruency 
measure can also be combined with tensor-based measurements to give phase-
congruency ‘vesselness’ or ‘neuriteness’ (Obara et al., 2012b, Obara et al., 2012a) 
 
The enhancement step is followed by segmentation using non-maximal suppression 
and hysteresis thresholding (Lopez-Molina et al., 2015), a watershed algorithm and 
edge pruning (Obara et al., 2012b) or a reverse diffusion-based algorithm (Basu et 
al., 2015) to give a pixel-based skeleton. The resulting image skeleton is then 
converted to a graph representation, where each junction is classed as a node and 
the intervening segment a link. Whilst these approaches provide a wealth of graph-
theoretic measures to help characterise the network, they also automatically allocate 
a node to every filament crossing, irrespective of whether there is a real biological 
interaction of the cytoskeletal elements at each point. Disentangling overlapping 
filaments is both theoretically and computationally challenging, nevertheless robust, 
automated solutions have been developed recently and tested on plant actin 
networks (DeFiNe, Breuer and Nikolowski, 2015). 
 
Alternative approaches do not attempt to accurately segment the individual filament, 
but impose a regular sampling lattice and estimate the strength of the connections 
on that lattice from the intensity of the pixels intersecting the edges (Breuer et al., 
2014). This is a relatively straightforward approach that can detect differences in 
overall behaviour in the network structure and dynamics between treatments, albeit 
with an approximation representation of the actual network (Breuer et al., 2014).  
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7 Who Watches the Watchers 

 
Segmentation of complex sub-cellular structures is challenging. Ideally the 
performance of each method should be evaluated against a set of ground truth 
images that are representative of the range of features to be analysed, including 
levels of noise (e.g. Lopez-Molina et al., 2013, Perez et al., 2013, Mairhofer et al., 
2015). Typically the ground truth has to be defined by a human observer (or ideally 
cross-referenced between multiple observers), as the human visual processing 
system still represents the gold-standard in pattern recognition. Performance is 
measured in terms of correctly identified pixels or objects (true positives, TPs or hits), 
spurious responses (false positives, FPs), true negatives (TNs), and false negatives 
(FNs or misses). The results are summarised by various metrics or Error Measures 
(EMs) (Lopez-Molina et al., 2013) such as Receiver Operating Characteristic (ROC) 
or Precision-Recall (P-R) graphs. Whilst a single measure can describe the 
performance of the algorithm, it is helpful to determine the optimal level of the 
threshold used to distinguish feature from background from a complete ROC or P-R 
curve. 
 
The hit or miss classification itself is a rather blunt instrument, as it does not capture 
the extent that the pixel classification is in error, so for example a single pixel shift 
arising from a slight displacement in detection of the ridge centreline in a skeleton 
image from the cytoskeleton might generate an almost complete mismatch between 
the skeleton and the ground-truth, when it could actually be a remarkably good 
analysis with a small offset. One approach is to allow greater tolerance in the hit-or-
miss decision (Obara et al., 2012b, Obara et al., 2012a). Alternatively distance-
based EMs include a quantitative distance metric of how far apart the distributions 
are, such as Baddeleys Delta Metric (BDM) (Lopez-Molina et al., 2013). 
 
Whilst there is a long history of validation for tracking and segmentation algorithms in 
computer vision, similar testing against ground-truth images is not yet common place 
for other types of automated image analysis in plant sciences and is only just 
beginning to emerge in biomedical domain (Ljosa et al., 2012). One clear need for 
the community is to develop a suitable collection of datasets available alongside the 
analysis algorithms with ground truth validation. 
 
 

8 A fifth dimension - Quantitative physiological imaging with genetically 
encoded sensors 

 
Spectral and signal intensity information from fluorescent probes can be used to 
measure the chemical environment within or around an identified object. By using 
genetically encoded sensors it is possible to combine the powers of minimally-
invasive object-orientated live cell imaging with sub-cellular physiological 
measurements. This approach to live-cell imaging adds a new dimension to the data 
that can be extracted from micrographs and has been used with increasing 
sophistication in botanical microscopy to report on the physiological status of whole 
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cells and individual organelles.  These techniques generally involve direct binding of 
the chemical of interest, which in turn may lead to an increase or decrease (e.g. the 
auxin reporter DII-venus (Brunoud et al., 2012)) in signal intensity of the biosensor, 
using a single excitation wavelength and single emission. Alternatively, biosensors 
may involve ratiometric sensing, where dual excitation, single emission (e.g. HyPer 
Beluosov et al., 2006, Costa et al., 2010) or single excitation, dual emission (e.g. 
CaMeleons Miyawaki et al.,1997, Allen et al., 1999) generates two signal outputs, 
which vary in their relative intensities as the concentration of the species being 
sensed varies. These two signals may then be used to give a ratiometric measure of 
species of interest concentration.  The latest generation of transgenic single 
excitation, dual emission sensors employ Forster Resonance Energy Transfer 
(FRET) to cause excitation of one fluorophore by another, which is conditional both 
fluorophores of the FRET pair being in close enough proximity for FRET to occur. 
This mechanism for biosensing normally relies on a conformational change of the 
sensor on binding the moiety of interest bringing the interacting fluorophores 
together. The advantage of ratiometric sensors is that their ability to report the 
calibrated concentration of a chemical species of interest is independent of their own 
concentration. A wide range of genetically-encoded probes have been developed to 
quantitatively report concentration of a range of moieties including metabolites such 
as sucrose and glucose (Chaudhuri et al., 2008), the plant hormones jasmonic acid 
(Larrieu et al. 2015), auxin (Brunoud et al, 2012), and ABA (Waadt et al., 2014, 
Jones et al., 2014), and signalling components, most notably Ca2+ (Allen et al., 1999),  
ROS (HyPer (Costa et al., 2010) and redox potential (roGFP, Meyer & Dick, 2010, 
Schwarzlander et al., 2008, Fricker, 2015, Schwarzländer et al., 2015). These have 
mostly been developed in non-plant systems and later implemented in plants, but 
recent years has seen the development of biosensors for jasmonic acid, auxin, ABA 
and sucrose, which have been designed to co-opt endogenous plant mechanisms for 
detecting these moieties. Plant scientists are also showing the way on the robust and 
thorough characterisation of genetically encoded biosensors. The recent work of 
Schwarzlander et al., (2014) has shown that pH sensitivity of some biosensors can 
compromise their utility and that users of these molecular tools must be alert to this 
problem.  
 
The kind of molecular eavesdropping that genetically encoded biosensors provide is 
minimally invasive and, when combined with image segmentation techniques 
explored in this article, may yield great insights into physiological and signalling 
processes in plants. Furthermore, transgenic reporters can be targeted to different 
organelles allowing physiological measurements for distinct compartments when 
combined with object-based segmentation (Schwarzländer et al., 2012, 2014, Fricker, 
2015, Fuchs et al., 2016) to reveal highly spatially localised, dynamic behaviour that 
cannot be capture by metabolomics or genomic approaches such as oscillations in 
nuclear calcium during rhizobium infection (Sun et al., 2007, Capoen, et al., 2011), 
pulsing of ROS and pH in mitochondria (Schwarzländer et al., 2012, 2014),  redox 
regulation of plastid stromules (Brunkard et al. 2015) or highly localised 
mitochondrial redox changes during pathogen infection (Fuchs et al., 2016). 
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9 Conclusion 

Botanical microscopy has entered an object-based era of quantitative imaging 
supported by a wide range of software solutions and packages for programming 
languages (figure 2). These are often developed for specific tasks but can be applied 
with minimal modification to a wide range of scales and modalities. An increasing 
awareness of image analysis toolboxes within programming environments such as 
Python, Octave and Matlab has encouraged many biologists to learn how to 
perform basic modifications to scripts in order to adapt algorithms to novel datasets. 
Moreover, new probes and methods such as label-free imaging (Figure 1., Box 1.) 
are increasing the depth of information contained within live-cell imaging data of 
plant cells. These techniques will continue to develop in their sensitivity, range of 
targets and non-invasive properties. Cross-disciplinary interaction must be embraced 
to ensure that new opportunities for hypothesis testing through quantitative imaging 
data are not missed and that the algorithms applied are sufficiently robust.  
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Figure Legends 
 
Figure 1. Shared methods of feature detection can be applied to diverse sources of 
data. (A) Panel A of figure 1, scheme XI from Micrographia (Hooke 1665) showing a 
transverse section of cork tissue. (B) Segmentation of the engraving using a 
watershed algorithm and Gaussian filter pre-processing. (C) CARS imaging of 
freshly transverse-sectioned cork tissue. Images were acquired using pump and 
Stokes wavelength of 797 nm and 1031 nm to excite the CH2 stretch at 2845 cm-1. 
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(D) Segmentation of CARS data using identical filter and algorithm combination as 
(B). 
 
Figure 2. Application of bioimaging informatics software for different scales of plant 
growth dynamics. Bars show the span of each package. Blue bars show software 
packages that are either openly available for download or are available within the 
academic domain upon request. Red bars represent commercial software packages.  
 
 

 

Supplemental Methods 
 
CARS Microscopy 
The dual-wavelength picosecond excitation required for CARS microscopy was 
generated using an optical parametric oscillator (OPO) (Levante Emerald, APE, 
Berlin) pumped with a frequency doubled MOPA fibre laser (Emerald Engine, APE, 
Berlin). The pump laser generated a 1 ps, 76 MHz pulse train at 515.5 nm. The OPO 
produced collinear signal and idler beams with perfect temporal overlap and 
provided continuous tuning over a range of wavelengths. The signal beam was used 
as the pump, ranging from 670 to 980 nm and the fundamental from the fibre laser 
(1031 nm) was used as the Stokes beam. The average power at the sample was 
between 15 mW and 30 mW.  
 
Imaging was performed using a modified inverted microscope and confocal laser 
scanner (IX71 and FV300, Olympus UK). A detailed description of the set, as applied 
to plant samples can be found in Mansfield et al., (2013) and Littlejohn et al., (2014). 
To maximise IR transmission the standard galvanometer scanning mirrors were 
replaced with silver galvanometric mirrors, the tube lens was replaced with a MgF2 
coated lens and the confocal dichroic was replaced by a silver mirror with high 
reflectivity throughout the visible and NIR (21010, Chroma Technologies, USA). All 
imaging was performed using a 60X, 1.2 NA water immersion objective (UPlanS Apo, 
Olympus UK).  
 
The CARS signal was detected in the epi-direction using the objective lens and 
separated from the pump and Stokes beams by a long-wave pass dichroic mirror 
(z850rdc-xr, Chroma Technologies, USA) and directed onto a photomultiplier tube 
(Hamamatsu R3896) at the rear microscope port. The anti-Stokes signal was 
isolated at each photodetector by a single band-pass filter centred at 750 nm 
(HQ750/210, Chroma Technologies USA). Images of cork were acquired using pump 
and Stokes wavelength of 797 nm and 1031 nm to excite the CH2 stretch at 2845 
cm-1. 
 
Watershed Analysis 
The watershed anaysis of figure 1 was performed using ImageJ and Graylevel 
Watershed plugin Biomedical Imaging Group (BIG), EPFL Lausanne, Switzerland 
(http://bigwww.epfl.ch/sage/soft/watershed/). An 8-bit RGB digitised image of cork 
from Micrographia was sourced from an online repository 
(http://www.rarebookroom.org). The image was converted to 8-bit grayscale and a 
Gaussian filter with a sigma value of 2 pixels was applied. The 16-bit raw CARS data 
was also converted to 8-bit grayscale and a Gaussian filter of 6 pixel sigma was 
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applied. Images were segmented with plugin settings of “Dark object / Bright 
background” with “8-connected” depth. A mask was added to the Micrographia 
segmentation to isolate the tissue from the background texture.  
 
 
 

Box / Appendix 

 

Coherent Raman Scattering microscopy – its advantages and theory 

 

Fluorescence microscopy’s reliance on fluorescent labelling is not compatible with 
low molecular weight biomolecules since it alters biochemistry. Alternative 
techniques based on vibrational spectroscopy provide in situ chemical analysis 
based on the vibrational frequencies of molecular bonds within a sample. Infrared 
absorption techniques have limited value for bio-imaging due to water absorption 
and the intrinsically low spatial resolution resulting from IR excitation, however 
Raman scattering provides analysis of IR vibrational frequencies with biocompatible 
excitation wavelengths. The drawback is that Raman scattering is an extremely weak 
effect with typical photon conversion efficiencies in biological materials being of the 
order of 1 in 1018. This severely limits Raman imaging of living systems since long 
acquisition times (100 ms to 1 s per pixel) at relatively high excitation powers 
(several hundred mW) are required to detect most biomolecules with sufficient 
sensitivity. In plant tissues the lack of sensitivity is compounded by interference from 
autofluorescent pigments that overwhelm the Raman emission and virtually prohibits 
its application in all but a few areas of plant biology.  

 

Far stronger Raman signals can be obtained using coherent Raman scattering 
(CRS), which achieves a signal enhancement via coherent excitation of a specific 
Raman mode of molecules under investigation (Maker and Terhune,1965). Pump 
and Stokes beams, with frequencies ωp and ωS respectively, are incident upon the 
sample with their frequency difference (ωp – ωS) matched to the vibrational 
frequency of interest. Under this resonant condition, bonds are coherently driven by 
the beating excitation fields and a coherent Raman signal is produced. Due to the 
non-linear dependence of the signal on excitation intensity, further enhancement is 
achieved by excitation with ultra-short light pulses, which deliver high peak 
intensities at average powers comparable with those routinely used for fluorescence 
microscopy. Optimal excitation of CRS requires pulses with bandwidth 
corresponding to the line-width of the Raman band being investigated, which for 
biological molecules is typically of the order of 0.2 nm (corresponding to transform 
limited pulse width of a few picoseconds). When applied in a microscopy format CRS 
benefits from the non-linear nature of the process which confines the signal to a sub-
micron focus that can be scanned in space, allowing 3D mapping of bio-molecules 
with sub-micron resolution (Zumbusch A, et al. 1999).  

 

CRS was first applied to bio-imaging in 1999 and has now emerged as a powerful 
microscopy tool that has been applied with great effect to a wide range of biomedical 
applications (for review see Min et al., 2011) and can be combined with classifier 
schemes to automatically segment sub-cellular organelles with no external labelling 
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(El-Mashtoly et al., 2014). Unfortunately CRS is severely limited in heavily pigmented 
samples, such as plant tissues. Therefore, despite its great potential to impact in 
plant biology, there have been very few examples of its application in this area and 
cases where it has been used rely on dried or processed plant materials (Weisflog et 
al. 2010, Zeng Y, et al. 2010, Saar et al., 2010). 
 
 
CRS microscopy can be achieved by detecting either coherent anti-Stokes Raman 
scattering (CARS) or stimulated Raman scattering (SRS). CARS uses the anti-
Stokes signal generated at frequency ωas = 2ωp – ωS, which is spectrally isolated 
from the pump and Stokes beams. The anti-Stokes (blue) shift of the emission with 
respect to the excitation wavelengths makes CARS more resistant to 
autofluorescence than spontaneous Raman. However, for highly fluorescent 
samples such as plant tissues, the two-photon excited autofluorescence (also blue-
shifted with respect to the excitation) overwhelms the CARS signal Mansfield et al., 
(2013). 
 
SRS relies on detecting changes in the intensities of the excitation fields that occur 
by virtue of stimulated excitation (Freudiger CW, et al. Science 322, 2008)  
When the difference frequency, ωp – ωS, matches a vibrational resonance the 
intensity of the Stokes beam, IS, experiences a gain (SRG) while the intensity of the 
pump beam, Ip, experiences a loss (SRL). Modulating the intensity of either 
excitation beam modulates the SRS process and hence transfers an intensity 
modulation onto the other beam. The amplitude of the transferred intensity 
modulation is directly proportional to the concentration of target molecules and by 
modulating at frequencies above laser noise (>1 MHz) can be detected with a lock-in 
amplifier with great sensitivity (1 in 106 photons). Since SRS is detected at the same 
wavelength as the excitation fields it is not affected by fluorescent emission. 
However, as recently shown by Mansfield et al, SRS does succumb to interference 
from absorbing compounds. Single- or two- photon electronic absorption of either the 
pump or Stokes beams, despite reducing their intensity, does not produce a 
modulation transfer between the beams since there is no temporal correlation 
between the absorption of the different wavelengths. Modulation transfer does 
however occur for two-photon absorption (TPA) of the combined pump and Stokes 
beams since this process can only occur when both beams are incident upon the 
sample. In most samples this is an extremely weak effect, however in plant  
tissues the optical absorption is sufficiently strong across a broad spectral range and 
TPA overwhelms the SRS signal.  
 
A major step forwards for Raman imaging in-9planta, recently published by 
Mansfield et al, was to exploit the phase difference between stimulated Raman 
gain (SRG), detected as a gain in the Stokes beam and TPA, which results in a loss 
in the pump beam, to separate the two signals using phase-sensitive lock-in 
detection. Using this technique, we demonstrated the first application of in-situ 
spectroscopic Raman imaging in living pigmented plant tissues. Moreover, we have 
shown that with this technique it is possible to image the ingress of (unlabelled) low 
MW compounds in planta at the cellular level (Littlejohn et al. 2014). 
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Figure 1. Shared methods of feature detection can be applied to diverse sources of data. (A) Panel A of 
figure 1, scheme XI from Micrographia (Hooke 1665) showing a transverse section of cork tissue. (B) 

Segmentation of the engraving using a watershed algorithm and Gaussian filter pre-processing. (C) CARS 
imaging of freshly transverse-sectioned cork tissue. Images were acquired using pump and Stokes 

wavelength of 797 nm and 1031 nm to excite the CH2 stretch at 2845 cm-1. (D) Segmentation of CARS 
data using identical filter and algorithm combination as (B).  
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Figure 2. Application of bioimaging informatics software for different scales of plant growth dynamics. Bars 
show the span of each package. Blue bars show software packages that are either openly available for 
download or are available within the academic domain upon request. Red bars represent commercial 

software packages.  
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Cell theory has officially reached 350 years of age as the first use of the word ‘cell’ in 

a biological context can be traced to a description of plant material by Robert Hooke 

in his historic publication “Micrographia: or some physiological definitions of 

minute bodies”. The 2015 Royal Microscopical Society Botanical Microscopy 

meeting was a celebration of the streams of investigation initiated by Hooke to 

understand at the sub-cellular scale how plant cell function and form arises. Hooke 

identified the polar-nature of plant cells by noting that their appearance was 

different depending on the angle at which the cork was cut.  Each cell has a 

controlled shape that interlocks with its neighbours. How does this occur? Much of 

the work presented during the meeting described advances made in understanding 

how the dynamics of cellular components contribute to this process. The Honorary 

Fellowships awarded to Professors Chris Hawes, Peter Hepler and David Ehrhardt 

helped highlight the importance of quantitative microscopy; the measurement of 

feature and behaviours in micrographs. Over the past decade there have been 

significant advances in the application of computer algorithms to extract quantities 

from images and these have had a large impact upon botanical microscopy. The field 

of computer science has developed methods to recognise and track objects that have 

biological meaning.  Botanists have benefitted enormously from cross-disciplinary 

interactions with computer scientists and statisticians to develop fully-formed 

software packages that are tailored for plant science. Critically, this software can 

(for the most part) be used on desktop personal computers. Moreover the majority 

of software is available free of charge to the academic and general public alike. In 

this review we provide a guide for the uninitiated to find powerful but easy-to-use 

software solutions for botanical light microscopy. This is accompanied by an 

overview of the principles driving the object-based imaging revolution and more 

technical descriptions of the algorithms at the heart of some of these packages. We 

also discuss the oft-neglected issue of measuring the performance of algorithms and 

the exciting possibilities offered by biosensors and label-free imaging.  
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