104 research outputs found

    Binding by random bursts : a computational model of cognitive control

    Get PDF

    Anatomical Connectivity Influences both Intra- and Inter-Brain Synchronizations

    Get PDF
    Recent development in diffusion spectrum brain imaging combined to functional simulation has the potential to further our understanding of how structure and dynamics are intertwined in the human brain. At the intra-individual scale, neurocomputational models have already started to uncover how the human connectome constrains the coordination of brain activity across distributed brain regions. In parallel, at the inter-individual scale, nascent social neuroscience provides a new dynamical vista of the coupling between two embodied cognitive agents. Using EEG hyperscanning to record simultaneously the brain activities of subjects during their ongoing interaction, we have previously demonstrated that behavioral synchrony correlates with the emergence of inter-brain synchronization. However, the functional meaning of such synchronization remains to be specified. Here, we use a biophysical model to quantify to what extent inter-brain synchronizations are related to the anatomical and functional similarity of the two brains in interaction. Pairs of interacting brains were numerically simulated and compared to real data. Results show a potential dynamical property of the human connectome to facilitate inter-individual synchronizations and thus may partly account for our propensity to generate dynamical couplings with others

    Computational study of resting state network dynamics

    Get PDF
    Lo scopo di questa tesi è quello di mostrare, attraverso una simulazione con il software The Virtual Brain, le più importanti proprietà della dinamica cerebrale durante il resting state, ovvero quando non si è coinvolti in nessun compito preciso e non si è sottoposti a nessuno stimolo particolare. Si comincia con lo spiegare cos’è il resting state attraverso una breve revisione storica della sua scoperta, quindi si passano in rassegna alcuni metodi sperimentali utilizzati nell’analisi dell’attività cerebrale, per poi evidenziare la differenza tra connettività strutturale e funzionale. In seguito, si riassumono brevemente i concetti dei sistemi dinamici, teoria indispensabile per capire un sistema complesso come il cervello. Nel capitolo successivo, attraverso un approccio ‘bottom-up’, si illustrano sotto il profilo biologico le principali strutture del sistema nervoso, dal neurone alla corteccia cerebrale. Tutto ciò viene spiegato anche dal punto di vista dei sistemi dinamici, illustrando il pionieristico modello di Hodgkin-Huxley e poi il concetto di dinamica di popolazione. Dopo questa prima parte preliminare si entra nel dettaglio della simulazione. Prima di tutto si danno maggiori informazioni sul software The Virtual Brain, si definisce il modello di network del resting state utilizzato nella simulazione e si descrive il ‘connettoma’ adoperato. Successivamente vengono mostrati i risultati dell’analisi svolta sui dati ricavati, dai quali si mostra come la criticità e il rumore svolgano un ruolo chiave nell'emergenza di questa attività di fondo del cervello. Questi risultati vengono poi confrontati con le più importanti e recenti ricerche in questo ambito, le quali confermano i risultati del nostro lavoro. Infine, si riportano brevemente le conseguenze che porterebbe in campo medico e clinico una piena comprensione del fenomeno del resting state e la possibilità di virtualizzare l’attività cerebrale

    Cognitive Maps

    Get PDF
    undefine

    Computational Models of Auditory Scene Analysis: A Review

    Get PDF
    Auditory scene analysis (ASA) refers to the process(es) of parsing the complex acoustic input into auditory perceptual objects representing either physical sources or temporal sound patterns, such as melodies, which contributed to the sound waves reaching the ears. A number of new computational models accounting for some of the perceptual phenomena of ASA have been published recently. Here we provide a theoretically motivated review of these computational models, aiming to relate their guiding principles to the central issues of the theoretical framework of ASA. Specifically, we ask how they achieve the grouping and separation of sound elements and whether they implement some form of competition between alternative interpretations of the sound input. We consider the extent to which they include predictive processes, as important current theories suggest that perception is inherently predictive, and also how they have been evaluated. We conclude that current computational models of ASA are fragmentary in the sense that rather than providing general competing interpretations of ASA, they focus on assessing the utility of specific processes (or algorithms) for finding the causes of the complex acoustic signal. This leaves open the possibility for integrating complementary aspects of the models into a more comprehensive theory of ASA

    Effects of 5-HT on memory and the hippocampus: model and data.

    Get PDF
    5-Hydroxytryptamine (5-HT) transmission has been implicated in memory and in depression. Both 5-HT depletion and specific 5-HT agonists lower memory performance, while depression is also associated with memory deficits. The precise neuropharmacology and neural mechanisms underlying these effects are unknown. We used neural network simulations to elucidate the neuropharmacology and network mechanisms underlying 5-HT effects on memory. The model predicts that these effects are largely dependent on transmission over the 5-H

    Integration of Spiking Neural Networks for Understanding Interval Timing

    Get PDF
    The ability to perceive the passage of time in the seconds-to-minutes range is a vital and ubiquitous characteristic of life. This ability allows organisms to make behavioral changes based on the temporal contingencies between stimuli and the potential rewards they predict. While the psychophysical manifestations of time perception have been well-characterized, many aspects of its underlying biology are still poorly understood. A major contributor to this is limitations of current in vivo techniques that do not allow for proper assessment of the di signaling over micro-, meso- and macroscopic spatial scales. Alternatively, the integration of biologically inspired artificial neural networks (ANNs) based on the dynamics and cyto-architecture of brain regions associated with time perception can help mitigate these limitations and, in conjunction, provide a powerful tool for progressing research in the field. To this end, this chapter aims to: (1) provide insight into the biological complexity of interval timing, (2) outline limitations in our ability to accurately assess these neural mechanisms in vivo, and (3) demonstrate potential application of ANNs for better understanding the biological underpinnings of temporal processing
    • …
    corecore