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Auditory cortex modelled as a dynamical network of oscillators:
Understanding event-related fields and their adaptation
Aida Hajizadeh, Artur Matysiak, Matthias Wolfrum, Patrick J. C. May, Reinhard König

ABSTRACT. Adaptation, the reduction of neuronal responses by repetitive stimulation, is a ubiquitous
feature of auditory cortex (AC). It is not clear what causes adaptation, but short-term synaptic depres-
sion (STSD) is a potential candidate for the underlying mechanism. We examined this hypothesis via a
computational model based on AC anatomy, which includes serially connected core, belt, and parabelt
areas. The model replicates the event-related field (ERF) of the magnetoencephalogram as well as
ERF adaptation. The model dynamics are described by excitatory and inhibitory state variables of cell
populations, with the excitatory connections modulated by STSD. We analysed the system dynamics by
linearizing the firing rates and solving the STSD equation using time-scale separation. This allows for
characterization of AC dynamics as a superposition of damped harmonic oscillators, so-called normal
modes. We show that repetition suppression of the N1m is due to a mixture of causes, with stimu-
lus repetition modifying both the amplitudes and the frequencies of the normal modes. In this view,
adaptation results from a complete reorganization of AC dynamics rather than a reduction of activity in
discrete sources. Further, both the network structure and the balance between excitation and inhibition
contribute significantly to the rate with which AC recovers from adaptation. This lifetime of adaptation is
longer in the belt and parabelt than in the core area, despite the time constants of STSD being spatially
constant. Finally, we critically evaluate the use of a single exponential function to describe recovery
from adaptation.

1. INTRODUCTION

Most sounds, speech sounds in particular, make sense only when perceived against the backdrop of
what came immediately before, in a time window extending some seconds into the past—the so-called
psychological present (Michon, 1978). The task of the auditory system is to retain information and to
integrate it with representations of incoming stimuli. This process of memory and integration is likely to
occur in auditory cortex, whereas the subcortical auditory pathway carries out the analysis of spectral
structure and sound source localisation (Nelken, 2004). While our understanding of the functioning of
auditory cortex is limited, especially in comparison to that of the visual cortex (King and Nelken, 2009),
a number of memory phenomena have been identified in auditory cortex that operate on the time
scale of hundreds of milliseconds to seconds. As reviewed below, these include context-sensitivity: the
dependence of a neuronal response not just on the eliciting stimulus but also on preceding stimuli—
the historical context. Further, the memory phenomena observed in the physiological responses of
auditory cortex have been linked to behaviourally measured sensory memory (Tiitinen et al., 1994)
and working memory (Brechmann et al., 2007; Huang et al., 2016).

The simplest form of context sensitivity can be observed by repeating the stimulus within a time window
on the order of seconds. The repeated stimulus elicits an auditory response with a reduced amplitude,
with the reduction tending to be inversely related to the stimulus onset interval (SOI). This phenom-
enon is called adaptation, and it is also known as repetition suppression or habituation (Megela and
Teyler, 1979; Pérez-González and Malmierca, 2014). Adaptation is observed in both non-invasive and
invasive measurements. When adaptation does not generalise to all stimuli, a neuron can produce
a large-magnitude response to a stimulus that is different from the repeated one. This is known as
stimulus-specific adaptation (SSA), a phenomenon seen in the primary auditory cortex of animal mod-
els (Ulanovsky et al., 2004, 2003). In magnetoencephalography (MEG) and electroencephalography
(EEG) measurements in humans, adaptation manifests itself most clearly in variations of the most
prominent auditory evoked response, the N1m or N1, respectively. Several studies have shown that
the peak amplitude of the N1(m) attenuates with stimulus repetition and is inversely related to stimu-
lation rate (see, for example, Davis et al., 1966; Hari et al., 1982; Imada et al., 1997; Ioannides et al.,
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2003; Loveless et al., 1996; Lü et al., 1992; Lu et al., 1992; McEvoy et al., 1997; Megela and Teyler,
1979; Nelson et al., 1969; Sable et al., 2004; Wang et al., 2008; Zacharias et al., 2012). Further, this
adaptation develops rapidly in that already the second stimulus elicits a diminished response (e.g.,
Budd et al., 1998; May and Tiitinen, 2004). The monotonic increase of the N1(m) amplitude as a func-
tion of SOI which then plateaus out at large SOI (>5 s) can be approximated with an exponentially
saturating function. The time constant of this function provides an estimate of the time span it takes for
the auditory system to recover from adaptation (Lü et al., 1992; Lu et al., 1992). The picture becomes
complicated when short SOIs of under 500 ms are used. In this case, the SOI dependence of the
N1(m) amplitude can take on a non-monotonic v-shape (Budd and Michie, 1994; Wang et al., 2008;
Zacharias et al., 2012), and the rapid presentation of tones elicits a sustained response upon which
the diminished N1(m) responses ride (May and Tiitinen, 2004, 2010).

Adaptation due to stimulus repetition can be found in all parts of the auditory system, but it tends to
have a shorter recovery time subcortically than in cortex, especially in the lemniscal pathway (for a
review, see Pérez-González and Malmierca, 2014). For example, the auditory nerve recovers within
25-35 ms (Yates et al., 1983). In the superior olivary complex, both the onset and the recovery from
adaptation have respective time constants of 20 and 106 ms (Finlayson and Adam, 1997). Studies
using relatively high stimulus rates of above 3 Hz have reported adaptation in the inferior colliculus
(IC) (Nuding et al., 1999; Palombi and Caspary, 1996). For the majority of units in the IC, SSA requires
SOIs shorter than 250 ms (Malmierca et al., 2009; Pérez-González et al., 2005). However, Zhao et al.
(2011) observed SSA in the IC even with a SOI of 1 s, although these authors were not able to
determine whether the units were in the lemniscal or non-lemniscal pathway. The lemniscal division
of the auditory thalamus shows SSA only with SOIs shorter than 250 ms, although SSA could be
observed in the non-lemniscal thalamus even with SOIs of up to 2 s (Antunes et al., 2010). Neurons
in auditory cortex display SSA with SOIs up to several seconds (Tasseh et al., 2011).

The most plausible mechanism underlying cortical adaptation is short-term synaptic depression, STSD
(Wehr and Zador, 2003, 2005), a form of synaptic plasticity based on vesicle depletion, as well as in-
activation of release sites and calcium channels (Fioravante and Regehr, 2011). This type of plasticity
has decay times of hundreds of milliseconds to several seconds, and this coincides with the time
course of cortical adaptation (Ulanovsky et al., 2004). STSD is also present in subcortical stations (for
a review, see Friauf et al., 2015). STSD can contribute to efficient information transfer between two
neurons (Salmasi et al., 2019), to temporal filtering occurring at synapses (Fortune and Rose, 2001;
Rosenbaum et al., 2012), and to gain control (Abbott et al., 1997). Computational models showed
that STSD accounts for different forms of context sensitivity in the AC (Kudela et al., 2018; Loebel
et al., 2007; May and Tiitinen, 2010, 2013; Mill et al., 2011; Wang and Knösche, 2013; Yarden and
Nelken, 2017). Further, simulations show that STSD can function as a memory mechanism that al-
lows for the representation of temporally extended, complex auditory information such as speech and
species-specific communication sounds (David and Shamma, 2013; May and Tiitinen, 2013; Motanis
et al., 2018). In sum, rather than signifying mere neuronal fatigue, adaptation might instead reflect
the fundamental dynamics of synaptic depression which endows the auditory cortex with the ability to
represent auditory information across different time scales.

Adaptation of the N1(m) has been linked to information processing in auditory cortex. The recovery
time from adaptation is a subject-specific parameter, and it correlates well with the time span of work-
ing memory in a forced-choice discrimination task (Lü et al., 1992; Lu et al., 1992). Adaptation is
also the major determinant in the evoked responses elicited in the oddball paradigm. Here, standard
stimuli presented with a high rate elicit a smaller event-related field (ERF) response than the infre-
quent deviant stimuli (Butler, 1968), and the difference in response amplitude is termed the mismatch
negativity (MMN) (Näätänen et al., 1978). The mismatch response is brimming with functional sig-
nificance: it might serve the orienting reflex, it is linked to a large number of memory and learning
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phenomena, and it is altered in several clinical conditions (for reviews, see May and Tiitinen, 2010;
Näätänen, 1990, 1992). Adaptation is likely to be at the root of the mismatch response both directly
and indirectly. First, the differential reflects the high and low level of adaptation of the N1(m) response
elicited by the standards and deviants, respectively, due to their different presentation rates (Butler,
1968; May et al., 1999; May and Tiitinen, 2010). Further, May et al. (2015) used simulations of audi-
tory cortex to show that short-term synaptic depression has multiple consequences: not only does it
cause the adaptation of the response elicited by the frequently presented standards, but it could be the
mechanism which integrates auditory information across time more generally. This integration shows
up as context-sensitive single- and multi-unit responses to tone pairs (Brosch and Schreiner, 2000;
Brosch et al., 1999), and as mismatch responses in the ERF to deviations in tone-sequence structure
(Näätänen et al., 1993). In this view, STSD not only underlies repetition suppression and the mismatch
response, but it also allows the auditory cortex to represent complex, temporally-evolving sounds. Note
that the adaptation-related explanation of the mismatch response (May et al., 2015; May and Tiitinen,
2010) is only one alternative. Näätänen (1990, 1992) proposed that MMN is unrelated to adaptation of
the evoked response, instead reflecting a process separate from that generating the N1(m). Also, the
predictive coding explanation suggests that repetition suppression is due to a top-down, inhibitory pre-
diction signal matching the bottom-up sensory signal, and that the mismatch response is an indication
of prediction error when the two signals do not match (Friston, 2005).

Observing adaptation in the human brain generally requires the use of non-invasive techniques. MEG
and EEG are well suited to this because they have a high temporal resolution of milliseconds, the
time scale of neuronal responses. However, these methods have the drawback that it is difficult to
identify the sources of the activity and their distribution. The response to a stimulus represents the
simultaneous activation of around a million synapses on pyramidal cells forming an intricate network
across auditory cortex, but what we observe is a spatial average of this activity (Hämäläinen et al.,
1993). Therefore, MEG and EEG measurements in themselves reveal very little of the underlying
neuronal dynamics. One way to move forward beyond observation is to use computational modelling.
The aim of such modelling need not a faithful reproduction of the brain. Instead, modelling attempts to
explain experimental observations by capturing the key mechanisms of the system under investigation.
While no model should be required to duplicate the modelled system, a useful model is a device which
reveals something about the system which would otherwise remain hidden, buried in the experimental
data.

In our previous work (Hajizadeh et al., 2021, 2019), we sought to understand the generation of the
event-related field in terms of a dynamical system with the spatial organisation of the auditory cortex
(Hackett et al., 2014; Kaas and Hackett, 2000). Our starting point was the model introduced by May and
Tiitinen (2013) and May et al. (2015). This describes auditory cortex as a system of hundreds of units
representing cortical columns, distributed across multiple fields in the core, belt, and parabelt areas.
Synaptic strengths are dynamically modulated by STSD so that the interactions between the units
become dependent not only on the current stimulus but on the stimulation history also. As explained
above, this model captures the phenomenology of context sensitivity of auditory responses. However,
it is highly non-linear and analytically impenetrable, and can only be studied one simulated trajectory
at a time. Therefore, in Hajizadeh et al. (2019), we made the original model tractable by assuming that
the input-output relationship of the model unit is linear and by using fixed connection strengths thereby
ignoring the effects of STSD. This allowed us to study the explicit solutions of the dynamical equations
of the model and to characterise the system in terms of its oscillatory properties. In this view, while
the cortical column is the system’s structural unit, the dynamical building block is the normal mode: a
damped harmonic oscillator emerging out of coupled excitation and inhibition.

The approach in Hajizadeh et al. (2019), which we also adopt here, is not just to replicate the ERF so
as to explain it in terms of parameter dependencies. Rather, we are exploring and interpreting ERF
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generation in the context of a fundamentally new view on AC activity: First, auditory cortex behaves as
a set of independent oscillators—normal modes—each characterised by a specific frequency, decay
rate, and spatial profile. These oscillators do not reside in any one unit of auditory cortex but, rather,
they are distributed across the entire auditory cortex. Conversely, the activity of each unit is a weighted
superposition of all the normal modes of the system. Second, the neural activity observed at the local
level of individual columns as well as that observed on the global level as the ERF are both explicitly
dependent on the anatomical structure of the entire AC. Third, the entire spatiotemporal pattern of
the cortically generated ERF represents a superposition of all the oscillating normal modes. The ERF
is therefore fundamentally a system property of the whole AC. This interpretation is an alternative to
the classical equivalent-current dipole (ECD) description of discrete (see, for example, Mosher et al.,
1992; Scherg, 1990; Scherg and Berg, 1996) and distributed (see, for example, Dale and Sereno,
1993; Hämäläinen and Ilmoniemi, 1994; Mosher and Leahy, 1999) source modelling approaches in
which ERFs are considered to arise from a linear sum of multiple spatially distributed point-like sources
(ECDs). In the normal-mode view, the spatially distributed normal mode is an even more fundamental
building block of the ERF than the individual source.

The aim of the current study is to understand adaptation of the ERF. Building on our previous work
presented in Hajizadeh et al. (2019), May and Tiitinen (2013), and May et al. (2015), we focus on
this issue through the lens of normal mode analysis: what happens to the auditory cortex as a set of
oscillators when the stimulus is repeated. To this end, we first provide general solutions to the state
equations of the model, without the constraints that were necessary in our previous study (Hajizadeh
et al., 2019). This allows us to reintroduce short-term synaptic depression into the model and to probe
its adaptation behaviour when stimuli are presented at different repetition rates. Comparisons of model
simulations with experimental MEG data are made. We go beyond describing adaptation of ERFs
merely as an attenuation of the ERF response amplitude. Instead, we describe how the normal modes
of the network dynamics, that is, the dynamics of the entire auditory cortex, changes as a result
of stimulus repetition. Further, we investigate how adaptation lifetime depends on other factors than
the dynamics of synaptic depression, namely gross anatomical structure and the balance between
excitation and inhibition.

2. MODEL OF AUDITORY CORTEX

2.1. Model description. We start with the model of AC, developed by May and colleagues (May et al.,
2015; May and Tiitinen, 2010, 2013; Westö et al., 2016). The model is based on the anatomical core-
belt-parabelt organisation of AC. This coarse structure of auditory areas is similar across mammals,
although species strongly differ in the number of auditory fields per area and the connectivity between
fields (Kaas and Hackett, 2000). The dynamics of the model were inspired by the work of Wilson and
Cowan (1972) and Hopfield and Tank (1986). Its basic unit is a simplified description of the cortical
column and comprises a mean-state excitatory and a mean-state inhibitory cell population that are
characterized by the state variables u(t) = (u1(t), . . . , uN(t))> and v(t) = (v1(t), . . . , vN(t))>,
respectively, where N is the number of columns. The dynamics are governed by the following set of
coupled first-order differential equations (Hajizadeh et al., 2019; May et al., 2015; May and Tiitinen,
2013)

τmu̇(t) = −u(t) +WeeQ(t) · g[u(t)]−Wei · g[v(t)] + iaff,e(t),(1)

τmv̇(t) = −v(t) +Wie · g[u(t)]−Wii · g[v(t)] + iaff,i(t),(2)

where τm is the membrane time constant. The connections between excitatory (e) and inhibitory (i) cell
populations are organized according to the anatomical structure of auditory cortex (Kaas and Hack-
ett, 2000) and are expressed by the four weight matrices Wee, Wei, Wie, and Wii. The elements of
the matrices Wee and Wie describe excitatory-to-excitatory and excitatory-to-inhibitory connections,
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respectively, and encompass all the connections between the columns. Note that only Wee includes
long-range connections between areas, and Wie describes lateral inhibition. Wei and Wii comprise
local inhibitory-to-excitatory and inhibitory-to-inhibitory connections, which only occur within a column,
and these matrices are, thus, diagonal. The firing rates g[u(t)] and g[v(t)] are component-wise sig-
moid functions of the form g[x] = tanh[α(x − θ)]. The parameter α determines the sensitivity
of the firing rates to the value of the respective state variable, and θ is a constant threshold. For
u(t),v(t) ≤ θ, the firing rates g[u(t)] and g[v(t)] are zero; for u(t),v(t) > θ, g[u(t)] and g[v(t)]
are determined by the sigmoid function. The variables iaff,e(t) and iaff,i(t) are time-dependent subcor-
tical afferent inputs.

Equation (1) indicates that the excitatory-to-excitatory connections are not static and are modulated by
short-term synaptic depression. This is expressed by the matrix multiplication of the elements of Wee

with the synaptic efficacy Q(t), which is a time-dependent diagonal matrix, with q(t) = diag(Q(t))
given by

(3) q̇(t) = −q(t)g[u(t)]

τo
+

1− q(t)

τrec
.

Here, τo and τrec are the time constants of the release and the replenishment of neurotransmitters at
each synapse; and 1 is the 1-vector of size N . Note that q(t) is also a vector and the multiplication
between the vectors is a component-wise operation. Equation (3) implies that the synaptic strength
between pre- and post-synaptic cell populations depends only on the activity of the state variable u(t)
of the pre-synaptic excitatory cell population. Finally, STSD is defined as d(t) = 1− q(t). Inclusion
of synaptic plasticity as it is given in Eq. (3) in the model was inspired by Tsodyks and Markram
(1997) and Loebel et al. (2007). Along with the connectivity matrices Wee, Wei, Wie, and Wii as well
as the input terms iaff,e(t) and iaff,i(t), the nonlinear system described by Eqs. (1)–(3) can be solved
numerically to provide a picture of the spatio-temporal activity of AC.

2.2. Solution by normal modes. Hajizadeh et al. (2019) demonstrated that, under certain assump-
tions, the solutions for Eqs. (1) and (2) can be written as a linear combination of damped harmonic
oscillators, so-called normal modes. These assumptions are that the firing rate is linear (g[x] = αx)
(see also Allen et al., 1975; Katznelson, 1981; May and Tiitinen, 2001), synaptic efficacy is constant,
i.e., Q(t) ≡ I , and the connection matrices are symmetric. Hajizadeh et al. (2019), then, realized
eigenvalue decomposition by first transforming Eqs. (1) and (2) into second-order differential equa-
tions which refer to the oscillating nature of brain activity.

In contrast to the approach of Hajizadeh et al. (2019), we have strived for a general solution of Eqs. (1)
and (2) in this work by including the dynamics of STSD and without a diversion via a system of second-
order differential equations. To this end, the homogeneous part of Eqs. (1) and (2) is rewritten in the
form of a standard linear system

(4)

(
u̇(t)
v̇(t)

)
= M

(
u(t)
v(t)

)
with M =

1

τm

(
αWeeQ− I −αWei

αWie −αWii − I

)
,

where I is the identity matrix. The general solution to Eq. (4) is then given by linear combinations

(5)

(
u(t)
v(t)

)
=

2N∑
n=1

cn exp(λnt)

(
xn

yn

)
,

where λn ∈ C, n = 1, . . . , 2N are the eigenvalues of the coefficient matrix M in Eq. (4). The
eigenvectors (xn,yn)> are the normal modes, where xn and yn represent the collection of the u
and v components of the n-th eigenvector. For a specific initial condition (u(0),v(0))> = (u0,v0)

>,
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the complex coefficients cn are given as scalar products

(6) cn =

〈(
u0

v0

)
,

(
ξn
ηn

)〉
,

with the corresponding left eigenvectors (ξn,ηn)> of the coefficient matrix M . For all reasonable
choices of the weight matrices in Eq. (4), the matrixM is stable, that is, all the eigenvalues λn = γn+
iωn for a given angular frequency ωn have a decay rate γn < 0. If ωn 6= 0, the normal mode dynamics
are of the underdamped type and, thus, the eigenvalues and their corresponding eigenvectors appear
in complex conjugate pairs. For real initial values (u(0),v(0))>, the corresponding pair of complex
coefficients cn has to be complex conjugate as well. The modulus of the complex coefficient cn is
the initial amplitude of the mode whilst its argument provides the initial phase. If ωn = 0, the normal
modes are of the overdamped type, and the eigenvectors together with their coefficients are real.

2.3. Dynamics of STSD and the slow-fast approximation. Here, we study adaptation dynamics
in AC using a paradigm where the AC is excited by a sequence of tones periodically delivered S
times with an identical stimulus onset interval (SOI) between two consecutive stimuli. With repetitive
stimulation, the system responds most strongly to the first stimulus; we refer to this condition as the
initial state. Within the next few stimuli, STSD increases and, therefore, the response magnitude rapidly
decreases and finally approaches a constant value. We call this state of the system the adapted
state, where further incoming stimuli induce only small changes in the response. The adapted state
is described by a balance between fast depression and recovery from depression—governed by the
time constants in Eq. (3)—and strongly depends on the temporal pattern of the stimulation. Without
any further stimulation, the system recovers back to its initial state with the time constant τrec, which is
much larger than τo.

Assuming that the stimulus duration is short compared to the time scales of the system, we can include
the stimuli in our model as input functions of the form

(7) iaff,e(t) = a
S∑

s=0

δ(t− ts),

where the s-th stimulus appears at ts = s · SOI, and the vector a gives the input strengths at each
column in the network. Here, only the first element of a is non-zero. That is, the afferent input occurs
only and specifically in the excitatory cell population of IC, i.e., iaff,i(t) = 0. From IC the signal prop-
agates to the AC via thalamus. Note that, in principle, the model is able to deal with any type of input
function. However, describing the stimuli as delta functions allows us to treat the impact of the stimuli
as jumps of u(t) and v(t) at the stimulation times ts, while in the time intervals between the stimuli,
we can use the homogeneous Eq. (4). Together with further slight simplifications of the model, which
we describe below, this will enable us to perform a stimulus-wise normal mode analysis of the system
as it adapts to repetitive stimulation.

Since τo � τrec, the dynamics of q(t), given in Eq. (3), is characterized by two different time scales:
First, there is a fast drop-off (−1/τo)(q(t)g[u(t)]) occurring directly after a stimulus when the firing
rate g[u(t)] is non-zero. Second, there is a slow recovery phase when the firing rates g[u(t)] have
decayed and Eq. (3) is governed by the recovery term (1/τrec)(1 − q(t)). Following the general
mathematical theory for slow-fast systems (see, for example, Kuehn, 2015), we can use this time-
scale separation to introduce a slow-fast approximation of the STSD process. We keep the synaptic
efficacy at a constant value Q(t) = Qs in each time interval t ∈ [ts, ts+1] between two consecutive
stimuli and update it together with the stimulus-induced jumps of u(t) and v(t) at the stimulation
times ts.
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For the updating Qs 7→ Qs+1, we separate the processes of fast drop-off during the stimulus-induced
activity from the slow recovery after the stimulus-induced activity. The fast drop-off is obtained by
integrating the first term in Eq. (3), which leads to

(8) Fs(qs) = qs exp

(
− 1

τo

∫ ts+1

ts

g[u(t′)]dt′
)
.

Inserting this as initial value into the slow recovery process, which can be explicitly integrated, we
obtain the combined update as given by

(9) qs+1 = 1− (1−Fs(qs)) exp

(
−ts+1 − ts

τrec

)
.

Inserting the general solution from Eq. 5 in Eq. 8, F can be rewritten as

(10) Fs(qs) = qs

2N∏
n=1

exp

(
−cn,s (exp (λn,s (ts+1 − ts))− 1)

τoλn,s
xn,s

)
.

Note that for each time interval [ts, ts+1], we have to use the step-wise adapting coefficient matrix
Ms = M(Qs) to recalculate the normal modes (xn,s,yn,s)

>, the eigenvalues λn,s, and the co-
efficients cn,s for which we also need the left eigenvectors (ξn,s,ηn,s)

>. Further, we assume that
between two consecutive stimuli the state variables u(t) and v(t) have decayed to zero so that the
next stimulus induces an abrupt increase of u(t) and v(t). This means that at each time point ts,
based on the stimulus history, the dynamics of Eq. (4) are reparameterized by updating Qs, and u(t)
and v(t) are set to a new stimulus-induced starting value. In particular, although the input aδ(t− ts)
is the same at the beginning of each interval, the effective input to the normal modes differs. It is
determined by the adapting connectivity pattern of the network, which itself depends on the stimulus
history by means of STSD. In this way, the slow-fast approximation allows for stimulus-wise normal
mode analysis of Eq. (4) in each time interval t ∈ [ts, ts+1] between two consecutive stimuli, where
the synaptic efficacy variables Q(t) = Qs stay piecewise constant. We will use this later as a tool to
analyse the STSD induced changes in the generation of the ERF signals.
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Figure 1. Schematic representation of the anatomical structure of the model. a) The
structure is divided into subcortical (white) and cortical (grey) regions. Subcortical ar-
eas are IC and thalamus. The thalamus provides the afferent input to the AC, which
itself consists of serially organized core, belt, and parabelt areas. b) The structure is
represented in the connection matrix Wee with non-zero matrix elements w(ff)

ee (feed-
forward, blue), w(fb)

ee (feedback, red), and w(d)
ee (lateral, yellow).
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d

Figure 2. State variable u(t) and STSD d derived with the slow-fast approximation. a)
The state variable u(t) as a response to a sequence of identical stimuli with constant
SOI of 0.5 s is shown for core (blue), belt (red), and parabelt (green) areas. For each
area, the first stimulus generates the largest response. Due to STSD, the strength of
the excitatory-to-excitatory connections weaken with each consecutive stimulus and,
thus, the peak amplitude of u(t) decreases until it levels off after a few stimuli. b) The
state variable u(t) as a response to one stimulus computed with the slow-fast approx-
imation (red) is contrasted with that gained in numerical simulations using nonlinear
firing rates g[x] = tanh(x) (blue) and linear firing rates g[x] = αx (black). The so-
lutions based on the slow-fast approximation provide a good estimation of numerical
solutions. The high-, intermediate-, and low-amplitude responses are from the core,
belt, and parabelt, respectively. c) The STSD time course estimated with the slow-fast
approximation (red) agrees well with the numerical simulations with nonlinear (blue)
and linear (black) firing rates. The red dashed lines represent solutions to Eq. (9),
and the red dots indicate the onset of stimulus presentation, at which the fast drop-off
according to Eq. (8) is computed. d) This plot is an enlarged version of the STSD
variable of the corresponding time interval shown in (b). In order to compute the state
variables using the slow-fast approximation, we assumed that STSD is piecewise con-
stant in the time interval between the onsets of two consecutive stimuli as indicated by
the green horizontal line. The corresponding STSD value at each stimulus onset (red
dots) was derived from the slow-fast approximation given in Eqs. (8) and (9).

2.4. An auditory cortex model with a simplified structure. For the simulations presented in this
work, we used a model with a strongly simplified anatomical structure that encompassed two sub-
cortical areas, viz. IC and thalamus, and three cortical areas representing the core, the belt, and the
parabelt (see Fig. 1a). For reasons of simplicity, each of the five areas consisted of only one auditory
field, which, in turn, comprised just one column with an excitatory and an inhibitory cell population. A
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Table 1. Default parameter values used for the simulations. These values were chosen
to replicate realistic-looking ERFs.

Dynamical parameters Value Topographical parameters Value
w(d)

ee 2 k(d)
1 -1

w(ff)
ee 0.5 k(ff)

1 -1
w(fb)

ee 0.4 k(fb)
1 15

w(d)
ie 3.5 k(d)

2 2
w(d)

ei 2.2
w(d)

ii 2.5
τm 0.03 s
τo 0.04 s
τrec 5 s
a 0.02

central feature of this network is its serial connectivity, i.e., only neighboring areas are directly con-
nected with each other via feedforward and feedback connections, as illustrated for the connection
matrix Wee in Fig. 1b. The only type of connection between two columns are excitatory-to-excitatory
connections. All other connections are assumed to be local and existing within a single area. There-
fore, their corresponding connection matrices are diagonal and of the order five given by Wie = w(d)

ie I,
Wei = w(d)

ei I, and Wii = w(d)
ii I.

Figure 2a shows an example of the model output in terms of the state variableu(t) based on the slow-
fast approximation for a repeated stimulation of the network with SOI = 0.5 s. The parameters used
for the computation are summarized in Table 1. For each stimulus, the peak magnitudes of u(t) to a
given stimulus gradually decrease—and the corresponding peak latencies increase—as one moves
up the hierarchy from the core to the parabelt. The excitatory-to-excitatory connections ofWee weaken
due to STSD (i.e., due to a lowering of synaptic efficacy Q in Eq. (4)). Consequently, in each area, the
peak amplitude of u(t) decreases across stimulus presentation.

Figure 2b shows the state variableu(t) from the numerical simulations with nonlinear (blue) and linear
firing rates (black), and from the slow-fast approximation (red). All simulations were computed using
the same set of model parameters displayed in Table 1 and the identical input function given in Eq. (7).
There is a close correspondence between the simulations: the simplifications induced by linear firing
rates and the slow-fast approximation have no relevant impact on the waveforms and their adaptation.
The evolution of the corresponding STSD variables d(t) = 1 − q(t) is shown in Fig. 2c. Again,
there are only minor discrepancies between the nonlinear (blue) and linear (black) solutions. For the
slow-fast approximation, the STSD variables are updated only at the stimulation times ts (red points).
Figure 2d illustrates the operation of the slow-fast approximation while in Eq. (4) the evolution of u(t)
and v(t) is computed using the piecewise constant values (green lines) of the STSD process. Note
that, as explained in the Sect. 2.3, the combination of the approximations for the fast drop (Eq. (8))
and the slow recovery (Eq. (9)) (red dashed lines) are only used to obtain the values of qs which stay
piecewise constant during the evolution of u(t) and v(t). Note also that the lemniscal subdivisions
of IC and thalamus have much faster recovery time constants compared to the cortical regions (Asari
and Zador, 2009; Pérez-González and Malmierca, 2014; Ulanovsky et al., 2004). Therefore, in our
simulations, IC and thalamus do not adapt, i.e., the corresponding values of synaptic efficacy Q(t) for
the two subcortical areas are set to unity in all simulations.

2.5. Computing MEG signals. MEG signals are generated mainly by primary currents running in
the apical dendrites of synchronously active pyramidal cells in the cortex (Hämäläinen et al., 1993).
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Figure 3. The K1 (a) and K2 (b) matrices, which contain the information about the
topology of the primary currents, provide connection-specific multipliers of Wee and
Wei in the computation of the MEG signal, respectively. a) The green (k(ff)

1 ) and purple
(k(fb)

1 ) elements in K1 represent feedforward and feedback connections, respectively.
The cyan elements (k(d)

1 ) on the diagonal represent the lateral connections. Contribu-
tions of IC and thalamus to the MEG are zero, but the excitatory connections from
the thalamus to the core contribute to the MEG. b) The yellow elements (k(d)

2 ) in K2

represent the weights of inhibitory connections.

The apical dendrites are locally aligned with each other and point in a direction perpendicular to the
cortical surface. When a portion of the cortex becomes active, its contribution to the MEG signal is
proportional to the total current running in the apical dendrites. This is weighted by the distance to
the MEG sensor and by the orientation of the current, which is determined by the local gyrification of
the cortical surface. The primary current in each apical dendrite is driven by the synaptic inputs to the
dendrite. This means that each synaptic input contributes to the MEG signal, and the magnitude and
polarity of this contribution depends on the location of the synapse on the dendritic tree and on the type
of the synapse (Ahlfors and Wreh, 2015). An excitatory synapse near the cell body will cause positive
current to be pumped up the tree, towards the cortical surface. Conversely, an excitatory synapse near
the distal end of the tree will cause the current to travel in the opposite direction, away from the cortical
surface. Consequently, feedforward connections, which generally target the proximal dendrites in layer
IV, result in a current pointing towards the cortical surface. In contrast, feedback input arriving in the
upper layers produce a current pointing downward (Ahlfors et al., 2015).

We modelled MEG generation with the above considerations in mind. Given that the MEG signal of a
pyramidal cell is quite well approximated by the synaptic input current of the neuron (May, 2002), the
MEG contribution from each area is assumed to be proportional to the input to the column representing
the area. These inputs are defined by the second and third term of Eq. (1). Each input is weighted
by a connection-specific multiplier which depends on the connection type (feedforward, feedback,
excitatory, inhibitory) (for more information, please see Hajizadeh et al., 2021, 2019). This topological
information is expressed in the matrices K1 and K2, whose structures are shown in Fig. 3. They
specify how each synaptic connection contributes to the MEG signal by an element-wise multiplication
(Hadamard product ◦) with the matrices Wee and Wei. Thus, the total MEG signal is the product of
K1 and K2 representing the topography, the synaptic strengths represented in Wee and Wei, and the
firing rate of the pre-synaptic cell population. Therefore, the MEG signal is computed as

(11) R(t) =
2N∑
j=1

[(
K1 ◦Wee O

O K2 ◦Wei

)(
u(t)
v(t)

)]
j

,

where j runs over the number of cortical columns in the model, and O is the zero matrix of order N .
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Figure 4. Comparison of experimental and simulated ERFs showing the dependence
of the ERF response on SOI. a) Trial-averaged ERF responses from an MEG sensor in
the vicinity of auditory cortex recorded from a single subject. The peak amplitude of the
N1m shows the largest sensitivity to changes in SOI. The P1m, peaking at around 50
ms, shows the weakest sensitivity, and the P2m has an intermediate sensitivity (data
from Zacharias et al. (2012)). b) Simulated ERF responses calculated by use of the
slow-fast approximation. These replicate all the major landmarks of the dependence
of the ERF on SOI: the P1m as well as the rising slope of the N1m are least affected
by the SOI. As SOI is increased, the peak latency of the N1m grows and the falling
slope of the N1m becomes steeper. We have added a 30-ms shift to the simulated
waveforms to account for the time delay due to sub-cortical processing.

In Fig. 4, we compare experimental MEG data with simulations based on the slow-fast approximation
using Eq. (11). MEG signals were recorded from a single subject who passively listened to sequences
of tones. These tones (audio frequency 1.5 kHz, duration 100 ms, sound-pressure level 80 dB) were
presented in five different blocks (100 tone repetitions per block) with constant SOI between two con-
secutive tones. The SOIs of the blocks were 0.5 s, 1 s, 2.5 s, 5 s, and 10 s, corresponding to stimulation
rates of 2 Hz, 1 Hz, 0.4 Hz, 0.2 Hz, and 0.1 Hz, respectively (Zacharias et al., 2012). Figure 4a shows
the trial-averaged waveforms for the five SOIs. With increasing SOI, the N1m peak-magnitude and
the corresponding peak-latency (except for the 0.5-s SOI) increases, thus presumably reflecting the
different speed of recovery from STSD for short and long SOIs. Furthermore, the rising slope of the
N1m is unaffected by the SOI, whereas the falling slope clearly differs between the five waveforms.
Also, P2m seems to be more affected by the adaptation process than the P1m deflection.

Using the same stimulation paradigm as described for the experimental data, we performed simula-
tions of ERFs based on the normal mode analysis (Eq. (11)) with the slow-fast approximation and
using the parameters given in Table 1. As shown in Fig. 4b, the simulations replicate the main charac-
teristics of the experimental data (Fig. 4a): 1) As SOI is increased, both the peak amplitude and the
peak latency of the N1m become larger; 2) the rising slope of the N1m is unaffected by SOI, and 3)
the falling slope of the N1m becomes steeper as SOI grows. With the use of the slow-fast approxima-
tion we have now a tool at hand that enables us to investigate how stimulus repetition modifies the
dynamics of AC.

3. A NEW FRAMEWORK FOR AUDITORY ADAPTATION

3.1. Decomposition of ERFs to normal modes. According to Eq. (11), ERFs are functions of the
excitatory and inhibitory state variables which themselves are linear combinations of normal modes.
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Substituting Eq. (5) in Eq. (11) results in

(12) R(t) =
2N∑
j=1

[(
K1 ◦Wee O

O K2 ◦Wei

) 2N∑
n=1

cnexp(λnt)

(
xn

yn

)]
j

.

The left column of Fig. 5 shows the simulated ERF waveforms and the underlying normal modes of
the adapted states for the five different SOIs presented in Fig. 4b. The ERFs are displayed as grey
curves, with the same shades of grey used in Fig. 4b. The normal modes are depicted in different
colors; they are identifiable by their characteristic frequencies ν = ω/2π in the legend. The ERF
decomposition results in normal modes whose polarities are preserved across SOI. For all SOIs, each
normal mode peaks well before the N1m, during the first 50 ms. The two normal modes with the lowest
ν (purple and green curves) show by far the largest amplitude. They have opposite phases and a peak
latency at around 50 ms. In contrast, the two modes with the highest frequencies (blue and red) have
much smaller magnitudes and decay faster. The mode with the intermediate frequency (yellow) has a
prominent peak magnitude with a small latency. As a consequence of this diversity of normal modes,
the P1m of the ERFs is composed from all the modes, whereas the N1m and P2m are predominantly
formed by the two modes with the lowest frequencies.

The right column of Fig. 5 shows the dispersion relation of the normal modes underlying the ERFs.
At both initial and adapted states, the normal modes are of the underdamped type because their
frequencies ν are non-zero and their corresponding decay rates γ are negative. Moreover, for all SOIs
there is a typical common dispersion relation between the frequencies and the decay rates, implying
that modes with higher frequency also decay faster. Additionally, for all SOIs, the frequencies and the
decay rates of the modes in the adapted state shift to larger values compared to the initial state; this
shift is larger the smaller the SOI is. For the largest SOI = 10 s, there are only minute differences
between the dispersion relation at the initial and the adapted state, because the 10-s interval between
two successive stimuli provides sufficient time for the synaptic efficiency q(t) to return to the initial
state.

Stimulus history changes not only the frequency and the decay rate of the normal modes but also their
initial amplitude |cn| after each stimulus (see Eq. (6)). These amplitudes are indicated by the size of
each disc in Figs. 5f-j: the larger the size of a disc, the larger the initial amplitude of the respective
normal mode. Further, Fig. 5 shows that, in the initial state (grey discs), there is a gradual decrease of
the initial amplitude |cn| from low- to high-frequency modes, whereas in the adapted state there is no
systematic pattern except that, for all stimulation rates, the normal mode with the highest frequency
(blue discs) has the smallest initial amplitude.

Figure 5 indicates that normal modes differently contribute to the generation of the ERFs. According to
Eq. (12), this different contribution does not only originate from the differences in the initial amplitudes.
Reformulating Eq. (12) as

R(t) =
2N∑
n=1

cnκnexp(λnt) with

κn =
2N∑
j=1

[(
K1 ◦Wee O

O K2 ◦Wei

)(
xn

yn

)]
j

,

(13)

we see that the contribution of each normal mode to the MEG signal is proportional to two factors:

(1) the initial amplitude |cn| of the mode, interpreted as the input efficiency with respect to the
stimulation pattern, and

(2) the MEG efficiency κn, describing to which extent the MEG device is able to detect the mode.
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ν

Figure 5. Decomposition of
the simulated ERFs into nor-
mal modes. a-e) Each ERF
(shaded grey) is presented
together with the underlying
normal modes. The ERFs are
the same as those presented
in Fig. 4b. For each SOI, all
normal modes peak earlier
than the corresponding N1m,
and the main contributor to the
ERFs are the low-frequency
normal modes (purple and
green) appearing in opposite
phase. The high-frequency
normal modes (blue and red)
decay fast and contribute only
very weakly to the N1m and
P2m responses. f-j) Dispersion
relation between frequency
(Im(λ)/2π = ν) and the
absolute value of the decay
rate (|Re(λ)| = |γ|). The
spectral information shows
that all normal modes are
of the underdamped type. In
general, the frequency and de-
cay rate of the normal modes
increase with decreasing SOI.
The grey discs represent the
dispersion relation at the initial
state, which is the same for
all SOIs. The coloured discs
correspond to the dispersion
relation of the adapted state,
with the same colour code as
in (a). The size of the discs
are proportional to the initial
amplitude |cn| of the normal
modes. In both the initial state
and the adapted state, the
low-frequency normal modes
have a larger amplitude than
the high-frequency normal
modes.
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This information is illustrated in Fig. 6, where the input efficiency |cn| and MEG efficiency κn of each
normal mode in the initial (grey) and adapted (coloured) states are characterized by a rectangle of
width |cn| and height κn. The area of each rectangle is proportional to the absolute value of the
total contribution of a given normal mode to the ERFs presented in Fig. 4b. This figure shows that
the two low-frequency modes (purple and green) are the major contributors to the MEG signals. As
SOI decreases, the MEG efficiency of the lowest frequency normal mode (purple) decreases, but its
input efficiency increases. In contrast, the contribution of the second mode (green) increases in MEG
efficiency and decreases in input efficiency. The input efficiency of the third mode (yellow) is relatively
unaffected by SOI, whereas its MEG efficiency decreases considerably for smaller SOIs. The total
contribution of the two high-frequency modes is negligibly small.

Figure 6. Characterization of normal modes in terms of MEG efficiency κn and input
efficiency |cn|. The normal modes are clustered according to the five frequency bands
and they are colour-coded as in Fig. 5. Frequency increases from left to right. Within
each band, each normal mode is represented by a rectangle, whose width (∆x) and
height (∆y) is equivalent to |cn| and κn, respectively. SOI is represented by the colour
shade, with dark shades indicating the smallest and light shades the largest SOI.
The initial state is in grey. For all SOIs, the two low-frequency modes (purple and
green) contribute most to the ERF signals, whereas the contributions of the two high-
frequency modes (red and blue) are negligible. Input efficiency shows less variability
than MEG efficiency, with the exception of the normal mode with the second-lowest
frequency (green).

In order to fully understand the composition of the MEG signal in terms of the normal modes, one has
to appreciate that the result of a linear superposition of damped oscillations does not only depend on
the amplitude of each contribution, but also on the corresponding phase. We can see from Eq. (12) that
a single oscillating normal mode leads to a complex contribution of the form rn(t) = cnκn exp(λnt)
to the ERF. For a complex conjugate pair λn and λn+1 = λn, we obtain the real contribution to the
MEG of the form

rn(t) + rn+1(t) = 2<(rn(t))

= 2|cn|κn exp(γnt) cos (ωnt+ arg(cn)) .
(14)

Summing up such oscillatory terms with different initial phases arg(cn) and different angular frequen-
cies ωn leads to complicated interference patterns, where terms at different time points may add up or
cancel each other. This is illustrated in Fig. 7, which shows the amplitude and the phase of each normal
mode at three time points: at stimulus onset, at the peak latency of the P1m, and at the peak latency
of the N1m. Each dot represents the contribution rn(t), while the corresponding complex conjugate
rn+1(t) = rn(t) is omitted. At stimulus onset, the leading modes (purple and green) have almost
opposite phases such that their real parts cancel out each other (Fig. 7a). The contributions from the
higher-frequency modes (blue, red) are negligible. The same holds for the P1m peak shown in Fig. 7b,
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Figure 7. Normal modes rn underlying the ERF presented in the complex plain at
three distinct time points. a) At stimulus onset, the normal modes are at their largest
amplitude. However, due to their phases they form a destructive pattern such that the
sum of their corresponding complex amplitude is zero. b) At the peak latency of the
P1m, the largest contributions are from the two lowest-frequency modes (green and
purple). These appear in nearly opposite phases, and the summed amplitude is low. c)
At the peak latency of the N1m, the normal modes with the second-lowest frequency
(green) have a minute real part for all SOIs, meaning that they barely contribute to
the N1m peak. Notably, the N1m peak is predominately formed by the mode with the
lowest frequency (purple). The colour coding is the same as in Figs. 5 and 6, and the
entire ERFs are shown in Fig. 4b.

where the two leading modes have very similar amplitudes but almost opposite phases. Therefore,
their overall contributions are quite small, explaining why the P1m has a relatively low amplitude even
though the underlying normal modes are near their extrema. After the P1m, a constructive superposi-
tion of the first and second mode starts to emerge, with the two modes being in the same phase. This
superposition builds into a large-amplitude N1m. This shows that the main frequency component of an
ERF can be explained as a beating frequency, that is, the frequency difference between the two lead-
ing modes. Moreover, the latency of the N1m peak is a result of the initially opposite phases of these
leading modes which means that the N1m peak should not be interpreted as a delayed response of
the complete AC network activity. This is underlined also by the fact that the activity in the core area
peaks at a much earlier latency than the ERF response (see Fig. 2). The results shown in Fig. 7 high-
light the fact that ERF generation is a result of a complex interplay between the spatial and temporal
structure of the AC response given by the mode spectrum and their corresponding input efficiencies.
Additionally, the spatial shapes of the normal modes determines their different MEG efficiencies.

3.2. MEG responses based on different types of connections. As illustrated in Fig. 1b, there are
three types of connections expressed in Wee: 1) The rows of Wee represent incoming connections
received by an area (Fig. 8a). 2) The columns ofWee represent the outgoing connections from an area
(Fig. 8b). 3) The diagonal elements of Wee are the lateral (intrafield) connections, and the elements
below and above the diagonal of Wee represent feedforward and feedback connections, respectively
(Fig. 8c). Equation (11) enables us to break down the MEG signal into the contributions from these
different types of connections.

Figures 8a1 to a5 show the decomposition of the simulated ERFs (grey) into the contributions of each
area according to the incoming connections (Fig. 8a). This is equivalent to “source modelling”, looking
at the contribution that the activity in each area directly contributes to the ERF in virtue of it generating
a magnetic field. Note that we are assuming that the ERF is blind to activity in IC and thalamus. For
all SOIs, the core area (purple) is the sole generator of the P1m and it is also the largest contributor
to the N1m. The core (purple) and the belt (red) together account for almost the entire ERF, including
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Figure 8. ERF contributions by connection type and area. a1-a5) When inspecting
the contributions to the ERF according to incoming connections (equivalent to source
modelling), the relative contributions from each area remained the same across SOI,
and each contribution was scaled similarly by the adaptation process. The main con-
tributors to the ERF are the core (purple) and the belt (red). b1-b5) The contributions
according to outgoing connections present a different picture. Here, the belt (red) and
the parabelt (green) contributions show the strongest adaptation. They both increase
steeply with increasing SOI, whereas the thalamus (blue) and core (purple) contri-
butions remain relatively stable. c1-c5) Feedback connections (orange) contribute to
the ERF with a strongly adapting component which grows as a function of SOI. In
contrast, the contributions from feedforward connections (purple), responsible for the
P1m, show only weak adaptation. The contribution from lateral connections (blue) dis-
plays intermediate adaptation. Therefore, the adaptation of the N1m is largely due to
the adaptation of the feedback connections.

the P2m, whereas the contribution of the parabelt (green) is minute. Further, the simulations reveal an
increase in the latency of the contribution to the N1m as one moves from the core to the belt and then
to the parabelt.

Figures 8b1 to b5 show how the outgoing connections (Fig. 8b) contribute to the ERF (grey). These
results look at the indirect contribution that each area makes via its output to other areas and to
itself. Connections originating in the thalamus (blue) drive activity in the core through feedforward
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connections and thereby contribute to the P1m response. For the shortest SOIs of 1 s and 0.5 s, the
core (purple) makes the largest contribution to the N1m, whereas for the longer SOIs of 10 s, 5 s, and
2.5 s, the belt’s contribution is the largest (red). The parabelt (green) with its long latency remains the
weakest contributor to the N1m throughout all SOIs.

Figures 8c1 to 8c5 show how the input arriving via feedforward (purple), feedback (orange), and lateral
(blue) connections contribute to the ERF. We assume that feedforward and lateral connections drive
currents away from the cortical surface, whereas feedback connections drive currents towards the
surface (Ahlfors et al., 2015; Ahlfors and Wreh, 2015). Therefore, feedforward and lateral connections
account for the P1m and P2m deflections, whereas the feedback and the inhibitory connections are
responsible for the N1m. A clear pattern can be seen: the contributions driven by the feedforward and
lateral connections grow only a little as SOI is increased from 0.5 s to 10 s. In contrast, the contribu-
tion from the feedback connections show strong adaptation, with a three-fold increase in magnitude
over the SOI range. This differential in adaptation behaviour explains why the P1m has a weak SOI
dependence and why the N1m shows the strongest adaptation.

3.3. The role of network structure in adaptation. To inspect whether the anatomical structure of
AC impacts on adaptation, we measured the lifetime of adaptation in three versions of the AC model.
First, the default version (network DEF) was the one described above, implementing the serial anatom-
ical structure of AC (Hackett, 2015). In the second version (network CP), we modified Wee by adding
a direct excitatory-to-excitatory connection between core and parabelt. In the third version (network
TB), there was a direct connection between the thalamus and the belt. CP and TB represent steps to-
wards full connectivity and are no longer serial networks. The inclusion of extra excitatory-to-excitatory
connections in these networks alters the excitation-inhibition balance compared to that of the DEF net-
work. Therefore, we also constructed normalized versions of networks CP and TB, whereWee is mod-
ified such that it has the same norm as Wee in the DEF network. The norm is defined as the sum of all
matrix elements. Therefore, the normalised structures CPN and TBN retained the excitation-inhibition
balance of the original default network.

Simulations employed the stimulus-repetition paradigm described in Sect. 2.5. We used the traditional
method for calculating adaptation lifetime (Lü et al., 1992; Lu et al., 1992). This was to measure
the peak amplitude of the N1m for each SOI and then to fit the following exponential function to the
measurements

(15) Pfit(SOI) = A

(
1− exp

(
−SOI − t0

τsoi

))
.

Here, τsoi is the time constant expressing the lifetime of adaptation; t0 is the intercept with the abscissa,
and A is the amplitude at which the exponential function saturates. All three parameters in Eq. (15)
were fitting parameters. Note that in the model the saturation level A is equivalent to the peak am-
plitude of the response to the first stimulus, i.e., the initial state. As fitting procedure we implemented
an integral linear regression method to find suitable initial values (Jacquelin, 2009) and, then, used
nonlinear regression function (nlinfit) from MATLAB (The MathWorks, version R2018b) to estimate the
fitting parameters. We performed the fitting procedure not only to the N1m peak amplitudes, but also
to the peak amplitudes of the state variables u(t) of the core, belt, and parabelt.

Figure 9 shows the fitting parameters τsoi and t0 characterising the SOI-dependence of the peak am-
plitude in the case of the ERF (star) and of the core (circle), belt (square), and parabelt (diamond) state
variable u(t). The results demonstrate that these parameters are sensitive to the network structure
as well as to the excitation-inhibition balance. The adaptation lifetime parameter τsoi varies between
2.3 s and 3.1 s, and t0 ranges from -1.5 to -0.5. Two observations can be made. First, the impact of
the structural changes can be identified by comparisons between the default network (DEF, blue) and
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DEF

CPN

CP

TBN

TB

Figure 9. The impact of network structure and excitation-inhibition balance on adap-
tation. The recovery time constantτsoi and the intercept t0 were obtained by fitting
Eq. (15) to the peak amplitude of the simulated N1m (star), and of the state variables
u(t) of core (circle), belt (square), and parabelt (diamond). Blue symbols show τsoi

and t0 for the default AC network (DEF, see Fig. 1). Adding a thalamocortical connec-
tion between thalamus and belt area (TB, red) has the strongest effect on τsoi and t0.
The same network with normalised balanced excitation-inhibition (TBN, yellow) leads
to smaller values of τsoi and to little change of t0. The addition of a corticocortical con-
nection between core and parabelt (CP, cyan) leads to an increase of τsoi everywhere
except in parabelt. However, the same network with normalised excitation-inhibition
balance (CPN, green) shows smaller values of τsoi.

the normalised TBN (yellow) and CPN (green) network, which differ from DEF solely in terms of struc-
ture. Whereas τsoi appears to be weakly affected, with values between 2.3 s and 2.7 s, the variation
of t0 is stronger, covering the range from -1.5 to -0.5 s. Second, the effect of the excitation-inhibition
balance on τsoi and t0 is revealed by comparisons between TBN (yellow) and TB (red) and between
CPN (green) and CP (cyan). In each case, the normalised network versions TBN and CPN show less
excitation than the non-normalised versions TB and CP. We see that the effect of adding excitation
is to push τsoi up by 500 ms. In contrast, t0 of core and parabelt is only weakly affected by added
excitation. Taken together, Fig. 9 shows that the modification of the excitation-inhibition balance has a
larger effect on τsoi and t0 than a change of the network structure.

Adaptation is traditionally quantified through fitting the single-exponential function of Eq. (15) to the
peak amplitudes of the N1m. But does a single exponential actually describe the dependence of
the ERF amplitude on SOI? Figure 10a indicates that this appears to be the case, at least when
the number of data points is low. However, with our model we can easily generate ERF peak ampli-
tudes for an arbitrary number of SOIs which would not be feasible experimentally. This is illustrated
in Fig. 10b where 99 simulated ERF peak amplitudes (red points) are plotted as a function of SOI
together with the corresponding fit (blue line). Figure 10b shows a systematic deviation of the fitting
function (Eq. (15)) from these data. This deviation is highlighted in Fig. 10c where the data points in
Fig. 10b are transformed by the log(x) function. Figure 10c shows that at small SOIs (≤1.5 s), the
simulated data deviate much stronger from the fit than data at larger SOIs. This deviation might seem
negligibly small. However, it indicates two major shortcomings of application of such exponential func-
tions for explaining recovery from adaptation. First, the strong deviation at small SOIs, highlighted in
the logarithmically scaled plot in Fig. 10c, puts a question mark on the general applicability of a single-
exponential function for the description of the recovery process. Second, it questions the explanatory
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Figure 10. A single exponential function does not capture the recovery from adapta-
tion. a) The fitting function of Eq. (15) appears to offer a reasonable approximation
(blue line) of the SOI-dependence of the N1m peak amplitudes (red points) when
there are only a few measurement points. b) The situation, however, is different when
a much larger number of SOIs can be used for revealing the true SOI-dependence
of the N1m. There is a systematic deviation between the fitting function and the peak
amplitudes. c) The log(x) transformation of the data points emphasizes that there
are clear differences between the data points and the fit for small and larger SOIs.
d) This deviation between the data points and the fit can be quantified by computing
the local saturation rate f , given in Eq. (16), for any two consecutive data points. For
the exponential fit, the local saturation rate f is constant, whereas for the simulated
data points it monotonically decreases with increasing SOI and converges towards a
constant value (≈ 0.2), different from the f obtained from the fit (≈ 0.3), only at large
SOIs (≥10 s).

power of the fitting parameter t0. This deviation between fit and data can be quantified more precisely
by the local exponential saturation rate

(16) fj =
Fj − Fj+1

(Fj − Finf)(SOIj+1 − SOIj)
,

where the F s are simulated ERF peak amplitudes and j is the index of the data points (red points in
Figs. 10b-d). Finf is the amplitude at which the data points saturate. It is equivalent to the ERF peak
amplitude at the initial state, this being the maximum possible value the simulated ERFs can have.
The results of the computation of the local exponential saturation rate for the simulated data as well
as the fit are shown in Fig. 10d, which for the fitting function given in Eq. (15) always provides the
constant value 1/τsoi. However, it also shows that simulated data points (red) deviate substantially
from a constant value for SOIs smaller than 5 s. In particular, Eq. (16) emphasizes more on the fact
that for a small number of sample SOIs the result of the fit strongly depends on the choice of the
sampling points.
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4. DISCUSSION

4.1. Main findings. We used mathematical modelling to investigate context sensitivity of auditory
cortex, specifically, how STSD modifies the systems dynamics of auditory cortex and how this modifi-
cation becomes visible as the adaptation of the ERF associated with stimulus repetition. We took an
approach similar to the one in our previous study (Hajizadeh et al., 2019), whereby the auditory cortex
was characterised as a set of spatially distributed, mutually independent oscillators—normal modes—
exposed through explicitly solving the state equations. Each normal mode is a global feature because
it contributes to the activity of all cortical columns and depends on the anatomical structure of the
entire auditory cortex. With the traditional view being that the event-related field arises out of spatially
discrete, local generators, our approach offers an alternative: the ERF is generated by a set of pro-
cesses where each one is distributed over the entire network of the auditory cortex. Expanding from
Hajizadeh et al. (2019), the current study addressed adaptation due to stimulus repetition through the
introduction of dynamical synapses to the model. This was achieved through two manoeuvres: First,
we derived complete solutions to the system of Eqs. (1) and (2) even in cases where the connections
are asymmetric, such as when STSD is in operation. Second, we used time-scale separation of the
dynamics of STSD (Eq. (3)), exploiting the relative slowness of recovery from STSD in comparison to
the fast evolution of the state variables (Eqs. (1) and (2)). As a result, we were able to describe the
adapting auditory cortex as a set of normal modes modulated by the stimulation. In this approach, all
possible system trajectories are solved at the same time rather than simulated one at a time.

The current model replicates the adaptation of the ERF from MEG experiments resulting from stimulus
repetition. This can be observed as, for example, the peak amplitude of the N1m increasing monoton-
ically as a function of SOI, roughly according to an exponentially saturating function. The N1m can be
understood as an interference pattern of the superimposed normal modes, and in this view, its adap-
tation is explained as resulting from the modulations not only of the amplitudes but also of the angular
frequencies ωn of the normal modes. Indeed, adaptation should be seen as a complete reorganiza-
tion of the AC network where the reduction of the N1m amplitude is a by-product of the stimulation
shifting the dispersion of the angular frequencies ωn and decay rates γn of the normal modes. Fur-
ther, we found that adaptation is a network effect that depends not only on STSD. Namely, changing
the anatomical structure of the network and/or the balance between excitation and inhibition lead to
marked changes in the lifetime of N1m adaptation, even though the parameters of STSD were kept
constant. Also, inspecting the individual contributions to the ERF from the various areas, we found that
the lifetime of adaptation varied across anatomical location.

4.2. Adaptation of the N1m: What are we measuring? The current model of the AC replicates well
the experimentally observed SOI-dependence of the ERF (Fig. 4). For both experiment and model,
we used repetitive stimulation with SOIs of 0.5, 1, 2.5, 5, and 10 s. Simulated and experimental data
showed good agreement with each other for the main aspects of the waveforms: the increase in the
N1m peak magnitude and peak latency with increasing SOI, the much weaker SOI-dependence of the
magnitude of the P1m, the overlap of the rising flanks of the N1m of all waveforms, the distinct falling
flanks with a systematic increase in steepness as SOI is increased, and the increase in the width of
the N1 waveform as a function of SOI. These features can be traced back to the distinct contributions
of the individual cortical areas, as laid out in Fig. 8. The identical rising slopes of the waveforms
derive from the core, which provides the largest contribution to the MEG waveform at all SOIs and
is also the main source of variation of the magnitude of the N1m peak. The belt also contributes to
the overall amplitude, especially at longer SOIs: while the ratio between magnitude of the belt and
core contribution is around 0.5 for SOI = 10 s, it sinks to 0.25 for SOI = 0.5 s. The magnitude of
the parabelt contribution to the ERF is negligible at all SOIs. However, this disguises the influence
of the parabelt on the overall dynamics of the system, as shown by our previous results (Hajizadeh
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et al., 2019): small changes in the connection values in the parabelt result in sizeable modulations
of the N1m response, even though the parabelt’s direct contribution to the N1m is minimal. Further,
we inspected the composition of the ERF in terms of component contributions made by the different
types of connections (Fig. 8). We found that the adaptation of the N1m is largely due the adaptation of
the contribution generated by the feedback connections, while the feedforward and lateral (intrafield)
components remained relatively stable across SOI.

We emphasise that in the model, the ERF signal is the weighted superposition of multiple normal
modes as distributed over the core, belt, and parabelt. Therefore, the N1m peak represents an event
in an interference pattern rather than anything real. That is, the peak of the N1m at about 100 ms is
incidental in the sense that it does not represent the peak of any normal mode nor that of the activity
of any individual area in the AC. In consequence, observing adaptation as SOI-related changes in the
N1m on its own reveals very little of how the underlying dynamics are changing. To understand what
is driving N1m adaptation, we investigated how the interference pattern of the normal modes changes
as SOI is varied.

Figure 5 shows the ERF in terms of its normal mode components, which paint a consistent pattern
across the five SOI conditions. These components come in a variety of peak amplitudes and laten-
cies, and they can also have opposite phases, which contributes to mutual cancellations when the
modes are summed up to the ERF signal (see also Fig. 7). The three normal modes with the lowest
frequencies dominate over the high-frequency modes in terms of amplitude. Indeed, the two normal
modes with the highest frequencies have very weak amplitudes throughout their time courses, and
they approach zero magnitude already at the onset of the N1m waveform at about 50 ms after stimu-
lus onset. Interestingly, each normal mode reaches its global absolute peak well before the N1m even
starts to emerge. Yet, in the ERF, the N1m is the dominating wave. This is due to the low-frequency
modes largely cancelling each other out during the first 50 ms, when the modes reach their global
extrema. Because of this cancellation effect, the P1m response has a low amplitude, even though it
occurs when the normal modes are at their most vigorous (see Fig. 7). Subsequently, when all the
normal modes are well into their decay phase, the N1m emerges as an interference pattern of the two
low-frequency normal modes with the highest amplitudes but opposite phases.

On the above basis, we can understand the adaptation of the N1m in terms of the behaviour of the
two dominating normal modes of auditory cortex: adaptation arises out of two factors which contribute
unequally in different SOI ranges. As shown in the left column of Fig. 5, with the fastest stimulation
rates (SOIs of 0.5 and 1 s), the normal modes are clearly attenuated in amplitude compared to their
counterparts in the 10-s SOI condition (representing the unadapted state). Furthermore, mirroring the
adaptation of the N1m (Fig. 4), this attenuation is much larger when SOI is 0.5 s than when SOI is 1
s. In contrast, when the SOI is larger (2.5, 5, and 10 s), the amplitudes of the normal modes become
insensitive to changes in SOI. Indeed, the normal mode with the lowest frequency (purple line in
Fig. 5) decreases slightly in amplitude as SOI is increased from 2.5 s to 10 s, while the N1m grows
in amplitude. In this case, the attenuation of the N1m is explained by the changes in the frequencies
rather than the amplitudes of the two dominating normal modes: the mode with the largest absolute
magnitude (green lines in Fig. 5) remains relatively stable in terms of amplitude and frequency, while
the mode with the second-largest magnitude but opposing phase (purple line in Fig. 5) increases in
frequency as SOI decreases. Because of this difference in their frequency behaviour and phase, the
dominant normal modes sum up to an N1m response that decreases with decreasing SOI.

The adaptation of the N1m is usually described with the single exponentially saturating function of
Eq. (15). This captures the behaviour of the peak amplitude of the N1m, namely, its initially rapid in-
crease as a function of SOI followed by a levelling off at longer SOI. This description might be adequate
when the number of data points is low (Fig. 10a). However, our model predicts that the true depen-
dence of the peak N1m amplitude on SOI is insufficiently described by a single exponential function

DOI 10.20347/WIAS.PREPRINT.2854 Berlin 2021



A. Hajizadeh, A. Matysiak, M. Wolfrum, P. J. C. May, R. König 22

(Fig. 10b-d). This could be a consequence of the N1m peak amplitude being determined by two differ-
ent normal-mode properties, viz. amplitude and frequency. As explained above, the SOI-dependence
of the N1m is due to normal mode modulations at short SOIs and to frequency modulations at longer
SOIs. Thus, adaptation lifetime as estimated with the single exponential might work better as a relative
than an absolute measure. Even if it fails to describe amplitude behaviour at short SOIs, it still allows
one to compare lifetimes across experimental conditions, brain regions, and subjects.

In sum, the N1m is diminished at short SOIs because the normal modes shrink in amplitude, but with
long SOIs, the N1m is attenuated because of the way frequency changes in the modes are reflected in
the interference pattern. The presence of two mechanisms of amplitude modulation might mean that
a single exponential function is not the optimal description of the dependence of the N1m amplitude
on SOI.

4.3. Adaptation as normal mode modulations. While the adaptation of the N1m can be accounted
for by changes in the underlying normal modes, the N1m is only a single landmark in the ERF. To
gain a more complete view of how the dynamics of the system are modulated by previous stimulation,
we inspected how the normal modes change as a function of SOI in the adapted state. The main
characteristics of a normal mode are its frequency ν and decay rate γ, as displayed in Figs. 5f-j.
Two observations could be made. First, there is a neat dispersion of the normal modes in the ν-γ
plane where they land on a monotonically increasing curve, so that the higher the frequency, the faster
the decay rate. Second, the effect of STSD is to push the normal modes upwards on this dispersion
curve with respect to the initial state, this effect being larger the smaller the SOI is. We can thus view
adaptation of the ERF in a novel way: each incoming stimulus leaves a memory trace behind as a
change in the system dynamics so that all normal modes are shifted towards higher frequencies and
faster decay rates. During the interval between successive stimuli, the memory trace decays so that
the normal modes slide back towards their respective unadapted states.

The degree to which a normal mode contributes to the MEG signal depends on two efficiency factors
(see Eq. (13)): First, the input efficiency |cn| expresses how well the normal mode responds to the
stimulus, and this is essentially the initial amplitude of the normal mode. Second, the MEG efficiency
κn is a measure of how visible the normal mode is to the MEG device. The product of these two
efficiencies, represented by the rectangles in Fig. 6, determines the actual contribution made by the
normal mode to the MEG signal. Adaptation due to stimulus repetition shows up as a modulation of
the efficiencies, which can either expand, shrink, or remain the same as SOI is modulated, depending
on the normal mode. For example, as SOI is decreased, the normal mode with the lowest frequency
(purple rectangles in Fig. 6) shrinks in MEG efficiency but expands in input efficiency. In contrast, in
the case of the normal mode with the second lowest frequency (green rectangles in Fig. 6), the MEG
efficiency grows and the input efficiency diminishes. However, at all SOIs, these two normal modes
consistently make the largest contribution to the MEG signal.

4.4. Linking ERF adaptation to the network structure of auditory cortex. Physiological studies
usually consider the link between STSD and adaptation from the point of view of single-unit dynamics
only (Ulanovsky et al., 2004; Wehr and Zador, 2003, 2005). When one observes a global, spatially-
averaged measure of neuronal activity such as the ERF, our results indicate that STSD is not the only
factor shaping adaptation. Instead, adaptation becomes a system property, modulated by anatomical
structure. This is unsurprising given that all normal-mode properties (angular frequency ω, decay
rate γ, phase, spatial structure) arise from the coefficient matrix in Eq. (4), which in turn depends
on the anatomical structure of AC as expressed in the weight matrices. The anatomy dependence of
adaptation is demonstrated in Fig. 9, where adaptation was quantified through the single exponentially
saturating curve used for describing response amplitude as a function of SOI. This curve has the
fitting parameters A, t0, and τsoi where the latter functions as an estimate of the lifetime of adaptation.
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We varied the structure of the original AC model (Fig. 1) by adding shortcut connections from the
thalamus to the belt, or from the core to the parabelt. We also varied the balance between excitation
and inhibition. All other aspects of the model were kept untouched, including the time constants of the
state equations and those of STSD. Nevertheless, the structural modulations in themselves caused
sizeable variations in the way the N1m became adapted by repeated stimulation: the parameter t0
varied between -1.4 and -0.9 s, and τsoi, the adaptation lifetime, varied between 2.5 and 3.1 s. In
general, changing the excitation-inhibition balance by adding excitatory connections increased the
lifetime of adaptation.

We also derived the individual contributions from each cortical area (core, belt, parabelt) to the overall
ERF in order to inspect whether adaptation has a spatial variation. This was done for all the structural
modulations studied above. Experimentally, this would be equivalent to applying source modelling to
the ERF signal to tease out the contributions from various areas of cortex. We found that, in general,
the adaptation of the ERF did not coincide with that of any of the contributions of the individual area
in terms of t0 and τsoi. The lifetime of adaptation tended to be some 200 ms shorter in the core than
in the belt. The parabelt had the shortest τsoi, except in the default AC model, where the belt and the
parabelt had similar lifetimes of adaptation. These results agree qualitatively with those of Lu et al.
(1992), who found that the contribution of primary auditory cortex to the N1m has a shorter lifetime (by
seconds) than the contribution from association areas. A similar pattern was observed by (Uusitalo
et al., 2006) in visual cortex, where the adaptation lifetime increases (by seconds) as one moves
further away from primary visual cortex. The spatial variation of adaptation lifetime produced by our
model is much smaller than that found experimentally, and the factors determining the size of this
effect will be addressed elsewhere.

Importantly, the above spatial variation of adaptation belies a much stronger effect of anatomy on
adaptation. This is evident in Figs. 8b1-b5 which break down the ERF according to the connections
originating from each area. For each area, this measure is proportional to the output emanating from
that area, that is, to the firing rate multiplied by the connection strength. It can therefore be interpreted
as the de facto impact that the area has on its neighbours and on itself. The impact of the core remains
stable, increasing only around 10 % over the SOI range. In stark contrast, the impact of the belt and
parabelt is highly sensitive to stimulation rate: it increases linearly by a factor of three as one increases
SOI from 0.5 s to 10 s. That is, there is hardly any adaptation present in the impact that the core has,
while the impact of the belt and the parabelt exhibits strong adaptation. Although we did not determine
τsoi for these impacts, it is evident that on this metric, adaptation lifetime is orders of magnitude larger
in the belt and parabelt than in the core. We emphasise that these effects are not directly visible in
the ERF, even if one measures τsoi separately for each area (corresponding to source modelling).
Further, the presence of a spatial gradient of adaptation lifetime would have interesting implications
for understanding memory in auditory cortex. Namely, the anatomy of AC may serve as a temporal
map, where secondary areas, in functional terms, hold information over several seconds and where
the core integrates the current signal with the memory-laden feedback from the secondary areas.
This style of temporal mapping might be crucial for the processing of auditory signals with a complex
spectrotemporal structure and warrants further investigation.

4.5. Comparison to other models of auditory cortex and ERF generation. The role of STSD in
AC dynamics has been investigated in a number of previous modelling studies. Loebel et al. (2007) de-
veloped a model of the primary AC where each iso-frequency column was described as a network with
Wilson and Cowan (1972) dynamics and with STSD. The model can account for multiple experimen-
tal findings such as the frequency tuning curves of neurons or the dependence of forward masking in
two-tone stimulation on the temporal separation between the tones. In a later work, Yarden and Nelken
(2017) demonstrated that this model is also able to replicate stimulus-specific adaptation. Goudar and
Buonomano (2014) modelled primary auditory cortex with simulated spiking neurons and found that
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short-term synaptic plasticity accounted for context-dependent suppression and enhancement of the
response to the second tone in a two-tone paradigm. Similar order-selectivity in responses to vocali-
sation stimuli was found by Lee and Buonomano (2012), who modelled a single cortical column with
spiking neurons. Again, STSD accounted for the neurons responding differentially to vocalisations
presented in the forward and reverse directions. Wang and Knösche (2013) replicated the adaptation
of the N1m due to stimulus repetition in a model of a single cortical area, where each unit was an
expanded version of the neural mass model of Jansen and Rit (1995), which describes interactions
between neurons in the granular, supragranular, and infragranular layers. The model included STSD
of excitatory synapses, and good agreement with experimental data was achieved by adjusting the
inter- and intralaminar connections via Bayesian inference.

The above studies are thematically related to the current approach in that synaptic depression is
shown to account for experimental data. However, they are limited to describing either primary audi-
tory cortex or a single column with a relatively high resolution and, with the exception of Wang and
Knösche (2013), replicate single-unit activity. In contrast, our aim is to capture the dynamics of the
whole of AC, rather than that of a single field, to understand the generation of the ERF. To this end, we
implemented the serial core-belt-parabelt structure in a model that anchors ERF generation to spa-
tially distributed normal modes. Therefore, our approach diverges from the above studies in terms of
how AC is described and in the kind of explanation given for the data. We note that while we employed
the extreme low resolution of describing each area as a single unit, our approach is not wedded to any
particular spatial resolution. Our previous studies (Hajizadeh et al., 2021, 2019) used spectral meth-
ods similar to the ones employed here (though without STSD) for investigating the normal modes in a
system of 240 units representing cortical columns distributed over subcortical areas and 13 tonotopi-
cally organised cortical fields. This previous version of the model, in turn, was developed as a tractable
counterpart to the model of AC presented by May and colleagues (May et al., 2015; May and Tiitinen,
2010, 2013) who demonstrated in numerical simulations that STSD can account for stimulus-specific
adaptation and order-selectivity in single-unit measurements as well as for the mismatch negativity
response in the ERF. Importantly, the current results open up the possibility of applying spectral meth-
ods for studying STSD modulation of AC dynamics in an expanded model with a much higher spatial
resolution than here. We note that boosting the number of units adds very little computational cost.
Numerical simulations based on Eqs. (1), (2), and (3) are computationally expensive for large cou-
pled networks and can be error-prone due to numerical errors and sensitivity to initial conditions. The
spectral approach championed here, in comparison, is computationally fast and readily unveils the
dependencies between the systems parameters and the solutions.

Probably the most influential neural mass model is Dynamic Causal Modelling (DCM) introduced by
by Friston et al. (2003). This estimates the coupling between different brain regions and how this is
modulated by stimulation. Each region is described by a biophysical neural mass model, and Bayesian
inference is then used for the parameter estimation to identify the best model to explain the experi-
mental data. The DCM approach has been applied to ERPs and ERFs (see, for example, David et al.,
2006; Garrido et al., 2007; Kiebel et al., 2006, 2009), the hemodynamic response of functional mag-
netic resonance imaging (fMRI) (for example Friston et al., 2019; Stephan et al., 2007) and the neu-
rovascular coupling underlying combined fMRI and MEG/EEG data (for example Friston et al., 2019;
Jafarian et al., 2020). When applying the method to ERPs and ERFs, the biophysical model is based
on the Jansen and Rit (1995) approach. Estimates are then derived for intrinsic connections within
brain regions as well as for feedforward, feedback, and lateral connections between brain regions.
Using DCM, Garrido et al. (2009) addressed repetition suppression of the ERP using an extremely
simplified description of AC, with a bilateral source in A1 and another one in STG (secondary cortex).
They included two models of synaptic plasticity whereby connection strength was a function of tone
repetition: (1) a biphasic model where the strength increased as a result of the first stimulus, and then
decreased for subsequent stimuli, and (2) a monotonically decreasing model. The adaptation of the
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ERP was accounted for by intrinsic connections in A1 changing according to the biphasic function,
and the within-region connections decreasing monotonically.

While our spectral approach and DCM both seek to explain evoked responses, the two diverge on a
number of points. First, DCM aims to explain single-subject ERF data in terms of connection strengths
between discrete sources. The method is essentially a refinement of source localisation, where source
location is complemented by information about the coupling strength between the sources. In contrast,
our approach regards individual sources and their connections as only part of the explanation. From
the point of view of the system dynamics, the spatially distributed normal modes provide a more
revealing account of the ERF. Of course, whether normal modes can be observed experimentally is
an interesting question beyond the scope of the current study. Second, while the spatial resolution
in the current model was at one unit per cortical area—the same as in Garrido et al. (2009)—spatial
resolution is not a limiting issue in our approach, as discussed above. In comparison, DCM places
bounds on the size of the network that can be used for modelling brain activity. Namely, increasing
the number of units leads to an exponential increase in the number of connections, which are all
free parameters to be estimated. As pointed out by Garrido et al. (2009), this results in inter-subject
variability becoming larger, making it hard to establish patterns of coupling changes across subjects.
Third, DCM is designed to be used with discrete source models of the ERP and ERF, with each area
represented by a single unit of the biophysical model. In contrast, the number or units per area is
not limited in our approach, and is determined by the phenomenon to be explained. For example,
modelling frequency interactions (e.g., the frequency mismatch response) with one unit per area can
be done with DCM (Garrido et al., 2007) but with our approach, an expansion of the model to include
tonotopic maps in each area would be required. This essentially reflects the fundamentally mechanistic
nature of our modelling style.

5. OUTLOOK

There is scope for expanding the current model in several ways. First, as mentioned above, the mod-
elling of cross-frequency effects would require the implementation of tonotopic maps, such as in the
previous versions of the model (Hajizadeh et al., 2021, 2019; May et al., 2015; May and Tiitinen, 2013).
This would allow one to gain fresh insight into the generation of the MMN and SSA in terms of nor-
mal modes. Time constants for SSA have been reported to occur on multiple time scales (Ulanovsky
et al., 2004), and there might be scope to study this in the current model, in view of our finding that
anatomical structure in itself introduces variations to adaptation lifetime, even when the time constants
for STSD are spatially homogeneous.

Second, while the core-belt-parabelt structure of AC is a common feature among the auditory cortices
of mammals (Hackett, 2015), there is a wide variety in the size and organization of AC areas across
species, and the functional consequences of this variety are unknown. Hence, a logical next step
would be to expand the model towards more realistic structures of auditory cortex of different species,
and to investigate to what extent adaptation is a network effect whose cross-species variations can be
explained in terms of differences in the anatomical structure of the AC. Further, one might be able to
use the current methodology as a tool for exploring the currently unknown organisation of the human
auditory cortex. One possibility might be to combine the current methods with DCM by using the
current model as the biophysical DCM model. The free parameters would be the STSD time constants
as well as the parcellation of the core, belt, and parabelt into individual fields, each one represented
by a unit of the model. While the STSD would presumably be subject-specific, the parcellation would
be fixed across subjects.

Lastly, while the brain is usually regarded as highly non-linear, it might turn out to be a clandestine
self-lineariser, using STSD as a mechanism which pushes the system dynamics to the linear range.
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This might allow the transition from chaotic regions into states where normal modes appear. As Ker-
schen et al. (2009) pointed out, normal modes of linear systems differ from those of non-linear systems
in that they are decoupled from one another. This means that normal modes of linear systems have
two special properties: (1) invariance, whereby several normal modes can coexist in the system at
the same time without modulating each other; (2) modal superposition whereby the oscillations of a
unit is a linear combination of individual normal modes. We suspect that these properties could have
functional benefits: normal modes of linear systems, each with its own spatial profile, could function
as stable and overlapping representational tokens supporting population coding, where each neuron
can take part in representing more than one thing at the same time. This style of representation might
aid processes such as sensory binding and attention control. Namely, the features of sensory stimuli
are represented in a distributed fashion, in specialised regions across cortex, yet this information is
melded together into unitary percepts. Sensory binding refers to this process of melding, and it seems
to involve the long-distance synchronisation of the spatially disparate neuronal populations represent-
ing the individual features (Bertrand and Tallon-Baudry, 2000; Ghiani et al., 2021). Selective attention
is likewise associated with coherence: the cortical neurons representing the attended stimulus pro-
duce enhanced, synchronised gamma-band oscillations (Fries, 2015). Normal modes could provide
instantaneous coupling needed in binding and attention, allowing for individual cortical neurons sepa-
rated by long distances to become synchronised even without direct connections between them. The
dominant normal mode in cortex might then correspond to the attended, perceptually bound stimulus.
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