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Chapter

Integration of Spiking Neural 
Networks for Understanding 
Interval Timing
Nicholas A. Lusk

Abstract

The ability to perceive the passage of time in the seconds-to-minutes range is 
a vital and ubiquitous characteristic of life. This ability allows organisms to make 
behavioral changes based on the temporal contingencies between stimuli and the 
potential rewards they predict. While the psychophysical manifestations of time 
perception have been well-characterized, many aspects of its underlying biology are 
still poorly understood. A major contributor to this is limitations of current in vivo 
techniques that do not allow for proper assessment of the di signaling over micro-, 
meso- and macroscopic spatial scales. Alternatively, the integration of biologically 
inspired artificial neural networks (ANNs) based on the dynamics and cyto-archi-
tecture of brain regions associated with time perception can help mitigate these 
limitations and, in conjunction, provide a powerful tool for progressing research 
in the field. To this end, this chapter aims to: (1) provide insight into the biological 
complexity of interval timing, (2) outline limitations in our ability to accurately 
assess these neural mechanisms in vivo, and (3) demonstrate potential applica-
tion of ANNs for better understanding the biological underpinnings of temporal 
processing.

Keywords: interval timing, time perception, neural oscillators, dopamine,  
basal ganglia, artificial neural networks, spiking neural networks

1. Introduction

When it comes to understanding the neural underpinnings of time perception, 
the devil is in the details. As all events inevitably unfold in time, there is no short-
age of potential “timing” signals. However, behavioral tasks often possess inherent 

Highlights

• Examine neural signatures, circuitry dynamics, and neuromodulator pathways related to interval 

timing behavior

• Address limitations in current in vivo techniques in studying timing

• Discuss the use of artificial neural networks for understanding neural dynamics and timing

• Identify properties of thalamocortical dynamics that may be integral to time perception
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Figure 1. 
Proposed cycle for integration of SNNs. Schematic visualization of integrating SNNs into empirical process.

relationship between time, spatial location, and external signals making it difficult 
to isolate activity dedicated to timing per se. As a result, timing correlates have 
been observed across nearly all regions of the cortex [1–4] as well as sub-cortical 
areas and the cerebellum [5, 6]. Reflecting this anatomical diversity, the number of 
theoretical models dedicated to timing is also vast, and utilize a diverse range of fir-
ing dynamics such as oscillatory [7] ramping [8] or synfire chains [9]. Yet, which of 
these various timing motifs and to what degree they contribute to a unified percep-
tion of time remains unclear [10].

A contributing factor to the multitude of timing theories are the limitations of 
current in vivo techniques, which can be spatially restrictive, produce ambiguous 
information, and contain representation biases. Though remarkable strides have 
been made in expanding the scope of techniques used to record, image and modu-
late neural activity, the capacity to selectively manipulate and/or effectively observe 
the propagation of activity from a large population of neurons within a particular 
brain region or across multiple regions, is limited. With theories of temporal 
processing spanning the microscopic level of intrinsic cellular [11, 12] and network 
dynamics [13–15] to the macroscopic interplay between multiple brain regions [16], 
understanding how animals track the passage of time has been an arduous task 
through reliance on in vivo techniques alone.

A promising avenue to help circumvent the aforementioned limitations is the 
integration of biologically inspired ANNs. While neural networks have been around 
for over half a century [17], recent years have seen a resurgent interest in their 
development and application within neuroscience. Spurred by substantial advance-
ments in computational power, the ability for labs to integrate complex, biologically 
constrained neural networks is more viable than ever before. As the integration 
and development of biologically inspired ANNs into neuroscience has been steadily 
growing for many decades, adoption into the field of time and time perception has 
been comparatively slow.

Though examples do exist, current efforts have remained limited [18–20]. 
Moreover, these networks often lack characteristics considered vital for biologically 
realism such as bidirectional activation propagation or Hebbian-based learning [21] 
- characteristics that see widespread use in other fields. Many of these models uti-
lize rate-based units, applying ‘activation functions’ and highly simplified network 
motifs, limiting the temporal dynamics of the network. While these simplified 
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networks provide valuable theoretical insight, the incorporation of spiking neural 
networks (SNNs) with biologically inspired ‘spiking’ units and network architec-
tures, allows SNNs to capture neural dynamics more analogous to the biological 
systems which they are based and a more critical assessment of timing theories. The 
integration of SNNs can allow researchers to visualize the propagation of temporal 
information as well as finer control over neuromodulatory systems not possible in 
other models.

The aim of this chapter is to demonstrate how the field of timing and time 
perception can benefit from the implementation of biologically constrained SNNs. 
In so doing, limitations of current in vivo recording and imaging techniques will 
be addressed along with examples of how SNNs can be used to circumvent such 
constraints and facilitate hypothesis driven research (Figure 1). Lastly, specific 
outstanding questions in the field of interval timing that could most benefit from 
integration of SNN models will be identified.

2. Interval timing networks and dynamics

Neural correlates of time perception have been observed across nearly the entire 
cortical mantel. In theory, any pattern that remains consistent for a given dura-
tion yet varies across durations is capable of acting as a biological timer. As these 
requirements are not particularly stringent, electrophysiological recordings have 
uncovered many candidate patterns. The prefrontal cortex (PFC) alone contains 
ramping, peaking, and oscillatory activity meeting such criterion [22–26]. In addi-
tion to spiking activity, EEG and MEG recordings in humans [27–29] demonstrate a 
robust relationship between mesoscopic oscillations and timing behavior.

2.1 Cortical spiking and mesoscopic oscillations

Electrophysiological studies in rodent and non-human primates have shown 
robust correlations between cortical activity and timing behavior across multiple 
brain regions. Yet, how dynamics within and across cortical regions contribute to 
these behaviors are still unclear. Though ever expanding, limitations in our current 
knowledge on how information propagates across interconnected brain regions has 
made drawing causative relationships between timing behavior and specific neural 
signals difficult.

One of the most studied neural correlates of timing is ‘ramping activity’ 
(Figure 2A). These monotonic increases or decreases in firing rate have been 
observed within the prefrontal [25, 26] primary motor [30] and posterior parietal 
cortex [31, 32] during various timing tasks. Along with its seemingly ubiquitous 
presence within the cortex, key observations further indicate ramping as a viable 
timing mechanism: (i) ramping activity has been demonstrated to occur across 
multiple timescales from hundreds of milliseconds to multiple seconds (ii) the 
rate of change can be adjusted through learning different durations (iii) the rate 
of change during a reproduction task is dependent on the presented duration. 
Specifically, neuronal activity in the lateral inferior parietal cortex (LIP), recorded 
in macaques trained on a temporal reproduction task, found changes in firing rate 
were inversely proportional to the duration being produced. That is, shorter dura-
tions had steeper ramping activity therefore reaching threshold sooner [31].

However, pharmacological inactivation of ramping activity within these same 
regions of the cortex, namely the posterior parietal cortex (PPC), during evi-
dence accumulation tasks has negligible effects on stimulus categorization [33]. 
Conversely, decreasing prefrontal cholinergic concentrations reduced temporal 
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precision without disrupting ramping activity demonstrating a potential dissocia-
tion between ramping and timing behavior [34]. Other regions have demonstrated a 
more causal relationship, namely, ramping in the frontal orienting field (FOF) was 
found to be necessary for proper performance possibly implicate ramping activity 
as a general computational motif within cortical circuits of which timing is local-
ized to a particular cortical region.

Recent evidence suggests that neuronal ramping may not, in fact, be ramping 
at all, but an artifact of bi-stable neuron activity averaged over multiple trials. 
Analysis of spiking activity within the LIP during individual trials of a motion 
discrimination task showed 31 of 40 neurons exhibited ‘stepping’ behavior [35] as 
opposed to the deterministic gradual increase expected of a truly ramping dynamic 
(c.f. [36, 37]). These findings parallel human studies which have cast doubt on the 
role of the contingent negative variance (CNV) – an EEG correlate of ramping 
activity – in temporal processing due to the poor predictive ability of the CNV and 
the high temporal accuracy demonstrated even after the resolution of the signal 
[38]. How ramping activity develops also remains unclear [39, 40].

Larger scale recordings, containing 55–120 simultaneously recorded neurons, 
have painted a relatively different picture of spiking activity within the cortex during 
timing. Bakhurin and colleagues [22] found putative projection neurons contained 
activity patterns in which individual neurons in the orbital frontal cortex (OFC) 
displayed sequential activity that tiled a 1.5 s delay period following an olfactory 
cue. This type of firing is reminiscent of “time cell” activity recorded in other brain 
regions such as the striatum [6, 41] and hippocampus [42, 43] providing a parsimo-
nious representation of timing signals across distinct brain regions (Figure 2B).

At the mesoscopic level, oscillatory activity within cortical regions has also 
been theorized as an underlying mechanism for time perception. As with spiking 
correlates of timing, neural oscillations are pervasive throughout the brain and 
implicated in a multitude of cognitive processes such as attention, memory, move-
ment preparation and even consciousness [44]. Yet, their computational role in 
these processes is generally unresolved [45]. Nevertheless, researchers have long 

Figure 2. 
Distribution of timing correlates and associated activity patterns. (A) Simulation of ramping activity as 
observed in cortical networks during timing tasks. Parameterized using values from model of neural integration 
(Simon et al. 2011). Theoretical accumulation of activity (bottom) and distribution of time to threshold (top) 
(B) Heatmap of simulated activity normalized by max firing rate depicting trajectory dynamics found in the 
cortex, hippocampus, and striatum. (C) Depiction of pauses in Purkinje cell activity within the cerebellum 
during 300 millisecond delay (ISI) Pavlovian eye-lid conditioning.
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recognized the potential of rhythmically repeating oscillators to track the passage of 
time from hundreds of milliseconds to tens of minutes [46, 47].

Increases of delta range (~4 Hz) oscillations in the medial prefrontal cortex 
(mPFC) were shown to negatively impact the temporal precision of rats perform-
ing a 12 s fixed-interval task. Pharmacological attenuation of these increases in 
delta through blockage of D1 dopamine receptor (D1DR) signaling mitigated the 
associated deficits in timing [2]. Interestingly, D1DR+ neurons in the prefrontal 
cortex have strong delta frequency coherence with a subset of neurons exhibit-
ing ramping activity implicating a direct link between microscopic spiking and 
mesoscopic oscillations during timing [48]. Additional evidence supports the 
existence of spike phase relationships with the mPFC particularly within the theta 
frequency (5–10 Hz) [23, 49, 50]. However, Benchenane et al. [23] demonstrated 
that spike-phase entrainment to theta in the mPFC only occurs during times of high 
coherence between mPFC and hippocampal (HIPP) theta and is most prominent at 
times requiring encoding or retrieval of spatial memory. This property likely makes 
it too transient to track time over multiple seconds. Increases in cortical theta have 
also been associated with interval timing tasks where sustained increases in cortical 
theta power occur during the encoding of the standard duration in a temporal com-
parison task [51, 52], though whether coherence between HIPP and mPFC remains 
high across this entire duration has not been tested.

As with ramping activates relation to timing behavior, the coupling of spikes 
to oscillations appears to be region specific. Though oscillatory activity has been 
observed within the cortex across multiple frequency bands, there is limited sup-
port for individual neurons firing-rates to entrain to these rhythms. For example, 
though timing behavior correlates with cortical beta (~15–30 Hz) activity within 
the dorso- and ventro-lateral prefrontal cortex, premotor cortex, and posterior 
parietal cortex [28], recent work suggests that spiking activity demonstrates mini-
mal coupling to beta rhythms [53].

2.2 Neuromodulators and time perception

Timing behavior has been shown to be highly susceptible to manipulations of 
neuromodulators such as dopamine (DA: [54–58]) serotonin (5-HT: [59–61]) and 
acetylcholine (Ach: [34, 62, 63]). Additionally, patients suffering from disorders 
involving these pathways [64–66] demonstrate systematic changes in their timing 
ability.

Dopamine has been the most widely studied neuromodulator in the field of 
interval timing. Despite this depth of research, many questions still remain as 
research has produced seemingly paradoxical effects. Early psychopharmacologi-
cal studies demonstrated bidirectional shifts in timing accuracy (i.e. over- or 
underestimations of a target duration) after administration of DA agonists and 
antagonists, respectively [55–57, 67]. This work suggested that DA changes the 
speed of a subjects internal timing mechanism (i.e. “clock speed” effect). This could 
manifest itself as changes in the slope of ramping neurons or oscillator frequency. 
However, other research suggested that administration of dopaminergic drugs 
such as the selective D2 and D3 agonist Quinpirole disrupts timing precision rather 
than accuracy through modifying attentional processes [58, 68]. While later work 
using a variation of the peak interval procedure supported the changes in accuracy, 
the directionality of the peak shifts did not align with the original “clock speed” 
hypothesis [69]. Subsequent experiments further demonstrated these effects to be 
sensitive to non-temporal aspects of the task similar to the “attentional modulation” 
hypothesis.
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The wide repertoire of timing behaviors related to DA modulation may be a 
product of its diffuse circuitry [70, 71]. Alternatively, the complexity may result 
from interactions with other neuromodulatory pathways. Electrophysiological 
evidence suggests DA neurons elicit tonic excitatory control over 5-HT neurons 
within the raphe nucleus [72]. In fact, a mouse model of Parkinson’s disease using 
6-OHDA lesions lead to increases in spontaneous firing as well as maximum firing 
rate of 5-HT neurons in the dorsal raphe nucleus [73].

Administration of 5-HT1A receptor agonist 8-OH-DPAT modulated timing preci-
sion on retrospective timing tasks, while immediate timing tasks saw changes in 
accuracy [74]. However, the contribution of 5-HTergic pathways to timing behavior 
remains precarious as many of these studies were unable to dissociate changes in 
interval timing from intertemporal choice [60]. In fact, more recent work indicates 
5-HT to be more strongly associated with intertemporal choice [75] along with 
additional factors such as reward rate and temporal uncertainty [76]. This relation-
ship appears to be bidirectional as 5-HT projections from the dorsal raphe nucleus 
can modulate DA release directly through excitatory synapses onto VTA dopamine 
neurons [77]. A selective 5-HT2c ligand shown to increase vigor and persistence in 
goal-directed behavior also leads to increased tonic DA levels in the dorsal medial 
striatum [78]. The aforementioned interaction within the DMS is likely driven by 
excitation of striatal cholinergic interneurons which can drive action potentials 
independent of DA release [79, 80]; thus, linking cholinergic pathways to an already 
complex system.

Despite considerable work on the role of neuromodulators in timing behavior, 
dissociating the mechanisms responsible for these effects is yet to be fully under-
stood. These systems contain multiple origins with diffuse and overlapping targets. 
Moreover, direct as well as indirect connections between these pathways makes it 
difficult to confidently assign credit to a single pathway and behavioral changes are 
often dependent on the parameterization of the particular study. As a result, it is 
likely that non-traditional methods allowing for more systematic modulation of the 
respective pathways is necessary to fully disentangle their individual roles in timing 
behavior.

3. Limitations of current in vivo techniques

Substantial advancements of in vivo techniques are now allowing for exceptional 
insight into neuronal dynamics. The number of simultaneously recorded single 
neurons has seen a near doubling every 7 years [81]. Coupled with growth of open-
source hardware systems, access to these powerful technologies is becoming more 
feasible and cost effective [82]. However, these techniques are still limited in the 
amount of information they are able to reliably produce in relation to the dynamic 
properties of the brain. This has led to debate into the sufficiency of correlations 
between firing activity and behavioral output. Additionally, many of the current 
methods used for manipulating endogenous activity suffer from a lack of specific-
ity. The aforementioned diffuseness of the interval timing network coupled with 
sensitivity to neuromodulation limit the insight from in vivo techniques alone.

3.1 Recording and imaging

Extracellular in vivo recordings have long been the technique of choice for link-
ing neural activity to ongoing behavior through monitoring action potentials (APs) 
along with more mesoscopic neural activity in the form of local field potentials 
(LFP). Though Advancements in recording techniques has been able to mitigate 
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some of the uncertainty in isolating an individual cell’s activity, a sizeable degree of 
error still exists. Though quantification of this error, referred to as the ‘spike sorting 
problem’, is difficult due to the lack of ‘ground truth’ data, estimates suggest semi-
automatic clustering error with tetrodes to be on the order of 5–10%, and substan-
tially higher (upwards of 30%) for manual cluster cutting, a process still popular in 
many labs [83]. Furthermore, the uncertain origin of signals such as gamma range 
oscillations makes interpretations speculative [84].

A second class of errors that can lead produce specious conclusions is ‘selection 
bias’. Combined intra- and extracellular recordings within CA1 of the hippocam-
pus demonstrated that despite an estimated 140 neurons within the recording 
distance of a single tetrode, rarely are more than a dozen signals ever detected [85]. 
While innocuous contributions such as acute edema and glial encapsulation can 
lead to significant decreases in signal strength and subsequent cell counts [86], 
other causes such as under classification of cells with low firing rates can skew 
researcher’s interpretation of genuine network dynamics. Furthermore, differential 
firing rates between regions, such as higher firing rates in deep-layers of the cortex 
in comparison to pyramidal cells of the superficial-layer [87, 88], may bias research-
ers toward studying areas with high spiking and subsequently overestimating a 
regions role in the overarching circuit. Recent attempts at addressing and quantify-
ing the quality of in vivo recordings is a step toward lessening the effect of electrical 
artifacts [89, 90], though further work in this direction is still needed.

In addition to classic recording techniques, calcium imaging has become a popu-
lar tool for visualizing activity. Imaging permits precise spatial mapping of activity 
[91, 92] and mitigates many of the limitations in recording such as the “spike sort-
ing problem” and “cell selection bias’” [93]. Further improvements in fluorescent 
indicators [94, 95] and scanning techniques [96] have been able to overcome past 
limitations in sampling rate allowing for detection of somatic calcium transients 
evoked during action potentials.

However, in non-laminar low cell density brain regions the number of cells that 
can be simultaneously observed is highly restricted. Sub-cortical areas such as the 
striatum can be limited to less than 40 cells [97] and require significant damage 
to regions dorsal to those being imaged. Paired with the inability to sufficiently 
account for dynamic interactions within a single brain region imaging technique are 
even more limited when attempting to study interactions across multiple regions. 
In all, while in vivo techniques are one of the most valuable tools for understand-
ing the relationship between neural signals and behavior, alternative methods in 
conjunction can provide richer insight into not only regional dynamics, but also 
interregional interactions.

3.2 Pharmacological, chemogenetic, and optical manipulations

While electrophysiological recording and imaging provide insight into endog-
enous activity, much of our knowledge into how the brain senses the passage of time 
has arisen from the manipulation of timing networks. Yet, there are often deviations 
between a researcher’s intent and the actual alterations within the brain. The main 
contributors are lack of specificity or incomplete knowledge of the technique being 
used.

While the foundation of many theories in time perception, pharmacological 
manipulations are the most susceptible to confounding interactions. Even drugs 
touted as selective can display affinity for non-target receptors. Concretely, the 
commonly used D1-antagonist SCH-23390 also demonstrates high affinity for 
serotonin receptor subtypes 5-HT2 and 5-HT1C [98]. While its affinity for D1 
receptors is much higher than that of 5-HT, the expression of both receptor types 



New Frontiers in Brain-Computer Interfaces

8

within this region could explain why timing behavior following local infusions of 
SCH-23390 into the DMS has been difficult to interpret [99]. As 5-HT2 activation 
within the striatum has been shown to indirectly reduce striatal MSN activity [100]. 
Conversely, timing effects attributed to serotonin could be mediated through or in 
conjunction with indirect increases in DA, which has been demonstrated in 5-HT2 
agonists such as Psilocybin [101].

In an effort to minimize off-target effects there has been a renaissance in the 
development of chemogenetic and optogenetic techniques. Vaunted for their ability 
to mitigate the confounds of pharmacological methods, a growing literature is 
revealing these approaches come with their own set of drawbacks. While chemoge-
netic approaches such as DREADDs (Designer Receptors Exclusively Activated by 
Designer Drugs) has helped alleviate some of the uncertainty from pharmacological 
manipulations, recent work shows that CNO (clozapine N-oxide), the most com-
monly used agonist in DREADDs, can back metabolize into clozapine and has the 
potential to accumulate in amounts capable of activating endogenous receptors 
[102]. Importantly, clozapine has been demonstrated to affect temporal accuracy as 
well as the flexible use of timing mechanisms [103, 104]. While this limitation can 
be addressed through the use of proper CNO controls in addition to transitioning to 
low-dose clozapine, these steps constrain DREADDs extended duration of action, 
likely its greatest advantages over optical techniques.

As with chemogenetic approaches, optogenetic methods have not been immune 
from technical setbacks, even after widespread implementation. Despite over a 
decade of use in neuroscience, new caveats in the effectiveness of microbial opsins 
are still being discovered. pH-dependent calcium influxes from sustained activa-
tion of inhibitory proton pump opsins such as eArch3.0 can increase spontaneous 
neurotransmitter release during terminal stimulation [105]. Inhibitory Cl- channels 
(i.e. eNpHR3.0 & GtACR1), on the other hand, can drive axonal spiking through 
positively shifted chloride reversal potentials leading to unintended spiking at the 
onset as well as offset of stimulation [105, 106].

4. Artificial neural network in timing (ANNs)

Despite being inspired largely by neuroscience, ANNs were initially touted for 
their powerful computational versatility rather than reliable models of neural or 
cognitive phenomena. Since their conception, the emergence of conductance-based 
units, biologically inspired architectures and learning rules has made them an 
invaluable tool for elucidating how the brain works.

4.1 Importance of spiking neural networks (SNNs)

The ‘neuronal’ unit embodies the fundamental computational element of an 
ANN and plays a vital role in the overall capacity of the network. As such, com-
putational neuroscientists have dedicated substantial work transforming early 
‘neuronal’ units, based on the binary threshold unit (i.e. McCulloch-Pitts neurons) 
into conductance-based ‘spiking’ models [107–111] that include both detailed 
biophysical models and simple phenomenological models. Implementation of SNNs 
allows for rate and temporal dynamics nearly equivalent to those found in biological 
systems [112].

However, with the increased biological complexity comes an increase in compu-
tational cost (i.e. number of floating-point operations per 1-ms of simulation). This 
has led many to opt for computationally simpler units with continuous ‘activation-
functions’ rather than spiking dynamics. While these ‘rate-based’ networks have 
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proven successful in revealing network architectures conducive to timing [113] as 
well as how shifts in excitability drive timing activity [114], they remove temporal 
components of neural signaling related to that limit their explanatory power. 
Electrophysiological evidence from neural recordings within the superior temporal 
sulcus (STS: [115]) and motor cortex (M1: [116]) indicates the brain relies heavily 
on temporal coding (i.e. coherent inputs). Importantly, increases in coincident 
spiking correspond with temporally relevant timepoints independent of changes in 
firing rate [117].

SNNs thalamocortical [118] and corticostriatal [119] networks, both implicated 
in proper timing behavior, found sharp transitions in spiking activity are important 
for normal functioning within the network. This speaks to the diversity of spiking 
patterns present in the brain that can be captured by spiking units [120], yet absent 
in rate-based networks. The strongest advocates for SNNs question whether any 
evidence exists for rate-coding with in the brain [121]. Thus, placing the onus on 
those who utilize rate-based networks for not choosing SNNs.

Additionally, SNNs allow for implementation of both Hebbian and error-based 
learning rules. This is of note as the network learning rule can have dramatic effects 
on the connectivity and dictate whether it develops a feedforward topology scarce 
in both closed and unique loops or strong reciprocal connectivity motifs like those 
found in the neocortex [122, 123]. Implementation of these spiking neuron models 
can lead to dramatic improvements in network performance [124]. The effects 
of neuromodulators on plasticity also contain tight temporal windows (0.3–2 s) 
between glutamate release and the presence of DA [125, 126], which is difficult to 
properly model in rate-based models.

4.2 Current use of SNNs in timing research

Generally absent from earlier ANNs, implicit and/or explicit representations 
of time within neural network models have been relativity recent [127]. Despite 
this late adoption, there has been a recent surge in research devoted to elucidating 
the neural substrates of temporal processing, with a myriad of distinct network 
motifs being proposed [128]. These models vary in biological realism as it per-
tains to unit dynamics, network structure, and learning capabilities (Table 1), 
influencing not only the dynamical repertoire of the network, but also the ability 
to extrapolate findings into the biological systems they are looking to study. That 
being said, even in their most simplistic form, with little adherence to known 
biology, network models can provide theoretical insight [132], but these models 
are highly limited.

Adherence to the underlying neurobiology, allows network models to provide 
deeper understanding into neural substrates of temporal processing. As inter-
preting in vivo pharmacological manipulations must be done with caution, with 
many drugs acting on multiple neuromodulatory systems, the ability to isolate 
these neuromodulatory systems in SNNs allows for uniquely systematic approach. 
Specifically, a cortico-striatal network model allowed researchers to isolate the 
effects of changing DA concentrations, free of potential 5-HT confounds, and 
replicating DA’s effect on ‘clock speed’ [130]. In this same model, modulation 
of Ach produced the accuracy changes found from systemic injections of drugs 
acting on the cholinergic pathway [67]. Interestingly, Ach modulation in a hippo-
campal network produced variations in task precision [134] rather than accuracy. 
Taken together, these networks may provide evidence indicating dissociated 
networks for these effects. More recent work has also helped elucidate the poten-
tial topographical mapping of duration length across the dorsal-ventral axis of the 
hippocampus [129, 135].
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At the synaptic level, computational work using leaky-integrate and fire neurons 
demonstrated hallmarks of temporal processing such as the ‘bias property’ and 
‘scalar property’ are strongly influenced by GABAb receptor dynamics [133]. While 
outside the field of interval timing, work looking at the relationship of pre-post 
spike pairings to spike-time dependent plasticity (STDP) has shown LTP/LTD 
dynamics are better explained by ‘nearest-neighbor’ inputs rather than an ‘all-to-
all’ motif [136]. Together, these finding place limits on theories utilizing temporal 
integration as a potential mechanism for tracking the passage of time, such as those 
relying on ramping dynamics. Additional theories relating synaptic plasticity to 
motor-timing, a sub-field of interval timing, are grounded heavily in computational 
work due to the difficulty of assessing these ideas in vivo [137].

These results align with animal work demonstrating how important biophysical 
features of neuron signaling such as receptor kinetics directly influence the tim-
ing of durations up to 100 s of milliseconds [12]. Therefore, researchers must be 

Study unit Unit type Network properties Learning rule Findings

Lateral 

inhibition

Recursive Modulators Hebbian Error 

driven

Oprisan 

et al. [129]

Spiking* 

(ML)

No No N/A No No Hipp. 

Topology; K*

Oprisan 

and Buhusi 

[130]

Spiking* 

(ML)

No No Ach, DA No No Modulator 

in SBF 

framework

Reutimann 

et al. [131]

Spiking 

(LIF)

No No N/A Yes 

(rate)

No FR 

adaptation 

accounts for 

‘ramping’ 

activity

Hilton and 

Parter [132]

Spiking 

(prob. 

threshold)

No No N/A No No Connectivity 

motifs for 

efficient 

timing;

Mikael and 

Gershman 

[113]

Gaussian 

‘state’ 

activity

No No DA No Yes Bidirectional 

DA 

modulation 

through RPE 

framework

Laje and 

Buonomano 

[19]

Rate units Yes Yes N/A No Yes Intrinsic 

timing 

framework; 

neural 

trajectories

Simen et al. 

(2011)

Rate units Yes No N/A No Yes Temporal 

integration 

framework; 

skewness

Perez and 

Merchant 

[133]

Spiking 

(LIF)

Yes Yes N/A Yes No Bias 

property; 

scalar 

property

*While a spiking model, membrane potential not spikes where used as unit output.

Table 1. 
Recent publications of ANN models in the study of interval-timing.
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vigilant in selecting the appropriate level of biological complexity for the question 
they are looking to address. In this way that time perception may be more sensitive 
than other senses such as vision, where retention of the biological computations 
can often be sufficient for producing similarities between representations in higher 
order processing regions [138].

While the above examples have focused on the ability of SSNs to provide support 
for particular theories, these models have proven to be equally useful in excluding 
alternative theories as well. For example, ramping activity in the cortex, a potential 
neural manifestation of timing, can arise from various network architectures. Two 
such networks employ either recurrent synaptic facilitation or firing-rate adapta-
tion. Yet, additional firing properties seen during delay response tasks, namely 
equivalent responding to matching and non-matching stimuli is only evident in 
networks based on firing-rate adaptation [131]. Additionally, it had been postulated 
that time perception could evolve from sequentially firing populations of neurons 
[139] and may underlie temporal pattern formation in song birds - a subset of motor 
timing [140]. However, recent work demonstrated this architecture is incapable of 
producing fundamental properties of interval timing such as scale invariance [141]. 
The ability to cast doubt on proposed timing mechanisms is an important quality of 
computational models. If the technique was flexible enough to validate all theories, 
it would be of little value.

4.3 Future directions for SNNs in timing research

Integration of SNN models has proven to be an exciting and fruitful avenue 
for better understanding neural dynamics related to interval-timing. However, 
there is still ample room for growth. With the implementation of SNNs still in its 
early stages, the vast majority of these models lack the biological realism necessary 
to address open questions in the field. Three areas that have either received little 
attention or would benefit from greater focus are (1) recurrent interactions between 
timing circuits (2) Neuromodulator effects on timing signals and (3) biologically 
based model of temporal learning.

As previously mentioned, time perception is supported by an expansive 
network of brain regions. However, the vast majority of network models aimed 
at understanding interval timing are at odds with the multi-regional, recurrent 
nature of the brain. Models of visual processing have shown recursive networks 
capture multi-regional cortical dynamics absent in strictly feed-forward models 
[142] as well as behavioral interactions between reaction time and uncertainty 
[143]. Recurrent connections may also aid in spontaneously developing high 
degrees of sparseness within a network like that seen in neocortical circuits [144], 
which allows for larger networks without compromising effectiveness [145]. In 
addition to being recursive, connection probabilities vary within and between 
brain regions. Specifically, cortical areas tend to form ‘small world’ motifs, con-
necting more often with nearby cells [146, 147].

In other branches of neuroscience, SNNs have shown promise is their ability 
to selectively manipulate interactions between as well as distinct activity within 
neuromodulatory pathways. One of particular interest to understanding time 
perception is phasic and tonic DA signaling. These methods of DA release are 
believed to be differentially regulated [148] as well as serve different behavioral 
purposes [149], though our knowledge is still limited. A SNN of the basal ganglia 
aimed at understanding PD pathology demonstrates, through methodical control 
of either phasic or tonic activity, that each system differentially contributed 
to Parkinsonian akinesia and tremors [150]. As tonic-phasic interactions have 
been shown to have paradoxical effects in drug-seeking behavior [151], SNNs 
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may provide invaluable for understanding how individual modulation of these 
two DA dynamics may contribute the paradoxical effects seen in interval timing 
studies of DA.

SNNs also offer deeper insight into how different neuromodulatory pathways 
interact in order to produce learned behaviors. Investigating the computational 
roles of neuromodulated STDP in the hippocampus, researches demonstrated 
the importance of DA and Ach interactions on learning during a navigation task 
[134]. Of particular interest was the ability of Ach to enhance precision in naviga-
tion, while DA dominated learning overall. This provides insight into a potential 
mechanism for increases in temporal precision seen from perinatal choline supple-
mentation [152] and dissociates these from changes in accuracy that can accompany 
increases in precision when Ach is pharmacologically increased [153]. This result 
expands upon a growing literature dedicated to better understanding synaptic plas-
ticity through spiking neural models [154–156]. Unfortunately, up until this point 
SNNs dedicated to time perception that have addressed the role of neuromodulators 
have done so through implementation of their proposed effects, rather than plastic-
ity directly. Additionally, very few models have used a Hebbian learning rule of any 
type.

5. Limitations of SNNs

The innate connectivity pattern between neurons plays an important role in 
shaping the trajectory of neural activity within the brain. To this end, biological 
models can only be as good as our knowledge of the underlying biology. Within 
the striatum, slight deviations from the biologically relevant range for recurrent 
connectivity between MSNs is sufficient to suppress the regular sequential firing 
patterns of coherent cell assemblies found from in vivo recordings [157, 158]. While 
previous neural network models investigating temporal processing within the 
cerebellum have benefited from its well-characterized, highly conserved cyto-
architecture [159–161], this is not a luxury afforded to those attempting to construct 
models of other brain regions such as the striatum. Constituting 1.3% of total brain 
volume in humans [162] and 4% in rodents [163], the dorsal striatum lacks clear 
internal divisions making it difficult to model accurately. In response, the past 
decade has witnessed a prodigious effort in mapping the brain’s connectivity.

Benefited by advancements in microscopy and neuroanatomical tracing 
techniques, recent endeavors have uncovered functional domains within regions 
of the dorsal striatum based on innervation from cortical afferents [164], which 
can be a valuable tool for modeling timing networks [165]. Further work at the 
synaptic level will allow for connectivity parameters within neural network models 
to be tuned more closely tuned to that seen in the brain. However, as this chapter 
has demonstrated, it is not only through in vivo work that our knowledge of the 
underlying biology can be expanded. Though confirmation inevitably relies on such 
techniques, theoretical in addition to computational breakthroughs can be done 
elsewhere.

Along with biological limitations, implementation of many large-scale models –  
whether in neuron count or complexity – rely on high-speed supercomputers or 
computing clusters. In labs where computational modeling is not their primary 
focus, it is impractical to invest the time or money into such resources and there-
fore places a ceiling on the size and complexity of their simulations. While cost 
reductions in hardware dedicated to simulating the highly parallel nature of the 
brain will inevitably address the largest barrier to widespread use of SNNs, provid-
ing intuitive software is vital. Along with closed-source options such as MATLAB’s, 
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a fervent movement is currently underway in provide highly versatile packages in 
Python - an open-source, high-level, dynamic programming language. Simulators 
such as Nengo [166], NEST [167], and Brian [168] provide varying degrees of 
control over network properties allowing users to model neurons and circuits 
at various levels and permitting detailed models on general purpose computing 
hardware [169].

6. Conclusion

The ubiquity of temporal structure within the brain has made identifying the 
exact neural processes an arduous task. Single- and multi-unit recordings, along 
with more recent imaging techniques, have revealed a myriad of neural activity 
profiles which may underlie temporal processing. Despite technical advancements, 
the complex interactions between neuromodulators, neuronal activity, and tim-
ing behavior has left our current understanding of how the brain tracks durations 
across multiple seconds decidedly unclear. A promising avenue for overcoming the 
limitation of current in vivo methods is the incorporation of practices form outside 
the field, such as integration of SNNs. Specifically, through observing how temporal 
information flows in biologically constrained networks as well as how systematic 
manipulation of individual neuromodulatory systems changes timing behavior.

Though ANNs are already a staple in other domains of neuroscience, their inte-
gration into the field of time and time perception has remained relatively rudimen-
tary with limited attention being paid to biological constraints. It is important to 
note that the use of these models is not for deciding the exact neural mechanism as 
that is not possible, but only for providing insight into potentially fruitful options. 
While ANNs relying heavily on algorithmic abstractions can proliferate theoretical 
models of timing, a prefect digital recreation of the brain exchanges one black-box 
for another. In this way the use of SNN for understanding time perception is neither 
truly top-down not bottom up, but best approximated as ‘middle-out’.

We are now at a time where widely available computational resources possess 
the power necessary for construction of SNNs that retain much of the complexity in 
biological neural networks. The ability to visualize activity profiles and connectiv-
ity patterns across thousands of modeled neurons within and across brain regions 
provides a level of analysis unavailable through current in vivo recording and imag-
ing techniques. Furthermore, simulations of potential avenues for future studies 
can assess the robustness of competing models in their ability to predict behavioral 
changes from in vivo modulation. Deeper integration of SNNs within the field of 
timing will provide a powerful resource in both understanding the plausibly neural 
underpinnings of timing within the brain.
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