22,599 research outputs found

    Selection and inhibition mechanisms for human voluntary action decisions

    Get PDF
    One can choose between action alternatives that have no apparent difference in their outcomes. Such voluntary action decisions are associated with widespread frontal–parietal activation, and a tendency to inhibit the repetition of a previous action. However, the mechanism of initiating voluntary actions and the functions of different brain regions during this process remains largely unknown. Here, we combine computational modeling and functional magnetic resonance imaging to test the selection and inhibition mechanisms that mediate trial-to-trial voluntary action decisions. We fitted an optimized accumulator model to behavioral responses in a finger-tapping task in which participants were instructed to make chosen actions or specified actions. Model parameters derived from each individual were then applied to estimate the expected accumulated metabolic activity (EAA) engaged in every single trial. The EAA was associated with blood oxygenation level-dependent responses in a decision work that was maximal in the supplementary motor area and the caudal anterior cingulate cortex, consistent with a competitive accumulation-to-threshold mechanism for action decision by these regions. Furthermore, specific inhibition of the previous action's accumulator was related to the suppression of response repetition. This action-specific inhibition correlated with the activity of the right inferior frontal gyrus, when the option to repeat existed. Our findings suggest that human voluntary action decisions are mediated by complementary processes of intentional selection and inhibition

    Neural correlates of intentional and stimulus-driven inhibition: a comparison

    Get PDF
    People can inhibit an action because of an instruction by an external stimulus, or because of their own internal decision. The similarities and differences between these two forms of inhibition are not well understood. Therefore, in the present study the neural correlates of intentional and stimulus-driven inhibition were tested in the same subjects. Participants performed two inhibition tasks while lying in the scanner: the marble task in which they had to choose for themselves between intentionally acting on, or inhibiting a prepotent response to measure intentional inhibition, and the classical stop signal task in which an external signal triggered the inhibition process. Results showed that intentional inhibition decision processes rely on a neural network that has been documented extensively for stimulus-driven inhibition, including bilateral parietal and lateral prefrontal cortex and pre-supplementary motor area. We also found activation in dorsal frontomedian cortex and left inferior frontal gyrus during intentional inhibition that depended on the history of previous choices. Together, these results indicate that intentional inhibition and stimulus-driven inhibition engage a common inhibition network, but intentional inhibition is also characterized by additional context-dependent neural activation in medial prefrontal cortex

    Neural computations underlying action-based decision making in the human brain

    Get PDF
    Action-based decision making involves choices between different physical actions to obtain rewards. To make such decisions the brain needs to assign a value to each action and then compare them to make a choice. Using fMRI in human subjects, we found evidence for action-value signals in supplementary motor cortex. Separate brain regions, most prominently ventromedial prefrontal cortex, were involved in encoding the expected value of the action that was ultimately taken. These findings differentiate two main forms of value signals in the human brain: those relating to the value of each available action, likely reflecting signals that are a precursor of choice, and those corresponding to the expected value of the action that is subsequently chosen, and therefore reflecting the consequence of the decision process. Furthermore, we also found signals in the dorsomedial frontal cortex that resemble the output of a decision comparator, which implicates this region in the computation of the decision itself

    Visual salience of the stop signal affects the neuronal dynamics of controlled inhibition

    Get PDF
    The voluntary control of movement is often tested by using the countermanding, or stop-signal task that sporadically requires the suppression of a movement in response to an incoming stop-signal. Neurophysiological recordings in monkeys engaged in the countermanding task have shown that dorsal premotor cortex (PMd) is implicated in movement control. An open question is whether and how the perceptual demands inherent the stop-signal affects inhibitory performance and their underlying neuronal correlates. To this aim we recorded multi-unit activity (MUA) from the PMd of two male monkeys performing a countermanding task in which the salience of the stop-signals was modulated. Consistently to what has been observed in humans, we found that less salient stimuli worsened the inhibitory performance. At the neuronal level, these behavioral results were subtended by the following modulations: when the stop-signal was not noticeable compared to the salient condition the preparatory neuronal activity in PMd started to be affected later and with a less sharp dynamic. This neuronal pattern is probably the consequence of a less efficient inhibitory command useful to interrupt the neural dynamic that supports movement generation in PMd

    Processing irrelevant location information: practice and transfer effects in a Simon task.

    Get PDF
    How humans produce cognitively driven fine motor movements is a question of fundamental importance in how we interact with the world around us. For example, we are exposed to a constant stream of information and we must select the information that is most relevant by which to guide our actions. In the present study, we employed a well-known behavioral assay called the Simon task to better understand how humans are able to learn to filter out irrelevant information. We trained subjects for four days with a visual stimulus presented, alternately, in central and lateral locations. Subjects responded with one hand moving a joystick in either the left or right direction. They were instructed to ignore the irrelevant location information and respond based on color (e.g. red to the right and green to the left). On the fifth day, an additional testing session was conducted where the task changed and the subjects had to respond by shape (e.g. triangle to the right and rectangle to the left). They were instructed to ignore the color and location, and respond based solely on the task relevant shape. We found that the magnitude of the Simon effect decreases with training, however it returns in the first few trials after a break. Furthermore, task-defined associations between response direction and color did not significantly affect the Simon effect based on shape, and no significant associative learning from the specific stimulus-response features was found for the centrally located stimuli. We discuss how these results are consistent with a model involving route suppression/gating of the irrelevant location information. Much of the learning seems to be driven by subjects learning to suppress irrelevant location information, however, this seems to be an active inhibition process that requires a few trials of experience to engage

    Does the motor system need intermittent control?

    Get PDF
    Explanation of motor control is dominated by continuous neurophysiological pathways (e.g. trans-cortical, spinal) and the continuous control paradigm. Using new theoretical development, methodology and evidence, we propose intermittent control, which incorporates a serial ballistic process within the main feedback loop, provides a more general and more accurate paradigm necessary to explain attributes highly advantageous for competitive survival and performance

    When is giving an impulse? An ERP investigation of intuitive prosocial behavior

    Get PDF
    Human prosociality is often assumed to emerge from exerting reflective control over initial, selfish impulses. However, recent findings suggest that prosocial actions can also stem from processes that are fast, automatic and intuitive. Here, we attempt to clarify when prosocial behavior may be intuitive by examining prosociality as a form of reward seeking. Using event-related potentials (ERPs), we explored whether a neural signature that rapidly encodes the motivational salience of an event\u2014the P300\u2014can predict intuitive prosocial motivation. Participants allocated varying amounts of money between themselves and charities they initially labelled as high- or low-empathy targets under conditions that promoted intuitive or reflective decision making. Consistent with our predictions, P300 amplitude over centroparietal regions was greater when giving involved high-empathy targets than low-empathy targets, but only when deciding under intuitive conditions. Reflective conditions, alternatively, elicited an earlier frontocentral positivity related to response inhibition, regardless of target. Our findings suggest that during prosocial decision making, larger P300 amplitude could (i) signal intuitive prosocial motivation and (ii) predict subsequent engagement in prosocial behavior. This work offers novel insight into when prosociality may be driven by intuitive processes and the roots of such behaviors

    Intentional inhibition of actions in humans

    Get PDF
    A crucial component of human behavioural flexibility is the capacity to inhibit actions at the last moment before action execution. This behavioural inhibition is often not an immediate reaction to external stimuli, but rather an endogenous ‘free’ decision. Knowledge about such ‘intentional inhibition’ is currently limited, with most research focused on stimulus-driven inhibition. This thesis will examine intentional inhibition, using several different experimental approaches. The behavioural experiments reported in the initial chapters found that intentional inhibition directly alters sensory processing during decision-making. In addition, there were unique effects of prior event sequences on subsequent decisions to either act or inhibit. Brain imaging methods using EEG and fMRI showed distinct neural mechanisms associated with intentional inhibition, which did not apply to rule-based inhibition. Work with Tourette syndrome patients indicated that the intentional inhibition of involuntary motor tics affects brain activity associated with voluntary actions. Furthermore, attentional manipulation strategies were shown to be highly effective in reducing tics, which may open up alternative behavioural treatment approaches for tic disorders. This thesis concludes by demonstrating that intentional inhibition is a bona fide cognitive function worth studying. It also develops a cognitive model in which behavioural inhibition varies along a continuum from ‘instructed inhibition’ to ‘intentional inhibition’. This model may be useful as a guide for future work

    Cortical Dynamics of Contextually-Cued Attentive Visual Learning and Search: Spatial and Object Evidence Accumulation

    Full text link
    How do humans use predictive contextual information to facilitate visual search? How are consistently paired scenic objects and positions learned and used to more efficiently guide search in familiar scenes? For example, a certain combination of objects can define a context for a kitchen and trigger a more efficient search for a typical object, such as a sink, in that context. A neural model, ARTSCENE Search, is developed to illustrate the neural mechanisms of such memory-based contextual learning and guidance, and to explain challenging behavioral data on positive/negative, spatial/object, and local/distant global cueing effects during visual search. The model proposes how global scene layout at a first glance rapidly forms a hypothesis about the target location. This hypothesis is then incrementally refined by enhancing target-like objects in space as a scene is scanned with saccadic eye movements. The model clarifies the functional roles of neuroanatomical, neurophysiological, and neuroimaging data in visual search for a desired goal object. In particular, the model simulates the interactive dynamics of spatial and object contextual cueing in the cortical What and Where streams starting from early visual areas through medial temporal lobe to prefrontal cortex. After learning, model dorsolateral prefrontal cortical cells (area 46) prime possible target locations in posterior parietal cortex based on goalmodulated percepts of spatial scene gist represented in parahippocampal cortex, whereas model ventral prefrontal cortical cells (area 47/12) prime possible target object representations in inferior temporal cortex based on the history of viewed objects represented in perirhinal cortex. The model hereby predicts how the cortical What and Where streams cooperate during scene perception, learning, and memory to accumulate evidence over time to drive efficient visual search of familiar scenes.CELEST, an NSF Science of Learning Center (SBE-0354378); SyNAPSE program of Defense Advanced Research Projects Agency (HR0011-09-3-0001, HR0011-09-C-0011
    corecore