113 research outputs found

    ASSURING THE SDN SECURITY BY MODELLING AND COMPARING SDN PROPOSED TOPOLOGIES USING PETRI NETS

    Get PDF
    The soaring number of applications for autonomous systems in different aspects like air, sea, and space is creating the need for new methodologies and architectures’ technologies to consolidate the verification of system-level and system-of-systems level. The implementation of cybersecurity standards and software is critical to supporting infrastructure. This article discusses some security issues regarding autonomous systems' computer networks. It proposes the usage of Software-Defined Networks (SDN) technologies as a solution, after providing better security in SDN environment through the usage of the HYDRA framework and the usage of multiple controllers in specific topologies to ensure the security of SDN in precise and to ensure the security of the autonomous systems' computer networks in general as well. We propose a framework that contains 3 different types of controllers' topologies and each topology can use 4 algorithms, HYDRA, VPN, Double RSA, and least but not last comes blockchain technology which is the core of our security

    Designing, Building, and Modeling Maneuverable Applications within Shared Computing Resources

    Get PDF
    Extending the military principle of maneuver into war-fighting domain of cyberspace, academic and military researchers have produced many theoretical and strategic works, though few have focused on researching actual applications and systems that apply this principle. We present our research in designing, building and modeling maneuverable applications in order to gain the system advantages of resource provisioning, application optimization, and cybersecurity improvement. We have coined the phrase “Maneuverable Applications” to be defined as distributed and parallel application that take advantage of the modification, relocation, addition or removal of computing resources, giving the perception of movement. Our work with maneuverable applications has been within shared computing resources, such as the Clemson University Palmetto cluster, where multiple users share access and time to a collection of inter-networked computers and servers. In this dissertation, we describe our implementation and analytic modeling of environments and systems to maneuver computational nodes, network capabilities, and security enhancements for overcoming challenges to a cyberspace platform. Specifically we describe our work to create a system to provision a big data computational resource within academic environments. We also present a computing testbed built to allow researchers to study network optimizations of data centers. We discuss our Petri Net model of an adaptable system, which increases its cybersecurity posture in the face of varying levels of threat from malicious actors. Lastly, we present work and investigation into integrating these technologies into a prototype resource manager for maneuverable applications and validating our model using this implementation

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Modern software cybernetics: new trends

    Get PDF
    Software cybernetics research is to apply a variety of techniques from cybernetics research to software engineering research. For more than fifteen years since 2001, there has been a dramatic increase in work relating to software cybernetics. From cybernetics viewpoint, the work is mainly on the first-order level, namely, the software under observation and control. Beyond the first-order cybernetics, the software, developers/users, and running environments influence each other and thus create feedback to form more complicated systems. We classify software cybernetics as Software Cybernetics I based on the first-order cybernetics, and as Software Cybernetics II based on the higher order cybernetics. This paper provides a review of the literature on software cybernetics, particularly focusing on the transition from Software Cybernetics I to Software Cybernetics II. The results of the survey indicate that some new research areas such as Internet of Things, big data, cloud computing, cyber-physical systems, and even creative computing are related to Software Cybernetics II. The paper identifies the relationships between the techniques of Software Cybernetics II applied and the new research areas to which they have been applied, formulates research problems and challenges of software cybernetics with the application of principles of Phase II of software cybernetics; identifies and highlights new research trends of software cybernetic for further research

    Modern software cybernetics: New trends

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Software cybernetics research is to apply a variety of techniques from cybernetics research to software engineering research. For more than fifteen years since 2001, there has been a dramatic increase in work relating to software cybernetics. From cybernetics viewpoint, the work is mainly on the first-order level, namely, the software under observation and control. Beyond the first-order cybernetics, the software, developers/users, and running environments influence each other and thus create feedback to form more complicated systems. We classify software cybernetics as Software Cybernetics I based on the first-order cybernetics, and as Software Cybernetics II based on the higher order cybernetics. This paper provides a review of the literature on software cybernetics, particularly focusing on the transition from Software Cybernetics I to Software Cybernetics II. The results of the survey indicate that some new research areas such as Internet of Things, big data, cloud computing, cyber-physical systems, and even creative computing are related to Software Cybernetics II. The paper identifies the relationships between the techniques of Software Cybernetics II applied and the new research areas to which they have been applied, formulates research problems and challenges of software cybernetics with the application of principles of Phase II of software cybernetics; identifies and highlights new research trends of software cybernetic for further research

    Analysis and Management of Security State for Large-Scale Data Center Networks

    Get PDF
    abstract: With the increasing complexity of computing systems and the rise in the number of risks and vulnerabilities, it is necessary to provide a scalable security situation awareness tool to assist the system administrator in protecting the critical assets, as well as managing the security state of the system. There are many methods to provide security states' analysis and management. For instance, by using a Firewall to manage the security state, and/or a graphical analysis tools such as attack graphs for analysis. Attack Graphs are powerful graphical security analysis tools as they provide a visual representation of all possible attack scenarios that an attacker may take to exploit system vulnerabilities. The attack graph's scalability, however, is a major concern for enumerating all possible attack scenarios as it is considered an NP-complete problem. There have been many research work trying to come up with a scalable solution for the attack graph. Nevertheless, non-practical attack graph based solutions have been used in practice for realtime security analysis. In this thesis, a new framework, namely 3S (Scalable Security Sates) analysis framework is proposed, which present a new approach of utilizing Software-Defined Networking (SDN)-based distributed firewall capabilities and the concept of stateful data plane to construct scalable attack graphs in near-realtime, which is a practical approach to use attack graph for realtime security decisions. The goal of the proposed work is to control reachability information between different datacenter segments to reduce the dependencies among vulnerabilities and restrict the attack graph analysis in a relative small scope. The proposed framework is based on SDN's programmable capabilities to adjust the distributed firewall policies dynamically according to security situations during the running time. It apply white-list-based security policies to limit the attacker's capability from moving or exploiting different segments by only allowing uni-directional vulnerability dependency links between segments. Specifically, several test cases will be presented with various attack scenarios and analyze how distributed firewall and stateful SDN data plan can significantly reduce the security states construction and analysis. The proposed approach proved to achieve a percentage of improvement over 61% in comparison with prior modules were SDN and distributed firewall are not in use.Dissertation/ThesisMasters Thesis Computer Engineering 201

    From empowering to motivating:Enhancing policy enforcement through process design and incentive implementation

    Get PDF
    Policy enforcement is crucial in our daily life, from protecting rights to promoting collaborations. In practice, designed processes and institutional incentives are two powerful tools in enforcing policies. Processes empower compliance and prevent non-compliance by technology, while incentives motivate adherence through rewards and punishments.Given the distinct mechanisms of these two methods, this dissertation addresses policy enforcement from the perspectives of empowerment and motivation in Part I and Part II, respectively.Part I focuses on designing appropriate processes, including pre-audit, operational execution, and post-audit, to empower and terminate compliant and non-compliant behaviors. It further realizes these processes by blockchain and smart contract technologies.Part II discusses comprehensive criteria for institutional incentive design and potential corruption in incentive implementation. It predicts incentive effectiveness through mathematical modeling and simulation experiments.It is worth mentioning that, although the enforced policies in this dissertation are primarily for data governance, the obtained results can be applied to various scenarios

    Deep learning : enhancing the security of software-defined networks

    Get PDF
    Software-defined networking (SDN) is a communication paradigm that promotes network flexibility and programmability by separating the control plane from the data plane. SDN consolidates the logic of network devices into a single entity known as the controller. SDN raises significant security challenges related to its architecture and associated characteristics such as programmability and centralisation. Notably, security flaws pose a risk to controller integrity, confidentiality and availability. The SDN model introduces separation of the forwarding and control planes. It detaches the control logic from switching and routing devices, forming a central plane or network controller that facilitates communications between applications and devices. The architecture enhances network resilience, simplifies management procedures and supports network policy enforcement. However, it is vulnerable to new attack vectors that can target the controller. Current security solutions rely on traditional measures such as firewalls or intrusion detection systems (IDS). An IDS can use two different approaches: signature-based or anomaly-based detection. The signature-based approach is incapable of detecting zero-day attacks, while anomaly-based detection has high false-positive and false-negative alarm rates. Inaccuracies related to false-positive attacks may have significant consequences, specifically from threats that target the controller. Thus, improving the accuracy of the IDS will enhance controller security and, subsequently, SDN security. A centralised network entity that controls the entire network is a primary target for intruders. The controller is located at a central point between the applications and the data plane and has two interfaces for plane communications, known as northbound and southbound, respectively. Communications between the controller, the application and data planes are prone to various types of attacks, such as eavesdropping and tampering. The controller software is vulnerable to attacks such as buffer and stack overflow, which enable remote code execution that can result in attackers taking control of the entire network. Additionally, traditional network attacks are more destructive. This thesis introduces a threat detection approach aimed at improving the accuracy and efficiency of the IDS, which is essential for controller security. To evaluate the effectiveness of the proposed framework, an empirical study of SDN controller security was conducted to identify, formalise and quantify security concerns related to SDN architecture. The study explored the threats related to SDN architecture, specifically threats originating from the existence of the control plane. The framework comprises two stages, involving the use of deep learning (DL) algorithms and clustering algorithms, respectively. DL algorithms were used to reduce the dimensionality of inputs, which were forwarded to clustering algorithms in the second stage. Features were compressed to a single value, simplifying and improving the performance of the clustering algorithm. Rather than using the output of the neural network, the framework presented a unique technique for dimensionality reduction that used a single value—reconstruction error—for the entire input record. The use of a DL algorithm in the pre-training stage contributed to solving the problem of dimensionality related to k-means clustering. Using unsupervised algorithms facilitated the discovery of new attacks. Further, this study compares generative energy-based models (restricted Boltzmann machines) with non-probabilistic models (autoencoders). The study implements TensorFlow in four scenarios. Simulation results were statistically analysed using a confusion matrix, which was evaluated and compared with similar related works. The proposed framework, which was adapted from existing similar approaches, resulted in promising outcomes and may provide a robust prospect for deployment in modern threat detection systems in SDN. The framework was implemented using TensorFlow and was benchmarked to the KDD99 dataset. Simulation results showed that the use of the DL algorithm to reduce dimensionality significantly improved detection accuracy and reduced false-positive and false-negative alarm rates. Extensive simulation studies on benchmark tasks demonstrated that the proposed framework consistently outperforms all competing approaches. This improvement is a further step towards the development of a reliable IDS to enhance the security of SDN controllers

    Evaluating Resilience of Cyber-Physical-Social Systems

    Get PDF
    Nowadays, protecting the network is not the only security concern. Still, in cyber security, websites and servers are becoming more popular as targets due to the ease with which they can be accessed when compared to communication networks. Another threat in cyber physical social systems with human interactions is that they can be attacked and manipulated not only by technical hacking through networks, but also by manipulating people and stealing users’ credentials. Therefore, systems should be evaluated beyond cy- ber security, which means measuring their resilience as a piece of evidence that a system works properly under cyber-attacks or incidents. In that way, cyber resilience is increas- ingly discussed and described as the capacity of a system to maintain state awareness for detecting cyber-attacks. All the tasks for making a system resilient should proactively maintain a safe level of operational normalcy through rapid system reconfiguration to detect attacks that would impact system performance. In this work, we broadly studied a new paradigm of cyber physical social systems and defined a uniform definition of it. To overcome the complexity of evaluating cyber resilience, especially in these inhomo- geneous systems, we proposed a framework including applying Attack Tree refinements and Hierarchical Timed Coloured Petri Nets to model intruder and defender behaviors and evaluate the impact of each action on the behavior and performance of the system.Hoje em dia, proteger a rede não é a única preocupação de segurança. Ainda assim, na segurança cibernética, sites e servidores estão se tornando mais populares como alvos devido à facilidade com que podem ser acessados quando comparados às redes de comu- nicação. Outra ameaça em sistemas sociais ciberfisicos com interações humanas é que eles podem ser atacados e manipulados não apenas por hackers técnicos através de redes, mas também pela manipulação de pessoas e roubo de credenciais de utilizadores. Portanto, os sistemas devem ser avaliados para além da segurança cibernética, o que significa medir sua resiliência como uma evidência de que um sistema funciona adequadamente sob ataques ou incidentes cibernéticos. Dessa forma, a resiliência cibernética é cada vez mais discutida e descrita como a capacidade de um sistema manter a consciência do estado para detectar ataques cibernéticos. Todas as tarefas para tornar um sistema resiliente devem manter proativamente um nível seguro de normalidade operacional por meio da reconfi- guração rápida do sistema para detectar ataques que afetariam o desempenho do sistema. Neste trabalho, um novo paradigma de sistemas sociais ciberfisicos é amplamente estu- dado e uma definição uniforme é proposta. Para superar a complexidade de avaliar a resiliência cibernética, especialmente nesses sistemas não homogéneos, é proposta uma estrutura que inclui a aplicação de refinamentos de Árvores de Ataque e Redes de Petri Coloridas Temporizadas Hierárquicas para modelar comportamentos de invasores e de- fensores e avaliar o impacto de cada ação no comportamento e desempenho do sistema
    corecore