
Analysis and Management of Security State for Large-Scale Data Center Networks

by

Abdulhakim Sabur

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2018 by the
Graduate Supervisory Committee:

Dijinag Huang, Chair
Yanchao Zhang
Paulo Shakarian

ARIZONA STATE UNIVERSITY

December 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ASU Digital Repository

https://core.ac.uk/display/195379893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

With the increasing complexity of computing systems and the rise in the number

of risks and vulnerabilities, it is necessary to provide a scalable security situation

awareness tool to assist the system administrator in protecting the critical assets,

as well as managing the security state of the system. There are many methods to

provide security states’ analysis and management. For instance, by using a Firewall

to manage the security state, and/or a graphical analysis tools such as attack graphs

for analysis.

Attack Graphs are powerful graphical security analysis tools as they provide a

visual representation of all possible attack scenarios that an attacker may take to

exploit system vulnerabilities.The attack graph’s scalability, however, is a major con-

cern for enumerating all possible attack scenarios as it is considered an NP-complete

problem. There have been many research work trying to come up with a scalable so-

lution for the attack graph. Nevertheless, non-practical attack graph based solutions

have been used in practice for realtime security analysis.

In this thesis, a new framework, namely 3S (Scalable Security Sates) analysis

frameworkis proposed, which present a new approach of utilizing Software-Defined

Networking (SDN)-based distributed firewall capabilities and the concept of stateful

data plane to construct scalable attack graphs in near-realtime, which is a practical

approach to use attack graph for realtime security decisions. The goal of the proposed

work is to control reachability information between different datacenter segments to

reduce the dependencies among vulnerabilities and restrict the attack graph analysis

in a relative small scope. The proposed framework is based on SDN’s programmable

capabilities to adjust the distributed firewall policies dynamically according to secu-

rity situations during the running time. It apply white-list-based security policies to

limit the attacker’s capability from moving or exploiting different segments by only

i

allowing uni-directional vulnerability dependency links between segments. Specifi-

cally, several test cases will be presented with various attack scenarios and analyze

how distributed firewall and stateful SDN data plan can significantly reduce the se-

curity states construction and analysis. The proposed approach proved to achieve a

percentage of improvement over 61% in comparison with prior modules were SDN

and distributed firewall are not in use.

ii

To My Brother, Mohammad, Whom I Owe All My Success. . .

iii

ACKNOWLEDGMENTS

Successful writing and completion would not be possible without the guidance,

support, and encouragement from my Suporvisor, Dr. Dijiang Huang. He is a great

mentor for graduate students, and a great resource and expert in CyberSecurity era.

Thank you for teaching me how to think critically, and most of all, how to become a

good researcher.

I would like to give a special gratitude for my thesis committee members, Dr.

Yanchao Zhang and Dr. Paulo Shakarian for their guidance and support. Thank you

for allocating me part of your valuable time to defence my thesis.

Moreover, I am grateful to all of those whom I had the honor and pleasure of

working with in Secure Networking and Computing (SNAC) lab, especially Ankur

Chowdhary and Adel Alshamrani for their insightful input, revisions, helping me in

conducting and successful completion of this research work.

Above all, my friend, partner, and wife, Maryam Hafiz, who stood by me every

moment and gave me her endless constant support. Thank you for being in my life,

without your existence, I would not have been able to finish my degree on time, thank

you for your understanding and patience.

Last, but not least, my family, special thanks and gratitude for my father, Man-

sour, and my mother, Samar, for your lovely prayer, effort in raising me, and honest

advice and guidance to become today who I am.

I gratefully acknowledge the financial support and scholarship I received from

Taibah University through Saudi Arabian Cultural Mission (SACM).

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

1.1 Background and Motivation . 1

1.2 Contribution . 6

1.3 Organization of Thesis . 7

2 RELATED WORK . 8

2.1 Graphical Security Analysis . 9

2.2 SDN-Based Distributed Firewall . 13

3 SYSTEM DESIGN, MODELING, AND MANAGEMENT 17

3.1 System and Architecture Components . 17

3.1.1 OpenState . 19

3.1.2 Distributed Firewall (DFW) . 22

3.1.3 System Design . 26

3.1.4 OpenState Tables Generation . 28

3.2 Stateful Distributed Firewall Implementation Details 31

3.2.1 Operating System and Networking virtualization 31

3.2.2 Network Configuration . 35

4 SCALABLE ATTACK GRAPH GENERATION . 42

4.1 Motivation . 42

4.1.1 Attack Graph Background . 43

4.1.2 Parallel Attack Graph Computing . 48

4.1.3 Results . 55

v

CHAPTER Page

5 CONCLUSION AND FUTURE WORK . 60

REFERENCES . 61

APPENDIX

A SOURCE CODE . 66

vi

LIST OF TABLES

Table Page

2.1 Classification of Some of Graphical Security Analysis Tools 9

3.1 Comparison Between Some of The Famous Platforms for State in SDN 21

3.2 Sub-net Configuration Example . 29

vii

LIST OF FIGURES

Figure Page

1.1 OpenFlow Protocol Header Fields . 4

2.1 An Example of Attack Graph . 11

3.1 System Architecture of The Proposed System . 18

3.2 An example of Mealy Finite State Machine . 22

3.3 Flow Chart Diagram of The Proposed System . 27

3.4 Flow Diagram of The Proposed System . 28

3.5 State and XFSM Tables of OpenState . 30

3.6 Successful Installation of OVS . 33

3.7 Successful Creation of LXC Ubuntu Container . 34

3.8 OVS Main Configuration File . 36

3.9 Container Main Configuration File . 37

3.10 Example of uuid for an OVS Port . 39

4.1 Sample Attack Graph . 45

4.2 Post-Condition Table for The Controller . 47

4.3 Attack Graph Without Using 3S. 54

4.4 System Architecture of The Proposed System . 55

4.5 Complexity Analysis . 56

4.6 Performance Analysis . 57

4.7 Attack Graph Generation Time with and without 3S 58

4.8 Bayesian-based Attack Graph . 59

viii

Chapter 1

INTRODUCTION

1.1 Background and Motivation

Data centers and networking systems continue to expand and increase in both

size and complexity at a rapid pace. With such expansion, security concerns rise as

attackers’ capability improves and the number of vulnerabilities grow. In order to

have a better understanding and management of the security situation of the system,

strong and efficient analysis tools are needed to assist administrators in protecting the

critical assets. Graphical security analysis (Attack Graph) tools are one of them being

used as methods to understand the weakness of a system. Security state management

is conducted by monitoring and evaluating system’s security components such as Fire-

wall and Intrusion Detection Systems(IDS). It is critical that a system administrator

is able to not only inspect and deploy security rules, but also analyze and evaluate

the current situation and whether or not an improvement is needed to increase the

protection level of the system. Coming back to attack graph as a well-known tool for

security analysis, attack graph’s scalability is still considered as NP-Complete prob-

lem Greiner et al. (2006). Amman et al. Ammann et al. (2002) show that attack

graph scalability problem limits its scope and applicability. There has been no ef-

fective solutions to overcome this problem. Moreover, attack graph-based security

scenario analysis approaches carry the problem of states explosion as described in

Ammann et al. (2002), in which the attack graph represents all the possible attack

scenarios (or states) and it can be exponentially complicated.

To mitigate the state explosion problem, most of existing solutions either tried to

1

reduce the dependency among vulnerabilities Ou et al. (2005) or apply an hierarchical

strategy Hong and Kim (2013) to reduce the computing and analysis complexity of

constructing and using attack graphs. For example, Hong and Kim Hong and Kim

(2013) proposed a hierarchical approach for constructing and analyzing full attack

graph by simulation. They compared their model with simplified attack graph, which

represents the network structure only and not the full attack graph information,

where the proposed approach was linearly better than the simplified attack graph.

In Kaynar and Sivrikaya (2016), a framework was proposed for distributed attack

graph generation from hardware aspect through utilizing memory pages to ensure

smooth distribution of the attack graph. In Hong et al. (2013), the authors presented

an approach for attack graph reduction using reduction technique. Specifically, they

showed two formal methods, one is by calculating the full attack path, while the other

method is by increasing an existing path. However, they did not show how effective

their proposed solution is through a real-time solution or experiments, besides it scales

poorly to O(2n) for full path calculation and O(n!) for incremental path calculation.

Using attack graph is essential to enumerate all the possible attack scenarios,

or it can be called security states, for a given computer networking system. None

of previous solutions can effectively address the state explosion issue nor considered

large data center networks with emerging technologies such as SDN and stateful Dis-

tributed Firewall (DFW). To further highlight and expound the state term; state is

meant to be the entire flow state among SDN environment. In the past, state was

referred to the header information being examined. However, state in this thesis de-

scribe the complete implication of the entire flow, from header to application data

where a comprehensive inspection is conducted based on predefined state for each

flow to prevent the attacker from tricking the firewall and bypass protection. The

idea of the proposed research work is to provide security state management along

2

with a graphical analysis of critical paths in the system. Therefor, system admin can

make appropriate decision to protect the system. The proposed approach guarantee

that the attacker may not bluff the firewall, since we used a methodology to link the

communication path with destination port and host IP.

There are many research work proposed virtual Large Data Center Networks to

enhance network performance and bandwidth allocation Landis et al. (2010); Guo

et al. (2014). DFW approaches enforces security policy at a different level and com-

ponents of the network. These security policies are deployed (on demand) and change

frequently. A centralized firewall in SDN is not effective as it may block legitimate

traffic according to Hu et al. (2014a). DFW is more reliable when used in SDN

(Software Defined Networking) environment to ensure the ease of use of different

policies and configurations for each network segment or Tenant. However, using SDN

controller to maintain firewall managed security states is not an effective approach.

To address this problem, in this work, we propose to develop an SDN-based stateful

DFW by incorporating OpenState Bianchi et al. (2014) to manage the system security

states in SDN networking environment.

Software Defined Networking (SDN) is an emerging technology aiming to enhance

the current networking protocols by separating control-plane from data-plane. SDN

breaks down the switch and routers controlling functionality and forwarding func-

tionality to erase the vertical complications according to Lantz et al. (2010). This

method of separation converts the switches in the network into simple forwarding

devices controlled by central controller that coordinates and manages the forwarding

rules (flow rules), which will reduce the complexity of applying and managing differ-

ent flow policies and help in minimizing conflict between those policies.Kreutz et al.

(2015). The separation operation is conducted via software capabilities, application

3

Figure 1.1: OpenFlow Protocol Header Fields

programming interface (APIs) particularly, in which the SDN controller takes control

of the data-plane states according to Kreutz et al. (2015). The method or protocol

of deploying SDN controller was studied widely, starting from McKeown et al. (2008)

in which OpenFlow protocol was proposed as a standard protocol to implement SDN

functionalities. The power of OpenFlow is the dynamic property of adding and re-

moving flow rules in switches, without creating conflicts between the rules. Moreover,

the centralization of controller allowed for higher performance and traffic throughput

Bianco et al. (2010). OpenFlow datapath design include flow table and an action

associated with each flow. This exact property will help in designing the DFW as we

will see later.

OpenFlow switches will act based on the flow rules specified by the controller.

Instead of making decision for each packet individually, the controller check for the

first packet in each flow, and generalize the rule for the rest of the flow. This way the

number of packets transmitted over the network is reduced significantly. As for the

basic actions each switch must have; they are 1) Forward the flow. 2) Encapsulate

and forward. 3) Drop the flow packet. McKeown et al. (2008)

Currently, there are several SDN controllers, and many studies conducted comparing

controllers performance and usage Khondoker et al. (2014); Nunes et al. (2014),the

most popular and widely used is OpenDayLight Controller. Figure 1.1 shows the

header fields of OpenFlow protocol flow.

4

As for SDN-based data center, it is worth noting that many companies started

to deploy SDN in their infrastructure. For instance, Google announced in 2017 their

plan to introduce SDN to the public Network, and 20% of Google’s traffic is man-

aged using SDN. Also, CISCO, the largest networking devices manufacturing and

provider, has a dedicated plan and products designed specifically for SDN-based data

centers. All of these news and efforts prove that SDN is becoming the new networking

technology every organization will deploy soon or later, and hence, many researcher

are trying to conduct different type of studies either on SDN or using SDN technology.

As of security of SDN, firewall functionality is an essential component of any secu-

rity system. There are many challenges in deploying distributed firewall in SDN-based

environment, especially a stateful one. For instance, conflict resolution as indicated

by Dixit et al. (2018), where certain rules are overlapping with one another or once.

Firewalls shall be capable of handling policy conflict when a flow rule is pushed or

upon path update in the system. Also, for large scale data center, it is of paramount

importance for a firewall to provide support for multi-tenant architecture, and differ-

entiate between address domain for each sub-network.

Back to attack graphs, previous work Cook et al. (2016) worked on generating an

attack graph in distributed manner. The method of parallelism depends on breaking

down the algorithm loops into parallel processes, and the complexity of generating

the attack graph is scaled down by a factor of n or t, where n is the number of nodes

and t is the number of edges to the node. Moreover, Kaynar et al. Kaynar and

Sivrikaya (2016) focused on partitioning the memory of the system where the attack

graph computation occur to add parallelism to attack graph generation. The authors

also provided a virtual shared memory abstraction across distributed agents to avoid

multiple expansion of nodes. The shared virtual memory is used to store the reacha-

5

bility graph, hence, any two nodes adjacent will be put in the same memory page to

the distributed agents, which will lead to processing the nodes in the same page with

the same agent without assistant or the need to transfer the page to another agent.

The complexity analysis of the proposed algorithm is based on the messages transfer

and execution time. The maximum number of memory pages faults encountered by

the search agents is O(N * H, where H is the number of edges and N is the number

of hosts in the network. Overall complexity of the proposed system is determined by

O(P + N * H *log(P)), where P is the number of processors or the search agents for

the memory pages. As can be seen from previous work, attack graph scalability

is still a major issue that has not been addressed effectively. As large data center

network grow in both size and complexity, it is of paramount importance to come up

with a solution to make networking management easier for network administrator.

SDN emerged as a solution to solve such a complication, but it also have much more

higher capabilities to enhance the security and provided more accurate and effective

security analysis. To the best of our knowledge, SDN and distributed firewall have

not been used before to address the attack graph scalability issue and address the

state explosion problem though controlling the reachability between the nodes in the

system.

1.2 Contribution

This thesis aim to provide a solution for the complication behind managing and

analyzing security state for large data center networks. The main contribution is

that a SDN-based environment was designed to deploy vulnerability-based stateful

distributed firewall, by utilizing SDN controller and OVS. Moreover, the presented

framework provide scalable graph-based security analysis by incorporating vulnera-

bility information and flow information to get the exact connectivity between the

6

hosts inside the data center system. The framework achieve a better performance by

over 60% in comparison with prior models that utilizes attack graph for security anal-

ysis. Other contribution of the work is that it was completed using container based

approach, which is an emerging technology and competitor to traditional virtual ma-

chines. The work also provide an intuition on how to connect multiple container to

OVS in order to allow for local communication as well as communication with the

public network for each container.

1.3 Organization of Thesis

In the following chapters, we will explain more in details on the theory and appli-

cations of designing stateful distributed firewall DFW, the approach used for design,

and finally, the method we followed to utilize distributed firewall functionality to

generate attack graph that is scalable, and in much lower computation time. we will

present related work in Chapter 2. Chapter 3 will provide the details of system design

and implementation. In chapter 4, we explain our work about attack graphs and how

we were able to combine firewall flow polices with vulnerability scanning results in

order to be able to generate a scalable attack graph. Finally, conclusion and future

work is presented in Chapter 5 and Appendix section is followed after that

7

Chapter 2

RELATED WORK

Managing security state for any system is crucial to safeguard the confidentiality,

integrity, and availability of data. According to Symantec Internet Security Threat

Report sym (2018), the wide spread of software vulnerabilities and ransomewares

O’Gorman and McDonald (2012) create many challenges for system administrator to

protect and defend against. Our goal here is to offer a scalable approach to man-

age the security situation and provide an efficient approach of analysis to allow and

assist the administrator in performing the effective decision. SDN offers great op-

portunities to manage the networking interactions between the control-plane and the

data-plane’s switches using an API. However this new technology eliminate complica-

tions Alkhulaiwi et al. (2016) between switches and controller, there are many security

considerations and challenges that need to be addressed. Administrators now are ca-

pable of controlling a specified network segment or isolate is easily, thanks to SDN.

The question is how and when this isolation should occur, and most importantly,

what criteria or other countermesures can be selected to avoid losing data availabil-

ity, or confidentiality lose. According to Scott-Hayward et al. (2013), one of the main

concerns in the industry is how satisfactory the level of audit process, which device

is connected to which switch, what what level of access the device can have or reach.

SDN security can be categorized into three main points:

• OpenFlow controller related security challenges.

• Switch related security challenges.

• Communication channel between controller and switch security challenges.

8

Graph-based Security Models Tree-based Security Mode

Sheyner et al. (2002) Saini et al. (2008)

Swiler et al. (2001) Bistarelli et al. (2006)

Sheyner (2004) Aliari Zonouz (2012)

Ingols et al. (2006) Roy et al. (2012)

Jajodia et al. (2005) Edge (2007)

Ou et al. (2005) Roy et al. (2010)

Table 2.1: Classification of Some of Graphical Security Analysis Tools

In the following sections, we present some of the related work in regards to commu-

nication channel security and how a distributed firewall was implemented to address

those issues. We also show the current work on graphical security analysis and what

tools and methodologies are used evaluate the security state in the system and how

they can be used to identify the critical paths in the system.

2.1 Graphical Security Analysis

Graphical security analysis model can be divided into two main category: 1- At-

tack graphs and 2- Attack Trees. The formal is the main approach for graphical

security analysis, whereas the later is the basis for tree structured model. Many re-

search work was conducted in this area, such as Attack defense trees to study the

effect of hierarchical attack model, and to improve the security assessment capability

Hong et al. (2017). Hong et al. conducted a comprehensive survey on the usability

and application of graphical security models. They classified the existing models to

study its performance in terms of complexity and and life cycle, as well as compare the

availability of tools and what contribution they offer. Chowdhary et al. Chowdhary

9

et al. (2018) presented an approach of modeling Markov game to defend and select the

optimal countermeasure selection. The author’s idea was to design a model in which

a reward will be given to each player (attack and defender) for their action, optimal

reward would result in the higher points for defender and lower one for attacker, and

vice versa.

Graphical security analysis models can be classified into 2 main categories as we men-

tioned earlier, however, each category has a sub category, which we show in table 2.1.

There exist other types of security analysis models such as stochastic Petri Net Pe-

terson (1981) and stochastic Reward Net Hirel et al. (2000). Since they suffer from

state explosion problem and they do not follow graphcial approach, the authors of

Hong et al. (2017) did not consider them for comparison with other modules.

Attack Graph Scalability: Attack Graph Toolkit Sheyner et al. (2002) presents

an automated way of generating attack graph. Authors considered attack graph gen-

eration as a minimum set-cover problem and utilized vulnerability information from

Nessus to generate a graph of 19 nodes and 28 edges. The graph generation al-

gorithm, will however not be scalable on a large cloud network. Multi-prerequisite

attack graph generation presented by Ingols et al Ingols et al. (2006) utilizes efficient

data-structures to achieve the worst-case attack graph generation complexity of order

O(E+NlgN), where N is the number of nodes, and E is the number of edges. The

performance results have been evaluated over an attack graph with a few hundred

nodes. Additionally, using a greedy algorithm for the generation of the entire graph

is a slow process. We utilize a distributed graph generation algorithm to a achieve

better scalability on a large network. Lee et al Lee et al. (2009) presented a cut and

divide algorithm to achieve scalable attack graph generation on a large network. The

authors, however, assume the graph structure to balanced, to facilitate division. The

real world networks, however, rarely balance, i.e., some segments may have a large

10

number of vulnerabilities, while others may be relatively secured. Albanese et al Al-

banese et al. (2012) use exhaustive search algorithm for attack graph generation, and

estimate the cost for network hardening. The search algorithm can have exponential

complexity in the worst case on a large network. We utilize segment aware attack

graph generation algorithm, which will have linear complexity, O(n), where n is the

number of attack graph nodes.

To show an example of Attack graph scalability, we present the following figure 2.1:

Figure 2.1: An Example of Attack Graph

Where the labels for each shape in the graph mean:

1 ,” execCode (’ 1 9 2 . 1 6 8 . 1 . 6 ’ , someUser)” ,”OR” ,0 .8704

2 ,”RULE 2 (remote e x p l o i t o f a s e r v e r program)” ,

11

”AND” ,0 .64

3 ,” netAccess (’ 1 9 2 . 1 6 8 . 1 . 6 ’ , tcp , ’ 2 2 ’) ” , ”OR” ,0 . 8

4 ,”RULE 6 (d i r e c t network a c c e s s)” ,”AND” ,0 . 8

5 ,” hac l (i n t e rne t , ’ 1 9 2 . 1 6 8 . 1 . 6 ’ , tcp , ’ 2 2 ’) ” ,

”LEAF” ,1 . 0

6 ,” attackerLocated (i n t e r n e t)” ,”LEAF” ,1 . 0

7 ,” ne tworkServ i c e In fo (’ 1 9 2 . 1 6 8 . 1 . 6 ’ , openssh , tcp ,

’ 22 ’ , someUser)” ,”LEAF” ,1 . 0

8 ,” vu lEx i s t s (’ 1 9 2 . 1 6 8 . 1 . 6 ’ , ’CVE−2008−5161 ’ , openssh ,

remoteExploit , p r i v E s c a l a t i o n)” ,”LEAF” ,1 . 0

9 ,”RULE 2 (remote e x p l o i t o f a s e r v e r program)” ,”AND” ,0 .64

10 ,” netAccess (’ 1 9 2 . 1 6 8 . 1 . 6 ’ , tcp , ’ 9 0 9 0 ’) ” , ”OR” ,0 . 8

11 ,”RULE 6 (d i r e c t network a c c e s s)” ,”AND” ,0 . 8

12 ,” hac l (i n t e rne t , ’ 1 9 2 . 1 6 8 . 1 . 6 ’ , tcp , ’ 9 0 9 0 ’) ”

,”LEAF” ,1 . 0

13 ,” ne tworkServ i c e In fo (’ 1 9 2 . 1 6 8 . 1 . 6 ’ , s a f a r i , tcp ,

’ 9090 ’ , someUser)” ,”LEAF” ,1 . 0

14 ,” vu lEx i s t s (’ 1 9 2 . 1 6 8 . 1 . 6 ’ , ’CVE−2013−2566 ’ ,

s a f a r i , remoteExploit , p r i v E s c a l a t i o n)” ,”LEAF” ,1 . 0

The above figure show an instance of a simple graph with two vulnerabilities only. In

Chapter 4, we show a more sophisticated graph, and how our solution reduced the

complexity of interpreting the graph meaning.

SDN based Attack Graph Generation: SDN allows centralized management

and orchestration in a cloud network. The network controller having a centralized

12

view of network traffic and vulnerabilities makes it an ideal candidate for attack graph

generation. Scalable MTD solution presented by Chowdhary et al Chowdhary et al.

(2016) use graph partitioning for attack graph scalability and proactive security. We

build on similar principles, but the sub-attack graph generation and merging process

used in our current work achieve faster graph generation. Chung et al Chung et al.

(2015, 2013) use SDN based attack graph generation and countermeasure evaluation

framework for analyzing the impact of different security countermeasures on the se-

curity state of a network. The graph generation algorithm is polynomial in terms

of the number of network nodes, which can limit the scalability of the attack graph

generation process. We use SDN controller to centrally compose segment graphs, and

achieve 75% reduction in the overhead associated with single attack graph generation

for the entire network.

2.2 SDN-Based Distributed Firewall

Firewalls are one of the essential security components that exist in many systems.

Firewall are capable of filtering or blocking certain type of traffic, whether it belongs

to layer two, layer three, or application layer. There are mainly three type of firewall:

1. Stateful firewall: which allow for state-based inspection of the traffic, and state

here correspond to the traffic state (New or Established for instance).

2. Stateless firewall: in which the firewall act as a static filtering mechanism based

on pre-defined rules.

3. Application firewall: basically an application oriented filter that run in the

application domain and defend against rule violation to a specified filter.

Some of the research work that built SDN-based firewall include Pena and Yu

(2014), where they implemented a simulated environment by using Mininet Team

13

(2012) and connecting multiple switches together then testing the ping command,

nevertheless, their approach depend on installing the firewall rule as a flow rule to

show the distributed property of the firewall. Installing some rules as a flow rule

does not effectively address many security challenges and may not defend against

web server vulnerability for example since the attacker may simply act as a normal

user and then compromise that vulnerable server. Moreover, since the controller is

the one responsible for generating and installing the rules, the term distributed has

been eliminated and the controller now is the main engine in the system for defense.

SDN Reactive Stateful Firewall zerkane et al. Zerkane et al. (2016) introduced a

stateful reactive firewall by incorporating the firewall into the SDN architecture. The

authors claim it is stateful since it monitor the connection status and react based on

the state. There are three main components in their design, which is: 1- an orches-

trator that run in the application layer, 2- firewall application running on top of SDN

controller and 3- OpenFlow policies installed in OpenFlow data-plane devices. The

purpose of the orchestrator is to allow the administrator to specify security policy

in the high level, and then those security policies are “propageted” to the controller.

Each firewall instance has a state table to keep track of the states of the flow. Firewall

specify which action the controller should take, which in this regards ease the load on

the controller and only send to it what action to be performed. The authors claim this

will mitigate some attack such as DDoS and SYN Flood attack. This stateful firewall

design lack auto priority handling, multi tenant support, and violation resolution ac-

cording to Dixit et al. (2018). Their evaluation is implemented using Mininet Team

(2012) and the results show that the firewall is capable of processing 1000 connection

requests in about 0.7 ms.

14

FLOW GUARD According to Hu et al. (2014b), there are many challenges in

building a SDN firewall, such as

• Examining Dynamic Network Policy Updates

• Checking Indirect Security Violations

• Architecture Option

• Stateful Monitoring

In order to address these challenges, The authors proposed a robust firewalls that

enable effective network-wide access control, namely FLOWGUARD. The framework

accurate detection and policy violation in SDN environment. FLOWGUARD has

several components that configure, verify, and manage the flows through network

state configuration, flow packet violation detection and flow rejection in case of vi-

olation modules. The authors ensured that the framework have enough flexability,

and efficiency to dynamically adopt to network state changes. Evaluation of FLOW-

GUARD was performed using FLOODLIGHT SDN controller Floodlight (2012). The

experiments were conducted using real world network topology, and they achieved a

detection and rejection strategy in 0.03 milliseconds (ms).

SDN-Oriented Stateful Hardware Firewalls Collings and Liu Collings and Liu

(2014) presented a hardware approach into designing a stateful SDN firewall, where

they incorporated the flow rules in both, OpenFlow switches and firewall controller,

where the latter is responsible for making control decisions for unknown flows. The

main idea is to utilize SDN controller to insert and remove rules based on prede-

fined security polices. The authors evaluated their design using GENI test-bed which

provide real world network simulation model. They achieved an overall latency of

15

about 30 ms for 300 flows with 1000 rules, however, they did not test their approach

for distributed multiple network segments. Moreover, the authors did not consider

evaluating the security state after deploying the proposed firewall.

Multi-level Stateful Firewall Mechanism for SDN Naif and Kotulski Nife and

Kotulski (2017), presented an approach to design a reactive stateful firewall based

on OVS data. They relied in their work upon having the SDN controller to spec-

ify the pre-defined state, which is a simple “match action paradigm ”. The firewall

application is centralized above the control plane. They compared their work with

other SDN security module that either offer protection against DoS attack or having

a simple filtering mechanism. Authors claim that their proposed solution only need

26-bytes for each flow entry in the STable, where they store the states; however, there

is no real evaluation nor implementation for their solution on a real system, nor the

authors identified how the OpenFlow devices will communicate with each other to

ensure there is no redundancy or conflict between them.

16

Chapter 3

SYSTEM DESIGN, MODELING, AND MANAGEMENT

In this Chapter, we present the proposed system architecture design in terms of: 1-

System components and how they are connected. 2- Details of traffic flow from source

until destination 3- Different stages of security states and how they are handled in

such SDN-based environment. A comprehensive explanation of the environment walk-

through is presented as well to show a proof of concept for our proposed framework.

3.1 System and Architecture Components

The proposed system rely heavily upon Software Defined Networking architecture,

especially SDN Controller. There are many types of controllers that follow OpenFLow

protocol specifications such as OpenDayLight Controller, Pox, etc. a comparative

study was conducted to emphasize on each one by Khondoker et al. (2014).

In addition to SDN controller, We use OpenState Bianchi et al. (2014), which is a

proposed open source tool that utilizes Mealy-based eXtended Finite State Machine

(XFSM) to model and handle flow states in SDN environment. The goal of Open-

State is to allow the programmer not only to include states in the OpenFlow device,

but also the ability to manage those states and the devicse shall be able to handel

the state without controller assistant.

The goal is to design a stateful firewall capable of distinguishing benign flow from

malicious one by monitoring the current state of the traffic and the vulnerabilities in

the system. Open Virtual Switch (OVS) Lantz et al. (2010), is used as OpenFlow

17

data-plane device to receive and execute controller’s commands and flow rules. OVS

is essential for open state as the XFSM tables actions are being pushed in there and

it is responsible to forward the traffic for the destination or to Intrusion Detection

System (IDS) to inspect the malicious traffic. Next, the ongoing security vulnera-

bility and critical paths in the system are modeled using attack graph. A proposed

modeling approach is being used to reduce the scalability of the graph via controlling

reachability by distributed firewall policies.

Figure 3.1: System Architecture of The Proposed System

The proposed framework is presented in Figure 3.1, where the application layer

has the vulnerability scanner, the security policy generator based on OpenState, and

18

finally the attack graph module that will compute and generate the attack graph for

the system. The next layer is the Control layer in which the SDN controller resides

and act as a meditate between the upper modules and the data-plane layer. Con-

troller job is to manage the connectivity across the system, by receiving the security

policy from the policy generator, converting it into a flow rule, and push it to OVS.

The next layer is the data-plane layer where OVS is responsible to execute the flow

rules as well as monitoring the state of the connected machines. If there exist a

connection to a vulnerable machine, OVS forward the traffic to an IDS for further

inspection. Once an alert is generated, it is sent to the security policy module gen-

erator to execute and update the current security policy and block the malicious flow.

3.1.1 OpenState

OpenState Bianchi et al. (2014) was introduced by Bianchi et al. as a solution to

bring and provide states for SDN data-plane. The authors utilized eXtended Finite

State Machines (XFSM) as the main technique to allow switches at the data-plane

level to be programmable. The goal was to add intelligent techniques to the switches

and reduce the load and decision making from being done in the controller. More-

over, allowing switches to maintain states is not enough, it is necessary to provide

state management for the devise itself Bianchi et al. (2014). Therefor, Finite State

Machines were selected to fulfill this requirement.

OpenState was implemented using two main tables: 1- State tables; which hold

the state for each flow, and 2- XFSM table; where each state is linked with a state key,

triggering event, associated action, and next state label. Figure 3.2 shows an example

of mealy type state machine. Each state is represented by a circle. To have a valid

19

transition from one state to another, a valid triggering event must occur, otherwise,

the next state is still the current state. We explain more in details about OpenState

in a later section 3.1.4.

To highlight on different state management schemes for states in SDN data-plane

layer, we show a comparison in table 3.1. The table emphasized the scalability of the

approach, what data structure it used, and what is the type of the scheme. We choose

OpenState for our design for it’s simplicity and availability of code in comparison to

the other modules.

20

S
ch

e
m
e

S
ca

la
b
il
it
y

T
y
p
e

S
ta
te

S
to

ra
g
e

O
p

en
S
ta

te
C

an
su

p
p

or
t

m
u
lt

ip
le

X
F

S
M

ta
b
le

s
P

la
tf

or
m

H
as

h
T

ab
le

+

T
C

A
M

F
as

t
S
ca

la
b
le

P
la

tf
or

m
H

as
h

ta
b
le

S
D

P
A
\c

it
e{

zh
u
20

15
sd

p
a}

S
ca

la
b
le

P
la

tf
or

m
T

C
A

M
+

S
R

A
M

S
N

A
P
\c

it
e{

ar
as

h
lo

o2
01

6s
n
ap
}

E
va

lu
at

io
n

sh
ow

sc
al

ab
il
it

y
w

h
en

to
p

ol
og

y
si

ze
in

cr
ea

se
,

b
u
t

n
ot

w
h
en

N
o.

of
fl
ow

p
ol

ic
y

in
cr

ea
se

F
ra

m
ew

or
k

H
as

h
T

ab
le

E
ve

n
t-

D
ri

ve
n

N
et

w
or

k

P
ro

gr
am

m
in

g
\c

it
e{

m
cc

lu
rg

20
16

ev
en

t}
N

o
ev

al
u
at

io
n

R
es

u
lt

p
ro

v
id

ed
F

ra
m

ew
or

k
R

eg
is

te
rs

T
ab

le
3.

1:
C

om
p
ar

is
on

B
et

w
ee

n
S
om

e
of

T
h
e

F
am

ou
s

P
la

tf
or

m
s

fo
r

S
ta

te
in

S
D

N

21

Figure 3.2: An example of Mealy Finite State Machine

3.1.2 Distributed Firewall (DFW)

Firewalls are one of the important security elements in any networking system.

They can control the flow of packets from one node to another by inspecting the

traditional five tuples (source and destination IP address, source and destination

port number, and protocol). There are three types of firewalls, stateless, stateful,

or application firewall. Application firewall basically is an application oriented filter

that run in the application domain and defend against rule violation to a specified

filter. It control the input/output and access to and from an application by blocking

any unmatched traffic. For example, an organization specify an access policy to

whom can access to sensitive data servers which will help in preventing unwanted

and unauthorized access. Stateless firewall is essentially a filtering mechanism to

remove (or drop) unwanted traffic based on static information such as IP address,

access control list (ACL). They do not account for traffic state nor they monitor

network status. A stateless firewall can also serve as an access gateway to allow or

deny certain type of traffic or users from entering to some unauthorized areas by

comparing the pre-specified rule sets and check for a match. On the other hand,

the stateful firewall has the capability to monitor network traffic in order to inspect

any path change in the network. Moreover, a stateful firewall can watch specific

connection stage in TCP protocol (SYN, SYN-ACK, etc) Mojidra (2016). They add

22

to the filtering mechansim monitoring functionality to watch for the newly opened

ports by any connection. In essence, stateful firewall add Layer-4 realization to the

basic filtering model.

Modern DFW Architectures

There has been a shift in paradigm from host-centric model to the data-centric model.

The network services and computation capacity is available closer to the users. One

of the emerging solution to prevent lateral movement of attack in the network is the

usage of microsegmentation via a distributed firewall. The distributed firewall model

proposed by microsegmentation allows segmentation of the network at various lay-

ers of abstraction - layer 2,3,4 or segmentation of application workloads within the

same layer, e.g., web-application layer, database layer, etc. A segmented network

thus protects workloads against attacks even when the attacker has footprint within

a network segment.

Existing microsegmentation solutions such as VMWare NSX Ferrari (2014) satisfy

recommendations listed in NIST 800-125b Chandramouli and Chandramouli (2016)

guidelines (VM-FW-R1-3). We use object oriented microsegmentation model to cre-

ate security policies at the abstraction level of security and user-level groups, thus sat-

isfying all the recommendations above. Additionally, both VMWare ESX and CISCO

ACI Morgan (2014) frameworks allow the creation of microsegmentation within a

multi-segment cloud network.

The drawback of such an architecture is that SDN architecture forwards every new

traffic request to the SDN controller. With the security policies at the granularity of

per-application, workload, flow-state, SDN controller may be quickly overwhelmed,

and make the security assessment quite slow. We incorporated a light-weight state

monitoring capability in our architecture to achieve the same capabilities as modern

23

DFW architectures while limiting the impact on the network performance. If a cen-

tralized firewall is used in an SDN environment and the SDN controller is enforced

to track every connection, the attacker can launch a saturation attack as described

in AVANTGUARD Shin et al. (2013). Also, a centralized firewall can not detect and

defend against attacks in data-plane layer Dixit et al. (2018).

In order to restrict traffic between different segments, it is important to have

some sort of mechanism that allows us to control the flow through the communica-

tion paths. The obvious solution is to use a firewall. Nevertheless, deploying a central

firewall will suffer from a single point of failure issue. Moreover, different segments

will have different security requirements, which is impossible for a central firewall to

accommodate all at once. The policies for distributed firewall are centrally gener-

ated and managed, nevertheless, those policies are pushed into the OpenFlow devices

(OVS) to be maintained.

In our case where we utilize the SDN, DFW will resolve the problem of flow policy

violation by setting up an individual firewall for each entry Hu et al. (2014b). The

several firewalls will be synchronized by maintaining connectivity with the SDN con-

troller, which is responsible for generating the state tables as we will explain in the

next sections.

Some researcher addressed DFW in SDN Hu et al. (2014b) Satasiya et al. (2016)

Pena and Yu (2014). However, they only consider stateless firewall which does not

leverage the full advantage of both SDN and DFW. VMware has proposed a dis-

tributed firewall for their NSX model, by using a central object that manages the

distributed firewall’s policies Mojidra (2016). Unfortunately, this architecture is only

applicable to the NSX model and cannot be adopted to OpenFlow standards, because

NSX comprises of stateful and stateless components. The firewall rules of the host

machines are also controlled by the NSX manager. Whereas the OpenFlow imple-

24

ments a stateless firewall. Also, NSX follows a distributed firewall model, and SDN

is a centralized controller model, which is another difference.

There are many challenges and research questions that need to be addressed to

consider stateful firewall implementation. Initially, all the intelligence work in SDN

was designated to the controller Dargahi et al. (2017), and switches were dedicated to

maintaining stateless forwarding tables based on the controller. However, this is not

the case anymore as stateful SDN introduces the concept of empowering switches to

partially control incoming flows. For the case of a multi-segment data center, which

is the focus of this thesis, network configuration will change dynamically as well as

the flow states. This alternation raises the need for stateful rules that can be con-

figured inside the switch to satisfy each segments’ requirements, either from security

or networking point of view. As we will see later, utilizing the state of the SDN flow

and the state of the existing system’s vulnerabilities can result in such alike stateful

firewall.

25

3.1.3 System Design

In the previous sections, the system architecture and components were introduced.

The rest of the chapter will show the detailed flow of the system components and what

are the dependencies between them.

To illustrate the flow of the system, consider Figures 3.3 and 3.4, which shows the

flow chart of the system. The first step is to conduct vulnerability scanning results,

which is the base to build the stateful firewall and evaluate the security situation

of the system. The scanning results are sent to the controller in order to generate

the XFSM table with the assistance of OpenState. XFSM table include information

about the vulnerable service in a certain sub-domain. This domain shall be under

OVS observation since OVS will be responsible to forward the flow to IDS/IPS or

block it if an intrusion was identified. The procedure on how to generate the state

table will be explained shortly. The SDN controller will now push the generated

state tables to the OVS, and OVS will track flow based on the specified flow key and

associated state. If a state indicate a flow is suspicious, then the flow is forwarded

to IDS/IPS for further inspection and examination. Next, a decision will be made

to determine whether the flow will be forwarded to the destination or get blocked. If

the flow is benign, it will be returned to OVS to be forwarded to final destination,

otherwise, it gets dropped. If no state was found, OVS send the flow headers and

wait for forwarding rule decision.

The previously described procedure show how to combine both, centralized deci-

sion making and distributed rule enforcement, which is crucial for Distributed Firewall

(DFW) to have. SDN controller will manage and push the flow rules based on Open-

State module, each OVS will enforce those rules and maintain the security state of

each network segment it is attached to. Hence, distributed functionality is main-

26

tained in addition to adding intelligent property for the OVS devices. The purpose

of designing a DFW is that:

• It is a software-based firewall, which essentially means it can be easily enabled

or disabled on any network segment or interface.

• The design needs to support stateful firewall to handle the situation if a mali-

cious traffic (i.e. traffic associated with known vulnerability and port number)

is detected, which results in enabling detailed packet filtering policies according

to the flow states.

Figure 3.3: Flow Chart Diagram of The Proposed System

27

Figure 3.4: Flow Diagram of The Proposed System

3.1.4 OpenState Tables Generation

OpenState was proposed by Bianchi et al. Bianchi et al. (2014) to support state

management in OpenFlow enabled switches. OpenState relys on Mealy eXtended

Finite State Machine (XFSM) to describe the current flow state, trigring event for

each flow based on flow key, what action is executed for each event, and finally what

is the next state. To illustrate on OpenState XFSM, let’s consider the following

example:

28

Concrete Example:

Suppose we have a sub-net with the following hosts and vulnerability information

shown in table 3.2:

Host Vulnerability CVE ID Port

192.168.1.10 WebDAV vulnerability in IIS CVE 2009-1535 135

192.168.1.11 Squid port scan CVE 2001-1030 200

192.168.1.12 None NA NA

Table 3.2: Sub-net Configuration Example

We assume there is a dedicated agent for each network segment responsible for

vulnerability scanning, and later on attack graph computation. The agent will provide

the information shown in the table above to controller. The controller will query

for the mentioned CVE IDs and get more detailed information, which then sent to

security policy module to examine and generate the distributed firewall rules.

to elaborate on OpenState we explain the requirments for generating the tables as

follows:

• Flow Key: which is defined by Destination IP and Port number

• State: The state is assigned depending on whether a vulnerability exist or not.

• Event: Incoming Connection from another node to a specific port.

• Action: The action is set either forward to IDS/IPS, wait for security clearance,

or forward to Controller.

• Next State: What state should the rest of the flow get?

29

Figure 3.5 shows the State table in the top and the XFSM table at the bottom of the

figure. once a flow come in, OpenState module locate the associated state label for

this flow. Next, the module check XFSM table to see if the associated triggering event

for this state is present for in the flow, if so, the action will be associated and the

next state label will be assigned for the flow and get updated in the upper state table.

Figure 3.5: State and XFSM Tables of OpenState

30

3.2 Stateful Distributed Firewall Implementation Details

In this section, we will present the approach to implement the DFW functionality,

as well as what exact software/components are being used and utilized for this pur-

pose. Before carrying on with the rest of the chapter, it is important to point out that

these component are being developed and tested using a limited processing hardware

device, and the idea can be replicated for each network segment to build the entire

DFW. The purpose is to provide a proof of concept through real implementation of

the proposed systems.

3.2.1 Operating System and Networking virtualization

To start with the implementation, we used Dell laptop with Intel I-7 2.6 GHz

processor with 16GB RAM. The running operating system on the machine is Windows

10. Next, we installed Oracle VirtualBox Version 5.2.6 as a base hypervisor to host

virtual machines. We installed Ubuntu 14.04 there to run and do all the experiments.

The required main components for our environment testing include:

• Open Virtual Switch (OVS)

• SDN Controller

• Linux Containers (lxc)

• Snort IDS/IPS

Inside ubuntu terminal, we begin by installing the above requirements using the

following commands:

31

1− i n s t a l l a t i o n o f OVS:

$ apt−get update

$ apt−get i n s t a l l −y g i t automake autoconf gcc uml−u t i l i t i e s

l i b t o o l bui ld−e s s e n t i a l g i t

$ g i t c l one https : // github . com/ openvswitch / ovs . g i t

$ cd ovs

$. / boot . sh

$. / c o n f i g u r e − −with−l i nux=/ l i b /modules/ u n a m e − r / bu i ld

$ make && make i n s t a l l

$ insmod datapath / l i nux / openvswitch . ko

$ mkdir −p / usr / l o c a l / e t c / openvswitch

$ ovsdb−t o o l c r e a t e / usr / l o c a l / e t c / openvswitch / conf . db

vswitchd / vswitch . ovsschema

$ ovsdb−s e r v e r −v − −remote=punix : / usr / l o c a l / var /run/ openvswitch /

db . sock \

− −remote=db : Open vSwitch , manager options \

− −pr ivate−key=db : SSL , p r i va t e key \

− −c e r t i f i c a t e=db : SSL , c e r t i f i c a t e \

− −p i d f i l e − −detach − −log− f i l e

$ ovs−v s c t l − −no−wait i n i t

$ ovs−vswitchd − −p i d f i l e − −detach

$ ovs−v s c t l add−br ovsbr1

$ ovs−v s c t l show

Figure 3.6 shows successful installation of OVS after executing the above com-

mands.

32

Figure 3.6: Successful Installation of OVS

The next part now is to install Linux container, and for that, we will allocate a

dedicated section as follows:

Linux Containers

Linux containers Rosen (2014) which was introduced in August 2008 Wikipedia con-

tributors (2018) and developed by number of developers from IBM and Google, is

designed to enable virtulization for Linux Operating system, where all containers

share the same kernel as the host. Containers are considered exactly as a regular

virtual machine, with the exception of they use and share the same resources (mem-

ory and kernel) as the host does. We choose to continue with our implementation

and testing using containers because of the simplicity of managing the containers and

attaching them to OVS, all using the host terminal command.

In order to install Linux containers (lxc), some dependencies are required to run

it efficiently, which are:

• One of glibc, musl libc, uclib or bionic as your C library

• Linux kernel >=3.8

• libcap (to allow for capability drops)

• libapparmor (to set a different apparmor profile for the container)

Next, run the following command to install lxc:

33

$ sudo apt-get install lxc

To create Linux containers (virtual machines) for our experiments, we use the

following code:

$ sudo lxc-create -t ubuntu -n u1

which indicate ubuntu version container with name u1 is created. Figure 3.7 show

successful creation of this container. We created 3 containers, two are acting as

normal clients (web server and FTP server), while the last one is acting as IDS/IPS

components.

Figure 3.7: Successful Creation of LXC Ubuntu Container

34

3.2.2 Network Configuration

In this section, we will explain the networking environment setup for our proposed

work. First of all, as mentioned earlier, the work is dependent on SDN environment,

which include SDN controller and data-plane switches. For the purpose of implemen-

tation and testing, we used POX controller Kaur et al. (2014), which is python-based

controller that has several modules, including but not limited to: layer-2 switching,

layer-3 switching, etc.

The next step is to start linking the OVS to each container. It is critical for the

containers not only be able to communicate with each other, but also to have access

to the internet. For such a purpose, the switch need to have the capability to forward

each container’s traffic to the internet and to other containers as well. Therefor, the

following configuration is used to allow container to be connected dynamically to the

OVS. Once a container start, it will be assigned a physical interface, and the logical

port of it will be connected to the OVS. Moreover, if the container shutdown, the

created logical port will be deleted from the OVS connected port, to no flood the

OVS with unwanted bridges and ports.

In order to connect the container to OVS, the following must be done:

1- Edit the file in /etc/lxc/default.conf as follows:

2- After creating a container, edit it’s configuration file as follows:

This step is essential after creating any container, otherwise, it will not connect

to the OVS and will fail in starting.

35

Figure 3.8: OVS Main Configuration File

3- Create the following new two files as follows:

$ sudo touch / e tc /network/ i f−up . d/ lxcora02−asm2−i fup−ovsbr1

$ sudo touch / e tc /network/ i f−up . d/ lxcora02−asm2−ifdown−ovsbr1

4- Edit the created files as follows:

a) sudo vim / etc /network/ i f−up . d/ lxcora02−asm2−i fup−ovsbr1

#!/ bin /bash

BRIDGE=”ovsbr1 ”

sudo ovs−v s c t l −−may−e x i s t add−br $BRIDGE

sudo ovs−v s c t l −−i f−e x i s t s del−port $BRIDGE $5

sudo ovs−v s c t l −−may−e x i s t add−port $BRIDGE $5

36

Figure 3.9: Container Main Configuration File

b) sudo vim /etc/network/if-up.d/lxcora02-asm2-ifdown-ovsbr1

#!/ bin /bash

BRIDGE=‘ovsbr1 ‘

#ovsBr= o v s b r 1

#ovs−v s c t l i f −e x i s t s del−port ${ovsBr} $5

NET CONFIG=/etc /network/ i n t e r f a c e s

ovs−v s c t l −−i f−e x i s t s del−port $BRIDGE $5

sed − i −n ’/ al low−’$BRIDGE’ ’ $5 ’/{ s / .∗/ / ; x ;N;N;N;N;N; d ;}

; x ; p ; ${x ; p ;} ’

$NET CONFIG

sed − i ’ / . / , /ˆ $ / ! d ’ $NET CONFIG # remove l ead ing blank l i n e s

37

At this stage, OVS and containers are connected and container should be able to

communicate with public network.

In order to proceed with the experiments, as shown in Figure 3.3, an Intrusion de-

tection system (IDS) and Vulnerability Scanner module (Stinger) are needed. The

Stinger module installation and preparation is explained in the Appendix chapter of

this Thesis. As of IDS configuration, we used Snort Roesch et al. (1999) intrusion

detection system for it’s popularity and ease of configuration. Snort was installed

in container 3 to inspect any abnormal behavior for the traffic that is identified as

vulnerable by Stinger module. To apply specific traffic forwarding, we used OVS port

mirroring, which is basically a function to copy all traffic as it is from one port to

another one.

To do this, we used the following commands:

sudo ovs−v s c t l −− −−id= @m c r e a t e mirror name=mirror0 −−

add br idge ovsbr1 mi r ro r s @ m

sudo ovs−v s c t l s e t mirror mirror0

output port=d11cc9f9 −1287−464 f−8454−68205 e896fd7

sudo ovs−v s c t l s e t mirror mirror0

s e l e c t \ d s t \ por t=c524609b−4830−4bc8−bbe7−4ddfbcc29b7c

where output is the uuid of the ovs port that we want to send the traffic to, and

dst port is the uuid port the we want to listen to it’s ongoing traffic (any traffic going

to that port). in order to get the uid of a port, we list all ports and their ids by the

follwing command:

$ sudo ovs−v s c t l l i s t port

38

Figure 3.10: Example of uuid for an OVS Port

Port mirroring prevent any usage of the port that is receiving packets. Therefor,

we added an additional port to container 3 in order to be able to communicate with

other containers and the public network as well. Adding a physical port is done by

changing the container main configuration file as follows:

Template used to c r e a t e t h i s con ta ine r :

/ usr / share / l x c / templates / lxc−ubuntu

Common c o n f i g u r a t i o n

l x c . i n c lude = / usr / share / l x c / c o n f i g /ubuntu . common . conf

Container s p e c i f i c c o n f i g u r a t i o n

l x c . r o o t f s = / var / l i b / l x c /u3/ r o o t f s

l x c . mount = / var / l i b / l x c /u3/ f s t a b

39

l x c . utsname = u3

lxc . arch = amd64

Network c o n f i g u r a t i o n

#lxc . network . name = eth0

lx c . network . type = veth

l x c . network . f l a g s = up

#lxc . network . l i n k = ovsbr1

l x c . network . hwaddr = 0 0 : 1 6 : 3 e : 9 d : 3 5 : 4 7

l x c . network . s c r i p t . up=

/ etc /network/ i f−up . d/ lxcora02−asm2−i fup−ovsbr1

l x c . network . s c r i p t . down=

/ etc /network/ i f−up . d/ lxcora02−asm2−ifdown−ovsbr1

#lxc . network . name =eth1

lx c . network . type =veth

l x c . network . f l a g s = up

lxc . network . hwaddr = 0 0 : 1 6 : 3 e : 9 d : 3 5 : 1 0

l x c . network . s c r i p t . up=

/ etc /network/ i f−up . d/ lxcora02−asm2−i fup−ovsbr1

l x c . network . s c r i p t . down=/etc /network/ i f−up . d/

lxcora02−asm2−ifdown−ovsbr1

Finally, we are now able to get IDS generated alerts by designing an API that will

return the source IP and source port number, destination IP and destination port

number. This information is the goal for the controller to create a flow rule that will

40

drop any traffic having the same attributes. Also, this information will be used by

the attack graph module to compute the overall system attack graph. Thus, the goal

was achieved by ensuring only desirable flow will pass through the controller, after

inspection by IDS, and based on the original vulnerability scanning result.

41

Chapter 4

SCALABLE ATTACK GRAPH GENERATION

In this chapter, we present our methodology and approach on how we are able

to generate a scalable attack graph after utilizing distributed firewall capability and

SDN environment. The main ideas is to monitor the vulnerabilities in the system

and then embed a path to the graph whenever a vulnerability exist and an active

communication to that vulnerability is being established. Our approach relied on

MulVal tool Ou et al. (2005) to compute the attack graph, and finally we draw it

using d3 javascript library. The evaluation result show an improvement with over

60% in comparison with prior modules .

4.1 Motivation

Attack graph has been used as a modeling tool for the study of multi-hop attacks

in a network. In addition, it has application in a number of areas of network secu-

rity such as vulnerability analysis where a system administrator can understand a

collective impact on network security. However, one of the greatest challenge making

the usability of the attack graph unpractical is its scalability. The relationship be-

tween the generation of attack graph and its scalability is a direct relationship. Thus,

in a large data center network, generating attack graph can exceed our ability to

analyze and understand the relationships between vulnerabilities and system flow’s.

The main motivation is to solve the attack graph’s scalability issue and enhance the

attack graph’s usability and visualization. For this purpose, we utilize the SDN and

DFW technologies for the purpose of controlling the reachability between the data

42

center segments by allowing uni-directional links between the segments only, and by

obtaining real-time reachability information from the controller.

The decoupling of control-plane and data-plane in SDN provides more flexibility

to run multiple applications on the SDN controller where each of which has complete

knowledge of the controlled environment. In this case, it is conceivable to design

a model that periodically runs to discover the network topology and fetching newly

added devices, services, or links that can go up or down. Therefore, the output of this

model can be input to the attack graph’s Host Access-Control Lists (HACL). This

will result in constructing real-time attack graph. Although the current deployment

of attack graph proposes to use HACL and obtain such information from a firewall

management tool, it is static and considers any to any relationship for connectivity

between nodes and vulnerabilities Ou et al. (2005).

Our methodology of examining each segment individually in order to construct a

global view attack graph helps us to enforce security policies at a very granular level

to reduce the access policy space and limit the trusted zone between multiple com-

ponents in the network. Deploying DFW with the SDN-based environment will fully

automate the policy configuration. Later, we will explain how reducing the access

policy and integrate it into the attack graph HACL will help in solving the attack

graph’s scalability issue.

4.1.1 Attack Graph Background

The attack graph is a graphical representation of the vulnerabilities in the system.

It shows all the possible paths an attacker may take to compromise the system and

gain the desired level of privileges, taking into account vulnerabilities dependency,

pre-conditions, and post-conditions for building the graph and successful exploita-

43

tion.

Previously, Chung et al. (2013), extended the definition of MulVAL attack graph as

Scenario Attack Graph (SAG), as follows:

SAG: SAG =(V,E), where: Vertices V = NC ∪ND ∪NR,

such that C is conjunction node representing exploit, D is disjunction node represent-

ing results of exploit and root node R for initial step of the attack scenario.

Direct edges E: Epre∪Epost, where an edge, e ∈ Epre ⊆ ND×NC means that ND must

exist to reach to N C. an edge e ∈ Epost ⊆ NC×ND means that the output shown by

ND can be reached if NC is satisfied Chung et al. (2013).

The scalability issue of attack graph is a major concern for researchers. It is

of paramount need to design an approach that scales well, especially for large data

center networks. In an attack graph, a cycle might appear where the attacker is able

to exploit vulnerability more than once. This issue will be discussed afterwards.

MulVALOu et al. (2005) is a well-known open source tool to generate an attack

graph. It uses datalog and logic programming as its modeling language. The input

to MulVAL is vulnerability information, which includes but not limited to; Common

Vulnerabilities and Exposures (CVE-ID) Vulnerabilities (2007), the affected applica-

tion or service, vulnerability consequences (whether the vulnerability results in data

loss, remote exploitation, data integrity, etc). In addition, network reachability infor-

mation, which include for each host: IP address, the vulnerable service or application,

port, and protocol. Vulnerability information, network service information as well as

Host access level in MulVAL are represented as follows:

VulExists (’ IP Address ’ , ’CVE ID ’ , Vulnerable s e r v i c e)

NetworkServ ice In fo (’ IP Address ’ , Vulnerable s e r v i c e ,

Protocol , Port)

44

HACL(s r c addr e s s , d s t addre s s , Protocol , port)

where port means the vulnerable port at the destination node.

MulVAL uses host access-control level (HACL) tuples to model network and fire-

wall configuration, the authors of MulVal used a general rule to test and specify

reachability information (any host can access any host using any port and protocol).

Figure 4.1 shows a simplified version of an attack graph. Let’s consider the attacker’s

Figure 4.1: Sample Attack Graph

goal is to compromise node E2. As can be seen from the Figure, in order to exploit

node E1, the attacker has to gain access to node A1 first through condition C. An

example of pre-condition is:

vulExists (10.0.0.1, CVE-4545, apache1.3.4).

In the second-stage, the pre-condition of exploiting E1 is both access to A1, and

vulnerability exist V. Note that the required connectivity has to be the same as the

one related to the vulnerable service V. In order to exploit node E2, the attacker first

has to compromise node E1, which will lead to a communication link to be created

and hence, continue to the path to E2. Thus an attacker can launch a mulit-stage

attack in order to reach goal node E2, starting from V and C.

The proposed approach computes an attack graph for each sub-network (seg-

45

ment). In order to construct the global view of attack graph for the entire system,

we need to consider the post-condition of the resultant sub-attack graphs. If there

is a dependency between these post-conditions (specifically, connectivity between the

segments), then we take these post-conditions and make them as pre-conditions in

the global view attack graph of the system.

After combining post-conditions, state and post-condition tables are created, the

first is to be into the data-plane switches, while the last is for the controller to

keep track of post-conditions of vulnerabilities. This is essential for the controller to

generate the global-view attack graph.

For example consider a segment having three machines, 202.0.0.1, 203.0.0.1, and

203.0.0.2. The first machine has

vu lEx i s t s (’ 2 0 2 . 0 . 0 . 1 ’ , ’CVE−1999−0045 ’ , h t t p s e r v e r) ,

ne tworkServ i c e In fo (’ 2 0 2 . 0 . 0 . 1 ’ , h t t p s e r v e r } , tcp , ’ 8 0 ’) .

Which has the specified CVE-ID, service, and the associated reachability information

which indicates that the httpserver service is running on port 80 using protocol tcp.

Also, Machine 203.0.0.2 has:

vu lEx i s t s (’ 2 0 3 . 0 . 0 . 2 ’ , ’CVE−1999−0511 ’ , windows 2000) .

ne tworkServ i c e In fo (’ 2 0 3 . 0 . 0 . 2 ’ , windows 2000 , tcp , ’ 7 0 ’) .

hac l (any , any , any , any)

The original attack graph as computed in Ou et al. (2005), will consider reacha-

bility relationship between the machines as any to any as shown above where there

is no added security policy as well. We want to specify the exact connectivity be-

tween the 2 machines by modifying the reasoning rules and add what we consider as

the major variables which are src ip address, dst ip address, dst port, and protocol as

indicated by the vulnerabilities information. In addition, add firewall rules to relate

46

vulnerability information to flow rules. This is accomplished by specifying states for

each flow. In order for the attacker to compromise segment 203.0.0.2, they have to

go through 202.0.0.1 and 203.0.0.1 first. Therefore, the post-condition of exploiting

203.0.0.1 becomes pre-condition of 202.0.0.1.

Figure 4.2: Post-Condition Table for The Controller

Tables shown in Figure 3.5 show an example of specifying each flow rule for the

above vulnerability information. The first step is to initiate state lookup by using

the source and destination IP and port number (since we are considering incoming

traffic from outside the segment). If the switch finds the corresponding state, it will

go to XFSM table to take the required action (forward to DPI in state1 for instance).

Otherwise, it will treat the incoming flow by the default state and check the original

flow table maintained by the controller to make the appropriate decision. To illustrate

more on the reachability information, HACL should be modified according to the

exact topology fetched from the SDN controller. for instance, machine 202.0.0.1 can

reach machine 203.0.0.2 using port 70 and TCP protocol. HACL should look like:

hacl(’202.0.0.1’,’202.0.0.1’,tcp,’70’)

Firewall starts by looking for a match into state table for the incoming traffic. State

table contains the exact source and destination IP and port, it will then go to XFSM

table to check what action should be taken.

47

4.1.2 Parallel Attack Graph Computing

In order to collect vulnerability information and scanning results, we assume that

a dedicated agent (Stinger) inside each segment exist to perform scanning operation,

and local attack graph generation. The method of scanning is out of scope of this

thesis, we assume that once scanning is done, vulnerability information will be sent to

SDN controller’s state table module to generate the state and post-condition tables

for both, local and global attack graph. Next, the machine will fetch connectivity

information from the controller, along with the resultant vulnerability information

and compute the attack graph for that particular segment.

Scalable Attack Graph

After computing an attack graph for each segment. We now have small, multiple

sub-attack graphs. We want to inspect how to combine all components to generate

the overall graph for the system. The obvious next step now is to combine all smaller

sub-graphs into a bigger one using divide and conquer. However, it is not that easy

due to merging problem. Specifically, when we create a bi-directional link between

two segments, which makes the segment-based partitioning useless and as a result,

we have to re-inspect all the vulnerability dependency among two segments, which

is a non-trivial task especially if there are multiple and dependable vulnerabilities in

the two segments. This leads to the following two claims:

Claim 1: Uni-direction communication between two segments allows us to merge

sub-attack graphs, taking into account the ability of the attacker to reach from one

host to another through direct communication. Specifically, this direct communication

is the one required to compromise the vulnerability residing in the victim machine.

Here we must note that the link between segments meant the reachability between

48

vulnerabilities. For example, when VM A from segment 1 explores a vulnerability in

VM B on an open TCP port n, and if the DFW allows the connection from A to B

on TCP port n, then we say there is a link from segment 1 to segment 2, in which

the link is directional and the vulnerability is reachable. Using the stateful DFW,

we can easily create uni-directional vulnerability exploration links between segments

since the DFW can maintain the connection’ states, and thus, the DFW can block

unwanted connection requests.

Claim 2: The different vulnerabilities between the segments might have a de-

pendency between them. This dependency might create a cycle where the attacker is

able to reach revisited segment. In order for the attacker to compromise a node E2

from node E1, they have to exceed the exploitability threshold T, which is setup by

the system user. The threshold here is the number of nodes that the attacker need to

bypass. If the attacker can not exceed this threshold, they should not be able to reach

to node E2.

To realize both Claim 1 and Claim 2, we present the following algorithm 1:

49

Algorithm 1 Segment Attack Graph construction

1: procedure Segment Attack Graph Generation

2: for all Segments do

3: V ul Scan← Conduct V ulnerability Scanning

4: Monitor Vulnerable target through IDS.

5: if new IDS alert from V ulScan is found: then

6: Block attacker’s attempt.

7: Send Vulnerability and connectivity info to AG Analyzer.

8: Compute Segment’s Local-View AG.

9: procedure System Attack Graph Generation

10: for all segments do

11: Fetch segment’s Vulnerability & Connectivity info.

12: if Link s1 to vulnerability ∈ s2 is found: then

13: Add link from s1’s AG to s2’s AG.

14: if Global-View AG exist: then

15: find attack graph cycles().

16: if cycle C is detected and |C| <T then

17: prune(C).

18: Construct-Global View Attack Graph.

19: Redraw system’s attack Graph.

50

Algorithm 1 explains the procedure of constructing a local-view attack graph for

each segment in the system, and finally generating the global view attach graph for

the entire system by examining the post-conditions resulted from compromising each

vulnerability (gaining connectivity to a target node having a vulnerability). The

first step of the algorithm is to conduct a comprehensive vulnerability scanning on

the target system. Next, Intrusion Detection System (IDS) is configured to monitor

the targeted vulnerable system. This step is essential in order to prevent blocking

legitimate flow originated from normal users, and only detect the malicious flow orig-

inated from an attacker. If the IDS generate and alert, then the DFW block that

communication and the vulnerability and connectivity information is sent to the at-

tack graph analyzer module. A local-view attack graph is generated for each segment

in the system after words, and finally, all segments’ local-view attack graphs is sent

to global-view attack graph generation module to analyze the dependency between

those sub-graphs and generate the entire system attack graph without the need of

recomputing the attack graph at each time.

If the segments have no vulnerability dependency between them, specifically, a

network connectivity from the source segment to the target segment, then the system

user can only see and inspect each segment’s local attack graph. On the other hand,

after constructing the global-view attack graph, a cycle might appear which will allow

the attacker to go back to another node by compromising an intermediate node.

The Algorithm will run for each segment t in the overall network segment n in the

system. In order to evaluate the occurrence of a cycle after the global-view attack

graph is generated, we use Tarjan’s strongly connected components algorithm Tar-

jan (1972) to implement the cycles() to find all cycles in the graph. If a cycle is

detected, then we set the exploitability threshold T. T can be set as the number of

hops or exploitability of a given attack path computed based on path probability that

51

is exploitable by the attacker. For a longer cycle, we assume that the attacker has

negligible chance to deploy attacks, and thus, we do not need to consider it to recon-

struct the attack graph. If the cycle is less than the threshold T, then we apply the

prune function. In practice, the prune function can be achieved by simply selecting

a link on a cycle to disable the link by changing DFW filtering rules to break the

cycle. The complexity of Algorithm 1 is dominated by the cycle() function, which is

the complexity of running Tarjan’s algorithm: O(E+V) as well as the complexity of

MulVal that is O(n2). Therefore, the worst-case complexity time analysis is O(n2)

where n is the number of nodes in the graph. The algorithm approve to have a bet-

ter performance in comparison with older approaches, where DFW and SDN are not

utilized. On the other hand, the best case scenario complexity is determined if the

number of segments in the system is large. We divide the total number of nodes N

by the number of segments, and therefor, the best case complexity is determined by

O(n2/S), where S is the number of segemnts in the system.

The attack graph can be generated by utilizing network topology and the vul-

nerability information for each segment. In order to generate the global view attack

graph, the post-condition of exploiting VM1 becomes pre-condition for VM3, and the

post-condition for that is the pre-condition for VM5. Figure 4.8 shows the global

view of the system’s attack graph after using 3S and Figure 4.3 shows the attack

graph without 3S, and it is clear how complicated the previous existing approach

even with a small number of vulnerabilities and nodes in the system. It is important

to emphasize the DFW role here. The uni-direction communication is maintained by

the DFW to ensure the attacker can only advance to one segment, without the ca-

pability of coming back to the same point of origin. This connectivity information is

synchronized with the controller. As we mentioned earlier, the controller now is able

to generate the global view of the attack graph, with the help of uni-direction commu-

52

nication enforced by DFW. For simplicity, we purposely tested our approach on small

number of segments. However, once we compute the attack graph for one segment

which could be the difficult part due to large number of vulnerabilities. Thus, if there

are multiple segments, then we only have to merge the sub-attack graph by checking

for the vulnerability dependency, and do computation only once for the sub-attack

graph.

53

F
ig

u
re

4.
3:

A
tt

ac
k

G
ra

p
h

W
it

h
ou

t
U

si
n
g

3S
.

54

4.1.3 Results

Figure 4.4: System Architecture of The Proposed System

In order to evaluate and measure the performance of our proposed approach. First,

we present the following evaluation equation:

Let S be the number of segments in the system and H is the total number of Hosts in

the system. The asymptotic complexity of Mulval Ou et al. (2005, 2006) complexity

is bounded by: O(H2). Using our proposed approach, we intend to divide the network

into a total number of segments T, where each segment Ti having the same number of

hosts H. To analyze the best case and worst case complexity of the proposed research,

we calculate the best case performance by:

55

Cost(S) =
H

T

2

(4.1)

On the other hand, the worst case complexity is where the number of segments in the

segment is equal to one (no segmentation is occurring), thus, the worst case complexity

remain as it is (equal to O(H2)). The larger the number of segmentation, the closer the

complexity is becoming linear, which shows how significantly the proposed approach

is better and more efficient than the MulVal approach. Figure 4.5 show the line plot of

equation 4.1, the complexity is approaching to linear scale as the number of segments

increases.

Figure 4.5: Complexity Analysis

As of the machine used for graph computation, we used the Intel I7 2.6-GHz CPU

machine with 16GB RAM. Next, we created several attack scenario cases with a dif-

ferent number of vulnerabilities for each segment, and by using a system similar to

the one shown in Figure 4.4 to test the approach with the generated test scenarios.

Figure 4.6 shows the number of nodes and edges with and without using 3S. It should

be noted that those test cases are for the global view attack graph and does not reveal

any information about the local attack graph. Initially, we begin by considering a

56

Figure 4.6: Performance Analysis

few number of vulnerabilities. As the number of vulnerabilities increase, the number

of nodes and edges in the graph increase with and without applying 3S. When the

number of vulnerabilities is about 30, number of nodes dropped from 187 to 91, the

percentage of improvement is over 50%. The percentage continues to increase as we

go to the right of the graph up until when the number of vulnerabilities is 1029, the

number of nodes decline from over 13 thousand nodes to 5 thousand and number of

edges decreases from over 22 thousand to 7 thousand with 61% percentage improve-

ment. This is due to a large number of vulnerabilities in the system overall, and

the absence of control over the connectivity in the system (the attacker may trans-

fer from any machine to another). Specifically, the graph now contains the actual

connectivity information obtained by the controller. In addition, uni-directional links

allow removing several nodes and edges from the graph without affecting the actual

connectivity between the segments.

57

Figure 4.7: Attack Graph Generation Time with and without 3S

The time required to generate attack graph without using our proposed solution

scale at very large pace (O(H2)). On the other hand, after deploying 3S, the time

required to generate an attack graph is much less than that and could go to as low

as a few seconds. For security risk assessment, it is necessary to construct the attack

paths from the source to the target node. However, in a large enterprise network,

constructing the attack paths can take a long time, as shown in Figure 4.7. Neverthe-

less, after deploying our proposed solution, the needed time is reduced significantly

from thousands to milliseconds, which shows how efficient the proposed system is.

As for graph clarification and interpretation, we used javascript d3 library to

redraw the attach graph and output a Bayesian based shape. As an example, the

resultant graph is shown in Figure 4.8 contains information about the vulnerable

58

node, as well as the conditional probability of compromising a node in the graph if the

link was not blocked and if the attacker was able to satisfy the pre-condition and post-

conditions of exploiting the vulnerabilities. The probability formula is derived from

Chung et al. (2013), we refer the reader to that paper for further explanation. The

green color of the node mean the node has a low probability of getting compromised,

while the red one has more likelihood of being attacked by adversary. If the mouse

over the node occur, the exact text of the node will be shown, however, for sack of

simplicity, we did not include the Figure with its text to not disturb the reader with

the interconnected texts.

Figure 4.8: Bayesian-based Attack Graph

59

Chapter 5

CONCLUSION AND FUTURE WORK

In this thesis, we presented a new framework that allow system administrator to

manage and analyze the security state for a large data-center network. Firewalls are

a powerful component of any system, which ensure smooth flow for network traffic.

Every system will need some way to analyze its security state. For that purpose, we

proposed to combine both, firewalls and attack graphs as a visual representation of

vulnerabilities and critical paths an adversary may take to exploit the system. Soft-

ware Defined Networking are an emerging technology that enable the decoupling be-

tween the control-plane and data-plane, which will allow a great utilization of network

devices, as will as reducing the conflict and ease the management of the networking

system. our goal in the thesis was to utilize the SDN capabilities and increase the

system security situation. Usage of SDN controller allow me to cordinate the security

state between the switches, where the goal is to come-up with a distributed firewall

to limit the attacker capability from exploiting multiple nodes in the system. DFW

will help in reducing the number of nodes that are generated by the attack graph

module. Specifically, the exact connectivity between the network segment turned out

the play a major rule to generate a scalable attack graph in realtime fashion.

Future work will include incorporating a module in the SDN controller to control

and insert a host-level firewall rules in the container machines directly. Also, building

an UI portal to allow the administrator to examin exact security polices deployed in

the system, insert rules directly into the host-based firewall, and most of all, keep

generating the attack graph continuously and enhance the visualization for easier

interpretation.

60

REFERENCES

“2018 internet security threat report”, URL https://www.symantec.com/
security-center/threat-report (2018).

Albanese, M., S. Jajodia and S. Noel, “Time-efficient and cost-effective network hard-
ening using attack graphs”, in “Dependable Systems and Networks (DSN), 2012
42nd Annual IEEE/IFIP International Conference on”, pp. 1–12 (IEEE, 2012).

Aliari Zonouz, S., Game-theoretic intrusion response and recovery, Ph.D. thesis, Uni-
versity of Illinois at Urbana-Champaign (2012).

Alkhulaiwi, R., A. Sabur, K. Aldughayem and O. Almanna, “Survey of secure anony-
mous peer to peer instant messaging protocols”, in “Privacy, Security and Trust
(PST), 2016 14th Annual Conference on”, pp. 294–300 (IEEE, 2016).

Ammann, P., D. Wijesekera and S. Kaushik, “Scalable, graph-based network vulner-
ability analysis”, in “Proceedings of the 9th ACM Conference on Computer and
Communications Security”, pp. 217–224 (ACM, 2002).

Bianchi, G., M. Bonola, A. Capone and C. Cascone, “Openstate: programming
platform-independent stateful openflow applications inside the switch”, ACM SIG-
COMM Computer Communication Review 44, 2, 44–51 (2014).

Bianco, A., R. Birke, L. Giraudo and M. Palacin, “Openflow switching: Data plane
performance”, in “Communications (ICC), 2010 IEEE International Conference
on”, pp. 1–5 (IEEE, 2010).

Bistarelli, S., F. Fioravanti and P. Peretti, “Defense trees for economic evaluation of
security investments”, in “Availability, Reliability and Security, 2006. ARES 2006.
The First International Conference on”, pp. 8–pp (IEEE, 2006).

Chandramouli, R. and R. Chandramouli, “Secure virtual network configuration for
virtual machine (vm) protection”, NIST Special Publication 800, 125B (2016).

Chowdhary, A., S. Pisharody and D. Huang, “Sdn based scalable mtd solution in
cloud network”, in “Proceedings of the 2016 ACM Workshop on Moving Target
Defense”, pp. 27–36 (ACM, 2016).

Chowdhary, A., S. Sengupta, A. Alshamrani, D. Huang and A. Sabur, “Adaptive mtd
security using markov game modeling”, arXiv preprint arXiv:1811.00651 (2018).

Chung, C.-J., P. Khatkar, T. Xing, J. Lee and D. Huang, “Nice: Network intrusion
detection and countermeasure selection in virtual network systems”, IEEE trans-
actions on dependable and secure computing 10, 4, 198–211 (2013).

Chung, C.-J., T. Xing, D. Huang, D. Medhi and K. Trivedi, “Serene: on establishing
secure and resilient networking services for an sdn-based multi-tenant datacenter
environment”, in “Dependable Systems and Networks Workshops (DSN-W), 2015
IEEE International Conference on”, pp. 4–11 (IEEE, 2015).

61

https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center/threat-report

Collings, J. and J. Liu, “An openflow-based prototype of sdn-oriented stateful hard-
ware firewalls”, in “Network Protocols (ICNP), 2014 IEEE 22nd International Con-
ference on”, pp. 525–528 (IEEE, 2014).

Cook, K., T. Shaw, P. Hawrylak and J. Hale, “Scalable attack graph generation”, in
“Proceedings of the 11th Annual Cyber and Information Security Research Con-
ference”, p. 21 (ACM, 2016).

Dargahi, T., A. Caponi, M. Ambrosin, G. Bianchi and M. Conti, “A survey on the
security of stateful sdn data planes”, IEEE Communications Surveys & Tutorials
19, 3, 1701–1725 (2017).

Dixit, V. H., S. Kyung, Z. Zhao, A. Doupé, Y. Shoshitaishvili and G.-J. Ahn, “Chal-
lenges and preparedness of sdn-based firewalls”, in “Proceedings of the 2018 ACM
International Workshop on Security in Software Defined Networks & Network Func-
tion Virtualization”, pp. 33–38 (ACM, 2018).

Edge, K. S., “A framework for analyzing and mitigating the vulnerabilities of com-
plex systems via attack and protection trees”, Tech. rep., AIR FORCE INST OF
TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING AND
MANAGEMENT (2007).

Ferrari, M., “Release: Vmware nsx 6.1”, (2014).

Floodlight, P., “Project floodlight open source software for building softwaredefined
networks”, (2012).

Greiner, R., R. Hayward, M. Jankowska and M. Molloy, “Finding optimal satisficing
strategies for and-or trees”, Artificial Intelligence 170, 1, 19–58 (2006).

Guo, C., G. Lv, S. Yang and J. H. Wang, “Virtual data center allocation with band-
width guarantees”, US Patent 8,667,171 (2014).

Hirel, C., B. Tuffin and K. S. Trivedi, “Spnp: Stochastic petri nets. version 6.0”,
in “International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation”, pp. 354–357 (Springer, 2000).

Hong, J. B. and D. S. Kim, “Performance analysis of scalable attack representation
models”, in “IFIP International Information Security Conference”, pp. 330–343
(Springer, 2013).

Hong, J. B., D. S. Kim, C.-J. Chung and D. Huang, “A survey on the usability and
practical applications of graphical security models”, Computer Science Review 26,
1–16 (2017).

Hong, J. B., D. S. Kim and T. Takaoka, “Scalable attack representation model using
logic reduction techniques”, in “Trust, Security and Privacy in Computing and
Communications (TrustCom), 2013 12th IEEE International Conference on”, pp.
404–411 (IEEE, 2013).

62

Hu, H., G.-J. Ahn, W. Han and Z. Zhao, “Towards a reliable sdn firewall.”, in “ONS”,
(2014a).

Hu, H., W. Han, G.-J. Ahn and Z. Zhao, “Flowguard: building robust firewalls for
software-defined networks”, in “Proceedings of the third workshop on Hot topics
in software defined networking”, pp. 97–102 (ACM, 2014b).

Ingols, K., R. Lippmann and K. Piwowarski, “Practical attack graph generation
for network defense”, in “Computer Security Applications Conference, 2006. AC-
SAC’06. 22nd Annual”, pp. 121–130 (IEEE, 2006).

Jajodia, S., S. Noel and B. OBerry, “Topological analysis of network attack vulnera-
bility”, in “Managing Cyber Threats”, pp. 247–266 (Springer, 2005).

Kaur, S., J. Singh and N. S. Ghumman, “Network programmability using pox con-
troller”, in “ICCCS International Conference on Communication, Computing &
Systems, IEEE”, vol. 138 (2014).

Kaynar, K. and F. Sivrikaya, “Distributed attack graph generation”, IEEE Transac-
tions on Dependable and Secure Computing 13, 5, 519–532 (2016).

Khondoker, R., A. Zaalouk, R. Marx and K. Bayarou, “Feature-based comparison
and selection of software defined networking (sdn) controllers”, in “Computer Ap-
plications and Information Systems (WCCAIS), 2014 World Congress on”, pp. 1–7
(IEEE, 2014).

Kreutz, D., F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky and
S. Uhlig, “Software-defined networking: A comprehensive survey”, Proceedings of
the IEEE 103, 1, 14–76 (2015).

Landis, J. A., T. V. Powderly, R. Subrahmanian and A. Puthiyaparambil, “Virtual
data center that allocates and manages system resources across multiple nodes”,
US Patent 7,725,559 (2010).

Lantz, B., B. Heller and N. McKeown, “A network in a laptop: rapid prototyping for
software-defined networks”, in “Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks”, p. 19 (ACM, 2010).

Lee, J., H. Lee and H. P. In, “Scalable attack graph for risk assessment”, in “Informa-
tion Networking, 2009. ICOIN 2009. International Conference on”, pp. 1–5 (IEEE,
2009).

McKeown, N., T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker and J. Turner, “Openflow: enabling innovation in campus networks”,
ACM SIGCOMM Computer Communication Review 38, 2, 69–74 (2008).

Mojidra, N., “Stateful vs. stateless firewalls”, URL https://www.cybrary.it/0p3n/
stateful-vs-stateless-firewalls/ (2016).

Morgan, S., “Cisco aci fabric simplifies and flattens data center network”, (2014).

63

https://www.cybrary.it/0p3n/stateful-vs-stateless-firewalls/
https://www.cybrary.it/0p3n/stateful-vs-stateless-firewalls/

Nife, F. and Z. Kotulski, “Multi-level stateful firewall mechanism for software defined
networks”, in “Computer Networks”, edited by P. Gaj, A. Kwiecień and M. Sawicki,
pp. 271–286 (Springer International Publishing, Cham, 2017).

Nunes, B. A. A., M. Mendonca, X.-N. Nguyen, K. Obraczka and T. Turletti, “A
survey of software-defined networking: Past, present, and future of programmable
networks”, IEEE Communications Surveys & Tutorials 16, 3, 1617–1634 (2014).

O’Gorman, G. and G. McDonald, Ransomware: A growing menace (Symantec Cor-
poration, 2012).

Ou, X., W. F. Boyer and M. A. McQueen, “A scalable approach to attack graph
generation”, in “Proceedings of the 13th ACM conference on Computer and com-
munications security”, pp. 336–345 (ACM, 2006).

Ou, X., S. Govindavajhala and A. W. Appel, “Mulval: A logic-based network security
analyzer.”, in “USENIX Security Symposium”, pp. 8–8 (Baltimore, MD, 2005).

Pena, J. G. V. and W. E. Yu, “Development of a distributed firewall using software
defined networking technology”, in “Information Science and Technology (ICIST),
2014 4th IEEE International Conference on”, pp. 449–452 (IEEE, 2014).

Peterson, J. L., “Petri net theory and the modeling of systems”, (1981).

Roesch, M. et al., “Snort: Lightweight intrusion detection for networks.”, in “Lisa”,
vol. 99, pp. 229–238 (1999).

Rosen, R., “Linux containers and the future cloud”, Linux J 240, 4, 86–95 (2014).

Roy, A., D. S. Kim and K. S. Trivedi, “Cyber security analysis using attack counter-
measure trees”, in “Proceedings of the Sixth Annual Workshop on Cyber Security
and Information Intelligence Research”, p. 28 (ACM, 2010).

Roy, A., D. S. Kim and K. S. Trivedi, “Scalable optimal countermeasure selection us-
ing implicit enumeration on attack countermeasure trees”, in “Dependable Systems
and Networks (DSN), 2012 42nd Annual IEEE/IFIP International Conference on”,
pp. 1–12 (IEEE, 2012).

Saini, V., Q. Duan and V. Paruchuri, “Threat modeling using attack trees”, Journal
of Computing Sciences in Colleges 23, 4, 124–131 (2008).

Satasiya, D., R. Raviya and H. Kumar, “Enhanced sdn security using firewall in
a distributed scenario”, in “Advanced Communication Control and Computing
Technologies (ICACCCT), 2016 International Conference on”, pp. 588–592 (IEEE,
2016).

Scott-Hayward, S., G. O’Callaghan and S. Sezer, “Sdn security: A survey”, in “Future
Networks and Services (SDN4FNS), 2013 IEEE SDN For”, pp. 1–7 (IEEE, 2013).

Sheyner, O., J. Haines, S. Jha, R. Lippmann and J. M. Wing, “Automated generation
and analysis of attack graphs”, in “null”, p. 273 (IEEE, 2002).

64

Sheyner, O. M., “Scenario graphs and attack graphs”, Tech. rep., CARNEGIE-
MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE
(2004).

Shin, S., V. Yegneswaran, P. Porras and G. Gu, “Avant-guard: Scalable and vigilant
switch flow management in software-defined networks”, in “Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security”, pp. 413–424
(ACM, 2013).

Swiler, L. P., C. Phillips, D. Ellis and S. Chakerian, “Computer-attack graph gener-
ation tool”, in “discex”, p. 1307 (IEEE, 2001).

Tarjan, R., “Depth-first search and linear graph algorithms”, SIAM journal on com-
puting 1, 2, 146–160 (1972).

Team, M., “Mininet: An instant virtual network on your laptop (or other pc)”, Google
Scholar (2012).

Vulnerabilities, C., “Exposures,the standard for information security vulnerability
names”, Common Vulnerabilities and Exposures: The Standard for Information
Security Vulnerability Names. url: http://cve. mitre. org (2007).

Wikipedia contributors, “Lxc — Wikipedia, the free encyclopedia”, URL https:
//en.wikipedia.org/w/index.php?title=LXC&oldid=859715065, [Online; ac-
cessed 9-October-2018] (2018).

Zerkane, S., D. Espes, P. Le Parc and F. Cuppens, “Software defined networking
reactive stateful firewall”, in “IFIP International Information Security and Privacy
Conference”, pp. 119–132 (Springer, 2016).

65

https://en.wikipedia.org/w/index.php?title=LXC&oldid=859715065
https://en.wikipedia.org/w/index.php?title=LXC&oldid=859715065

APPENDIX A

SOURCE CODE

66

For Stinger vulnerability scanner module, please visit:
http://gitlab.thothlab.org/ScienceDMZ/Stinger.git

For the rest of the code and implementation details, please visit my Github repos-
itory at:
https://github.com/hekmatbacha/MasterThesis

67

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Background and Motivation
	Contribution
	Organization of Thesis

	RELATED WORK
	Graphical Security Analysis
	SDN-Based Distributed Firewall

	SYSTEM DESIGN, MODELING, AND MANAGEMENT
	System and Architecture Components
	OpenState
	Distributed Firewall (DFW)
	System Design
	OpenState Tables Generation

	Stateful Distributed Firewall Implementation Details
	Operating System and Networking virtualization
	Network Configuration

	SCALABLE ATTACK GRAPH GENERATION
	Motivation
	Attack Graph Background
	Parallel Attack Graph Computing
	Results

	CONCLUSION AND FUTURE WORK
	REFERENCES
	SOURCE CODE

