

Deep Learning: Enhancing the Security of Software-Defined

Networks

Ahmed Dawoud

M.Sc. Software Development & M.Sc. Information and Communication Technologies

A thesis submitted for the degree of

Doctor of Philosophy

School of Computing, Engineering and Mathematics

Western Sydney University

June 2019

1

Abstract

Software-defined networking (SDN) is a communication paradigm that promotes

network flexibility and programmability by separating the control plane from the data

plane. SDN consolidates the logic of network devices into a single entity known as the

controller. SDN raises significant security challenges related to its architecture and

associated characteristics such as programmability and centralisation. Notably, security

flaws pose a risk to controller integrity, confidentiality and availability.

The SDN model introduces separation of the forwarding and control planes. It detaches

the control logic from switching and routing devices, forming a central plane or network

controller that facilitates communications between applications and devices. The

architecture enhances network resilience, simplifies management procedures and

supports network policy enforcement. However, it is vulnerable to new attack vectors

that can target the controller. Current security solutions rely on traditional measures

such as firewalls or intrusion detection systems (IDS). An IDS can use two different

approaches: signature-based or anomaly-based detection. The signature-based approach

is incapable of detecting zero-day attacks, while anomaly-based detection has high

false-positive and false-negative alarm rates. Inaccuracies related to false-positive

attacks may have significant consequences, specifically from threats that target the

controller. Thus, improving the accuracy of the IDS will enhance controller security

and, subsequently, SDN security.

A centralised network entity that controls the entire network is a primary target for

intruders. The controller is located at a central point between the applications and the

data plane and has two interfaces for plane communications, known as northbound and

southbound, respectively. Communications between the controller, the application and

data planes are prone to various types of attacks, such as eavesdropping and tampering.

The controller software is vulnerable to attacks such as buffer and stack overflow,

which enable remote code execution that can result in attackers taking control of the

entire network. Additionally, traditional network attacks are more destructive.

This thesis introduces a threat detection approach aimed at improving the accuracy and

efficiency of the IDS, which is essential for controller security. To evaluate the

2

effectiveness of the proposed framework, an empirical study of SDN controller security

was conducted to identify, formalise and quantify security concerns related to SDN

architecture. The study explored the threats related to SDN architecture, specifically

threats originating from the existence of the control plane.

The framework comprises two stages, involving the use of deep learning (DL)

algorithms and clustering algorithms, respectively. DL algorithms were used to reduce

the dimensionality of inputs, which were forwarded to clustering algorithms in the

second stage. Features were compressed to a single value, simplifying and improving

the performance of the clustering algorithm. Rather than using the output of the neural

network, the framework presented a unique technique for dimensionality reduction that

used a single value—reconstruction error—for the entire input record. The use of a DL

algorithm in the pre-training stage contributed to solving the problem of dimensionality

related to k-means clustering. Using unsupervised algorithms facilitated the discovery of

new attacks.

Further, this study compares generative energy-based models (restricted Boltzmann

machines) with non-probabilistic models (autoencoders). The study implements

TensorFlow in four scenarios. Simulation results were statistically analysed using a

confusion matrix, which was evaluated and compared with similar related works.

The proposed framework, which was adapted from existing similar approaches, resulted

in promising outcomes and may provide a robust prospect for deployment in modern

threat detection systems in SDN. The framework was implemented using TensorFlow

and was benchmarked to the KDD99 dataset. Simulation results showed that the use of

the DL algorithm to reduce dimensionality significantly improved detection accuracy

and reduced false-positive and false-negative alarm rates. Extensive simulation studies

on benchmark tasks demonstrated that the proposed framework consistently

outperforms all competing approaches. This improvement is a further step towards the

development of a reliable IDS to enhance the security of SDN controllers.

3

Declaration of Original Work

I certify that this thesis does not incorporate without acknowledgement any material

previously submitted for a degree or diploma in any university and that to the best of

my knowledge and belief it does not contain any material previously published or

written by another person, except where due reference is made in the text.

Signe _____/____/_____

28 11 2019

4

Acknowledgements

First and foremost I want to express my gratitude and appreciations to my supervisor

Dr. Seyed Shahrestani for his guidance, support, and motivation during my prolonged

PhD journey. I appreciate all his contributions of time, ideas and expertise to make this

work possible. I would like to express my special appreciation and thanks to Dr. Chun

Raun, for her patient listening and vital comments. Also, it is inevitable to express my

thanks to graduate research school administrative staff for their continuous and prompt

support.

During the long and intense years of my studies and research I lost people who shared

me the dreams, I would like to honour their memory in this work, to my father and my

uncle Ibrahim. A special thanks to my beloved wife Sara, and my sons Hamza and

Mohamed without them I would finish this work a year and half earlier.

5

Table of Contents

Abstract .. 1

Declaration of Original Work .. 3

Acknowledgements .. 4

Table of Contents .. 5

List of Figures .. 8

List of Tables ... 10

List of Abbreviations .. 11

Publications .. 13

Chapter 1: Introduction ... 15
1.1 Introduction ... 15
1.2 Motivation ... 17
1.3 Research Methodology .. 19
1.4 Research Questions and Scope .. 23

1.5 Contributions ... 23
1.6 Thesis Structure ... 25

Chapter 2: Software-Defined Networks .. 28
2.1 Introduction ... 28

2.2 Software-Defined Network Architecture .. 30
2.2.1 Software-Defined Network Controller ... 31

2.2.2 Controller Anatomy: OpenDaylight ... 33
2.2.3 OpenFlow Protocol .. 35

2.3 Software-Defined Network Applications .. 39

2.3.1 Network Traffic Engineering ... 39
2.3.2 Network Monitoring .. 40
2.3.3 Software-Defined Networks for Virtualisation .. 41

2.4 Software-Defined Networds in Various Networking Environments 43
2.4.1 Software-Defined Networks for the Internet of Things 43

2.4.2 Software-Defined Networks for Cloud and Data Centres.............................. 44

2.4.3 Software-Defined Networks for Wireless Networks and 5G 46

2.5 Software-Defined Network Challenges .. 47
2.5.1 Software-Define Network Model Architecture Drawbacks 48
2.5.2 Controller Challenges .. 48

2.5.3 Data Plane Challenges ... 49
2.5.4 Application Plane Challenges .. 49

2.6 Summary ... 50

Chapter 3: Software-Defined Network Security Analysis ... 52
3.1 Introduction ... 53
3.2 Software-Defined Networks for Security .. 54

3.2.1 Policy Enforcement .. 54

3.2.2 Security Policy Verification ... 56

3.2.3 Intrusion Detection ... 56
3.2.4 Threat Response ... 58

6

3.2.5 Security Tools .. 58
3.3 Security Limitations of Software-Defined Networks ... 61
3.4 Software-Defined Network Security Analysis .. 63

3.4.1 STRIDE .. 65

3.4.2 Attack Trees ... 68
3.4.2.1 Spoofing .. 69
3.4.2.2 Denial-of-service attacks .. 69
3.4.2.3 Escalation of privilege .. 70
3.4.2.4 Information disclosure .. 70

3.5 Simulation ... 71
3.5.1 Simulation Environment .. 71

3.5.1.1 Simulation execution ... 72

3.5.2 Discussion .. 73
3.5.2.1 Information disclosure attacks .. 73
3.5.2.2 Denial-of-service attacks .. 74
3.5.2.3 Spoofing .. 74

3.5.2.4 Tampering ... 75
3.6 Software-Defined Network Security vs. Traditional Networks 75
3.7 Summary ... 76

Chapter 4: Threat Detection Framework: A Deep Learning Approach 77
4.1 Introduction ... 77
4.2 Framework Components ... 81

4.3 Framework Workflow and Algorithms ... 83
4.4 Framework Design Principles ... 85

4.4.1 Dimensionality Reduction and Anomaly Detection 85
4.4.2 Decision Boundaries .. 87

4.4.3 Resolving Clustering and the Curse of Dimensionality 88
4.4.4 Network Traffic Features and Deep Learning ... 88
4.4.5 Number of Hidden Layers and Neurons .. 89

4.4.6 Application Considerations .. 90
4.5 The Framework Process .. 91
4.6 Framework for Software-Defined Networks .. 95

4.7 Framework Features .. 97
4.8 Summary ... 98

Chapter 5: Simulation Studies ... 100
5.1 Simulation Overview .. 100

5.1.1 Simulation Scenarios .. 101
5.2 Simulation Tools: TensorFlow and SciKit .. 102
5.3 Dataset ... 102
5.4 Scenario Implementation .. 107

5.4.1 Scenarios 1 and 2 ... 107

5.4.2 Training .. 110
5.4.3 Scenarios 3 and 4 ... 113

5.5 Conclusion .. 120

Chapter 6: Results, Analysis and Evaluation ... 121
6.1 Introduction ... 121

6.2 Results ... 122

6.3 Analysis ... 131
6.4 Design Principles in Action .. 136

7

6.5 Evaluation ... 139
6.6 Summary ... 144

Chapter 7: Conclusion .. 146

References .. 151

8

List of Figures

Figure 1.1. SDN architecture [4]. .. 16

Figure 1.2. OpenDaylight Defense4All application [19]. ... 19

Figure 1.3. Research methodology. .. 22

Figure 2.1. SDN architecture. ... 31

Figure 2.2. OpenDayLight controller architecture [19]. ... 34

Figure 2.3. OpenFlow switch architecture [49]. ... 36

Figure 2.4. OpenFlow entry field [49]. ... 36

Figure 2.5. OpenFlow flowchart [49]. .. 38

Figure 2.6. OpenDaylight OpenStack application support [19]. 45

Figure 3.1. Network policy enforcing middleware device locations. 55

Figure 3.2. Controller security threats... 63

Figure 3.3. Controller high-level dataflow diagram.. 65

Figure 3.4. Detailed dataflow diagram .. 66

Figure 3.5. Simulation environment.. 73

Figure 3.6. Network throughput before and after denial-of-service attack. 74

Figure 4.1. Proposed detection system architecture. ... 82

Figure 4.2. Detection system flowchart. ... 83

Figure 4.3. Applying deep learning as a pre-step for support vector machine

classification. .. 86

Figure 4.4. Generic autoencoder architecture. .. 87

Figure 4.5. Projecting inputs to a new higher dimension. ... 89

Figure 4.6. Deployment of intrusion detection systems in software-defined network

architecture. .. 96

Figure 4.7. Deployment of intrusion detection systems in traditional networks. 97

Figure 5.1. Simulation scenarios flowchart... 101

Figure 5.3. Restricted Boltzmann machine neuron activation. 114

Figure 5.4. Reconstruction phase. ... 115

Figure 6.1. Optimisation using stochastic gradient descent and Adam optimiser. 123

Figure 6.2. Reconstruction error distributions for autoencoder and restricted

Boltamann machine. ... 125

Figure 6.3. k-means graphical representation for clusters. ... 126

9

Figure 6.4. Graphical representation of mean shift clusters .. 127

Figure 6.5. k-means cluster distribution. ... 128

Figure 6.6. Confusion matrix graphical table. .. 133

Figure 6.7. Autoencoder and k-means (400 samples) ... 134

Figure 6.8. Autoencoder and k-means (800 samples) ... 134

Figure 6.9. Autoencoder and k-means (1300 samples) ... 134

Figure 6.10. Autoencoder and mean shift (400 samples).. 134

Figure 6.11. Autoencoder and mean shift (800 samples).. 134

Figure 6.12. Autoencoder and mean shift (1300 samples).. 134

Figure 6.13. Restricted Boltzmann machine and k-means (400 samples) 135

Figure 6.14. Restricted Boltzmann machine and k-means (800 samples) 135

Figure 6.15. Restricted Boltzmann machine and k-means (1300 samples) 135

Figure 6.16. Restricted Boltzmann machine and mean shift (400 samples) 135

Figure 6.17. Restricted Boltzmann machine and mean shift (800 samples) 135

Figure 6.18. Restricted Boltzmann machine and mean shift (1300 samples) 135

Figure 6.19 Reconstruction errors used for forming clusters. 136

Figure 6.20 Accuracy without increasing the number of neurons at the first layer 138

Figure 6.21. Reconstruction error distribution without increasing dimensionality in

the first layer. ... 138

Figure 6.22. Using the encoder from deep autoencoders with a classifier. 140

Figure 6.23. Autoencoders vs. non-symmetric deep autoencoders. 141

Figure 6.24. Using the encoder output for classification. ... 142

Figure 6.25. Proposed classification system based on sparse autoencoder. 143

10

List of Tables

Table 1.1. Anomaly-Based vs. Signature-Based Intrusion Detection Systems 18

Table 3.1. SDN Security Tools Survey ... 60

Table 3.2. STRIDE Graphical Components .. 64

Table 3.3. Controller Threats .. 68

Table 4.1. Deep Learning for Network Anomaly Detection ... 80

Table 4.2. Algorithm for Anomaly Detection ... 84

Table 5.1. KDD99 Input Features ... 103

Table 5.2. KDD99 Dataset Statistics... 104

Table 6.1. k-Means Cluster Contents .. 126

Table 6.2. Mean Shift Clusters .. 127

Table 6.3. Autoencoder Simulation Scenario Results Summary 129

Table 6.4. Restricted Boltzmann Machine Simulation Scenario Results Summary 130

Table 6.5. Confusion Matrix Statistics .. 131

Table 6.6. Confusion Matrix for Autoencoder and Restricted Boltzmann Machine +

k-Means .. 132

Table 6.7. Confusion Matrix for Autoencoder and Restricted Boltzmann Machine

+Mean Shift .. 133

Table 6.8. Related Work Performance .. 139

Table 6.9. Performance of NDAE vs. DBN and proposed system in this research. 142

11

List of Abbreviations

ARP Address Resolution Protocol

CD Contrastive divergence

DAE Deep autoencoder

DBN Deep belief network

DDoS Distributed denial-of-service

DFD Dataflow diagram

DL Deep learning

DNS Domain name system

DoS Denial-of-service

FDR False-discovery rate

FNR False-negative rate

FPR False-positive rate

FN False negative

FP False positive

IDPS Intrusion detection and prevention systems

IDS Intrusion detection systems

IETF Internet engineering task force

IoT Internet of Things

IP Internet Protocol

KPCA Kernel principal component analysis

NDAE Non-symmetric deep autoencoder

NetConf Network Configuration

NOS Network operating system

NPV Negative predictive value

OVSDB Open vSwitch database

PCA Principal components analysis

PPV Positive predictive value

RBM Restricted Boltzmann machine

REST Representation state transfer

SAL Service abstraction layer

SANE Secure Architecture for Networked Enterprise

12

SDN Software-defined networking

SGD Stochastic gradient descent

SNMP Simple network management protocol

STRIDE Spoofing, tampering, repudiation, information disclosure, denial of

service, privilege escalation

SVM Support vector machine

TCP Transmission Control Protocol

TN True negative

TP True positive

USDL Unsupervised deep learning algorithms

13

Publications

The results and outcomes of part of the research works contained in this thesis have

been published in the following papers.

A. Dawoud, S. Shahristani and C. Raun, ‘Unsupervised deep learning for software

defined networks anomalies detection’, in Transactions on Computational Collective

Intelligence XXXIII. Lecture Notes in Computer Science, N. T. Nguyen, R. Kowalczyk

and F. Xhafa, Eds., Berlin, Heidelberg, Germany: Springer, 2019, pp.

A. Dawoud, S. Shahristani and C. Raun, ‘Deep learning and software-defined networks:

Towards secure IoT architecture’, IoT, vol. 3–4, no. 201810, pp. 82–89, Sep. 2018, doi:

10.1016/j.iot.2018.09.003.

A. Dawoud, S. Shahristani and C. Raun, ‘Dimensionality reduction for network

anomalies detection: A deep learning approach’, in Web, Artif. Intell. Netw. Appl.,

WAINA-2019, L. Barolli, M. Takizawa, F. Xhafa and T. Enokido, Eds. 2018, pp. 957–

965.

A. Dawoud, S. Shahristani and C. Raun, ‘Deep learning for network anomalies detection’,

in 2018 Int. Conf. Mach. Learn. Data Eng., Sydney, Australia, 3–7 Dec. 2018, pp. 149–

153.

A. Dawoud, S. Shahristani and C. Raun, ‘A deep learning framework to enhance software

defined networks security’, in 32nd Int. Conf. Adv. Inf. Netw. Appl. Workshops (WAINA),

Krakow, Poland, 16–18 May 2018, pp. 709–714.

A. Dawoud, S. Shahristani and C. Raun, ‘Software-defined network’s controller security:

Empirical study’, in Int. Conf. Inf Tech Appl (ICITA), Sydney, Australia, 1–4 Jul. 2017.

[Online]. Available: http://www.icita.org/2017/abstracts/au-dawoud.htm. Accessed: 24

Jun. 2019.

14

A. Dawoud, S. Shahristani and C. Raun, ‘Software-defined network security: Breaks and

obstacles’, in Networks of the Future: Architecture, Technologies, and Implementations,

M. Elkhodr, Q. F. Hassan and S. Shahristani, Eds., Boca Raton, FL: CRC Press, 2018, pp.

15

Chapter 1: Introduction

1.1 Introduction

Networking is the enabling technology for an enormous number of communication

applications, including the internet, the Internet of Things (IoT) and cloud computing.

The growth of applications has necessitated expansion of data communication

infrastructure. Therefore, additional flexibility in management and interoperability is

required. However, traditional networks are based on a rigid architecture that does not

fully satisfy the requirements of emerging technologies [1]-[3]. Software-defined

networking (SDN) is a novel networking model that provides the features required for

supporting emerging networking technologies [1], [4]. Figure 1.1 depicts the

architecture of SDN. The SDN model proposes the separation of the forwarding and

control planes by aggregating and abstracting a device’s logic into a new central entity

called the network controller [4], [5].

The controller concept is analogous to operating systems, which are responsible for

interactions between applications and devices. The existence of controller entity boosts

programmability, enabling developers to code applications for many purposes,

including network management, load balancing and network monitoring. The

architecture enhances network resilience, simplifies management procedures and

supports network policy enforcement [1], [6]. Additionally, the new features of SDN

enhance security by facilitating several security measures such as threat detection and

prevention [7].

However, SDN architecture design suffers from significant security flaws [1], [8].

Paradoxically, the characteristics of SDN that make it a promising substitute for

conventional networks also present security sever challenges. A centralised network

entity that has control over the entire network is a valuable target for network intruders.

The controller is located at a central point between applications and the data planes,

with both northbound and southbound communications being vulnerable to various

types of attacks [8]. The controller software is prone to vulnerabilities such as buffer

and stack overflow. Hence, providing security measures to protect the controller itself is

crucial to fully unleash the capabilities of the new model.

16

Figure 1.1. SDN architecture [4].

For decades, conventional networks have employed firewalls and intrusion detection

systems (IDS) as the standard security solutions to deter and mitigate various network

threats. However, innovative solutions are required for the unprecedented security

threats emerging from recent advances in internetworking, such as the IoT, SDN and

grid computing.

IDSs adopt either signature-based or anomaly-based detection approaches to identify

threats [9]. Signature-based detection is limited in its ability to recognise attacks that do

not exist in the IDS threats profile. However, anomaly-based detection is more

problematic than signature-based detection because of its precision deficiencies [10].

Anomaly-based detection techniques are classified into two categories: statistical and

machine learning [11], [12]. The latter uses algorithms such as support vector machines

(SVMs) neural networks and principal components analysis (PCA), all of which fail to

provide high detection accuracy [11], [13]. Recent achievements in machine learning,

advances explicitly in training deep learning (DL) neural networks are promising [14],

[15]; however, few studies have investigated the applicability of DL for detecting

network anomalies.

17

DL neural network architecture is multi-layered, with hidden layers between the input

and output layers. The first layer represents network input (data features) and the final

layer represents network output. Even though DL neural networks have long existed

[16], they have been unable to train the network for various reasons, including the

vanishing gradient descent in backpropagation, unsatisfactory generalisation and the

need for intensive computation power.

In 2006, a pre-training step using restricted Boltzmann machines (RBM) [14] advanced

DL, leading to the development of innovative algorithms such as linear rectifier units

rather than sigmoid functions and dropout to solve generalisation problems [15]. These

algorithms can be divided into two categories: supervised and unsupervised machine

learning.

1.2 Motivations

Controller security is crucial for the security of the entire SDN architecture [7], [8].

Several security solutions have been proposed for securing the controller, including

standard security measures such as firewalls and IDS. However, controller security

remains a significant concern, curbing the potential of SDN capabilities [1], [7], [8],

[17], [18].

IDSs have been deployed in traditional networks to enhance network security for

decades [9], [11]. Both IDS approaches—signature-based and anomaly-based

detection—have limitations [11]. While signature-based detection is unable to detect

zero-day attacks, anomaly detection can theoretically detect unprecedented threats.

However, it suffers from low detection accuracy. The limitations of anomaly detection

have significant consequences for the deployment of SDN. For instance, in the

traditional network, damage resulting from an attack affects only a set of network nodes

with limited consequences, while in an SDN network, a compromised controller may

lead to the collapse of the entire network. Traditional network-distributed architecture

can tolerate a margin of IDS inaccuracy (e.g. a false negative). However, the cost of a

false-negative alarm in SDN may be catastrophic to the network, particularly from

attacks targeting the controller. Hence, improvements to current IDS approaches are

essential to boost SDN controller security.

18

Table 1.1 provides a comparison of the two conventional detection methods, with each

method having its advantages and disadvantages. A significant drawback of the

signature-based method is its inability to detect new attacks because of its reliance on a

database of known threats. In contrast, anomaly-based detection has a higher false-

positive alarm rate because of accuracy limitations in the underlying detection

algorithms, leading to the possible detection of threats in the absence of malicious

activity.

Table 1.1. Anomaly-Based vs. Signature-Based Intrusion Detection Systems

 Anomaly-based Signature-based

Performance Medium High

Protection against zero-day attacks High Low

False-positive alarms High Low

False negatives High Medium

Configuration Low High

Anomaly-based detection systems utilise various techniques, such as statistical and

machine learning. Recent advances in machine learning have led to the need to evaluate

new machine learning algorithms in network anomaly-based detection.

Several intrusion detection applications have been developed to detect malicious

activities in SDN networks. For example, the OpenDaylight (ODL) controller uses the

Defense4All application to detect and mitigate distributed denial-of-service (DDoS)

attacks [19], [20]. Figure 1.2 depicts the deployment of Defense4All application at the

ODL. However, the application does not protect the controller itself; rather, it deploys a

set of rules to protect the network at its edges. In the event of malicious activity, the

Defense4All application requests network information from the controller and acts via

its attack mitigation module. Security limitations of this application include the

following:

 The application must first communicate with the controller to gather statistics

and raw data used by the IDS to decide whether an activity is malicious.

Consequently, the controller is exposed to the threat prior to the decision being

made.

19

 The controller’s location in the architecture makes it vulnerable to new types of

attacks that require novel mechanisms, such as those that ensure the security of

communications between the controller and the IDS.

 Controller software may be prone to traditional software vulnerabilities, which

require advanced detection techniques such as deep packet inspection.

Figure 1.2. OpenDaylight Defense4All application [19].

1.3 Research Methodology

The research goal is to improve the efficiency of IDS capabilities for threat detection to

enhance the security of the SDN controller and reduce concerns related to security

threats to SDN architecture. The research was divided into three phases: security threat

analysis, IDS design and implementation and performance analysis and evaluation.

Figure 1.3 illustrates the research stages. In the first phase—SDN security analysis—the

new networking architecture is introduced. The controller is a significant point of

attraction for new threats. Identifying the threat list is a starting point for proposing

appropriate security solutions. In [8], a threat vector for SDN is defined and seven

threats are listed, with three being exclusive to the SDN model. Notably, SDN-specific

threats originate from the controller:

 Attacks on control plane communications

 Attacks on controller vulnerabilities

20

 Attacks on the controller originating from the application layer.

The first stage of the study involved the analysis of mentioned threats. There are two

main approaches to security analysis: system-oriented and attack-oriented. For research

comprehensiveness and consistency, a method from each approach was selected.

STRIDE is a system-oriented threat modelling method [21] that models dataflow

diagrams (DFDs) of the system under analysis. The main elements of the model are data

flow, data stores, processors, interactors and trust boundaries. DFD components were

examined against the set of attacks specified by STRIDE: spoofing, tampering,

repudiation, information gathering, denial of service and elevation of privilege.

Attack trees are a formal, attack-oriented approach to defining possible attacks against

the system [22]. The attack tree starts with a root node denoting the attack goal, and

various tree leaves specify the means of reaching the node. Logical AND/OR operators

are used to aggregating the leaves. The attack tree analysis is supported by tools such as

Security and Isograph. The goal of the second stage was to simulate attacks as proof of

concept to provide a deeper understanding of threats.

Additionally, the analysis phase provided a simulation of various attacks derived from

the previous analysis phase. The simulation was conducted using an SDN simulator

integrated with a real controller (ODL). The main goal of this stage was to provide a

more profound proof of concept of various threats and their impacts on network assets.

In the solution domain, IDSs are used as security solutions in traditional networks;

however, their limitations need to be addressed in SDN deployment. In the second

phase, the detection system was designed and implemented. The new architecture and

challenges brought by SDN have increased the need to investigate various architectures

of IDSs in the SDN controller. The goal of this phase was to propose a framework that

delivers highly accurate detection functionalities to protect the controller. This phase

was divided into three stages. The first stage provided the theoretical design principals

for the framework, main components and decision boundaries. Six design principles

based on the formalised definition of the problem were identified. In the second stage,

an implementation based on the design principles was constructed as a proof of concept.

The final stage in this phase involved the training and execution of the models. The

final phase was a simulation and evaluation of the proposed framework with a focus on

21

performance metrics. During the simulations, the dataset was normalised and fed to the

system before results were collected, recorded and analysed. For the analysis, confusion

matrices, a common technique for classification and clustering analyses, were used to

compare results with related works. In the final step, similar works were evaluated, and

their contributions were highlighted.

22

Research Methodology

Fr
am

ew
or

k
Im

pl
em

en
ta

tio
n

&
 S

ce
na

ri
os

Fr
am

ew
or

k
D

es
ig

n
Te

st
in

g
Ev

al
ua

tio
n

an
d

A
na

ly
si

s

Define deign Goals and Principals for

Define Components

Decision Boundries

Implemenation

Define Testing Scenarios For AE and RBM

Training & Testing

DataSet

AE/RBM

Evaluation Results

SDN Security Analysis

STRIDE Attack Trees Simulation

Figure 1.3. Research methodology.

23

1.4 Research Questions and Scope

This research is aimed at enhancing SDN controller security. The research objectives

gave rise to the following questions:

The primary research question is: How may an efficient threat detection framework be

designed that will improve the detection accuracy of IDS and, hence, the security of

SDN?

The following sub-questions were derived from the primary research question:

 What are the main security threats to the controller? How are these threats

different from those in traditional networking models?

 How is it possible to improve the performance of IDS to provide reliable

security measures to the SDN controller?

 How can recent advances in machine learning help improve the detection

accuracy of IDSs?

 How can unsupervised DL be used in network anomaly detection?

 How can dimensionality reduction be achieved using unsupervised DL?

 What is the best deployment of the proposed framework in SDN architecture?

1.5 Contributions

This thesis enhances the security of the SDN model by improving the efficiency of

current security solutions. This thesis proposes a novel detection framework based on

unsupervised DL algorithms for threat detection.

The study explored the potential of DL for revealing network threats by utilising

unsupervised DL algorithms. The research examined the ability of DL to detect

anomalies through evaluation of generative energy-based models (RBMs) and non-

probabilistic algorithms (autoencoders). Following this, an in-depth analysis of DL

algorithms was conducted, with results showing promising detection accuracy.

This thesis provides an empirical analysis of SDN controller security to identify,

formalise and quantify security concerns related to the new model. The study explored

threats related to SDN architecture, specifically those originating from the controller

24

plane. The study analysed controller security over three stages. The first stage defined

potential threats based on a review of the literature. The second stage demonstrated and

modelled threats using a STRIDE analysis. Additionally, an in-depth attacks-oriented

analysis was developed using several attack trees. The third stage introduced an

experiment to reveal threats and consequences. The study provides a comprehensive

understanding of the problem by specifying the security flaws of SDN.

The framework consisted of two phases: a DL algorithm and a clustering algorithm

using either k-means or mean shift clustering. The DL algorithm represented the pre-

training phase, which simplified the input to the clustering algorithm. The framework

employed dimensionality reduction of the input data, compressing the dimensions of the

input data to a single value to simplify and improve the performance of the clustering

algorithm in the second phase.

The study improved the performance of the k-means algorithm. The k-means relies on

calculating the distance between different samples—an increase in the number of

samples results in a dramatic decrease in distance between them. Hence, the use of the

DL algorithm in the pre-training phase reduced the problem of dimensionality related to

k-means. The framework solved this problem by reducing the number of inputs based

on critical procedures in the autoencoder and RBM, generating more straightforward

inputs to the k-means.

The framework was based on two unsupervised algorithms, which have the ability to

find patterns in data with no previous labelling, enabling the detection of zero-day

attacks. The framework presents a unique method of dimensionality reduction. Instead

of using the output of the neural network from either the RBM or the autoencoder, the

framework used a single value—the difference between the input and the output—for

the entire input record.

The proposed framework design was implemented using Tensorflow [23]. Accordingly,

a simulation of several scenarios was conducted using the KDD99 network dataset [24].

Following various executions over several testing cycles, the data were collected and

statistically analysed. A systematic analysis was conducted using confusion matrices to

evaluate results against other related works. The simulation showed a significant

25

accuracy of ≈99% from the integration of the autoencoder with the k-means clustering

algorithm.

1.6 Thesis Structure

This thesis is organised as follows: Chapter 2 presents the background, applications,

networking environments, solutions and challenges of SDN. The first section introduces

the limitations of the current networking model and the motivation for a novel model to

handle such limitations. Section 2 introduces the model architecture, the three planes of

the model and, given that this thesis focuses on security flaws related to the controller, a

broader discussion of the control plane. This section provides a comprehensive

anatomical view of one of the most renowned SDN controllers, ODL, which was also

used in the security attack simulation. Additionally, this section discusses the OpenFlow

protocol, which is the dominant southbound protocol in SDN architecture. Section 3

explores three applications of SDN, including traffic engineering, network virtualisation

and network monitoring and measurements. It discusses the current challenges of each

of these applications and how characteristics of SDN such as centralisation and global

view are expected to overcome the limitations of traditional networks in such

applications. Additionally, this section presents several software solutions for each

category. Section 4 introduces new emerging networking environments in which SDN

integration enhances communications and solves problems such as management

complexity and network abstraction. This section discusses the integration of SDN in

IoT, cloud computing, data centres and wireless networks, including cellular and fifth

generation (5G) networks. For each technology, we discuss the challenges and

contributions of SDN. Additionally, we provide examples of SDN platforms and

application solutions for each area. Section 5 presents the current challenges and

limitations of SDN, which are categorised into four classes: architecture design,

application plane, control plane and data plane.

Chapter 3 presents an in-depth analysis and simulation of SDN security threats, a

significant flaw in SDN architecture. The chapter outlines SDN security issues,

including structural security flaws and how the SDN model may be used to enhance

security. The first section presents several security applications for SDN, including

policy enforcement and verification, threat detection and response. Additionally, it

provides a survey of SDN security tools. The next section discusses the security flaws

26

of the SDN model, specifically controller threats. Section 4 presents an analysis of SDN

security using two approaches—STRIDE and attack trees—to identify security threats

and show how they may be executed. Section 5 describes the experimental study

conducted to demonstrate attacks against the SDN controller.

Chapter 4 presents the solution domain. The thesis focuses on enhancing the security of

SDN through intrusion detection. This chapter introduces the solution methodology,

which is machine learning. The first section discusses network intrusion detection

techniques and compares different approaches such as signature-based and anomaly-

based detection. The second section explores anomaly-based detection methods,

including statistical and machine learning. Section 3 introduces the DL algorithms,

focusing on unsupervised DL algorithms, autoencoders and RBMs. Section 4 discusses

the opportunities for using DL for anomaly detection.

Chapter 5 presents the proposed detection framework. The first section introduces the

components of the framework, which consists of two phases. The first phase uses an

unsupervised DL algorithm, and the second phase uses a simple clustering algorithm.

Section 2 depicts the framework workflow and the framework algorithm in pseudocode.

Additionally, a detailed description of the different steps is included. Section 3 outlines

the five design principles of the framework, which include dimensionality reduction,

decision boundaries, clustering and curse of dimensionality, network traffic features, the

number of hidden layers and neurons and the assumptions required for framework

applicability. Section 4 describes the framework in action—the theoretical background

for the algorithms. Section 5 describes the integration of the framework in an SDN

model. Section 6 discusses the advantages of the framework.

Chapter 6 provides the implementation, simulation and evaluation of the proposed

framework. The first section is an overview of the simulation. The second section

proposes four different scenarios for the simulation based on different algorithms in the

first and second phases of the framework. The third section presents an analysis and

rationale for the dataset, and the different software libraries and tools used in the

simulation. The fourth section presents the implementations of the framework,

including the implementation of two unsupervised DL algorithms—an autoencoder and

an RBM—and two clustering algorithms—k-means and mean shift. Following

implementation, the section also demonstrates how the system was executed, including

27

training and testing. The fifth section shows the results of several executions on the

dataset. Additionally, this section provides an in-depth analysis of the results using

confusion matrices. Section 6 presents an evaluation of the framework results compared

with other similar proposed frameworks.

Chapter 7 concludes the thesis, briefly describing the problem of the SDN controller

security flaws, the research contribution, which mainly focuses on frameworks for

anomaly-based detection in SDN networks, and a proof of concept implementation for

the framework towards solving the problem. It highlights the thesis contributions, lists

research limitations and suggests directions for future work.

28

Chapter 2: Software-Defined Networks

SDN has introduced a revolutionary communications model through the decoupling of

the control and forwarding planes and the relocation of the network logic to a new layer

known as the network controller. Features of this model include centralisation and

network programmability, which pave the way for various networking solutions and

innovations. As an emerging technology, SDN provides several opportunities and

challenges. This chapter discusses the novel networking model of SDN, including its

major technological drivers, motivations, components and challenges.

The primary purpose of this chapter is to present a comprehensive review of SDN,

including its design, models and characteristics, its role as enabling technology in

several environments and its applications and limitations.

The chapter explores SDN architecture and discusses the three planes of the SDN

model: the application, controller and physical planes. It mainly focuses on the

responsibilities and essential services offered by the controller, a new plane introduced

by SDN, and discusses several issues related to it, including scalability, availability and

interoperability. Given that the controller is critical for SDN security, the chapter

provides a more in-depth anatomical view of its components and its various roles, using

ODL as the model, and discusses the applications of SDN in areas such as traffic

engineering, network monitoring and virtualisation. For each application domain, the

chapter provides an in-depth discussion of the enabling features of SDN that help to

solve current problems with conventional networks.

Additionally, SDN deployment in various networking environments is introduced and

SDN challenges for each plane are highlighted. SDN security challenges are discussed

in the following chapter.

2.1 Introduction

The traditional data communication model is composed of three planes: management,

control and data planes. The management plane provides services to monitor and

configure the network, while the control plane generates the data required to establish

forwarding tables on physical devices. Subsequently, the forwarding plane directs

29

packets to ingress and egress ports based on the tables. In the traditional network model,

both the control and forwarding planes are tightly coupled to the same device (e.g. a

switch or a router). This model is efficient from a performance perspective. However, as

the complexity of networks has increased, the need to adopt a new architecture has

emerged [1].

Network management comprises various activities, including management of faults,

configuration, performance, security, inventory and accounting. Each network includes

several interoperating devices, each having its own configuration firmware, from

different vendors. To perform management activities or to add or remove devices in the

network, the network administrator must obtain different software packages or make

changes to various devices, which increases the complexity of management [1], [3],

[25], [26]. For complex networking environments such as data centres, management

activities become even more complicated. A single misconfiguration can lead to

unexpected policy violations [2].

Additionally, given the rigid structure of the network, scaling the network vertically (by

increasing the capacity of current resources) or horizontally (by adding new resources)

is a complicated procedure. This may be addressed using the process of abstraction. For

example, if firmware installed on different devices is abstracted to a single software,

this will facilitate integration and configuration of network devices. Hence, the concept

of separating the logic from the hardware is key to tackling the rigid and static structure

of traditional networks. The evolution of SDN is similar to that of distributed and

personal computing.

The SDN model consists of three planes known as the forwarding, control and

application planes. SDN architecture separates the control plane from the forwarding

plane introducing an independent plane known as the controller or the network

operating system (NOS) The forwarding plane comprises devices such as switches,

routers and middleboxes, which switch data flow but do not have the logic required to

populate the forwarding tables [5],[27], [28]. The network intelligence resides in the

controller, which abstracts devices and provides services such as network state and

topology information. Additionally, the controller provides a northbound application

program interface (API) to communicate with applications and a southbound API to

30

communicate with forwarding devices. OpenFlow is the dominant southbound interface

used in SDN [29].

The application plane lies on the top of the SDN model stack. Programmability is a

fundamental concept of the SDN paradigm in which applications communicate with

physical devices. Programmability provides opportunities for innovation for an

enormous number of network applications, including monitoring, traffic engineering,

security and cloud applications [30], [31]. Centralisation is a distinctive feature of the

SDN architecture, providing a global view of the entire network and facilitating

management and monitoring processes. Additionally, it reduces errors in configuration

and deployment of network policies. Centralisation also improves flexibility—for

instance, a pool of devices from various vendors may be deployed and abstracted in the

same network [32].

2.2 Software-Defined Network Architecture

Conventional networks are divided into three planes, namely the management, control

and forwarding layers. The management plane provides services to monitor and

configure the network. The control plane generates the data required to establish

forwarding tables, which, in turn, are used by the forwarding plane to direct packets to

ingress and egress ports. In traditional network models, both the control and forward

planes are tightly coupled within a single device (e.g. switch or router). This model is

efficient from a performance perspective. However, as the complexity of networks has

increased, the need to develop a new architecture has emerged.

Figure 2.1 shows the three layers of SDN. The essence of SDN architecture is the

separation of the control and forwarding planes. The separation draws the device’s logic

(software), leaving the network devices as forwarding devices only. These devices do

not have the capability to decide on forwarding requirements.

The network control plane is an independent entity known as the network controller or

NOS. The forwarding layer, on the other hand, comprises of network devices such as

switches, routers and middleboxes, which do not have their own logic. Network

intelligence resides in the controller or NOS, which abstracts the devices and provides

services such as network state and topology information services. Additionally, the

controller provides a northbound API to communicate with the application layer and a

31

southbound API to communicate with the forwarding layer devices. OpenFlow is the

dominant southbound protocol in the SDN model [1], [3].

The application layer, which lies at the top of the SDN stack, introduces network

programmability—the ability to communicate with the network’s underlying devices—

which is a fundamental concept in SDN. Programmability provides opportunities for

network innovation for an enormous number of network applications, including network

monitoring, traffic engineering, security and cloud applications.

Centralised control enables a global view of the network, which facilitates management

and monitoring processes. Additionally, it reduces errors in configuration and

deployment of network policies and improves flexibility—for instance; a pool of

devices from various vendors may be deployed and abstracted within the same network.

Figure 2.1. SDN architecture.

2.2.1 Software-Defined Network Controller

The controller, or the NOS, abstract devices and provides the resources required to

program low-level forwarding devices. The controller provides services such as network

state and topology information. Additionally, the controller provides a northbound API,

which facilitates communication with applications, and a southbound API, which

provides accessibility to forwarding devices. OpenFlow is the de facto SDN southbound

protocol [4], [27]. The application plane resides at the top of the SDN model stack.

Applications
Layer

Control Layer

Forwarding
Layer

32

Network programmability is a privilege primarily achieved by the SDN model in which

applications in the top plane can access physical devices through the controller.

Programmability facilitates and accelerates innovation of an enormous number of

network applications, including monitoring, traffic engineering, security and cloud

applications. Centralisation is an essential characteristic of the SDN architecture. The

central entity is the controller, which provides a global view of the entire network and

facilitates management and policy enforcement. Additionally, it decreases faults in

configuration and deployment of network policies. Centralisation enhances network

resilience and interoperability—for example, multiple devices from various industries

may be integrated and abstracted in one network.

The SDN controller consists of the following elements:

 Basic network services: These are the core functions of SDN controllers and

include topology, device events, status managers, shortest path forwarding and

underlying security mechanisms.

 Service abstraction layer (SAL): Orchestrates the southbound API (e.g. plug-in

management).

 Southbound API: Typically, the southbound API refers to the OpenFlow

protocol. However, SDN supports the integration of various protocols, such as

Forwarding and Control Element Separation and Open vSwitch Database

Management Protocol, in the southbound API.

 East/westbound API: Connects controllers within the distributed architecture.

 Northbound API: Facilitates communication between applications and lower

devices via the controller.

Traditional network hardware has been managed by proprietary software such as the

Cisco Internetworking Operating System. The core component of the control plane is

the NOS, which provides the basic functionality for applications to access and manage

devices in the physical plane. Similar to other generic operating systems (e.g. Windows

and Linux), the NOS provides mechanisms to manage and abstract hardware resources.

Based on its architecture, the NOS can be classified into two categories—centralised or

distributed. In a centralised architecture, the NOS is installed on a single computing

device. While this is efficient from a performance perspective, it has limitations in

33

scalability and availability (a single point of failure) [1], [33]. Trema [34], Ryu [35],

Floodlight [36], Meridian [37] and Beacon [38] are all classified as centralised NOSs,

with support for multithreading and concurrency to achieve high throughputs.

In a distributed deployment, the NOS is installed onto several nodes to support

scalability and high availability requirements for large data centres or large networks.

These nodes can be in a single cluster or distributed over several clusters that are

physically separated. Clusters or nodes are designed on the basis of peer-to-peer or

hierarchal architectures [1]. Distributed architecture improves fault tolerance and high

availability—for example, if there is a failure or security breach in a portion of the

NOS, network administrators have more options for recovery (e.g. isolation). Several

controllers, including Onix [39] and ONOS [40], adopt distributed architecture.

However, a distributed architecture is also related to issues such as consistency and

latency. Given that the controller is distributed over several nodes, each node must

retain the latest data view (e.g. network topology or switch status). Additionally, nodes

or clusters must communicate across the network, causing latency [7].

2.2.2 Controller Anatomy: OpenDaylight

ODL is a modular open-source controller project under the Linux Foundation. It has

wide support from the industry, including Cisco, IBM, Microsoft and Huawei, and more

than 1,000 developers. Figure 2 shows ODL’s Lithium version controller components.

The controller layer provides basic network services such as network topology, network

status and switch manager.

Representational state transfer (REST) API represents a northbound API to facilitate

communication between the controller and the uppermost layers. REST API uses non-

persistent connections. Southbound APIs include OpenFlow and protocol plug-ins that

interface with devices. The controller implements core services, including topology,

statistics and switch management, host tracking and Address Resolution Protocol (ARP)

handling. Further, the controller provides services for standard protocols. The SAL

allows the controller to support various protocols such as OpenFlow, Simple Network

Management Protocol and Border Gateway Protocol in the southbound API.

3
4

Figure 2.2. OpenDayLight controller architecture [19].

Base Network Service Functions

Management
GUI/CLI

Controller Platform

Southbound Interfaces
& Protocol Plugins

OpenDaylight APIs (REST)

Data Plane Elements
(Virtual Switches,

Physical Device Interfaces)

Service Abstraction Layer (SAL)

OpenFlow
 1.0 1.3

LISP

Topology
Mgr

Stats
Mgr

Switch
Mgr

VTN
Coordinator

Network Applications
Orchestration & Services

OpenStack
Neutron

OpenFlow Enabled Devices

NETCONF BGP

Additional Virtual & Physical
Devices

SNMP

D4A Protection

Open vSwitches

OVSDB PCEP

FRM ARP
Handle

r

Host
Tracker

Affinity
Service

VTN
Manager

LISP
Service

OpenStack Service

OVSDB
Neutron

35

ODL provides a plug-in to support the Open vSwitch Database Management Protocol

[41], which is a configuration management protocol designated to the SDN virtual

switch (vSwitch) [42]. Additionally, ODL provides a network configuration

(NETCONF) plug-in to support configuration installation and deletion on devices in the

forwarding plane [43]. ODL supports standard routing and network management

protocols such as the Border Gateway Protocol (BGP) [44] and the Simple Network

Management Protocol (SNMP) [45] and provides a plug-in for the Path Computation

Element Protocol [46] and the Locator ID Separation Protocol [47]. For virtualisation

support, ODL offers Virtual Tenant Manager at both the control and application planes.

2.2.3 OpenFlow Protocol

OpenFlow is the de facto southbound interface protocol for SDN. It facilitates

communications between the controller and forwarding devices at the lower plane.

OpenFlow evolved from the Stanford projects Secure Architecture for Networked

Enterprise (SANE) and Ethane [48]. SANE was developed as a single layer responsible

for governing connectivity and access control as a centralised entity to provide network

security.

OpenFlow inherits the concept of forwarding tables from traditional network protocols

such as Ethernet. However, its flow-based approach means that sequences of packets

belonging to the same flow are subject to the same rules and decisions. These rules are

installed in the forwarding tables, which are handled by controllers installed on devices.

OpenFlow allows bidirectional communications between devices and the controller,

meaning that devices can notify or refer to the controller for specific decisions [49].

Figure 2.3 shows the main components of an OpenFlow switch. The controller

communicates with the switch via the control channel to manage one or more flow

tables [49].

36

Figure 2.3. OpenFlow switch architecture [49].

Each switch in the SDN network is configured by the Internet Protocol (IP) address and

a port number to communicate with the controller. Communications are secured over

transport layer security channels. The first message sent by the controller is a feature

request, which collects the device’s configuration, such as its physical address and

available ports.

Each table contains several records known as flow entries, which are accessed by the

controller. Figure 2.4 depicts the flow entry fields. The entry is used to match against

the incoming packet headers to execute an action on the packets.

Figure 2.4. OpenFlow entry field [49].

Flow entry fields contain the following elements:

 Match fields: used to match against packets and include the ingress port,

Ethernet source address, destination address and type, virtual local area network

and priority, IP source address, a destination address, protocol and quality of

service and Internet Control Message Protocol type and code

 Priority: matches precedence of the flow entry

Match fields

Priority

7

Instructions

Counters

Timeout

Cookie

Flags

37

 Counters: contain statistics on the packets and flow, e.g. per-flow counters,

received packets, received bytes and duration seconds and nanoseconds

 Instructions: actions applicable to the packet, e.g. Forward, Enqueue, Drop and

Modify-Field

 Timeouts: expire time for the flow in the switch

 Cookies: thresholds implemented by the controller to filter statistics and modify

flows

 Flags: decide how a sequence of packets is processed.

The controller uses two approaches, proactive and reactive, to install rules in switches in

the flow table. In a proactive installation, the controller adds the rules in advance

(before the packets reaching the switch). In the reactive mode, there is no match for the

packet initially, but the device forwards the packet to the controller, which then adds the

appropriate rule in the flow table.

OpenFlow supports three types of messages:

 Controller-to-switch messages, which are initiated by the controller:

o Features: In request/reply mode, the controller sends a feature request

message to the switch to inquire about the identity and capabilities of the

switch and the switch replies with a feature reply message.

o Configuration: The controller sets and queries the switch configurations

and the switch responds to the query, sending the required information to

the controller.

o Modify-State manages installed rules on the switch flow table and

configures switch ports.

o Read-State collects statistics from the switch.

o Send-Packet sends the packet out through a specific port on the switch.

o Barrier: Used for message verification.

 Asynchronous messages are initiated by the switch:

o Packet-in encapsulates a packet to send to the controller either because

no predefined rule exists, or while the rule exists, its associated action is

forwarded to the controller.

o Flow-Removed notifies the controller of an entry removal from the flow

table.

38

o Port-status notifies the controller if the port status has changed.

o Error informs the controller of fault occurrences on the switch.

 Symmetric messages are initiated by both the controller and the switch:

o Hello messages initiate the session.

o Echo request/replay messages are similar to ping in the Internet Control

Message Protocol.

o Vendor: customised messages sent by the vendor.

In OpenFlow protocol specifications, the controller is responsible for modifying the

forwarding tables in SDN devices. The flowchart in Figure 2.5 depicts the OpenFlow

process of incoming packets. Upon the arrival of a new packet, the switch searches for a

matching forwarding entry in the forwarding table. If a record matches the packet fields,

a predefined action will be executed. OpenFlow allows a set of measures to be taken,

including to drop, forward or modify the packet. If no match occurs, the switch

forwards the packet to the controller to conduct computations according to the policy

issued by the application layer.

Figure 2.5. OpenFlow flowchart [49].

Packet in start in

table 0

Drop packet

Match
in
Table n

Miss

flow

exists?

Go

to

Ta

Update counters

Execute instructions

update action set

update packet/match

set fields

update metadata

Execute action set

Yes

Yes

Yes

No

No

39

2.3 Software-Defined Network Applications

A primary concept in the SDN model is network device programmability, which boosts

applications developed for various purposes. Applications can be classified according to

their purposes, such as network traffic engineering, network monitoring and

measurements, Virtualisation, and network security. The following three subsections

cover the first three classes, while security is covered in Chapter 3.

2.3.1 Network Traffic Engineering

The primary objective of traffic engineering is performance optimisation in networking

through achieving a set of objectives, including reducing congestion, end-to-end delays,

power consumption and packet loss, maximising the quality of service and optimising

load balance and resource utilisation. The static architecture of traditional networks is a

significant challenge for traffic engineering tasks [49]. Characteristics of SDN, such as

resilience, programming, centralisation and network function virtualisation capabilities,

promise the facilitation of traffic engineering solutions.

Multiprotocol label switching is a common traffic engineering routing mechanism to

forward data from one device to the next based on short labels rather than long network

addresses, reducing the time of table lookups [50]. However, multiprotocol label

switching suffers from limitations.

Traffic splitting is a common mechanism to reduce network traffic congestion. There

are two approaches to traffic splitting: packet-based and flow-based. Packet-based

splitting can result in packet reordering that may be overheard at the other end of the

connection, especially in Transmission Control Protocol (TCP) sessions, resulting in

congestion at the destination. In flow-based splitting, decisions are made by forwarding

devices; however, these decisions may not be optimal because they are based on local

parameters, rather a global network view [51]. Hence, SDN provides a solution because

it provides a global view of the network. Additionally, SDN can improve optimal path

computations because it provides a logically centralised view of the network. Databases

used by traffic engineering mechanisms must present a real-time view of the network—

in traditional architecture, device states are scattered throughout the network, but in

SDN, the controller has mechanisms to update the database in real-time for all devices

in the network.

40

Pythia is a traffic engineering system for data centres that utilises the SDN–ODL

controller model. Hadoop MapReduce is a big data analytics tool to analyse and refine

control of data centres networks [52]. QNOX is an extension of the NOX controller that

promotes quality of service enforcement; its authors claim it improves resource

discovery, route computations and fault notifications [53]. Aster*X is an application

based on the NOX controller for web server load balancing—it uses the controller to

harvest the node states and control paths using OpenFlow to facilitate network

reconfiguration by allowing administrators to control capacity [54]. ElasticTree is an

energy consumption optimiser for data centres based on NOX—it tunes active devices

in real-time according to traffic loads [55].

2.3.2 Network Monitoring

Network monitoring and measurement are essential mechanisms for network operators

and administrators, while awareness of device status and network behaviour is critical

for making decisions regarding network management, quality of service, threat response

and traffic engineering [56]. The network monitoring process includes five stages [57]:

 Measurements and collection of data from network devices over predefined time

frequencies: Measurements are classified as active or passive. In active

measurements, network agents probe devices for return of data, while in passive

measurements, agents act only as receivers of data sent by the network nodes.

 Pre-processing: Data collected from different nodes are aggregated and

normalised.

 Transmission: Raw harvested data are transferred from the data sink (e.g. the

management information base) to the node responsible for analytics. Simple

Network Management Protocol is a widely used protocol to transfer data.

 Analysis: Different algorithms are applied to the data to identify specific

patterns and big data algorithms and tools are used for data analytics.

 Visualisation: Presents results in formats that are easily understandable and may

be quickly absorbed by network administrators for making decisions.

SDN can improve the subprocess of collection and transmission based on its

architectural attributes such as centralisation and programmability. In traditional

networks, network agents collect data from network nodes periodically—this approach

41

is rigid and inefficient in terms of consistency, performance and resource optimisation.

In contrast, SDN involves a central entity with a global view that can intelligently

decide which data from which devices need to be collected. For data transmission,

instead of using a classic management information base, SDN offers a flexible

development in new data structures according to requirements.

Procera is a framework based on SDN that allows network administrators to annotate

policies applicable to responding to specific network events [58]. Its policy is written in

high-level functional programming language and compiled to a set of forwarding rules

at the underlying nodes in the physical plane.

OpenSample is a platform to reduce sampling latency based on the Floodlight controller

[59]. It uses a modified flow standard for packet export. Its authors claim it reduces

latency from 1–5 seconds to 100 ms. OpenNetMon is a module integrated into the POX

controller that monitors flow metrics related to packet loss, throughput and latency [60].

It probes flow source and destination devices periodically in cases where poll time slots

are subject to changes.

2.3.3 Software-Defined Networks for Virtualisation

Network virtualisation enables and maximises resource sharing between several isolated

networks running in their own containers [61]. Network virtualisation solutions

efficiently increase hardware utilisation and reduce expenditure and operational costs.

Virtualisation is an essential service technology in data centres and cloud computing

infrastructure, allowing tenants to acquire networking services according to their

requirements [62].

Virtualisation in the traditional networking model faces two challenges: network

topology and addressing. Various networking environments require different network

topologies. Additionally, addressing schemes such as IP versions 4 and 6 are related to

physical devices.

SDN abstraction capabilities facilitate virtualisation by adding an intermediate layer,

which is analogous to middleware hypervisors in computing virtualisations. The new

layer acts as a proxy between the NOS and physical devices. The purpose of the layer is

42

to seamlessly encapsulate the process required for sharing resources and isolating tasks

[63].

The hypervisor, or virtual machine monitor, is responsible for monitoring various

virtual networks and allocates required resources such as link capacity [64], [65].

Hypervisors have three abstraction attributes:

 Device abstraction: Similar to other computing devices, virtualisation targets the

central processing unit and related storage. This is mainly used for flow table

resources.

 Physical link abstraction: This focuses on virtualisation of physical connections,

available link capacity and buffers at both ends of the link.

 Topology abstraction: The hypervisor uses the abstraction of devices and links

to implement the required network topology.

An essential virtualisation attribute is isolation. In SDN-based virtualisation, isolation

must be done on three levels [65], [66]:

 Addressing isolation: Each slice of the network or virtual network flow spaces,

which represent a subset of the entire available flow, must be separated from

each other. Additionally, consistency problems such as generalisation,

correlation and shadowing issues may exist in the access control list.

 Data plane isolation: Device central processing units, associated storage and

physical links should be isolated for each tenant.

 Control plane: Each slice must have its own controller.

FlowN is a NOX-based SDN distributed hypervisor that adopts the concept of

containerisation in which the entire network is running on a single controller, with each

tenant having a standalone slice [67]. AutoSlice is a proposed virtualisation layer that

focuses on the automation of the slicing process itself [68]. Slices Isolator handles

problems related to virtual network isolation and performance and flexibility trade-offs

[69]. It offers different levels of isolation from which network operators can choose

according to their performance and isolation requirements.

43

2.4 Software-Defined Networks in Various Networking Environments

SDN can replace the traditional networking model in several networking environments,

including IoT, data centres, cloud computing and wireless networks. The following

sections discuss these various environments, the challenges of current traditional

networks and how SDN can mitigate these limitations, providing some sample

implementations.

2.4.1 Software-Defined Networks for the Internet of Things

IoT introduces new challenges to the conventional communication model. IoT network

characteristics such as object heterogeneity and scalability require revolutionary

solutions. Currently, there is no universal architecture for IoT. However, several

architectures have been proposed based on SDN. SDN introduces network

programmability and centralisation, which facilitate network abstraction, simplify

network management and ease evolution. The proposed framework in chapter 4 with the

SDN integration can be utilised as a novel communication architecture for IoT. SDN

enhances network resilience and scalability, which are essential in large-scale IoT

deployments such as smart cities.

IoT expands the capability of the internet by connecting smart objects such as grid

health and environmental devices. Advancements in wireless communication,

embedded systems and sensor technologies have accelerated the adoption of the IoT

model in several domains. However, higher connectivity increases the risk of privacy

and security threats.

IoT introduces three challenges: first, the heterogeneous composition of the network;

second, the adoption of widely distributed architecture, specifically in applications such

as smart cities and smart grids; and third, the introduction of new protocols to handle

specific issues related to power and computation limitations of network sensors [70]-

[73].

The IoT threat vector has been extended with new attacks, including object cloning,

firmware replacement and extraction of security parameters. Several studies have

proposed an SDN-based architecture to enhance the security of IoT. Some studies have

considered a domain-based architecture in which the network includes multiple domains

44

[74], [75]. The separation of domains enhances the availability of the network.

However, a robust performance analysis has not been conducted. Bhunia and Gurusamy

[76] propose a detection system based on SDN for denial-of-service (DoS) attacks on

IoT, with the authors claiming they achieved a precision of around 98%. Chakrabarty et

al. [78] propose an SDN-based IoT architecture called Black SDN, which secures

payload and metadata through encryption. However, routing suffers complications as

the source and destination data in the header are also encrypted. Jararweh et al. [79]

focused on IoT management aspects by proposing a comprehensive SDN-based

architecture—SDIoT—to enhance IoT management by enhancing the forwarding,

storing and securing of data generated from IoT objects.

2.4.2 Software-Defined Networks for Cloud and Data Centres

Cloud computing is a model of Internet-based computing that represents an integrated

platform of network hardware and software that provide specific internet services on a

pay-per-use basis. Cloud computing provides three levels of service: software as a

service, platform as a service and infrastructure as a service. The top level, software as a

service, provides software on demand—examples include email software such as

Microsoft Office 365. Platform as a service offers platforms used by application

developers, while infrastructure as a service, the lowest level, offers the most basic

services such as virtual machines and virtual networks.

The cloud computing paradigm considers two characteristics: elasticity and dynamic

reconfiguration. The cloud platform operates in several data centres, including Amazon

EC2 and Microsoft Azure, and this environment contains an enormous number of

networking devices, servers and dense existence for virtualisation services. The

complex structure of these data centres and the vast number of internetworking devices

and servers raise issues related to scalability and performance. As discussed previously,

the rigid structure of the traditional network creates a challenge for cloud computing

platforms. The giant leader Google built B4, an SDN-based wide area network

connecting Google data centres around the globe [83].

SDN characteristics such as centralisation, programmability, a global view of the

network and, most importantly, virtualisation capabilities, allows SDN to be an enabler

technology for data centres and cloud computing platforms [1]. Based on various SDN-

45

based clouds computing architecture, the authors concluded that an abstract architecture

consists of three layers mapped to SDN model planes as follows:

 Cloud manager application receives requests for resource allocations and

provides services for management, monitoring and performance optimisation.

The ODL controller—discussed in section 2.1.1—allows the integration of cloud

manager software such as OpenStack [19].

 Controllers similar to SDN architecture provide basic NOS services. Figure 2.6

shows the ODL controller support OpenStack at the controller plane with the

OpenStack service module.

 The physical plane includes the network resources to be provisioned by the

cloud manager.

Figure 2.6. OpenDaylight OpenStack application support [19].

CloudNaas is a NOX-based cloud networking platform that supports infrastructure as a

service cloud for virtual network creation and isolation [84]. Meridian is an IBM cloud

platform for creating and managing virtual network topologies according to workload

[37]. Meridian can be integrated with OpenStack and IBM SmartCloud [85].

46

2.4.3 Software-Defined Networks for Wireless Networks and 5G

Wireless networks can be classified into four main classes: cellular, wireless sensors

and wireless mesh networks [86], [87]. Cellular networks integrate a combination of

technologies such as 4G, Long-Term Evolution, various standards of wi-fi and

Worldwide Interoperability for Microwave Access. This combination requires

transparent, soft, hands-off, efficient resource management. Cellular networks are

composed of two major components, a core network and a radio access network. The

core network is the basis of connectivity, providing access to mobile stations or end

users. The core network provides connectivity between different radio access networks,

managing services such as hands-off, roaming and quality of service. In wireless sensor

networks, the major challenges are related to limited computation and power resources

in the sensors—these challenges were covered in the previous section on IoT. Wireless

mesh networks or ad hoc wireless networks involve the connection of devices without

infrastructures such as access points, with routing on a hope-to-hope basis. The routing

mechanism and absence of a central node cause interference and negatively affect

performance [86].

Fundamentally, the wireless network faces challenges such as interference and

frequency management that do not exist in wired networks. Additionally, security

threats originating from the medium used by wireless networks, which is not

constrained by wires or optical fibres as in wired networks, are mounting. The medium

imposes the need for new solutions because techniques such as collision detection are

not applicable in wireless networks; hence, to avoid collisions in advance, a solution for

collision avoidance emerges. Solutions for sharing frequency bands, such as various

types of multiplexing (e.g. time-division multiplexing and frequency-division

multiplexing), create additional problems such as hidden and exposed nodes, which

require solutions such as Request to Send and Clear to Send, increasing complexity and

affecting performance.

SDN characteristics such as resilience and centralisation offer opportunities to tackle

issues such as power and frequency changes or network handovers in the dynamically

changing environment of wireless networks. Additionally, wireless networks are

heterogeneous, and the concept of abstraction in SDN, by supporting different devices

from different vendors, is key to handling the problem of heterogeneity in wireless

47

networks [1]. In cellular network resource utilisation, optimisation is essential,

particularly in high-density areas, and network designers adopt various techniques to

allow more users in the same cell to use the frequency efficiently. One of these

techniques is cell splitting in which a cell is divided into smaller cells, with each sub-

cell having its own base station with lower transmission power to avoid interference

from adjacent cells. The technique has its drawbacks, including an increased number of

cells, which increases the probability of interference and complexity in management

[88]-[90].

For resource allocation of radio access in cellular networks, SoftRAN provides an

abstraction for base stations. At the control plane, the abstraction is conducted in three

dimensions: time, frequency and space [91]. The SoftRAN control plane is responsible

for operations such as hands-off and transmission power controls for each base station

to avoid interference. In the core network, Softcell is an SDN-based application that

resolves the complexity and delay associated with the resources allocation in the core

network, allowing the core network to access the data plane in the radio access network

and have a global view of the entire network to support routing through middleboxes

installed on switches [92].

2.5 Software-Defined Network Challenges

Despite the opportunities introduced by the novel model, SDN faces various challenges,

raising questions regarding its suitability as a singular model. In this section, we

categorise those challenges into four classes:

 Architectural challenges related to design, which affect the non-functional

requirements of the model as a unit

 Controller challenges, such as distributed controller design

 Data plane challenges, such as switch design and interoperability

 Application plane challenges.

Security is also a major challenge of the SDN model. Given that this thesis focuses on

the security of SDN, we discuss this flaw in the next chapter.

48

2.5.1 Software-Define Network Model Architecture Drawbacks

Traditional networking models enclose the control and data planes within the same

device. Required communications between both planes are almost simultaneous. In

SDN, the controller and data planes communicate over an OpenFlow communication

transport layer security channel. Communication and its associated encryption and

decryption processes cause latency. Additionally, latency increases in distributed

controller architecture in which controllers use east/westbound channels to

communicate and synchronise the global view of the network. In conventional

networks, the control plane is distributed in case of failure for various reasons, including

security breaches. Affected devices will be out of service, but other devices will still be

able to operate, enhancing the availability of network services. Centralisation of the

control plane creates a single point of failure if the controller is out of service.

Subsequently, all devices at the data plane will also fail [1], [7].

2.5.2 Controller Challenges

In high-density networking environments such as data centres, a single controller model

is impractical because large data centres, such as Google B4, are geographically

scattered over different locations and have high availability and throughput

requirements. Hence, a scalable distributed design is more practical. Distributed

architecture may be hierarchal or peer-to-peer. Controller scalability faces two

challenges: latency in controller communications and management of the backend

database by the controllers [1]. [40], [92].

Controller scalability by integrating different controllers is another challenge for SDN

deployment. The controller comprises software that is coded in a specific programming

language. Languages such as C++ support performance over portability. Java offers

excellent portability, but its performance is affected by the two-step encoding by the

compiler and the interpreter. The programming language will affect controller

interaction with the applications plane (northbound communication) and

intercommunications between controllers in distributed controller architecture

(east/westbound communication). Solutions focus on two approaches—general network

policy programming language and API. Pyretic was an early attempt to abstract

applications in which the network administrator or programmers could build a modular

49

application from already existing modules (similar to the concept of programming

language packages). However, given its weak performance, it was not industrially

applicable [94]. API in the controller scenario facilitates east/westbound communication

between controllers. The Internet Engineering Task Force (IETF) has proposed an SDN

interface protocol for inter-SDN controller communications. However, these steps are

still far from meeting practical interoperability requirements [95].

2.5.3 Data Plane Challenges

Traditional networks have existed for decades, with industry and governments investing

heavily in its infrastructure. The transition from this model to SDN should consider

interoperability between the two models. Another challenge at the data plane is device

heterogeneity, with vendors providing different switches with a wide range of

inconsistencies in performance, features and compliance with protocol specifications

[1], [7]. One solution for design inconsistency problems in SDN-compatible devices,

offered by tinyNBI, is the provision of a basic API [95]. The authors extracted five

fundamental abstractions and provided a low-level API, which can be used for higher-

level abstractions regardless of the OpenFlow version or switch design. Additionally,

the SDN-promoting organisation Open Networking Foundation have founded a

specialised group, the Forwarding Abstractions Working Group [96], which is working

to deliver new standards for network forwarding targets. The main goal of the group is

to enhance and enforce OpenFlow standards on forwarding devices.

2.5.4 Application Plane Challenges

SDN applications require a high level of abstractions. Traditional programming

languages offer a low level of abstractions (even when comparing scripting languages to

more level programming languages such as C and C++). The purpose of SDN

applications is to annotate network policy, which requires a high level of abstraction

that is closer to formal specification notations. Application authentication and access

control to the services offered by the controller is an essential step to secure the SDN.

Additionally, application isolation should be done at two levels—first, applications

should be isolated from each other, and second, the control plane should be isolated

from the application plane [8].

50

2.6 Summary

This chapter provided the background of the SDN model, which introduced the

separation of the control and data planes. The chapter focused on SDN architecture,

which consists of three planes: application, control and data planes. Given that the

controller is the most critical element for model security, the chapter provided an in-

depth examination of this plane. Main components of the control plane were discussed

in detail and, subsequently, an anatomical view of one of the most renowned SDN

controllers, ODL, was applied. Additionally, the chapter introduced and discussed the

dominant southbound protocol, OpenFlow, which is responsible for communications

between the controller and the networking devices at the forwarding plane. It is essential

to understand how the protocol is integrated with the controller.

The following two sections discussed the applications of SDN and the environments in

which SDN can provide fundamental solutions. SDN applications include networking

traffic engineering, network monitoring and virtualisation solutions. Several emerging

technologies can benefit from SDN architecture, including IoT, clouds, data centres and

wireless technologies, including 5G cellular networks. For each of these environments,

the basic concepts, challenges and solutions offered by SDN was discussed.

The global view of SDN enhances decision-making in network traffic engineering.

Additionally, it provides an efficient routing path computation supported by the

centralised controller. Network monitoring applications such as OpenNetMon provide

efficient mechanisms for measuring statistics related to network throughput and packet

loss. Another notable success of SDN is its virtualisation ability, which is supported by

device abstraction and hypervisor layers implemented at the control planes.

This chapter introduced several challenges and ongoing research in SDN networking.

These challenges were classified into four groups: challenges related to architecture

design and those related to the application, control and data planes. The majority of

these challenges are related to programmability and centralisation of SDN. For example,

centralisation introduced new challenges for the controller architecture—questions

about performance, scalability, flexibility and security in both centralised and

distributed controller architectures were raised. Network programmability allows

applications to access networking devices, raising concerns related to authentication,

51

authorisation and accounting. Additionally, the model inherited challenges, including

those related to security, from traditional IP networking. Security is a significant

challenge—the following chapters will focus on security challenges and solutions.

52

Chapter 3: Software-Defined Network Security Analysis

This chapter discusses the security of SDN. The primary goal of this chapter is to

provide a broad and inclusive understanding of security in the SDN model. It

investigates the controller’s security flaws and how these threats differ from threats in

traditional networks. We identify threat attributes and their consequences on the

network assets. A comprehensive understanding of attacks will improve the efficiency

of countermeasures. The security analysis is conducted in three stages. First, a STRIDE

(spoofing, tampering, repudiation, information gathering, and denial of service and

elevation of privilege) analysis is conducted to identify possible threats from the design

perspective. The second analysis identifies attacks using attack trees. The third analysis

simulates attacks to identify practical consequences and recommended measures to

address threats.

The chapter is organised into five sections. The first section is an introduction to both

the opportunities and deficiencies in the security of SDN, providing an in-depth view of

SDN security and security limitations.

Sections 2 and 3 present a review of SDN security from the current literature. The

second section discusses how SDN improves network security through its wide range of

security applications that enable the enforcement of security policies and monitor and

detect threats.

The third section investigates the security deficiencies of the SDN model. This section

provides an analytical view of SDN-related threats. Analytics were carried out using

STRIDE and attack trees. STRIDE is a system-oriented threat modelling method that

models DFDs of the system under analysis. The main elements of the model are data

flow, data stores, processors, interactors and trust boundaries. Thereafter, DFD

components were examined against a set of attacks specified by the STRIDE list

(spoofing, tampering, repudiation, information gathering, denial of service and elevation

of privilege). An attack tree is a formal, attack-oriented approach to identify possible

attacks against the system. The attack tree begins with a root node that represents an

attack goal, with many tree branches specifying methods to reach the node. Logical

53

AND/OR operators were used to aggregate leaves. The attack tree analysis was

supported by various tools such as Isograph.

The fourth section discusses the simulation of several attacks identified in the previous

section on an SDN network. The simulation was applied to an SDN network using

Mininet [97] and ODL SDN controller, followed by the use of several exploits to launch

the attacks. The final section concludes the chapter.

3.1 Introduction

Data communication architecture has remained stable for decades. As the pace of

technology has accelerated, there is a need to adopt a new model to reduce the

complexity and inflexibility of traditional networks. Pillar technologies of SDN, such as

central network control, programmability and network virtualisation, have been

researched for decades [1]. OpenFlow introduces the concept of separating the control

and forward planes and represents a novel communication architecture.

Centralisation and programmability offered by the SDN model are critical attributes

utilised by developers to implement new security applications for various purposes such

as monitoring and threat response. Despite the significant advantages offered by the

new SDN architecture, including flexibility, programmability and centralisation, the

model introduces unprecedented security threats.

Security is a primary concern of the new model. The SDN controller is a crucial layer in

the network. A single point orchestrating the entire network may be utilised to enhance

network security; however, paradoxically, this centralised architecture is more

vulnerable to attacks. The controller is an attractive target for attackers because it is

accessible from applications in the higher plane and dominates physical devices at the

lower plane.

This study examines threats related to SDN architecture, specifically those related to the

controller plane. There are two approaches for carrying out security analysis, namely

system-oriented and attack-oriented approaches. For research comprehensiveness and

consistency, a method from each approach was chosen. The security analysis was

conducted in three stages. First, a STRIDE analysis was developed to identify possible

threats in the SDN architecture design model. Second, various possible attacks using

54

attack remodelling were described. Third, attacks were practically simulated for

demonstration and proof of concept.

The purpose of the study was to provide an inclusive realisation of threats emerging

from the introduction of the control layer. This chapter investigates threat attributes,

types of threats in traditional networks and the SDN model and consequences of threats.

An understanding of attacks will improve the efficiency of countermeasures.

3.2 Software-Defined Networks for Security

The rigorous and inflexible architecture of the traditional communication network has

hindered its innovation [98], [99]. Multiple attempts have been made to adopt a flexible

network model with separate control and forward planes. Separation has introduced

programmability and centralisation features, which have been harnessed to enhance the

security of the network. This section explores SDN applications that enhance network

security, such as those that enforce and verify network policies and detect and mitigate

threats.

3.2.1 Policy Enforcement

Network policy is a set of configurations, rules and constraints that govern network

operations (e.g. network access, incident handling and communications isolation) [100].

The architecture imposes policy enforcement through network middleboxes.

Middleboxes are devices deployed to manipulate network traffic for specific purposes

such as inspection, threat detection and access control.

Traditionally, two approaches have been used to enforce network policy, either by

deploying middleboxes between endpoints in network paths or by attaching them to

middle switches. Given that both options necessitate rigorous deployment, they lack

flexibility [101].

SDN architecture offers two advantages that are not available in traditional networks:

 Complete network coverage: Network policy is enforced at switching devices by

installing flow rules. In conventional networks, middleboxes such as firewalls

and intrusion prevention systems are located at specific points in the network,

typically at network entry points such as demilitarised zones, either on or off

55

network paths. Both deployments are inflexible and incomprehensive. Figure 3.1

depicts a firewall dedicated to external traffic where coverage of internal traffic

is limited. The IDS provides protection for specific subnets. In SDN networks,

programmable switches are distributed over multiple locations in the network.

This architecture avoids single point failure and enforces policy inside the

network between endpoints.

 Centralisation facilitates policy deployment and configuration. This is in

contrast to middlebox configurations in existing networks in which network

administrators implement and deploy the policy from a single point rather than

configuring appliances explicitly.

Figure 3.1. Network policy enforcing middleware device locations.

Historically, the OpenFlow protocol evolved as a successor of the Ethane project [102].

The purpose of Ethane was to define a network policy and enforce it at the switches.

Ethane was an instantiation of SANE [48]. The domain controller based on network

policy calculates the flow table entries installed on the switches. Given that the project

requires custom switches, network upgrading was expensive. Integration of Ethane

networks with current networks did not provide holistic policy enforcement where there

was a probability of traffic passing through other non-Ethane custom switches.

56

SDN features reintroduced a policy enforcement method known as active security [103].

This concept includes five phases of adaptable network policy:

 Initial configuration of the infrastructure

 Sense: the controller responsible for collecting data from the network

 Adjusting the configuration as the controller updates the policy according to the

network status

 Forensics: the controller gathers information related to attacks

 Respond: the controller initiates a reconnaissance and counter-reaction.

3.2.2 Security Policy Verification

As the complexity of networks has escalated, there has been the need to ensure and

verify the attached security policies. The conflict between policies or even between

rules in the same policy may lead to network exposure.

FlowGuard is an SDN-based framework to detect firewall policy violations. Upon the

update of the network status, FlowGuard will dynamically analyse the path space to

detect firewall rule conflicts [104]. Flover is another SDN security policy verifier [105]

based on checking systems and was built on the NOX controller to provide formal

verification of security policies. Flover transforms flow table rules into a binary tree

diagram and applies formal methods to detect rule violations.

3.2.3 Intrusion Detection

Intrusion detection and prevention systems (IDPSs) are software or hardware systems

dedicated to observing the network for security breaches. Standard IDPS processes

comprise three stages: collection of data from the network, analysis and execution of

actions in case of threat detection. There are three major data analysis methods for

detection of breaches: signature-based detection, anomaly-based detection and

specification-based detection [11]. Signature-based detection is used when a system has

a database of predefined violation signatures and matches that signature against network

activity signatures. Anomaly analysis is used when the system identifies abnormal

activities. Normal activities are identified in a baseline profile, which the system

develops in a learning phase. In stateful protocol analysis, a predefined pattern of

protocol behaviour is established and a comparison between network activities and the

57

expected behaviour defined by protocols raises the alarm in the case of profile violation.

A combination of methods is used to maximise IDPS performance. A study compared

various detection methods proposed in [11]. Each method has its advantages and

disadvantages—a significant weakness of signature-based detection is its inability to

detect new attacks, while anomaly-based detection has a higher false alarm rate. The

majority of commercial implementations use a hybrid approach.

Fundamentally, network-based IDPSs have a packet or flow-capturing module [12]. The

capturing engine sniffs packets or flows for specific features. Feature selection relies on

the threats targeted by the IDPS.

From the perspective of SDN, current research [10]-[12] has focused on packet and

traffic measurements such as traffic engineering, load balancing, monitoring and

security. Network central view and programmability provide the necessary assets to

develop a robust packet/flow inspection system. SDN consists of three layers, namely

applications, controller and forwarding devices. The controller has the capacity to

communicate with devices through southbound protocols such as OpenFlow. OpenFlow

provides the API to poll devices for traffic statistics. Traffic data are aggregated to the

controller, which, in turn, communicates with the application layer through the

OpenFlow interface.

The architecture of anomaly-based detection based on SDN has been proposed in [106].

The framework distributed a DoS attack detector based on flow inspection. The system

has been implemented on the NOX controller. OpenSketch is a notable example of SDN

traffic measurement architecture [107]. The platform provides a library to customise

measurements to meet specific tasks and sets measurements to detect anomaly

behaviour. A comprehensive view of the system, which is the essence of SDN

architecture, is a significant feature. It reinforces the design of the robust data collection

module in IDSs.

Studies have used the architecture of the anomaly-based detection method in SDN

[106]. Concentration on anomaly detection based on the SDN is supported by the

controllability of traffic. However, there is a need to adopt other detection methods in

SDN to exploit its capabilities.

58

Specifically, SDN architecture can contribute to the enhancement of detection analysis

techniques. Features such as scalability and ease of configuration in the case of anomaly

detection can be improved by exploiting the centralised architecture of SDN.

Developing a central analysis module may reduce the overhead on the monitored

system, leading to improved performance.

Several intrusion detection applications have been developed to detect malicious

activities in SDN networks. For example, Defense4All is an application in the ODL

controller to detect and mitigate DDoS attacks.

3.2.4 Threat Response

The SDN controller has a consistent real-time view of the entire network. Detecting

attacks in real-time is essential for establishing an active response system. SDN is a

flow-based rather than a destination-based networking model. Traffic control is a crucial

feature of the response module. For example, on the assumption of threat existence,

network middleboxes forward traffic to virtual appliances or honeypots for further

investigation or forensic processes. Additionally, SDN programmability allows

applications—particularly IDP applications—to communicate with forwarding devices.

The flexibility of the architecture facilitates response mechanisms. For instance, if a

section of the network is compromised, the response module isolates infected devices to

mitigate the risks.

3.2.5 Security Tools

In this section, several SDN security solutions are surveyed. Table 3.1 shows a survey

of different SDN-based security tools. These tools are classified into two categories:

security enhancers or SDN security resolutions. Security enhancement tools aim to

improve network security by utilising SDN features, while SDN security resolutions are

tools to improve the security of the SDN itself. Additionally, the table indicates the

layers the solution covers.

FRESCO is a security composition framework that focuses on anomaly detection and

mitigation [108]. Netfuse is an example of a solution that addresses security flaws in the

SDN architecture [109], protecting the network from DoS attacks. However, there is a

59

significant shortcoming in the research related to improving the security of the SDN

itself.

The majority of the survey tools focus on using SDN to enhance security, more

specifically for policy enforcement solutions. The resilience of the SDN architecture

effectively supports the adoption of policy execution and verification applications.

MAPPER, FlowTags, SIMPLE and OpenSafe are examples of SDN solutions for policy

enforcement [110]–[113]. CloudWatcher [114] controls network flows to guarantee

network security, with devices inspecting each flow. Veriflow inspects and verifies flow

rules in real-time to ensure integrity [115].

60

Table 3.1. SDN Security Tools Survey

Security

Solution

Solution Domain Layer Description

Security

Enhancer

SDN Security

Resolution
App Control Forward

FRESCO

[108]
 X X

Security services

composition

framework

LiveSec

[116]
X X X X

Security policy

enforcement

Netfuse

[109]
 X X X

Protection against

traffic overload

externally (DDoS) or

internally

SDN RTBH

[113]
X X X DoS mitigation

MAPPER

[110]
X X X Policy enforcement

FlowTags

[111]
X X X X

Policy enforcement

and verification

SIMPLE

[112]
X X X X Policy enforcement

OpenSafe

[117]
X X X Policy verification

CloudWatch

er [114]
X X X

Ensures network

packets are inspected

Fortnox

[118]
 X X X

Prioritises flow rules

to eliminate

inconsistencies

Flover [105] X X X X Rule verification

VeriFlow

[115]
X X X

Verifies and debugs

flow rules

OpenFlow-

RHM [119]
X X X

Mutates hosts as a

response to threat

existence

OrchSec

[120]
X X X X

Security application

development

framework

FlowNac

[121]
X X X

Flow-based access

control

PermOF

[122]
 X X X

Fine-grained

permission and

isolation system for

SDN apps

61

3.3 Security Limitations of Software-Defined Networks

Despite the many voices preaching the promising future of SDN, various challenges

prevent the broad adoption of the new model. Contradictorily, the primary advantages

of the new architecture are the origins of its weaknesses. Performance, scalability,

resilience and security are the main issues to tackle in the context of current research on

SDN [1], [7], [8].

In contrast to traditional networks, SDN has performance trade-offs. A tightly coupled

data and control plane in a single processing device is performance oriented. In SDN

process flow, devices refer to the controller to perform logical decisions. The delegation

of logical processes causes latency and negatively affects the throughput of devices [7].

The current stream of research is focused on improvements to hardware such as

processing chips [1].

Essential questions about SDN scalability are raised. The network controller is

responsible for logically updating forwarding tables in the connected device pool. In

real-world networks, the controller is responsible for processing a large number of

messages sent from forwarding devices. This raises the question regarding the number

of nodes a controller should support. In this study, the network was scaled by adding

more controllers to manipulate issues such as consistency. The term ‘consistency’ is

essential in the SDN network because the controller, or a set of controllers, should

maintain the same view of the network. HyperFlow [123] provides a solution for

updating the network state by propagating events that affect the network state.

A single point of control is equivalent to a single point of failure. This configuration is a

significant threat to network resilience and fault tolerance. SDN resilience remains an

open question [1]. A distributed controller has been proposed to improve SDN

flexibility [7].

Security threats are critical challenges in traditional networks and are escalated in SDN

networks. The new architecture has brought additional challenges that did not exist in

traditional networks. In particular, threats target the control layer [8]. The following

sections highlight the security concerns of the controller and the standard southbound

protocol, OpenFlow.

62

Security breaches are significant challenges in traditional data communications systems.

Security challenges are escalated in SDN networks because the architecture introduces

additional concerns that did not exist in traditional networks. OpenFlow’s security

analysis study [124] revealed several attacks derived from the SDN-prevalent protocol,

such as DoS attacks on flow tables and control channels. Conflicts in application

privileges propagate to flow rules. Fortnox provides role-based authentication and

security policy enforcement [101]. Fortnox conducts a real-time rule conflict analysis to

reveal rule contradictions [118]. Several intrusion detection applications have been

developed to detect malicious activities in SDN networks. Defense4All is an application

that detects and mitigates DDoS in the ODL controller [20]. However, the application

does not protect the controller itself; rather, it deploys a set of rules to protect the

network at its perimeters. The Defense4All application requests network information

from the controller. On detection of malicious activities, the application executes

mitigation actions according to its attack response module. A conventional technique to

protect the controller is to deploy a distributed controller platform. However, significant

concerns regarding distributed architecture have emerged, including network

performance trade-offs. Given that multiple controllers exchange information for

orchestrated network control, this exchange process results in latency. Additionally,

there are concerns related to data consistency and synchronisation at each control point

[1], [7]. In communications between the controller and switching devices, data

exchanged over communication channels need to be ciphered because TCP connections

are exposed to various threats. Transport Layer Security encryption will provide

standard security measures to mitigate man-in-the-middle attacks. FRESCO is a security

composition framework focused on anomaly detection and mitigation [108]. Netfuse is

an example of a solution that addresses security flaws in SDN architecture [109],

protecting the network from DoS attacks. However, there is a significant shortcoming in

research related to improving the security of the SDN itself, particularly from threats

attacking the controller [1], [7], [8], [124]. SDN security flaws are an important ongoing

research topic. Several papers have studied challenges related to SDN architecture.

Kreutz et al. [8] reveal seven threats associated with SDN architecture. Figure 3.2

depicts three threats directly related to the controller.

63

Figure 3.2. Controller security threats.

Ruffy et al. [125] used STRIDE to analyse SDN security. The study identified security

deficiencies in generic SDN design, such as spoofing in SDN networks caused by

unauthenticated access to one of the network elements. The authors offer potential

countermeasures, suggesting that attacks may be resolved by enforcing contemporary

authentication procedures. In another recent paper, the authors focused on controller and

forwarding plan security [126]. The study conducted an analysis process based on Petri

nets and attack trees; however, the study was limited in its scope of attacks. The study

presented in this thesis focuses on the analysis process of the controller and augments

the analysis with an experiment that covers several threats:

1. Attacks on communications between the controller and data plane devices

2. Attacks on controller vulnerabilities

3. Attacks on the controller originating from untrustworthy applications that

communicate with the controller.

3.4 Software-Defined Network Security Analysis

The first step involved defining critical security objectives, such as system availability

and dependability. At this level, the objective was to outline the system characteristics.

64

The second step involved specifying system components, data flows and trust

boundaries. The third step involved dissecting the system using a DFD. The diagram

consisted of the elements shown in Table 3.2.

Table 3.2. STRIDE Graphical Components

Entity Details
Graphical

Representation
Attacks

External entity Represents the entities that interact

with the system under the modelling

Spoofing identity

Process System nodes that perform actions on

the data flow in the system

Tampering with

data

Multiprocess A process composed of a subprocess

Repudiation

Data stores Where the data are kept (e.g. database

tables)

Information

disclosure

Data flow Data movements in the system

Denial of service

Privilege

boundaries

Represent the change in the level of

trust

Escalation of

privilege

We conducted the analysis on three levels. First, we developed a STRIDE analysis to

define possible threats from the design perspective. Second, we described various

attacks using attack trees. Third, we simulated possible attacks to identify actual

consequences and recommend measures to address threats.

At this point, it is essential to clarify the terms risk, threat, vulnerability and attack. The

threat is the harm that can occur to a system asset. System assets are a broad range of

resources that vary from devices to information. Threats occur when an intruder carries

65

out an attack by exploiting a weakness in the system, referred to as vulnerability. Risk is

the intersection between threat, vulnerability and consequence. Threat modelling is the

process of identifying and evaluating threats. Risk analysis is the identification and

assessment of risk severity. Risk management is concerned with risk mitigation and

elimination through the adoption of countermeasures.

3.4.1 STRIDE

The analysis was conducted using two approaches: a system-oriented approach, which

focuses on system components, and an attack-oriented approach. The first stage

employed STRIDE (spoofing, tampering, repudiation, information gathering, denial of

service and elevation of privilege) as the system-oriented analysis method [21]. Threat

modelling included five steps. The first step was to define the critical security

objectives, such as system availability or dependability. At this level, the objective was

to define system characteristics. The second step was to specify system components,

data flows and trust boundaries. The third step was to dissect the system using a DFD.

The fourth step examined the DFD elements against the STRIDE attacks; for instance,

whether a particular data store element was exposed to information disclosure. The final

step was to identify vulnerabilities to threats. Microsoft’s threat modelling tool was used

to automate the process of analysis [127]. Figure 3.3 shows a primary DFD of the

controller. Through multiple iterations of analysis, we identified a list of potential

threats against the controller.

Figure 3.3. Controller high-level dataflow diagram.

.

6
6

Figure 3.4. Detailed dataflow diagram

67

Figure 3.4. shows the threats against each component in the controller. Services and

plug-ins are exposed to privilege escalation by changing code flow execution through

exploiting vulnerabilities such as buffer overflow, heap overflow and string formation

attacks. Additionally, services and plug-ins are threatened by DoS attacks by sending

requests that exceed the available computation resources. The SAL is exposed to

privilege elevation and DoS attacks. Additionally, SAL has a buffer that might be

compromised by information disclosure attacks, repudiation attacks and data tampering

attacks via changing bits. The controller has a data log file that is also at risk of

information disclosure, tampering and repudiation threats. Data flow between the SAL

and controller services is vulnerable to information disclosure via sniffing and spoofing

attacks. Likewise, data flow between the SAL and OpenFlow is exposed to spoofing

and disclosure attacks.

68

Table 3.3. Controller Threats

 S T R I D E

Service abstraction layer (SAL) X X

SAL–OpenFlow flow X X

SAL–Other services flow X X

State manager service X X

Topology manager X X

Switch manager X X

Forwarding manager X X

OpenStack service X X

Virtual tenant network X X

Open vSwitch Database

Management Protocol

 X X

Group-based policy service X X

OpenContrail plug-in X X

Authentication, authorisation and

accounting

 X X

Service function chaining X X

LISB X X

Data over cable interface X X

Secure NT bootstrap X X

SDN integrator interface X X

Controller services and plug-ins—

SAL flow

X X

SAL buffer X X X

Controller DB X X X

3.4.2 Attack Trees

In the previous section, we identified the threat vectors that may be possible risks to the

controller. The current step is to formally describe the execution of threats—or

attacks—from the intruder perspective. Attack trees are a semi-formal representation of

attacks as a tree data structure. The root of the tree represents the attacker’s ultimate

goal, while various nodes attached to the root represent the techniques used to reach the

target [22], [128]. Operators OR and AND specify the logical relationships between the

69

tree branches to form the attack. For example in the spoofing attack below the root

spoofing authentication requires all the conditions in 1.1, and 1.2 to be executed to

launch the attack. In attack 2 either 2.1 or 2.2 will be sufficient to execute the attack.

3.4.2.1 Spoofing

Spoofing attacks hack identity, which is not exclusive to individuals. Identity also

includes machine identity (IP or media access control addresses), processes running on

a host and file spoofing. The controller components are exposed to various spoofing

threats. The attack tree is shown below:

Goal: Spoofing access to the controller (OR)

1. Spoofing authentication (AND)

1.1. Spoofing the username (OR)

1.1.1. Social engineering (OR)

1.1.2. Brute force attacks

1.2. Spoofing the password (OR)

1.2.1. Social engineering

1.2.2. Brute force attacks

2. Spoofing the source address (OR)

2.1. Spoofing the media access control address

2.2. Spoofing the Internet Protocol address

3.4.2.2 Denial-of-service attacks

DoS attacks exhaust system resources such as bandwidth, memory and storage.

Typically, the SDN controller adds a processing overhead to network resources. Thus,

the severity of DoS attacks is a significant concern in SDN networks. The attack tree is

shown below:

70

Goal: Attack controller availability by exhausting system resources (OR)

1. Attack controller services (OR)

1.1. Flood requests to controller services such as authentication, authorisation and

accounting

2. Attack controller database

3. Flood service abstraction layer buffer

4. Congest network bandwidth

3.4.2.3 Escalation of privilege

These attacks are based on program flaws, employing techniques such as fuzzing, static

analysis and reverse engineering to reveal coding deficiencies. Intruders without

privileges can exploit vulnerabilities to execute remote code; subsequently, in the post-

exploitation phase, they can escalate their privileges to break into the system entirely.

The SDN controller software is likely to have coding flaws, which may be exploited for

privilege escalation attacks. The attack tree is shown below:

Goal: Exploit system vulnerabilities to escalate privilege (OR)

1. Exploit vulnerabilities in controller services (OR)

1.1. Fuzzing controller inputs

1.2. Analysis of controller code (OR)

1.2.1. Static analysis

1.2.2. Dynamic code analysis

1.3. Reverse engineering the controller

2. Escalate standard user privileges granted by the administrator to higher privileges

2.1. Migrating process

3.4.2.4 Information disclosure

In information disclosure threats, system information such as files, file names and

databases are exposed to unauthorised entities. An important example of information

disclosure is Structured Query Language injection attacks. The SDN controller

71

exchanges data with applications and physical planes. These data are accessible through

ARP table poisoning. The attack tree is shown below:

Goal: Hacking controller data (OR)

1. Communication sniffing (OR)

1.1. Address Resolution Protocol poisoning

1.2. Domain name system spoofing

1.3. Internet Protocol spoofing

2. Access controller machine

2.1. Vulnerability exploitation

2.2. Physical access

2.2.1. Bypass authentication

2.2.1.1. Social engineering

2.2.1.2. Brute force

3. Web attacks (controller web interaction) (OR)

3.1. Structured Query Language injection

3.1.1. Fuzzing

3.2. Cross-site scripting attacks

3.5 Simulation

The purpose of the simulation was to demonstrate the threats identified in the STRIDE

and attack tree stages that are relevant to the SDN controller. Possible attacks were

executed against a functional controller to deduce real-time statistics and consequences.

3.5.1 Simulation Environment

A Mininet simulator [97] was used to emulate an SDN network. The system under test

consisted of a set of hosts connected via OpenFlow switches in a tree topology. The

network utilised an external ODL controller. The hostile machine was a Kali Linux

machine connected to the same subnet to which the controller was connected [129]. The

Kali machine used a toolkit to demonstrate various attacks.

72

ODL is an open-source SDN controller project backed by industry leaders such as

Microsoft, Cisco, Juniper and Ericsson and is aimed at accelerating the adoption of

SDN networks [19]. This study adopted ODL as the empirical controller for the

following reasons:

 ODL is sufficiently close to the standard architecture of the SDN controller.

ODL is a distributed controller that demonstrates availability features and

supports east/westbound APIs. The majority of controllers propose OpenFlow as

the only southbound API; ODL goes beyond this concept by providing an SAL

that supports the coexistence of various protocols at the southbound API.

 ODL provides Defense4All as an intrusion detection system. This may be used

to demonstrate deficiencies of the current detection approach in contrast to the

approach proposed by other studies.

 Other security features include security logging and auditing, authentication and

authorisation services and secure control plane communication.

3.5.1.1 Simulation execution

A Mininet simulator was used to implement the SDN network using a tree topology

with three switches and three hosts for each switch. The simulator used a real-time

external ODL controller. The command used was:

sudo mn–topo tree,depth=2,fanout=3–controller remote

Figure 3.5 shows the simulation network from the perspective of the controller. The

network consisted of four OpenFlow switches, with each switch connected to the hosts.

All switches were connected to the ODL controller (installed on an Ubuntu machine). In

the same network, there was a hostile machine (Kali). In our simulation, we assumed

that the attacker already had access to the network. The intruder had several ways of

hacking the network perimeter, such as by exploiting host vulnerabilities and social

engineering.

73

Figure 3.5. Simulation environment.

3.5.2 Discussion

In this section, we demonstrate how controller vector attacks may be executed and their

consequences on network resources.

3.5.2.1 Information disclosure attacks

Revealing information to unauthorised entities is a crucial issue for SDN controller

security. In standard scenarios, the centralisation of SDN information in a single entity

is a significant advantage of SDN. However, in the attack scenario, a data-intensive

single point is a target for intruders. In this simulation, the attacker launched

reconnaissance attacks to discover service availability by checking the OpenFlow port

6633. A port scanning technique using Nmap can reveal all services available on a

network [130]. The SDN centralisation paradox spares the attacker from enumerating

the entire network. Far-reaching information disclosure attacks can occur when

intruders gain access to the controller using publicly available exploits. In this

simulation, the attacker used an exploit developed on a remote file inclusion

vulnerability [131]. A Python script exploit was downloaded to the controller flow

table. A closer inspection of the flows shows that the attacker can map the entire

network, list nodes, services and access control lists.

74

3.5.2.2 Denial-of-service attacks

The centralisation concept is a significant design flaw in SDN architecture. In DoS, the

attacker floods the controller with an enormous number of requests, eventually

exhausting resources and causing the controller to collapse. The consequences of DoS

attacks on SDN networks are significant because the entire network turns into a ‘body

with no brain’. In this simulation, the Kali Linux machine flooded the controller using a

Python script of-flood. Figure 3.6 depicts the network throughput upon executing the

flooding attack. The vertical axis represents the throughput of the controller (Ubuntu

machine) in bytes, while the horizontal axis shows the controller time domain as the

hostile Kali machine begins to flood the controller. The network throughput was

between 21:25:55 and 21:26:10, which is low, given there were few communications

between the controller and network devices. After 21:26:10, the attacker flooded the

controller with requests, escalating throughput and eventually exhausting and plunging

the controller. Subsequently, the entire network was brought down. Hence, despite

centralisation being a key feature in the SDN model, it can also bring down the

controller—request flooding may result in complete network failure.

Figure 3.6. Network throughput before and after a denial-of-service attack.

3.5.2.3 Spoofing

Traditionally, intruders utilise tools to poison the ARP table or to spoof an IP address to

carry out man-in-the-middle attacks. Once again, a feature of the SDN network can

become a significant disadvantage from a security perspective. Rather than adding

75

hardware to the network, programmability saves costs and increases network flexibility

by replacing devices with a few lines of code. From an adversary’s perspective,

programmability is also a great advantage. In this simulation, a Python script was used

to impersonate a switch in the network [131].

3.5.2.4 Tampering

Alteration of data represents a serious penetration of the system. Additionally,

compromising the entire network flow from a single point is a critical issue in SDN

architecture. The attacker used a script to modify, drop and add entire rules.

3.6 Software-Defined Network Security vs. Traditional Networks

The security analysis and simulation models both revealed the same threats. Similar

attack vectors can be launched against SDN networks. However, the architecture of

SDN exposes the network to more critical consequences. In conventional networks, if

the attacker is successful in executing a remote code against an application or

vulnerable operating system, the consequences are limited to a single machine. The

intruder would need to escalate privileges or use the victim machine as a pivot to break

into other machines or subnets. In SDN networks, the controller comprises software

similar to that of any other program; therefore, as demonstrated in the simulation, it is

vulnerable to attacks. In traditional systems, software and hardware are integrated

separately within various network devices (e.g. routers, switches and middleboxes);

hence, in the case of attacks, the damage will be isolated or can be quarantined. In the

SDN network, isolation or reduction of damage is more complex, particularly when the

controller itself under attack. Intruders have the advantage of centralisation, meaning

the speed and domain of attacks can be accelerated. Therefore, the SDN model

increases security challenges.

In the following chapters, we propose a threat detection framework. Given that both

SDN and traditional networks are vulnerable to similar attack vectors, the framework

addresses traditional network attacks; however, its deployment considers the new

architecture. In deploying the framework, we recommend integration of the detection

system at the control layer to provide essential protection to the controller itself. By

securing the controller, we overcome a significant security issue with SDN networks.

76

3.7 Summary

In this chapter, we provided an in-depth study of controller security. The SDN model

introduces unprecedented security challenges, specifically threats related to the

controller. While the controller is a crucial entity in the architecture, it is also a valuable

target for intruders. We analysed threats using two methods—STRIDE and attack

trees—before carrying out an experiment to demonstrate various attacks. The

experiment provided examples of vulnerabilities in the architecture. We demonstrated

several attacks and the significant consequences of penetrating the controller. DoS

attacks led to the failure of the entire network. Network programmability facilitated

spoofing attacks because intruders could impersonate devices through coding. The

effects of tampering attacks were more significant as the attacker could take control of

the entire network by crafting data flow tables through a central point. Additionally,

taking over the controller exposed the entire system’s information.

SDN architecture paves the way for network innovation and reduces the complexity of

traditional networks. However, controller security is a significant issue in the SDN

model. Enhancing the security of the controller will increase the opportunity for SDN

becoming the dominant networking model. In next chapters, we will focus on

implementing an intelligent module to protect the controller itself.

77

Chapter 4: Threat Detection Framework: A Deep Learning

Approach

This chapter introduces the anomaly-based detection framework. The proposed

approach utilises unsupervised DL to reduce dimensionality before applying simple

(with respect to computation resources and calculations) clustering to the digested data.

The framework consisted of two phases. The first phase used an unsupervised DL

neural network and the second phase employed a simple clustering algorithm.

DL algorithms may be used for different purposes. For example, an autoencoder may be

used for data reconstruction and dimensionality reduction. Therefore, framework design

principles were derived from the goals and objectives of the proposed system before

being implemented. This chapter provides a theoretical proposal for the integration of

the framework in the SDN model and presents the proposed detection framework.

The first section discusses DL algorithms in anomaly-based detection. The second

section introduces the components of the framework, which consisted of two phases: an

unsupervised DL algorithm and a simple clustering algorithm. The third section depicts

the framework workflow and the framework algorithm in pseudocode. Additionally, a

detailed description of the different steps is included. The fourth section outlines the

design principles adopted for building the framework, including dimensionality

reduction, decision boundaries, clustering and curse of dimensionality, network traffic

features, the number of hidden layers and neurons and the assumptions required for

framework applicability. The fifth section describes the framework in action and the

theoretical background of the algorithms. The sixth section depicts the integration of the

framework in an SDN model. The seventh section explores the advantages of the

framework.

4.1 Introduction

Several machine learning algorithms have been used for network anomaly detection

[132]. A typical fundamental deficiency is a poor accuracy, which has made the

approach industrially inapplicable. The proposed framework presented in this chapter

shows improvement in detection accuracy. The framework adopted semi-unsupervised

78

algorithms for novel detection to tackle the rapid developments in cybersecurity attacks.

The framework used the more elegant technique of unsupervised DL, which

dramatically reduces features from the first phase. The framework was designed based

on a set of principles in which the design goals were to reduce computations and

enhance accuracy.

Following advances in neural nets, DL has been successfully applied in various

domains. For object recognition, Hinton et al. [14] used a deep belief network for

Modified National Institute of Standards and Technology’s dataset image recognition,

scoring a 1.25% error rate compared with the next lowest error rate of 1.4% achieved by

an SVM. In an ImageNet challenge (2012), the convolutional neural network succeeded

in reducing the error rate from 26.2% to 16.4% in a dataset containing about 14 m

labelled images and 1,000 classes [15]. Speech recognition and signal processing are

some of the remarkable application domains for DL. Traditionally, researchers used

Gaussian mixture models and hidden Markov models in speech recognition

applications. Mohamed et al. [133] reduced the phoneme error rate from 26% to 20.7%

using deep belief networks.

DL is a set of nonlinear algorithms for multi-layered models. DL algorithms may be

supervised or unsupervised. In supervised learning, the training dataset contains input

data and data labels. The algorithm learns to predict p(y/x) where x and y are the inputs

and outputs, respectively [134]-[136]. This approach is suitable for classification and

regression tasks. In unsupervised learning, only an unlabelled dataset is available.

Unsupervised DL algorithms aim to learn the probability distribution of a specific

dataset. Unsupervised applications include clustering, dimensionality reduction and

noise removal. For network anomaly detection, we believe the unsupervised approach

has the following advantages: first, unsupervised learning can detect internal

representation of the dataset, which conforms to online detection. Second, unsupervised

algorithms will theoretically discover unprecedented threats. The automatic discovery of

features improves the probability of detecting new attacks in the context of network

anomaly detection. Third, we can use unsupervised learning as a pre-training phase

before using supervised or reinforcement learning to enhance detection accuracy.

An autoencoder is a neural network consisting of two phases:

79

 An encoder, which is a deterministic mapping function (f_θ) that transforms an

input vector (x) into a hidden representation (y):

o θ=[2], where W is the weight matrix and b is bias

o f_θ (x)≈x’

 A decoder, which reconstructs the hidden representation (y) to the reconstructed

input (x’) via g_θ.

The autoencoder measures the reconstruction error between x’ (reconstructed) and the

input (x) to minimise this error (information loss):

 𝐽(𝑊) = ∑ ||𝑥𝑛 − 𝑥′
𝑛 || (1)

Where J(W) is the cost function to minimise the cost.

 Arg min (𝐽(𝑊)){𝑤,𝑤′ ,𝑏,𝑏,} (2)

where w and b are encoder weights and biases, respectively, and w’ and b’ are weights

and biases, respectively, for the decoder.

Various functions, such as squared error, may be used as cost functions. For cost

function optimisation, several options, including stochastic gradient descent (SGD) and

adaptive moment estimation (Adam) optimiser, are available.

RBMs are energy-based models in which each feature configuration is assigned scalar

energy [135]. The learning process updates the energy function to ensure the shape has

desirable properties. The probability distribution of energy function is shown in

Formula (3):

 p(x) =
𝑒−𝐸(𝑥)

𝑍
 (3)

where Z is the partitioning function, defined in (4):

 Z = ∑ 𝑒−𝐸(𝑥)
𝑥 (4)

Boltzmann machine’s energy function is defined in (5):

 𝐸 (𝑥) = − 𝑥𝑇 𝑊 𝑥 − 𝑏𝑇𝑥 (5)

80

where W is weight matrix and b is the bias parameter.

To enhance the RBM, hidden units are introduced. RBMs are a type of Boltzmann

machine with restrictions on connections between visible–visible and hidden–hidden

units. The energy function of RBMs is represented by (6):

 𝐸 (𝑣, ℎ) = −𝑏′𝑣 − 𝑐′ℎ − ℎ′𝑊𝑣 (6)

where b’ and c’ are the biases for visible and hidden units, respectively, and W is the

weight of connections between hidden and visible units.

Table 4.1 lists several research papers utilising the deep learning algorithms for

anomalies detection. The table shows the used dataset and other algorithms used to

compare the performance of the deep learning algorithm. The used algorithms are

unsupervised, different variations of autoencoders, and RBM.

Table 4.1. Deep Learning for Anomaly Detection

Research DL Algorithm Classic Machine Learning Algorithms Dataset

 AE RBM SVM PCA KPCA Other

[137] Images

[138] KDD99,

USENET, Thyroid

[139] KDD99 and bot

data

[140] Generated traffic

[141] KDD99

[142] Lorenz, sat-A

[143] KDD99

Note: AE: autoencoder; RBM: restricted Boltzmann machine; SVM: support vector machine; PCA:

principal component analysis; KPCA: kernel PCA.

A comprehensive study evaluated seven unsupervised machine learning algorithms

[144], benchmarking the KDD99 dataset, and concluded that all algorithms performed

poorly in detecting remote to local attacks, while SVM and Y-means performed well

over the other techniques in detecting user to root attacks. Further, C-means delivered

81

the most unsatisfactory results in almost all experiments. Lastly, fuzzy clustering was

not suitable for distinguishing normal and abnormal data in intrusion detection.

The concept of dimensionality reduction refers to projecting highly dimensioned data

onto a lower subspace without a significant loss of data meaning. Additionally, in lower

dimensional data, the discrimination between normal and abnormal classes is evident

[145]. PCA is a dimensionality reduction algorithm that learns linear relationships:

 f (x) = W_(x)^T+b (7)

where x is input and x ∈ R^(d_x).

Kernel PCA is a nonlinear version of basic PCA [145]. To represent nonlinear

relationships, a kernel function is used to map the data to higher dimensions before

using PCA to reduce dimensionality. Autoencoder algorithms imply dimensionality

reduction because they convert data into new representations that keep most of their

significant features (encoder) before executing a reconstruction phase (decoder).

Various studies compared autoencoders as a dimensionality reduction algorithm with

PCA and its nonlinear extension, kernel PCA. One experiment that compared PCA,

kernel PCA, autoencoder and demonising autoencoder found that the autoencoder and

demonising autoencoder performed significantly better. The study applied the four

algorithms to an artificial dataset and two real datasets.

4.2 Framework Components

Figure 4.1 depicts the main components of the proposed detection system. The

framework was based on unsupervised deep neural networks. Two types of Unified

Service Description Language (USDL) algorithms were used: autoencoders and RBMs.

As shown in Figure 4.1, the first layer was a deep neural network, the purpose of which

was to reduce input features. Outcomes were then fed as inputs into the subsequent

algorithm.

82

Figure 4.1. Proposed detection system architecture.

Network threats are continually expanding; thus, from a security perspective, an IDS

must be capable of detecting attacks that have not been previously seen. This concept is

theoretically achievable using unsupervised learning. In contrast, supervised

algorithms—traditional algorithms or those based on DL—must have previously been

exposed to samples and classes to classify new records. The approach presented here

adopted a new method of employing USDL that did not use the direct output for further

processing by the second phase. Instead, it calculated the difference between inputs and

outputs. This dramatically reduced the number of features that had to be passed to the

second phase to a single value rather than a vector of values.

Reconstruction errors were passed to the second phase for clustering. Clustering is the

classification of samples into different groups or, more precisely, the partitioning of a

dataset into subsets (clusters) so that the data in each subset ideally share common

characteristics. Measuring the distance between samples and the predefined cluster

centre is a common approach used in clustering. The algorithm produces a set of

clusters, with each cluster containing reconstruction errors that represent normal or

abnormal records. This is eventually translated as normal and abnormal clusters by

linking reconstruction errors back to their input records.

K-Means

N

A

N

N

N

A

N

Reconstruction

Error

83

4.3 Framework Workflow and Algorithms

Figure 4.2 depicts the framework flowchart; the first step in the workflow was to

conduct data normalisation. The data were collected from network traffic. Each record

represented a packet, with a typical packet containing two types of information, numeric

or string. The initial step in normalisation was to convert non-numeric values to

numbers that could be handled by the DL algorithm. Once the data were normalised,

they were traversed through the autoencoder or RBM, which produced the

corresponding output (using previously learned weights and biases). The difference

between the input and output was calculated and then passed to the second layer for

clustering.

Figure 4.2. Detection system flowchart.

84

The final action was to place the record into one of the clusters (normal or abnormal).

The pseudocode in Table 4.2 provides an elaborated view of the proposed system

functionality. The algorithm processed D vector with 41 elements (number of entries in

each packet used for the simulation), taking 𝑇𝑘 records during the training phase. The

final output of the system is sea t of clusters C0...Cn, with each C marked as normal or

abnormal. In the execution mode, the system initiated the model—such as weights and

biases—during the training step. Building the model involved identifying patterns in the

data, which was done through discovering the appropriate weights and biases through

several sweeps of the data (sliced into batches). Internal functions for calculating and

minimising loss were used during the model-building process.

Table 4.2. Algorithm for Anomaly Detection

Data: Network traffic records (continuous and digit values) (D).

Input: t € T0..Tk where T is 1* 41 tensors and k = no. of traffic records in the normalised dataset DNT
generated by scaling k samples of the D.

Output: A set of clusters C0 .. Cn, where each C is normal or abnormal.

Procedure:

Training:

Let EP be the number of epochs.

Let s = batch size and no. of batches (BN) = DNT/s.

Let i,z = 0.

While (i < EP) do:

For (z = 0; z < BN; z++):

 For each t:

Pass t through the RBM/autoencoder network.

Calculate weights and biases after reconstruction.

Update RBM weights (W) and biases (b)

EP++

Return RBM/autoencoder trained the model with updated weights and biases.

Testing:

For each ts ∈ Ts where ts ∉ T

 Pass ts through the autoencoder/RBM network

 Calc reconstruction error (reconstruction error) tensor

Pass ts to k-means.

Initialisation: set K seed points randomly.

Assign each sample to the cluster of the nearest seed point measured with a predefined distance metric.

Calc. new centroids of the clusters of the current cluster.

Go back to Step 2), stop when no more new assignment.

Return: C0.. Cn of reconstruction error

85

Once the model was established, it was evaluated in the testing process. The testing

dataset (𝑇𝑠) was a set of samples that did not belong to the training dataset (𝑇𝑘).

Subsequently, the outputs of 𝑇𝑠 were used to calculate the reconstruction errors, with a

vector containing a single value for each ts ∈ Ts. The vector was passed to the

unsupervised algorithm. The algorithm in the second phase was not computationally

expensive. The output of the second stage was a set of normal and abnormal clusters.

4.4 Framework Design Principles

This section introduces six principles upon which the framework was proposed. The

first principle is a form of dimensionality reduction in which a new space (features) was

generated from the inputs as a pre-step to isolating abnormalities. The second principle

is the separation between a normal and an abnormal (decision). The third principle is

resolving the dimensionality reduction in clustering. The fourth is related to the low

number of the features in the network packets. The fifth one relates to deciding on the

number of hidden layers. The last principle is a consideration for the issues related to

the application domain.

4.4.1 Dimensionality Reduction and Anomaly Detection

Applying the unsupervised algorithm as a pre-training step is a common practice to

enhance accuracy in many frameworks. For example, Figure 4.3 shows a classification

framework in which a pre-training unsupervised step was included before outputs were

passed to the SVM, which performed the classification. However, this comes at the cost

of additional computation resources such as memory, processing and time.

86

Figure 4.3. Applying deep learning as a pre-step for support vector machine

classification.

One of the goals of the framework was to reduce the additional cost of computation

simply—rather than adding a series of inputs, possibly hundreds or thousands of

features, to the second phase, a single value was passed.

The first stage of the proposed framework was based on the idea of dimensionality

reduction. The concept of dimensionality reduction refers to projecting highly

dimensioned data onto a lower subspace without significant loss of data meaning.

Additionally, in lower dimensional data, the discrimination between normal and

abnormal classes is evident. PCA is a dimensionality reduction algorithm that can learn

linear relationships, while kernel PCA is a nonlinear version of the basic PCA. To learn

nonlinear relationships, a kernel function is used to map the data to higher dimensions

before PCA is used to reduce dimensionality.

Figure 4.4 shows the underlying architecture of autoencoders; autoencoder algorithms

imply dimensionality reduction as they convert data into a new representation that keeps

most significant features (encoder) before executing a reconstruction phase (decoder).

Various studies have compared autoencoders with PCA and its nonlinear extension,

kernel PCA, as a dimensionality reduction algorithm.

87

𝑋1

𝑋2

𝑋′2

ℎ1

𝑋′3

𝑋1

ℎ1

𝑋′1 Weights

W1
Weights

W2

Figure 4.4. Generic autoencoder architecture.

Principle 1: A new space with lower dimensionality, in which normal and abnormal samples

can be separated, may be generated from the original space. A smaller space with reduced

dimensions is equivalent to less memory and better performance, such as classification. Models

of smaller spaces consume less memory and runtime.

4.4.2 Decision Boundaries

To identify anomalies using dimensionality reduction techniques, the data sample was

projected onto the correlation structure deduced by the algorithm. Records with

significant reconstruction errors—relative to a predefined threshold—were marked as

anomalies.

A similar approach is theoretically applicable by passing the data through a trained

model before defining a reconstruction error threshold to isolate anomalies. This was

achievable using a single regression algorithm in the second phase.

However, the experiments showed that reconstruction errors were not linearly separable

using a regression algorithm or a simple threshold. Hence, the framework provided a

nonlinear algorithm to cluster reconstruction errors.

88

4.4.3 Resolving Clustering and the Curse of Dimensionality

The framework employed a clustering algorithm in the second phase. k-means or mean

shift were used to group reconstruction errors.

Reconstruction errors belonging to normal instances will be correlated enough to occur in the

same cluster or clusters, while the same principle is valid for abnormal instances.

A substantial reason for selecting a clustering algorithm in the second phase was to

maintain the ability of self-learning. If no prior knowledge is required, or at least no

complete knowledge in semi-supervised deployment, this feature conforms to zero-day

attack detection. From a different perspective, the framework aimed to improve the

detection accuracy of clustering algorithms using a pre-phase of data processing. This

technique takes advantages of both worlds, such as dimensionality reduction using DL

and the ability to detect new attacks from clustering. Additionally, k-means is a fast and

computationally efficient algorithm. However, the curse of dimensionality has a

significant impact on k-means.

k-means is a standard clustering algorithm that iteratively partitions training datasets to

learn a partition of the given dataset to produce a set of clusters. The clustering is

produced by minimising the sum of the squared distance to its representative object in

each cluster. As the number of features increases, the distance between any two points

in the dataset converges. Increasing dimensionality increases sparsity. To revoke the

curse, dimensions must be reduced—maintaining fewer features results in more

efficient clustering. Hence, the role of the DL phase was to reduce each record to a

single value.

4.4.4 Network Traffic Features and Deep Learning

DL is a data-striving algorithm that excels when there are large volumes of data. In

cases with limited data samples or features, the model will suffer from overfitting. In

the context of the networking domain, the packet features are limited. Additionally,

many of the features are off. To overcome these limitations, the system follows a

similar approach to that of the kernel PCA trick. The basic idea of the kernel trick lies in

Vapnik-Chervonenkis’s theory:

89

Projecting the input data to higher dimensions enables greater clustering power. Increasing the

number of neurons in the first hidden layers allows the separation of samples.

The concept is similar to zooming into the data so that they become more separable. The

framework presented in this thesis adopted this concept. Figure 4.6 depicts the idea of

increasing the dimension of the input data. In the first hidden layer, the number of the

neurons was doubled before being dramatically reduced in the following layers. The

experiment showed improved accuracy (discussed in Chapter 6).

Figure 4.5. Projecting inputs to a new higher dimension.

4.4.5 Number of Hidden Layers and Neurons

To decide on the number of the hidden layers, it was necessary first to identify why

more hidden layers were needed. The answer lies in the basic purpose of the neural

network— approximation. Feed-forward neural networks are capable of approximate

continuous functions on a specific dataset. Theoretically, a neural network with a single

hidden layer can be used to approximate any continued function.

𝑉1

ℎ1

ℎ2

ℎ3

ℎ4

ℎ5

ℎ6

𝑉2

𝑉3

ℎ7

ℎ8

𝑉3

ℎℎ1

ℎℎ2

90

This raises the question of whether more hidden layers are required. A neural network

with more hidden layers (i.e. more structure) can understand the structure of the dataset.

In the scope of this research, the main focus was on IP packet fields, enabling the

network to find a more complex structure in the entire packet rather than in individual

elements only.

In practice, there is no clear recommendation for deciding on the number of hidden

layers. However, implementation was derived from two factors:

 A comparison of the problem with other typical domains such as the Modified

National Institute of Standards and Technology database, the dataset for

handwritten digits . Images are 28 x 28 = 784 pixels to be translated to 784

neurons at the input layer. With two hidden layers, the accuracy is reasonable.

 Experiments and trials: During the implementation, many combinations of

different layers and neurons were tested.

 Generalisation is the way in which the model may be generalised to new

samples (not included in the training phase). The built model should avoid

overfitting and underfitting. Overfitting occurs when the model is trained

perfectly (by an increasing number of hidden layers). Underfitting occurs when

the model has limited generalisation because of inadequate training where

essential features are not detected.

4.4.6 Application Considerations

The framework adopted a semi-supervised approach. In supervised detection, the model

is trained on labelled instances in which each record is labelled as normal or abnormal

before entering the operation mode, which is expected to recognise unlabelled instances.

The supervised approach suffers two limitations: first, if the system experiences

instances that do not occur in training samples, it will fail to predict them. In network

anomaly detection, new attacks (samples) persistently emerge. Second, the training

sample is usually imbalanced because attacks are less frequent in network traffic, which

negatively affects the quality of the generated model during the training. In the

unsupervised approach, the model can identify the structure of the data. For anomaly

detection, this approach assumes that the frequency of anomalies is lower than those

corresponding to normal behaviour. This assumption is likely to affect detection

91

accuracy. For example, in DoS attacks, the attacker floods the system with an enormous

number of requests; in such cases, the frequency of abnormalities may surpass regular

traffic records.

The framework adopted a semi-supervised approach in which the system was trained

using a typical dataset to build the model. Subsequently, during the testing (or

operation) mode, abnormal samples could be discriminated by the model. If the

framework found an unprecedented pattern, it would classify it as an abnormality. This

approach provided the following advantages:

 Theoretically, it was capable of deciding on unprecedented attacks.

 In the training phase, there was no need for a balanced dataset; however, the

model tolerated abnormalities in the dataset.

4.5 The Framework Process

An autoencoder is a neural network consisting of two phases. An encoder is a

deterministic mapping function (f_θ) that transforms an input vector (x) into a hidden

representation (y):

 f_θ (x)≈x’

 𝜃 = {𝐖, 𝑏}, where 𝐖 is the weight matrix and, 𝑏 is bias (8)

A decoder reconstructs the hidden representation (y) to the reconstructed input (x’) via

g_θ.

The autoencoder measures the reconstruction error between x’ (reconstructed) and the

input (x) to minimise this error (information loss):

𝐽(𝑊) = ∑ ||𝑥𝑛 − 𝑥′
𝑛 || (9)

where J(W) is the cost function to minimise the cost.

 Arg min (𝐽(𝑊)){𝑤,𝑤′ ,𝑏,𝑏,} (10)

where w and b are encoder weights and biases, respectively, and w’ and b’ are weights

and biases, respectively, for the decoder.

92

Various functions such as mean squared error may be used as cost functions. For cost

optimisation, several options, including SGD and Adam optimiser, are available.

RBMs are energy-based models in which each feature configuration is assigned a scalar

energy [10]. The learning process updates the energy function to ensure the shape has

desirable properties. The probability distribution of the energy function is shown in

Formula (11):

 p(x) = e^(−E(x))/Z (11)

where Z is the partitioning function, defined in (12):

 Z= ∑ 𝒆−𝑬(𝒙)
𝒗 (12)

Boltzmann machine’s energy function is defined in (13):

 E(x) = −x^T W x−b^T x (13)

where W is weight matrix and b is the bias parameter.

To enhance the RBM, hidden units were introduced. RBMs are a type of Boltzmann

machine with restrictions on connections between visible–visible and hidden–hidden

units. The energy function of RBMs is represented by (14):

 E(v,h) = −b^’v−c^’h−h’Wv (14)

where b’ and c’ are the biases for visible and hidden units, respectively, and W is the

weight of connections between hidden and visible units.

The autoencoder was implemented with an input layer equal to the length of the input

vector. Several layers were added to the encoder. Weight matrices were defined to

construct connections between each layer and its subsequent layer. For the decoder, the

output of the encoder (final hidden layer) was the input for the decoder, followed by a

series of hidden layers with associated weight matrices. Data were passed to the

framework as a single dimensional vector in which each element in the array

represented a single feature. The input data were sliced into batches. For each input

vector, the encoder used the activation function to define neuron status. Functions such

93

as sigmoid, tanh or ReLu are operable by autoencoders. The activation function was

applied to each layer. The sigmoid function used the weight matrix, input vector and

bias vector as inputs, with outputs in the sigmoid function being either 0 or 1 for each

neuron. The encoder used the same activation function to reconstruct the input from the

final layer in the encoder. The main goal of the autoencoder was to rebuild a similar

version of the input with minimal error, where the error does not equal zero. Otherwise,

the model would suffer a generalisation problem. After reconstruction, the model

measured the distance between the input and the output. Several functions were utilised

to find the distance or reconstruction error. For example, mean squared error calculated

the summation of squared difference for each neuron in the input and its corresponding

neuron in the output, divided by the number of neurons in one vector.

The model used an optimiser to adapt weights and biases to reduce reconstruction

errors. For example, the Adam optimiser combined RMSProp and SGD to store an

exponentially decaying average of past squared gradients and an exponentially decaying

average of past gradients.

Through several epochs, the model reconstructed and optimised until the network had

been established (experimentally). The next step was to pass the reconstruction error to

the second phase. The reconstruction errors were stored in a one-dimensional array and

were input to a clustering algorithm such as k-means. k-means initialised the cluster

centres randomly before allocating each reconstruction error to the nearest cluster. The

distance was measured using specific functions such as Euclidean distance. Then, it

calculated the new centre for each cluster by minimising the sum of the squared distance

of its elements.

A similar reconstruction procedure was conducted for RBMs; however, RBMs involved

different steps following the reconstruction.

Activations were combined with individual weights and biases. Results were passed to

the visible layer. The RBM reconstructed data by making several forward and backward

passes between the visible and hidden layers. Samples from probabilistic tensor selected

the input in the reconstruction phase. The same weight matrix and visible layer biases

were used for the sigmoid function. The output produced was a reconstruction, which

approximated the original input.

94

RBM as an energy-based probabilistic model defines a probability distribution as:

 p(v) = ∑ 𝑷(𝒗, 𝒉) = ∑
𝒆−𝑬(𝒗,𝒉)

𝒁𝒉𝒉 where Z = ∑ 𝒆−𝑭(𝒗)
𝒗 (15)

where F(v) is the free energy function = −𝒍𝒐𝒈 ∑ 𝒆−𝑬(𝒗,𝒉)
𝒉

 p(v) = ∑ 𝑷(𝒗, 𝒉) = ∑
𝒆−𝑬(𝒗,𝒉)

∑ 𝒆−𝒍𝒐𝒈 ∑ 𝒆−𝑬(𝒗,𝒉)
𝒉𝒗

𝒉𝒉 (16)

An energy-based model can be learned by performing SGD on the empirical negative

log-likelihood of the training data, where the log-likelihood and the loss function are:

 𝐿(𝜃, 𝑉) =
1

𝑁
∑ 𝑙𝑜𝑔 𝑝(𝑣𝑖)𝑣𝑖𝜖𝑉 and 𝑙(𝜃, 𝑉) = −𝐿(𝜃, 𝑉) (17)

Then, the data negative log-likelihood gradient has the following form:

 −
𝑑𝑙𝑜𝑔𝑝(𝑣)

𝑑𝜃
=

𝑑𝐹(𝑣)

𝑑𝜃
− ∑ 𝑝(�̃�)�̃�

𝑑𝐹(�̃�)

𝑑𝜃
 (18)

 −
𝑑𝑙𝑜𝑔𝑝(𝑣)

𝑑𝜃
=

𝑑𝐹(𝑣)

𝑑𝜃
−

1

|𝑁|
∑ 𝑝(�̃�)�̃�𝜖𝑁

𝑑𝐹(�̃�)

𝑑𝜃
 (19)

where v’ is a sample of N.

To minimise loss, we must maximise the product of probabilities assigned to the

training set dF(v)/dθ:

 P(v) = −𝑏′𝑣 − 𝑐′ℎ − ℎ′𝑊𝑣 or 𝐹(𝑣) = −𝑏′𝑣 − ∑ 𝑙𝑜𝑔 ∑ 𝑒ℎ𝑖(𝑐𝑖+𝑊𝑖𝑣)
ℎ𝑖𝑖 (20)

where E(v,h) = −b^’ v-c^’ h-h^’ Wv and b’ and c, are biases.

From (19) and (20):

 −dlog(p(v))/(dW_ij) = E_v [p(h_i│v)∙v_j]-v_j^((i))∙σ(W_i∙v^((i))+c_i) (21)

Formula (21) defines the loss function as the average negative log-likelihood, with the

objective being to minimise it. To achieve this, we needed the partial derivative of this

function with respect to all its parameters. From Formula (21), optimisation or

minimising loss depended on adjusting the weights (W) and biases (C). SGDs were

used to find the optimal W tensor.

95

The derivation had two terms. The first term is the positive term E_v [p(h_i│v)∙v_j],

which depended on the data (v) and increased the probability of the inputs. The second

was the negative term −v_j^((i))∙σ(W_i∙v^((i))+c_i), which depended on the model

and decreased the probability of the output generated by the model.

The positive phase increased the probability of training data.

The negative phase decreased the probability of samples generated by the model.

The negative phase was difficult to compute; therefore, we used a method known as

contrastive divergence (CD) to approximate it. It was designed in such a way that the

direction of the gradient estimate was somewhat accurate, even when the size was not

(in real-world models, more accurate techniques such as CD-k or PCD are used to train

RBMs). During the calculation of CD, we used Gibbs sampling to sample from our

model distribution.

CD is a matrix of values that were computed and used to adjust the values of the W

matrix. Changing W incrementally led to the training of W values. Subsequently, at

each step (or epoch), W was updated to the new value W’ using the following equation:

 W’ = W+alpha∗CDW’ = W+alpha∗CD (22)

Here, alpha is some small step rate, also known as the ‘learning rate’.

4.6 Framework for Software-Defined Networks

This section discusses the integration of the proposed detection system in the SDN

model. The actual integration is beyond the scope of this research. Multiple intrusion

detection applications have been developed to detect malicious activities in SDN

networks. For example, the ODL controller uses the Defense4All application to detect

and mitigate DDoS attacks. However, the application does not protect the controller

itself; rather, it deploys a set of rules to protect the network at its edges. In the event of

malicious activity, the Defense4All application requests network information from the

controller and acts through its attack mitigation module. Security limitations of this

application include the following:

96

 The application must first communicate with the controller to gather statistics

and raw data used by the IDS to decide whether an activity is malicious.

Consequently, the controller is exposed to the threat before the decision is made.

 The controller’s location in the architecture makes it vulnerable to new types of

attacks that require novel mechanisms. For example, mechanisms to ensure

security in communications between the controller and the IDS should be

present.

 Controller software may be prone to traditional software vulnerabilities, which

require advanced detection techniques such as deep packet inspection.

Figure 4.6 shows the deployment of the proposed system. Integrating the IDS as an

extension of the controller plane provided the following advantages:

 Centralisation: Figure 4.6 shows the deployment of classical IDS dispersing over

the network, where it protects a network portion or set of them. The proposed

architecture takes advantage of the centralisation feature of SDN, in which the

proposed IDS has a global view of the entire network. This deployment protects

higher, lower and control planes. Compared to the deployment of IDS in

conventional networks shown in figure 4.7, the proposed deployment offer

global view and centralisation, which boost the performance.

Figure 4.6. Deployment of intrusion detection systems in software-defined network

architecture.

Network

Traffic

 Packet

Arr.

Flow

Sel-ection

Table

Selection

Key

Extract

Act-ion

App.

 SDN Switch

ID

S

Control

Plane

C
la

ssifie
r

OpenFlow protocol

97

 In extensibility scenarios, where the IDS is responsible for attacks, its

positioning at the control plane mitigates threat propagation.

 The deployment protects the controller itself because the IDS is deployed as a

plug-in that works with the controller, rather than as a component managed by

the controller.

Figure 4.7. Deployment of intrusion detection systems in traditional networks.

For instance, ODL provides a model-driven service abstraction layer through which

new functions can be added to the controller.

4.7 Framework Features

We proposed a framework based on DL for attack detection in network traffic. We

investigated various aspects of applying DL for network anomaly detection. This

research focused on unsupervised algorithms because they have the potential to detect

novel attacks. We provided a comparative study of autoencoders and RBMs. Given that

it is not possible to use USDL as a standalone for anomaly detection, we adapted

algorithms for anomaly detection purposes. The proposed detection framework

consisted of two phases: the first phase was based on unsupervised DL algorithms,

while in the second phase, the outputs were forwarded to a simple clustering machine

learning algorithm. Two unsupervised DL algorithms were used to demonstrate

prediction accuracy. Therefore, the framework provided the following advantages:

98

 Proposed and implemented a threat detection framework: The framework was

applicable to different networking models, including conventional networks,

SDN and IoT.

 The framework provided a method of solving the problem of classical clustering

algorithms such as k-means, which performs poorly in high-dimensional data.

The use of unsupervised DL as a step to reduce dimensionality dramatically

enhanced the accuracy of k-means.

 The framework adopted the reconstruction errors produced from the DL

algorithms as a boundary decision for anomaly detection instead of applying the

unsupervised algorithms as a pre-training step only. However, the decision did

not rely on a simple regression procedure; a clustering approach was adopted as

reconstruction errors are not linearly separable.

 Compared the accuracy of two major unsupervised DL algorithms: RBMs and

autoencoders. The analysis shows the framework achieved an accuracy of over

99% with the integration of the autoencoder and the k-means.

4.8 Summary

This chapter introduced a framework for network anomaly detection. The framework

employed USDL in the first phase and k-means or mean a shift in the second phase.

Several related works have used deep learning to reveal anomalies in network traffic.

This chapter provided a theoretical foundation for the framework implementation. This

foundation defined six design principals. The design principals consider the

requirements for the network anomalies identification. The small number of features in

network traffic packets represents one of the obstacles for deep learning as it shines with

massive data. To tackle this problem, an approach similar to kernel trick is used with

autoencoders, where the inputs are projected on a higher dimension. Also, this chapter

has introduced some new criteria, in place of the threshold, to distinguish the normal

from the abnormal, where it is not accurate to consider the absolute reconstruction error

for that distinction.

The chapter has also discussed the ways for deciding the number of hidden layers and

the number of neurons at each layer. The limitations of the inputs derived from the

number of features in each packet imposes represents a challenge to use deep learning

algorithms.

99

 The chapter discussed the potential of applying DL as a pre-training phase to reduce

dimensionality. Dimensionality reduction is an essential step to improve the detection

accuracy of network anomaly detection. The research focused on unsupervised

algorithms because they are more likely to detect new threats. The study focused on

autoencoders. The chapter presented a set of principles used in the design process,

including dimensionality reduction and the use of reconstruction errors for the decision.

Additionally, the chapter discussed the integration of the framework into the SDN

networking model.

100

Chapter 5: Simulation Studies

This chapter provides the implementation of the framework proposed in the previous

chapter. The implementation included four scenarios—for each scenario, the first phase

used a DL algorithm, either an autoencoder or an RBM, and the second phase used a

clustering algorithm, either k-means or mean shift. This chapter introduces the required

tools and libraries and provides an in-depth discussion of the dataset, feature selection

and normalisation procedures. The chapter presents the critical code snippets required

for the framework and how the code is related to workflow and algorithms provided in

Chapter 4. Additionally, a detailed description is provided for training, testing and

tracking the data lifecycle during the execution.

The chapter is divided into five sections. The first section introduces the simulation

goals and generic descriptions of the simulation procedures. The second section outlines

the various simulation scenarios. The third section presents the DL tools and various

Python modules used for coding. The fourth section is an in-depth discussion of the

dataset and its limitations and rationale for using it in the simulation. The fifth section,

which is divided into two subsections representing each of the scenarios, maps the

framework design to implementation. The final section provides a chapter summary and

conclusion.

5.1 Simulation Overview

The proposed anomaly detection framework was based on unsupervised DL. The

framework utilised USDL in a semi-supervised mode in which labelled normal traffic

was passed through the framework in the training phase. During the testing phase, both

normal and abnormal traffic was passed through the framework—because the

framework could detect normal traffic, we could classify the other samples as abnormal.

The simulation aimed to:

 implement the proposed detection framework using a state-of-the-art DL library,

Google TensorFlow

 implement an autoencoder and an RBM in the context of networking anomaly

detection

101

 experimentally evaluate the application of USDL algorithms for network

anomaly detection

 compare the accuracy of autoencoders and RBMs in different scenarios.

5.1.1 Simulation Scenarios

The simulation was conducted in two main scenarios based on autoencoders and RBMs,

respectively. In each scenario, there were two sub-scenarios. The main scenarios

involved the implementation of the algorithms for autoencoders and RBMs. The sub-

scenarios used two different simple classical algorithms, k-means and mean shift

algorithms, at the second phase for clustering. The scenarios occurred as follows:

1. Autoencoder phase followed by k-means clustering

2. Autoencoder phase followed by mean shift clustering

3. RBM phase followed by k-means clustering

4. RBM phase followed by mean shift clustering.

The purpose of using different clustering algorithms in the second phase was to ensure

the accuracy of the DL algorithm results. Figure 5.1 depicts the flowchart for the first

scenario involving autoencoder and k-means. The other scenarios had the same flow.

Figure 5.1. Simulation scenarios flowchart.

102

Each of the scenarios included the following process:

 Data normalisation: converted the dataset to a specific numerical format

processable by the USDL algorithm

 Application of USDL: combined the training and testing phases as well as

several sub-processes depending on the type of the algorithm; however, the

necessary process included calculating weights, outputs, loss and optimisation

 Clustering of the reconstruction error (loss): included the application of a simple

clustering procedure to a one-dimensional array of inputs.

5.2 Simulation Tools: TensorFlow and SciKit

TensorFlow was developed by Google’s Brain research team as an open-source

framework for machine learning research and industrial applications [23]. It focuses on

current trends in machine learning, specifically DL. TensorFlow takes its name from

neural networks operations—any neural network consists of creating tensors

(multidimensional arrays) for input, weights, biases and output. Computations are done

in a graph model—graphs consist of nodes (operations for example activation functions

and optimisation) and edges (data for example inputs and biases). In this simulation, we

used TensorFlow for two reasons:

 TensorFlow, based on GitHub statistics and Stack Overflow, is the most widely

used framework in DL [146].

 TensorFlow provides basic support for both algorithms: autoencoders and

RBMs.

In all simulation scenarios, DL algorithms were developed using TensorFlow libraries.

SciKit is the source Python library for data mining and analysis [147]. SciKit was used

to implement the clustering algorithms (i.e. k-means and mean shift).

5.3 Dataset

KDD99 is the most widely used dataset in machine learning and intrusion detection.

The dataset represents real collected network traffic data. The dataset includes

4,898,431 traffic records for training and 311,029 records for testing [148].

103

Table 5.1. KDD99 Input Features

Feature Name Description Type

Duration Length (number of seconds) of the connection Continuous

Protocol type Type of protocol, e.g. TCP, UDP, etc. Discrete

Service Network service on the destination, e.g., HTTP, telnet, etc. Discrete

src_bytes Number of data bytes from source to destination Continuous

dst_bytes Number of data bytes from destination to source Continuous

flag Normal or error status of the connection Discrete

land 1 if connection is from/to the same host/port; 0 otherwise Discrete

wrong_fragment Number of ‘wrong’ fragments Continuous

urgent Number of urgent packets Continuous

hot Number of ‘hot’ indicators Continuous

num_failed_logins Number of failed login attempts Continuous

logged_in 1 if successfully logged in; 0 otherwise Discrete

num_compromised Number of ‘compromised’ conditions Continuous

root_shell 1 if root shell is obtained; 0 otherwise Discrete

su_attempted 1 if ‘su root’ command attempted; 0 otherwise Discrete

num_root Number of ‘roots’ accessed Continuous

num_file_creations Number of file creation operations Continuous

num_shells Number of shell prompts Continuous

num_access_files Number of operations on access control files Continuous

num_outbound_cmds Number of outbound commands in an FTP session Continuous

is_hot_login 1 if the login belongs to the ‘hot’ list; 0 otherwise Discrete

is_guest_login 1 if the login is a ‘guest’ login; 0 otherwise Discrete

Count
Note: The following features refer to these same-host

connections
Continuous

serror_rate % of connections that have ‘SYN’ errors Continuous

rerror_rate % of connections that have ‘REJ’ errors Continuous

same_srv_rate % Of connections to the same service Continuous

diff_srv_rate % Of connections to different services Continuous

srv_count
Number of connections to the same service as the current

connection in the past two seconds
Continuous

srv_serror_rate % of connections that have ‘SYN’ errors Continuous

srv_rerror_rate % of connections that have ‘REJ’ errors Continuous

srv_diff_host_rate % Of connections to different hosts Continuous

104

The dataset contained four types of attacks:

 DoS attacks: Attackers exhaust target resources, such as computations and

memory, by flooding the target host with an enormous number of requests; the

victim host denies legitimate requests.

 User to root attacks: Privilege escalation attacks in which the user obtains access

(usually legitimate), then escalates access to the root role, where the attacker has

full access to the compromised system.

 Remote to local attacks: The attacker exploits application/system vulnerabilities

to gain access to the system.

 Probing attacks: Reconnaissance attacks in which the intruder gathers

information about the system, such as open ports, operating systems and various

versions of protocols and applications.

Table 5.2. KDD99 Dataset Statistics

Class Training set

Normal 97,278

Probe 41,102

Denial-of-service 3,883,370

Remote to local 1,126

User to root 5,252

Total 4,898,431

KDD99 is extensively used in intrusion detection research. However, it has been

heavily criticised [148]. One of the significant issues associated with KDD99 is data

redundancy. During the training, records were selected randomly, and testing samples

were selected manually from different locations within the file to avoid redundancy.

Additionally, redundancy is one of the causes of highly correlated data problems, which

is discussed in the following chapter. However, the use of KDD99 was not avoidable in

this research because most related work has been benchmarked to this dataset.

A sample data record is shown below:

0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.00,0.00,0

.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,normal

105

Records were labelled as either normal or abnormal—these labels were used for result

validation, specifically to identify the number of normal and abnormal records in each

identified cluster.

The data in its original format was not calculable because the algorithms processed

numerical data only; hence, it was subjected to data normalisation processing.

Normalisation was conducted in two steps. The first step was to replace discreet fields

with continuous fields:

pdic = {1:’domain_u’, 2:’systat’, 3:’tftp_u’, 4:’link’, 5:’nnsp’, 6:’sql_net’,7:’netbios_dgm’, 8:’courier’, 9:’uucp’,
10:’ftp_data’, 11:’time’, 12:’gopher’, 13:’mtp’, 14:’nntp’, 15:’telnet’, 16:’finger’, 17:’echo’,18:’imap4’, 19:’pop_2’,
20:’other’, 21:’netbios_ns’, 22:’private’, 23:’netstat’, 24:’shell’,25:’eco_i’, 26:’kshell’, 27:’domain’, 28:’discard’,
29:’efs’, 30:’tim_i’, 31:’ldap’, 32:’hostnames’, 33:’printer’, 34:’supdup’, 35:’pm_dump’,36:’auth’, 37:’IRC’,
38:’iso_tsap’, 39:’netbios_ssn’, 40:’ntp_u’, 41:’harvest’, 42:’Z39_50’, 43:’smtp’,44: ‘pop_3’, 45:’aol’, 46:’ecr_i’,
47:’csnet_ns’, 48:’whois’, 49:’ftp’, 50:’remote_job’, 51:’X11’, 52:’sunrpc’, 53:’urh_i’, 54:’vmnet’, 55:’http’,
56:’urp_i’,57: ‘rje’, 58:’login’, 59:’ssh’, 60:’http_443’, 61:’klogin’, 62:’uucp_path’, 63:’http_8001’, 64:’ctf’,
65:’daytime’, 66:’name’, 67:’http_2784’, 68:’red_i’, 69:’bgp’, 70:’exec’, 71:’icmp’}

rdic = {v: k for k, v in pdic.items()}

pro.append (tmp[4])

tmp[4] = rdic[tmp[4]]

sdic = {‘S2’:1, ‘finger’:2, ‘X11’:3, ‘Z39_50’:4, ‘exec’:5, ‘courier’:6, ‘netstat’:7, ‘csnet_ns’:8, ‘ecr_i’:9, ‘private’:10,
‘nnsp’:11, ‘hostnames’:12, ‘iso_tsap’:13, ‘ntp_u’:14, ‘ftp_data’:15, ‘name’:16, ‘discard’:17, ‘uucp_path’:18, ‘S3’:19,
‘smtp’:20, ‘SH’:21, ‘RSTOS0’:22, ‘ctf’:23, ‘ldap’:24, ‘urh_i’:25, ‘uucp’:26, ‘shell’:27, ‘echo’:28, ‘systat’:29,
‘http_443’:30, ‘red_i’:31, ‘urp_i’:32, ‘netbios_dgm’:33, ‘aol’:34, ‘pm_dump’:35, ‘RSTO’:36, ‘whois’:37,
‘domain_u’:38, ‘bgp’:39, ‘time’:40, ‘netbios_ssn’:41, ‘tim_i’:42, ‘other’:43, ‘pop_2’:44, ‘OTH’:45, ‘kshell’:46, ‘ftp’:47,
‘link’:48, ‘imap4’:49, ‘rje’:50, ‘sunrpc’:51, ‘RSTR’:52, ‘domain’:53, ‘harvest’:54, ‘REJ’:55, ‘supdup’:56, ‘http_2784’:57,
‘tftp_u’:58, ‘http_8001’:59, ‘SF’:60, ‘sql_net’:61, ‘vmnet’:62, ‘gopher’:63, ‘http’:64, ‘S0’:65, ‘ssh’:66, ‘IRC’:67,
‘nntp’:68, ‘netbios_ns’:69, ‘remote_job’:70, ‘S1’:71, ‘login’:72, ‘telnet’:73, ‘mtp’:74, ‘eco_i’:75, ‘efs’:76, ‘klogin’:77,
‘pop_3’:78, ‘daytime’:79, ‘printer’:80, ‘auth’:81}

tmp[5] = sdic[tmp[5]]

pro.append(tmp[5])

tmp.pop()

ntmp = tmp[2:]

or z in range(len(ntmp)):

ntmp[z] = float (ntmp[z])

ntmp.insert(0, str (tmp[0]))

ntmp.insert(1, str(tmp[1]))

st = “ “.join(str(x) for x in ntmp)

row.append(st)

print (len(row[2]))

print ((row[2:10]))

print (len(row))

with open(‘c:\\Tsoutfile.txt’, mode=‘wt’, encoding=‘utf-8’) as myfile:

for lines in row:

print(lines, file = myfile)

myfile.close()

106

For example, the second field service type was replaced by the following values. A

Python script was written to sweep the training and testing data to find all continuous

values and replace them with numeric values:

1.0 55.0 60.0 215.0 45076.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The second step was to scale the entire record to values in [0, 1]—for each field, the

maximum value in the entire dataset was found, then all fields were divided by the

maximum value. The record below is a sample of the final normalised data:

0.0 0.0 0.33 0.77 0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0

0.03 0.03 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1 0.63 1.0 0.0 0.04 0.04 0.0 0.0 0.0

The primary reason for scaling the data between 0 and 1 was the choice of activation

function. The activation function used in the model implementation was sigmoid, which

facilitated the normalisation of the input and improved the experimental results.

Normalisation at this stage was performed using another Python script, which swept the

entire dataset to find the largest value in each field, then divided the field in the entire

dataset by the heights value as show below:

maxval2 = [66366.0, 3.0, 71.0, 71.0, 62825648.0, 32317698.0, 1.0, 3.0, 6.0, 233.0, 5.0, 1.0, 942.0, 1.0,
2.0, 1013.0, 100.0, 5.0, 7.0, 0.0, 1.0, 1.0, 511.0, 511.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 255.0, 255.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

maxval = maxlist(maxval1,maxval2)

with open(‘c:\\Troutfile.txt’,’r’) as f2, open(‘c:\\Troutfileb.txt’,’w’) as f :

for line in f2:

 fieldsx = line.split() # parse the columns

 fields = ieldsx[4:]

 intro = fieldsx[0:4]

 rowdata = [float(i) for i in fields] # convert text to numbers

 if len(data) = 0:

 data = rowdata

 normls = divlist(rowdata,maxval) # accumulate the results

 rec = intro + normls

 st = " ".join([str(i) for i in rec])

 print(st, file = f)

107

5.4 Scenario Implementation

The first phase in the proposed framework included the unsupervised DL algorithm for

dimensionality reduction. Autoencoders and RBMs were chosen for two reasons: first,

unsupervised DL can be classified as two main categories, non-probabilistic models and

probabilistic (generative) models. The two algorithms selected represent both

categories. Additionally, both algorithms have been used in many extensions—for

example, autoencoder has been used in stacked, sparse and denoising autoencoders, and

RBM has been used in deep belief networks and conditional and gated RBMs. As part

of the analytical study, a comparison of both algorithms in the domain of network

anomaly detection was conducted. In the following subsection, the detailed

implementation is demonstrated using TensorFlow and other Python libraries. The

demonstration includes model building, activation and optimisation functions.

5.4.1 Scenarios 1 and 2

Autoencoders are a neural network with symmetric input and output layers with respect

to the number of neurons. Several hidden layers are added between the input and output

layers. Scenario 1 was divided into two parts: the first contained the input and number

of hidden layers (encoders), and the second contained the output and the same number

of the hidden layers in the encoder. The number of neurons in each layer was identical

to the number in the encoder. Additionally, the final layer in the encoder was the first

used for the decoder.

In this implementation, the encoder included two layers after the input layer:

X = tf.placeholder(“float”) [None, 41])

Placeholder is a variable that created a tensor that was subsequently populated, allowing

the creation of the model without the actual data. Once the model was built, then the

data were inserted into it. X is a TensorFlow tensor variable used to load the 41 features

of a single IP packet from the KDD99 dataset; the float defined the valid data types to

be inserted:

Encoder:

def encoder(x):

108

 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[‘encoder_h1’]),

 biases[‘encoder_b1’]))

 # Encoder second layer with sigmoid activation #2

 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[‘encoder_h2’]),

 biases[‘encoder_b2’]))

 return layer_2

The autoencoder consisted of two parts: the encoder, the main goal of which was to find

the most important features in the data, and the decoder, the main goal of which was to

reconstruct the original data with minimum error. Each phase contained a series of

latent layers, which should be symmetric around the middle layer, which is the last in

the encoder and the input for the decoder. Figure 5.2 depicts the internal structure of the

autoencoder—the red part represents the encoder, while the green represents the

decoder.

For the implementation, we deployed two hidden layers, n_hidden_1 and n_hidden_2,

for 20 and five neurons, respectively. The following chapter provides a more detailed

rationale for the number of neurons in hidden layers, with a comparative analysis of the

results of different implementations.

Figure 5.2. The internal structure of the autoencoder intrusion detection system.

The second hidden layer contained five neurons, which represented the most significant

features in the data. W represents the weight tensor, which connected the input layer

with the first layer and biases for the first layer. In this implementation, there were four

41
5

41
20 20 IP Packet

Features

5

‘encoder_h1’
‘decoder_h1’

‘encoder_h

2 ‘decoder_h2’

109

weight tensors linking each layer to the following shown in Figure 5.2: ‘encoder_h1’,

coder_b2’, ‘decoder_h1’ and ‘decoder_h2’. The dimension of each tensor was

calculated by multiplying the number of neurons in each layer; for instance,

‘encoder_h1’ = 41*20, with each value representing the connection weight between two

corresponding nodes. Similar to weights, bias tensors were created for each layer:

’encoder_b1’, ‘encoder_b2’, ‘decoder_b1’ and ‘decoder_b2.

The encoder used sigmoid as the activation function. Prior to calculating the activation

value, the tensors of two layers were multiplied using tf.matmul(), biases were added

using tf.add(), then outputs were activation using tf.nn.sigmoid(). Once the output layer

was calculated, the cost or information loss was calculated by measuring the difference

between the input layer and the output layer: tf.reduce_mean(tf.square(input,output)).

n_hidden_1 = 20

n_hidden_2 = 5

Two weight variables for the two layers and two bias tensors were present.

Weights = {

 ‘encoder_h1’: tf.Variable(tf.random_normal([n_input, n_hidden_1]))

 ‘encoder_h2’: tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2]))

 ‘decoder_h1’: tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1]))

 ‘decoder_h2’: tf.Variable(tf.random_normal([n_hidden_1, n_input]))

Biases = {

 ‘encoder_b1’: tf.Variable(tf.random_normal([n_hidden_1]))

 ‘encoder_b2’: tf.Variable(tf.random_normal([n_hidden_2]))

 ‘decoder_b1’: tf.Variable(tf.random_normal([n_hidden_1]))

 ‘decoder_b2’: tf.Variable(tf.random_normal([n_input]))

The decoder phase used Layer 2 from the encoder as the input and reconstructed the

output in two layers: the first layer contained 20 neurons and the second (final) layer

was the output layer. Hence, weights and biases were updated when the Adam optimiser

was used. The Adam optimiser is an efficient version of the SGD optimiser.

The model optimised the cost using tf.train.AdamOptimizer(1e-1).minimize(cost)

def decoder(x):

 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[‘decoder_h1’])

110

 biases[‘decoder_b1’]))

 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[‘decoder_h2’])

 biases[‘decoder_b2’]))

 return layer_2

cost = tf.reduce_mean(tf.square(y_true - y_pred))

optimiser = tf.train.AdamOptimizer(1e-1).minimize(cost)

5.4.2 Training

Once the model was built, the next step was to load the data, divide the data into batches

and then run the session. Data loading was done in two steps: the first step was to read

the data from the KDD99 dataset file and store it in an array using the following code:

reader_train = create_reader(train_file, True, input_dim, 2)

print (type(reader_train))

print (“all”)

packet = C.input_variable(input_dim)

packet_label = C.input_variable(2)

batch_size = 400000

viz_input_map = {

 packet: reader_train.streams.features

 packet_label : reader_train.streams.labels_viz

viz_data = reader_train.next_minibatch(batch_size

 input_map = viz_input_map)

flow_data = viz_data[packet].asarray()

flow_type = viz_data[packet_label].asarray()

trax = np.array (flow_data)

Xtrain = []

Ytrain = []

Yhashed = []

for i in trax:

 elem = i[0].tolist()

 Xtrain.append(elem)

Xtrain = np.asarray(Xtrain).astype(‘float32’)

Each record of the 400 k element was converted to an array and added to the training

data array, Xtrain. The data were divided into batches (total_batches) before being fed

into the model:

sess.run([optimizer, cost], feed_dict={X: batch_xs}

for i in range(total_batch):

111

 batch_xs = Xtrain[i*batch_size:(i*batch_size + batch_size)]

 _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})

Once the model was established by calculating optimal weights and biases, a block of

the testing data was loaded from KDD99 and passed through the autoencoder:

reader_test = create_reader(test_file, True, input_dim, 2)

 print (type(reader_test))

 print ("alll")

 packet = C.input_variable(input_dim)

 packet_label = C.input_variable(2)

 batch_size = 1300

 viz_input_map_t = {

 packet: reader_test.streams.features,

 packet_label: reader_test.streams.labels_viz

 }

 viz_data_t = reader_test.next_minibatch(batch_size, input_map = viz_input_map_t)

 flow_data_t = viz_data_t[packet].asarray()

 flow_type_t = viz_data_t[packet_label].asarray()

 tray = np.array (flow_data_t)

 Ytrain = []

 Ltst= []

 ltest = np.array (flow_type_t)

 for i in tray:

 elem = i[0].tolist()

 Ytrain.append(elem)

 for i in ltest:

 elem = i[0].tolist()

Ltst.append(elem)

 Ytrain = np.asarray(Ytrain).astype(‘float32’)

 Ltst = np.asarray(Ltst).astype(‘float32’)

encode_decode = sess.run(y_pred, feed_dict={X: Ytrain2})

for i in range(len(encode_decode)):

err2.append(sess.run(tf.reduce_mean(tf.squared_difference(encode_decode[i],

Ytrain2[i]))))

The testing samples were inserted in the TensorFlow graph for encoding and decoding:

sess.run(y_pred, feed_dict={X: Ytrain2}). The test data were reconstructed using the

autoencoder, then reconstruction errors were calculated using

tf.squared_difference(encode_decode[i] ,Ytrain2[i]) for each record in the testing batch.

For instance, in the previous code, 1.3 k samples were loaded; by the end of the

112

processing of the first phase, there were 1.3 k reconstruction errors. These

reconstruction errors were forwarded to the next phase. In this scenario, a k-means

algorithm was implemented using the following code:

km = KMeans()

cl = km.fit(npar.reshape(-1,1))

print(cl.labels_)

print (type(cl.labels_))

kcls = [(x,y) for x , y in zip (tst , cl.labels_)]

gcl = list(set(cl.labels_))

print(gcl)

groups = []

for c in gcl:

 clx = [i for i,x in enumerate(cl.labels_) if x == c]

 groups.append(clx)

k-means is a class in the SciKit library. The fit () function took the reconstruction error

array as input and calculated the labels for each sample. Once the k-means labels were

calculated, a verification code was sent to link the original labels (normal or abnormal)

with the labels.

In the second scenario, the k-means phase was replaced with mean shift. The mean shift

used in this scenario was a flat-based kernel similar to PCA. However, the

reconstruction errors were simple vectors where the samples were separable; therefore,

using the kernels would have complicated the computation.

kclusters = []

for i in groups:

 cla = [list(tst[x]) for x in i]

 kclusters.append(cla)

for i in kclusters:

 nrm = 0

 abnr=0

 for x in i

 if (x[0] == 1.0) and (x[1] == 0.0):

 nrm= nrm + 1

 otherwise:

 abnr = abnr + 1

 print(" KCluster normal")

 print(" KCluster abnormal")

113

The code below depicts the implementation of the mean shift. The mean shift is a

centroid-based algorithm, with the main goal to find the modes in smooth data, to

calculate the probability distribution function.

Z = np.array(list(zip(err,np.zeros(len(err)))))

ms = MeanShift(bin_seeding=True)

ms.fit(Z)

labels = ms.labels_

cluster_centers = ms.cluster_centers_

labels_unique = np.unique(labels)

n_clusters_ = len(labels_unique)

mycls= []

for k in range(n_clusters_):

 my_members = labels == k

 #print ("cluster {0}: {1}".format(k, X[my_members, 0]))

 mycls.append(list(Z[my_members, 0]))

5.4.3 Scenarios 3 and 4

An RBM network consists of two layers: the input layer, which is visible, and a hidden

layer. Each record in the KDD99 dataset has 41 features. Hence, the RBM visible layer

has the same number of input neurons.

The hidden layer possesses n neurons. Each hidden unit has a binary state, which we

call sn, and it turns either 0 or 1 with a probability that is a sigmoid function:

𝑓(𝑥) =
1

1 + 𝑒−𝑥

where x is the visible neuron (v0), corresponding weight (w) and hidden bias (hb).

tf.nn.sigmoid(tf.matmul(v0, W) + hb) # calculating sn for hidden units probabilities of

the hidden units.

Each neuron in the visible layer (v) also has a bias (vb). W is a matrix representing the

weights between the input layer and hidden layer nodes. In the weight matrix, the rows

are equal to the visible nodes and the columns are equal to the hidden nodes. Let W be

the tensor of 41*82, where 82 is the number of neurons in the hidden layers:

vb = tf.placeholder ("float", [41]) # visible layer biases

hb = tf.placeholder("float", [41]) #Hidden Layer biases

114

W = tf.placeholder("float", [41,41]) # weights matrix

v0 = tf.placeholder("float", [None, 41]) # visible layer tensor

Inputs were combined with individual weights and bias. Some hidden nodes were

activated.

Figure 5.3. Restricted Boltzmann machine neuron activation.

_h0 = tf.nn.sigmoid(tf.matmul(v0, W) + hb)

h0 = tf.nn.relu(tf.sign(_h0 - tf.random_uniform(tf.shape(_h0))))

Figure 5.3 show the activation of RBM mpdel, the activations were combined with

individual weights and a bias. Results were passed to the visible layer. The RBM

reconstructed data by making several forward and backward passes between the visible

and hidden layers as shown in figure 5.4.

𝑉1

𝑉2

ℎ2

ℎ1

ℎ3

W1

W2

𝑣𝑏

Input, weights, and biases pass to the hidden layer

through the logical function

𝑉1

𝑉2

ℎ2

ℎ1

ℎ3

W1

W2

𝑣𝑏

h1 activated

115

Figure 5.4. Reconstruction phase.

_v1 = tf.nn.sigmoid(tf.matmul(h0, tf.transpose(W)) + vb)

v1 = tf.nn.relu(tf.sign(_v1 - tf.random_uniform(tf.shape(_v1)))) #sample_v_given_h

hTensor1 = tf.nn.sigmoid(tf.matmul(v1, W) + hb)

Samples from probabilistic tensor were selected as h0, which represents the input in the

reconstruction phase. The same weight matrix and visible layer biases were used for the

sigmoid function. The produced output was a reconstruction, which approximated the

original input.

Energy-based probabilistic models define a probability distribution as:

 𝑝(𝑣) =
𝑒−𝐸(𝑣,ℎ)

𝑍
 where 𝑍 = ∑ 𝑒

−𝐸(𝑣,ℎ)

𝑣,ℎ (23)

 𝑝(𝑣) = ∑ 𝑃(𝑣, ℎ)ℎ =
𝑒−𝐸(𝑣,ℎ)

𝑍=∑ 𝑒
−𝐸(𝑣,ℎ)

𝑣,ℎ

 (24)

An energy-based model can be learned by performing (stochastic) gradient descent on

the empirical negative log-likelihood of the training data, where the log-likelihood and

the loss function are:

 𝐿(𝜃, 𝑉) =
1

𝑁
∑ 𝑙𝑜𝑔 𝑝(𝑣𝑖)𝑣𝑖𝜖𝑉 and 𝑙(𝜃, 𝑉) = −𝐿(𝜃, 𝑉) (25)

Then the data negative log-likelihood gradient has the following form:

 −
𝑑𝑙𝑜𝑔𝑝(𝑣)

𝑑𝜃
=

𝑑𝑃(𝑣)

𝑑𝜃
− ∑ 𝑝(�̃�)�̃�

𝑑𝑃(�̃�)

𝑑𝜃
 (26)

𝑣1

𝑉2

ℎ2

ℎ1

ℎ3

W1

W2

W5

𝑏

116

 −
𝑑𝑙𝑜𝑔𝑝(𝑣)

𝑑𝜃
=

𝑑𝑃(𝑣)

𝑑𝜃
−

1

|𝑁|
∑ 𝑝(�̃�)�̃�𝜖𝑁

𝑑𝑃(�̃�)

𝑑𝜃
 (27)

where 𝑣′ is a sample of N.

To minimise loss, we must maximise the product of probabilities assigned to the

training set
𝑑𝑃(𝑣)

𝑑𝜃

 𝑃(𝑣) = −𝑏′𝑣 − ∑ 𝑙𝑜𝑔 ∑ 𝑒ℎ𝑖(𝑐𝑖+𝑊𝑖𝑣)
ℎ𝑖𝑖 (28)

where 𝐸(𝑣, ℎ) = −𝑏′𝑣 − 𝑐′ℎ − ℎ′𝑊𝑣 and b’ and c are biases and hidden layers,

respectively.

From (27) and (28):

 −
𝑑𝑙𝑜𝑔(𝑝(𝑣))

𝑑𝑊𝑖𝑗
= 𝐸𝑣[𝑝(ℎ𝑖|𝑣) ∙ 𝑣𝑗] − 𝑣𝑗

(𝑖)
∙ 𝜎(𝑊𝑖 ∙ 𝑣(𝑖) + 𝑐𝑖) (29)

Equation (29) defines the loss function as the average negative log-likelihood and the

objective was to minimise it. To achieve this, we needed the partial derivative of this

function with respect to its parameters. From Equation (29), optimisation or

minimisation of loss depended on adjusting the weights (W) and biases (C). SGD was

used to find the optimal W tensor.

The derivation has two terms: the positive term 𝐸𝑣[𝑝(ℎ𝑖|𝑣) ∙ 𝑣𝑗], which depends on the

data V, increases the probability of inputs. The second term is a negative term, −𝑣𝑗
(𝑖)

∙

𝜎(𝑊𝑖 ∙ 𝑣(𝑖) + 𝑐𝑖) , which depends on the model and decreases the probability of the

output generated by the model.

117

vb = tf.placeholder ("float", [41])

hb = tf.placeholder("float", [41])

W = tf.placeholder("float", [41,41])

v0 = tf.placeholder("float", [None, 41])

_h0 = tf.nn.sigmoid(tf.matmul(v0, W) + hb) #probabilities of the hidden units

h0 = tf.nn.sigmoid(tf.sign(_h0 - tf.random_uniform(tf.shape(_h0))))

_v1 = tf.nn.sigmoid(tf.matmul(h0, tf.transpose(W)) + vb)

v1 = tf.nn.sigmoid(tf.sign(_v1 - tf.random_uniform(tf.shape(_v1))))

h1 = tf.nn.sigmoid(tf.matmul(v1, W) + hb)

alpha = 1.0

w_pos_grad = tf.matmul(tf.transpose(v0), h0)

w_neg_grad = tf.matmul(tf.transpose(v1), h1)

CD = (w_pos_grad - w_neg_grad) / tf.to_float(tf.shape(v0)[0])

update_w = W + alpha * CD

update_vb = vb + alpha * tf.reduce_mean(v0 - v1, 0)

update_hb = hb + alpha * tf.reduce_mean(h0 - h1, 0)

err = tf.reduce_mean(tf.square(v0 - v1))

cur_w = np.zeros([41, 41], np.float32)

cur_vb = np.zeros([41], np.float32)

cur_hb = np.zeros([41], np.float32)

prv_w = np.zeros([41, 41], np.float32)

prv_vb = np.zeros([41], np.float32)

prv_hb = np.zeros([41], np.float32)

sess = tf.Session()

init = tf.global_variables_initializer()

sess.run(init)

idsys = sess.run(err, feed_dict={v0: Xtrain, W: prv_w, vb: prv_vb, hb: prv_hb})

print (idsys)

epochs = 10

batchsize = 300

weights = []

errors = []

rbf_feature = Nystroem(kernel=‘rbf’, gamma=1, n_components=41, random_state=1)

k = rbf_feature.fit_transform(Xtrain)

#k=Xtrain

for epoch in range(epochs):

 print (epoch)

 for start, end in zip(range(0, 400000, batchsize), range(batchsize, 400000, batchsize)):

 batch = k[start:end]

 print (start)

 cur_w = sess.run(update_w, feed_dict={v0: batch, W: prv_w, vb: prv_vb, hb: prv_hb})

 cur_vb = sess.run(update_vb, feed_dict={ v0: batch, W: prv_w, vb: prv_vb, hb: prv_hb})

 cur_hb = sess.run(update_hb, feed_dict={ v0: batch, W: prv_w, vb: prv_vb, hb: prv_hb})

 prv_w = cur_w

 prv_vb = cur_vb

 prv_hb = cur_hb

 print (cur_w

 errors.append(sess.run(err, feed_dict={v0: k, W: cur_w, vb: cur_vb, hb: cur_hb}))

 weights.append(cur_w)

 print (errors[-1])p

 print (‘Epoch: %d’ % epoch,’reconstruction error: %f’ % errors[-1])

118

The positive phase increased the probability of training data. The negative phase

decreased the probability of samples generated by the model.

Given that the negative phase was difficult to compute, the CD was used to approximate

it. It was designed in such a way that the direction of the gradient estimate was at least

somewhat accurate, even when the size was not (in real-world models, more accurate

techniques such as CD-k or PCD are used to train RBMs). During the calculation of

CD, we used Gibbs sampling to sample from our model distribution.

CD is a matrix of values that were computed and used to adjust the values of the W

matrix. Changing W led to the training of W values. Subsequently, for each step

(epoch), W was updated to a new value (W’) using the equation below:

 W’ = W+alpha∗ (30)

where alpha is the learning rate that adjusts the model to respond to the cost.

To compute the CD, a training sample from X was selected to calculate the probabilities

of the hidden units and sample a hidden activation vector (h0) from this probability

distribution.

 _h0=sigmoid(X⊗W+hb)_h0

 h0=sampleProb(h0)

1. calculate the outer product of X and h0 and call this the positive gradient

2. w_pos_grad = X⊗h0w_pos_grad = X⊗h0 (reconstruction in the first pass)

3. From h, reconstruct v1, take a sample of the visible units, then resample the

hidden activations h1 from this (Gibbs sampling step)

4. _v1 = sigmoid(h0⊗transpose(W)+vb)

5. v1 = sampleprob(v1) (Sample v given h)

6. h1 = sigmoid(v1⊗W+hb)

7. calculate the outer product of v1 and h1 and call this the negative gradient

8. w_neg_grad = v1⊗ (reconstruction 1)

9. Now, CD equals the positive gradient minus the negative gradient

10. CD = (w_pos_grad−w_neg_grad)/

11. Update the weight to be CD times some learning rate

12. W’ = W+alpha∗CD

119

13. At the end of the algorithm, the visible nodes will store the value of the sample.

Then, the tensor of probabilities was selected (from a sigmoidal activation) and samples

were made from all distributions (h0). Hence, the sampling for the activation vector

from the probability distribution of hidden layer values was computed. Samples were

used to estimate the negative phase gradient.

The second phase implements the K-means and mean shift algorithms, to cluster the

reconstruction errors produced by the RBM model as below.

npar= np.array(rcerrs)
km = KMeans(n_clusters=8)
cl= km.fit(npar.reshape(-1,1))
print(cl.labels_)
print (type(cl.labels_))
kcls= [(x,y) for x , y in zip (tst , cl.labels_)]

gcl = list(set(cl.labels_))

print(gcl)
groups = []
for c in gcl:
 clx= [i for i,x in enumerate(cl.labels_) if x == c]
 groups.append(clx)

kclusters = []
for i in groups:

 cla = [list(tst[x]) for x in i]
 kclusters.append(cla)

for i in kclusters:
 nrm = 0
 abnr=0
 for x in i :
 if (x[0]== 1.0) and (x[1]== 0.0):

 nrm= nrm + 1

 else:
 abnr = abnr + 1
 print(" KCluster normal")
 print(nrm)
 print(" KCluster abnormal")
 print(abnr)

X = np.array(list(zip(rcerrs,np.zeros(len(rcerrs)))))
bandwidth = estimate_bandwidth(X, quantile=0.2)
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)

120

5.5 Conclusion

This chapter has discussed the implementation of the proposed framework. The

implementation was conducted for four scenarios. Four algorithms were implemented

autoencoder, RBM, k-means, mean shift. Then these algorithms were integrated

together, where the first phase is either autoencoder or an RBM, then the second phase

is k-means or mean shift. These four scenarios were implemented to ensure the

inclusiveness of results. Tensorflow deep learning framework from Google and Scikit

Python library were during the development. KDD99 dataset is used during the

execution of training and testing steps. In the next chapter, the results are collected,

analysed and evaluated.

121

Chapter 6: Results, Analysis and Evaluation

DL has been used in several anomaly detection applications, including network

anomalies. The framework was trained using a networking traffic dataset before

samples of different sizes were passed through the system for testing. Statistical results

were presented using a confusion matrix to measure several aspects of the framework,

including accuracy and precision. This chapter provides a comparative analysis of

results.

To demonstrate the contribution of this thesis, an in-depth analysis of the results is

presented. The confusion matrix is a standard statistical tool used to evaluate the

performance of machine learning predictors. It was used in this analysis to compare the

performance of the framework with similar approaches used by other researchers. An

essential component of the analysis was to demonstrate correlations between the

theoretical design principles discussed in Chapter 4 and the results summarised in this

chapter.

The first section introduces the analysis goals and methods. The second section

demonstrates the system in the execution (e.g. training and testing outputs for various

implementation scenarios discussed in the previous chapter). Additionally, the results

collected during various stages of execution are collected and organised. The third

section discusses design principles and how they affected implementation. The fourth

section provides a detailed analysis of the results. The fifth section presents an

evaluation of the framework results compared with other similar proposed frameworks.

6.1 Introduction

DL-based anomaly detection has been explored in several papers on network anomaly

detection. A typical approach adopted by researchers is to use unsupervised DL as a

pre-processing step to finding patterns in the data before forwarding the output layer

from the neural network to a second classification or clustering algorithm. The proposed

framework presented in this thesis adopted a similar approach but had different goals, a

unique technical implementation and better accuracy and precision metrics. The primary

purpose for using DL was to reduce the dimensionality of input data, making the second

phase (clustering/classification) more straightforward in terms of computation resources

122

and time and providing higher accuracy in clustering. In its implementation, the

framework simplified the output from the first phase/input to a single value for each

network traffic record in the second phase, unlike similar approaches, which have used

the output from the DL algorithm or, in some cases, hidden layers. Additionally, during

the implementation, the problem of highly correlated data was managed by increasing

the features of the first hidden layers, then reducing them in the subsequent layers.

The implementation described in the previous chapter is examined by using several

samples of different sizes. Different results were collected during successive execution

steps; the output was recorded, then analysed using the confusion matrix. A confusion

matrix provided a set of measurement tools such as accuracy, precision and an F1 score.

The statistical measurements were applied to data collected in different scenarios

described in the previous chapter. There were two primary goals for the analysis

process. The first was to compare the performance of the autoencoder and the RBM in

network anomaly detection to confirm and validate results, with two different

algorithms used in the second phase. Second, analysis statistics were used to compare

the framework performance against other related works.

6.2 Results

Epoch: 0001 cost= 0.027297018

Epoch: 0002 cost= 0.027274711

Epoch: 0003 cost= 0.027273355

Epoch: 0004 cost= 0.027272990

Epoch: 0005 cost= 0.027274150

Epoch: 0006 cost= 0.027274083

Epoch: 0007 cost= 0.027274333

Epoch: 0008 cost= 0.027273895

Epoch: 0009 cost= 0.027274128

Epoch: 0010 cost= 0.030739360

Epoch: 0011 cost= 0.015888004

Epoch: 0012 cost= 0.012710391

Epoch: 0013 cost= 0.027804116

Epoch: 0014 cost= 0.027811782

Epoch: 0015 cost= 0.027810751

Epoch: 0016 cost= 0.027810829

Epoch: 0017 cost= 0.027407454

Epoch: 0018 cost= 0.027407652

Epoch: 0019 cost= 0.027407601

Epoch: 0020 cost= 0.027407428

123

This section provides the results at various stages of the simulation. During the training

phase, the decrease in reconstruction error produced by using optimisers indicated

algorithm convergence. Convergence can be shown on two levels, the epoch and the

batches. The results provided below are samples of the cost over 20 sweeps of the

training samples. Notably, the cost decreased smoothly from the first epoch to the last.

Figure 6.1 shows the performance of two different optimisers: SGD and Adam.

Figure 6.1. Optimisation using stochastic gradient descent and Adam optimiser.

Because the model was constructed using required weights and biases and put through

several iterations to optimise the cost of previous diagrams and to confirm the values,

Sto
ch

astic grad
ien

t d
esce

n
t o

p
tim

iser
A

d
am

 O
p

tim
iser

No. batches

No. batches

R
ec

o
n

st
ru

ct
io

n
 e

rr
o

r
R

ec
o

n
st

ru
ct

io
n

 e
rr

o
r

124

the next step was to subject the system to a testing phase. A sequence of traffic records,

shown below, were loaded into the model.

|labels 1 0 |features 0.0 0.0 0.33 0.77 0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.01 0.0 0.0 0.03

|labels 1 0 |features 0.0 0.0 0.33 0.77 0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0
0.0 0.02 0.02 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.01

|labels 0 1 |features 0.0 0.0 1.0 0.65 0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0
0.0 0.94 0.94 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0

|labels 0 1 |features 0.0 0.0 1.0 0.65 0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0
0.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0

As discussed in the implementation chapter, the testing data contained normal and

abnormal traffic packets for which the records were normalised. Labels were not used

by the system during the clustering; rather, they were used to validate and evaluate the

accuracy achieved. The model provides a single value representing the reconstruction

error for each of the testing records, as shown below.

[0.087900057, 0.12927638, 0.0034244901, 0.00090605248, 0.092122331, 0.011742176, 0.12852195,
0.067880958, 0.15653908, 0.09629482, 0.077442065, 0.08034879, 0.002997661, 0.099123523,
0.13377792, 0.0036739921, 0.077225119, 0.0017729657, 0.0021743756, 0.00093818858, 0.082389377,
0.0020744232, 0.082912229, 0.14693747, 0.076985508, 0.10832905, 0.13633011, 0.075034223,
0.097027674, 0.010716964, 0.082746595, 0.09506125, 0.077529229, 0.091491975, 0.077032238,
0.1488664, 0.14351323, 0.07653933, 0.084063888, 0.15645327, 0.095991701, 0.093754239,
0.095752604, 0.094319329, 0.14569174, 0.00071955862, 0.082940266, 0.091592737, 0.076763138,
0.081645504, 0.075114369, 0.071573846

In the testing phase, both the autoencoder and the RBM produced a list of

reconstruction errors. Figure 6.2 illustrates the visual distribution pattern of

reconstruction errors. The proposed system considered the clustering of these

reconstruction errors. Hence, anomalies converged in the same clusters. Of note in the

previous distribution is that values were not linearly separable. Hence, a simple

regression algorithm was not applicable.

125

Figure 6.2. Reconstruction error distributions for autoencoder and restricted

Boltamann machine.

Additionally, given the nonlinearity of the distribution, defining a threshold for definite

abnormality was not practically feasible. Hence, the next phase of the detection system

was to find patterns automatically in the distribution using the unsupervised approach.

The algorithm in the second phase was simple because the required task involved

clustering for single value inputs.

k-means algorithms take a vector of reconstruction errors as the input and produce a set

of clusters, with each cluster consisting of a set of reconstruction errors. Each value

indicates a record that is normal or abnormal. For example, the bar chart in Figure 6.3

M
ea

n
 s

q
u

ar
ed

 c
o

st
 f

u
n

ct
io

n

No. testing samples

No. testing samples

M
ea

n
 s

q
u

ar
ed

 c
o

st
 f

u
n

ct
io

n

R
es

tr
ic

te
d

 B
o

lt
zm

an
n

 m
ac

h
in

e
A

u
to

en
co

d
er

126

below illustrates the identified clusters, with each bar representing a single cluster. In a

perfect situation, a cluster will contain either normal or abnormal samples; however,

given the relatively small accuracy error—to be discussed in the analysis and evaluation

sections—some clusters may contain both but have dominance for one type, marking

them as either normal or abnormal. In the tables and diagrams below, the mean shift

appears to provide better accuracy; however, in the full analysis, k-means was superior.

Table 6.1. k-Means Cluster Contents

 Normal Abnormal

C1 139 3

C2 4 183

C3 0 302

C4 172 0

C5 0 150

C6 100 2

C7 0 61

C8 184 0

Figure 6.3. k-means graphical representation for clusters.

0% 20% 40% 60% 80% 100%

C1

C2

C3

C 4

C5

C6

C7

C8

Normal

Abnormal

127

Table 6.2. Mean Shift Clusters

 Normal Abnormal

C1 584 1

C2 0 324

C3 15 335

C4 0 38

C5 0 3

Figure 6.4. Graphical representation of mean shift clusters

Figure 6.5 shows the distribution of clusters produced by k-means. The vertical axis

represents reconstruction errors, while the horizontal axis represents clusters. The

distribution demonstrates the nonlinearity of samples where the applicability of

thresholds or regression tasks was not applicable.

0% 20% 40% 60% 80% 100%

C1

C2

C3

C 4

C5

Means-Shift

Normal

Abnormal

128

Figure 6.5. k-means cluster distribution.

Tables 6.3 and 6.4 summarise the results collected for the autoencoder and RBM with

the integration of k-means and mean shift for different sample sizes of 1.3 k and

800,400 records. For k-means, experimental trials were used to decide on cluster

numbers with fewer sampling errors. In contrast, the mean shift did not require a pre-

determined number of clusters. Hence, the number of clusters varied for each algorithm

and there was more focus on the performance of the algorithm. Additionally, the

samples were selected randomly from the KDD99 testing dataset.

1
2

9

Table 6.3. Autoencoder Simulation Scenario Results Summary

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

AE 1,300 k-means
Normal 139 4 0 172 0 100 0 184

Abnormal 3 183 302 0 150 2 61 0

AE 1,300 mean shift
Normal 584 0 15 0 0

Abnormal 1 324 335 38 3

AE 800 k-means
Normal 54 0 0 112 87 0 127 0

Abnormal 1 193 92 0 0 89 0 47

AE 800 mean shift
Normal 0 378 2

Abnormal 298 1 121

AE 400 k-means
Normal 0 59 0 28 55 0 0 54

Abnormal 47 0 72 0 0 43 42 0

AE 400 mean shift
Normal 192 0 4

Abnormal 0 114 90

1
3

0

Table 6.4. Restricted Boltzmann Machine Simulation Scenario Results Summary

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

RBM 1,300 k-means
Normal 1 27 261 1 1 0 82 130

Abnormal 413 154 0 0 0 230 0 0

RBM 1,300 mean shift
Normal 0 26 253 115 80 26 1 2

Abnormal 413 384 0 0 0 0 0 0

RBM 800 k-means
Normal 0 14 1 87 1 159 52 0

Abnormal 253 120 0 0 0 0 0 113

RBM 800 mean shift
Normal 0 14 154 92 52 1 1

 Abnormal 253 233 0 0 0 0 0

RBM 400 k-means

Normal 0 92 25 10 6 0 29 7

Abnormal 62 0 0 0 119 50 0 0

RBM 400 mean shift
Normal 0 4 87 41 25 4 8

 Abnormal 119 111 0 0 1 0 0

 Note. RBM: Restricted Boltzmann machine

131

6.3 Analysis

The confusion matrix is a standard statistical tool to measure the performance of

machine learning classifiers. To apply the confusion matrix as an evaluation tool, the

clustering process is considered a classifier with no prior knowledge about available

classes; however, the overall goal of clustering is to classify similar samples together.

Hence, the difference between the classifier and the clustering algorithms lies in the

starting point in which supervised classifiers have prior knowledge of classes. However,

in essence, both classify samples to a specific group (i.e. a cluster or class). Therefore,

the framework performed the clustering and normal or abnormal labels arising from the

dataset were used in conjunction with the confusion matrix for the analysis. The

confusion matrix shows the measurements illustrated in Table 6.5 below.

Table 6.5. Confusion Matrix Statistics

Sensitivity (recall)

True positive rate (TPR)
TPR = TP/(TP+FN)

Specificity

Specificity (SPC) or true negative rate (TNR)
SPC = TN/(FP+TN)

Precision

Precision or positive predictive value (PPV)
PPV = TP/(TP+FP)

Negative predictive value

Negative predictive value (NPV)
NPV = TN/(TN+FN)

False-positive rate

Fall-out or false-positive rate (FPR)
FPR = FP/(FP+TN)

False-discovery rate

False discovery rate (FDR)
FDR = FP/(FP+TP)

False-negative rate

Miss rate or false-negative rate (FNR)
FNR = FN/(FN+TP)

Accuracy

Accuracy (ACC)
ACC = (TP+TN)/(P+N)

F1 score

F1 score (F1)
F1 = 2TP/(2TP+FP+FN)

Note: True positive (TP): correctly predicts a normal label as normal; true negative (TN): correctly

predicts an abnormal label as abnormal; false positive (FP): incorrectly predicts an abnormal label as

normal; false negative (FN): incorrectly predicts a normal label as abnormal; precision or positive

predictive values (PPV): the proportion of predicted positive cases that were correct; accuracy (ACC): the

proportion of total number of correct predictions; F1 score: considers the balance between precision and

sensitivity or recall (i.e. the weighted average of sensitivity and precision).

132

The analysis process considered various metrics so that comparative studies would be

comprehensive.

The framework predicted three different samples of different sizes (400, 800 and 1,300).

Table 6.6 presents the statistical results for the autoencoder and RBM used in

conjunction with k-means. Accuracy represents how often the framework was correct.

The highest accuracy was achieved by the autoencoder using the lowest number of

samples (400). Unexpectedly, accuracy declined as the number of samples increased.

Additionally, the autoencoder achieved the best accuracy in conjunction with the mean

shift algorithm (presented in Table 6.7). The F1 score represents precision (true positive

results/total true positives by the framework) and recall (number of true positive results

in the total sample). The autoencoder resulted in the highest F1 values, shown in Tables

6.6 and 6.7.

Table 6.6. Confusion Matrix for Autoencoder and Restricted Boltzmann Machine + k-

Means

 1,300 k-means 800 k-means 400 k-means

 AE RBM AE RBM AE RBM

Sensitivity 0.9917 1 0.9974 1 1 1

Specificity 0.9943 0.9661 1 0.972 1 0.9747

Precision 0.9933 0.9443 1 0.9554 1 0.9645

NPV 0.9929 1 0.9976 1 1 1

FPR 0.0057 0.0339 0 0.028 0 0.0253

FDR 0.0067 0.0557 0 0.0446 0 0.0355

FNR 0.0083 0 0.0026 0 0 0

Accuracy 0.9931 0.9785 0.9988 0.9825 1 0.985

F1 score 0.9925 0.9714 0.9987 0.9772 1 0.9819

Note. AE: autoencoder; RBM: restricted Boltzmann machine; NPV: negative predictive value; FPR:

false-positive rate; FDR: false-discovery rate; FNR: false-negative rate.

133

Table 6.7. Confusion Matrix for Autoencoder and Restricted Boltzmann Machine

+Mean Shift

 1,300 mean shifts 800 mean shifts 400 mean shifts

 AE RBM AE RBM AE RBM

Sensitivity 0.9932 1 0.9974 1 1 1

Specificity 0.9789 0.9684 0.9952 0.972 0.9808 0.7241

Precision 0.975 0.9483 0.9947 0.9466 0.9796 0.4793

NPV 0.9943 1 0.9976 1 1 1

FPR 0.0211 0.0316 0.0048 0.028 0.0192 0.2759

FDR 0.025 0.0517 0.0053 0.0534 0.0204 0.5207

FNR 0.0068 0 0.0026 0 0 0

Accuracy 0.9854 0.98 0.9963 0.9813 0.99 0.78

F1 score 0.984 0.9735 0.996 0.9725 0.9897 0.648

Note. NPV: Negative predictive value; FPR: false-positive rate; FDR: false-discovery rate; FNR: false-

negative rate.

To summarise the performance of the framework, the confusion matrix consists of

columns and rows that list the number of testing samples as either predicted or actual

ratios. Figure 6.6 provides a general description of the confusion matrix, which has two

classes—normal and abnormal. The second phase was conducted to validate results

using two different clustering algorithms: k-means and mean shift. The confusion

matrices for both for different samples sizes are shown in Figures 6.7 to 6.18 below.

Figure 6.6. Confusion matrix graphical table.

Predicted

 Actual

 Normal Abnormal

Normal

True Positive
TP

False
Negative FN

Abnormal
False

Positive FP
True

Negative TN

134

Figure 6.7. Autoencoder and k-means

(400 samples)

Figure 6.8. Autoencoder and k-means

(800 samples)

Figure 6.9. Autoencoder and k-means

(1300 samples)

Figure 6.10. Autoencoder and mean shift (400

samples)

Figure 6.11. Autoencoder and mean shift

(800 samples)

Figure 6.12. Autoencoder and mean shift (1300

samples)

135

Figure 6.13. Restricted Boltzmann machine

and k-means (400 samples)

Figure 6.14. Restricted Boltzmann

machine and k-means (800 samples)

Figure 6.15. Restricted Boltzmann machine

and k-means (1300 samples)

Figure 6.16. Restricted Boltzmann machine

and mean shift (400 samples)

Figure 6.17. Restricted Boltzmann machine

and mean shift (800 samples)

Figure 6.18. Restricted Boltzmann machine

and mean shift (1300 samples)

136

6.4 Design Principles in Action

In section 4, six principles were proposed for the framework design. In Chapters 5 and

6, principles were translated to implementation and results, respectively. This section

provides a discussion of the principles according to the output results analysis.

Figure 6.19 Reconstruction errors used for forming clusters.

Figure 6.19 depicts the framework components and the use of reconstruction errors in

the clustering at the second phase. One of the main principles of the framework is

dimensionality reduction, which was used to find patterns in the data. In the past,

datasets have been subject to redundancy issues attributable to repetition of records,

which is a component of DoS attacks. Additionally, the number of the features was not

sufficiently complex for DL algorithms—this problem was not only limited to the

selected dataset, but also to the limited number of the fields in the IP/TCP packet (or

OverFlow header). For example, in image recognition applications, the number of

features is represented by the number of pixels in the image—for a simple image with

600*800, the number of input features will be extremely large compared with 41

features in an IP/TCP packet. Additionally, the dataset or network traffic records

generally only vary in a small number of fields; for example, in the records shown

 RE1 RE2 RE3

41 5
41 82 82

Traffic Record 1

Traffic Record 2

Traffic Record 3

K-means

Normal

 Abnormal

137

below, only 25% of the record fields changed, but many of them were repeated in other

records. This problem translates as a high correlation between data records.

|features 0.0 0.3333 0.6056 0.8451 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0
0.002 0.002 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1608 0.4118 0.44 0.1 0.02 0.02 0.0 0.0 0.0

|features 0.0002 0.3333 0.6056 0.8451 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0
0.002 0.002 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1647 0.4118 0.45 0.1 0.02 0.02 0.0 0.0 0.0

|features 0.0001 0.3333 0.6056 0.8451 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0
0.002 0.002 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1686 0.4157 0.47 0.09 0.02 0.02 0.0 0.0 0.0

|features 0.0 0.3333 0.6056 0.8451 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0
0.002 0.0059 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.1725 0.4157 0.48 0.09 0.02 0.02 0.0 0.0 0.0

The code provided below takes two records as the input list and uses the corrcoef()

function to calculate a matrix of correlations of record 1 with record 1, record 1 with

record 2, record 2 with record 1 and record 2 with record 2. The correlation between the

two records was 0.99998215, which is very high. These problems translate as poor

generalisation for the model.

import numpy as np

record 1 = [0.0, 0.3333, 0.6056, 0.8451, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0, 0.0, 0.0, 0.002, 0.002, 0.0 ,0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.1608, 0.4118, 0.44, 0.1, 0.02, 0.02, 0.0 ,0.0 ,0.0]

record2 = [0.0002,0.3333,0.6056,0.8451,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0,0.0,0.
0,0.002,0.002,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.1647,0.4118,0.45,0.1,0.02,0.02,0.0,0.0,0.0]

correlation = np.corrcoef(record1,record2)

print(correlation)

[[1.0.99998215]

[0.99998215 1]]

To solve this problem, an approach similar to that of kernel PCA was adopted. In kernel

PCA, data are projected onto higher dimensions before dimensionality reduction is

applied. Projecting the data onto high dimensions makes it more separable. Figure 6.20

demonstrates the concept of increasing the dimensionality of the input data (41) to 82

features in the first hidden layer, subsequently reducing the dimensions to five. The

experimental results show the efficiency of the approach. The figure below depicts a

confusion matrix of the results of traditional dimensionality reduction in which the input

was 41, the first hidden layers included 22 features, followed by five neurons layer. The

accuracy in this model was .90, which is lower than the accuracy of > .99 achieved by

the proposed solution.

138

Figure 6.20. System accuracy without increasing neurons in the first hidden layer.

Figure 6.21 shows the correlation propagated to the cluster distribution in which the

clusters are tightly distributed over the reconstruction errors, with spikes for some

clusters (which are slightly different from the other clusters). These strong relationships

complicate the separation on two levels: samples and clusters.

Figure 6.21. Reconstruction error distribution without increasing dimensionality in the

first layer.

Sensitivity 0.9974

Specificity 0.8647

Precision 0.7575

Negative predictive value 0.9987

False-positive rate 0.1353

False-discovery rate 0.2425

False-negative rate 0.0026

Accuracy 0.9042

F1 Score 0.861

139

6.5 Evaluations

To highlight the contributions of this research, a comparative study with similar and

related work was done. For the selected work, which was closely related to this

research, an in-depth study of these approaches, experiment and results were conducted.

These factors were discussed in the previous section in which a comprehensive

comparative study was presented to evaluate and emphasise the intersection and

distinction of this work.

Table 6.8. Related Work Performance

 Algorithms Dataset Performance Statistics

 [139] Discriminative

RBM

KDD99 Accuracy ≈ 84%

 [149] Autoencoder +

classifier

KDD99 Accuracy = 97.85%

Precision = 99.99%

Recall = 97.85%

F-score = 98.15%

False alarm = 2.15%

 [140] Sparse

autoencoder

NSL-KDD Accuracy ≈ 98%

F-score ≈ 98.84%

 [150] SVM and k-

means

KDD99 Accuracy up to 90%

[142] Autoencoder Different

dataset

Accuracy 70–93%

 [151] k-means KDD99 Accuracy 85–95% for different

samples

Unlike the generative RBMs used in this research, the authors in [139] used a

discriminative RBM as the unsupervised pre-step. In their work, RBMs were deployed

as discriminative classifiers or as a standalone supervised classifier, which adds classes

to the input records at the training phase.

In RBM, the p (v,h) formula is:

 (31)

where v and h are visible and hidden units, respectively.

Discriminative RBMs consider the output at the input for the probability distribution:

gu

guE

hvE

e

e
hvp

,

),(

),(

),(

140

 𝑝(𝑣, ℎ, 𝑦)𝛼 exp (−𝐸(𝑣, ℎ, 𝑦)) (32)

where y is the output and E is the energy function.

The goal of the classifier is to optimise p(y/v) instead of p(y,v) in RBM.

During the implementation, the authors adopted a semi-supervised approach in which

the discriminative RBM was trained on normal records only. The KDD99 dataset was

used for training and only around 97 k instances were used. Additionally, from 41

features, 28 were selected. In their results for accuracy, the algorithm showed 84% on

KDD testing data. As one of the proposed scenarios in this thesis, RBM was deployed

as a pre-training phase for k-means and mean shift. The RBM worked as pre-training

feature extractor rather than a single classifier. Similar to discriminative RBM, KDD99

was used. However, all 41 features were selected, and the system was trained using

800 k instances of the training data. RBM with k-means had an accuracy of over 98%,

which represents a significant improvement over the proposed approach in.

In this paper, the authors proposed an anomaly detection framework based on a

variation of the autoencoder known as a non-symmetric deep autoencoder (NDAE)

[149]. Figure 6.22 depicts the framework architecture. The framework was composed of

two phases: an NDAE was used for the first phase and a random forest classifier was

used for the second phase.

Figure 6.22. Using the encoder from deep autoencoders with a classifier.

41 14

28

Classifier

28
14 28 28

Non-symmetric deep

autoencoder 2

Non-symmetric deep

autoencoder 1

141

𝑋1

𝑋2
Ma

ℎ1

W2

𝑋3
ℎ2
ap

ℎ21

Ma

Ma

ℎ12

𝑋′2

𝑋′3

Encoder

𝑋′3

W1

Figure 6.23 shows the difference between a typical autoencoder and an NDAE, which,

unlike the autoencoder, does not include a decoder. At the first layer, a stacked NDAE

was used to encode the input vector, which was then forwarded to the classifier. A stack

of NDAEs was used to increase the depth (i.e., to discover more features) and reduce

the computation complexity of increasing hidden layers.

Figure 6.23. Autoencoders vs. non-symmetric deep autoencoders.

This thesis proposed a similar approach with respect to using two phases, an

autoencoder and a simple algorithm—k-means or mean shift. Additionally, this

approach adopted dimensionality reduction to simplify classification during the second

phase. However, the design considered in this thesis utilised a single autoencoder that

included an encoder and the decoder for the output layers. In contrast to the

abovementioned work, the proposed framework reduced dimensions to a single value

for reconstruction errors.

The authors used the KDD99 dataset for their simulation, using 125 k sample records in

the training phase. Results were analysed using a confusion matrix and contrasted with

another DL algorithm, a deep belief network.

Table 6.9 compares results from NDAE, deep belief network and autoencoder using k-

means (1.3 k samples). The analysis shows a significant improvement of ≈ 15% in

accuracy and recall and a similar decrease in the false alarm rate of ≈ 15%. NDAE

resulted in slightly better precision. F-score, which represents recall and precision, was

superior in the proposed framework. The algorithm used in the second phase involved a

random forest classifier, which is in supervised mode; however, the system lacks the

essential feature of zero-day attack classification. The work proposed in this thesis used

𝑋1

𝑋2

𝑋′2

ℎ1

Ma

𝑋′3

W2

𝑋3

ℎ2

Ma
𝑋′3

Encod

er

Decoder

142

𝑋1

𝑋2

𝑋′2

ℎ1

Ma

𝑋′3

W2

𝑋3

ℎ2

Ma
𝑋′3

Encod

er

Decoder

two unsupervised algorithms, which, as discussed in Chapter 4, increases the probability

of detecting new attacks.

Table 6.9. Performance of NDAE vs. DBN and proposed system in this research.

 Accuracy Precision Recall F-Score False alarm rate

NDAE 85.42 100.00 85.42 87.37 14.58

DBN 80.58 88.10 80.58 84.08 19.42

Autoencoder + k-means 0.9931 0.9933 0.9917 0.9925 0.0067

Note: NDAE: non-symmetric autoencoder; DBN: deep belief network

Figure 6.24. Using the encoder output for classification.

In [140] sparse autoencoders were used in the first layer as a feature extractor;

subsequently, the learned features from the encoder were forwarded to a classifier.

Sparsity improves the generalisation of the algorithm in which a constraint is imposed

on the activation function of each neuron (j) to be close enough to sparsity (𝜌) as in the

formula below:

 �̂�𝑗 =
1

𝑚
∑ [𝑎𝑗

(Bn)
(𝑥(𝑖))]

𝑚

𝑖=1
 (33)

where 𝑎𝑗
(Bn)

 is activation of the 𝑗th neuron of the autoencoder, and 𝑎𝑗
(Bn)(𝑥) is neuron

activation linked to the input.

The learned features of the sparse autoencoder were classified using a softmax

regression layer, as shown in figure 6.25 [140], which is an extension of classical

Classifier

C2

C1

Decoded samples

143

logistic regression for multiclass classification. The authors benchmarked a revised

version of KDD99 dataset—NSL-KDD—by removing redundant records.

A confusion matrix was used for the analysis of the study, showing an accuracy of

≈ 98%. Similar to other approaches discussed, this framework used the entire extracted

features from the first phase as input to the second phase.

Figure 6.25. The proposed classification system based on sparse autoencoder [143].

Autoencoders have been used for anomaly detection based on dimensionality reduction.

However, accuracy has been relatively weak compared with traditional PCA and its

variation achieved a significant improvement in some of the datasets [142]. However, as

proposed in this thesis, adding an extra simple algorithm to cluster the pre- processed

data significantly improved accuracy.

Another approach used k-means clustering in the pre-processing step, with results then

being fed to an SVM classifier. However, the performance was poor, with 90%

accuracy [150]. Another work focused on improving the k-means for intrusion detection

in KDD99, showing unstable results ranging between 85% and 95% [151], compared

with the proposed framework, in which accuracy is more stable and noticeably

improved.

144

Compared with all previously mentioned related works, the proposed framework

(autoencoder + k-means) in this thesis outperformed with respect to accuracy. The

frameworks in [149] and [140] used a similar approach; however, technically, the

proposed framework in this research improves dimensionality reduction, while others

have forwarded the learned features from the DL approach. Additionally, the

comparative study shows the superiority of the adopted approach. Dimensionality

reduction in this work did not involve a complicated second phase, negating the need

for an expensive computation algorithm and improving the performance of available

resources.

6.6 Summary

This chapter presented the execution results for several samples of different sizes. An

output was depicted for every single step execution for the different scenarios discussed

in the simulation chapter. The outputs showed the convergence of the framework (for

the autoencoder and RBM) in which cost optimisation was downgraded during epoch

sweeps. The results, which included samples of the identified reconstruction errors and

their distributions graphs, supported verification of the model in the testing phase.

Further, the clustering results for different scenarios were presented. Each cluster was

shown in two components (normal and abnormal samples), and results verified the

labels associated with the original dataset after clustering.

This chapter presented an analysis of results that evaluated the various combinations

using DL algorithms and clustering algorithms. Given that related works have used the

same approach, a confusion matrix was selected for the analysis process, facilitating

comparison and evaluation. Accuracy and other related measures showed that

autoencoder and k-means outperformed other scenarios.

Additionally, this chapter offered a solution to the problem of highly correlated data and

the limited number of features in network traffic packets. The solution was adopted

from the kernel trick in PCA algorithms in which the original data were projected into a

new dimension where they became separable, followed by an application for

dimensionality reduction in subsequent layers. In a comparison of results for direct

dimensionality reduction and the application of projecting the data in new dimensions,

145

the analysis showed that the first approach achieved 90% accuracy, where the second

approach scored more than 99%.

To highlight the thesis contributions, a comparative analysis was conducted against

related works. At the implementation level, similar research has adopted DL as a pre-

training step before forwarding outputs (decoded hidden layers) to a classifier in the

second phase. Technically, the adopted approach in this thesis differed in that the DL

phase was used as a dimensionality reduction approach, which reduced the output to a

single value for each record. From the results, the framework outperformed all similar

frameworks with regard to accuracy and precision.

146

Chapter 7: Conclusions

SDN architecture provides flexibility and programmability by separating the controller

from the data planes. While this offers many advantages, the risk of attacks on the

flexible control plane makes SDN highly vulnerable to serious security breaches. The

impacts of such attacks are intensified as a direct consequence of the increased agility

and flexibility of SDN that arises from consolidating the control planes of multiple

networking devices into a single central controller.

SDN has introduced a novel networking paradigm. SDN architecture separates the data

planes from the control plane, which generates the flow rules required for data plane

devices to forward packets. Logic is detached from devices to form a new plane known

as the controller. The SDN model simplifies the traditional network and leverages the

management of flexibility and scalability.

SDN had been used in various applications, including in network traffic engineering,

network monitoring and virtualisation. The centralisation and providing a global view

of the entire network provide better network statistics, which support decisions in

network traffic balance and network monitoring. The concept of device abstraction

(separation of device logic into the controller) intersects with virtualisation in which

devices are abstracted and shared. Additionally, SDN has been a driver of several

networking environments, including IoT, cloud computing and wireless networks. The

complexity of these environments increases the complexity of network management in

which SDN boosts networking resilience and abstraction. For example, in infrastructure

as a service cloud computing, tenants share physical computing and networking devices,

while resource sharing is executed through the device virtualisation and abstraction

adopted by SDN.

SDN is also utilised to improve security. The new model provides several applications

for security purposes, including security policy enforcement and verification and threat

detection systems. Programmability and a global network view enable the development

of improved capabilities and abstraction improves the efficiency of hardware.

Nevertheless, security is a significant challenge in SDN networks. Given that a single

entity governs the entire network, the controller is a crucial element in the SDN model.

147

A centralised configuration is highly vulnerable because the controller is an attractive

target for intruders. The severity of the traditional attacks is higher in SDN networks.

Additionally, SDN has an extended attack vector because of the introduction of the

controller.

This thesis investigated current security solutions and their limitations. The study

provided an empirical analysis of SDN controller security to identify, formalise and

quantify security concerns related to the new model. This study explored the threats

related to SDN architecture, specifically those originating from the existence of the

control plane. Controller security was analysed in three stages. The first stage defined

potential threats based on a review of the literature. In the second stage, threats were

demonstrated and modelled using a STRIDE analysis and an in-depth attack-oriented

analysis was conducted using several attack trees. The third stage introduced an

experiment to simulate threats and identify consequences.

The study provides a comprehensive understanding of the problem domain by

identifying the security flaws of SDN. Prior analysis has shown that the controller is the

major weak point in the architecture and is vulnerable to traditional network attacks

such as man-in-the-middle attacks, spoofing and DoS, which primarily arise from two

factors. First, the controller is an entity with more advanced capabilities than those of

classic NOS such as Cisco IOS. These capabilities arise from the more complex

software, which is prone to more significant vulnerabilities. Second, as a centralised

entity with governance over the entire network and the facilitator of communications

between the applications and forwarding planes, the controller may be a single cause of

failure.

A typical networking security measure is the use of IDS, which primarily aim to

identify network threats. Several approaches have been adopted, including signature-

based and anomaly-based detection methods. Signature-based detection approaches

utilise databases of attack signatures, matching traffic against predefined signatures—if

a match occurs, the system raises the alarm of a possible attack. This approach has

limitations in detecting zero-day attacks, for which there are no signatures in the

database. The anomaly-detection approach utilises various methods, including statistical

and machine learning algorithms, to detect threats. Given that this approach does not

require pre-knowledge of threats, it can identify zero-day attacks; however, it

148

commonly produces a high rate of false-positive and false-negative alarms, limiting its

industrial applicability. In this thesis, we proposed a framework for network anomaly

detection based on recent advances in machine learning, specifically DL.

For the solution domain, this thesis proposed a novel threat detection framework based

on unsupervised DL algorithms to classify network threats as anomalies. The

framework consisted of two phases: a DL algorithm and clustering algorithms (either k-

means or mean shift). The DL algorithm represented a pre-training phase, which

simplified the input to the clustering algorithm. The framework was focused on

dimensionality reduction by compressing the dimensions of the input data to a single

value, simplifying and improving the performance of the clustering algorithm during the

second phase.

Dimensionality reduction involved reducing the entire input record to a single value, the

reconstruction error. In other applications of USDL, dimensionality reduction involves

using the encoded layer as a reduced representation of the data and reducing the

dimensionality of data to improve the separation of samples into clusters. However, the

use of autoencoders for dimensionality reduction is limited because they are prone to

exaggerated reductions, negatively affecting model predictions and reducing

generalisation. Notably, the approach presented in this thesis reduced the dimensions of

the data to a single value, which could be clustered using a fast algorithm such as k-

means rather than using expensive computational algorithms, leading to improved

performance.

The use of the DL algorithm in the pre-training phase contributed to solving the curse of

dimensionality related to k-means, which is based on calculating distances between

samples—as the number of samples increases, the distance between them reduces. The

framework solved this problem by reducing the number of inputs based on a key

procedure using autoencoders and RBMs, resulting in more straightforward inputs being

forwarded to the k-means. The framework is based on two unsupervised algorithms,

meaning it can find patterns in data with no previous labelling. Hence, this approach

may be used to detect zero-day attacks.

149

Further, the study provided a comparative evaluation between a generative energy-

based model (RBM) and a non-probabilistic algorithm (autoencoder). Implementation

of the proposed framework design was done using TensorFlow.

DL has achieved unparalleled results in image, speech, signal, text and natural language

processing applications. Network anomaly detection is an area in which DL can

improve detection precision. However, research in this area is limited. In this thesis, we

proposed a semi-supervised DL-based detection framework for discovering network

abnormalities.

The framework employed USDL for the first phase and a simpler algorithm, k-means or

mean shift, for the second phase. Additionally, we experimentally demonstrated the

prediction accuracy of the main USDL algorithms (i.e. autoencoders and RBMs).

Simulation of several scenarios was conducted using the KDD99 network dataset.

During many executions over several testing cycles, data were collected and statistically

analysed. We used TensorFlow as the DL development library. As the name indicates,

TensorFlow expresses matrix flows in a graph model. A TensorFlow graph includes

nodes and edges, with nodes representing mathematical operations and edges

representing multidimensional data arrays (or tensors).

The first stage of the experiment involved building the autoencoder network. The

autoencoder consisted of two passes—the encoder and the decoder—both of which

comprise multiple layers. The dataset (41 training samples) was loaded into

TensorFlow’s tensor dimension. Weight and bias tensors were created for the encoder

and decoder. The dimensions of weights and biases depended on the number of neurons

(or units in the hidden layer). For example, if the input was decoded into five units, this

meant that there would be (41, 5) tensors, with 41 representing some input units

(features of one network traffic record) plus 41 biases. The same dimensions were used

for the decoder. The second step was to train the network. In the forward pass, logits

were used as the activation function, which reconstructed records from the decoded

units, weights and biases for the output. The third step was to compare the original data

against the reconstructed output. A cost function, such as the squared error function was

used to compute data loss. The fourth step was to minimise the cost (in this case, data

loss). Several optimisation algorithms, including Adam optimisers, were used to

150

minimise loss or reconstruction rate. Once the network had settled after various sweeps

of the data chunks (batches), the second phase of testing was conducted. During the

testing, we fed the network with the testing samples to attempt to reconstruct the data.

A systematic analysis using confusion matrices was conducted to evaluate results and

compare them with those of other related works. The simulation showed a significant

accuracy of ≈99% for the integration of the autoencoder and k-means clustering

algorithm.

Given that the use of DL in IDS reduces data dimensionality and the number of features

in network traffic data, we recommend that further investigations be conducted into the

application of DL in IDS.

151

References

[1] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky

and S. Uhlig, ‘Software-defined networking: A comprehensive survey’, in Proc.

IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.

[2] A. Pras et al., ‘Key research challenges in network management’, IEEE

Commun. Mag., vol. 45, no. 10, pp. 104–110, Oct. 2007.

[3] T. Benson, A. Akella and D. Maltz, ‘Unraveling the complexity of network

management’, in Proc. 6th USENIX Symp. Netw. Syst. Design Implement.,

Boston, MA, USA, 2009, pp. 335–348.

[4] Open Networking Foundation (ONF). [Online]. Available:

https://www.opennetworking.org/

[5] B. Raghavan et al., ‘Software-defined internet architecture: Decoupling

architecture from infrastructure’, in Proc. 11th ACM Workshop Hot Topics

Netw., Redmond, WA, USA, 2012, pp. 43–48.

[6] H. Kim and N. Feamster, ‘Improving network management with software

defined networking’, IEEE Commun. Mag., vol. 51, no. 2, pp. 114–119,

Feb. 2013.

[7] S. Sezer et al., ‘Are we ready for SDN? Implementation challenges for software-

defined networks’, IEEE Commun. Mag., vol. 51, no. 7, pp. 36–43, Jul. 2013.

[8] D. Kreutz, F. M. Ramos and P. Verissimo, ‘Towards secure and dependable

software-defined networks’, in Proc. 2nd ACM SIGCOMM Workshop Hot

Topics Softw. Defined Netw., Hong Kong, China, 2013, pp. 55–60.

[9] M. H. Bhuyan, D. K. Bhattacharyya and J. K. Kalita, ‘Network anomaly

detection: Methods, systems and tools’, IEEE Commun. Surv. Tut., vol. 16, no.

1, pp. 303–336, First Quarter 2014, doi: 10.1109/SURV.2013.052213.00046.

[10] I. Mukhopadhyay, M. Chakraborty and S. Chakrabarti, ‘A comparative study of

related technologies of intrusion detection and prevention systems’, J. Inf.

Secur., vol. 2, no. 1, pp. 28–38, Jan. 2011.

[11] A. A. Ghorbani, W. Lu and M. Tavallaee, Network Intrusion Detection and

Prevention Concepts and Techniques. Boston, MA, USA: Springer, 2010.

[12] A. Patcha and J.-M. Park, ‘An overview of anomaly detection techniques:

Existing solutions and latest technological trends’, Comp. Netw., vol. 51, no. 12,

pp. 3448–3470, Aug. 2007, doi: 10.1016/j.comnet.2007.02.001.

152

[13] E. Hodo, X. Bellekens, A. Hamilton, C. Tachtatzis and R. C. Atkinson, ‘Shallow

and deep networks intrusion detection system: A taxonomy and survey’, CoRR,

vol. abs/1701.02145, pp. 1–43, Jan. 2017. [Online]. Available:

http://arxiv.org/abs/1701.02145

[14] G. E. Hinton, S. Osindero and Y. W. Teh, ‘A fast learning algorithm for deep

belief nets’, Neural Comput., vol. 18, no. 7, pp. 1527–1554, Jul. 2006, doi:

10.1162/neco.2006.18.7.1527.

[15] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘ImageNet classification with

deep convolutional neural networks’, in Proc. 25th Int. Conf. Neural Proc. Syst.,

Lake Tahoe, NV, USA, 2012, pp. 1097–1105.

[16] V. Chandola, A. Banerjee and V. Kumar, ‘Anomaly detection: A survey’, ACM

Comput. Surv., vol. 41, no. 3, Jul. 2009, Art. no. 15, doi:

10.1145/1541880.1541882.

[17] I. Ahmad, S. Namal, M. Ylianttila and A. Gurtov, "Security in Software Defined

Networks: A Survey," in IEEE Communications Surveys & Tutorials, vol. 17,

no. 4, pp. 2317-2346, Fourth quarter 2015. doi: 10.1109/COMST.2015.2474118

[18] L. Schehlmann, S. Abt and H. Baier, ‘Blessing or curse? Revisiting security

aspects of software-defined networking’, in 10th Int. Conf. Netw. Service

Manage. (CNSM) Workshop, 2014, Rio de Janeiro, Brazil, 2014, pp. 382–387.

[19] OpenDaylight: A Linux Foundation Collaborative Project. [Online]. Available:

http://www.opendaylight.org

[20] ‘Defense4All: User Guide’, in OpenDaylight. [Online]. Available:

https://wiki.opendaylight.org/view/Defense4All:User_Guide

[21] H. Shawn, L. Scott, O. Tomasz and S. Adam, ‘Uncover security design flaws

using the STRIDE approach’, MSDN Mag., Mar. 2015. [Online]. Available:

http://msdn.microsoft.com/en-gb/magazine/cc163519.aspx

[22] V. Saini, Q. Duan and V. Paruchuri, ‘Threat modeling using attack trees’, J.

Comput. Sci. Coll., vol. 23, no. 4, pp. 124–131, Apr. 2008.

[23] M. Abadi et al., ‘TensorFlow: Large-scale machine learning on heterogeneous

systems’, Preliminary White Paper, Nov. 2015. [Online]. Available:

https://www.tensorflow.org/about/bib

[24] ‘KDD Cup 1999 Data’, in University of California, Irvine. [Online]. Available:

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[25] B. Raghavan et al., ‘Software-defined internet architecture: Decoupling

architecture from infrastructure’, in Proc. 11th ACM Workshop Hot Topics

Netw., 2012, Redmond, WA, USA, pp. 43–48.

153

[26] A. Ghodsi et al., ‘Intelligent design enables architectural evolution’, in Proc.

10th ACM Workshop Hot Topics Netw., 2011, Cambridge, MA, USA, pp. 3:1–

3:6.

[27] N. McKeown et al., ‘OpenFlow: Enabling innovation in campus networks’,

ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008.

[28] S. Schenker, The Future of Networking, and the Past of Protocols. (26 Oct.

2011). Accessed: [Online Video] Available:

http://www.youtube.com/watch?v=YHeyuD89n1Y

[29] R. Klöti, V. Kotronis and P. Smith, ‘OpenFlow: A security analysis’, in 2013

21st IEEE Int. Conf. Netw. Protocols (ICNP), Goettingen, Germany, 2013, pp.

1–6.

[30] S. Kaur, J. Singh and N. S. Ghumman, ‘Network programmability using POX

controller’, in Proc. Int. Conf. Commun. Comput. Syst. (ICCCS), 2014, pp. 134–

138.

[31] ‘What is software-defined networking? Definition’, in SDX Central. [Online].

Available: https://www.sdxcentral.com/networking/sdn/definitions/what-the-

definition-of-software-defined-networking-sdn/ (accessed 1 Jun. 2019).

[32] D. Levin, A. Wundsam, B. Heller and N. Handigol, ‘Logically centralized? State

distribution trade-offs in software defined networks’, in Proc. 1st Workshop on

Hot Topics in Software-Defined Networks (HotSDN 12), 2012, Helsinki,

Finland, pp. 1–6.

[33] A. Dixit, F. Hao, S. Mukherjee, T.V. Lakshman and R. Kompella, ‘Towards an

elastic distributed SDN controller’, in Proc. 2nd ACM SIGCOMM Workshop

Hot Topics Softw. Defined Netw., New York, NY, USA, 2016, pp. 7–12, doi:

https://doi.org/10.1145/2491185.2491193.

[34] Y. Takamiya and N. Karanatsios, ‘TremaOpenFlow controller framework’, in

Trema. [Online]. Available: https://github.com/ trema/trema

[35] ‘RYU network operating system’, in Nippon Telegraph and Telephone

Corporation. [Online]. Available: http://osrg.github.com/ryu/

[36] ‘Floodlight’ in Project Floodlight. [Online]. Available:

http://www.projectfloodlight.org/floodlight/

[37] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey and G. Wang, ‘Meridian: An

SDN platform for cloud network services’, IEEE Commun. Mag., vol. 51, no. 2,

pp. 120–127, Feb. 2013.

154

[38] D. Erickson, ‘The Beacon OpenFlow controller’ in Proc. 2nd ACM SIGCOMM

Workshop Hot Topics Softw. Defined Netw., Hong Kong, China, 2013, pp. 13–

18.

[39] T. Koponen et al., ‘Onix: A distributed control platform for large-scale

production networks’, in Proc. 9th USENIX Conf. Oper. Syst. Design

Implement., Vancouver, Canada, 2010, pp. 1–6.

[40] U. Krishnaswamy et al., ‘ONOS: An open source distributed SDN OS’.

[Online]. Available: http://www.slideshare.net/umeshkrishnaswamy/open-

networkoperating-system

[41] B. Pfaff and B. Davie, ‘The Open vSwitch database management protocol’,

Internet Engineering Task Force, Fremont, CA, USA, RFC 7047, Dec. 2013.

[Online]. Available: http://www.ietf.org/rfc/rfc7047.txt

[42] Open vSwitch. [Online]. Available: http://vswitch.org/

[43] R. Enns, ‘NETCONF configuration protocol’, Internet Engineering Task Force,

Fremont, CA, USA, Dec. 2004. [Online]. Available:

http://tools.ietf.org/html/rfc4741

[44] Y. Rekhter, T. Li and S. Hares, ‘A border gateway protocol 4 (BGP-4)’, Internet

Engineering Task Force, Fremont, CA, USA, RFC 4271, Jan. 2006. [Online].

Available: http://www.ietf.org/rfc/rfc4271.txt

[45] D. Harrington, R. Presuhn and B. Wijnen, ‘An architecture for describing simple

network management protocol (SNMP) management frameworks’, Internet

Engineering Task Force, Fremont, CA, USA, Dec. 2002. [Online]. Available:

http://www.ietf.org/rfc/rfc3411.txt

[46] J. Vasseur and J. L. Roux, ‘Path computation element (PCE) communication

protocol (PCEP)’, Internet Engineering Task Force, Fremont, CA, USA, RFC

5440, Mar. 2009. [Online]. Available: http://www.ietf.org/rfc/rfc5440.txt

[47] F. Maino, V. Ermagan, Y. Hertoghs, D. Farinacci and M. Smith, ‘LISP control

plane for network virtualization overlays’, Internet Engineering Task Force,

Fremont, CA, USA, Oct. 2013. [Online]. Available:

http://tools.ietf.org/html/draft-maino-nvo3-lisp-cp-03

[48] M. Casado et al., ‘SANE: A protection architecture for enterprise networks’, in

Proc. 15th Conf. USENIX Security Symp., 2006, vol. 15, Article 10.

[49] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja and X. Xiao, ‘Overview and

principles of Internet traffic engineering’, RFC, vol. 3272, pp. 1–71, May 2002.

155

[50] E. Rosen, A. Viswanathan and R. Callon, ‘Multiprotocol label switching

architecture’, RFC, vol. 3031, Jan. 2001. [Online]. Available: http://www.rfc-

editor.org/rfc/rfc3031.txt

[51] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell and J. McManus,

‘Requirements for traffic engineering over MPLS’, RFC, vol. 2702, pp. 1–29,

Sep. 1999.

[52] M. V. Neves, C. A. F. De Rose, K. Katrinis and H. Franke, ‘Pythia: Faster big

data in motion through predictive software-defined network optimization at

runtime’, in Proc. IEEE 28th Int. Parallel Distrib. Process. Symp., Phoenix, AZ,

USA, May 2014, pp. 82–90.

[53] K. Jeong, J. Kim and Y.-T. Kim, ‘QoS-aware network operating system for

software defined networking with generalized OpenFlows’, in Proc. IEEE Netw.

Oper. Manage. Symp., Maui, HI, USA, Apr. 2012, pp. 1167–1174.

[54] N. Handigol et al., ‘Aster*x: Load-balancing web traffic over wide-area

networks’, in GENI Eng. Conf. 9, Washington, DC, USA, 2009.

[55] B. Heller et al., ‘ElasticTree: Saving energy in data center networks’, in Proc.

7th USENIX Conf. Netw. Syst. Design Implement., San Jose, CA, USA, 2010,

pp. 17–17.

[56] A. I. Coates, A. O. Hero, III, R. Nowak and B. Yu, ‘Internet tomography’, IEEE

Signal Process. Mag., vol. 19, no. 3, pp. 47–65, May 2002. (Monitoring)

[57] M. Cheikhrouhou and J. Labetoulle, ‘Efficient instrumentation of management

information models with SNMP’, in Proc. IEEE/IFIP Netw. Oper. Manage.

Symp., Honolulu, HI, USA, 2000, pp. 477–490. (Monitor Process)

[58] A. Voellmy, H. Kim and N. Feamster, ‘Procera: A language for high-level

reactive network control’, in Proc. 1st Workshop Hot Topics Softw. Defined

Netw., Helsinki, Finland, 2012, pp. 43–48.

[59] J. Suh, T. Kwon, C. Dixon, W. Felter and J. Carter, ‘OpenSample: A low-

latency, sampling-based measurement platform for commodity SDN’, in 2014

IEEE 34th Int. Conf. Distrib. Comput. Syst., Madrid, Spain, 2014, pp. 228–237.

(OpenSample)

[60] N. L. M. van Adrichem, C. Doerr and F. A. Kuipers, ‘OpenNetMon: Network

monitoring in OpenFlow software-defined networks’, in 2014 IEEE Netw. Oper.

Manage. Symp., Krakow, Poland, 2014, pp. 1–8. doi:

10.1109/NOMS.2014.6838228. (OpenNetMon)

[61] A. Leon-Garcia and L. G. Mason, ‘Virtual network resource management for

next-generation networks’, IEEE Commun. Mag., vol. 41, no. 7, pp. 102–109,

Jul. 2003. (Virtualisation improve performance)

156

[62] N. M. M. K. Chowdhury and R. Boutaba, ‘A survey of network virtualization’,

Comput. Netw., vol. 54, no. 5, pp. 862–876, Apr. 2008. (Virtualisation improve

performance)

[63] R. Jain and S. Paul, ‘Network virtualization and software defined networking for

cloud computing: A survey’, IEEE Commun. Mag., vol. 51, no. 11, pp. 24–31,

Nov. 2013. (SDN for Virtualisation why)

[64] M. V. Malik and C. Barde, ‘Survey on architecture of leading hypervisors and

their live migration techniques’, Int. J. Comput. Sci. Mobile Comput., vol. 3, no.

11, pp. 65–72, Nov. 2014. (Hypervisors)

[65] T. Koponen et al., ‘Network virtualization’, U.S. Patent 8,959,215 B2, 17 Feb.

2015. (Hypervisors)

[66] A. Blenk, A. Basta, M. Reisslein and W. Kellerer, ‘Survey on network

virtualization hypervisors for software defined networking’, IEEE Commun.

Surv. Tut., vol. 18, no. 1, pp. 655–685, First Quarter 2016, doi:

10.1109/COMST.2015.2489183. (Virtualisation survey)

[67] D. Drutskoy, E. Keller and J. Rexford, ‘Scalable network virtualization in

software-defined networks’, IEEE Internet Comput., vol. 17, no. 2, pp. 20–27,

Mar./Apr. 2013. (FlowN)

[68] Z. Bozakov and P. Papadimitriou, ‘AutoSlice: Automated and scalable slicing

for software-defined networks’, in Proc. 2012 ACM Conf. CoNEXT Student

Workshop, Nice, France, 2012, pp. 3–4. (AutoSlice)

[69] M. El-Azzab, I. L. Bedhiaf, Y. Lemieux and O. Cherkaoui, ‘Slices isolator for a

virtualized OpenFlow node’, in 2011 First Int. Symp. Netw. Cloud Comput.

Appl., Toulouse, France, 2011, pp. 121–126. (Slice Isolator)

[70] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu and D. Qiu, ‘Security of the Internet of

Things: Perspectives and challenges’, Wireless Netw., vol. 20, no. 8, pp. 2481–

2501, Nov. 2014.

[71] F. A. Alaba, M. Othman, I. A. T. Hashem and F. Alotaibi, ‘Internet of Things

security: A survey’, J. Netw. Comput. Appl., vol. 88, pp. 10–28, Jun. 2017.

[72] D. E. Kouicem, A. Bouabdallah and H. Lakhlef, ‘Internet of things security: A

top-down survey’, Comput. Netw., vol. 141, pp. 199–221, Aug. 2018.

[73] O. Flauzac, C. González, A. Hachani and F. Nolot, ‘SDN based architecture for

IoT and improvement of the security’, in 2015 IEEE 29th Int. Conf. Adv. Inf.

Netw. Appl. Workshops, Gwangiu, South Korea, 2015, pp. 688–693.

157

[74] C. González, O. Flauzac, F. Nolot and A. Jara, ‘A novel distributed SDN-

secured architecture for the IoT’, in 2016 Int. Conf. Distrib. Comput. Sensor

Syst. (DCOSS), Washington, DC, USA, 2016, pp. 244–49.

[75] C. González, S. M. Charfadine, O. Flauzac and F. Nolot, ‘SDN-based security

framework for the IoT in distributed grid’, in 2016 Int. Multidisciplinary Conf.

Comput. Energy Sci. (SpliTech), Split, Croatia, 2016, pp. 1–5.

[76] S. S. Bhunia and M. Gurusamy, ‘Dynamic attack detection and mitigation in IoT

using SDN’, in 2017 27th Int. Telecommun. Netw. Appl. Conf. (ITNAC),

Melbourne, Australia, 2017, pp. 1–6.

[77] S. Chakrabarty, D. W. Engels and S. Member, ‘A secure IoT architecture for

smart cities’, in 2016 13th Annu. Consum. Commun. Netw. Conf. (CCNC), Las

Vegas, NV, USA, 2016, pp. 812–813.

[78] Y. Jararweh, M. Al-Ayyoub, A. Darabseh, E. Benkhelifa, M. Vouk and A.

Rindos, ‘SDIoT: A software defined based internet of things framework’, J.

Ambient Intell. Humanized Comput., vol. 6, no. 4, pp. 453–461, Aug. 2015.

[79] P. Bull, R. Austin, E. Popov, M. Sharma and R. Watson, ‘Flow based security

for IoT devices using an SDN gateway’, in 2016 IEEE 4th Int. Conf. Future

Internet Things Cloud (FiCloud), Vienna, Austria, 2016, pp. 157–63.

[80] K. Kalkan and S. Zeadally, ‘Securing internet of things with software defined

networking’, IEEE Commun. Mag., vol. 56, no. 9, pp. 186–192, Sept. 2018

[81] A. A. Diro and N. Chilamkurti, ‘Distributed attack detection scheme using deep

learning approach for Internet of Things’, Future Gener. Comput. Syst., vol. 82,

pp. 761–768, May 2018.

[82] E. Hodo et al., ‘Threat analysis of IoT networks using artificial neural network

intrusion detection system’, in 2016 Int. Symp. Netw. Comput. Commun.

(ISNCC), Yasmine Hammamet, Tunisia, 2016, pp. 1–6.

[83] A. Vahdat, D. Clark and J. Rexford, ‘A purpose-built global network: Google’s

move to SDN’, ACM Queue, vol. 13, no. 8, Dec. 2015, Art. no. 100, doi:

10.1145/2838344.2856460. (GOOGLE SDN)

[84] T. Benson, A. Akella, A. Shaikh and S. Sahu, ‘CloudNaaS: A cloud networking

platform for enterprise applications’, in Proc. 2nd ACM Symp. Cloud Comput.

[85] S. Racherla et al., Implementing IBM Software Defined Network for Virtual

Environments.Durham, NC, USA: IBM RedBooks,May 2014.

[86] C. Beard and W. Stallings, Wireless Communication Networks and Systems, 1st

ed. Hoboken, NJ, USA: Pearson, 2016.

158

[87] D. P. Agrawal and Q.-A. Zeng, Introduction to Wireless and Mobile Systems,

4th ed. Boston, MA, USA: Cengage Learning, 2016.

[88] U. Doestch et al., ‘Final report on architecture’, Mobile and Wireless

Communications Enablers for the Twenty-twenty Information Society (METIS),

Stockholm, Sweden, Proj. no. ICT-317669, Feb. 2015. [Online]. Available:

https://www.metis2020.com/wpcontent/uploads/deliverables/METIS_D6.4_v2.p

df (SDN Vi and 5h)

[89] L. Li, Z. Mao and J. Rexford, ‘Toward software-defined cellular networks’, in

Proc. 2012 Eur. Workshop SDN, Washington, DC, USA, 2012, pp. 7–12.

[90] R. El Hadachi and J. Erfanian, ‘NGMN 5G white paper’, NGMN Alliance,

Frankfurt, Germany, White Paper, Feb. 2015. [Online]. Available:

https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/2015/NG

MN_5G_White_Paper_V1_0.pdf

[91] A. Gudipati, D. Perry, L. Li and S. Katti, ‘SoftRAN: Software defined radio

access network’, in Proc. 2nd ACM SIGCOMM Workshop Hot Topics SDN,

Hong Kong, China, 2013, pp. 25–30.

[92] X. Jin, L. Erran Li, L. Vanbever and J. Rexford, ‘SoftCell: Scalable and flexible

cellular core network architecture’, in Proc. 9th Int. Conf. Emerging Netw.

Exp.Technol., Santa Barbara, CA, USA, 2013, pp. 163–174.

[93] S. Schmid and J. Suomela, ‘Exploiting locality in distributed SDN control’, in

Proc. 2nd ACM SIGCOMM Workshop Hot Topics Softw. Defined Netw., Hong

Kong, China, 2013, pp. 121–126.

[94] C. Monsanto, J. Reich, N. Foster, J. Rexford and D. Walker, ‘Composing

software-defined networks’, in Proc. 10th USENIX Conf. Netw. Syst. Design

Implement., Berkeley, CA, USA, 2013, pp. 1–14.

[95] C. J. Casey, A. Sutton and A. Sprintson, ‘tinyNBI: Distilling an API from

essential OpenFlow abstractions’, in Proc. 3rd Workshop Hot Topics SDN, New

York, NY, USA, 2014, pp. 37–42. [Online] Available:

http://arxiv.org/abs/1403.6644

[96] Open Networking Foundation (ONF), ‘Charter: Forwarding abstractions

working group’, Apr. 2014. [Online]. Available:

https://www.opennetworking.org/images/stories/downloads/working-

groups/charter-forwarding-abstractions.pdf

[97] Mininet. [Online]. Available: http://mininet.org/

[98] Open Networking Foundation, ‘Software-defined networking: The new norm for

networks’ ONF White Paper, Palo Alto, CA, USA, Apr. 2012.

159

[99] A. Pras et al., ‘Key research challenges in network management’, IEEE

Commun. Mag., vol. 45, no. 10, pp. 104–110, Oct. 2007.

[100] M. Walfish et al., ‘Middleboxes no longer considered harmful’, in Proc. Fifth

USENIX 467 Conf. Operating Syst. Des. Implement., San Francisco, CA, USA,

2004, p. 15–15.

[101] K. Wang, Y. Qi, B. Yang, Y. Xue and J. Li, ‘LiveSec: Towards effective

security management in largescale production networks’, in 2012 IEEE Int.

Conf. Distrib. Comput. Syst. Workshops (ICDCSW), Macau, China, 2012, pp.

451–460.

[102] M. Casado et al., ‘Ethane: Taking control of the enterprise’, in Proc. 2007 Conf.

Appl. Technol. Architectures Protocols Comp. Commun., Kyoto, Japan, 2007,

pp. 1–12.

[103] R. Hand, M. Ton and E. Keller, ‘Active security’, in Proc. 12th ACM Workshop

Hot Topics Netw., College Park, MD, USA, Nov. 2013, p. 17.

[104] H. Hu, W, Han, G.-J. Ahn and Z. Zhao, ‘FlowGuard: Building robust firewalls

for software-defined networks’, in Proc. 3rd Workshop Hot Topics Software-

Defined Netw., Chicago, IL, USA, 2014, pp. 97–102.

[105] S. Son, S. Shin, V. Yegneswaran, P. Porras and G. Gu, ‘Model checking

invariant security properties in OpenFlow’, in Proc. IEEE Int. Conf. Commun.,

Budapest, Hungary, 2013, pp. 1974–1979.

[106] R. Braga, E. Mota and A. Passito, ‘Lightweight DDoS flooding attack detection

using NOX/OpenFlow’, in IEEE 35th Conf. Local Comp. Netw. (LCN), Denver,

CO, USA, 2010, pp. 408–415.

[107] M. Yu, L. Jose and V. Miao, ‘Software defined traffic measurement with

OpenSketch’, in Proc. 10th USENIX Symp. Netw. Syst. Design Implement.,

Lombard, IL, USA, 2013, pp. 29–42.

[108] S. Shin et al., ‘FRESCO: Modular composable security services for software-

defined networks’, in NDSS Symp., San Diego, CA, USA, 2013.

[109] Y. Wang, Y. Zhang, V. Singh, C. Lumezanu and G. Jiang, ‘NetFuse: Short-

circuiting traffic surges in the cloud’, in Proc. IEEE Int. Conf. Commun.,

Budapest, Hungary, 2013.

[110] A. Sapio et al., ‘MAPPER: A mobile application personal policy enforcement

router for enterprise networks’, in Proc. 3rd Eur. Workshop Softw. Defined

Netw., London, United Kingdom, 2014.

[111] S. Fayazbakhsh, V. Sekar, M. Yu and J. Mogul, ‘FlowTags: Enforcing network-

wide policies in the presence of dynamic middlebox actions’, in Proc. 2nd

160

Workshop Hot Topics Software Defined Netw., Seattle, WA, USA, 2013, pp.

533–546.

[112] Z. A. Qazi et al., ‘SIMPLE-fying middlebox policy enforcement using SDN’, in

Proc. ACM SIGCOMM 2013 Conf., Hong Kong, China, 2013, pp. 27–38.

[113] K. Giotis, G. Androulidakis and V. Maglaris, ‘Leveraging SDN for efficient

anomaly detection and mitigation on legacy networks’, in Proc. 3rd Eur.

Workshop Softw. Defined Netw., 2014.

[114] S. Shin and G. Gu, ‘CloudWatcher: Network security monitoring using

OpenFlow in dynamic cloud networks (or: How to provide security monitoring

as a service in clouds?)’ in 20th IEEE Int. Conf. Netw. Protocols (ICNP),

Austin, TX, USA, 2012, pp. 1–6.

[115] A. Khurshid, W. Zhou, M. Caesar and P. Godfrey, ‘VeriFlow: Verifying

network-wide invariants in real time’, ACM SIGCOMM Comp. Commun. Rev.,

vol. 42, no. 4, pp. 467–472, 2012.

[116]] K. Wang, Y. Qi, B. Yang, Y. Xue and J. Li, ‘LiveSec: Towards effective

security management in large-scale production networks’, in 2012 IEEE Int.

Conf. Distrib. Comput. Syst. Workshops (ICDCSW), 2012, pp. 451–460

[117] J. R. Ballard, I. Rae and A. Akella, ‘Extensible and scalable network monitoring

using OpenSAFE’, in Proc. 2010 Internet Netw. Manage. Conf. Res. Enterprise

Comput., San Jose, CA, USA, 2010, p. 8.

[118] P. Porras et al., ‘A security enforcement kernel for OpenFlow networks’, in

Proc. 1st Workshop Hot Topics Softw. Defined Netw., 2012, pp. 121–126

[119] J. H. Jafarian, E. Al-Shaer and Q. Duan, ‘OpenFlow random host mutation:

Transparent moving target defense using software defined networking’, in Proc.

1st Workshop Hot Topics Softw. Defined Netw., 2012, pp. 127–132.

[120] A. Zaalouk, R. Khondoker, R. Marx and K. Bayarou, ‘OrchSec: An

orchestrator-based architecture for enhancing network-security using network

monitoring and SDN control functions’, in Proc. IEEE Netw. Oper. Manage.

Symp., 2014.

[121] J. Matias, J. Garay, A. Mendiola, N. Toledo and E. Jacob, ‘FlowNAC: Flow-

based network access control’, in Proc. 3rd Eur. Workshop Softw. Defined

Netw., 2014.

[122] X. Wen, Y. Chen, C. Hu, C. Shi and Y. Wang, ‘Towards a secure controller

platform for OpenFlow applications’, in Proc. 2nd ACM SIGCOMM Workshop

Hot Topics in Software Defined Netw., 2013, pp. 171–172.

161

[123] A. Tootoonchian and Y. Ganjali, ‘HyperFlow: A distributed control plane for

OpenFlow’, in Proc. 2010 Internet Netw. Manage. Conf. Res. Enterprise Netw.,

2010, p. 3.

[124] S. Scott-Hayward, G. O'Callaghan and S. Sezer, ‘SDN security: A survey’, in

2013 IEEE SDN Future Netw. Services, Trento, Italy, 2013, pp. 1–7.

[125] F. Ruffy, W. Hommel and F von Eye, ‘A STRIDE-based security architecture

for software-defined networking’, in ICN 2016: Fifteenth Int. Conf. Netw.,

Lisbon, Portugal, 2016, pp. 95–101.

[126] L. Yao, P. Dong, T. Zheng, H. Zhang, X. Du and M. Guizani, ‘Network security

analyzing and modeling based on Petri net and attack tree for SDN’, in 2016 Int.

Conf. Comput. Netw. Commun. (ICNC), Kauai, HI, USA, 2016, pp. 1–5.

[127] ‘SDL threat modeling tool’, in Microsoft. [Online]. Available:

https://www.microsoft.com/en-us/sdl/adopt/ +threatmodeling.aspx (accessed

13 Mar. 2017).

[128] V. Saini, Q. Duan and V. Paruchuri, ‘Threat modeling using attack trees’, J.

Comput. Sci. Coll., vol. 23, no. 4, pp. 124–131, Apr. 2008.

[129] ‘Our most advanced penetration testing distribution, ever’, in Kali Linux.

[Online]. Available: https://www.kali.org/ (accessed 18 Jun. 2017).

[130] ‘Nmap’, in Nmap. [Online]. Available: https://nmap.org/ (accessed 18 Jun.

2019).

[131] SDN-Toolkit’, in Hellfire Security. [Online]. Available:

http://www.hellfiresecurity.com/tools.html

[132] D. Mudzingwa and R. Agrawal, ‘A study of methodologies used in intrusion

detection and prevention systems (IDPS)’, in 2012 Proc. IEEE Southeastcon,

Orlando, FL, USA, 2012, pp. 1–6.

[133] A. Mohamed, G. Dahl and G. E. Hinton, ‘Acoustic modelling using deep belief

networks’, IEEE Trans. Audio Speech Lang. Process., vol. 20, no. 1, pp. 14–22,

Jan. 2011.

[134] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. Cambridge, MA:

MIT Press, 2017.

[135] J. Schmidhuber, ‘Deep learning in neural networks: An overview’, Neural

Netw., vol. 61, 85–117, Jan. 2015.

[136] Y. Bengio, ‘Learning deep architectures for AI’, Found. Trends Mach. Learn.,

vol. 2, no. 1, pp. 1–127, Jan. 2009.

162

[137] L. Zamparo and Z. Zhang, ‘Deep autoencoders for dimensionality reduction of

high-content screening data’, CoRR, vol. abs/1501.01348, 2015.

[138] S. Zhai, Y. Cheng, W. Lu and Z. Zhang. ‘Deep structured energy based models

for anomaly detection’, in Proc. 33rd Int. Conf. Mach. Learn., New York, NY,

USA, 2016, pp. 1100–1109.

[139] U. Fiore, F. Palmieri, A. Castiglione and A. De Santis, ‘Network anomaly

detection with the restricted Boltzmann machine’, Neurocomputing, vol. 122,

pp. 13–23, Dec. 2013.

[140] A. Javaid, Q. Niyaz, W. Sun and M. Alam, ‘A deep learning approach for

network intrusion detection system’, in Proc. 9th EAI Int. Conf. Bio-inspired Inf.

Commun. Tech., New York, NY, USA, 2015, pp. 21–26.

[141] M. A. Salama, H. F. Eid, R. A. Ramadan, A. Darwish and A. E. Hassanien,

‘Hybrid intelligent intrusion detection scheme’, in Soft Computing in Industrial

Applications (Advances in Intelligent and Soft Computing, vol. 96), A. Gaspar-

Cunha, R. Takahashi, G. Schaefer and L. Costa, Eds., Berlin, Germany:

Springer, 2001, pp. 293–303.

[142] M. Sakurada and T. Yairi. ‘Anomaly detection using autoencoders with

nonlinear dimensionality reduction’, in Proc. MLSDA 2014 2nd Workshop

Mach. Learn. Sensory Data Anal., Gold Coast, Australia, 2014, p. 4, doi:

10.1145/2689746.2689747.

[143] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat

and S. Venkatraman, "Deep Learning Approach for Intelligent Intrusion

Detection System," in IEEE Access, vol. 7, pp. 41525-41550, 2019. doi:

10.1109/ACCESS.2019.2895334

[144] B. Dong and X. Wang, ‘Comparison deep learning method to traditional

methods using for network intrusion detection’, in 2016 8th IEEE Int. Conf.

Commun. Softw. Netw. (ICCSN), Beijing, China, 2016, pp. 581–585.

[145] H. Hoffmann, ‘Kernel PCA for novelty detection’, Pattern Recognit., vol. 40,

no. 3, pp. 863–874, Mar. 2007.

[146] J. Zacharias, M. Barz, and D. Sonntag, ‘A Survey on Deep Learning Toolkits

and Libraries for Intelligent User Interfaces’. arXiv preprint arXiv:1803.04818,

2018.

[147] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher, M. Perrot, and Duchesnay E. Scikit-learn: Machine

Learning in Python . Journal of Machine Learning Research, 12:2825-2830,

2011.

163

[148] M. Tavallaee, E. Bagheri, W. Lu and A. A. Ghorbani, ‘A detailed analysis of

the KDD CUP 99 data set’, in Proc. 2nd IEEE Symp. Comput. Intell. Secur.

Defence Appl., Ottawa, Canada, 2009, pp. 53–58.

[149] N. Shone, T. N. Ngoc, V. D. Phai and Q. Shi, "A Deep Learning Approach to

Network Intrusion Detection," in IEEE Transactions on Emerging Topics in

Computational Intelligence, vol. 2, no. 1, pp. 41-50, Feb. 2018.

[150] A. Shrivastava and R. R. Ahirwal, “A SVM and K-means Clustering based Fast

and Efficient Intrusion Detection System,” International Journal of Computer

Applications, vol. 72, no. 6, pp. 25–29, 2013.

[151] L. Tian and W. Jianwen, "Research on Network Intrusion Detection System

Based on Improved K-means Clustering Algorithm," 2009 International Forum

on Computer Science-Technology and Applications, Chongqing, 2009, pp. 76-

79.

