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Abstract 

Software-defined networking (SDN) is a communication paradigm that promotes 

network flexibility and programmability by separating the control plane from the data 

plane. SDN consolidates the logic of network devices into a single entity known as the 

controller. SDN raises significant security challenges related to its architecture and 

associated characteristics such as programmability and centralisation. Notably, security 

flaws pose a risk to controller integrity, confidentiality and availability. 

The SDN model introduces separation of the forwarding and control planes. It detaches 

the control logic from switching and routing devices, forming a central plane or network 

controller that facilitates communications between applications and devices. The 

architecture enhances network resilience, simplifies management procedures and 

supports network policy enforcement. However, it is vulnerable to new attack vectors 

that can target the controller. Current security solutions rely on traditional measures 

such as firewalls or intrusion detection systems (IDS). An IDS can use two different 

approaches: signature-based or anomaly-based detection. The signature-based approach 

is incapable of detecting zero-day attacks, while anomaly-based detection has high 

false-positive and false-negative alarm rates. Inaccuracies related to false-positive 

attacks may have significant consequences, specifically from threats that target the 

controller. Thus, improving the accuracy of the IDS will enhance controller security 

and, subsequently, SDN security. 

A centralised network entity that controls the entire network is a primary target for 

intruders. The controller is located at a central point between the applications and the 

data plane and has two interfaces for plane communications, known as northbound and 

southbound, respectively. Communications between the controller, the application and 

data planes are prone to various types of attacks, such as eavesdropping and tampering. 

The controller software is vulnerable to attacks such as buffer and stack overflow, 

which enable remote code execution that can result in attackers taking control of the 

entire network. Additionally, traditional network attacks are more destructive. 

This thesis introduces a threat detection approach aimed at improving the accuracy and 

efficiency of the IDS, which is essential for controller security. To evaluate the 
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effectiveness of the proposed framework, an empirical study of SDN controller security 

was conducted to identify, formalise and quantify security concerns related to SDN 

architecture. The study explored the threats related to SDN architecture, specifically 

threats originating from the existence of the control plane. 

The framework comprises two stages, involving the use of deep learning (DL) 

algorithms and clustering algorithms, respectively. DL algorithms were used to reduce 

the dimensionality of inputs, which were forwarded to clustering algorithms in the 

second stage. Features were compressed to a single value, simplifying and improving 

the performance of the clustering algorithm. Rather than using the output of the neural 

network, the framework presented a unique technique for dimensionality reduction that 

used a single value—reconstruction error—for the entire input record. The use of a DL 

algorithm in the pre-training stage contributed to solving the problem of dimensionality 

related to k-means clustering. Using unsupervised algorithms facilitated the discovery of 

new attacks. 

Further, this study compares generative energy-based models (restricted Boltzmann 

machines) with non-probabilistic models (autoencoders). The study implements 

TensorFlow in four scenarios. Simulation results were statistically analysed using a 

confusion matrix, which was evaluated and compared with similar related works. 

The proposed framework, which was adapted from existing similar approaches, resulted 

in promising outcomes and may provide a robust prospect for deployment in modern 

threat detection systems in SDN. The framework was implemented using TensorFlow 

and was benchmarked to the KDD99 dataset. Simulation results showed that the use of 

the DL algorithm to reduce dimensionality significantly improved detection accuracy 

and reduced false-positive and false-negative alarm rates. Extensive simulation studies 

on benchmark tasks demonstrated that the proposed framework consistently 

outperforms all competing approaches. This improvement is a further step towards the 

development of a reliable IDS to enhance the security of SDN controllers. 
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Chapter 1: Introduction 

1.1 Introduction 

Networking is the enabling technology for an enormous number of communication 

applications, including the internet, the Internet of Things (IoT) and cloud computing. 

The growth of applications has necessitated expansion of data communication 

infrastructure. Therefore, additional flexibility in management and interoperability is 

required. However, traditional networks are based on a rigid architecture that does not 

fully satisfy the requirements of emerging technologies [1]-[3]. Software-defined 

networking (SDN) is a novel networking model that provides the features required for 

supporting emerging networking technologies [1], [4]. Figure 1.1 depicts the 

architecture of SDN. The SDN model proposes the separation of the forwarding and 

control planes by aggregating and abstracting a device’s logic into a new central entity 

called the network controller [4], [5]. 

The controller concept is analogous to operating systems, which are responsible for 

interactions between applications and devices. The existence of controller entity boosts 

programmability, enabling developers to code applications for many purposes, 

including network management, load balancing and network monitoring. The 

architecture enhances network resilience, simplifies management procedures and 

supports network policy enforcement [1], [6]. Additionally, the new features of SDN 

enhance security by facilitating several security measures such as threat detection and 

prevention [7]. 

However, SDN architecture design suffers from significant security flaws [1], [8]. 

Paradoxically, the characteristics of SDN that make it a promising substitute for 

conventional networks also present security sever challenges. A centralised network 

entity that has control over the entire network is a valuable target for network intruders. 

The controller is located at a central point between applications and the data planes, 

with both northbound and southbound communications being vulnerable to various 

types of attacks [8]. The controller software is prone to vulnerabilities such as buffer 

and stack overflow. Hence, providing security measures to protect the controller itself is 

crucial to fully unleash the capabilities of the new model. 
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Figure 1.1. SDN architecture [4]. 

For decades, conventional networks have employed firewalls and intrusion detection 

systems (IDS) as the standard security solutions to deter and mitigate various network 

threats. However, innovative solutions are required for the unprecedented security 

threats emerging from recent advances in internetworking, such as the IoT, SDN and 

grid computing. 

IDSs adopt either signature-based or anomaly-based detection approaches to identify 

threats [9]. Signature-based detection is limited in its ability to recognise attacks that do 

not exist in the IDS threats profile. However, anomaly-based detection is more 

problematic than signature-based detection because of its precision deficiencies [10]. 

Anomaly-based detection techniques are classified into two categories: statistical and 

machine learning [11], [12]. The latter uses algorithms such as support vector machines 

(SVMs) neural networks and principal components analysis (PCA), all of which fail to 

provide high detection accuracy [11], [13]. Recent achievements in machine learning, 

advances explicitly in training deep learning (DL) neural networks are promising [14], 

[15]; however, few studies have investigated the applicability of DL for detecting 

network anomalies. 
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DL neural network architecture is multi-layered, with hidden layers between the input 

and output layers. The first layer represents network input (data features) and the final 

layer represents network output. Even though DL neural networks have long existed 

[16], they have been unable to train the network for various reasons, including the 

vanishing gradient descent in backpropagation, unsatisfactory generalisation and the 

need for intensive computation power. 

In 2006, a pre-training step using restricted Boltzmann machines (RBM) [14] advanced 

DL, leading to the development of innovative algorithms such as linear rectifier units 

rather than sigmoid functions and dropout to solve generalisation problems [15]. These 

algorithms can be divided into two categories: supervised and unsupervised machine 

learning. 

1.2 Motivations 

Controller security is crucial for the security of the entire SDN architecture [7], [8]. 

Several security solutions have been proposed for securing the controller, including 

standard security measures such as firewalls and IDS. However, controller security 

remains a significant concern, curbing the potential of SDN capabilities [1], [7], [8], 

[17], [18]. 

IDSs have been deployed in traditional networks to enhance network security for 

decades [9], [11]. Both IDS approaches—signature-based and anomaly-based 

detection—have limitations [11]. While signature-based detection is unable to detect 

zero-day attacks, anomaly detection can theoretically detect unprecedented threats. 

However, it suffers from low detection accuracy. The limitations of anomaly detection 

have significant consequences for the deployment of SDN. For instance, in the 

traditional network, damage resulting from an attack affects only a set of network nodes 

with limited consequences, while in an SDN network, a compromised controller may 

lead to the collapse of the entire network. Traditional network-distributed architecture 

can tolerate a margin of IDS inaccuracy (e.g. a false negative). However, the cost of a 

false-negative alarm in SDN may be catastrophic to the network, particularly from 

attacks targeting the controller. Hence, improvements to current IDS approaches are 

essential to boost SDN controller security. 
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Table 1.1 provides a comparison of the two conventional detection methods, with each 

method having its advantages and disadvantages. A significant drawback of the 

signature-based method is its inability to detect new attacks because of its reliance on a 

database of known threats. In contrast, anomaly-based detection has a higher false-

positive alarm rate because of accuracy limitations in the underlying detection 

algorithms, leading to the possible detection of threats in the absence of malicious 

activity. 

Table 1.1. Anomaly-Based vs. Signature-Based Intrusion Detection Systems 

 Anomaly-based Signature-based 

Performance  Medium High 

Protection against zero-day attacks High Low 

False-positive alarms High Low 

False negatives High Medium 

Configuration Low High 

Anomaly-based detection systems utilise various techniques, such as statistical and 

machine learning. Recent advances in machine learning have led to the need to evaluate 

new machine learning algorithms in network anomaly-based detection. 

Several intrusion detection applications have been developed to detect malicious 

activities in SDN networks. For example, the OpenDaylight (ODL) controller uses the 

Defense4All application to detect and mitigate distributed denial-of-service (DDoS) 

attacks [19], [20]. Figure 1.2 depicts the deployment of Defense4All application at the 

ODL. However, the application does not protect the controller itself; rather, it deploys a 

set of rules to protect the network at its edges. In the event of malicious activity, the 

Defense4All application requests network information from the controller and acts via 

its attack mitigation module. Security limitations of this application include the 

following: 

 The application must first communicate with the controller to gather statistics 

and raw data used by the IDS to decide whether an activity is malicious. 

Consequently, the controller is exposed to the threat prior to the decision being 

made. 
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 The controller’s location in the architecture makes it vulnerable to new types of 

attacks that require novel mechanisms, such as those that ensure the security of 

communications between the controller and the IDS. 

 Controller software may be prone to traditional software vulnerabilities, which 

require advanced detection techniques such as deep packet inspection. 

 

Figure 1.2. OpenDaylight Defense4All application [19]. 

1.3 Research Methodology 

The research goal is to improve the efficiency of IDS capabilities for threat detection to 

enhance the security of the SDN controller and reduce concerns related to security 

threats to SDN architecture. The research was divided into three phases: security threat 

analysis, IDS design and implementation and performance analysis and evaluation. 

Figure 1.3 illustrates the research stages. In the first phase—SDN security analysis—the 

new networking architecture is introduced. The controller is a significant point of 

attraction for new threats. Identifying the threat list is a starting point for proposing 

appropriate security solutions. In [8], a threat vector for SDN is defined and seven 

threats are listed, with three being exclusive to the SDN model. Notably, SDN-specific 

threats originate from the controller: 

 Attacks on control plane communications 

 Attacks on controller vulnerabilities 
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 Attacks on the controller originating from the application layer. 

The first stage of the study involved the analysis of mentioned threats. There are two 

main approaches to security analysis: system-oriented and attack-oriented. For research 

comprehensiveness and consistency, a method from each approach was selected. 

STRIDE is a system-oriented threat modelling method [21] that models dataflow 

diagrams (DFDs) of the system under analysis. The main elements of the model are data 

flow, data stores, processors, interactors and trust boundaries. DFD components were 

examined against the set of attacks specified by STRIDE: spoofing, tampering, 

repudiation, information gathering, denial of service and elevation of privilege. 

Attack trees are a formal, attack-oriented approach to defining possible attacks against 

the system [22]. The attack tree starts with a root node denoting the attack goal, and 

various tree leaves specify the means of reaching the node. Logical AND/OR operators 

are used to aggregating the leaves. The attack tree analysis is supported by tools such as 

Security and Isograph. The goal of the second stage was to simulate attacks as proof of 

concept to provide a deeper understanding of threats. 

Additionally, the analysis phase provided a simulation of various attacks derived from 

the previous analysis phase. The simulation was conducted using an SDN simulator 

integrated with a real controller (ODL). The main goal of this stage was to provide a 

more profound proof of concept of various threats and their impacts on network assets. 

In the solution domain, IDSs are used as security solutions in traditional networks; 

however, their limitations need to be addressed in SDN deployment. In the second 

phase, the detection system was designed and implemented. The new architecture and 

challenges brought by SDN have increased the need to investigate various architectures 

of IDSs in the SDN controller. The goal of this phase was to propose a framework that 

delivers highly accurate detection functionalities to protect the controller. This phase 

was divided into three stages. The first stage provided the theoretical design principals 

for the framework, main components and decision boundaries. Six design principles 

based on the formalised definition of the problem were identified. In the second stage, 

an implementation based on the design principles was constructed as a proof of concept. 

The final stage in this phase involved the training and execution of the models. The 

final phase was a simulation and evaluation of the proposed framework with a focus on 



21 

performance metrics. During the simulations, the dataset was normalised and fed to the 

system before results were collected, recorded and analysed. For the analysis, confusion 

matrices, a common technique for classification and clustering analyses, were used to 

compare results with related works. In the final step, similar works were evaluated, and 

their contributions were highlighted. 
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Figure 1.3. Research methodology. 
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1.4 Research Questions and Scope 

This research is aimed at enhancing SDN controller security. The research objectives 

gave rise to the following questions: 

The primary research question is: How may an efficient threat detection framework be 

designed that will improve the detection accuracy of IDS and, hence, the security of 

SDN? 

The following sub-questions were derived from the primary research question: 

 What are the main security threats to the controller? How are these threats 

different from those in traditional networking models? 

 How is it possible to improve the performance of IDS to provide reliable 

security measures to the SDN controller? 

 How can recent advances in machine learning help improve the detection 

accuracy of IDSs? 

 How can unsupervised DL be used in network anomaly detection? 

 How can dimensionality reduction be achieved using unsupervised DL? 

 What is the best deployment of the proposed framework in SDN architecture? 

1.5 Contributions 

This thesis enhances the security of the SDN model by improving the efficiency of 

current security solutions. This thesis proposes a novel detection framework based on 

unsupervised DL algorithms for threat detection. 

The study explored the potential of DL for revealing network threats by utilising 

unsupervised DL algorithms. The research examined the ability of DL to detect 

anomalies through evaluation of generative energy-based models (RBMs) and non-

probabilistic algorithms (autoencoders). Following this, an in-depth analysis of DL 

algorithms was conducted, with results showing promising detection accuracy. 

This thesis provides an empirical analysis of SDN controller security to identify, 

formalise and quantify security concerns related to the new model. The study explored 

threats related to SDN architecture, specifically those originating from the controller 



24 

plane. The study analysed controller security over three stages. The first stage defined 

potential threats based on a review of the literature. The second stage demonstrated and 

modelled threats using a STRIDE analysis. Additionally, an in-depth attacks-oriented 

analysis was developed using several attack trees. The third stage introduced an 

experiment to reveal threats and consequences. The study provides a comprehensive 

understanding of the problem by specifying the security flaws of SDN. 

The framework consisted of two phases: a DL algorithm and a clustering algorithm 

using either k-means or mean shift clustering. The DL algorithm represented the pre-

training phase, which simplified the input to the clustering algorithm. The framework 

employed dimensionality reduction of the input data, compressing the dimensions of the 

input data to a single value to simplify and improve the performance of the clustering 

algorithm in the second phase. 

The study improved the performance of the k-means algorithm. The k-means relies on 

calculating the distance between different samples—an increase in the number of 

samples results in a dramatic decrease in distance between them. Hence, the use of the 

DL algorithm in the pre-training phase reduced the problem of dimensionality related to 

k-means. The framework solved this problem by reducing the number of inputs based 

on critical procedures in the autoencoder and RBM, generating more straightforward 

inputs to the k-means. 

The framework was based on two unsupervised algorithms, which have the ability to 

find patterns in data with no previous labelling, enabling the detection of zero-day 

attacks. The framework presents a unique method of dimensionality reduction. Instead 

of using the output of the neural network from either the RBM or the autoencoder, the 

framework used a single value—the difference between the input and the output—for 

the entire input record. 

The proposed framework design was implemented using Tensorflow [23]. Accordingly, 

a simulation of several scenarios was conducted using the KDD99 network dataset [24]. 

Following various executions over several testing cycles, the data were collected and 

statistically analysed. A systematic analysis was conducted using confusion matrices to 

evaluate results against other related works. The simulation showed a significant 
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accuracy of ≈99% from the integration of the autoencoder with the k-means clustering 

algorithm. 

1.6 Thesis Structure 

This thesis is organised as follows: Chapter 2 presents the background, applications, 

networking environments, solutions and challenges of SDN. The first section introduces 

the limitations of the current networking model and the motivation for a novel model to 

handle such limitations. Section 2 introduces the model architecture, the three planes of 

the model and, given that this thesis focuses on security flaws related to the controller, a 

broader discussion of the control plane. This section provides a comprehensive 

anatomical view of one of the most renowned SDN controllers, ODL, which was also 

used in the security attack simulation. Additionally, this section discusses the OpenFlow 

protocol, which is the dominant southbound protocol in SDN architecture. Section 3 

explores three applications of SDN, including traffic engineering, network virtualisation 

and network monitoring and measurements. It discusses the current challenges of each 

of these applications and how characteristics of SDN such as centralisation and global 

view are expected to overcome the limitations of traditional networks in such 

applications. Additionally, this section presents several software solutions for each 

category. Section 4 introduces new emerging networking environments in which SDN 

integration enhances communications and solves problems such as management 

complexity and network abstraction. This section discusses the integration of SDN in 

IoT, cloud computing, data centres and wireless networks, including cellular and fifth 

generation (5G) networks. For each technology, we discuss the challenges and 

contributions of SDN. Additionally, we provide examples of SDN platforms and 

application solutions for each area. Section 5 presents the current challenges and 

limitations of SDN, which are categorised into four classes: architecture design, 

application plane, control plane and data plane. 

Chapter 3 presents an in-depth analysis and simulation of SDN security threats, a 

significant flaw in SDN architecture. The chapter outlines SDN security issues, 

including structural security flaws and how the SDN model may be used to enhance 

security. The first section presents several security applications for SDN, including 

policy enforcement and verification, threat detection and response. Additionally, it 

provides a survey of SDN security tools. The next section discusses the security flaws 



26 

of the SDN model, specifically controller threats. Section 4 presents an analysis of SDN 

security using two approaches—STRIDE and attack trees—to identify security threats 

and show how they may be executed. Section 5 describes the experimental study 

conducted to demonstrate attacks against the SDN controller. 

Chapter 4 presents the solution domain. The thesis focuses on enhancing the security of 

SDN through intrusion detection. This chapter introduces the solution methodology, 

which is machine learning. The first section discusses network intrusion detection 

techniques and compares different approaches such as signature-based and anomaly-

based detection. The second section explores anomaly-based detection methods, 

including statistical and machine learning. Section 3 introduces the DL algorithms, 

focusing on unsupervised DL algorithms, autoencoders and RBMs. Section 4 discusses 

the opportunities for using DL for anomaly detection. 

Chapter 5 presents the proposed detection framework. The first section introduces the 

components of the framework, which consists of two phases. The first phase uses an 

unsupervised DL algorithm, and the second phase uses a simple clustering algorithm. 

Section 2 depicts the framework workflow and the framework algorithm in pseudocode. 

Additionally, a detailed description of the different steps is included. Section 3 outlines 

the five design principles of the framework, which include dimensionality reduction, 

decision boundaries, clustering and curse of dimensionality, network traffic features, the 

number of hidden layers and neurons and the assumptions required for framework 

applicability. Section 4 describes the framework in action—the theoretical background 

for the algorithms. Section 5 describes the integration of the framework in an SDN 

model. Section 6 discusses the advantages of the framework. 

Chapter 6 provides the implementation, simulation and evaluation of the proposed 

framework. The first section is an overview of the simulation. The second section 

proposes four different scenarios for the simulation based on different algorithms in the 

first and second phases of the framework. The third section presents an analysis and 

rationale for the dataset, and the different software libraries and tools used in the 

simulation. The fourth section presents the implementations of the framework, 

including the implementation of two unsupervised DL algorithms—an autoencoder and 

an RBM—and two clustering algorithms—k-means and mean shift. Following 

implementation, the section also demonstrates how the system was executed, including 
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training and testing. The fifth section shows the results of several executions on the 

dataset. Additionally, this section provides an in-depth analysis of the results using 

confusion matrices. Section 6 presents an evaluation of the framework results compared 

with other similar proposed frameworks. 

Chapter 7 concludes the thesis, briefly describing the problem of the SDN controller 

security flaws, the research contribution, which mainly focuses on frameworks for 

anomaly-based detection in SDN networks, and a proof of concept implementation for 

the framework towards solving the problem. It highlights the thesis contributions, lists 

research limitations and suggests directions for future work.  
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Chapter 2: Software-Defined Networks 

SDN has introduced a revolutionary communications model through the decoupling of 

the control and forwarding planes and the relocation of the network logic to a new layer 

known as the network controller. Features of this model include centralisation and 

network programmability, which pave the way for various networking solutions and 

innovations. As an emerging technology, SDN provides several opportunities and 

challenges. This chapter discusses the novel networking model of SDN, including its 

major technological drivers, motivations, components and challenges. 

The primary purpose of this chapter is to present a comprehensive review of SDN, 

including its design, models and characteristics, its role as enabling technology in 

several environments and its applications and limitations. 

The chapter explores SDN architecture and discusses the three planes of the SDN 

model: the application, controller and physical planes. It mainly focuses on the 

responsibilities and essential services offered by the controller, a new plane introduced 

by SDN, and discusses several issues related to it, including scalability, availability and 

interoperability. Given that the controller is critical for SDN security, the chapter 

provides a more in-depth anatomical view of its components and its various roles, using 

ODL as the model, and discusses the applications of SDN in areas such as traffic 

engineering, network monitoring and virtualisation. For each application domain, the 

chapter provides an in-depth discussion of the enabling features of SDN that help to 

solve current problems with conventional networks. 

Additionally, SDN deployment in various networking environments is introduced and 

SDN challenges for each plane are highlighted. SDN security challenges are discussed 

in the following chapter. 

2.1 Introduction 

The traditional data communication model is composed of three planes: management, 

control and data planes. The management plane provides services to monitor and 

configure the network, while the control plane generates the data required to establish 

forwarding tables on physical devices. Subsequently, the forwarding plane directs 
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packets to ingress and egress ports based on the tables. In the traditional network model, 

both the control and forwarding planes are tightly coupled to the same device (e.g. a 

switch or a router). This model is efficient from a performance perspective. However, as 

the complexity of networks has increased, the need to adopt a new architecture has 

emerged [1]. 

Network management comprises various activities, including management of faults, 

configuration, performance, security, inventory and accounting. Each network includes 

several interoperating devices, each having its own configuration firmware, from 

different vendors. To perform management activities or to add or remove devices in the 

network, the network administrator must obtain different software packages or make 

changes to various devices, which increases the complexity of management [1], [3], 

[25], [26]. For complex networking environments such as data centres, management 

activities become even more complicated. A single misconfiguration can lead to 

unexpected policy violations [2]. 

Additionally, given the rigid structure of the network, scaling the network vertically (by 

increasing the capacity of current resources) or horizontally (by adding new resources) 

is a complicated procedure. This may be addressed using the process of abstraction. For 

example, if firmware installed on different devices is abstracted to a single software, 

this will facilitate integration and configuration of network devices. Hence, the concept 

of separating the logic from the hardware is key to tackling the rigid and static structure 

of traditional networks. The evolution of SDN is similar to that of distributed and 

personal computing. 

The SDN model consists of three planes known as the forwarding, control and 

application planes. SDN architecture separates the control plane from the forwarding 

plane introducing an independent plane known as the controller or the network 

operating system (NOS) The forwarding plane comprises devices such as switches, 

routers and middleboxes, which switch data flow but do not have the logic required to 

populate the forwarding tables [5],[27], [28]. The network intelligence resides in the 

controller, which abstracts devices and provides services such as network state and 

topology information. Additionally, the controller provides a northbound application 

program interface (API) to communicate with applications and a southbound API to 
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communicate with forwarding devices. OpenFlow is the dominant southbound interface 

used in SDN [29]. 

The application plane lies on the top of the SDN model stack. Programmability is a 

fundamental concept of the SDN paradigm in which applications communicate with 

physical devices. Programmability provides opportunities for innovation for an 

enormous number of network applications, including monitoring, traffic engineering, 

security and cloud applications [30], [31]. Centralisation is a distinctive feature of the 

SDN architecture, providing a global view of the entire network and facilitating 

management and monitoring processes. Additionally, it reduces errors in configuration 

and deployment of network policies. Centralisation also improves flexibility—for 

instance, a pool of devices from various vendors may be deployed and abstracted in the 

same network [32]. 

2.2 Software-Defined Network Architecture 

Conventional networks are divided into three planes, namely the management, control 

and forwarding layers. The management plane provides services to monitor and 

configure the network. The control plane generates the data required to establish 

forwarding tables, which, in turn, are used by the forwarding plane to direct packets to 

ingress and egress ports. In traditional network models, both the control and forward 

planes are tightly coupled within a single device (e.g. switch or router). This model is 

efficient from a performance perspective. However, as the complexity of networks has 

increased, the need to develop a new architecture has emerged. 

Figure 2.1 shows the three layers of SDN. The essence of SDN architecture is the 

separation of the control and forwarding planes. The separation draws the device’s logic 

(software), leaving the network devices as forwarding devices only. These devices do 

not have the capability to decide on forwarding requirements. 

The network control plane is an independent entity known as the network controller or 

NOS. The forwarding layer, on the other hand, comprises of network devices such as 

switches, routers and middleboxes, which do not have their own logic. Network 

intelligence resides in the controller or NOS, which abstracts the devices and provides 

services such as network state and topology information services. Additionally, the 

controller provides a northbound API to communicate with the application layer and a 
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southbound API to communicate with the forwarding layer devices. OpenFlow is the 

dominant southbound protocol in the SDN model [1], [3]. 

The application layer, which lies at the top of the SDN stack, introduces network 

programmability—the ability to communicate with the network’s underlying devices—

which is a fundamental concept in SDN. Programmability provides opportunities for 

network innovation for an enormous number of network applications, including network 

monitoring, traffic engineering, security and cloud applications. 

Centralised control enables a global view of the network, which facilitates management 

and monitoring processes. Additionally, it reduces errors in configuration and 

deployment of network policies and improves flexibility—for instance; a pool of 

devices from various vendors may be deployed and abstracted within the same network. 

 

Figure 2.1. SDN architecture. 

2.2.1 Software-Defined Network Controller 

The controller, or the NOS, abstract devices and provides the resources required to 

program low-level forwarding devices. The controller provides services such as network 

state and topology information. Additionally, the controller provides a northbound API, 

which facilitates communication with applications, and a southbound API, which 

provides accessibility to forwarding devices. OpenFlow is the de facto SDN southbound 

protocol [4], [27]. The application plane resides at the top of the SDN model stack. 
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Network programmability is a privilege primarily achieved by the SDN model in which 

applications in the top plane can access physical devices through the controller. 

Programmability facilitates and accelerates innovation of an enormous number of 

network applications, including monitoring, traffic engineering, security and cloud 

applications. Centralisation is an essential characteristic of the SDN architecture. The 

central entity is the controller, which provides a global view of the entire network and 

facilitates management and policy enforcement. Additionally, it decreases faults in 

configuration and deployment of network policies. Centralisation enhances network 

resilience and interoperability—for example, multiple devices from various industries 

may be integrated and abstracted in one network. 

The SDN controller consists of the following elements: 

 Basic network services: These are the core functions of SDN controllers and 

include topology, device events, status managers, shortest path forwarding and 

underlying security mechanisms. 

 Service abstraction layer (SAL): Orchestrates the southbound API (e.g. plug-in 

management). 

 Southbound API: Typically, the southbound API refers to the OpenFlow 

protocol. However, SDN supports the integration of various protocols, such as 

Forwarding and Control Element Separation and Open vSwitch Database 

Management Protocol, in the southbound API. 

 East/westbound API: Connects controllers within the distributed architecture. 

 Northbound API: Facilitates communication between applications and lower 

devices via the controller. 

Traditional network hardware has been managed by proprietary software such as the 

Cisco Internetworking Operating System. The core component of the control plane is 

the NOS, which provides the basic functionality for applications to access and manage 

devices in the physical plane. Similar to other generic operating systems (e.g. Windows 

and Linux), the NOS provides mechanisms to manage and abstract hardware resources. 

Based on its architecture, the NOS can be classified into two categories—centralised or 

distributed. In a centralised architecture, the NOS is installed on a single computing 

device. While this is efficient from a performance perspective, it has limitations in 



33 

scalability and availability (a single point of failure) [1], [33]. Trema [34], Ryu [35], 

Floodlight [36], Meridian [37] and Beacon [38] are all classified as centralised NOSs, 

with support for multithreading and concurrency to achieve high throughputs. 

In a distributed deployment, the NOS is installed onto several nodes to support 

scalability and high availability requirements for large data centres or large networks. 

These nodes can be in a single cluster or distributed over several clusters that are 

physically separated. Clusters or nodes are designed on the basis of peer-to-peer or 

hierarchal architectures [1]. Distributed architecture improves fault tolerance and high 

availability—for example, if there is a failure or security breach in a portion of the 

NOS, network administrators have more options for recovery (e.g. isolation). Several 

controllers, including Onix [39] and ONOS [40], adopt distributed architecture. 

However, a distributed architecture is also related to issues such as consistency and 

latency. Given that the controller is distributed over several nodes, each node must 

retain the latest data view (e.g. network topology or switch status). Additionally, nodes 

or clusters must communicate across the network, causing latency [7]. 

2.2.2 Controller Anatomy: OpenDaylight 

ODL is a modular open-source controller project under the Linux Foundation. It has 

wide support from the industry, including Cisco, IBM, Microsoft and Huawei, and more 

than 1,000 developers. Figure 2 shows ODL’s Lithium version controller components. 

The controller layer provides basic network services such as network topology, network 

status and switch manager. 

Representational state transfer (REST) API represents a northbound API to facilitate 

communication between the controller and the uppermost layers. REST API uses non-

persistent connections. Southbound APIs include OpenFlow and protocol plug-ins that 

interface with devices. The controller implements core services, including topology, 

statistics and switch management, host tracking and Address Resolution Protocol (ARP) 

handling. Further, the controller provides services for standard protocols. The SAL 

allows the controller to support various protocols such as OpenFlow, Simple Network 

Management Protocol and Border Gateway Protocol in the southbound API.
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Figure 2.2. OpenDayLight controller architecture [19]. 
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ODL provides a plug-in to support the Open vSwitch Database Management Protocol 

[41], which is a configuration management protocol designated to the SDN virtual 

switch (vSwitch) [42]. Additionally, ODL provides a network configuration 

(NETCONF) plug-in to support configuration installation and deletion on devices in the 

forwarding plane [43]. ODL supports standard routing and network management 

protocols such as the Border Gateway Protocol (BGP) [44] and the Simple Network 

Management Protocol (SNMP) [45] and provides a plug-in for the Path Computation 

Element Protocol [46] and the Locator ID Separation Protocol [47]. For virtualisation 

support, ODL offers Virtual Tenant Manager at both the control and application planes. 

2.2.3 OpenFlow Protocol 

OpenFlow is the de facto southbound interface protocol for SDN. It facilitates 

communications between the controller and forwarding devices at the lower plane. 

OpenFlow evolved from the Stanford projects Secure Architecture for Networked 

Enterprise (SANE) and Ethane [48]. SANE was developed as a single layer responsible 

for governing connectivity and access control as a centralised entity to provide network 

security. 

OpenFlow inherits the concept of forwarding tables from traditional network protocols 

such as Ethernet. However, its flow-based approach means that sequences of packets 

belonging to the same flow are subject to the same rules and decisions. These rules are 

installed in the forwarding tables, which are handled by controllers installed on devices. 

OpenFlow allows bidirectional communications between devices and the controller, 

meaning that devices can notify or refer to the controller for specific decisions [49]. 

Figure 2.3 shows the main components of an OpenFlow switch. The controller 

communicates with the switch via the control channel to manage one or more flow 

tables [49]. 
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Figure 2.3. OpenFlow switch architecture [49]. 
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transport layer security channels. The first message sent by the controller is a feature 
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available ports. 

Each table contains several records known as flow entries, which are accessed by the 

controller. Figure 2.4 depicts the flow entry fields. The entry is used to match against 
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Figure 2.4. OpenFlow entry field [49]. 
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 Counters: contain statistics on the packets and flow, e.g. per-flow counters, 

received packets, received bytes and duration seconds and nanoseconds 

 Instructions: actions applicable to the packet, e.g. Forward, Enqueue, Drop and 

Modify-Field 

 Timeouts: expire time for the flow in the switch 

 Cookies: thresholds implemented by the controller to filter statistics and modify 

flows 

 Flags: decide how a sequence of packets is processed. 

The controller uses two approaches, proactive and reactive, to install rules in switches in 

the flow table. In a proactive installation, the controller adds the rules in advance 

(before the packets reaching the switch). In the reactive mode, there is no match for the 

packet initially, but the device forwards the packet to the controller, which then adds the 

appropriate rule in the flow table. 

OpenFlow supports three types of messages: 

 Controller-to-switch messages, which are initiated by the controller: 

o Features: In request/reply mode, the controller sends a feature request 

message to the switch to inquire about the identity and capabilities of the 

switch and the switch replies with a feature reply message. 

o Configuration: The controller sets and queries the switch configurations 

and the switch responds to the query, sending the required information to 

the controller. 

o Modify-State manages installed rules on the switch flow table and 

configures switch ports. 

o Read-State collects statistics from the switch. 

o Send-Packet sends the packet out through a specific port on the switch. 

o Barrier: Used for message verification. 

 Asynchronous messages are initiated by the switch: 

o Packet-in encapsulates a packet to send to the controller either because 

no predefined rule exists, or while the rule exists, its associated action is 

forwarded to the controller. 

o Flow-Removed notifies the controller of an entry removal from the flow 

table. 
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o Port-status notifies the controller if the port status has changed. 

o Error informs the controller of fault occurrences on the switch. 

 Symmetric messages are initiated by both the controller and the switch: 

o Hello messages initiate the session. 

o Echo request/replay messages are similar to ping in the Internet Control 

Message Protocol. 

o Vendor: customised messages sent by the vendor. 

In OpenFlow protocol specifications, the controller is responsible for modifying the 

forwarding tables in SDN devices. The flowchart in Figure 2.5 depicts the OpenFlow 

process of incoming packets. Upon the arrival of a new packet, the switch searches for a 

matching forwarding entry in the forwarding table. If a record matches the packet fields, 

a predefined action will be executed. OpenFlow allows a set of measures to be taken, 

including to drop, forward or modify the packet. If no match occurs, the switch 

forwards the packet to the controller to conduct computations according to the policy 

issued by the application layer. 

 

Figure 2.5. OpenFlow flowchart [49]. 
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2.3 Software-Defined Network Applications 

A primary concept in the SDN model is network device programmability, which boosts 

applications developed for various purposes. Applications can be classified according to 

their purposes, such as network traffic engineering, network monitoring and 

measurements, Virtualisation, and network security. The following three subsections 

cover the first three classes, while security is covered in Chapter 3. 

2.3.1 Network Traffic Engineering 

The primary objective of traffic engineering is performance optimisation in networking 

through achieving a set of objectives, including reducing congestion, end-to-end delays, 

power consumption and packet loss, maximising the quality of service and optimising 

load balance and resource utilisation. The static architecture of traditional networks is a 

significant challenge for traffic engineering tasks [49]. Characteristics of SDN, such as 

resilience, programming, centralisation and network function virtualisation capabilities, 

promise the facilitation of traffic engineering solutions. 

Multiprotocol label switching is a common traffic engineering routing mechanism to 

forward data from one device to the next based on short labels rather than long network 

addresses, reducing the time of table lookups [50]. However, multiprotocol label 

switching suffers from limitations. 

Traffic splitting is a common mechanism to reduce network traffic congestion. There 

are two approaches to traffic splitting: packet-based and flow-based. Packet-based 

splitting can result in packet reordering that may be overheard at the other end of the 

connection, especially in Transmission Control Protocol (TCP) sessions, resulting in 

congestion at the destination. In flow-based splitting, decisions are made by forwarding 

devices; however, these decisions may not be optimal because they are based on local 

parameters, rather a global network view [51]. Hence, SDN provides a solution because 

it provides a global view of the network. Additionally, SDN can improve optimal path 

computations because it provides a logically centralised view of the network. Databases 

used by traffic engineering mechanisms must present a real-time view of the network—

in traditional architecture, device states are scattered throughout the network, but in 

SDN, the controller has mechanisms to update the database in real-time for all devices 

in the network. 
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Pythia is a traffic engineering system for data centres that utilises the SDN–ODL 

controller model. Hadoop MapReduce is a big data analytics tool to analyse and refine 

control of data centres networks [52]. QNOX is an extension of the NOX controller that 

promotes quality of service enforcement; its authors claim it improves resource 

discovery, route computations and fault notifications [53]. Aster*X is an application 

based on the NOX controller for web server load balancing—it uses the controller to 

harvest the node states and control paths using OpenFlow to facilitate network 

reconfiguration by allowing administrators to control capacity [54]. ElasticTree is an 

energy consumption optimiser for data centres based on NOX—it tunes active devices 

in real-time according to traffic loads [55]. 

2.3.2 Network Monitoring 

Network monitoring and measurement are essential mechanisms for network operators 

and administrators, while awareness of device status and network behaviour is critical 

for making decisions regarding network management, quality of service, threat response 

and traffic engineering [56]. The network monitoring process includes five stages [57]: 

 Measurements and collection of data from network devices over predefined time 

frequencies: Measurements are classified as active or passive. In active 

measurements, network agents probe devices for return of data, while in passive 

measurements, agents act only as receivers of data sent by the network nodes. 

 Pre-processing: Data collected from different nodes are aggregated and 

normalised. 

 Transmission: Raw harvested data are transferred from the data sink (e.g. the 

management information base) to the node responsible for analytics. Simple 

Network Management Protocol is a widely used protocol to transfer data. 

 Analysis: Different algorithms are applied to the data to identify specific 

patterns and big data algorithms and tools are used for data analytics. 

 Visualisation: Presents results in formats that are easily understandable and may 

be quickly absorbed by network administrators for making decisions. 

SDN can improve the subprocess of collection and transmission based on its 

architectural attributes such as centralisation and programmability. In traditional 

networks, network agents collect data from network nodes periodically—this approach 
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is rigid and inefficient in terms of consistency, performance and resource optimisation. 

In contrast, SDN involves a central entity with a global view that can intelligently 

decide which data from which devices need to be collected. For data transmission, 

instead of using a classic management information base, SDN offers a flexible 

development in new data structures according to requirements. 

Procera is a framework based on SDN that allows network administrators to annotate 

policies applicable to responding to specific network events [58]. Its policy is written in 

high-level functional programming language and compiled to a set of forwarding rules 

at the underlying nodes in the physical plane. 

OpenSample is a platform to reduce sampling latency based on the Floodlight controller 

[59]. It uses a modified flow standard for packet export. Its authors claim it reduces 

latency from 1–5 seconds to 100 ms. OpenNetMon is a module integrated into the POX 

controller that monitors flow metrics related to packet loss, throughput and latency [60]. 

It probes flow source and destination devices periodically in cases where poll time slots 

are subject to changes. 

2.3.3 Software-Defined Networks for Virtualisation 

Network virtualisation enables and maximises resource sharing between several isolated 

networks running in their own containers [61]. Network virtualisation solutions 

efficiently increase hardware utilisation and reduce expenditure and operational costs. 

Virtualisation is an essential service technology in data centres and cloud computing 

infrastructure, allowing tenants to acquire networking services according to their 

requirements [62]. 

Virtualisation in the traditional networking model faces two challenges: network 

topology and addressing. Various networking environments require different network 

topologies. Additionally, addressing schemes such as IP versions 4 and 6 are related to 

physical devices. 

SDN abstraction capabilities facilitate virtualisation by adding an intermediate layer, 

which is analogous to middleware hypervisors in computing virtualisations. The new 

layer acts as a proxy between the NOS and physical devices. The purpose of the layer is 
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to seamlessly encapsulate the process required for sharing resources and isolating tasks 

[63]. 

The hypervisor, or virtual machine monitor, is responsible for monitoring various 

virtual networks and allocates required resources such as link capacity [64], [65]. 

Hypervisors have three abstraction attributes: 

 Device abstraction: Similar to other computing devices, virtualisation targets the 

central processing unit and related storage. This is mainly used for flow table 

resources. 

 Physical link abstraction: This focuses on virtualisation of physical connections, 

available link capacity and buffers at both ends of the link. 

 Topology abstraction: The hypervisor uses the abstraction of devices and links 

to implement the required network topology. 

An essential virtualisation attribute is isolation. In SDN-based virtualisation, isolation 

must be done on three levels [65], [66]: 

 Addressing isolation: Each slice of the network or virtual network flow spaces, 

which represent a subset of the entire available flow, must be separated from 

each other. Additionally, consistency problems such as generalisation, 

correlation and shadowing issues may exist in the access control list. 

 Data plane isolation: Device central processing units, associated storage and 

physical links should be isolated for each tenant. 

 Control plane: Each slice must have its own controller. 

FlowN is a NOX-based SDN distributed hypervisor that adopts the concept of 

containerisation in which the entire network is running on a single controller, with each 

tenant having a standalone slice [67]. AutoSlice is a proposed virtualisation layer that 

focuses on the automation of the slicing process itself [68]. Slices Isolator handles 

problems related to virtual network isolation and performance and flexibility trade-offs 

[69]. It offers different levels of isolation from which network operators can choose 

according to their performance and isolation requirements. 
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2.4 Software-Defined Networks in Various Networking Environments 

SDN can replace the traditional networking model in several networking environments, 

including IoT, data centres, cloud computing and wireless networks. The following 

sections discuss these various environments, the challenges of current traditional 

networks and how SDN can mitigate these limitations, providing some sample 

implementations. 

2.4.1 Software-Defined Networks for the Internet of Things 

IoT introduces new challenges to the conventional communication model. IoT network 

characteristics such as object heterogeneity and scalability require revolutionary 

solutions. Currently, there is no universal architecture for IoT. However, several 

architectures have been proposed based on SDN. SDN introduces network 

programmability and centralisation, which facilitate network abstraction, simplify 

network management and ease evolution. The proposed framework in chapter 4 with the  

SDN integration can be utilised as a novel communication architecture for IoT. SDN 

enhances network resilience and scalability, which are essential in large-scale IoT 

deployments such as smart cities. 

IoT expands the capability of the internet by connecting smart objects such as grid 

health and environmental devices. Advancements in wireless communication, 

embedded systems and sensor technologies have accelerated the adoption of the IoT 

model in several domains. However, higher connectivity increases the risk of privacy 

and security threats. 

IoT introduces three challenges: first, the heterogeneous composition of the network; 

second, the adoption of widely distributed architecture, specifically in applications such 

as smart cities and smart grids; and third, the introduction of new protocols to handle 

specific issues related to power and computation limitations of network sensors [70]-

[73]. 

The IoT threat vector has been extended with new attacks, including object cloning, 

firmware replacement and extraction of security parameters. Several studies have 

proposed an SDN-based architecture to enhance the security of IoT. Some studies have 

considered a domain-based architecture in which the network includes multiple domains 
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[74], [75]. The separation of domains enhances the availability of the network. 

However, a robust performance analysis has not been conducted. Bhunia and Gurusamy 

[76] propose a detection system based on SDN for denial-of-service (DoS) attacks on 

IoT, with the authors claiming they achieved a precision of around 98%. Chakrabarty et 

al. [78] propose an SDN-based IoT architecture called Black SDN, which secures 

payload and metadata through encryption. However, routing suffers complications as 

the source and destination data in the header are also encrypted. Jararweh et al. [79] 

focused on IoT management aspects by proposing a comprehensive SDN-based 

architecture—SDIoT—to enhance IoT management by enhancing the forwarding, 

storing and securing of data generated from IoT objects. 

2.4.2 Software-Defined Networks for Cloud and Data Centres 

Cloud computing is a model of Internet-based computing that represents an integrated 

platform of network hardware and software that provide specific internet services on a 

pay-per-use basis. Cloud computing provides three levels of service: software as a 

service, platform as a service and infrastructure as a service. The top level, software as a 

service, provides software on demand—examples include email software such as 

Microsoft Office 365. Platform as a service offers platforms used by application 

developers, while infrastructure as a service, the lowest level, offers the most basic 

services such as virtual machines and virtual networks. 

The cloud computing paradigm considers two characteristics: elasticity and dynamic 

reconfiguration. The cloud platform operates in several data centres, including Amazon 

EC2 and Microsoft Azure, and this environment contains an enormous number of 

networking devices, servers and dense existence for virtualisation services. The 

complex structure of these data centres and the vast number of internetworking devices 

and servers raise issues related to scalability and performance. As discussed previously, 

the rigid structure of the traditional network creates a challenge for cloud computing 

platforms. The giant leader Google built B4, an SDN-based wide area network 

connecting Google data centres around the globe [83]. 

SDN characteristics such as centralisation, programmability, a global view of the 

network and, most importantly, virtualisation capabilities, allows SDN to be an enabler 

technology for data centres and cloud computing platforms [1]. Based on various SDN-
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based clouds computing architecture, the authors concluded that an abstract architecture 

consists of three layers mapped to SDN model planes as follows: 

 Cloud manager application receives requests for resource allocations and 

provides services for management, monitoring and performance optimisation. 

The ODL controller—discussed in section 2.1.1—allows the integration of cloud 

manager software such as OpenStack [19]. 

 Controllers similar to SDN architecture provide basic NOS services. Figure 2.6 

shows the ODL controller support OpenStack at the controller plane with the 

OpenStack service module. 

 The physical plane includes the network resources to be provisioned by the 

cloud manager. 

 

Figure 2.6. OpenDaylight OpenStack application support [19]. 

CloudNaas is a NOX-based cloud networking platform that supports infrastructure as a 

service cloud for virtual network creation and isolation [84]. Meridian is an IBM cloud 

platform for creating and managing virtual network topologies according to workload 

[37]. Meridian can be integrated with OpenStack and IBM SmartCloud [85]. 
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2.4.3 Software-Defined Networks for Wireless Networks and 5G 

Wireless networks can be classified into four main classes: cellular, wireless sensors 

and wireless mesh networks [86], [87]. Cellular networks integrate a combination of 

technologies such as 4G, Long-Term Evolution, various standards of wi-fi and 

Worldwide Interoperability for Microwave Access. This combination requires 

transparent, soft, hands-off, efficient resource management. Cellular networks are 

composed of two major components, a core network and a radio access network. The 

core network is the basis of connectivity, providing access to mobile stations or end 

users. The core network provides connectivity between different radio access networks, 

managing services such as hands-off, roaming and quality of service. In wireless sensor 

networks, the major challenges are related to limited computation and power resources 

in the sensors—these challenges were covered in the previous section on IoT. Wireless 

mesh networks or ad hoc wireless networks involve the connection of devices without 

infrastructures such as access points, with routing on a hope-to-hope basis. The routing 

mechanism and absence of a central node cause interference and negatively affect 

performance [86]. 

Fundamentally, the wireless network faces challenges such as interference and 

frequency management that do not exist in wired networks. Additionally, security 

threats originating from the medium used by wireless networks, which is not 

constrained by wires or optical fibres as in wired networks, are mounting. The medium 

imposes the need for new solutions because techniques such as collision detection are 

not applicable in wireless networks; hence, to avoid collisions in advance, a solution for 

collision avoidance emerges. Solutions for sharing frequency bands, such as various 

types of multiplexing (e.g. time-division multiplexing and frequency-division 

multiplexing), create additional problems such as hidden and exposed nodes, which 

require solutions such as Request to Send and Clear to Send, increasing complexity and 

affecting performance. 

SDN characteristics such as resilience and centralisation offer opportunities to tackle 

issues such as power and frequency changes or network handovers in the dynamically 

changing environment of wireless networks. Additionally, wireless networks are 

heterogeneous, and the concept of abstraction in SDN, by supporting different devices 

from different vendors, is key to handling the problem of heterogeneity in wireless 
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networks [1]. In cellular network resource utilisation, optimisation is essential, 

particularly in high-density areas, and network designers adopt various techniques to 

allow more users in the same cell to use the frequency efficiently. One of these 

techniques is cell splitting in which a cell is divided into smaller cells, with each sub-

cell having its own base station with lower transmission power to avoid interference 

from adjacent cells. The technique has its drawbacks, including an increased number of 

cells, which increases the probability of interference and complexity in management 

[88]-[90]. 

For resource allocation of radio access in cellular networks, SoftRAN provides an 

abstraction for base stations. At the control plane, the abstraction is conducted in three 

dimensions: time, frequency and space [91]. The SoftRAN control plane is responsible 

for operations such as hands-off and transmission power controls for each base station 

to avoid interference. In the core network, Softcell is an SDN-based application that 

resolves the complexity and delay associated with the resources allocation in the core 

network, allowing the core network to access the data plane in the radio access network 

and have a global view of the entire network to support routing through middleboxes 

installed on switches [92]. 

2.5 Software-Defined Network Challenges 

Despite the opportunities introduced by the novel model, SDN faces various challenges, 

raising questions regarding its suitability as a singular model. In this section, we 

categorise those challenges into four classes: 

 Architectural challenges related to design, which affect the non-functional 

requirements of the model as a unit 

 Controller challenges, such as distributed controller design 

 Data plane challenges, such as switch design and interoperability 

 Application plane challenges. 

Security is also a major challenge of the SDN model. Given that this thesis focuses on 

the security of SDN, we discuss this flaw in the next chapter. 
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2.5.1 Software-Define Network Model Architecture Drawbacks 

Traditional networking models enclose the control and data planes within the same 

device. Required communications between both planes are almost simultaneous. In 

SDN, the controller and data planes communicate over an OpenFlow communication 

transport layer security channel. Communication and its associated encryption and 

decryption processes cause latency. Additionally, latency increases in distributed 

controller architecture in which controllers use east/westbound channels to 

communicate and synchronise the global view of the network. In conventional 

networks, the control plane is distributed in case of failure for various reasons, including 

security breaches. Affected devices will be out of service, but other devices will still be 

able to operate, enhancing the availability of network services. Centralisation of the 

control plane creates a single point of failure if the controller is out of service. 

Subsequently, all devices at the data plane will also fail [1], [7]. 

2.5.2 Controller Challenges 

In high-density networking environments such as data centres, a single controller model 

is impractical because large data centres, such as Google B4, are geographically 

scattered over different locations and have high availability and throughput 

requirements. Hence, a scalable distributed design is more practical. Distributed 

architecture may be hierarchal or peer-to-peer. Controller scalability faces two 

challenges: latency in controller communications and management of the backend 

database by the controllers [1]. [40], [92]. 

Controller scalability by integrating different controllers is another challenge for SDN 

deployment. The controller comprises software that is coded in a specific programming 

language. Languages such as C++ support performance over portability. Java offers 

excellent portability, but its performance is affected by the two-step encoding by the 

compiler and the interpreter. The programming language will affect controller 

interaction with the applications plane (northbound communication) and 

intercommunications between controllers in distributed controller architecture 

(east/westbound communication). Solutions focus on two approaches—general network 

policy programming language and API. Pyretic was an early attempt to abstract 

applications in which the network administrator or programmers could build a modular 
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application from already existing modules (similar to the concept of programming 

language packages). However, given its weak performance, it was not industrially 

applicable [94]. API in the controller scenario facilitates east/westbound communication 

between controllers. The Internet Engineering Task Force (IETF) has proposed an SDN 

interface protocol for inter-SDN controller communications. However, these steps are 

still far from meeting practical interoperability requirements [95]. 

2.5.3 Data Plane Challenges 

Traditional networks have existed for decades, with industry and governments investing 

heavily in its infrastructure. The transition from this model to SDN should consider 

interoperability between the two models. Another challenge at the data plane is device 

heterogeneity, with vendors providing different switches with a wide range of 

inconsistencies in performance, features and compliance with protocol specifications 

[1], [7]. One solution for design inconsistency problems in SDN-compatible devices, 

offered by tinyNBI, is the provision of a basic API [95]. The authors extracted five 

fundamental abstractions and provided a low-level API, which can be used for higher-

level abstractions regardless of the OpenFlow version or switch design. Additionally, 

the SDN-promoting organisation Open Networking Foundation have founded a 

specialised group, the Forwarding Abstractions Working Group [96], which is working 

to deliver new standards for network forwarding targets. The main goal of the group is 

to enhance and enforce OpenFlow standards on forwarding devices. 

2.5.4 Application Plane Challenges 

SDN applications require a high level of abstractions. Traditional programming 

languages offer a low level of abstractions (even when comparing scripting languages to 

more level programming languages such as C and C++). The purpose of SDN 

applications is to annotate network policy, which requires a high level of abstraction 

that is closer to formal specification notations. Application authentication and access 

control to the services offered by the controller is an essential step to secure the SDN. 

Additionally, application isolation should be done at two levels—first, applications 

should be isolated from each other, and second, the control plane should be isolated 

from the application plane [8]. 
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2.6 Summary 

This chapter provided the background of the SDN model, which introduced the 

separation of the control and data planes. The chapter focused on SDN architecture, 

which consists of three planes: application, control and data planes. Given that the 

controller is the most critical element for model security, the chapter provided an in-

depth examination of this plane. Main components of the control plane were discussed 

in detail and, subsequently, an anatomical view of one of the most renowned SDN 

controllers, ODL, was applied. Additionally, the chapter introduced and discussed the 

dominant southbound protocol, OpenFlow, which is responsible for communications 

between the controller and the networking devices at the forwarding plane. It is essential 

to understand how the protocol is integrated with the controller. 

The following two sections discussed the applications of SDN and the environments in 

which SDN can provide fundamental solutions. SDN applications include networking 

traffic engineering, network monitoring and virtualisation solutions. Several emerging 

technologies can benefit from SDN architecture, including IoT, clouds, data centres and 

wireless technologies, including 5G cellular networks. For each of these environments, 

the basic concepts, challenges and solutions offered by SDN was discussed. 

The global view of SDN enhances decision-making in network traffic engineering. 

Additionally, it provides an efficient routing path computation supported by the 

centralised controller. Network monitoring applications such as OpenNetMon provide 

efficient mechanisms for measuring statistics related to network throughput and packet 

loss. Another notable success of SDN is its virtualisation ability, which is supported by 

device abstraction and hypervisor layers implemented at the control planes. 

This chapter introduced several challenges and ongoing research in SDN networking. 

These challenges were classified into four groups: challenges related to architecture 

design and those related to the application, control and data planes. The majority of 

these challenges are related to programmability and centralisation of SDN. For example, 

centralisation introduced new challenges for the controller architecture—questions 

about performance, scalability, flexibility and security in both centralised and 

distributed controller architectures were raised. Network programmability allows 

applications to access networking devices, raising concerns related to authentication, 
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authorisation and accounting. Additionally, the model inherited challenges, including 

those related to security, from traditional IP networking. Security is a significant 

challenge—the following chapters will focus on security challenges and solutions.  
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Chapter 3: Software-Defined Network Security Analysis 

This chapter discusses the security of SDN. The primary goal of this chapter is to 

provide a broad and inclusive understanding of security in the SDN model. It 

investigates the controller’s security flaws and how these threats differ from threats in 

traditional networks. We identify threat attributes and their consequences on the 

network assets. A comprehensive understanding of attacks will improve the efficiency 

of countermeasures. The security analysis is conducted in three stages. First, a STRIDE 

(spoofing, tampering, repudiation, information gathering, and denial of service and 

elevation of privilege) analysis is conducted to identify possible threats from the design 

perspective. The second analysis identifies attacks using attack trees. The third analysis 

simulates attacks to identify practical consequences and recommended measures to 

address threats. 

The chapter is organised into five sections. The first section is an introduction to both 

the opportunities and deficiencies in the security of SDN, providing an in-depth view of 

SDN security and security limitations. 

Sections 2 and 3 present a review of SDN security from the current literature. The 

second section discusses how SDN improves network security through its wide range of 

security applications that enable the enforcement of security policies and monitor and 

detect threats. 

The third section investigates the security deficiencies of the SDN model. This section 

provides an analytical view of SDN-related threats. Analytics were carried out using 

STRIDE and attack trees. STRIDE is a system-oriented threat modelling method that 

models DFDs of the system under analysis. The main elements of the model are data 

flow, data stores, processors, interactors and trust boundaries. Thereafter, DFD 

components were examined against a set of attacks specified by the STRIDE list 

(spoofing, tampering, repudiation, information gathering, denial of service and elevation 

of privilege). An attack tree is a formal, attack-oriented approach to identify possible 

attacks against the system. The attack tree begins with a root node that represents an 

attack goal, with many tree branches specifying methods to reach the node. Logical 
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AND/OR operators were used to aggregate leaves. The attack tree analysis was 

supported by various tools such as Isograph. 

The fourth section discusses the simulation of several attacks identified in the previous 

section on an SDN network. The simulation was applied to an SDN network using 

Mininet [97] and ODL SDN controller, followed by the use of several exploits to launch 

the attacks. The final section concludes the chapter. 

3.1 Introduction 

Data communication architecture has remained stable for decades. As the pace of 

technology has accelerated, there is a need to adopt a new model to reduce the 

complexity and inflexibility of traditional networks. Pillar technologies of SDN, such as 

central network control, programmability and network virtualisation, have been 

researched for decades [1]. OpenFlow introduces the concept of separating the control 

and forward planes and represents a novel communication architecture. 

Centralisation and programmability offered by the SDN model are critical attributes 

utilised by developers to implement new security applications for various purposes such 

as monitoring and threat response. Despite the significant advantages offered by the 

new SDN architecture, including flexibility, programmability and centralisation, the 

model introduces unprecedented security threats. 

Security is a primary concern of the new model. The SDN controller is a crucial layer in 

the network. A single point orchestrating the entire network may be utilised to enhance 

network security; however, paradoxically, this centralised architecture is more 

vulnerable to attacks. The controller is an attractive target for attackers because it is 

accessible from applications in the higher plane and dominates physical devices at the 

lower plane. 

This study examines threats related to SDN architecture, specifically those related to the 

controller plane. There are two approaches for carrying out security analysis, namely 

system-oriented and attack-oriented approaches. For research comprehensiveness and 

consistency, a method from each approach was chosen. The security analysis was 

conducted in three stages. First, a STRIDE analysis was developed to identify possible 

threats in the SDN architecture design model. Second, various possible attacks using 
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attack remodelling were described. Third, attacks were practically simulated for 

demonstration and proof of concept. 

The purpose of the study was to provide an inclusive realisation of threats emerging 

from the introduction of the control layer. This chapter investigates threat attributes, 

types of threats in traditional networks and the SDN model and consequences of threats. 

An understanding of attacks will improve the efficiency of countermeasures. 

3.2 Software-Defined Networks for Security 

The rigorous and inflexible architecture of the traditional communication network has 

hindered its innovation [98], [99]. Multiple attempts have been made to adopt a flexible 

network model with separate control and forward planes. Separation has introduced 

programmability and centralisation features, which have been harnessed to enhance the 

security of the network. This section explores SDN applications that enhance network 

security, such as those that enforce and verify network policies and detect and mitigate 

threats. 

3.2.1 Policy Enforcement 

Network policy is a set of configurations, rules and constraints that govern network 

operations (e.g. network access, incident handling and communications isolation) [100]. 

The architecture imposes policy enforcement through network middleboxes. 

Middleboxes are devices deployed to manipulate network traffic for specific purposes 

such as inspection, threat detection and access control. 

Traditionally, two approaches have been used to enforce network policy, either by 

deploying middleboxes between endpoints in network paths or by attaching them to 

middle switches. Given that both options necessitate rigorous deployment, they lack 

flexibility  [101]. 

SDN architecture offers two advantages that are not available in traditional networks: 

 Complete network coverage: Network policy is enforced at switching devices by 

installing flow rules. In conventional networks, middleboxes such as firewalls 

and intrusion prevention systems are located at specific points in the network, 

typically at network entry points such as demilitarised zones, either on or off 
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network paths. Both deployments are inflexible and incomprehensive. Figure 3.1 

depicts a firewall dedicated to external traffic where coverage of internal traffic 

is limited. The IDS provides protection for specific subnets. In SDN networks, 

programmable switches are distributed over multiple locations in the network. 

This architecture avoids single point failure and enforces policy inside the 

network between endpoints. 

 Centralisation facilitates policy deployment and configuration. This is in 

contrast to middlebox configurations in existing networks in which network 

administrators implement and deploy the policy from a single point rather than 

configuring appliances explicitly. 

 

 

Figure 3.1. Network policy enforcing middleware device locations. 

Historically, the OpenFlow protocol evolved as a successor of the Ethane project [102]. 

The purpose of Ethane was to define a network policy and enforce it at the switches. 

Ethane was an instantiation of SANE [48]. The domain controller based on network 

policy calculates the flow table entries installed on the switches. Given that the project 

requires custom switches, network upgrading was expensive. Integration of Ethane 

networks with current networks did not provide holistic policy enforcement where there 

was a probability of traffic passing through other non-Ethane custom switches. 
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SDN features reintroduced a policy enforcement method known as active security [103]. 

This concept includes five phases of adaptable network policy: 

 Initial configuration of the infrastructure 

 Sense: the controller responsible for collecting data from the network 

 Adjusting the configuration as the controller updates the policy according to the 

network status 

 Forensics: the controller gathers information related to attacks 

 Respond: the controller initiates a reconnaissance and counter-reaction. 

3.2.2 Security Policy Verification 

As the complexity of networks has escalated, there has been the need to ensure and 

verify the attached security policies. The conflict between policies or even between 

rules in the same policy may lead to network exposure. 

FlowGuard is an SDN-based framework to detect firewall policy violations. Upon the 

update of the network status, FlowGuard will dynamically analyse the path space to 

detect firewall rule conflicts [104]. Flover is another SDN security policy verifier [105] 

based on checking systems and was built on the NOX controller to provide formal 

verification of security policies. Flover transforms flow table rules into a binary tree 

diagram and applies formal methods to detect rule violations. 

3.2.3 Intrusion Detection 

Intrusion detection and prevention systems (IDPSs) are software or hardware systems 

dedicated to observing the network for security breaches. Standard IDPS processes 

comprise three stages: collection of data from the network, analysis and execution of 

actions in case of threat detection. There are three major data analysis methods for 

detection of breaches: signature-based detection, anomaly-based detection and 

specification-based detection [11]. Signature-based detection is used when a system has 

a database of predefined violation signatures and matches that signature against network 

activity signatures. Anomaly analysis is used when the system identifies abnormal 

activities. Normal activities are identified in a baseline profile, which the system 

develops in a learning phase. In stateful protocol analysis, a predefined pattern of 

protocol behaviour is established and a comparison between network activities and the 
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expected behaviour defined by protocols raises the alarm in the case of profile violation. 

A combination of methods is used to maximise IDPS performance. A study compared 

various detection methods proposed in [11]. Each method has its advantages and 

disadvantages—a significant weakness of signature-based detection is its inability to 

detect new attacks, while anomaly-based detection has a higher false alarm rate. The 

majority of commercial implementations use a hybrid approach. 

Fundamentally, network-based IDPSs have a packet or flow-capturing module [12]. The 

capturing engine sniffs packets or flows for specific features. Feature selection relies on 

the threats targeted by the IDPS. 

From the perspective of SDN, current research [10]-[12] has focused on packet and 

traffic measurements such as traffic engineering, load balancing, monitoring and 

security. Network central view and programmability provide the necessary assets to 

develop a robust packet/flow inspection system. SDN consists of three layers, namely 

applications, controller and forwarding devices. The controller has the capacity to 

communicate with devices through southbound protocols such as OpenFlow. OpenFlow 

provides the API to poll devices for traffic statistics. Traffic data are aggregated to the 

controller, which, in turn, communicates with the application layer through the 

OpenFlow interface. 

The architecture of anomaly-based detection based on SDN has been proposed in [106]. 

The framework distributed a DoS attack detector based on flow inspection. The system 

has been implemented on the NOX controller. OpenSketch is a notable example of SDN 

traffic measurement architecture [107]. The platform provides a library to customise 

measurements to meet specific tasks and sets measurements to detect anomaly 

behaviour. A comprehensive view of the system, which is the essence of SDN 

architecture, is a significant feature. It reinforces the design of the robust data collection 

module in IDSs. 

Studies have used the architecture of the anomaly-based detection method in SDN 

[106]. Concentration on anomaly detection based on the SDN is supported by the 

controllability of traffic. However, there is a need to adopt other detection methods in 

SDN to exploit its capabilities. 
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Specifically, SDN architecture can contribute to the enhancement of detection analysis 

techniques. Features such as scalability and ease of configuration in the case of anomaly 

detection can be improved by exploiting the centralised architecture of SDN. 

Developing a central analysis module may reduce the overhead on the monitored 

system, leading to improved performance. 

Several intrusion detection applications have been developed to detect malicious 

activities in SDN networks. For example, Defense4All is an application in the ODL 

controller to detect and mitigate DDoS attacks. 

3.2.4 Threat Response 

The SDN controller has a consistent real-time view of the entire network. Detecting 

attacks in real-time is essential for establishing an active response system. SDN is a 

flow-based rather than a destination-based networking model. Traffic control is a crucial 

feature of the response module. For example, on the assumption of threat existence, 

network middleboxes forward traffic to virtual appliances or honeypots for further 

investigation or forensic processes. Additionally, SDN programmability allows 

applications—particularly IDP applications—to communicate with forwarding devices. 

The flexibility of the architecture facilitates response mechanisms. For instance, if a 

section of the network is compromised, the response module isolates infected devices to 

mitigate the risks. 

3.2.5 Security Tools 

In this section, several SDN security solutions are surveyed. Table 3.1 shows a survey 

of different SDN-based security tools. These tools are classified into two categories: 

security enhancers or SDN security resolutions. Security enhancement tools aim to 

improve network security by utilising SDN features, while SDN security resolutions are 

tools to improve the security of the SDN itself. Additionally, the table indicates the 

layers the solution covers. 

FRESCO is a security composition framework that focuses on anomaly detection and 

mitigation [108]. Netfuse is an example of a solution that addresses security flaws in the 

SDN architecture [109], protecting the network from DoS attacks. However, there is a 
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significant shortcoming in the research related to improving the security of the SDN 

itself. 

The majority of the survey tools focus on using SDN to enhance security, more 

specifically for policy enforcement solutions. The resilience of the SDN architecture 

effectively supports the adoption of policy execution and verification applications. 

MAPPER, FlowTags, SIMPLE and OpenSafe are examples of SDN solutions for policy 

enforcement [110]–[113]. CloudWatcher [114] controls network flows to guarantee 

network security, with devices inspecting each flow. Veriflow inspects and verifies flow 

rules in real-time to ensure integrity [115]. 
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Table 3.1. SDN Security Tools Survey 

Security 

Solution 

Solution Domain Layer Description 

Security 

Enhancer 

SDN Security 

Resolution 
App Control Forward 

 

FRESCO 

[108] 
 X  X  

Security services 

composition 

framework 

LiveSec 

[116] 
X  X X X 

Security policy 

enforcement 

Netfuse 

[109] 
 X  X X 

Protection against 

traffic overload 

externally (DDoS) or 

internally 

SDN RTBH 

[113] 
X   X X DoS mitigation 

MAPPER 

[110] 
X  X X  Policy enforcement 

FlowTags 

[111] 
X  X X X 

Policy enforcement 

and verification  

SIMPLE 

[112] 
X  X X X Policy enforcement 

OpenSafe 

[117] 
X  X X  Policy verification 

CloudWatch

er [114] 
X  X X  

Ensures network 

packets are inspected 

Fortnox 

[118] 
 X  X X 

Prioritises flow rules 

to eliminate 

inconsistencies 

Flover [105] X  X X X Rule verification 

VeriFlow 

[115] 
X  X  X 

Verifies and debugs 

flow rules 

OpenFlow-

RHM [119] 
X   X X 

Mutates hosts as a 

response to threat 

existence 

OrchSec 

[120] 
X  X X X 

Security application 

development 

framework 

FlowNac 

[121] 
X   X X 

Flow-based access 

control 

PermOF 

[122] 
 X  X X 

Fine-grained 

permission and 

isolation system for 

SDN apps 
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3.3 Security Limitations of Software-Defined Networks 

Despite the many voices preaching the promising future of SDN, various challenges 

prevent the broad adoption of the new model. Contradictorily, the primary advantages 

of the new architecture are the origins of its weaknesses. Performance, scalability, 

resilience and security are the main issues to tackle in the context of current research on 

SDN [1], [7], [8]. 

In contrast to traditional networks, SDN has performance trade-offs. A tightly coupled 

data and control plane in a single processing device is performance oriented. In SDN 

process flow, devices refer to the controller to perform logical decisions. The delegation 

of logical processes causes latency and negatively affects the throughput of devices [7]. 

The current stream of research is focused on improvements to hardware such as 

processing chips [1]. 

Essential questions about SDN scalability are raised. The network controller is 

responsible for logically updating forwarding tables in the connected device pool. In 

real-world networks, the controller is responsible for processing a large number of 

messages sent from forwarding devices. This raises the question regarding the number 

of nodes a controller should support. In this study, the network was scaled by adding 

more controllers to manipulate issues such as consistency. The term ‘consistency’ is 

essential in the SDN network because the controller, or a set of controllers, should 

maintain the same view of the network. HyperFlow [123] provides a solution for 

updating the network state by propagating events that affect the network state. 

A single point of control is equivalent to a single point of failure. This configuration is a 

significant threat to network resilience and fault tolerance. SDN resilience remains an 

open question [1]. A distributed controller has been proposed to improve SDN 

flexibility [7]. 

Security threats are critical challenges in traditional networks and are escalated in SDN 

networks. The new architecture has brought additional challenges that did not exist in 

traditional networks. In particular, threats target the control layer [8]. The following 

sections highlight the security concerns of the controller and the standard southbound 

protocol, OpenFlow. 
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Security breaches are significant challenges in traditional data communications systems. 

Security challenges are escalated in SDN networks because the architecture introduces 

additional concerns that did not exist in traditional networks. OpenFlow’s security 

analysis study [124] revealed several attacks derived from the SDN-prevalent protocol, 

such as DoS attacks on flow tables and control channels. Conflicts in application 

privileges propagate to flow rules. Fortnox provides role-based authentication and 

security policy enforcement [101]. Fortnox conducts a real-time rule conflict analysis to 

reveal rule contradictions [118]. Several intrusion detection applications have been 

developed to detect malicious activities in SDN networks. Defense4All is an application 

that detects and mitigates DDoS in the ODL controller [20]. However, the application 

does not protect the controller itself; rather, it deploys a set of rules to protect the 

network at its perimeters. The Defense4All application requests network information 

from the controller. On detection of malicious activities, the application executes 

mitigation actions according to its attack response module. A conventional technique to 

protect the controller is to deploy a distributed controller platform. However, significant 

concerns regarding distributed architecture have emerged, including network 

performance trade-offs. Given that multiple controllers exchange information for 

orchestrated network control, this exchange process results in latency. Additionally, 

there are concerns related to data consistency and synchronisation at each control point 

[1], [7]. In communications between the controller and switching devices, data 

exchanged over communication channels need to be ciphered because TCP connections 

are exposed to various threats. Transport Layer Security encryption will provide 

standard security measures to mitigate man-in-the-middle attacks. FRESCO is a security 

composition framework focused on anomaly detection and mitigation [108]. Netfuse is 

an example of a solution that addresses security flaws in SDN architecture [109], 

protecting the network from DoS attacks. However, there is a significant shortcoming in 

research related to improving the security of the SDN itself, particularly from threats 

attacking the controller [1], [7], [8], [124]. SDN security flaws are an important ongoing 

research topic. Several papers have studied challenges related to SDN architecture. 

Kreutz et al. [8] reveal seven threats associated with SDN architecture. Figure 3.2 

depicts three threats directly related to the controller. 
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Figure 3.2. Controller security threats. 

Ruffy et al. [125] used STRIDE to analyse SDN security. The study identified security 

deficiencies in generic SDN design, such as spoofing in SDN networks caused by 

unauthenticated access to one of the network elements. The authors offer potential 

countermeasures, suggesting that attacks may be resolved by enforcing contemporary 

authentication procedures. In another recent paper, the authors focused on controller and 

forwarding plan security [126]. The study conducted an analysis process based on Petri 

nets and attack trees; however, the study was limited in its scope of attacks. The study 

presented in this thesis focuses on the analysis process of the controller and augments 

the analysis with an experiment that covers several threats: 

1. Attacks on communications between the controller and data plane devices 

2. Attacks on controller vulnerabilities 

3. Attacks on the controller originating from untrustworthy applications that 

communicate with the controller. 

3.4 Software-Defined Network Security Analysis 

The first step involved defining critical security objectives, such as system availability 

and dependability. At this level, the objective was to outline the system characteristics. 
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The second step involved specifying system components, data flows and trust 

boundaries. The third step involved dissecting the system using a DFD. The diagram 

consisted of the elements shown in Table 3.2. 

Table 3.2. STRIDE Graphical Components 

Entity Details 
Graphical 

Representation 
Attacks 

External entity Represents the entities that interact 

with the system under the modelling 

 

Spoofing identity 

Process System nodes that perform actions on 

the data flow in the system 

 

Tampering with 

data 

Multiprocess A process composed of a subprocess 

 

Repudiation 

Data stores Where the data are kept (e.g. database 

tables) 

 

Information 

disclosure 

Data flow Data movements in the system 

 

Denial of service 

Privilege 

boundaries 

Represent the change in the level of 

trust 

 

Escalation of 

privilege 

We conducted the analysis on three levels. First, we developed a STRIDE analysis to 

define possible threats from the design perspective. Second, we described various 

attacks using attack trees. Third, we simulated possible attacks to identify actual 

consequences and recommend measures to address threats. 

At this point, it is essential to clarify the terms risk, threat, vulnerability and attack. The 

threat is the harm that can occur to a system asset. System assets are a broad range of 

resources that vary from devices to information. Threats occur when an intruder carries 
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out an attack by exploiting a weakness in the system, referred to as vulnerability. Risk is 

the intersection between threat, vulnerability and consequence. Threat modelling is the 

process of identifying and evaluating threats. Risk analysis is the identification and 

assessment of risk severity. Risk management is concerned with risk mitigation and 

elimination through the adoption of countermeasures. 

3.4.1 STRIDE 

The analysis was conducted using two approaches: a system-oriented approach, which 

focuses on system components, and an attack-oriented approach. The first stage 

employed STRIDE (spoofing, tampering, repudiation, information gathering, denial of 

service and elevation of privilege) as the system-oriented analysis method [21]. Threat 

modelling included five steps. The first step was to define the critical security 

objectives, such as system availability or dependability. At this level, the objective was 

to define system characteristics. The second step was to specify system components, 

data flows and trust boundaries. The third step was to dissect the system using a DFD. 

The fourth step examined the DFD elements against the STRIDE attacks; for instance, 

whether a particular data store element was exposed to information disclosure. The final 

step was to identify vulnerabilities to threats. Microsoft’s threat modelling tool was used 

to automate the process of analysis [127]. Figure 3.3 shows a primary DFD of the 

controller. Through multiple iterations of analysis, we identified a list of potential 

threats against the controller. 

 

Figure 3.3. Controller high-level dataflow diagram. 

.
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Figure 3.4. Detailed dataflow diagram
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Figure 3.4. shows the threats against each component in the controller. Services and 

plug-ins are exposed to privilege escalation by changing code flow execution through 

exploiting vulnerabilities such as buffer overflow, heap overflow and string formation 

attacks. Additionally, services and plug-ins are threatened by DoS attacks by sending 

requests that exceed the available computation resources. The SAL is exposed to 

privilege elevation and DoS attacks. Additionally, SAL has a buffer that might be 

compromised by information disclosure attacks, repudiation attacks and data tampering 

attacks via changing bits. The controller has a data log file that is also at risk of 

information disclosure, tampering and repudiation threats. Data flow between the SAL 

and controller services is vulnerable to information disclosure via sniffing and spoofing 

attacks. Likewise, data flow between the SAL and OpenFlow is exposed to spoofing 

and disclosure attacks. 
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Table 3.3. Controller Threats 

 S T R I D E 

Service abstraction layer (SAL)     X X 

SAL–OpenFlow flow X   X   

SAL–Other services flow X   X   

State manager service     X X 

Topology manager     X X 

Switch manager     X X 

Forwarding manager     X X 

OpenStack service     X X 

Virtual tenant network     X X 

Open vSwitch Database 

Management Protocol 

    X X 

Group-based policy service     X X 

OpenContrail plug-in     X X 

Authentication, authorisation and 

accounting 

    X X 

Service function chaining     X X 

LISB     X X 

Data over cable interface     X X 

Secure NT bootstrap     X X 

SDN integrator interface     X X 

Controller services and plug-ins—

SAL flow 

X   X   

SAL buffer  X X X   

Controller DB  X X X   

3.4.2 Attack Trees 

In the previous section, we identified the threat vectors that may be possible risks to the 

controller. The current step is to formally describe the execution of threats—or 

attacks—from the intruder perspective. Attack trees are a semi-formal representation of 

attacks as a tree data structure. The root of the tree represents the attacker’s ultimate 

goal, while various nodes attached to the root represent the techniques used to reach the 

target [22], [128]. Operators OR and  AND specify the logical relationships between the 
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tree branches to form the attack. For example in the spoofing attack below the root 

spoofing authentication requires all the conditions in 1.1, and 1.2 to be executed to 

launch the attack. In attack 2 either 2.1 or 2.2 will be sufficient to execute the attack.  

3.4.2.1 Spoofing 

Spoofing attacks hack identity, which is not exclusive to individuals. Identity also 

includes machine identity (IP or media access control addresses), processes running on 

a host and file spoofing. The controller components are exposed to various spoofing 

threats. The attack tree is shown below: 

Goal: Spoofing access to the controller (OR) 

1. Spoofing authentication (AND) 

1.1. Spoofing the username (OR) 

1.1.1. Social engineering (OR) 

1.1.2. Brute force attacks 

1.2. Spoofing the password (OR) 

1.2.1. Social engineering 

1.2.2. Brute force attacks 

2. Spoofing the source address (OR) 

2.1. Spoofing the media access control address 

2.2. Spoofing the Internet Protocol address 

3.4.2.2 Denial-of-service attacks 

DoS attacks exhaust system resources such as bandwidth, memory and storage. 

Typically, the SDN controller adds a processing overhead to network resources. Thus, 

the severity of DoS attacks is a significant concern in SDN networks. The attack tree is 

shown below: 
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Goal: Attack controller availability by exhausting system resources (OR) 

1. Attack controller services (OR) 

1.1. Flood requests to controller services such as authentication, authorisation and 

accounting 

2. Attack controller database 

3. Flood service abstraction layer buffer 

4. Congest network bandwidth 

3.4.2.3 Escalation of privilege 

These attacks are based on program flaws, employing techniques such as fuzzing, static 

analysis and reverse engineering to reveal coding deficiencies. Intruders without 

privileges can exploit vulnerabilities to execute remote code; subsequently, in the post-

exploitation phase, they can escalate their privileges to break into the system entirely. 

The SDN controller software is likely to have coding flaws, which may be exploited for 

privilege escalation attacks. The attack tree is shown below: 

Goal: Exploit system vulnerabilities to escalate privilege (OR) 

1. Exploit vulnerabilities in controller services (OR) 

1.1. Fuzzing controller inputs 

1.2. Analysis of controller code (OR) 

1.2.1. Static analysis 

1.2.2. Dynamic code analysis 

1.3. Reverse engineering the controller 

2. Escalate standard user privileges granted by the administrator to higher privileges 

2.1. Migrating process 

3.4.2.4 Information disclosure 

In information disclosure threats, system information such as files, file names and 

databases are exposed to unauthorised entities. An important example of information 

disclosure is Structured Query Language injection attacks. The SDN controller 



 

71 

exchanges data with applications and physical planes. These data are accessible through 

ARP table poisoning. The attack tree is shown below: 

Goal: Hacking controller data (OR) 

1. Communication sniffing (OR) 

1.1. Address Resolution Protocol poisoning 

1.2. Domain name system spoofing 

1.3. Internet Protocol spoofing 

2. Access controller machine 

2.1. Vulnerability exploitation 

2.2. Physical access 

2.2.1. Bypass authentication 

2.2.1.1. Social engineering 

2.2.1.2. Brute force 

3. Web attacks (controller web interaction) (OR) 

3.1. Structured Query Language injection 

3.1.1. Fuzzing 

3.2. Cross-site scripting attacks 

3.5 Simulation 

The purpose of the simulation was to demonstrate the threats identified in the STRIDE 

and attack tree stages that are relevant to the SDN controller. Possible attacks were 

executed against a functional controller to deduce real-time statistics and consequences. 

3.5.1 Simulation Environment 

A Mininet simulator [97] was used to emulate an SDN network. The system under test 

consisted of a set of hosts connected via OpenFlow switches in a tree topology. The 

network utilised an external ODL controller. The hostile machine was a Kali Linux 

machine connected to the same subnet to which the controller was connected [129]. The 

Kali machine used a toolkit to demonstrate various attacks. 
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ODL is an open-source SDN controller project backed by industry leaders such as 

Microsoft, Cisco, Juniper and Ericsson and is aimed at accelerating the adoption of 

SDN networks [19]. This study adopted ODL as the empirical controller for the 

following reasons: 

 ODL is sufficiently close to the standard architecture of the SDN controller. 

ODL is a distributed controller that demonstrates availability features and 

supports east/westbound APIs. The majority of controllers propose OpenFlow as 

the only southbound API; ODL goes beyond this concept by providing an SAL 

that supports the coexistence of various protocols at the southbound API. 

 ODL provides Defense4All as an intrusion detection system. This may be used 

to demonstrate deficiencies of the current detection approach in contrast to the 

approach proposed by other studies. 

 Other security features include security logging and auditing, authentication and 

authorisation services and secure control plane communication. 

3.5.1.1 Simulation execution 

A Mininet simulator was used to implement the SDN network using a tree topology 

with three switches and three hosts for each switch. The simulator used a real-time 

external ODL controller. The command used was: 

sudo mn–topo tree,depth=2,fanout=3–controller remote 

Figure 3.5 shows the simulation network from the perspective of the controller. The 

network consisted of four OpenFlow switches, with each switch connected to the hosts. 

All switches were connected to the ODL controller (installed on an Ubuntu machine). In 

the same network, there was a hostile machine (Kali). In our simulation, we assumed 

that the attacker already had access to the network. The intruder had several ways of 

hacking the network perimeter, such as by exploiting host vulnerabilities and social 

engineering. 
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Figure 3.5. Simulation environment. 

3.5.2 Discussion 

In this section, we demonstrate how controller vector attacks may be executed and their 

consequences on network resources. 

3.5.2.1 Information disclosure attacks 

Revealing information to unauthorised entities is a crucial issue for SDN controller 

security. In standard scenarios, the centralisation of SDN information in a single entity 

is a significant advantage of SDN. However, in the attack scenario, a data-intensive 

single point is a target for intruders. In this simulation, the attacker launched 

reconnaissance attacks to discover service availability by checking the OpenFlow port 

6633. A port scanning technique using Nmap can reveal all services available on a 

network [130]. The SDN centralisation paradox spares the attacker from enumerating 

the entire network. Far-reaching information disclosure attacks can occur when 

intruders gain access to the controller using publicly available exploits. In this 

simulation, the attacker used an exploit developed on a remote file inclusion 

vulnerability [131]. A Python script exploit was downloaded to the controller flow 

table. A closer inspection of the flows shows that the attacker can map the entire 

network, list nodes, services and access control lists. 
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3.5.2.2 Denial-of-service attacks 

The centralisation concept is a significant design flaw in SDN architecture. In DoS, the 

attacker floods the controller with an enormous number of requests, eventually 

exhausting resources and causing the controller to collapse. The consequences of DoS 

attacks on SDN networks are significant because the entire network turns into a ‘body 

with no brain’. In this simulation, the Kali Linux machine flooded the controller using a 

Python script of-flood. Figure 3.6 depicts the network throughput upon executing the 

flooding attack. The vertical axis represents the throughput of the controller (Ubuntu 

machine) in bytes, while the horizontal axis shows the controller time domain as the 

hostile Kali machine begins to flood the controller. The network throughput was 

between 21:25:55 and 21:26:10, which is low, given there were few communications 

between the controller and network devices. After 21:26:10, the attacker flooded the 

controller with requests, escalating throughput and eventually exhausting and plunging 

the controller. Subsequently, the entire network was brought down. Hence, despite 

centralisation being a key feature in the SDN model, it can also bring down the 

controller—request flooding may result in complete network failure. 

 

Figure 3.6. Network throughput before and after a denial-of-service attack. 

3.5.2.3 Spoofing 

Traditionally, intruders utilise tools to poison the ARP table or to spoof an IP address to 

carry out man-in-the-middle attacks. Once again, a feature of the SDN network can 

become a significant disadvantage from a security perspective. Rather than adding 
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hardware to the network, programmability saves costs and increases network flexibility 

by replacing devices with a few lines of code. From an adversary’s perspective, 

programmability is also a great advantage. In this simulation, a Python script was used 

to impersonate a switch in the network [131]. 

3.5.2.4 Tampering 

Alteration of data represents a serious penetration of the system. Additionally, 

compromising the entire network flow from a single point is a critical issue in SDN 

architecture. The attacker used a script to modify, drop and add entire rules. 

3.6 Software-Defined Network Security vs. Traditional Networks 

The security analysis and simulation models both revealed the same threats. Similar 

attack vectors can be launched against SDN networks. However, the architecture of 

SDN exposes the network to more critical consequences. In conventional networks, if 

the attacker is successful in executing a remote code against an application or 

vulnerable operating system, the consequences are limited to a single machine. The 

intruder would need to escalate privileges or use the victim machine as a pivot to break 

into other machines or subnets. In SDN networks, the controller comprises software 

similar to that of any other program; therefore, as demonstrated in the simulation, it is 

vulnerable to attacks. In traditional systems, software and hardware are integrated 

separately within various network devices (e.g. routers, switches and middleboxes); 

hence, in the case of attacks, the damage will be isolated or can be quarantined. In the 

SDN network, isolation or reduction of damage is more complex, particularly when the 

controller itself under attack. Intruders have the advantage of centralisation, meaning 

the speed and domain of attacks can be accelerated. Therefore, the SDN model 

increases security challenges. 

In the following chapters, we propose a threat detection framework. Given that both 

SDN and traditional networks are vulnerable to similar attack vectors, the framework 

addresses traditional network attacks; however, its deployment considers the new 

architecture. In deploying the framework, we recommend integration of the detection 

system at the control layer to provide essential protection to the controller itself. By 

securing the controller, we overcome a significant security issue with SDN networks. 
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3.7 Summary 

In this chapter, we provided an in-depth study of controller security. The SDN model 

introduces unprecedented security challenges, specifically threats related to the 

controller. While the controller is a crucial entity in the architecture, it is also a valuable 

target for intruders. We analysed threats using two methods—STRIDE and attack 

trees—before carrying out an experiment to demonstrate various attacks. The 

experiment provided examples of vulnerabilities in the architecture. We demonstrated 

several attacks and the significant consequences of penetrating the controller. DoS 

attacks led to the failure of the entire network. Network programmability facilitated 

spoofing attacks because intruders could impersonate devices through coding. The 

effects of tampering attacks were more significant as the attacker could take control of 

the entire network by crafting data flow tables through a central point. Additionally, 

taking over the controller exposed the entire system’s information. 

SDN architecture paves the way for network innovation and reduces the complexity of 

traditional networks. However, controller security is a significant issue in the SDN 

model. Enhancing the security of the controller will increase the opportunity for SDN 

becoming the dominant networking model. In next chapters, we will focus on 

implementing an intelligent module to protect the controller itself.   
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Chapter 4: Threat Detection Framework: A Deep Learning 

Approach 

This chapter introduces the anomaly-based detection framework. The proposed 

approach utilises unsupervised DL to reduce dimensionality before applying simple 

(with respect to computation resources and calculations) clustering to the digested data. 

The framework consisted of two phases. The first phase used an unsupervised DL 

neural network and the second phase employed a simple clustering algorithm. 

DL algorithms may be used for different purposes. For example, an autoencoder may be 

used for data reconstruction and dimensionality reduction. Therefore, framework design 

principles were derived from the goals and objectives of the proposed system before 

being implemented. This chapter provides a theoretical proposal for the integration of 

the framework in the SDN model and presents the proposed detection framework. 

The first section discusses DL algorithms in anomaly-based detection. The second 

section introduces the components of the framework, which consisted of two phases: an 

unsupervised DL algorithm and a simple clustering algorithm. The third section depicts 

the framework workflow and the framework algorithm in pseudocode. Additionally, a 

detailed description of the different steps is included. The fourth section outlines the 

design principles adopted for building the framework, including dimensionality 

reduction, decision boundaries, clustering and curse of dimensionality, network traffic 

features, the number of hidden layers and neurons and the assumptions required for 

framework applicability. The fifth section describes the framework in action and the 

theoretical background of the algorithms. The sixth section depicts the integration of the 

framework in an SDN model. The seventh section explores the advantages of the 

framework. 

4.1 Introduction 

Several machine learning algorithms have been used for network anomaly detection 

[132]. A typical fundamental deficiency is a poor accuracy, which has made the 

approach industrially inapplicable. The proposed framework presented in this chapter 

shows improvement in detection accuracy. The framework adopted semi-unsupervised 



 

78 

algorithms for novel detection to tackle the rapid developments in cybersecurity attacks. 

The framework used the more elegant technique of unsupervised DL, which 

dramatically reduces features from the first phase. The framework was designed based 

on a set of principles in which the design goals were to reduce computations and 

enhance accuracy. 

Following advances in neural nets, DL has been successfully applied in various 

domains. For object recognition, Hinton et al. [14] used a deep belief network for 

Modified National Institute of Standards and Technology’s dataset image recognition, 

scoring a 1.25% error rate compared with the next lowest error rate of 1.4% achieved by 

an SVM. In an ImageNet challenge (2012), the convolutional neural network succeeded 

in reducing the error rate from 26.2% to 16.4% in a dataset containing about 14 m 

labelled images and 1,000 classes [15]. Speech recognition and signal processing are 

some of the remarkable application domains for DL. Traditionally, researchers used 

Gaussian mixture models and hidden Markov models in speech recognition 

applications. Mohamed et al. [133] reduced the phoneme error rate from 26% to 20.7% 

using deep belief networks. 

DL is a set of nonlinear algorithms for multi-layered models. DL algorithms may be 

supervised or unsupervised. In supervised learning, the training dataset contains input 

data and data labels. The algorithm learns to predict p(y/x) where x and y are the inputs 

and outputs, respectively [134]-[136]. This approach is suitable for classification and 

regression tasks. In unsupervised learning, only an unlabelled dataset is available. 

Unsupervised DL algorithms aim to learn the probability distribution of a specific 

dataset. Unsupervised applications include clustering, dimensionality reduction and 

noise removal. For network anomaly detection, we believe the unsupervised approach 

has the following advantages: first, unsupervised learning can detect internal 

representation of the dataset, which conforms to online detection. Second, unsupervised 

algorithms will theoretically discover unprecedented threats. The automatic discovery of 

features improves the probability of detecting new attacks in the context of network 

anomaly detection. Third, we can use unsupervised learning as a pre-training phase 

before using supervised or reinforcement learning to enhance detection accuracy. 

An autoencoder is a neural network consisting of two phases: 
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 An encoder, which is a deterministic mapping function (f_θ) that transforms an 

input vector (x) into a hidden representation (y): 

o θ=[2], where W is the weight matrix and b is bias 

o f_θ (x)≈x’ 

 A decoder, which reconstructs the hidden representation (y) to the reconstructed 

input (x’) via g_θ. 

The autoencoder measures the reconstruction error between x’ (reconstructed) and the 

input (x) to minimise this error (information loss): 

 𝐽(𝑊) =  ∑ ||𝑥𝑛 − 𝑥′
𝑛 || (1) 

Where J(W) is the cost function to minimise the cost. 

 Arg min (𝐽(𝑊)){𝑤,𝑤′ ,𝑏,𝑏,} (2) 

where w and b are encoder weights and biases, respectively, and w’ and b’ are weights 

and biases, respectively, for the decoder. 

Various functions, such as squared error, may be used as cost functions. For cost 

function optimisation, several options, including stochastic gradient descent (SGD) and 

adaptive moment estimation (Adam) optimiser, are available. 

RBMs are energy-based models in which each feature configuration is assigned scalar 

energy [135]. The learning process updates the energy function to ensure the shape has 

desirable properties. The probability distribution of energy function is shown in 

Formula (3): 

 p(x) = 
𝑒−𝐸(𝑥)

𝑍
 (3) 

where Z is the partitioning function, defined in (4): 

 Z = ∑ 𝑒−𝐸(𝑥)
𝑥  (4) 

Boltzmann machine’s energy function is defined in (5): 

 𝐸 (𝑥) =  − 𝑥𝑇 𝑊 𝑥 − 𝑏𝑇𝑥  (5) 



 

80 

where W is weight matrix and b is the bias parameter. 

To enhance the RBM, hidden units are introduced. RBMs are a type of Boltzmann 

machine with restrictions on connections between visible–visible and hidden–hidden 

units. The energy function of RBMs is represented by (6): 

 𝐸 (𝑣, ℎ) =  −𝑏′𝑣 − 𝑐′ℎ − ℎ′𝑊𝑣 (6) 

where b’ and c’ are the biases for visible and hidden units, respectively, and W is the 

weight of connections between hidden and visible units. 

Table 4.1 lists several research papers utilising the deep learning algorithms for 

anomalies detection.  The table shows the used dataset and other algorithms used to 

compare the performance of the deep learning algorithm. The used algorithms are 

unsupervised, different variations of autoencoders, and RBM. 

Table 4.1. Deep Learning for Anomaly Detection 

Research DL Algorithm Classic Machine Learning Algorithms Dataset 

 AE RBM SVM PCA KPCA Other  

[137]       Images 

[138]       KDD99, 

USENET, Thyroid 

[139]       KDD99 and bot 

data 

[140]       Generated traffic 

[141]       KDD99 

[142]       Lorenz, sat-A 

[143]       KDD99 

Note: AE: autoencoder; RBM: restricted Boltzmann machine; SVM: support vector machine; PCA: 

principal component analysis; KPCA: kernel PCA. 

A comprehensive study evaluated seven unsupervised machine learning algorithms 

[144], benchmarking the KDD99 dataset, and concluded that all algorithms performed 

poorly in detecting remote to local attacks, while SVM and Y-means performed well 

over the other techniques in detecting user to root attacks. Further, C-means delivered 
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the most unsatisfactory results in almost all experiments. Lastly, fuzzy clustering was 

not suitable for distinguishing normal and abnormal data in intrusion detection. 

The concept of dimensionality reduction refers to projecting highly dimensioned data 

onto a lower subspace without a significant loss of data meaning. Additionally, in lower 

dimensional data, the discrimination between normal and abnormal classes is evident 

[145]. PCA is a dimensionality reduction algorithm that learns linear relationships: 

 f (x) = W_(x )^T+b (7) 

where x is input and x ∈ R^(d_x). 

Kernel PCA is a nonlinear version of basic PCA [145]. To represent nonlinear 

relationships, a kernel function is used to map the data to higher dimensions before 

using PCA to reduce dimensionality. Autoencoder algorithms imply dimensionality 

reduction because they convert data into new representations that keep most of their 

significant features (encoder) before executing a reconstruction phase (decoder). 

Various studies compared autoencoders as a dimensionality reduction algorithm with 

PCA and its nonlinear extension, kernel PCA. One experiment that compared PCA, 

kernel PCA, autoencoder and demonising autoencoder found that the autoencoder and 

demonising autoencoder performed significantly better. The study applied the four 

algorithms to an artificial dataset and two real datasets.  

4.2 Framework Components 

Figure 4.1 depicts the main components of the proposed detection system. The 

framework was based on unsupervised deep neural networks. Two types of Unified 

Service Description Language (USDL) algorithms were used: autoencoders and RBMs. 

As shown in Figure 4.1, the first layer was a deep neural network, the purpose of which 

was to reduce input features. Outcomes were then fed as inputs into the subsequent 

algorithm. 
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Figure 4.1. Proposed detection system architecture. 

Network threats are continually expanding; thus, from a security perspective, an IDS 

must be capable of detecting attacks that have not been previously seen. This concept is 

theoretically achievable using unsupervised learning. In contrast, supervised 

algorithms—traditional algorithms or those based on DL—must have previously been 

exposed to samples and classes to classify new records. The approach presented here 

adopted a new method of employing USDL that did not use the direct output for further 

processing by the second phase. Instead, it calculated the difference between inputs and 

outputs. This dramatically reduced the number of features that had to be passed to the 

second phase to a single value rather than a vector of values. 

Reconstruction errors were passed to the second phase for clustering. Clustering is the 

classification of samples into different groups or, more precisely, the partitioning of a 

dataset into subsets (clusters) so that the data in each subset ideally share common 

characteristics. Measuring the distance between samples and the predefined cluster 

centre is a common approach used in clustering. The algorithm produces a set of 

clusters, with each cluster containing reconstruction errors that represent normal or 

abnormal records. This is eventually translated as normal and abnormal clusters by 

linking reconstruction errors back to their input records. 
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4.3 Framework Workflow and Algorithms 

Figure 4.2 depicts the framework flowchart; the first step in the workflow was to 

conduct data normalisation. The data were collected from network traffic. Each record 

represented a packet, with a typical packet containing two types of information, numeric 

or string. The initial step in normalisation was to convert non-numeric values to 

numbers that could be handled by the DL algorithm. Once the data were normalised, 

they were traversed through the autoencoder or RBM, which produced the 

corresponding output (using previously learned weights and biases). The difference 

between the input and output was calculated and then passed to the second layer for 

clustering. 

 

Figure 4.2. Detection system flowchart. 
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The final action was to place the record into one of the clusters (normal or abnormal). 

The pseudocode in Table 4.2 provides an elaborated view of the proposed system 

functionality. The algorithm processed D vector with 41 elements (number of entries in 

each packet used for the simulation), taking 𝑇𝑘 records during the training phase. The 

final output of the system is sea t of clusters C0...Cn, with each C marked as normal or 

abnormal. In the execution mode, the system initiated the model—such as weights and 

biases—during the training step. Building the model involved identifying patterns in the 

data, which was done through discovering the appropriate weights and biases through 

several sweeps of the data (sliced into batches). Internal functions for calculating and 

minimising loss were used during the model-building process. 

Table 4.2. Algorithm for Anomaly Detection 

Data: Network traffic records (continuous and digit values) (D). 

Input: t € T0..Tk where T is 1* 41 tensors and k = no. of traffic records in the normalised dataset DNT 
generated by scaling k samples of the D. 

Output: A set of clusters C0 .. Cn, where each C is normal or abnormal. 

Procedure: 

Training: 

Let EP be the number of epochs. 

Let s = batch size and no. of batches (BN) = DNT/s. 

Let i,z = 0. 

While (i < EP) do: 

For (z = 0; z < BN; z++): 

 For each t: 

Pass t through the RBM/autoencoder network. 

Calculate weights and biases after reconstruction. 

Update RBM weights (W) and biases (b) 

EP++ 

Return RBM/autoencoder trained the model with updated weights and biases. 

Testing: 

For each ts ∈ Ts where ts ∉ T 

 Pass ts through the autoencoder/RBM network 

 Calc reconstruction error (reconstruction error) tensor 

Pass ts to k-means. 

Initialisation: set K seed points randomly. 

Assign each sample to the cluster of the nearest seed point measured with a predefined distance metric. 

Calc. new centroids of the clusters of the current cluster. 

Go back to Step 2), stop when no more new assignment. 

Return: C0.. Cn of reconstruction error 
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Once the model was established, it was evaluated in the testing process. The testing 

dataset (𝑇𝑠) was a set of samples that did not belong to the training dataset (𝑇𝑘). 

Subsequently, the outputs of 𝑇𝑠 were used to calculate the reconstruction errors, with a 

vector containing a single value for each ts ∈ Ts. The vector was passed to the 

unsupervised algorithm. The algorithm in the second phase was not computationally 

expensive. The output of the second stage was a set of normal and abnormal clusters. 

4.4 Framework Design Principles 

This section introduces six principles upon which the framework was proposed. The 

first principle is a form of dimensionality reduction in which a new space (features) was 

generated from the inputs as a pre-step to isolating abnormalities. The second principle 

is the separation between a normal and an abnormal (decision). The third principle is 

resolving the dimensionality reduction in clustering. The fourth is related to the low 

number of the features in the network packets. The fifth one relates to deciding on the 

number of hidden layers. The last principle is a consideration for the issues related to 

the application domain. 

4.4.1 Dimensionality Reduction and Anomaly Detection 

Applying the unsupervised algorithm as a pre-training step is a common practice to 

enhance accuracy in many frameworks. For example, Figure 4.3 shows a classification 

framework in which a pre-training unsupervised step was included before outputs were 

passed to the SVM, which performed the classification. However, this comes at the cost 

of additional computation resources such as memory, processing and time. 
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Figure 4.3. Applying deep learning as a pre-step for support vector machine 

classification. 

One of the goals of the framework was to reduce the additional cost of computation 

simply—rather than adding a series of inputs, possibly hundreds or thousands of 

features, to the second phase, a single value was passed. 

The first stage of the proposed framework was based on the idea of dimensionality 

reduction. The concept of dimensionality reduction refers to projecting highly 

dimensioned data onto a lower subspace without significant loss of data meaning. 

Additionally, in lower dimensional data, the discrimination between normal and 

abnormal classes is evident. PCA is a dimensionality reduction algorithm that can learn 

linear relationships, while kernel PCA is a nonlinear version of the basic PCA. To learn 

nonlinear relationships, a kernel function is used to map the data to higher dimensions 

before PCA is used to reduce dimensionality.  

Figure 4.4 shows the underlying architecture of autoencoders; autoencoder algorithms 

imply dimensionality reduction as they convert data into a new representation that keeps 

most significant features (encoder) before executing a reconstruction phase (decoder). 

Various studies have compared autoencoders with PCA and its nonlinear extension, 

kernel PCA, as a dimensionality reduction algorithm. 
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Figure 4.4. Generic autoencoder architecture. 

 

Principle 1: A new space with lower dimensionality, in which normal and abnormal samples 

can be separated, may be generated from the original space. A smaller space with reduced 

dimensions is equivalent to less memory and better performance, such as classification. Models 

of smaller spaces consume less memory and runtime. 

4.4.2 Decision Boundaries 

To identify anomalies using dimensionality reduction techniques, the data sample was 

projected onto the correlation structure deduced by the algorithm. Records with 

significant reconstruction errors—relative to a predefined threshold—were marked as 

anomalies. 

A similar approach is theoretically applicable by passing the data through a trained 

model before defining a reconstruction error threshold to isolate anomalies. This was 

achievable using a single regression algorithm in the second phase. 

However, the experiments showed that reconstruction errors were not linearly separable 

using a regression algorithm or a simple threshold. Hence, the framework provided a 

nonlinear algorithm to cluster reconstruction errors. 
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4.4.3 Resolving Clustering and the Curse of Dimensionality 

The framework employed a clustering algorithm in the second phase. k-means or mean 

shift were used to group reconstruction errors. 

Reconstruction errors belonging to normal instances will be correlated enough to occur in the 

same cluster or clusters, while the same principle is valid for abnormal instances. 

A substantial reason for selecting a clustering algorithm in the second phase was to 

maintain the ability of self-learning. If no prior knowledge is required, or at least no 

complete knowledge in semi-supervised deployment, this feature conforms to zero-day 

attack detection. From a different perspective, the framework aimed to improve the 

detection accuracy of clustering algorithms using a pre-phase of data processing. This 

technique takes advantages of both worlds, such as dimensionality reduction using DL 

and the ability to detect new attacks from clustering. Additionally, k-means is a fast and 

computationally efficient algorithm. However, the curse of dimensionality has a 

significant impact on k-means. 

k-means is a standard clustering algorithm that iteratively partitions training datasets to 

learn a partition of the given dataset to produce a set of clusters. The clustering is 

produced by minimising the sum of the squared distance to its representative object in 

each cluster. As the number of features increases, the distance between any two points 

in the dataset converges. Increasing dimensionality increases sparsity. To revoke the 

curse, dimensions must be reduced—maintaining fewer features results in more 

efficient clustering. Hence, the role of the DL phase was to reduce each record to a 

single value. 

4.4.4 Network Traffic Features and Deep Learning 

DL is a data-striving algorithm that excels when there are large volumes of data. In 

cases with limited data samples or features, the model will suffer from overfitting. In 

the context of the networking domain, the packet features are limited. Additionally, 

many of the features are off. To overcome these limitations, the system follows a 

similar approach to that of the kernel PCA trick. The basic idea of the kernel trick lies in 

Vapnik-Chervonenkis’s theory: 
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Projecting the input data to higher dimensions enables greater clustering power. Increasing the 

number of neurons in the first hidden layers allows the separation of samples. 

The concept is similar to zooming into the data so that they become more separable. The 

framework presented in this thesis adopted this concept. Figure 4.6 depicts the idea of 

increasing the dimension of the input data. In the first hidden layer, the number of the 

neurons was doubled before being dramatically reduced in the following layers. The 

experiment showed improved accuracy (discussed in Chapter 6). 

 

Figure 4.5. Projecting inputs to a new higher dimension. 

4.4.5 Number of Hidden Layers and Neurons 

To decide on the number of the hidden layers, it was necessary first to identify why 

more hidden layers were needed. The answer lies in the basic purpose of the neural 

network— approximation. Feed-forward neural networks are capable of approximate 

continuous functions on a specific dataset. Theoretically, a neural network with a single 

hidden layer can be used to approximate any continued function.  
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This raises the question of whether more hidden layers are required. A neural network 

with more hidden layers (i.e. more structure) can understand the structure of the dataset. 

In the scope of this research, the main focus was on IP packet fields, enabling the 

network to find a more complex structure in the entire packet rather than in individual 

elements only. 

In practice, there is no clear recommendation for deciding on the number of hidden 

layers. However, implementation was derived from two factors: 

 A comparison of the problem with other typical domains such as the Modified 

National Institute of Standards and Technology database, the dataset for 

handwritten digits . Images are 28 x 28 = 784 pixels to be translated to 784 

neurons at the input layer. With two hidden layers, the accuracy is reasonable. 

 Experiments and trials: During the implementation, many combinations of 

different layers and neurons were tested. 

 Generalisation is the way in which the model may be generalised to new 

samples (not included in the training phase). The built model should avoid 

overfitting and underfitting. Overfitting occurs when the model is trained 

perfectly (by an increasing number of hidden layers). Underfitting occurs when 

the model has limited generalisation because of inadequate training where 

essential features are not detected. 

4.4.6 Application Considerations 

The framework adopted a semi-supervised approach. In supervised detection, the model 

is trained on labelled instances in which each record is labelled as normal or abnormal 

before entering the operation mode, which is expected to recognise unlabelled instances. 

The supervised approach suffers two limitations: first, if the system experiences 

instances that do not occur in training samples, it will fail to predict them. In network 

anomaly detection, new attacks (samples) persistently emerge. Second, the training 

sample is usually imbalanced because attacks are less frequent in network traffic, which 

negatively affects the quality of the generated model during the training. In the 

unsupervised approach, the model can identify the structure of the data. For anomaly 

detection, this approach assumes that the frequency of anomalies is lower than those 

corresponding to normal behaviour. This assumption is likely to affect detection 
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accuracy. For example, in DoS attacks, the attacker floods the system with an enormous 

number of requests; in such cases, the frequency of abnormalities may surpass regular 

traffic records. 

The framework adopted a semi-supervised approach in which the system was trained 

using a typical dataset to build the model. Subsequently, during the testing (or 

operation) mode, abnormal samples could be discriminated by the model. If the 

framework found an unprecedented pattern, it would classify it as an abnormality. This 

approach provided the following advantages: 

 Theoretically, it was capable of deciding on unprecedented attacks. 

 In the training phase, there was no need for a balanced dataset; however, the 

model tolerated abnormalities in the dataset. 

4.5 The Framework Process 

An autoencoder is a neural network consisting of two phases. An encoder is a 

deterministic mapping function (f_θ) that transforms an input vector (x) into a hidden 

representation (y): 

 f_θ (x)≈x’ 

 𝜃 = {𝐖, 𝑏}, where 𝐖 is the weight matrix and, 𝑏 is bias (8) 

A decoder reconstructs the hidden representation (y) to the reconstructed input (x’) via 

g_θ. 

The autoencoder measures the reconstruction error between x’ (reconstructed) and the 

input (x) to minimise this error (information loss): 

𝐽(𝑊) =  ∑ ||𝑥𝑛 − 𝑥′
𝑛 || (9) 

where J(W) is the cost function to minimise the cost. 

 Arg min (𝐽(𝑊)){𝑤,𝑤′ ,𝑏,𝑏,} (10) 

where w and b are encoder weights and biases, respectively, and w’ and b’ are weights 

and biases, respectively, for the decoder. 
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Various functions such as mean squared error may be used as cost functions. For cost 

optimisation, several options, including SGD and Adam optimiser, are available. 

RBMs are energy-based models in which each feature configuration is assigned a scalar 

energy [10]. The learning process updates the energy function to ensure the shape has 

desirable properties. The probability distribution of the energy function is shown in 

Formula (11): 

 p(x) = e^(−E(x))/Z (11) 

where Z is the partitioning function, defined in (12): 

 Z= ∑ 𝒆−𝑬(𝒙)
𝒗  (12) 

Boltzmann machine’s energy function is defined in (13): 

 E(x) = −x^T W x−b^T x (13) 

where W is weight matrix and b is the bias parameter. 

To enhance the RBM, hidden units were introduced. RBMs are a type of Boltzmann 

machine with restrictions on connections between visible–visible and hidden–hidden 

units. The energy function of RBMs is represented by (14): 

 E(v,h) = −b^’v−c^’h−h’Wv (14) 

where b’ and c’ are the biases for visible and hidden units, respectively, and W is the 

weight of connections between hidden and visible units. 

The autoencoder was implemented with an input layer equal to the length of the input 

vector. Several layers were added to the encoder. Weight matrices were defined to 

construct connections between each layer and its subsequent layer. For the decoder, the 

output of the encoder (final hidden layer) was the input for the decoder, followed by a 

series of hidden layers with associated weight matrices. Data were passed to the 

framework as a single dimensional vector in which each element in the array 

represented a single feature. The input data were sliced into batches. For each input 

vector, the encoder used the activation function to define neuron status. Functions such 
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as sigmoid, tanh or ReLu are operable by autoencoders. The activation function was 

applied to each layer. The sigmoid function used the weight matrix, input vector and 

bias vector as inputs, with outputs in the sigmoid function being either 0 or 1 for each 

neuron. The encoder used the same activation function to reconstruct the input from the 

final layer in the encoder. The main goal of the autoencoder was to rebuild a similar 

version of the input with minimal error, where the error does not equal zero. Otherwise, 

the model would suffer a generalisation problem. After reconstruction, the model 

measured the distance between the input and the output. Several functions were utilised 

to find the distance or reconstruction error. For example, mean squared error calculated 

the summation of squared difference for each neuron in the input and its corresponding 

neuron in the output, divided by the number of neurons in one vector. 

The model used an optimiser to adapt weights and biases to reduce reconstruction 

errors. For example, the Adam optimiser combined RMSProp and SGD to store an 

exponentially decaying average of past squared gradients and an exponentially decaying 

average of past gradients. 

Through several epochs, the model reconstructed and optimised until the network had 

been established (experimentally). The next step was to pass the reconstruction error to 

the second phase. The reconstruction errors were stored in a one-dimensional array and 

were input to a clustering algorithm such as k-means. k-means initialised the cluster 

centres randomly before allocating each reconstruction error to the nearest cluster. The 

distance was measured using specific functions such as Euclidean distance. Then, it 

calculated the new centre for each cluster by minimising the sum of the squared distance 

of its elements. 

A similar reconstruction procedure was conducted for RBMs; however, RBMs involved 

different steps following the reconstruction. 

Activations were combined with individual weights and biases. Results were passed to 

the visible layer. The RBM reconstructed data by making several forward and backward 

passes between the visible and hidden layers. Samples from probabilistic tensor selected 

the input in the reconstruction phase. The same weight matrix and visible layer biases 

were used for the sigmoid function. The output produced was a reconstruction, which 

approximated the original input. 
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RBM as an energy-based probabilistic model defines a probability distribution as: 

 p(v) = ∑ 𝑷(𝒗, 𝒉) = ∑
𝒆−𝑬(𝒗,𝒉)

𝒁𝒉𝒉 where Z = ∑ 𝒆−𝑭(𝒗)
𝒗   (15) 

where F(v) is the free energy function = −𝒍𝒐𝒈 ∑ 𝒆−𝑬(𝒗,𝒉)
𝒉  

 p(v) = ∑ 𝑷(𝒗, 𝒉) = ∑
𝒆−𝑬(𝒗,𝒉)

∑ 𝒆−𝒍𝒐𝒈 ∑ 𝒆−𝑬(𝒗,𝒉)
𝒉𝒗

𝒉𝒉  (16) 

An energy-based model can be learned by performing SGD on the empirical negative 

log-likelihood of the training data, where the log-likelihood and the loss function are: 

 𝐿(𝜃,  𝑉) =
1

𝑁
∑ 𝑙𝑜𝑔 𝑝(𝑣𝑖)𝑣𝑖𝜖𝑉      and     𝑙(𝜃, 𝑉) = −𝐿(𝜃,  𝑉)  (17) 

Then, the data negative log-likelihood gradient has the following form: 

 −
𝑑𝑙𝑜𝑔𝑝(𝑣)

𝑑𝜃
=

𝑑𝐹(𝑣)

𝑑𝜃
− ∑ 𝑝(�̃�)�̃�

𝑑𝐹(�̃�)

𝑑𝜃
 (18) 

 −
𝑑𝑙𝑜𝑔𝑝(𝑣)

𝑑𝜃
=

𝑑𝐹(𝑣)

𝑑𝜃
−

1

|𝑁|
∑ 𝑝(�̃�)�̃�𝜖𝑁

𝑑𝐹(�̃�)

𝑑𝜃
 (19) 

where v’ is a sample of N. 

To minimise loss, we must maximise the product of probabilities assigned to the 

training set dF(v)/dθ: 

 P(v) = −𝑏′𝑣 − 𝑐′ℎ − ℎ′𝑊𝑣 or 𝐹(𝑣) = −𝑏′𝑣 − ∑ 𝑙𝑜𝑔 ∑ 𝑒ℎ𝑖(𝑐𝑖+𝑊𝑖𝑣)
ℎ𝑖𝑖  (20) 

where E(v,h) = −b^’ v-c^’ h-h^’ Wv and b’ and c, are biases. 

From (19) and (20): 

 −dlog(p(v))/(dW_ij ) = E_v [p(h_i│v)∙v_j ]-v_j^((i) )∙σ(W_i∙v^((i) )+c_i ) (21) 

Formula (21) defines the loss function as the average negative log-likelihood, with the 

objective being to minimise it. To achieve this, we needed the partial derivative of this 

function with respect to all its parameters. From Formula (21), optimisation or 

minimising loss depended on adjusting the weights (W) and biases (C). SGDs were 

used to find the optimal W tensor. 
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The derivation had two terms. The first  term is the positive term E_v [p(h_i│v)∙v_j ], 

which depended on the data (v) and increased the probability of the inputs. The second 

was the negative term −v_j^((i) )∙σ(W_i∙v^((i) )+c_i ), which depended on the model 

and decreased the probability of the output generated by the model. 

The positive phase increased the probability of training data. 

The negative phase decreased the probability of samples generated by the model. 

The negative phase was difficult to compute; therefore, we used a method known as 

contrastive divergence (CD) to approximate it. It was designed in such a way that the 

direction of the gradient estimate was somewhat accurate, even when the size was not 

(in real-world models, more accurate techniques such as CD-k or PCD are used to train 

RBMs). During the calculation of CD, we used Gibbs sampling to sample from our 

model distribution. 

CD is a matrix of values that were computed and used to adjust the values of the W 

matrix. Changing W incrementally led to the training of W values. Subsequently, at 

each step (or epoch), W was updated to the new value W’ using the following equation: 

 W’ = W+alpha∗CDW’ = W+alpha∗CD (22) 

Here, alpha is some small step rate, also known as the ‘learning rate’. 

4.6 Framework for Software-Defined Networks 

This section discusses the integration of the proposed detection system in the SDN 

model. The actual integration is beyond the scope of this research. Multiple intrusion 

detection applications have been developed to detect malicious activities in SDN 

networks. For example, the ODL controller uses the Defense4All application to detect 

and mitigate DDoS attacks. However, the application does not protect the controller 

itself; rather, it deploys a set of rules to protect the network at its edges. In the event of 

malicious activity, the Defense4All application requests network information from the 

controller and acts through its attack mitigation module. Security limitations of this 

application include the following: 
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 The application must first communicate with the controller to gather statistics 

and raw data used by the IDS to decide whether an activity is malicious. 

Consequently, the controller is exposed to the threat before the decision is made. 

 The controller’s location in the architecture makes it vulnerable to new types of 

attacks that require novel mechanisms. For example, mechanisms to ensure 

security in communications between the controller and the IDS should be 

present. 

 Controller software may be prone to traditional software vulnerabilities, which 

require advanced detection techniques such as deep packet inspection. 

Figure 4.6 shows the deployment of the proposed system. Integrating the IDS as an 

extension of the controller plane provided the following advantages: 

 Centralisation: Figure 4.6 shows the deployment of classical IDS dispersing over 

the network, where it protects a network portion or set of them. The proposed 

architecture takes advantage of the centralisation feature of SDN, in which the 

proposed IDS has a global view of the entire network. This deployment protects 

higher, lower and control planes. Compared to the deployment of IDS in 

conventional networks shown in figure 4.7, the proposed deployment offer 

global view and centralisation, which boost the performance. 

 

Figure 4.6. Deployment of intrusion detection systems in software-defined network 

architecture. 
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 In extensibility scenarios, where the IDS is responsible for attacks, its 

positioning at the control plane mitigates threat propagation. 

 The deployment protects the controller itself because the IDS is deployed as a 

plug-in that works with the controller, rather than as a component managed by 

the controller. 

 

Figure 4.7. Deployment of intrusion detection systems in traditional networks. 

For instance, ODL provides a model-driven service abstraction layer through which 

new functions can be added to the controller. 

4.7 Framework Features 

We proposed a framework based on DL for attack detection in network traffic. We 

investigated various aspects of applying DL for network anomaly detection. This 

research focused on unsupervised algorithms because they have the potential to detect 

novel attacks. We provided a comparative study of autoencoders and RBMs. Given that 

it is not possible to use USDL as a standalone for anomaly detection, we adapted 

algorithms for anomaly detection purposes. The proposed detection framework 

consisted of two phases: the first phase was based on unsupervised DL algorithms, 

while in the second phase, the outputs were forwarded to a simple clustering machine 

learning algorithm. Two unsupervised DL algorithms were used to demonstrate 

prediction accuracy. Therefore, the framework provided the following advantages: 
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 Proposed and implemented a threat detection framework: The framework was 

applicable to different networking models, including conventional networks, 

SDN and IoT. 

 The framework provided a method of solving the problem of classical clustering 

algorithms such as k-means, which performs poorly in high-dimensional data. 

The use of unsupervised DL as a step to reduce dimensionality dramatically 

enhanced the accuracy of k-means. 

 The framework adopted the reconstruction errors produced from the DL 

algorithms as a boundary decision for anomaly detection instead of applying the 

unsupervised algorithms as a pre-training step only. However, the decision did 

not rely on a simple regression procedure; a clustering approach was adopted as 

reconstruction errors are not linearly separable. 

 Compared the accuracy of two major unsupervised DL algorithms: RBMs and 

autoencoders. The analysis shows the framework achieved an accuracy of over 

99% with the integration of the autoencoder and the k-means. 

4.8 Summary 

This chapter introduced a framework for network anomaly detection. The framework 

employed USDL in the first phase and k-means or mean a shift in the second phase. 

Several related works have used deep learning to reveal anomalies in network traffic. 

This chapter provided a theoretical foundation for the framework implementation. This 

foundation defined six design principals. The design principals consider the 

requirements for the network anomalies identification. The small number of features in 

network traffic packets represents one of the obstacles for deep learning as it shines with 

massive data. To tackle this problem, an approach similar to kernel trick is used with 

autoencoders, where the inputs are projected on a higher dimension. Also, this chapter 

has introduced some new criteria, in place of the threshold, to distinguish the normal 

from the abnormal, where it is not accurate to consider the absolute reconstruction error 

for that distinction.  

The chapter has also discussed the ways for deciding the number of hidden layers and 

the number of neurons at each layer. The limitations of the inputs derived from the 

number of features in each packet imposes represents a challenge to use deep learning 

algorithms.  
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 The chapter discussed the potential of applying DL as a pre-training phase to reduce 

dimensionality. Dimensionality reduction is an essential step to improve the detection 

accuracy of network anomaly detection. The research focused on unsupervised 

algorithms because they are more likely to detect new threats. The study focused on 

autoencoders. The chapter presented a set of principles used in the design process, 

including dimensionality reduction and the use of reconstruction errors for the decision. 

Additionally, the chapter discussed the integration of the framework into the SDN 

networking model. 
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Chapter 5: Simulation Studies 

This chapter provides the implementation of the framework proposed in the previous 

chapter. The implementation included four scenarios—for each scenario, the first phase 

used a DL algorithm, either an autoencoder or an RBM, and the second phase used a 

clustering algorithm, either k-means or mean shift. This chapter introduces the required 

tools and libraries and provides an in-depth discussion of the dataset, feature selection 

and normalisation procedures. The chapter presents the critical code snippets required 

for the framework and how the code is related to workflow and algorithms provided in 

Chapter 4. Additionally, a detailed description is provided for training, testing and 

tracking the data lifecycle during the execution. 

The chapter is divided into five sections. The first section introduces the simulation 

goals and generic descriptions of the simulation procedures. The second section outlines 

the various simulation scenarios. The third section presents the DL tools and various 

Python modules used for coding. The fourth section is an in-depth discussion of the 

dataset and its limitations and rationale for using it in the simulation. The fifth section, 

which is divided into two subsections representing each of the scenarios, maps the 

framework design to implementation. The final section provides a chapter summary and 

conclusion. 

5.1 Simulation Overview 

The proposed anomaly detection framework was based on unsupervised DL. The 

framework utilised USDL in a semi-supervised mode in which labelled normal traffic 

was passed through the framework in the training phase. During the testing phase, both 

normal and abnormal traffic was passed through the framework—because the 

framework could detect normal traffic, we could classify the other samples as abnormal. 

The simulation aimed to: 

 implement the proposed detection framework using a state-of-the-art DL library, 

Google TensorFlow 

 implement an autoencoder and an RBM in the context of networking anomaly 

detection 



 

101 

 experimentally evaluate the application of USDL algorithms for network 

anomaly detection 

 compare the accuracy of autoencoders and RBMs in different scenarios. 

5.1.1 Simulation Scenarios 

The simulation was conducted in two main scenarios based on autoencoders and RBMs, 

respectively. In each scenario, there were two sub-scenarios. The main scenarios 

involved the implementation of the algorithms for autoencoders and RBMs. The sub-

scenarios used two different simple classical algorithms, k-means and mean shift 

algorithms, at the second phase for clustering. The scenarios occurred as follows: 

1. Autoencoder phase followed by k-means clustering 

2. Autoencoder phase followed by mean shift clustering 

3. RBM phase followed by k-means clustering 

4. RBM phase followed by mean shift clustering. 

The purpose of using different clustering algorithms in the second phase was to ensure 

the accuracy of the DL algorithm results. Figure 5.1 depicts the flowchart for the first 

scenario involving autoencoder and k-means. The other scenarios had the same flow. 

 

Figure 5.1. Simulation scenarios flowchart. 
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Each of the scenarios included the following process: 

 Data normalisation: converted the dataset to a specific numerical format 

processable by the USDL algorithm 

 Application of USDL: combined the training and testing phases as well as 

several sub-processes depending on the type of the algorithm; however, the 

necessary process included calculating weights, outputs, loss and optimisation 

 Clustering of the reconstruction error (loss): included the application of a simple 

clustering procedure to a one-dimensional array of inputs. 

5.2 Simulation Tools: TensorFlow and SciKit 

TensorFlow was developed by Google’s Brain research team as an open-source 

framework for machine learning research and industrial applications [23]. It focuses on 

current trends in machine learning, specifically DL. TensorFlow takes its name from 

neural networks operations—any neural network consists of creating tensors 

(multidimensional arrays) for input, weights, biases and output. Computations are done 

in a graph model—graphs consist of nodes (operations for example activation functions 

and optimisation) and edges (data for example inputs and biases). In this simulation, we 

used TensorFlow for two reasons: 

 TensorFlow, based on GitHub statistics and Stack Overflow, is the most widely 

used framework in DL [146]. 

 TensorFlow provides basic support for both algorithms: autoencoders and 

RBMs. 

In all simulation scenarios, DL algorithms were developed using TensorFlow libraries. 

SciKit is the source Python library for data mining and analysis [147]. SciKit was used 

to implement the clustering algorithms (i.e. k-means and mean shift). 

5.3 Dataset 

KDD99 is the most widely used dataset in machine learning and intrusion detection. 

The dataset represents real collected network traffic data. The dataset includes 

4,898,431 traffic records for training and 311,029 records for testing [148]. 
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Table 5.1. KDD99 Input Features 

Feature Name Description Type 

Duration Length (number of seconds) of the connection Continuous 

Protocol type Type of protocol, e.g. TCP, UDP, etc. Discrete 

Service Network service on the destination, e.g., HTTP, telnet, etc. Discrete 

src_bytes Number of data bytes from source to destination Continuous 

dst_bytes Number of data bytes from destination to source Continuous 

flag Normal or error status of the connection Discrete 

land 1 if connection is from/to the same host/port; 0 otherwise Discrete 

wrong_fragment Number of ‘wrong’ fragments Continuous 

urgent Number of urgent packets Continuous 

hot Number of ‘hot’ indicators Continuous 

num_failed_logins Number of failed login attempts Continuous 

logged_in 1 if successfully logged in; 0 otherwise Discrete 

num_compromised Number of ‘compromised’ conditions Continuous 

root_shell 1 if root shell is obtained; 0 otherwise Discrete 

su_attempted 1 if ‘su root’ command attempted; 0 otherwise Discrete 

num_root Number of ‘roots’ accessed Continuous 

num_file_creations Number of file creation operations Continuous 

num_shells Number of shell prompts Continuous 

num_access_files Number of operations on access control files Continuous 

num_outbound_cmds Number of outbound commands in an FTP session Continuous 

is_hot_login 1 if the login belongs to the ‘hot’ list; 0 otherwise Discrete 

is_guest_login 1 if the login is a ‘guest’ login; 0 otherwise Discrete 

Count 
Note: The following features refer to these same-host 

connections 
Continuous 

serror_rate % of connections that have ‘SYN’ errors Continuous 

rerror_rate % of connections that have ‘REJ’ errors Continuous 

same_srv_rate % Of connections to the same service Continuous 

diff_srv_rate % Of connections to different services Continuous 

srv_count 
Number of connections to the same service as the current 

connection in the past two seconds 
Continuous 

srv_serror_rate % of connections that have ‘SYN’ errors Continuous 

srv_rerror_rate % of connections that have ‘REJ’ errors Continuous 

srv_diff_host_rate % Of connections to different hosts Continuous 
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The dataset contained four types of attacks: 

 DoS attacks: Attackers exhaust target resources, such as computations and 

memory, by flooding the target host with an enormous number of requests; the 

victim host denies legitimate requests. 

 User to root attacks: Privilege escalation attacks in which the user obtains access 

(usually legitimate), then escalates access to the root role, where the attacker has 

full access to the compromised system. 

 Remote to local attacks: The attacker exploits application/system vulnerabilities 

to gain access to the system. 

 Probing attacks: Reconnaissance attacks in which the intruder gathers 

information about the system, such as open ports, operating systems and various 

versions of protocols and applications. 

Table 5.2. KDD99 Dataset Statistics 

Class Training set 

Normal 97,278 

Probe 41,102 

Denial-of-service 3,883,370 

Remote to local 1,126 

User to root 5,252 

Total 4,898,431 

KDD99 is extensively used in intrusion detection research. However, it has been 

heavily criticised [148]. One of the significant issues associated with KDD99 is data 

redundancy. During the training, records were selected randomly, and testing samples 

were selected manually from different locations within the file to avoid redundancy. 

Additionally, redundancy is one of the causes of highly correlated data problems, which 

is discussed in the following chapter. However, the use of KDD99 was not avoidable in 

this research because most related work has been benchmarked to this dataset. 

A sample data record is shown below: 

0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.00,0.00,0

.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,normal 
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Records were labelled as either normal or abnormal—these labels were used for result 

validation, specifically to identify the number of normal and abnormal records in each 

identified cluster. 

The data in its original format was not calculable because the algorithms processed 

numerical data only; hence, it was subjected to data normalisation processing. 

Normalisation was conducted in two steps. The first step was to replace discreet fields 

with continuous fields: 

pdic = {1:’domain_u’, 2:’systat’, 3:’tftp_u’, 4:’link’, 5:’nnsp’, 6:’sql_net’,7:’netbios_dgm’, 8:’courier’, 9:’uucp’, 
10:’ftp_data’, 11:’time’, 12:’gopher’, 13:’mtp’, 14:’nntp’, 15:’telnet’, 16:’finger’, 17:’echo’,18:’imap4’, 19:’pop_2’, 
20:’other’, 21:’netbios_ns’, 22:’private’, 23:’netstat’, 24:’shell’,25:’eco_i’, 26:’kshell’, 27:’domain’, 28:’discard’, 
29:’efs’, 30:’tim_i’, 31:’ldap’, 32:’hostnames’, 33:’printer’, 34:’supdup’, 35:’pm_dump’,36:’auth’, 37:’IRC’, 
38:’iso_tsap’, 39:’netbios_ssn’, 40:’ntp_u’, 41:’harvest’, 42:’Z39_50’, 43:’smtp’,44: ‘pop_3’, 45:’aol’, 46:’ecr_i’, 
47:’csnet_ns’, 48:’whois’, 49:’ftp’, 50:’remote_job’, 51:’X11’, 52:’sunrpc’, 53:’urh_i’, 54:’vmnet’, 55:’http’, 
56:’urp_i’,57: ‘rje’, 58:’login’, 59:’ssh’, 60:’http_443’, 61:’klogin’, 62:’uucp_path’, 63:’http_8001’, 64:’ctf’, 
65:’daytime’, 66:’name’, 67:’http_2784’, 68:’red_i’, 69:’bgp’, 70:’exec’, 71:’icmp’} 

rdic = {v: k for k, v in pdic.items()} 

pro.append (tmp[4]) 

tmp[4] = rdic[tmp[4]] 

sdic = {‘S2’:1, ‘finger’:2, ‘X11’:3, ‘Z39_50’:4, ‘exec’:5, ‘courier’:6, ‘netstat’:7, ‘csnet_ns’:8, ‘ecr_i’:9, ‘private’:10, 
‘nnsp’:11, ‘hostnames’:12, ‘iso_tsap’:13, ‘ntp_u’:14, ‘ftp_data’:15, ‘name’:16, ‘discard’:17, ‘uucp_path’:18, ‘S3’:19, 
‘smtp’:20, ‘SH’:21, ‘RSTOS0’:22, ‘ctf’:23, ‘ldap’:24, ‘urh_i’:25, ‘uucp’:26, ‘shell’:27, ‘echo’:28, ‘systat’:29, 
‘http_443’:30, ‘red_i’:31, ‘urp_i’:32, ‘netbios_dgm’:33, ‘aol’:34, ‘pm_dump’:35, ‘RSTO’:36, ‘whois’:37, 
‘domain_u’:38, ‘bgp’:39, ‘time’:40, ‘netbios_ssn’:41, ‘tim_i’:42, ‘other’:43, ‘pop_2’:44, ‘OTH’:45, ‘kshell’:46, ‘ftp’:47, 
‘link’:48, ‘imap4’:49, ‘rje’:50, ‘sunrpc’:51, ‘RSTR’:52, ‘domain’:53, ‘harvest’:54, ‘REJ’:55, ‘supdup’:56, ‘http_2784’:57, 
‘tftp_u’:58, ‘http_8001’:59, ‘SF’:60, ‘sql_net’:61, ‘vmnet’:62, ‘gopher’:63, ‘http’:64, ‘S0’:65, ‘ssh’:66, ‘IRC’:67, 
‘nntp’:68, ‘netbios_ns’:69, ‘remote_job’:70, ‘S1’:71, ‘login’:72, ‘telnet’:73, ‘mtp’:74, ‘eco_i’:75, ‘efs’:76, ‘klogin’:77, 
‘pop_3’:78, ‘daytime’:79, ‘printer’:80, ‘auth’:81} 

tmp[5] = sdic[tmp[5]] 

pro.append(tmp[5]) 

tmp.pop() 

ntmp = tmp[2:] 

or z in range(len(ntmp)): 

ntmp[z] = float (ntmp[z]) 

ntmp.insert(0, str (tmp[0])) 

ntmp.insert(1, str(tmp[1])) 

st = “ “.join(str(x) for x in ntmp) 

row.append(st) 

print (len(row[2])) 

print ((row[2:10])) 

print (len(row)) 

with open(‘c:\\Tsoutfile.txt’, mode=‘wt’, encoding=‘utf-8’) as myfile: 

for lines in row: 

print(lines, file = myfile) 

myfile.close() 
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For example, the second field service type was replaced by the following values. A 

Python script was written to sweep the training and testing data to find all continuous 

values and replace them with numeric values: 

1.0 55.0 60.0 215.0 45076.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

The second step was to scale the entire record to values in [0, 1]—for each field, the 

maximum value in the entire dataset was found, then all fields were divided by the 

maximum value. The record below is a sample of the final normalised data: 

0.0 0.0 0.33 0.77 0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 

0.03 0.03 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1 0.63 1.0 0.0 0.04 0.04 0.0 0.0 0.0 

The primary reason for scaling the data between 0 and 1 was the choice of activation 

function. The activation function used in the model implementation was sigmoid, which 

facilitated the normalisation of the input and improved the experimental results. 

Normalisation at this stage was performed using another Python script, which swept the 

entire dataset to find the largest value in each field, then divided the field in the entire 

dataset by the heights value as show below: 

maxval2 = [66366.0, 3.0, 71.0, 71.0, 62825648.0, 32317698.0, 1.0, 3.0, 6.0, 233.0, 5.0, 1.0, 942.0, 1.0, 
2.0, 1013.0, 100.0, 5.0, 7.0, 0.0, 1.0, 1.0, 511.0, 511.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 255.0, 255.0, 1.0, 
1.0, 1.0, 1.0, 1.0, 1.0, 1.0] 

maxval = maxlist(maxval1,maxval2) 

with open(‘c:\\Troutfile.txt’,’r’) as f2, open(‘c:\\Troutfileb.txt’,’w’) as f : 

for line in f2: 

 fieldsx = line.split()    # parse the columns 

 fields = ieldsx[4:] 

 intro = fieldsx[0:4] 

 rowdata = [float(i) for i in fields] # convert text to numbers 

 if len(data) = 0: 

 data = rowdata 

 normls = divlist(rowdata,maxval ) # accumulate the results 

 rec = intro + normls 

 st = " ".join([str(i) for i in rec]) 

 print(st, file = f) 
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5.4 Scenario Implementation 

The first phase in the proposed framework included the unsupervised DL algorithm for 

dimensionality reduction. Autoencoders and RBMs were chosen for two reasons: first, 

unsupervised DL can be classified as two main categories, non-probabilistic models and 

probabilistic (generative) models. The two algorithms selected represent both 

categories. Additionally, both algorithms have been used in many extensions—for 

example, autoencoder has been used in stacked, sparse and denoising autoencoders, and 

RBM has been used in deep belief networks and conditional and gated RBMs. As part 

of the analytical study, a comparison of both algorithms in the domain of network 

anomaly detection was conducted. In the following subsection, the detailed 

implementation is demonstrated using TensorFlow and other Python libraries. The 

demonstration includes model building, activation and optimisation functions. 

5.4.1 Scenarios 1 and 2 

Autoencoders are a neural network with symmetric input and output layers with respect 

to the number of neurons. Several hidden layers are added between the input and output 

layers. Scenario 1 was divided into two parts: the first contained the input and number 

of hidden layers (encoders), and the second contained the output and the same number 

of the hidden layers in the encoder. The number of neurons in each layer was identical 

to the number in the encoder. Additionally, the final layer in the encoder was the first 

used for the decoder. 

In this implementation, the encoder included two layers after the input layer: 

X = tf.placeholder(“float”) [None, 41]) 

Placeholder is a variable that created a tensor that was subsequently populated, allowing 

the creation of the model without the actual data. Once the model was built, then the 

data were inserted into it. X is a TensorFlow tensor variable used to load the 41 features 

of a single IP packet from the KDD99 dataset; the float defined the valid data types to 

be inserted: 

Encoder: 

def encoder(x): 
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 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[‘encoder_h1’]), 

  biases[‘encoder_b1’])) 

 # Encoder second layer with sigmoid activation #2 

 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[‘encoder_h2’]), 

  biases[‘encoder_b2’])) 

 return layer_2 

The autoencoder consisted of two parts: the encoder, the main goal of which was to find 

the most important features in the data, and the decoder, the main goal of which was to 

reconstruct the original data with minimum error. Each phase contained a series of 

latent layers, which should be symmetric around the middle layer, which is the last in 

the encoder and the input for the decoder. Figure 5.2 depicts the internal structure of the 

autoencoder—the red part represents the encoder, while the green represents the 

decoder. 

For the implementation, we deployed two hidden layers, n_hidden_1 and n_hidden_2, 

for 20 and five neurons, respectively. The following chapter provides a more detailed 

rationale for the number of neurons in hidden layers, with a comparative analysis of the 

results of different implementations. 

Figure 5.2. The internal structure of the autoencoder intrusion detection system. 

The second hidden layer contained five neurons, which represented the most significant 

features in the data. W represents the weight tensor, which connected the input layer 

with the first layer and biases for the first layer. In this implementation, there were four 
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weight tensors linking each layer to the following shown in Figure 5.2: ‘encoder_h1’, 

coder_b2’, ‘decoder_h1’ and ‘decoder_h2’. The dimension of each tensor was 

calculated by multiplying the number of neurons in each layer; for instance, 

‘encoder_h1’ = 41*20, with each value representing the connection weight between two 

corresponding nodes. Similar to weights, bias tensors were created for each layer: 

’encoder_b1’, ‘encoder_b2’, ‘decoder_b1’ and ‘decoder_b2. 

The encoder used sigmoid as the activation function. Prior to calculating the activation 

value, the tensors of two layers were multiplied using tf.matmul( ), biases were added 

using tf.add(), then outputs were activation using tf.nn.sigmoid(). Once the output layer 

was calculated, the cost or information loss was calculated by measuring the difference 

between the input layer and the output layer: tf.reduce_mean(tf.square(input,output)). 

n_hidden_1 = 20 

n_hidden_2 = 5 

Two weight variables for the two layers and two bias tensors were present. 

Weights = { 

 ‘encoder_h1’: tf.Variable(tf.random_normal([n_input, n_hidden_1])) 

 ‘encoder_h2’: tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])) 

 ‘decoder_h1’: tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])) 

 ‘decoder_h2’: tf.Variable(tf.random_normal([n_hidden_1, n_input])) 

Biases = { 

 ‘encoder_b1’: tf.Variable(tf.random_normal([n_hidden_1])) 

 ‘encoder_b2’: tf.Variable(tf.random_normal([n_hidden_2])) 

 ‘decoder_b1’: tf.Variable(tf.random_normal([n_hidden_1])) 

 ‘decoder_b2’: tf.Variable(tf.random_normal([n_input])) 

The decoder phase used Layer 2 from the encoder as the input and reconstructed the 

output in two layers: the first layer contained 20 neurons and the second (final) layer 

was the output layer. Hence, weights and biases were updated when the Adam optimiser 

was used. The Adam optimiser is an efficient version of the SGD optimiser. 

The model optimised the cost using tf.train.AdamOptimizer(1e-1).minimize(cost) 

def decoder(x): 

 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[‘decoder_h1’]) 
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  biases[‘decoder_b1’])) 

 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[‘decoder_h2’]) 

  biases[‘decoder_b2’])) 

 return layer_2 

cost = tf.reduce_mean(tf.square(y_true - y_pred)) 

optimiser = tf.train.AdamOptimizer(1e-1).minimize(cost) 

5.4.2 Training 

Once the model was built, the next step was to load the data, divide the data into batches 

and then run the session. Data loading was done in two steps: the first step was to read 

the data from the KDD99 dataset file and store it in an array using the following code: 

reader_train = create_reader(train_file, True, input_dim, 2) 

print (type(reader_train)) 

print (“all”) 

packet = C.input_variable(input_dim) 

packet_label = C.input_variable(2) 

batch_size = 400000 

viz_input_map = { 

 packet: reader_train.streams.features 

 packet_label : reader_train.streams.labels_viz 

viz_data = reader_train.next_minibatch(batch_size 

  input_map = viz_input_map) 

flow_data = viz_data[packet].asarray() 

flow_type = viz_data[packet_label].asarray() 

trax = np.array (flow_data ) 

Xtrain = [] 

Ytrain = [] 

Yhashed = [] 

for i in trax: 

 elem = i[0].tolist() 

 Xtrain.append(elem) 

Xtrain = np.asarray(Xtrain).astype(‘float32’) 

Each record of the 400 k element was converted to an array and added to the training 

data array, Xtrain. The data were divided into batches (total_batches) before being fed 

into the model: 

sess.run([optimizer, cost], feed_dict={X: batch_xs} 

for i in range(total_batch): 
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 batch_xs = Xtrain[i*batch_size:(i*batch_size + batch_size)] 

 _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs}) 

Once the model was established by calculating optimal weights and biases, a block of 

the testing data was loaded from KDD99 and passed through the autoencoder: 

reader_test = create_reader(test_file, True, input_dim, 2) 

 print (type(reader_test)) 

 print ("alll") 

 packet = C.input_variable(input_dim) 

 packet_label = C.input_variable(2) 

 batch_size = 1300 

 viz_input_map_t = { 

 packet: reader_test.streams.features, 

 packet_label: reader_test.streams.labels_viz 

 } 

 viz_data_t = reader_test.next_minibatch(batch_size, input_map = viz_input_map_t) 

 flow_data_t = viz_data_t[packet].asarray() 

 flow_type_t = viz_data_t[packet_label].asarray() 

 tray = np.array (flow_data_t ) 

 Ytrain = [] 

 Ltst= [] 

 ltest = np.array (flow_type_t ) 

 for i in tray: 

 elem = i[0].tolist() 

 Ytrain.append(elem) 

 for i in ltest: 

 elem = i[0].tolist() 

Ltst.append(elem) 

 Ytrain = np.asarray(Ytrain).astype(‘float32’) 

 Ltst = np.asarray(Ltst).astype(‘float32’) 

encode_decode = sess.run(y_pred, feed_dict={X: Ytrain2}) 

for i in range(len(encode_decode)): 

err2.append(sess.run(tf.reduce_mean(tf.squared_difference(encode_decode[i], 

Ytrain2[i])))) 

The testing samples were inserted in the TensorFlow graph for encoding and decoding: 

sess.run(y_pred, feed_dict={X: Ytrain2}). The test data were reconstructed using the 

autoencoder, then reconstruction errors were calculated using 

tf.squared_difference(encode_decode[i] ,Ytrain2[i]) for each record in the testing batch. 

For instance, in the previous code, 1.3 k samples were loaded; by the end of the 
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processing of the first phase, there were 1.3 k reconstruction errors. These 

reconstruction errors were forwarded to the next phase. In this scenario, a k-means 

algorithm was implemented using the following code: 

km = KMeans() 

cl = km.fit(npar.reshape(-1,1)) 

print(cl.labels_) 

print (type(cl.labels_)) 

kcls = [(x,y) for x , y in zip (tst , cl.labels_ )] 

 

gcl = list(set(cl.labels_)) 

 

print(gcl) 

groups = [] 

for c in gcl: 

 clx = [i for i,x in enumerate(cl.labels_) if x == c] 

 groups.append(clx) 

k-means is a class in the SciKit library. The fit () function took the reconstruction error 

array as input and calculated the labels for each sample. Once the k-means labels were 

calculated, a verification code was sent to link the original labels (normal or abnormal) 

with the labels. 

In the second scenario, the k-means phase was replaced with mean shift. The mean shift 

used in this scenario was a flat-based kernel similar to PCA. However, the 

reconstruction errors were simple vectors where the samples were separable; therefore, 

using the kernels would have complicated the computation. 

kclusters = [] 

for i in groups: 

 cla = [list(tst[x]) for x in i ] 

 kclusters.append(cla) 

for i in kclusters: 

 nrm = 0 

 abnr=0 

 for x in i 

 if (x[0] == 1.0) and (x[1] == 0.0): 

  nrm= nrm + 1 

 otherwise: 

  abnr = abnr + 1 

 print(" KCluster normal") 

 print(" KCluster abnormal") 
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The code below depicts the implementation of the mean shift. The mean shift is a 

centroid-based algorithm, with the main goal to find the modes in smooth data, to 

calculate the probability distribution function. 

Z = np.array(list(zip(err,np.zeros(len(err))))) 

ms = MeanShift( bin_seeding=True) 

ms.fit(Z) 

labels = ms.labels_ 

cluster_centers = ms.cluster_centers_ 

labels_unique = np.unique(labels) 

n_clusters_ = len(labels_unique) 

mycls= [] 

for k in range(n_clusters_): 

 my_members = labels == k 

 #print ("cluster {0}: {1}".format(k, X[my_members, 0])) 

 mycls.append(list(Z[my_members, 0])) 

5.4.3 Scenarios 3 and 4 

An RBM network consists of two layers: the input layer, which is visible, and a hidden 

layer. Each record in the KDD99 dataset has 41 features. Hence, the RBM visible layer 

has the same number of input neurons. 

The hidden layer possesses n neurons. Each hidden unit has a binary state, which we 

call sn, and it turns either 0 or 1 with a probability that is a sigmoid function: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

where x is the visible neuron (v0), corresponding weight (w) and hidden bias (hb). 

tf.nn.sigmoid(tf.matmul(v0, W) + hb) # calculating sn for hidden units probabilities of 

the hidden units. 

Each neuron in the visible layer (v) also has a bias (vb). W is a matrix representing the 

weights between the input layer and hidden layer nodes. In the weight matrix, the rows 

are equal to the visible nodes and the columns are equal to the hidden nodes. Let W be 

the tensor of 41*82, where 82 is the number of neurons in the hidden layers: 

vb = tf.placeholder ("float", [41])  # visible layer biases 

hb = tf.placeholder("float", [41]) #Hidden Layer biases 
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W = tf.placeholder("float", [41,41]) # weights matrix 

v0 = tf.placeholder("float", [None, 41])  # visible layer tensor 

Inputs were combined with individual weights and bias. Some hidden nodes were 

activated. 

 

Figure 5.3. Restricted Boltzmann machine neuron activation. 

_h0 = tf.nn.sigmoid(tf.matmul(v0, W) + hb) 

h0 = tf.nn.relu(tf.sign(_h0 - tf.random_uniform(tf.shape(_h0)))) 

Figure 5.3 show the activation of RBM mpdel, the activations were combined with 

individual weights and a bias. Results were passed to the visible layer. The RBM 

reconstructed data by making several forward and backward passes between the visible 

and hidden layers as shown in figure 5.4. 
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Figure 5.4. Reconstruction phase. 

_v1 = tf.nn.sigmoid(tf.matmul(h0, tf.transpose(W)) + vb) 

v1 = tf.nn.relu(tf.sign(_v1 - tf.random_uniform(tf.shape(_v1)))) #sample_v_given_h 

hTensor1 = tf.nn.sigmoid(tf.matmul(v1, W) + hb) 

Samples from probabilistic tensor were selected as h0, which represents the input in the 

reconstruction phase. The same weight matrix and visible layer biases were used for the 

sigmoid function. The produced output was a reconstruction, which approximated the 

original input. 

Energy-based probabilistic models define a probability distribution as: 

 𝑝(𝑣) =
𝑒−𝐸(𝑣,ℎ)

𝑍
 where 𝑍 = ∑ 𝑒

−𝐸(𝑣,ℎ)

𝑣,ℎ   (23) 

 𝑝(𝑣) = ∑ 𝑃(𝑣, ℎ)ℎ =
𝑒−𝐸(𝑣,ℎ)

𝑍=∑ 𝑒
−𝐸(𝑣,ℎ)

𝑣,ℎ

 (24) 

An energy-based model can be learned by performing (stochastic) gradient descent on 

the empirical negative log-likelihood of the training data, where the log-likelihood and 

the loss function are: 

 𝐿(𝜃,  𝑉) =
1

𝑁
∑ 𝑙𝑜𝑔 𝑝(𝑣𝑖)𝑣𝑖𝜖𝑉      and     𝑙(𝜃, 𝑉) = −𝐿(𝜃,  𝑉) (25) 

Then the data negative log-likelihood gradient has the following form: 

 −
𝑑𝑙𝑜𝑔𝑝(𝑣)

𝑑𝜃
=

𝑑𝑃(𝑣)

𝑑𝜃
− ∑ 𝑝(�̃�)�̃�

𝑑𝑃(�̃�)

𝑑𝜃
 (26) 
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 −
𝑑𝑙𝑜𝑔𝑝(𝑣)

𝑑𝜃
=

𝑑𝑃(𝑣)

𝑑𝜃
−

1

|𝑁|
∑ 𝑝(�̃�)�̃�𝜖𝑁

𝑑𝑃(�̃�)

𝑑𝜃
  (27) 

where 𝑣′ is a sample of N. 

To minimise loss, we must maximise the product of probabilities assigned to the 

training set 
𝑑𝑃(𝑣)

𝑑𝜃
 

 𝑃(𝑣) = −𝑏′𝑣 − ∑ 𝑙𝑜𝑔 ∑ 𝑒ℎ𝑖(𝑐𝑖+𝑊𝑖𝑣)
ℎ𝑖𝑖   (28) 

where 𝐸(𝑣, ℎ) = −𝑏′𝑣 − 𝑐′ℎ − ℎ′𝑊𝑣 and b’ and c are biases and hidden layers, 

respectively. 

From (27) and (28): 

 −
𝑑𝑙𝑜𝑔(𝑝(𝑣))

𝑑𝑊𝑖𝑗
= 𝐸𝑣[𝑝(ℎ𝑖|𝑣) ∙ 𝑣𝑗] − 𝑣𝑗

(𝑖)
∙ 𝜎(𝑊𝑖 ∙ 𝑣(𝑖) + 𝑐𝑖) (29) 

Equation (29) defines the loss function as the average negative log-likelihood and the 

objective was to minimise it. To achieve this, we needed the partial derivative of this 

function with respect to its parameters. From Equation (29), optimisation or 

minimisation of loss depended on adjusting the weights (W) and biases (C). SGD was 

used to find the optimal W tensor. 

The derivation has two terms: the positive term 𝐸𝑣[𝑝(ℎ𝑖|𝑣) ∙ 𝑣𝑗], which depends on the 

data V, increases the probability of inputs. The second term is a negative term, −𝑣𝑗
(𝑖)

∙

𝜎(𝑊𝑖 ∙ 𝑣(𝑖) + 𝑐𝑖) , which depends on the model and decreases the probability of the 

output generated by the model.  
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vb = tf.placeholder ("float", [41]) 

hb = tf.placeholder("float", [41]) 

W = tf.placeholder("float", [41,41]) 

v0 = tf.placeholder("float", [None, 41]) 

_h0 = tf.nn.sigmoid(tf.matmul(v0, W) + hb) #probabilities of the hidden units 

h0 = tf.nn.sigmoid(tf.sign(_h0 - tf.random_uniform(tf.shape(_h0))))  

_v1 = tf.nn.sigmoid(tf.matmul(h0, tf.transpose(W)) + vb) 

v1 = tf.nn.sigmoid(tf.sign(_v1 - tf.random_uniform(tf.shape(_v1))))  

h1 = tf.nn.sigmoid(tf.matmul(v1, W) + hb) 

alpha = 1.0 

w_pos_grad = tf.matmul(tf.transpose(v0), h0) 

w_neg_grad = tf.matmul(tf.transpose(v1), h1) 

CD = (w_pos_grad - w_neg_grad) / tf.to_float(tf.shape(v0)[0]) 

update_w = W + alpha * CD 

update_vb = vb + alpha * tf.reduce_mean(v0 - v1, 0) 

update_hb = hb + alpha * tf.reduce_mean(h0 - h1, 0) 

err = tf.reduce_mean(tf.square(v0 - v1)) 

cur_w = np.zeros([41, 41], np.float32) 

cur_vb = np.zeros([41], np.float32) 

cur_hb = np.zeros([41], np.float32) 

prv_w = np.zeros([41, 41], np.float32) 

prv_vb = np.zeros([41], np.float32) 

prv_hb = np.zeros([41], np.float32) 

sess = tf.Session() 

init = tf.global_variables_initializer() 

sess.run(init) 

idsys = sess.run(err, feed_dict={v0: Xtrain, W: prv_w, vb: prv_vb, hb: prv_hb}) 

print (idsys) 

epochs = 10 

batchsize = 300 

weights = [] 

errors = [] 

rbf_feature = Nystroem(kernel=‘rbf’, gamma=1, n_components=41, random_state=1) 

k = rbf_feature.fit_transform(Xtrain) 

#k=Xtrain 

for epoch in range(epochs): 

 print (epoch) 

 for start, end in zip( range(0, 400000, batchsize), range(batchsize, 400000, batchsize)): 

  batch = k[start:end] 

  print (start) 

  cur_w = sess.run(update_w, feed_dict={v0: batch, W: prv_w, vb: prv_vb, hb: prv_hb}) 

  cur_vb = sess.run(update_vb, feed_dict={ v0: batch, W: prv_w, vb: prv_vb, hb: prv_hb}) 

  cur_hb = sess.run(update_hb, feed_dict={ v0: batch, W: prv_w, vb: prv_vb, hb: prv_hb}) 

  prv_w = cur_w 

  prv_vb = cur_vb 

  prv_hb = cur_hb 

  print (cur_w 

  errors.append(sess.run(err, feed_dict={v0: k, W: cur_w, vb: cur_vb, hb: cur_hb})) 

  weights.append(cur_w) 

  print (errors[-1])p 

 print (‘Epoch: %d’ % epoch,’reconstruction error: %f’ % errors[-1]) 
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The positive phase increased the probability of training data. The negative phase 

decreased the probability of samples generated by the model. 

Given that the negative phase was difficult to compute, the CD was used to approximate 

it. It was designed in such a way that the direction of the gradient estimate was at least 

somewhat accurate, even when the size was not (in real-world models, more accurate 

techniques such as CD-k or PCD are used to train RBMs). During the calculation of 

CD, we used Gibbs sampling to sample from our model distribution. 

CD is a matrix of values that were computed and used to adjust the values of the W 

matrix. Changing W led to the training of W values. Subsequently, for each step 

(epoch), W was updated to a new value (W’) using the equation below: 

 W’ = W+alpha∗ (30) 

where alpha is the learning rate that adjusts the model to respond to the cost. 

To compute the CD, a training sample from X was selected to calculate the probabilities 

of the hidden units and sample a hidden activation vector (h0) from this probability 

distribution. 

 _h0=sigmoid(X⊗W+hb)_h0 

 h0=sampleProb(h0) 

1. calculate the outer product of X and h0 and call this the positive gradient 

2. w_pos_grad = X⊗h0w_pos_grad = X⊗h0 (reconstruction in the first pass) 

3. From h, reconstruct v1, take a sample of the visible units, then resample the 

hidden activations h1 from this (Gibbs sampling step) 

4. _v1 = sigmoid(h0⊗transpose(W)+vb) 

5. v1 = sampleprob(v1) (Sample v given h) 

6. h1 = sigmoid(v1⊗W+hb) 

7. calculate the outer product of v1 and h1 and call this the negative gradient 

8. w_neg_grad = v1⊗ (reconstruction 1) 

9. Now, CD equals the positive gradient minus the negative gradient 

10. CD = (w_pos_grad−w_neg_grad)/ 

11. Update the weight to be CD times some learning rate 

12. W’ = W+alpha∗CD 
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13. At the end of the algorithm, the visible nodes will store the value of the sample. 

Then, the tensor of probabilities was selected (from a sigmoidal activation) and samples 

were made from all distributions (h0). Hence, the sampling for the activation vector 

from the probability distribution of hidden layer values was computed. Samples were 

used to estimate the negative phase gradient. 

The second phase implements the K-means and mean shift algorithms, to cluster the 

reconstruction errors produced by the RBM model as below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

npar= np.array(rcerrs) 
km = KMeans(n_clusters=8) 
cl= km.fit(npar.reshape(-1,1)) 
print(cl.labels_) 
print (type(cl.labels_)) 
kcls= [(x,y) for x , y in  zip (tst  , cl.labels_ )] 
 
gcl = list(set(cl.labels_)) 
 
print(gcl) 
groups = []  
for c in gcl: 
    clx=   [i for i,x in enumerate(cl.labels_) if x == c] 
    groups.append(clx) 
     
kclusters = [] 
for i in groups: 
 
    cla = [list(tst[x]) for x in i ] 
    kclusters.append(cla) 
 
for i in kclusters: 
    nrm = 0 
    abnr=0 
    for x in i :      
        if (x[0]== 1.0) and (x[1]== 0.0): 
 
            nrm= nrm + 1 
                 
        else: 
            abnr = abnr + 1 
    print(" KCluster normal") 
    print(nrm) 
    print(" KCluster abnormal") 
    print(abnr) 
 
 
     
     
     
     
     
     
     
     
     
X = np.array(list(zip(rcerrs,np.zeros(len(rcerrs))))) 
bandwidth = estimate_bandwidth(X, quantile=0.2) 
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) 
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5.5 Conclusion  

This chapter has discussed the implementation of the proposed framework. The 

implementation was conducted for four scenarios.  Four algorithms were implemented 

autoencoder, RBM, k-means, mean shift. Then these algorithms were integrated 

together, where the first phase is either autoencoder or an RBM, then the second phase 

is k-means or mean shift. These four scenarios were implemented to ensure the 

inclusiveness of results. Tensorflow deep learning framework from Google and Scikit 

Python library were during the development. KDD99 dataset is used during the 

execution of training and testing steps. In the next chapter, the results are collected, 

analysed and evaluated. 
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Chapter 6: Results, Analysis and Evaluation 

DL has been used in several anomaly detection applications, including network 

anomalies. The framework was trained using a networking traffic dataset before 

samples of different sizes were passed through the system for testing. Statistical results 

were presented using a confusion matrix to measure several aspects of the framework, 

including accuracy and precision. This chapter provides a comparative analysis of 

results. 

To demonstrate the contribution of this thesis, an in-depth analysis of the results is 

presented. The confusion matrix is a standard statistical tool used to evaluate the 

performance of machine learning predictors. It was used in this analysis to compare the 

performance of the framework with similar approaches used by other researchers. An 

essential component of the analysis was to demonstrate correlations between the 

theoretical design principles discussed in Chapter 4 and the results summarised in this 

chapter. 

The first section introduces the analysis goals and methods. The second section 

demonstrates the system in the execution (e.g. training and testing outputs for various 

implementation scenarios discussed in the previous chapter). Additionally, the results 

collected during various stages of execution are collected and organised. The third 

section discusses design principles and how they affected implementation. The fourth 

section provides a detailed analysis of the results. The fifth section presents an 

evaluation of the framework results compared with other similar proposed frameworks. 

6.1 Introduction 

DL-based anomaly detection has been explored in several papers on network anomaly 

detection. A typical approach adopted by researchers is to use unsupervised DL as a 

pre-processing step to finding patterns in the data before forwarding the output layer 

from the neural network to a second classification or clustering algorithm. The proposed 

framework presented in this thesis adopted a similar approach but had different goals, a 

unique technical implementation and better accuracy and precision metrics. The primary 

purpose for using DL was to reduce the dimensionality of input data, making the second 

phase (clustering/classification) more straightforward in terms of computation resources 
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and time and providing higher accuracy in clustering. In its implementation, the 

framework simplified the output from the first phase/input to a single value for each 

network traffic record in the second phase, unlike similar approaches, which have used 

the output from the DL algorithm or, in some cases, hidden layers. Additionally, during 

the implementation, the problem of highly correlated data was managed by increasing 

the features of the first hidden layers, then reducing them in the subsequent layers. 

The implementation described in the previous chapter is examined by using several 

samples of different sizes. Different results were collected during successive execution 

steps; the output was recorded, then analysed using the confusion matrix. A confusion 

matrix provided a set of measurement tools such as accuracy, precision and an F1 score. 

The statistical measurements were applied to data collected in different scenarios 

described in the previous chapter. There were two primary goals for the analysis 

process. The first was to compare the performance of the autoencoder and the RBM in 

network anomaly detection to confirm and validate results, with two different 

algorithms used in the second phase. Second, analysis statistics were used to compare 

the framework performance against other related works. 

6.2 Results 

Epoch: 0001 cost= 0.027297018 

Epoch: 0002 cost= 0.027274711 

Epoch: 0003 cost= 0.027273355 

Epoch: 0004 cost= 0.027272990 

Epoch: 0005 cost= 0.027274150 

Epoch: 0006 cost= 0.027274083 

Epoch: 0007 cost= 0.027274333 

Epoch: 0008 cost= 0.027273895 

Epoch: 0009 cost= 0.027274128 

Epoch: 0010 cost= 0.030739360 

Epoch: 0011 cost= 0.015888004 

Epoch: 0012 cost= 0.012710391 

Epoch: 0013 cost= 0.027804116 

Epoch: 0014 cost= 0.027811782 

Epoch: 0015 cost= 0.027810751 

Epoch: 0016 cost= 0.027810829 

Epoch: 0017 cost= 0.027407454 

Epoch: 0018 cost= 0.027407652 

Epoch: 0019 cost= 0.027407601 

Epoch: 0020 cost= 0.027407428 
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This section provides the results at various stages of the simulation. During the training 

phase, the decrease in reconstruction error produced by using optimisers indicated 

algorithm convergence. Convergence can be shown on two levels, the epoch and the 

batches. The results provided below are samples of the cost over 20 sweeps of the 

training samples. Notably, the cost decreased smoothly from the first epoch to the last. 

Figure 6.1 shows the performance of two different optimisers: SGD and Adam. 

 

Figure 6.1. Optimisation using stochastic gradient descent and Adam optimiser. 

Because the model was constructed using required weights and biases and put through 

several iterations to optimise the cost of previous diagrams and to confirm the values, 
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the next step was to subject the system to a testing phase. A sequence of traffic records, 

shown below, were loaded into the model. 

|labels 1 0 |features 0.0 0.0 0.33 0.77 0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.01 0.0 0.0 0.03 

|labels 1 0 |features 0.0 0.0 0.33 0.77 0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 
0.0 0.02 0.02 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.01 

|labels 0 1 |features 0.0 0.0 1.0 0.65 0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 
0.0 0.94 0.94 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 

|labels 0 1 |features 0.0 0.0 1.0 0.65 0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 
0.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 

As discussed in the implementation chapter, the testing data contained normal and 

abnormal traffic packets for which the records were normalised. Labels were not used 

by the system during the clustering; rather, they were used to validate and evaluate the 

accuracy achieved. The model provides a single value representing the reconstruction 

error for each of the testing records, as shown below. 

[0.087900057, 0.12927638, 0.0034244901, 0.00090605248, 0.092122331, 0.011742176, 0.12852195, 
0.067880958, 0.15653908, 0.09629482, 0.077442065, 0.08034879, 0.002997661, 0.099123523, 
0.13377792, 0.0036739921, 0.077225119, 0.0017729657, 0.0021743756, 0.00093818858, 0.082389377, 
0.0020744232, 0.082912229, 0.14693747, 0.076985508, 0.10832905, 0.13633011, 0.075034223, 
0.097027674, 0.010716964, 0.082746595, 0.09506125, 0.077529229, 0.091491975, 0.077032238, 
0.1488664, 0.14351323, 0.07653933, 0.084063888, 0.15645327, 0.095991701, 0.093754239, 
0.095752604, 0.094319329, 0.14569174, 0.00071955862, 0.082940266, 0.091592737, 0.076763138, 
0.081645504, 0.075114369, 0.071573846 

In the testing phase, both the autoencoder and the RBM produced a list of 

reconstruction errors. Figure 6.2 illustrates the visual distribution pattern of 

reconstruction errors. The proposed system considered the clustering of these 

reconstruction errors. Hence, anomalies converged in the same clusters. Of note in the 

previous distribution is that values were not linearly separable. Hence, a simple 

regression algorithm was not applicable. 
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Figure 6.2. Reconstruction error distributions for autoencoder and restricted 

Boltamann machine. 

Additionally, given the nonlinearity of the distribution, defining a threshold for definite 

abnormality was not practically feasible. Hence, the next phase of the detection system 

was to find patterns automatically in the distribution using the unsupervised approach. 

The algorithm in the second phase was simple because the required task involved 

clustering for single value inputs. 

k-means algorithms take a vector of reconstruction errors as the input and produce a set 

of clusters, with each cluster consisting of a set of reconstruction errors. Each value 

indicates a record that is normal or abnormal. For example, the bar chart in Figure 6.3 
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below illustrates the identified clusters, with each bar representing a single cluster. In a 

perfect situation, a cluster will contain either normal or abnormal samples; however, 

given the relatively small accuracy error—to be discussed in the analysis and evaluation 

sections—some clusters may contain both but have dominance for one type, marking 

them as either normal or abnormal. In the tables and diagrams below, the mean shift 

appears to provide better accuracy; however, in the full analysis, k-means was superior. 

Table 6.1. k-Means Cluster Contents 

 Normal Abnormal 

C1 139 3 

C2 4 183 

C3 0 302 

C4 172 0 

C5 0 150 

C6 100 2 

C7 0 61 

C8 184 0 

 

Figure 6.3. k-means graphical representation for clusters. 
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Table 6.2. Mean Shift Clusters 

 Normal Abnormal 

C1 584 1 

C2 0 324 

C3 15 335 

C4 0 38 

C5 0 3 

 

Figure 6.4. Graphical representation of mean shift clusters 

Figure 6.5 shows the distribution of clusters produced by k-means. The vertical axis 

represents reconstruction errors, while the horizontal axis represents clusters. The 

distribution demonstrates the nonlinearity of samples where the applicability of 

thresholds or regression tasks was not applicable. 
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Figure 6.5. k-means cluster distribution. 

Tables 6.3 and 6.4 summarise the results collected for the autoencoder and RBM with 

the integration of k-means and mean shift for different sample sizes of 1.3 k and 

800,400 records. For k-means, experimental trials were used to decide on cluster 

numbers with fewer sampling errors. In contrast, the mean shift did not require a pre-

determined number of clusters. Hence, the number of clusters varied for each algorithm 

and there was more focus on the performance of the algorithm. Additionally, the 

samples were selected randomly from the KDD99 testing dataset.
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Table 6.3. Autoencoder Simulation Scenario Results Summary 

 

 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 

AE 1,300 k-means 
Normal 139 4 0 172 0 100 0 184 

Abnormal 3 183 302 0 150 2 61 0 

AE 1,300 mean shift 
Normal 584 0 15 0 0    

Abnormal 1 324 335 38 3    

AE 800 k-means 
Normal 54 0 0 112 87 0 127 0 

Abnormal 1 193 92 0 0 89 0 47 

AE 800 mean shift 
Normal 0 378 2      

Abnormal 298 1 121      

AE 400 k-means 
Normal 0 59 0 28 55 0 0 54 

Abnormal 47 0 72 0 0 43 42 0 

AE 400 mean shift 
Normal 192 0 4      

Abnormal 0 114 90      
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Table 6.4. Restricted Boltzmann Machine Simulation Scenario Results Summary 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 

RBM 1,300 k-means 
Normal 1 27 261 1 1 0 82 130 

Abnormal 413 154 0 0 0 230 0 0 

RBM 1,300 mean shift 
Normal 0 26 253 115 80 26 1 2 

Abnormal 413 384 0 0 0 0 0 0 

RBM 800 k-means 
Normal 0 14 1 87 1 159 52 0 

Abnormal 253 120 0 0 0 0 0 113 

RBM 800 mean shift 
Normal 0 14 154 92 52 1 1 

 Abnormal 253 233 0 0 0 0 0 

 
RBM 400 k-means 

Normal 0 92 25 10 6 0 29 7 

Abnormal 62 0 0 0 119 50 0 0 

RBM 400 mean shift 
Normal 0 4 87 41 25 4 8 

 Abnormal 119 111 0 0 1 0 0 

 Note. RBM: Restricted Boltzmann machine 
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6.3 Analysis 

The confusion matrix is a standard statistical tool to measure the performance of 

machine learning classifiers. To apply the confusion matrix as an evaluation tool, the 

clustering process is considered a classifier with no prior knowledge about available 

classes; however, the overall goal of clustering is to classify similar samples together. 

Hence, the difference between the classifier and the clustering algorithms lies in the 

starting point in which supervised classifiers have prior knowledge of classes. However, 

in essence, both classify samples to a specific group (i.e. a cluster or class). Therefore, 

the framework performed the clustering and normal or abnormal labels arising from the 

dataset were used in conjunction with the confusion matrix for the analysis. The 

confusion matrix shows the measurements illustrated in Table 6.5 below. 

Table 6.5. Confusion Matrix Statistics 

Sensitivity (recall) 

True positive rate (TPR) 
TPR = TP/(TP+FN) 

Specificity 

Specificity (SPC) or true negative rate (TNR) 
SPC = TN/(FP+TN) 

Precision 

Precision or positive predictive value (PPV) 
PPV = TP/(TP+FP) 

Negative predictive value 

Negative predictive value (NPV) 
NPV = TN/(TN+FN) 

False-positive rate 

Fall-out or false-positive rate (FPR) 
FPR = FP/(FP+TN) 

False-discovery rate 

False discovery rate (FDR) 
FDR = FP/(FP+TP) 

False-negative rate 

Miss rate or false-negative rate (FNR) 
FNR = FN/(FN+TP) 

Accuracy 

Accuracy (ACC) 
ACC = (TP+TN)/(P+N) 

F1 score 

F1 score (F1) 
F1 = 2TP/(2TP+FP+FN) 

Note: True positive (TP): correctly predicts a normal label as normal; true negative (TN): correctly 

predicts an abnormal label as abnormal; false positive (FP): incorrectly predicts an abnormal label as 

normal; false negative (FN): incorrectly predicts a normal label as abnormal; precision or positive 

predictive values (PPV): the proportion of predicted positive cases that were correct; accuracy (ACC): the 

proportion of total number of correct predictions; F1 score: considers the balance between precision and 

sensitivity or recall (i.e. the weighted average of sensitivity and precision). 
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The analysis process considered various metrics so that comparative studies would be 

comprehensive. 

The framework predicted three different samples of different sizes (400, 800 and 1,300). 

Table 6.6 presents the statistical results for the autoencoder and RBM used in 

conjunction with k-means. Accuracy represents how often the framework was correct. 

The highest accuracy was achieved by the autoencoder using the lowest number of 

samples (400). Unexpectedly, accuracy declined as the number of samples increased. 

Additionally, the autoencoder achieved the best accuracy in conjunction with the mean 

shift algorithm (presented in Table 6.7). The F1 score represents precision (true positive 

results/total true positives by the framework) and recall (number of true positive results 

in the total sample). The autoencoder resulted in the highest F1 values, shown in Tables 

6.6 and 6.7. 

Table 6.6. Confusion Matrix for Autoencoder and Restricted Boltzmann Machine + k-

Means 

 1,300 k-means 800 k-means 400 k-means 

 AE RBM AE RBM AE RBM 

Sensitivity 0.9917 1 0.9974 1 1 1 

Specificity 0.9943 0.9661 1 0.972 1 0.9747 

Precision 0.9933 0.9443 1 0.9554 1 0.9645 

NPV 0.9929 1 0.9976 1 1 1 

FPR 0.0057 0.0339 0 0.028 0 0.0253 

FDR 0.0067 0.0557 0 0.0446 0 0.0355 

FNR 0.0083 0 0.0026 0 0 0 

Accuracy 0.9931 0.9785 0.9988 0.9825 1 0.985 

F1 score 0.9925 0.9714 0.9987 0.9772 1 0.9819 

Note. AE: autoencoder; RBM: restricted Boltzmann machine; NPV: negative predictive value; FPR: 

false-positive rate; FDR: false-discovery rate; FNR: false-negative rate. 
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Table 6.7. Confusion Matrix for Autoencoder and Restricted Boltzmann Machine 

+Mean Shift 

 1,300 mean shifts 800 mean shifts 400 mean shifts 

 AE RBM AE RBM AE RBM 

Sensitivity 0.9932 1 0.9974 1 1 1 

Specificity 0.9789 0.9684 0.9952 0.972 0.9808 0.7241 

Precision 0.975 0.9483 0.9947 0.9466 0.9796 0.4793 

NPV 0.9943 1 0.9976 1 1 1 

FPR 0.0211 0.0316 0.0048 0.028 0.0192 0.2759 

FDR 0.025 0.0517 0.0053 0.0534 0.0204 0.5207 

FNR 0.0068 0 0.0026 0 0 0 

Accuracy 0.9854 0.98 0.9963 0.9813 0.99 0.78 

F1 score 0.984 0.9735 0.996 0.9725 0.9897 0.648 

Note. NPV: Negative predictive value; FPR: false-positive rate; FDR: false-discovery rate; FNR: false-

negative rate. 

To summarise the performance of the framework, the confusion matrix consists of 

columns and rows that list the number of testing samples as either predicted or actual 

ratios. Figure 6.6 provides a general description of the confusion matrix, which has two 

classes—normal and abnormal. The second phase was conducted to validate results 

using two different clustering algorithms: k-means and mean shift. The confusion 

matrices for both for different samples sizes are shown in Figures 6.7 to 6.18 below. 

 

Figure 6.6. Confusion matrix graphical table. 
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Figure 6.7. Autoencoder and k-means 

(400 samples) 

Figure 6.8. Autoencoder and k-means 

(800 samples) 

Figure 6.9. Autoencoder and k-means 

(1300 samples) 

Figure 6.10. Autoencoder and mean shift (400 

samples) 

Figure 6.11. Autoencoder and mean shift 

(800 samples) 

Figure 6.12. Autoencoder and mean shift (1300 

samples) 
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Figure 6.13. Restricted Boltzmann machine 

and k-means (400 samples) 

Figure 6.14. Restricted Boltzmann 

machine and k-means (800 samples) 

Figure 6.15. Restricted Boltzmann machine 

and k-means (1300 samples) 

Figure 6.16. Restricted Boltzmann machine 

and mean shift (400 samples) 

Figure 6.17. Restricted Boltzmann machine 

and mean shift (800 samples) 

Figure 6.18. Restricted Boltzmann machine 

and mean shift (1300 samples) 
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6.4 Design Principles in Action 

In section 4, six principles were proposed for the framework design. In Chapters 5 and 

6, principles were translated to implementation and results, respectively. This section 

provides a discussion of the principles according to the output results analysis. 

 

Figure 6.19 Reconstruction errors used for forming clusters. 

Figure 6.19  depicts the framework components and the use of reconstruction errors in 

the clustering at the second phase. One of the main principles of the framework is 

dimensionality reduction, which was used to find patterns in the data. In the past, 

datasets have been subject to redundancy issues attributable to repetition of records, 

which is a component of DoS attacks. Additionally, the number of the features was not 

sufficiently complex for DL algorithms—this problem was not only limited to the 

selected dataset, but also to the limited number of the fields in the IP/TCP packet (or 

OverFlow header). For example, in image recognition applications, the number of 

features is represented by the number of pixels in the image—for a simple image with 

600*800, the number of input features will be extremely large compared with 41 

features in an IP/TCP packet. Additionally, the dataset or network traffic records 

generally only vary in a small number of fields; for example, in the records shown 
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below, only 25% of the record fields changed, but many of them were repeated in other 

records. This problem translates as a high correlation between data records. 

|features 0.0 0.3333 0.6056 0.8451 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 
0.002 0.002 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1608 0.4118 0.44 0.1 0.02 0.02 0.0 0.0 0.0 

|features 0.0002 0.3333 0.6056 0.8451 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 
0.002 0.002 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1647 0.4118 0.45 0.1 0.02 0.02 0.0 0.0 0.0 

|features 0.0001 0.3333 0.6056 0.8451 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 
0.002 0.002 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1686 0.4157 0.47 0.09 0.02 0.02 0.0 0.0 0.0 

|features 0.0 0.3333 0.6056 0.8451 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 
0.002 0.0059 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.1725 0.4157 0.48 0.09 0.02 0.02 0.0 0.0 0.0 

The code provided below takes two records as the input list and uses the corrcoef() 

function to calculate a matrix of correlations of record 1 with record 1, record 1 with 

record 2, record 2 with record 1 and record 2 with record 2. The correlation between the 

two records was 0.99998215, which is very high. These problems translate as poor 

generalisation for the model. 

import numpy as np 

record 1 = [0.0, 0.3333, 0.6056, 0.8451, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0, 0.0, 0.0, 0.002, 0.002, 0.0 ,0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.1608, 0.4118, 0.44, 0.1, 0.02, 0.02, 0.0 ,0.0 ,0.0] 

record2 = [0.0002,0.3333,0.6056,0.8451,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0,0.0,0.
0,0.002,0.002,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.1647,0.4118,0.45,0.1,0.02,0.02,0.0,0.0,0.0] 

correlation = np.corrcoef(record1,record2) 

print(correlation) 

[[1.0.99998215] 

[0.99998215 1]] 

To solve this problem, an approach similar to that of kernel PCA was adopted. In kernel 

PCA, data are projected onto higher dimensions before dimensionality reduction is 

applied. Projecting the data onto high dimensions makes it more separable. Figure 6.20 

demonstrates the concept of increasing the dimensionality of the input data (41) to 82 

features in the first hidden layer, subsequently reducing the dimensions to five. The 

experimental results show the efficiency of the approach. The figure below depicts a 

confusion matrix of the results of traditional dimensionality reduction in which the input 

was 41, the first hidden layers included 22 features, followed by five neurons layer. The 

accuracy in this model was .90, which is lower than the accuracy of > .99 achieved by 

the proposed solution.  



 

138 

 

Figure 6.20. System accuracy without increasing neurons in the first hidden layer. 

Figure 6.21 shows the correlation propagated to the cluster distribution in which the 

clusters are tightly distributed over the reconstruction errors, with spikes for some 

clusters (which are slightly different from the other clusters). These strong relationships 

complicate the separation on two levels: samples and clusters. 

 

Figure 6.21. Reconstruction error distribution without increasing dimensionality in the 

first layer. 

Sensitivity 0.9974 

Specificity 0.8647 

Precision 0.7575 

Negative predictive value 0.9987 

False-positive rate 0.1353 

False-discovery rate 0.2425 

False-negative rate 0.0026 

Accuracy 0.9042 

F1 Score 0.861 
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6.5 Evaluations 

To highlight the contributions of this research, a comparative study with similar and 

related work was done. For the selected work, which was closely related to this 

research, an in-depth study of these approaches, experiment and results were conducted. 

These factors were discussed in the previous section in which a comprehensive 

comparative study was presented to evaluate and emphasise the intersection and 

distinction of this work. 

Table 6.8. Related Work Performance 

 Algorithms Dataset Performance Statistics 

 [139] Discriminative 

RBM 

KDD99 Accuracy ≈ 84% 

 [149] Autoencoder + 

classifier 

KDD99 Accuracy = 97.85% 

Precision = 99.99% 

Recall = 97.85% 

F-score = 98.15% 

False alarm = 2.15% 

 [140] Sparse 

autoencoder 

NSL-KDD Accuracy ≈ 98% 

F-score ≈ 98.84% 

 [150] SVM and k-

means 

KDD99 Accuracy up to 90% 

[142] Autoencoder Different 

dataset 

Accuracy 70–93% 

 [151] k-means KDD99 Accuracy 85–95% for different 

samples 

Unlike the generative RBMs used in this research, the authors in [139] used a 

discriminative RBM as the unsupervised pre-step. In their work, RBMs were deployed 

as discriminative classifiers or as a standalone supervised classifier, which adds classes 

to the input records at the training phase. 

In RBM, the p (v,h) formula is: 

 

 (31) 

where v and h are visible and hidden units, respectively. 

Discriminative RBMs consider the output at the input for the probability distribution: 
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  𝑝(𝑣, ℎ, 𝑦)𝛼 exp (−𝐸(𝑣, ℎ, 𝑦)) (32) 

where y is the output and E is the energy function. 

The goal of the classifier is to optimise p(y/v) instead of p(y,v) in RBM. 

During the implementation, the authors adopted a semi-supervised approach in which 

the discriminative RBM was trained on normal records only. The KDD99 dataset was 

used for training and only around 97 k instances were used. Additionally, from 41 

features, 28 were selected. In their results for accuracy, the algorithm showed 84% on 

KDD testing data. As one of the proposed scenarios in this thesis, RBM was deployed 

as a pre-training phase for k-means and mean shift. The RBM worked as pre-training 

feature extractor rather than a single classifier. Similar to discriminative RBM, KDD99 

was used. However, all 41 features were selected, and the system was trained using 

800 k instances of the training data. RBM with k-means had an accuracy of over 98%, 

which represents a significant improvement over the proposed approach in. 

In this paper, the authors proposed an anomaly detection framework based on a 

variation of the autoencoder known as a non-symmetric deep autoencoder (NDAE) 

[149]. Figure 6.22 depicts the framework architecture. The framework was composed of 

two phases: an NDAE was used for the first phase and a random forest classifier was 

used for the second phase. 

 

 

 

 

 

 

 

Figure 6.22. Using the encoder from deep autoencoders with a classifier. 
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Figure 6.23 shows the difference between a typical autoencoder and an NDAE, which, 

unlike the autoencoder, does not include a decoder. At the first layer, a stacked NDAE 

was used to encode the input vector, which was then forwarded to the classifier. A stack 

of NDAEs was used to increase the depth (i.e., to discover more features) and reduce 

the computation complexity of increasing hidden layers. 

 

Figure 6.23. Autoencoders vs. non-symmetric deep autoencoders. 

This thesis proposed a similar approach with respect to using two phases, an 

autoencoder and a simple algorithm—k-means or mean shift. Additionally, this 

approach adopted dimensionality reduction to simplify classification during the second 

phase. However, the design considered in this thesis utilised a single autoencoder that 

included an encoder and the decoder for the output layers. In contrast to the 

abovementioned work, the proposed framework reduced dimensions to a single value 

for reconstruction errors. 

The authors used the KDD99 dataset for their simulation, using 125 k sample records in 

the training phase. Results were analysed using a confusion matrix and contrasted with 

another DL algorithm, a deep belief network. 

Table 6.9 compares results from NDAE, deep belief network and autoencoder using k-

means (1.3 k samples). The analysis shows a significant improvement of ≈ 15% in 

accuracy and recall and a similar decrease in the false alarm rate of ≈ 15%. NDAE 

resulted in slightly better precision. F-score, which represents recall and precision, was 

superior in the proposed framework. The algorithm used in the second phase involved a 

random forest classifier, which is in supervised mode; however, the system lacks the 

essential feature of zero-day attack classification. The work proposed in this thesis used 
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two unsupervised algorithms, which, as discussed in Chapter 4, increases the probability 

of detecting new attacks. 

Table 6.9. Performance of NDAE vs. DBN and proposed system in this research. 

 Accuracy Precision Recall F-Score False alarm rate 

NDAE 85.42 100.00 85.42 87.37 14.58 

DBN 80.58 88.10 80.58 84.08 19.42 

Autoencoder + k-means 0.9931 0.9933 0.9917 0.9925 0.0067 

Note: NDAE: non-symmetric autoencoder; DBN: deep belief network 

 

 

 

 

 

 

 

 

Figure 6.24. Using the encoder output for classification. 

In [140] sparse autoencoders were used in the first layer as a feature extractor; 

subsequently, the learned features from the encoder were forwarded to a classifier. 

Sparsity improves the generalisation of the algorithm in which a constraint is imposed 

on the activation function of each neuron (j) to be close enough to sparsity (𝜌) as in the 

formula below: 

 �̂�𝑗 =
1

𝑚
∑ [𝑎𝑗

(Bn)
(𝑥(𝑖))]

𝑚

𝑖=1
 (33) 

where 𝑎𝑗
(Bn)

 is activation of the 𝑗th neuron of the autoencoder, and 𝑎𝑗
(Bn)(𝑥) is neuron 

activation linked to the input. 

The learned features of the sparse autoencoder were classified using a softmax 

regression layer, as shown in figure 6.25 [140], which is an extension of classical 
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logistic regression for multiclass classification. The authors benchmarked a revised 

version of KDD99 dataset—NSL-KDD—by removing redundant records. 

A confusion matrix was used for the analysis of the study, showing an accuracy of 

≈ 98%. Similar to other approaches discussed, this framework used the entire extracted 

features from the first phase as input to the second phase. 

 

Figure 6.25. The proposed classification system based on sparse autoencoder [143]. 

Autoencoders have been used for anomaly detection based on dimensionality reduction. 

However, accuracy has been relatively weak compared with traditional PCA and its 

variation achieved a significant improvement in some of the datasets [142]. However, as 

proposed in this thesis, adding an extra simple algorithm to cluster the pre- processed 

data significantly improved accuracy. 

Another approach used k-means clustering in the pre-processing step, with results then 

being fed to an SVM classifier. However, the performance was poor, with 90% 

accuracy [150]. Another work focused on improving the k-means for intrusion detection 

in KDD99, showing unstable results ranging between 85% and 95% [151], compared 

with the proposed framework, in which accuracy is more stable and noticeably 

improved. 
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Compared with all previously mentioned related works, the proposed framework 

(autoencoder + k-means) in this thesis outperformed with respect to accuracy. The 

frameworks in [149] and [140] used a similar approach; however, technically, the 

proposed framework in this research improves dimensionality reduction, while others 

have forwarded the learned features from the DL approach. Additionally, the 

comparative study shows the superiority of the adopted approach. Dimensionality 

reduction in this work did not involve a complicated second phase, negating the need 

for an expensive computation algorithm and improving the performance of available 

resources. 

6.6 Summary 

This chapter presented the execution results for several samples of different sizes. An 

output was depicted for every single step execution for the different scenarios discussed 

in the simulation chapter. The outputs showed the convergence of the framework (for 

the autoencoder and RBM) in which cost optimisation was downgraded during epoch 

sweeps. The results, which included samples of the identified reconstruction errors and 

their distributions graphs, supported verification of the model in the testing phase. 

Further, the clustering results for different scenarios were presented. Each cluster was 

shown in two components (normal and abnormal samples), and results verified the 

labels associated with the original dataset after clustering. 

This chapter presented an analysis of results that evaluated the various combinations 

using DL algorithms and clustering algorithms. Given that related works have used the 

same approach, a confusion matrix was selected for the analysis process, facilitating 

comparison and evaluation. Accuracy and other related measures showed that 

autoencoder and k-means outperformed other scenarios. 

Additionally, this chapter offered a solution to the problem of highly correlated data and 

the limited number of features in network traffic packets. The solution was adopted 

from the kernel trick in PCA algorithms in which the original data were projected into a 

new dimension where they became separable, followed by an application for 

dimensionality reduction in subsequent layers. In a comparison of results for direct 

dimensionality reduction and the application of projecting the data in new dimensions, 



 

145 

the analysis showed that the first approach achieved 90% accuracy, where the second 

approach scored more than 99%. 

To highlight the thesis contributions, a comparative analysis was conducted against 

related works. At the implementation level, similar research has adopted DL as a pre-

training step before forwarding outputs (decoded hidden layers) to a classifier in the 

second phase. Technically, the adopted approach in this thesis differed in that the DL 

phase was used as a dimensionality reduction approach, which reduced the output to a 

single value for each record. From the results, the framework outperformed all similar 

frameworks with regard to accuracy and precision.  
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Chapter 7: Conclusions 

SDN architecture provides flexibility and programmability by separating the controller 

from the data planes. While this offers many advantages, the risk of attacks on the 

flexible control plane makes SDN highly vulnerable to serious security breaches. The 

impacts of such attacks are intensified as a direct consequence of the increased agility 

and flexibility of SDN that arises from consolidating the control planes of multiple 

networking devices into a single central controller. 

SDN has introduced a novel networking paradigm. SDN architecture separates the data 

planes from the control plane, which generates the flow rules required for data plane 

devices to forward packets. Logic is detached from devices to form a new plane known 

as the controller. The SDN model simplifies the traditional network and leverages the 

management of flexibility and scalability. 

SDN had been used in various applications, including in network traffic engineering, 

network monitoring and virtualisation. The centralisation and providing a global view 

of the entire network provide better network statistics, which support decisions in 

network traffic balance and network monitoring. The concept of device abstraction 

(separation of device logic into the controller) intersects with virtualisation in which 

devices are abstracted and shared. Additionally, SDN has been a driver of several 

networking environments, including IoT, cloud computing and wireless networks. The 

complexity of these environments increases the complexity of network management in 

which SDN boosts networking resilience and abstraction. For example, in infrastructure 

as a service cloud computing, tenants share physical computing and networking devices, 

while resource sharing is executed through the device virtualisation and abstraction 

adopted by SDN. 

SDN is also utilised to improve security. The new model provides several applications 

for security purposes, including security policy enforcement and verification and threat 

detection systems. Programmability and a global network view enable the development 

of improved capabilities and abstraction improves the efficiency of hardware. 

Nevertheless, security is a significant challenge in SDN networks. Given that a single 

entity governs the entire network, the controller is a crucial element in the SDN model. 
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A centralised configuration is highly vulnerable because the controller is an attractive 

target for intruders. The severity of the traditional attacks is higher in SDN networks. 

Additionally, SDN has an extended attack vector because of the introduction of the 

controller. 

This thesis investigated current security solutions and their limitations. The study 

provided an empirical analysis of SDN controller security to identify, formalise and 

quantify security concerns related to the new model. This study explored the threats 

related to SDN architecture, specifically those originating from the existence of the 

control plane. Controller security was analysed in three stages. The first stage defined 

potential threats based on a review of the literature. In the second stage, threats were 

demonstrated and modelled using a STRIDE analysis and an in-depth attack-oriented 

analysis was conducted using several attack trees. The third stage introduced an 

experiment to simulate threats and identify consequences. 

The study provides a comprehensive understanding of the problem domain by 

identifying the security flaws of SDN. Prior analysis has shown that the controller is the 

major weak point in the architecture and is vulnerable to traditional network attacks 

such as man-in-the-middle attacks, spoofing and DoS, which primarily arise from two 

factors. First, the controller is an entity with more advanced capabilities than those of 

classic NOS such as Cisco IOS. These capabilities arise from the more complex 

software, which is prone to more significant vulnerabilities. Second, as a centralised 

entity with governance over the entire network and the facilitator of communications 

between the applications and forwarding planes, the controller may be a single cause of 

failure. 

A typical networking security measure is the use of IDS, which primarily aim to 

identify network threats. Several approaches have been adopted, including signature-

based and anomaly-based detection methods. Signature-based detection approaches 

utilise databases of attack signatures, matching traffic against predefined signatures—if 

a match occurs, the system raises the alarm of a possible attack. This approach has 

limitations in detecting zero-day attacks, for which there are no signatures in the 

database. The anomaly-detection approach utilises various methods, including statistical 

and machine learning algorithms, to detect threats. Given that this approach does not 

require pre-knowledge of threats, it can identify zero-day attacks; however, it 
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commonly produces a high rate of false-positive and false-negative alarms, limiting its 

industrial applicability. In this thesis, we proposed a framework for network anomaly 

detection based on recent advances in machine learning, specifically DL. 

For the solution domain, this thesis proposed a novel threat detection framework based 

on unsupervised DL algorithms to classify network threats as anomalies. The 

framework consisted of two phases: a DL algorithm and clustering algorithms (either k-

means or mean shift). The DL algorithm represented a pre-training phase, which 

simplified the input to the clustering algorithm. The framework was focused on 

dimensionality reduction by compressing the dimensions of the input data to a single 

value, simplifying and improving the performance of the clustering algorithm during the 

second phase. 

Dimensionality reduction involved reducing the entire input record to a single value, the 

reconstruction error. In other applications of USDL, dimensionality reduction involves 

using the encoded layer as a reduced representation of the data and reducing the 

dimensionality of data to improve the separation of samples into clusters. However, the 

use of autoencoders for dimensionality reduction is limited because they are prone to 

exaggerated reductions, negatively affecting model predictions and reducing 

generalisation. Notably, the approach presented in this thesis reduced the dimensions of 

the data to a single value, which could be clustered using a fast algorithm such as k-

means rather than using expensive computational algorithms, leading to improved 

performance. 

The use of the DL algorithm in the pre-training phase contributed to solving the curse of 

dimensionality related to k-means, which is based on calculating distances between 

samples—as the number of samples increases, the distance between them reduces. The 

framework solved this problem by reducing the number of inputs based on a key 

procedure using autoencoders and RBMs, resulting in more straightforward inputs being 

forwarded to the k-means. The framework is based on two unsupervised algorithms, 

meaning it can find patterns in data with no previous labelling. Hence, this approach 

may be used to detect zero-day attacks. 
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Further, the study provided a comparative evaluation between a generative energy-

based model (RBM) and a non-probabilistic algorithm (autoencoder). Implementation 

of the proposed framework design was done using TensorFlow. 

DL has achieved unparalleled results in image, speech, signal, text and natural language 

processing applications. Network anomaly detection is an area in which DL can 

improve detection precision. However, research in this area is limited. In this thesis, we 

proposed a semi-supervised DL-based detection framework for discovering network 

abnormalities. 

The framework employed USDL for the first phase and a simpler algorithm, k-means or 

mean shift, for the second phase. Additionally, we experimentally demonstrated the 

prediction accuracy of the main USDL algorithms (i.e. autoencoders and RBMs). 

Simulation of several scenarios was conducted using the KDD99 network dataset. 

During many executions over several testing cycles, data were collected and statistically 

analysed. We used TensorFlow as the DL development library. As the name indicates, 

TensorFlow expresses matrix flows in a graph model. A TensorFlow graph includes 

nodes and edges, with nodes representing mathematical operations and edges 

representing multidimensional data arrays (or tensors). 

The first stage of the experiment involved building the autoencoder network. The 

autoencoder consisted of two passes—the encoder and the decoder—both of which 

comprise multiple layers. The dataset (41 training samples) was loaded into 

TensorFlow’s tensor dimension. Weight and bias tensors were created for the encoder 

and decoder. The dimensions of weights and biases depended on the number of neurons 

(or units in the hidden layer). For example, if the input was decoded into five units, this 

meant that there would be (41, 5) tensors, with 41 representing some input units 

(features of one network traffic record) plus 41 biases. The same dimensions were used 

for the decoder. The second step was to train the network. In the forward pass, logits 

were used as the activation function, which reconstructed records from the decoded 

units, weights and biases for the output. The third step was to compare the original data 

against the reconstructed output. A cost function, such as the squared error function was 

used to compute data loss. The fourth step was to minimise the cost (in this case, data 

loss). Several optimisation algorithms, including Adam optimisers, were used to 
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minimise loss or reconstruction rate. Once the network had settled after various sweeps 

of the data chunks (batches), the second phase of testing was conducted. During the 

testing, we fed the network with the testing samples to attempt to reconstruct the data. 

A systematic analysis using confusion matrices was conducted to evaluate results and 

compare them with those of other related works. The simulation showed a significant 

accuracy of ≈99% for the integration of the autoencoder and k-means clustering 

algorithm. 

Given that the use of DL in IDS reduces data dimensionality and the number of features 

in network traffic data, we recommend that further investigations be conducted into the 

application of DL in IDS. 
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