

Yang, H., Chen, F. and Aliyu, S. (2017) 'Modern software

cybernetics: new trends.' Journal of Systems and Software, 124,

pp. 169-186.

Link to official URL: http://dx.doi.org/10.1016/j.jss.2016.08.095

ResearchSPAce

http://researchspace.bathspa.ac.uk/

This pre-published version is made available in accordance with publisher

policies.

Please cite only the published version using the reference above.

This cover sheet may not be removed from the document.

Please scroll down to view the document.

©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

http://creativecommons.org/licenses/by-nc-nd/4.0/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchSPace - Bath Spa University

https://core.ac.uk/display/78911803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jss.2016.08.095
http://researchspace.bathspa.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Modern Software Cybernetics: New Trends

Hongji Yang
a,*, Feng Chen

b
, and Suleiman Aliyu

b

a
Centre for Creative Computing, Bath Spa University, UK

b
School of Computer Science and Informatics, De Montfort University, UK

Abstract

Software cybernetics research is to apply a variety of techniques from cybernetics research to software

engineering research. For more than fifteen years since 2001, there has been a dramatic increase in work

relating to software cybernetics. From cybernetics viewpoint, the work is mainly on the first-order level,

namely, the software under observation and control. Beyond the first-order cybernetics, the software,

developers/users, and running environments influence each other and thus create feedback to form more

complicated systems. We classify software cybernetics as Software Cybernetics I based on the first-order

cybernetics, and as Software Cybernetics II based on the higher order cybernetics. This paper provides a

review of the literature on software cybernetics, particularly focusing on the transition from Software

Cybernetics I to Software Cybernetics II. The results of the survey indicate that some new research areas such

as Internet of Things, big data, cloud computing, cyber-physical systems, and even creative computing are

related to Software Cybernetics II. The paper identifies the relationships between the techniques of Software

Cybernetics II applied and the new research areas to which they have been applied, formulates research

problems and challenges of software cybernetics with the application of principles of Phase II of software

cybernetics; identifies and highlights new research trends of software cybernetic for further research.

Keywords: Software Cybernetics; Control Engineering; Software Engineering; Computer Science; Artificial

Intelligence

1. INTRODUCTION
No one will doubt today that software is critical for modern society and is being used everywhere, which

requires the software to be produced on time, within budget, and performed as expected. The fact that the

software development industry is in a crisis was recognised in 1960s. As one of the most important areas of

computer science, software engineering had its origin as a solution to the “software crisis” (Dijkstra, 1972;

Yang et al., 2008). According to IEEE, software engineering is defined as the application of a systematic,

* Correspondence to: E-mail address: h.yang@bathspa.ac.uk

disciplined, quantifiable approach to the development, operation, and maintenance of software, and the study

of these approaches, i.e., the application of engineering to software.

Problems associated with the software crisis have largely been caused by the character of the large and

complicated software itself (Brooks, 1987). Complexity is an essential property of all large pieces of software.

Software, as an artifact, is complex in nature. The difficulty of designing, implementing and launching

software increases exponentially with the size of the system. It is difficult if not impossible to enumerate all

the states and interactions of the software. Complexity is added by software‟s conformity, namely, software

must conform to real-world constraints. Additional complexity arises from the fact that the software entity is

constantly subject to pressures for change. However, this does not mean that software is easy to change. A

final source of software complexity arises from software‟s inherent invisibility. Presently software systems,

e.g. cyber-physical systems, Internet of Things, cloud computing, are becoming more and more complex and

hence new models and methods in software engineering are required dramatically. Studies in cybernetics

provide a means to control the complexity and adapt to change to make software more efficient and effective,

namely, to apply techniques and principles of cybernetics to solve software development problems.

Software cybernetics is a subdivision of cybernetics in the domain of software engineering. The term software

cybernetics was first used in (Cai, 2002a). The author mentioned that the idea of software cybernetics was

proposed in 1994 with an attempt to apply cybernetic or control-theoretical approaches to solving problems in

software engineering. There has been a consistent expansion since then, mainly through the International

Workshop on Software Cybernetics (IWSC) (Cangussu et al., 2007). An overview of software cybernetics is

available in other surveys (Cai, 2002a; Cai et al., 2003; Belli et al., 2006; Cangussu et al., 2007). Despite the

excellent work in the surveys listed above, from cybernetics viewpoint, the work is mainly on the first-order

level. There remains no comprehensive survey on all issues of software cybernetics. It is, therefore, timely to

review the software cybernetics literature to shed new light on the new trends in software cybernetics based

on the principles of the Phase II of software cybernetics. Hence, the aim of this review paper is to explore

from a software engineering standpoint, the progression from first-order software cybernetics to higher-order

software cybernetics.

Fig. 1 Research trend of software cybernetics

This review attempts to group recent research on software cybernetics and suggests an upward linear trend

(growth) in more recent research concerned with the Phase II software cybernetics as well as a gradual decline

in research related to the Phase I of software cybernetics from a software engineering perspective (see Fig.1).

0

1

2

3

4

5

6

7

8

9

10

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

N
u

m
b

er
 o

f
re

se
ar

ch
 a

rt
ic

le
s

Years

Software Cybernetics II Software Cybernetics I

Linear (Software Cybernetics II) Linear (Software Cybernetics I)

In preparing this article, a broad search for research articles was conducted by generating search words or

phrases consisting of related keywords mainly to obtain a comprehensive list of relevant work. Essentially,

the online search comprised simple keyword phrases like “Software cybernetics”, and more complex phrases

such as “software engineering and feedback control” or “Software engineering and control engineering”.

Quality scholarly research databases in the likes of IEEE Xplore Digital Library, ACM Digital Library,

SpringerLink and ScienceDirect were used to narrow down the search results. In addition, Google was also

used to check if we missed any important references. To improve the coverage, cross-referenced papers and

around 10 key researchers‟ publications were also checked. At the end, around 120 research papers spread

across several conference proceedings and journals were selected as references in this survey.

The rest of the paper is organised as follows: In Section 2, we introduce the background and some basic

concepts of cybernetics and software cybernetics. Section 3 provides a series of related studies on software

cybernetics by reviewing the state of the art. Section 4 is devoted to exploring the transition from the Phase I

of software cybernetics to the Phase II of software cybernetics, discussing challenges of software cybernetics,

and identifying the new trends of software cybernetics based on the new properties of software cybernetics.

We have discussed several hot issues in some research areas, e.g., Internet of Things, big data, cloud

computing, cyber-physical systems, and even creative computing. Lastly, Section 5 summarises the paper and

draws conclusions.

2. BACKGROUND AND SCOPE

2.1. Cybernetics Movement

As defined by Wiener (1948), cybernetics is concerned with the scientific study of control and

communication in animals and machines. Cybernetics is a transdisciplinary approach for exploring regulatory

systems, focusing on how systems use information, models, and control actions to steer towards and maintain

their goals. This approach, known as first-order cybernetics, is concerned with bringing the system to a stable

state by negative feedback processes, which is designed to take place in isolation from its whole situation or

environment as a closed system. Although this approach is useful at the level of engineering, it focuses on the

local state of a system and overlooks the role of the observer. Here, the observer may be a designer, the user

of the system - or even another system. The problem with first-order cybernetics is that it assumes that the

system is isolated and closed. However, nothing is totally isolated and there are no closed systems in the real

world. Meanwhile, in first-order cybernetics, the role of the observer is ignored. Normally, we treat first-order

cybernetics as classical cybernetics.

Geyer and van der Zouwen (1978) discussed a number of characteristics of the emerging cybernetics, known

as second-order cybernetics, cybernetics of cybernetics, or meta-cybernetics. One characteristic of cybernetics

is observer-dependent and another characteristic is the links between individual and environment. They noted

that a transition from classical cybernetics to the new cybernetics involves a transition from classical

problems to emerging problems. Heylighen and Joslyn (2001) defined a system as an agent in its own right,

interacting with another agent, the observer. Thus, the idea of interaction between observer and system was

brought into play. Von Foerster (1979) also stated that first-order cybernetics was the cybernetics of observed

systems and second-order cybernetics was the cybernetics of observing systems. The new cybernetics

emphasises on communication between several systems which are trying to steer each other, which sometimes

leads to the concepts of self-organisation and self-regulation.

While cybernetics of the first and second order might be insufficient to interact with the environment,

cybernetics of the third order might handle this problem better. Systems now have become independent to the

degree of regulating itself in relation to its surroundings. Third-order cybernetics regards a system more as an

active interactive element that is dealing with the stability of the system with respect to both itself and its

context. The application of third-order cybernetics includes virtual, proactive, anticipative technologies, and

cyberspace, focusing on virtual systems with capable of evolving. In third-order cybernetics, the system can

change goals without preprogramming. This means that the observer is considered as a proactive component

that not only observes but also decides and acts. Fourth-order cybernetics takes this one step further. Fourth-

order cybernetics deals with, simultaneously, the system and its context. Fourth-order cybernetics may be one

of the embodied, fully evolvable of the creative systems. This kind of cybernetics seems to be closely related

to artificial life domain (Novikov, 2016).

It should be noted that any new type of cybernetics embeds the elements of the previous ones. Within new

cybernetics, many of these contexts have merged to create more complicated systems. The scope of

cybernetics is rapidly evolving to encompass hybrid cyber-physical systems with hierarchical distributed

processes, data-driven decision-making, and observer-in-the-loop at various scales.

2.2. Principles of New Cybernetics

Many of basic ideas have been expressed as a set of fundamental principles (laws) in the cybernetics domain,

such as the principle of requisite variety, the principle of feedback, the principle of controllability, and the

principle of homeostasis (Self-regulation). The principles of cybernetics have been applied in many fields.

Cybernetics cuts across many traditional disciplinary boundaries. Applications of cybernetics are prevalent in

computer science, particularly in the field of artificial intelligence, neural networks, and control engineering.

However, some new features have been formulated in these cybernetics principles. New cybernetics

emphasises autonomy, self-organisation, cognition, and the role of the observer in modelling a system.

The principle of requisite variety

This principle formulated by Ashby (1956) states that it is impossible to create the simple control system for

the effective control of a complex system. Essentially, the control system (”regulator”) must be as

sophisticated as the complex system to be controlled. The complexity of cybernetic systems is usually

imparted in a hierarchy. For the new cybernetics, this principle means the model needs to be built adequately

and accordingly in terms of a complicated system.

Principle of feedback

Feedback is one of the basic notions and a useful fundamental principle of cybernetics, which can be applied

to a great variety of systems and environments. Control theory has its roots in the use of feedback as a means

to regulate physical processes and mediate the effect of modelling uncertainty and noise. A new type of

feedback is the connection of the observed system to itself by means of the observer. Furthermore, the

observed system, observer, and environments influence each other and thus create feedback to form a more

complicated system, which emphasises the importance of many more relations among the parts, their

interactions, and their relationships to the whole. Feedback may also be in the form of positive feedback.

The principle of homeostasis

Homeostasis has long been considered to be the ultimate goal of control. Homeostasis is the ability of the

system to preserve the conservation of stability at the changing external conditions, which is the essence of

first-order cybernetics. The cybernetics is often characterised as a science of optimal control of the

complicated systems. The optimality is always connected with the chosen goal (criterion). Many real systems

are extremely sensitive to weak external interaction. This weakness leads to the importance of even the

smallest interaction of the observer with the observed system.

The principle of controllability

Controllability is a fundamental principle of modern control systems. It refers to the ability to move a system

within its complete configuration space using only certain acceptable alterations. Controllability is the ability

of a system to have control over its responses. For the new cybernetics, especially, the introduction of

artificial intelligence makes the cybernetics systems become the complicated third or fourth order cybernetic

system. The problems of large-scale systems are not possible to realise only on the base of feedback because

of sheer difficulty in creating an ideal model of the controlled system. Many systems cannot be described in

details by using purely logical, scientific methods, such as mathematical modelling. All systems can be

classified as either deterministic or probabilistic. A deterministic system is a system that can be studied

without any uncertainty, namely the system state can be predicted. If the prediction can only be made with

some probability, such a system is called probabilistic one.

2.3. Transition from Phase I to Phase II of Software Cybernetics

Software cybernetics, in reference to the description of „cybernetics‟ by Wiener if software is regarded as part

of the machine, can be defined simply as communication and control in software. However, most researchers

in the area believe software cybernetics is more diverse in scope. Software cybernetics was described as the

interplay between software or software behaviour and control (Cai et al., 2003). In its simplest form, the field

of Software Cybernetics treated software problems and control problems in an integrated way (Cai et al.,

2002b).

According to Cai et al. (2003), Software cybernetics addressed key issues and research questions in (i)

formalising and quantifying feedback mechanisms in software processes and software, (ii) adopting principles

or concepts in control theory to software processes and software, (iii) applying principles or concepts in

software theory or engineering to control systems and processes, and (iv) integrating theories in software

engineering and control engineering. Their survey also provided key perspectives as motivation and

justification for research in software cybernetics.

In addition to this view, Cangussu et al. (2007) defined software cybernetics as “an emerging discipline that

explores the theoretically justified interplay between software and control". Their perception for the scope of

software cybernetics was a direct consequence of a perceived scarcity in the solid theoretical background for

software engineering. Their survey went further to identify and describe four research sub-areas of software

cybernetics as fundamental principles, cybernetic software engineering, cybernetic autonomic computing and

software-enabled control.

With the advent of Social networks and widespread use of distributed computing and cloud computing in our

daily life, the ubiquitous role of software systems suggests that for software cybernetics to add significant

value to modern software systems, it will have to expand its scope to integrate inputs from a number of

disciplines (Kenett, 2011). Zhu (2012) in his talk at the 9th IWSC annual workshop dedicated to software

cybernetics in the era of cloud computing and what this meant for today‟s software cybernetics. He also

suggested that software cybernetics may provide insights into software engineering problems of emergent

behaviour in service oriented architecture, self-adaptive architectures, the role of software metrics in control

and software evolution in the cloud.

We classify software cybernetics as Software Cybernetics I based on first-order cybernetics that is typified by

feedback loop control e.g. modelling software systems using finite state machines. Software Cybernetics II is

based on the higher order cybernetics, which is characterised by developers, software under development and

running environments influencing each other to form more complex systems. Software Cybernetics II is

typically based on new software deployment and development models, e.g. Agent-based Software

Engineering, Cloud Computing, and Creative Computing.

2.4. Theoretical Foundation in Software Cybernetics

There are a number of techniques related to software cybernetics. Without covering all of them, the following

discussion will provide a clear scope and taxonomy of the enabling techniques. There are currently two broad

facets to research methods in the area software cybernetics: model-based with a mathematical framework and

logic-centric approaches whose underlying principles are from the field of artificial intelligence.

2.4.1. Theoretical Model in Software Cybernetics Research

Various mathematical methods are used to design effective system models, which constitute the main

methodological technique in software cybernetic research. Dynamic system models, formal models such as

the extended finite state automata and controlled Markov chain exemplify model-based approaches.

Supervisory-control theory is based on the finite state automata to represent discrete-event dynamic systems.

Previous research work has developed linear dynamic system models to describe software service behaviours

and the software test process. Cai (2002a) viewed software testing as a control problem and devised a Control

Markov Chains (CMC) approach to determine an optimal test strategy. The CMC approach provides theoretic

justification that for some circumstances a Markov model matches the software test profile. Hu et al. (2008)

proposed a new adaptive software testing approach based on the improved CMC that aimed to replace several

presumptions adopted by previous models with more realistic situations in software testing.

The finite state machine (FSM) is a good example of a formal model in software cybernetics. Gaudin and

Bagnato (2011) described a set of safe behaviours as finite state machines (FSMs). In doing so, they relied on

the Supervisory Control Theory to represent over-approximations of the behaviours of the system to be

controlled. The extended finite state machine (EFSM) is widely used to model communication software

behaviours (Joao et al., 2007). Yang and Gohari (2005) presented a framework to implement supervisory

control map using extended finite state machine (EFSM) as an embedded part of the controlled system. Their

work also showed that the constructed EFSM was able to exhibit the same behaviour as the supervised system.

Wang and Cai (2006) developed algorithms that transformed EFSM for specification and description

language (SDL) to the control model of discrete event systems (DES). Their research efforts indicated that

EFSM could be expressed as a closed loop control system. The GK-tail algorithm was a technique that used

interaction traces to automatically generate EFSM models of the behaviour of software systems (Lorenzoli et

al., 2008).

In more recent work, Zhao et al. (2014) aimed at improving the GK-tail algorithm by proposing an improved

method for modelling software behaviour based on EFSM. To verify the efficacy of their improved method,

they designed and implemented a software behaviour modelling system. Wang and Cai (2012) investigated

the supervisory control problem of the restricted EFSM model and proposed a necessary and sufficient

condition and an optimal algorithm to the supervisor. The result was claimed promising to relate the software

design problem to supervisory control theory and enriched the research content of software cybernetics.

Girard and Pappas (2007) developed a framework of system approximation for metric transition systems by

developing a hierarchy of metrics for reachable set inclusion, language inclusion and simulation and bi-

simulation relations. They proposed a compositional approximation framework for a synchronous

composition operator and obtained approximations for the pseudo-metrics by considering Lyapunov-like

functions called simulation and bi-simulation functions. Julius and Pappas (2009) developed a notion of

approximation for a class of stochastic hybrid systems. The approximation framework was based on the so-

called stochastic simulation functions. These Lyapunov-like functions could be used to rigorously quantify

the distance or difference between a system and its approximate abstraction.

2.4.2. Application of Artificial Intelligence in Software Cybernetics Research

Growth in the field of Artificial Intelligence has bolstered active research in the area of software cybernetics.

Particularly, software engineering has become an important application area for machine learning techniques.

Fuzzy logic, a knowledge-based formal model for machine learning, is a typical instance of the logic-centric

or rule-based approach used in software cybernetics research. Yang et al. (2011) applied fuzzy based logic to

control complex software systems with the aim of addressing challenges or uncertainty in complex software

systems. The aim of their fuzzy-based approach was to develop a self-adaptive executable software

framework to improve the performance of process control mission-critical systems. Ding et al. (2016)

designed an adaptive control system based on fuzzy logic and update the controller itself with a set of fuzzy

rules. The principles of software cybernetics were applied in service-based systems (SBS) to synthesise

controllers for online adaptation and monitoring (Yau et al., 2007). This approach also included a logic-based

technique (situation-aware) for planning resources offline taking as input timing and resource constraints.

Park and Yeom (2013) used the concept of feedback in software cybernetics to propose an approach for

validating Semantic Web Rule Language (SWRL) rules. Their method comprised preparation, structural

analysis, contextual analysis and the SWRL rule adaptation. Their approach constituted a feedback loop in

which the SWRL rule to be validated acted as the controlled object while the validation of SWRL rules

represented the controller. The introduction of artificial intelligence has brought software cybernetics research

to a new level, third-order cybernetics.

2.5. Scope of the Survey

Based on the definition of “Interplay between Software and Control”, software cybernetic should include two

perspectives: applying the theoretical principles of cybernetics to the domain of software engineering or

applying software engineering methodologies to cybernetic/control system. The first perspective of software

cybernetics research is meant to foster improvement in quality assurance of software as well as the software

process. Cai et al. (2002b) viewed this as a new form of software engineering. Software-enabled control (SEC)

(Bay and Heck, 2003; Heck et al., 2001) can be treated as the second perspective of software cybernetics

research. The technical goal of SEC was to develop a sort of new software enabled control methods based on

the principles and methods of software engineering (Cangussu et al., 2007). The work in SEC area

exemplifies some of the software engineering methodologies in control software development, such as

software patterns, reusable control software, and open control platforms. However, since SEC is an

established research area, there is no new development in terms of software cybernetics. For this reason, the

present survey will not review this topic further.

Cybernetic software engineering treats each phase of the software development process as a control problem.

There are two natural lines of research. One would be to model each phase of the software development

process as a feedback control problem. Another research view in this perspective treats problems in software

engineering as search or optimisation problems. This field of research, in which computational search is

applied to solve problems in software engineering is referred to as Search Based Software Engineering

(SBSE). There have been several important surveys in this widely studied general area (Harman & Jones,

2001; Harman, 2006; Harman, 2012a; Harman et al., 2012b; Harman et al., 2013; Sayyad & Ammar, 2013).

While there is a body of work proposing SBSE to support software cybernetic, these are out-of-scope for the

present survey. Instead, we would concentrate only on ideas of optimisation based control-theoretic

techniques.

Software engineering areas to which software cybernetics has been applied will be reviewed. There have been

two important surveys (Cai et al., 2003; Cangussu et al., 2007) in this widely studied general area. Hence, this

survey focuses on the new publications after the review carried out by Cangussu et al. (2007).

3. SOFTWARE CYBERNETICS : SOFTWARE AND SOFTWARE

PROCESS VIEWPOINT

3.1. Software Requirements/Specifications

Software requirement engineering process is an interactive process between the software developers and the

end users. This research area is to seek practical synergies between the two disciplines of requirements and

cybernetics, to explore the possibilities of formulating problems in requirements with concepts and

frameworks from cybernetics, and to understand to what extent that known research results from cybernetics

can be applied to address requirements problems to guide the corresponding process improvement (Liu, J. et

al., 2016).

Xu et al. (2006) applied classical control theory to the requirement process improvement. They proposed a

requirement process control (RPC) system, which was a framework for improving the requirement process.

The practical application of their RPC system was limited to mature organisations because their approach

overlooked the need for collection of historical data on the requirement elicitation process.

Liu et al. (2007) focused on how to improve the satisfaction of user‟s requirements using goal-oriented

requirement models. Their article suggested the need to have a goal state that was quantifiable, streamline a

set of non-trivial quantifiable parameters to create a feedback loop, and define action sets to enable control.

The system may fail in achieving any of its initial requirements. Souza (2012) considered feedback loops as

first class citizens and provided a way of specifying goals as constraints on their success/failure. This research

was based on the system being able to monitor its own requirements at runtime. The contributions were new

types of requirements for a feedback control loop that implemented adaptability for a target system, and a

systematic process and framework for conducting system identification and reconfiguration. Tools were

designed to facilitate the design and implementation of adaptive systems using this approach.

The latest research effort in requirement elicitation focused on user behavioural data (Liu, J. et al., 2016). A

data-driven requirements elicitation process was formulated as a feedback control system, where the classical

requirements elicitation philosophy turned into a continuous optimisation to user behavioural models.

Preliminary results from experiments showed that information on latent customer needs and application of

current technology were necessary to guide improvements in the requirement process. As a result of the

product-specific interpretation of user data, the practical applicability of their approach in different project

settings was limited.

The application of software cybernetics to software requirements/specification builds the link between

feedback loops and user requirement improvement that can be regarded as an optimisation problem.

3.2. Software Design

Software design is increasingly concerned with how to develop better software with good and optimum

solutions. There are widely accepted principles, methods, metrics and practises for architecture and program

design. Software design today has become a challenging task due to the dynamic nature of the operational

environments and conditions, such as changing user requirements, execution context variations, etc.

Autonomic software systems or what are also referred to as self-adaptive systems were suggested as a

promising solution for managing the complex and uncertain nature of today's software-intensive systems

(Brun et al., 2009; Ahuja & Dangey, 2014). The development of such systems showed to be significantly

more challenging than traditional software systems. A promising starting point to meet these challenges was

to apply cybernetic or control techniques when designing and reasoning about these systems. Feedback loops

constituted an architectural solution for this, and were a first class citizen in the design of such systems

(Huebscher & McCann, 2008).

The software engineering community has proposed numerous approaches for making software self-adaptive.

These approaches take inspiration from machine learning and control theory, constructing software that

monitors and modifies its own behaviour to meet goals. Control theory, in particular, has received

considerable attention as it represents a general methodology for creating adaptive systems (Filieri et al.,

2015). However, control-theoretical software implementations tend to be ad hoc and it is difficult to

understand and reason about the desired properties and behaviour of the resulting adaptive software and its

controller. Filieri et al. (2015) proposed a control design process for software systems that enabled automatic

analysis and synthesis of a controller that was guaranteed to have the desired properties and behaviours. Self-

adaptation ability is particularly desirable for mission critical software (MCS). Yang et al. (2011) proposed a

fuzzy control-based approach to providing a systematic, engineering, and intuitive way for programmers to

achieve software self-adaptation. The results of the experiments showed that the behaviours could be adjusted

online to react to the interventions or changes from external runtime environments. Rammig et al. (2014)

discussed general concepts of self-adaptive real-time systems, and how the necessity for adaptation could be

identified using online model checking, and how self-adapting safety guards could be designed by means of

artificial immune systems. An approach to integrating these techniques into an underlying platform

architecture based on mixed-criticality virtualisation was proposed.

Patikirikorala et al. (2012) conducted a systematic survey on the design of self-adaptive software systems

using control engineering approaches. A classification model was built to capture and represent the

information about literature at a high-level of abstraction. The analysis results showed that the introduction of

the feedback loop and controller into the management system potentially enabled the software systems to

achieve the runtime performance objectives and maintain the integrity of the system when they were

operating in unpredictable and dynamic environments. Liu et al. (2012) proposed a problem-oriented

approach to modelling the system composed of the self-adaptive software and its context as an adaptive

control system which was equipped with two kinds of feedback loops: context-aware feedback loops and

requirements-aware feedback loops. Five classes of software problems were identified to address the different

concerns of the adaptive requirements behind the feedback loops. Souza (2012) advocated that adaptive

systems would be designed this way from as early as the requirements engineering stage and that reasoning

over requirements was fundamental for run-time adaptation. The proposal was goal-oriented and targets

software intensive socio-technical systems in an attempt to integrate control-loop approaches with

decentralised agents inspired approaches.

Dobson et al. (2007) presented a model derived from approaches to modelling dynamical systems in which

the adaptive behaviour of an autonomic system might be described and analysed as a whole. Insaurralde and

Vassev (2014) presented autonomic control architecture for avionics software of unmanned space vehicles.

Wang et al. (2012) proposed a general supporting framework for self-adaptive software systems. Three key

issues were covered in the framework: 1) the overall control architecture, which adopted the double closed-

loop style and respectively included the self-adaptation loop and the self-learning loop; 2) a general

descriptive language, which was an application-independent and unified language to represent self-adaptation

knowledge about target systems; 3) three implementation mechanisms, including forward reasoning, planning

and reinforcement learning using feedback, which were supported by the above descriptive language and

executed at runtime in different modules. Finally, one scenario of on-demand services of massive data mining

tasks was selected and the case study demonstrated how the framework was customised as required and how

the approach worked. Abeywickrama et al. (2013) proposed an approach to developing self-adaptive systems

based on feedback loops. SimSOTA was developed as an Eclipse plug-in to support the modelling, simulating

and validating of self-adaptive systems based on the proposed feedback loop-based approach. A case study in

cooperative electric vehicles was used to evaluate the proposed approach.

Autonomic software systems or self-adaptive systems were complex systems would have to be self-managed:

self-configuring themselves for operation, self-protecting from attacks, self-healing from errors and self-

tuning for optimal performance (Huebscher & McCann, 2008). Autonomic computing (Lin et al., 2005) was

an intelligent computing approach to self-managing computing systems with minimum human interference in

a way to provide a stable computing environment. Such an environment could be defined in terms of self-

sustaining features of an autonomic computing: they were able to change structure or behaviour at run-time to

deal with continuously changing environments and emerging requirements that might be unknown at design-

time. Autonomic computing embedded automation in management software such that it could adapt to

changes in the configuration, provisioning, protection, and resource utilisation variations at runtime. Also,

autonomic computing, as a control system, aimed to resolve constraints related to the optimal usage of

resources based on external requests made by users or processes in a reactive way (Solomon et al., 2007).

Alvares et al. (2015) proposed the design of Autonomic Managers (AMs) based on logical discrete control

approaches. AMs were largely used to autonomously control reconfigurations within software components.

This management was performed based on past monitoring events, configurations as well as behavioural

programs defining the adaptation logics and invariant properties. The challenge here was to provide

assurances on navigation through the configuration space, which required taking decisions that involved

predictions on possible futures of the system. A Domain Specific Language was defined to provide high-level

constructs to describe behavioural programs in the context of software components, which could also be

translated to Finite State Automata for verification or Discrete Controller Synthesis. The authors believed that

the approach could be applied to other domains such as robotics and cloud computing.

Resource management in a large, heterogeneous, and distributed environment becomes a challenging task.

Existing resource management techniques, frameworks, and mechanisms can be insufficient to handle these

environments, applications, and resource behaviours. Autonomic cloud computing systems check, monitor,

control the working of cloud-based systems and applications according to the running situation, such as self-

healing, self-protecting, self-configuring, and self-optimising, without the involvement of humans. The

current research on autonomic cloud computing is more focused on self-optimising and self-healing aspects.

Research on self-configuring and self-protecting policies can provide protection and incorporate dynamic

scalability in autonomic cloud computing (Buyya et al., 2012; Mayer et al., 2013).

Self-Healing (Kumar & Mukherjee, 2014) is an emerging research discipline, regarded as one of the key

autonomic computing attributes. The complexities in computer systems are increasing hence the results in

systems that are prone to errors will cause major problems for a user. Ravindran (2014) proposed a self-

healing mechanism that monitored, diagnosed and repaired the corrupted files in the application to its original

state. An analysis section of the application was done by maintaining the hash values of corresponding files at

runtime and recovering the corrupted file from the original application.

Autonomic systems based on QoS (Quality of Service) parameters are inspired by biological systems that can

easily handle problems like uncertainty, heterogeneity, dynamism, faults, and so forth. The goal of autonomic

systems is to execute an application within a deadline by fulfilling QoS requirements as described by users

with minimum complexity. Singh and Chana (2015) depicted QoS-aware autonomic resource management in

the Cloud, which would help researchers to find the important characteristics of autonomic resource

management and would also help to select the most suitable technique for autonomic resource management in

a specific application.

Quality requirements of a software system cannot be optimally met, especially when it is running in an

uncertain and changing environment. In principle, a controller at runtime can monitor the change impact on

quality requirements of the system, update the expectations and priorities from the environment, and take

reasonable actions to improve the overall satisfaction. In practice, however, existing controllers are mostly

designed for tuning low-level performance indicators rather than high-level requirements. Peng et al. (2010)

combined goal models with feedback loop controllers to make dynamic trade-offs among conflicting soft

goals (i.e., the goals with no binary satisfaction criteria). Reflecting the business value of customers, the

controller adjusted the preference ranks of soft goals on the basis of runtime feedback. The experimental

study on a Web-based system validated that combining PID control theory with preference-based goal

reasoning was effective in runtime self-tuning for a real-life software system. Ding et al. (2016) presented a

software cybernetics approach to self-tuning the performance of DBMSs. An adaptive control based on fuzzy

logic was designed to control the performance parameters, and update the controller itself with a set of fuzzy

rules. Experimental results showed that the proposed method was feasible and effective.

Software cybernetics for software design focuses on the adaptive/autonomic feature of modern software. It is

natural to apply control-theoretic or cybernetic principles and methods when designing and reasoning about

these systems to develop better software in the dynamic operational environments and conditions.

3.3. Implementation/Programming

Software cybernetics aims at improving the reliability of software by introducing the control theory into

software implementation systematically. By treating the operating environment of the software under

development as a controlled object, and the software being developed to be a controller, the synthesis of

reactive software becomes a supervisory control problem. Most software systems can be treated as control

systems, and control theories can help guarantee the correctness of software design solutions. This can be

aided by supervisory control techniques (Phoha et al., 2005), which commonly augment existing systems to

impose constraints. For example, software fault-tolerance can be treated as a robust supervisory control

problem (Cai & Wang, 2004; Wang & Cai, 2012). A modest amount of research has applied the control

theories of discrete event systems for program synthesis (Cangussu et al., 2007). Supervisory controller

synthesis becomes viable as engineers nowadays are familiar with building models for simulation and

validation purposes. The synthesised models provide an opportunity for verification, performance, and

reliability analysis, increasing the confidence in the control design and validating it before expensive

prototypes are built. Ding et al. (2016) applied the principles and concepts in software cybernetics to guide the

synthesis of software controllers for monitoring and adapting system behaviours.

Yau et al. (2007) presented a software cybernetics approach to deploying and scheduling workflows with

timing and resource constraints in Service-based Systems (SBS). A logic-based technique for modelling and

solving timing and resource constraints for workflows in SBS was developed to generate the initial resource

assignments, schedules and deployment plans of agents for workflows.

Chen et al. (2009) applied negative feedback from control theory to the software system verification. Software

testing, model checking and their two combinations with the negative feedback mechanism were explored.

The principles and concepts in software cybernetics are applied to guide the synthesis of software controllers

for monitoring and adapting system behaviours. Baeten and Markovski (2015) proposed a model-driven

system engineering approach, referred to as supervisory controller synthesis, which targeted discrete-event

control software for high-tech and complex systems. The proposed framework supported extensions with

quantitative features for development of quality control software with a process-theoretic foundation. Several

industrial case studies highlighted the advantages of the proposed approach. Liao et al. (2013) used a special

class of Petri nets, called Gadara nets, to systematically model multithreaded programs with lock allocation

and release operations. They proposed an efficient optimal control synthesis methodology for ordinary Gadara

nets that exploited the structural properties of Gadara nets via siphon analysis.

Software cybernetics was applied in the process of verification to establish a nested control system by Liu, H.

et al. (2016). The proposed method verified functional requirements in a dynamic environment with

constantly changing user requirements, in which the program served as a controlled object, and the

verification strategy determined by software behavioural model served as a controller. The main contribution

included: 1) software behavioural model was established in software design phase, and a concern-based

construction approach was proposed, which started from obtaining the software expected functionality

extracted from a requirement text; 2) Program abstract-relationship model was constructed; and 3) Feedback

in a form of intermediate code was generated in the process of verification.

Adams et al. (2013) introduced the concept of using cybernetics as a foundational approach for developing

cyber security principles. They explored potential applications of an interdisciplinary approach to control

theory, systems theory, information theory and game theory to cyber security from a defensive perspective,

and introduced the fundamental principles for building non-stationary systems. Vinnakota (2013) presented a

generic cybernetics paradigms framework for cyberspace to study the cyberspace holistically from different

perspectives like economics, engineering, software and society. This framework was used to study various

aspects of cyber-security in any context of a nation, an enterprise or an organisation.

Co et al. (2009) proposed an approach to improving the resilience of software systems that might be subject to

attacks from malicious adversaries. The approach was to impose a lightweight and process-level software

control system that continuously monitored an application for signs of attack or compromise and responded

accordingly. The system used software dynamic translation (SDT) to seamlessly insert arbitrary sensors into

an executing application‟s binary code. Using the information gathered by the sensors, the control system

continuously monitored the health of the system and whether the system was under certain attacks. If the

control system determined the system was compromised, the appropriate actuators (also inserted by the

software dynamic translator) were activated to generate an appropriate response.

There are many ways to improve the quality of code. When people discuss quality control in terms of

software cybernetics, it means to apply control theory to improve the quality of system implementation.

3.4. Software Testing

In the process of software testing, test cases are selected in accordance with a given testing strategy and

applied to the software under test. If we treat the corresponding testing strategy as a control policy or

controller, we can treat the software under test as an uncertain controlled object. Further, if a testing goal is

given explicitly, the test data selection becomes as an optimal control problem. By treating the software test

process as a controlled object and the process manager as a controller, the management of software testing

becomes a feedback control problem.

Traditionally, the control theoretical approach can quantitatively forecast the test process trends and assist the

manager in allocating testing resources with Controlled Markov Chains (CMC) approach. The CMC approach

designs an optimal testing strategy to achieve an explicit optimisation goal. Several theorists have proposed

the idea of the Markov chain statistical test (MCST), a method of conjoining Markov chains to form a

'Markov blanket', arranging these chains in several recursive layers and producing more efficient test sets

samples as a replacement for exhaustive testing. Feedback control was applied to adjust software test process

parameters, e.g. through measurements of software reliability, to satisfy desired objectives by (Cangussu et al.,

2001; Cangussu et al., 2002). Miller et al. (2006) comprised model predictive control and the use of parameter

correction to improve the performance of the software test process.

Software testing techniques have to be developed in parallel with the new paradigms, complexity, and scale of

software systems. A range of advanced approaches has been proposed to reflect this trend in the context of

software cybernetics.

Adaptive testing is a new form of software testing that is based on the feedback and adaptive control principle

and can be treated as the software testing counterpart of adaptive control. It means that a software testing

strategy should be adjusted on-line by using the testing data collected during software testing (Cai et al., 2007;

Cai et al., 2008; Ye et al., 2009). Cai et al. (2007) proposed a new strategy of adaptive software testing to

employ fixed-memory feedback for on-line parameter estimations. An experimental study of adaptive testing

for software reliability assessment, where the adaptive testing strategy, the random testing strategy and the

operational profile based testing strategy, were applied to the Space program in four experiments (Cai et al.,

2008). The experimental results demonstrated that the adaptive testing strategy could really work in practice

and might noticeably outperform the other two. Therefore, the adaptive testing strategy could serve as a

preferable alternative to the random testing strategy and the operational profile based testing strategy if high

confidence in the reliability estimates was required or the real-world operational profile of the software under

test could not be accurately identified. In addition, this strategy might contribute to testing large-scale

software systems more than to testing small scale software systems. Ye et al. (2009) investigated the

computational complexity of the parameter estimation process in two adaptive testing strategies which

adopted different parameter estimation methods, namely the genetic algorithm (GA) method, and the

recursive least square estimation (RLSE) method. A controlled experiment on the Space program was

conducted to measure the relationship between computational complexity and the failure detection efficiency

for the two strategies. Abuseta and Swesi (2015) attempted to address self-adaptive software testing issues

and propose a testing framework around the feedback control loop proposed by IBM blueprint.

Web Services (WS) and Service-Oriented Architecture (SOA) present a set of unique testing challenges. As

services are distributed, it is necessary to test them using a distributed architecture. Furthermore, as these

services may keep on changing, testing needs to be adaptive. Bai et al. (2007) proposed an adaptive testing

framework which could continuously learn and improve the built-in test strategies. The framework allowed

different test cases to be selected based on the recent test results.

Cai et al. (2008) examined the dynamic behaviour of software testing. A set of simplifying assumptions was

adopted to formulate and quantify the software testing processes. It was demonstrated that under the

simplifying assumptions, the software testing processes could be treated as a linear dynamic system and the

software testing processes could be classified as linear or non-linear, and there was an intrinsic link between

software testing and system dynamics.

In an attempt to address the bottlenecks of the dynamic random testing, Zhang et al. (2014) proposed history

based dynamic random software testing to improve the traditional random testing and random-partition testing

strategies by following the idea of software cybernetics. The approach took advantage of historical test data to

approximate each sub domain‟s defect detection rate in real time. The testing profile was dynamically updated

during software testing according to testing data collected online so as to improve the subsequent software

testing process.

As the overall literature reveals, many software cybernetics research projects are concerned with software

testing. There are many ways to treat a software testing problem as a control problem.

3.5. Rejuvenation and Software Evolution

There are various software rejuvenation approaches existing in literature that can be broadly categorised into

two categories namely model based approaches and measurement based approaches (Cotroneo et al., 2011;

Sudhakar et al., 2014). Most work focused on predicting the time-to-aging-failure and on the optimal

scheduling of software rejuvenation strategies (Cotroneo et al., 2011).

Agepati et al. (2013) adopted the concept of feedback loop control to present a generalised condition-based

software rejuvenation model that is applicable to a wide range of applications. The rejuvenation model

includes a stochastic deterioration process, a set of rejuvenation actions and their effects, and a schedule

inspection policy that identifies the system deterioration. The optimal rejuvenation policy that minimises the

overall cost associated with the system is obtained using Markov decision processes.

Li et al. (2009) proposed a self-evolving control method for software in Complex Avionics System to

guarantee the behaviours‟ reliability of software systems at runtime. This method adopted software sensors to

monitor the behaviours of the runtime system and achieved self-evolving based on feedback control and

scheduling. The method was used in an avionics system to increase the self-adaptability, the reliability and the

efficiency of system practically. The result proved that this software cybernetics method made software

system easier to maintain.

Liu et al. (2015) proposed a holistic software rejuvenation based fault tolerance scheme for cloud applications,

which contained three indispensable parts: adaptive failure detection, ageing degree evaluation, and

checkpoint with trace replay based component rejuvenation. Through a preliminary and qualitative evaluation,

it showed that the new fault tolerance scheme brought promising improvement on the availability of cloud

applications.

Donaires (2010) designated the development and maintenance of complex software systems in situations

where the software process and the software architecture needed to change dynamically in order to cope with

the impact of unpredicted and frequent environmental changes. A systemic-cybernetic process model, which

was a composition of Stafford Beer‟s viable system model (VSM) and Barry Boehm‟s spiral model, was

proposed to provide adaptability to the software architecture and self-organising capability to the software

process.

Machida et al. (2010) presented analytic models using stochastic reward nets for three time-based

rejuvenation techniques of Virtual Machine Monitor. Three techniques in terms of steady-state availability

and the number of transactions lost were compared. The optimal combination of rejuvenation trigger intervals

for each rejuvenation technique was found by a gradient search method. Okamura and Dohi (2011) developed

a dynamic rejuvenation policy for a multistage degradation software system and formulated the underlying

optimisation problem by a semi-Markov decision process. They also developed an online adaptive algorithm

based on the Q-learning and investigated its asymptotic properties.

In order to improve the efficiency and quality of software evolution, Gao et al. (2011) built the model and

proposed two different types of feedbacks in software evolution requirement process. The process model of

software evolution requirement based on feedback was formalised by coloured dual-transitions Petri net to

manage the changing process of software evolution requirement, and thus software could be evolved

efficiently with high quality.

Gaudin and Bagnato (2011) presented an approach for system maintenance after the system was deployed.

The proposed approach based on control theory allowed for automatic generation of maintenance fixes. The

system was instrumented so that it could later be monitored and interacted with a supervisor at runtime to

avoid future executions of faulty or vulnerable system functionalities.

Li et al. (2016) proposed a closed-loop feedback mechanism for business process execution. In their feedback

control system, process mining played an important role in generating feedback of process execution for the

purpose of the redesign. A discovery method based on a kind of augmented event log would bring new

research directions for process discovery. Their work presented a case study for application of the data mined

model in business process evolution.

Software rejuvenation or software evolution can be treated as a control problem by monitoring the age of the

software and manage the change of software.

3.6. Software Project Management

Software project risk management can help in reducing the incidence of failure and a variety of problems

including cost and schedule overruns, unmet user requirements, and the production of systems that are not

used or do not deliver business value. Cao and Chen (2009) proposed an approach for optimising software

project process based on project returns, which were used as a criterion to assess the quality of a software

project process. A model of optimising software risk control and an optimisation algorithm were proposed in

this paper. It provided managers with an effective tool to make the risk control decisions and implement the

process optimisation at the project planning stage to greatly promote the possibility of success of software

projects.

Kandjani et al. (2012) followed an enterprise architecture cybernetics method to reduce the complexity of

global software development by using extended axiomatic design theory, thereby increasing the probability of

success. Ponisio and van Eck (2012) proposed a framework that provided a set of measurements (selected

from the research literature) for control of software development in cooperative settings, and a set of

principles and guidelines for the design of an information infrastructure that provided managers with control

information. The metrics that support feedback between operational and strategic levels helped organisations

to succeed in dealing with this new context of inter-organisational development. Shankar (2012) addressed a

framework to build competence of building software solutions in IT Industry. Since the system consisted of

the problem, people capabilities, and the solution, there were many visible and invisible relationships between

the parameters that constituted different parts. Cybernetics concepts and principles were used to understand

the various interrelationships between the component parameters.

It is critical to deploy human resources at the right time in software maintenance projects to deliver varying

workloads under the committed Service Level Agreements (SLA). Kundu and Mukherjee (2014) developed a

theoretical framework based on cybernetic principles that recommended ramp-up/ramp-down of resources,

considering the practical constraints, ensuring the fulfilment of the SLA with the customer with minimal

resource cost. The software was developed based on the framework to aid project managers responsible for

software maintenance projects. Park (2015) developed an activity-state mapping algorithm and a goal-activity

cover algorithm based on the OMG Essence standard, which could help automate the health monitoring of

project states and the adaptive planning of project activities in a software engineering project.

The real world software project management problem is determined by the various interrelationships between

the components within a project. Goal-activity implies the control of a system to meet the target.

4. APPLICATIONS OF SOFTWARE CYBERNETICS II
Software development has witnessed the transformation from stand-alone, monolithic systems to today's

complex, distributed, interconnected, interoperable, adaptive and autonomous systems. These technology

trends lead to challenges that need to be addressed with software engineering principles, methods, and

practices. These challenges change the role of software and people in the systems, in which technology,

software, and people play an equally important part in the systems (Bellavista et al., 2014). The likely nature

of modern software systems forms a context of software cybernetics research. Current research and research

trend on Cloud Computing, Cyber-Physical Systems, Big Data and Creative Computing will be reviewed and

discussed in the context of software cybernetics.

4.1. Software Cybernetics in Cloud Computing

Clouds will become the dominant computing environment of the current and the next decade by delivering all

kinds of services, focusing on large-scale resource sharing, innovative applications, and high-performance

orientation. Cloud computing is defined by NIST (http://csrc.nist.gov/groups/SNS/cloud-computing/) as “a

model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider interaction”. Software

engineering issues need to be addressed to make the most effective use of the clouds. Zhu (2012) discussed

many issues of cloud computing and software cybernetics, such as service architecture, agent-based

computing, metrics and software evolution.

As Clouds are complex, large-scale, and heterogeneous distributed systems, management of their resources is

a challenging task. They need automated and integrated intelligent strategies for provisioning of resources to

offer services that are secure, reliable, and cost-efficient. Hence, effective management of services becomes

fundamental in software platforms that constitute the fabric of computing Clouds. Autonomic computing

provides a path towards controlling cloud computing services (Ionescu, 2011). Buyya et al. (2012) identified

open issues in autonomic resource provisioning and presented innovative management techniques for

supporting SaaS applications hosted on Clouds. A conceptual architecture and early results evidencing the

benefits of autonomic management of Clouds were presented. Mayer et al. (2013) discussed one of the case

studies of the ASCENS project, which was a vision of an autonomic cloud: A cloud which was based on

voluntary computing and using peer-to-peer technology to provide a platform-as-a-service. It used self-

awareness and self-adaptation as the main ingredients for managing the execution of arbitrary applications.

However, many aspects of this technology required further research, such as self-adaptation performance in

the cloud, large-scale tests, alternative implementation models, etc.

Elasticity is an important feature of cloud computing and can be understood as how a computational cloud fits

variations in their workload by provisioning and de-provisioning resources. Autonomic Computing brings

many concepts quite useful in the construction of elastic cloud computing solutions, such as control loops and

thresholds-based rules. Coutinho et al. (2015) proposed an elastic architecture for cloud computing based on

concepts of Autonomic Computing. Konstanteli et al. (2014) proposed a mechanism using probabilistic

optimisation model, for admission control of a set of horizontally scalable services. Their model reduced the

resources required to assure a given quality of service by employing statistical knowledge of the elastic

workload requirements of services.

4.1.1. Service Oriented Computing

Along with the popularity of the Internet, a great amount of attention has centred on service-oriented

computing (SOC). SOC is the computing paradigm that utilises services as fundamental resources for

developing applications. Because services provide a uniform and standard information paradigm for a wide

range of computing devices, they will be vital in the next phase of distributed computing development. The

developers can compose existing web service components to create new applications for complex service

requirements.

Applications in Service-based Systems can often be viewed as the composition of various computing services

following specific workflows. Techniques based on Service Oriented Architecture (SOA) to enable utility

computing have emerged and become a cost-effective way for organisations to outsource their computing

tasks to infrastructure providers and receive computing services on-demand. Yau et al. (2007) proposed a

software cybernetics approach, by modelling and solving timing and resource constraints for deploying and

scheduling workflows.

Liu et al. (2009) proposed a control-based approach to the security adaptation problem in adaptive service-

based systems. A performance index that incorporated security requirements and delayed deadlines was

proposed to transform the problem into an optimisation problem. An example application using the proposed

security technique was implemented to demonstrate the feasibility of the approach. The experimental data

showed that the system provided a desirable balance between security and delay requirements.

Cloud applications are typically composed of multiple cloud service components communicating with each

other through web service interfaces, where each component fulfils specified functionalities. Lack of effective

fault tolerance scheme is one of the major obstacles for enhancing availability and efficiency of complex and

ageing cloud application systems. Liu et al. (2015) proposed an adaptive failure detection and ageing degree

evaluation approach to predict which cloud service components deserved foremost to be rejuvenated and a

component rejuvenation approach based on checkpoints with trace replay was proposed to guarantee the

continuous running of cloud application systems.

4.1.2. Agent-Based Systems

There is comparatively little work found in the area of Agent-based systems for software cybernetics, despite

the nature of multi-agent systems seems very closely aligned to Software Cybernetics II. Some work has been

discussed in search based software engineering area (Harman et al., 2012b; Harman et al., 2013). From the

cybernetic viewpoint, an agent-based system consists of a population of individuals that interact and share

information, seeking to solve a common goal, in which the potential for cybernetics in the area of software

agents is enormous.

Sim (2012) introduced an agent-based paradigm for the design and construction of software tools and testbeds

for resource management in cloud computing. The contributions of his work included: an agent-based search

engine for cloud service discovery, a developing agent-based negotiation mechanism that could be used for

helping service negotiation and commerce in the Clouds and finally, a distributed problem-solving technique

for automating cloud service selection and integration. Gutierrez-Garcia and Sim (2013) proposed a self-

organising framework for negotiating agents to perform cost-effective cloud service selection and integration.

Their research promoted self-organisation for agents in the service composition environment by proposing a

semi-recursive contract net protocol, based on FIPA‟s contract net protocol, enhanced with service capability

tables to keep track of feasible service contractors. A game theoretic approach was adopted by Sim (2015) to

facilitate the formation of InterCloud coalitions and his work devised a four stage cloud to cloud interaction

protocol and strategies for InterCloud agents. Mathematical proofs showed the InterCloud coalition formation

strategies converge to a sub-game perfect equilibrium and every cloud agent in an InterCloud coalition

received a payoff equal to its shapely value.

4.2. Software Cybernetics for Cyber-Physical System

Cyber–physical systems (CPSs) are the next generation of engineered systems in which computing,

communication and control technologies are tightly integrated (Kim & Kumar, 2012). Cyber-Physical

Systems are integrations of computation and physical processes. Embedded computers and networks monitor

and control the physical processes usually with feedback loops where physical processes affect computations

and vice versa (Lee, 2008). Kim and Kumar (2012) overviewed CPS research in many relevant research

domains such as networked control, hybrid systems, real-time computing, real-time networking, wireless

sensor networks, security, and model-driven development. Being able to deal with the increasing complexity

of software systems as triggered by cyber-physical systems or large scale distributed systems requires

fundamentally new models and approaches in software engineering. The economic and societal potential of

such systems is vastly greater than what has been realised, and major investments are being made worldwide

to develop the technology (Bellavista et al., 2014).

4.2.1. Network Systems

The constant growth in IT is making communication networking more and more complex to manage. One

very promising solution is Software Defined Networking (SDN) that decouples the data and control planes,

having one centralised controller for the network. This gives chances to control and manage the network as

desired, thus opening many new possibilities (Adami et al., 2015). Ravindran (2014) applied software

cybernetics to manage adaptation behaviour of complex network systems, in which model-based software

techniques were employed to assess the quality of adaptation in a network system in the presence of

uncontrollable external environment conditions. A cyber-physical system (CPS) based software structure was

provided to evaluate the non-functional attributes of the output behaviour, and the network and algorithm

parameters were justified automatically. The advantages of the CPS-style structure of an adaptive network

system were that it reduced the development cost of distributed control software via software reuse and

modular programming. The CPS-style structure also enabled easier system evolutions: i.e., adding or

modifying the controller functionality, without weakening the system correctness. Adami et al. (2015) built a

system to enable QoS control and routing in Software Defined Networks. When the OpenFlow controller

installed a rule for a flow, it also took care of placing it in the right queue. The experimental results showed

the system behaving as expected, managing in a more efficient way the network resources and giving

guarantees about traffic handling.

Nakano (2011) reviewed various biological materials and mechanisms that could be exploited to create

network systems. Common characteristics of such network systems were summarised as: 1) small scale and

functionally complex, 2) biocompatibility, 3) energy efficiency, and 4) self-assembly. Biological systems

presented fascinating features, such as autonomy, scalability, adaptability, and robustness, and the concepts

and mechanisms were successfully applied to network systems design. Key design principles were

summarised as: 1) massive numbers of redundant components, 2) local interactions and collective behaviour,

3) stochastic or probabilistic nature, and 4) feedback-based control.

4.2.2. Internet of Things

The Internet of Things (IoT) implies a wide set of intertwined and interconnected devices and things to

provide value to stakeholders. The Internet of Things has become a reality with the emergence of Smart Cities,

populated with large amounts of smart objects that are used to deliver a range of citizen services. The IoT

paradigm relies on the pervasive presence of smart objects or “things”, which raises a number of new

challenges in the software engineering domain: Orchestrating smart objects at a large scale, service discovery,

data gathering, data processing, etc. Perera and Vasilakos (2016) suggested how IoT resources could be

described using semantics so as to enable resource discovery. To achieve this, a knowledge driven approach

was proposed in their research referred to as Context-Aware Sensor COnfiguration Model (CASCOM) to

simplify the configuration of IoT middleware platforms.

4.3. Software Cybernetics in Big Data Technology

Big data is an emerging technology that has attracted the attention of many researchers and practitioners in

industrial systems engineering and cybernetics (Choi et al., 2016). Large and variegated data from business

transactions, social media, and the Internet of Things is estimated to grow at 30 to 60 percent per year. In

order to make good decisions by enabling automatic control, big data must be captured, processed, integrated,

analysed, and archived, which leads to valuable knowledge for users. An approach to integrating architecture

analysis and design language (AADL), Modelicaml, and Hybrid Relation Calculus for the development of big

data driven cyber-physical systems was proposed in Zhang (2014). The proposed method was further used to

specify and model the Vehicular Ad-hoc NETwork (VANET). Choi et al., (2016) analysed the challenges and

opportunities of big data analytics and examined the reliability, security, and their operational risk

management. Chang (2015) presented system design, development, and analysis on Social Cloud to ensure a

smooth delivery of big data processing. The cybernetics functions ensured that 100% job completion rate for

big data processing on Social Cloud with no costs involved. This offered a unique contribution for cybernetics

to meet big data research challenges. However, as much as previous work has discussed the relationship of

big data and cybernetics, but little has been proposed about how to model and better analyse the big data with

principles and techniques in cybernetics.

4.4. Software Cybernetics and Creative Computing

Software Cybernetics emphasises controlling software while Creative Computing emphasises being creative,

in the whole software life cycle. It seems that they conflict each other. Nevertheless, controlling and being

creative are almost the two most important aspects of software development and evolution. Yang and Zhang

(2014) discussed how best to combine these two aspects in improving software by proposing models for

controlling software behaviours and the process of software development. Accordingly, their research

proposed the application of cybernetic and creative rules to the software development process. An application

of formal rules in both domains presented a pragmatic approach to designing a quality user interface for a

computing device. Furthermore, their work also described the benefits of applying principles from software

cybernetics and creative computing to controlling the behaviour of software. By classifying software

behaviour into functional and non-functional properties, ideas from the two fields could be jointly applied to

control software behaviour in a number of possible ways. For instance, while cybernetics is applied to guide

the implementation of phases in the software process, exploratory creativity can be used to change software

functionalities, e.g., communication, data manipulation, and scientific computation.

4.5 Analysis to Techniques, Applications and Trends

Our survey classifies 70 quality research articles, this represents a summary of research papers published after

the review undertaken by Cangussu et al. (2007), addressing research problems related to software

cybernetics (see Table 1). The survey as presented in Table 1 includes research work published since then and

its classification scheme mainly covers the year of publication, research activity, applied model or technique,

cybernetic order/theme, and case study. As seen earlier in the paper, Fig. 1 shows the trend of growth in more

recent publications related to Software Cybernetics II. In this section, a further and deeper analysis of the

overall area is provided to show the relationships and trends of software cybernetics.

Table 1: Comparative research on software cybernetics in the period of 2007-2016

Author(s) Year Research activity Aim/ objectives Software

Engineering
Perspective(s)

Model

specification/
approach

Case study Cybernetic

dimension

Software

Cybernetics
Theme

Liu, H. et al 2016 verification of

program

relationships
relying on

software

behaviour (VPRB)

Improving

software reliability

Software

Implementation/

Verification

SBM/ PARM Light Control

System (LCS)

First order Phase I

Li et al 2016 Business Process

Management

Modelling

software

behaviour based

on augmented

event logs

Software

Evolution/

Implementation

Petri nets /

Process

discovery

method

Patient

registration

system

Second

order

Phase II

Ding et al 2016 Online transaction
processing system

(OTPS)

Synthesis of
Software

Controllers for

monitoring and
adapting

performance

parameters

Software
Implementation

Rule-based
(Fuzzy logic)

Oracle 11g
database

Third order Phase II

Choi et al 2016 Business
operations and risk

management

A survey Software Project
Management

Big data
analytics

- Second
order

Phase II

Liu, L. et al 2016 Requirement
Software

Engineering

Control
framework for

user data driven

requirement
elicitation

Requirement
Elicitation

Data analytics Netease Youdao
Dictionaries

(Online)

Second
order

Phase II

Perera &

Vasilakos

2016 Internet of Things

(IoT)

Knowledge-based

Resource

discovery

Software

Design/

Implementation

CASCOM Global Sensor

Networks

(GSN)

Second

order

Phase II

Chang 2015 Social Networking
(Big Data)

Big Data analytics
for Social

Networks

Software
Implementation

Big Data
cybernetics

Facebook Second
order

Phase II

Liu et al 2015 Service-oriented
computing (SoC)

Improving the
availability of

Cloud applications

Software
Rejuvenation

 fault tolerant
scheme,

Web Services

- Second
order

Phase II

Filieri et al 2015 Control design

process for Self-
adaptive systems

Steps for Self-

adaptive controller
synthesis

Software Design Control

architectural
approach

Real-time video

encoding

First order Phase I

Coutinho et

al

2015 Autonomic

Computing

Elastic control

mechanism for
Cloud computing

Software Design Algorithmic Second

order

Phase II

Singh &

Chana

2015 Resource

management in

Cloud Computing

A Review Software Design QoS-aware - Second

order

Phase II

Park 2015 Software

Engineering

Project

Goal-driven

adaptive software

engineering

Software

Process

Algorithmic

(Essence-based)

Learning

Management

system (LMS)

Second

order

Phase II

Baeten &
Markovski

2015 Autonomic
Control Software

Supervisory
control theory

roles

Software
Design/Impleme

ntation

Model-driven
approaches

MRI scanner +
other examples

First order Phase I

Alvares et al 2015 Autonomic
Software

Behavioural
model-based

control

Software
Design/

Implementation

DSL called Ctrl-
F (FSA)

Znn.com
(platform for

self-adaptive

systems)

First order Phase I

Adami et al 2015 Communication
Network

Quality of service
control

Software
Design/

Software-
defined

Mininet
(simulator)

Second
order

Phase II

management

(Cyber-Physical
Systems)

Implementation networking

(SDN) +
Floodlight

Abuseta &

Swesi

2015 Self-Adaptive

systems

Testing framework System Design/

Architecture

Knowledge-

based approach
+ UML

- Second

order

Phase II

Zhao et al 2014 Software Systems Behavioural

modelling

System Design EFSA CVS client First order Phase I

Zhang et al 2014 Random testing Software Testing
Framework

Software
Testing

DRT-h Software under
test (SUT)

Second
order

Phase II

Zhang 2014 Cyber-physical

control systems

Modeling

Framework

Software

Design/

Implementation

AADL,

Modelicaml +

Hybrid Relation
Calculus

VANET Second

order

Phase II

Yang &

Zhang

2014 Creative

computing

Control and being

Creating

Software

Development

Lifecycle

Rule-based Syzygy surfer +

other examples

Second

order

Phase II

Ravindran 2014 Network systems

(Cyber-physical

Systems)

Adaptive

behaviour in

complex network
systems

Software design CPS-based

approach

QoE-aware

Video transport

Second

order

Phase II

Rammig et

al

2014 Real-time

software (Cyber-

Physical Systems)

Self-Adaptive

control

Software

Design/

Architecture

VMM-approach Power PC 405

architecture

Second

order

Phase II

Kundu &

Mukherjee

2014 Software

Maintenance

Efficient resource

usage based on

SLA

Software

Development

Project

Algorithmic

(based on

bipartite graph
matching)

(CLRMS –

Closed loop

resource
management

system)

Second

order

Phase II

Kumar &

Naik

2014 Software systems Autonomic control Software

Design/
Implementation

Algorithmic Dummy

applications

First order Phase I

Insaurralde

& Vassev

2014 Unmanned Space

Vehicles

Autonomic control Software Design ASSL approach BepiColombo

Mission

Second

order

Phase II

Ahuja &
Dangey

2014 Autonomic
computing

Survey Software
Development

- - Second
order

Phase II

Vinnakota 2013 cyberspace Framework for

Cyber-Security

Software

Design/
architecture

Cybernetic

framework
approach

- Second

order

Phase II

Ravindran

& Rabby

2013 Network Systems

(Cyber Physical
Systems)

Adaptive

Intelligence in
Network systems

Software

Design/
Implementation

CPS-based

approach

Multi-source

video transfer

Second

order

Phase II

Park &

Yeom

2013 Situation-aware

Software

Validation of

SWRL rules

Software

Verification/Vali

dation

Logic- based

approach

“Fire situation” Second

order

Phase II

Mayer et al 2013 Cloud Computing Enabling

Autonomic Cloud

Software

Design/

Architecture

SCEL-software

component

ensemble
language

ASCENS Second

order

Phase II

Liao et al 2013 Concurrency

Programming

Eliminating bugs

via control

synthesis

Software Design Gadara nets (a

special class of

Petri nets)

Algorithm first order Phase I

Gutierrez-

Garcia &

Sim

2013 Agent-based

Cloud service

composition

Cloud services

composition

System Design AI, semi-

recursive

contract net
protocol

Three

Simulation

experiments

Third order Phase II

Agepati et al 2013 Software ageing &

rejuvenation

Software

rejuvenation

System Design/

Implementation/

Evolution

Algorithmic

(MDP-

approach)

Web server First order Phase I

Adams et al 2013 Cybersecurity New paradigms in

cyber security

based on
cybernetics

Software

Architecture/

Implementation

- Web Browsing Third order Phase II

Abeywickra

ma et al

2013 Self-Adaptive

Systems

Design and

Implementation of

Software

Design/Impleme

SOTA model E-Mobility Second

order

Phase II

SIMSOTA ntation

Wang & Cai 2012 Extended Finite
State Machines

Supervisory
control synthesis

Software
Verification/

Implementation

Algorithmic
(EFSM)

 First order Phase I

Wang et al 2012 Self-Adaptive

Software Systems

Control design Software

Verification/Imp
lementation

rule-based

(Descriptive
Language)

Oozie workflow

engine

Second

order

Phase II

Souza 2012 Self-Adaptive

Systems

Requirement-

based design for
Adaptive system

Requirement

Engineering

Awareness

requirements
(AwReqs and

EvoReqs)

CADs Second

order

Phase II

Shankar 2012 Software Process Competence

building in people
in Software

industries

Software Project

Management

Model-based Pilot studies Second

order

Phase II

Ponisio &
van Eck

2012 Software Process Metric based
control

Software Project
management

Framework
approach

- Second
order

Phase II

Patikirikoral

a et al

2012 Self-adaptive

Software Systems

A survey on

control
engineering

approaches

Software Design Taxonomy -

Liu et al 2012 Self-Adaptive

Software Systems

Modelling

Feedback loops

Software Design Problem-

oriented
approach

Cruise control

system

Second

order

Phase II

Kandjani et

al

2012 Software

Development
projects

Reducing the

complexity of
Global software

developments

Software

Design/
Architecture

Extended

axiomatic
design theory

- Second

order

Phase II

Harman 2012 Software

Engineering

Artificial

intelligence role

Software

Engineering/
Process

Survey of AI

techniques

- Second

order

Phase II

Buyya et al 2012 Cloud Computing Autonomic

management

Software Design Autonomic

iterative
optimisation

Dengue fever

prediction
application

Second

order

Phase II

Yang et al 2011 Mission critical

software

Self-adaptive

framework

Software Design Fuzzy logic MCS Second

order

Phase II

Okamura &
Dohi

2011 Software Systems Reinforcement
learning for

Software

Rejuvenation

Software Design Algorithmic-
(semi MDP)

Garbage
collection for

application

First order Phase I

Nakano 2011 Network systems

(Cyber-physical

systems)

Biologically

Inspired Systems

Software Design A review - Second

order

Phase II

Ionescu 2011 Cloud Computing Self-management Software Design A position paper - Second
order

Phase II

Gaudin &

Bagnato

2011 Software Systems Supervisory

control

Software

Maintenance

FSM Basic calculator First order Phase I

Gao et al 2011 Software
evolution

Requirement
modelling

Requirement
Elicitation

CPDN and
SERPM

 First order Phase I

Forsyth et al 2011 Self-managing

Software Systems

Environment

Modelling

Software

Design/
Maintenance

Learner

classifier system
and Genetic

algorithms

3D social

worlds

Second

order

Phase II

Machida et

al

2010 Cloud Computing Software

rejuvenation in
VMM

Software Design Gradient search

method

Cold VM and

Warm VM
rejuvenation

Second

order

Phase II

Peng et al 2010 Software Systems Value-based

feedback control

Software Design Algorithmic

(PID Control
theory)

Web-based

system

Second

order

Phase II

Donaires 2010 Complex Software

Systems

Software process

control

Software Design Process model

approach (based

on Viable
system model)

 First order Phase I

Ye et al 2009 Adaptive testing Complexity in

Parameter
estimation

Software

Testing

Parameter

estimation
methods (GA

Space program Second

order

Phase II

and RLSE)

Co et al 2009 Cyber Awareness
and Security

Improving the
resilience of

software

Software
Implementation

 Process-level
software

approach

Tamper
detection system

and memory

error detection
system (MEDS)

First order Phase I

Liu et al 2009 Service based

systems

Balance trade-off

between Service

performance and
security

Software design 3-tier intelligent

control

approach (with
optimisation)

Application

based on ASBS

prototype`

Second

order

Phase II

Julius &

Pappas

2009 Stochastic hybrid

systems

approximations Software

Verification

Stochastic

bisimulation
function

approach

Brownian

motion
alongside other

examples

First order Phase I

Li et al 2009 Avionics System Adaptive control
software

Software
Design/Architec

ture

Self-evolving
scheduling

algorithmic

approach(using

formalised

model)

Flight control
system

Second
order

Phase II

Cao & Chen 2009 Software Project Risk control Software Project

Management

Particle swarm

optimisation

A computable

example

Second

order

Phase II

Brun et al 2009 Self-Adaptive

systems

Engineering

feedback loops

Software

Design/

Verification/
Maintenance

A review of

current and

future
approaches

- - -

Chen et al 2009 Software

Development

Control in

software

verification

Software

Verification/

Implementation

Model-checking

techniques (of

FSA)

- First order Phase I

Lorenzoli et

al

2008 Software Systems Generation of

software

behaviour models

Software

verification/

Implementation

GK-Tail

Algorithm

(EFSM)

Shopping cart First order Phase I

Hu et al 2008 Software
Reliability

Adaptive software
testing

Software
Testing

Improved CMC
approach

Space program First order Phase I

Cai et al 2008 Software

Reliability

Experimental

study for Adaptive
testing

Software

Testing

Comparative

analysis with
random testing

and operational

profile based
testing

Space program First order Phase I

Yau et al 2007 Service-based

Systems

Deploying and

scheduling
workflows

Software

Design/
Implementation

Logic-based

technique

AS3 logic Second

order

Phase II

Solomon et

al

2007 Autonomic

Systems

Real-time

reference

architecture design

Software

Design/

Architecture

Modular

architectural

approach

- First order Phase I

Liu et al 2007 Software Process Goal-oriented

requirement

process

Requirement

Elicitation

A position paper - - -

Girard &
Pappas

2007 Discrete and
Continuous

systems

Metrics
approximation

Software
Verification/

Validation

Algorithmic
(Transition

systems)

Deterministic
and non-

deterministic

continuous

systems

First order Phase I

Dobson et al 2007 Autonomic

systems

Closed-form

specification

Software

Design/
Architecture

Model –derived

approach

Braking system First order Phase I

Cai et al 2007 Software

reliability

Adaptive testing Software

Testing

Fixed-memory

feedback

approach

Space Program First order Phase I

Bai et al 2007 Reliability in Web

services

Adaptive testing Software

Testing

Test

broker(Control

architecture)
approach

- First order Phase I

Our broad classification of current status in software cybernetics is Software Cybernetics I and II. The former

is based on first-order cybernetics by applying negative feedback mechanism to the construction of software

systems. From Fig. 1, we can see the research trend of transformation from the former to the later. As we

know, with higher order cybernetics, lower order cybernetics contexts have merged to create more

complicated systems. By introducing new elements of higher order cybernetics, the scope of software

cybernetics can be evolved accordingly. This means that, theoretically, all the software systems can be

evolved to four-order cybernetics level. The cybernetics order in Table 1 is the level of the designed systems.

Table 2 includes some features that we used to judge the orders of software cybernetics. It should be noted

that the features in the lower level are a subset of the features at a higher level. In this paper, only new

features appear in the table.

Table 2: Orders of software cybernetics

Level Defining characteristics/System features
First order Negative feedback; 'Self-steering' is isolated from the act of observation;

Second order Positive and negative feedback; Interaction between observer and observed; Supervisory control; 'Self-steering' is

affected by observer; Cybernetics of Cybernetics; Agent; Autonomous; self-adaptive; optimisation; creative

Third order Active-interactive; context-aware; Co-evolution;

Four order Self-awareness of the observer; System is contextualised, embedded and integrated into the context; Meta-system;
Self-regeneration; Self-healing; Co-defining context; Redefine itself;

It should be also noted that the observed systems in software cybernetics include the software process and the

software itself. It is observed that the subject of software process research can be much mature. Normally, the

application of software cybernetics in software process focuses mainly on feedback or optimisation. The term

“control”, e.g. quality control, implies the potential application of feedback control in software cybernetics.

Optimisation has also been well investigated in the area of search based software engineering. From the

cybernetics viewpoint, a feedback mechanism is first-order and optimisation can be first-order or second-

order level. Higher order cybernetics applications can only exist in more complicated software systems. The

main features of these systems are hybrid cyber-physical, adaptive and autonomic, hierarchical distributed,

data-driven, and smarter systems.

5. CONCLUSIONS
It is becoming clear that we are in an era of software pervasiveness. Modern products and services

increasingly embed software or are customised, optimised or managed using software (Bellavista et al., 2014).

Dynamic environments, rapidly changing requirements, unpredictable and uncertain operating conditions

require a new mode of application development and deployment. Software and services need to become

smarter, self-organised, sustainable, resource efficient, robust and safe in order to meet stakeholder demands.

The software cybernetic research area presents new opportunities and challenges to the software engineering

research community.

Over recent years, the increasing richness and sophistication of modern software systems have challenged

conventional design time software modelling analysis and has led to many studies exploring non-conventional

approaches. This paper concentrates on the transition from the first generation of software cybernetics to the

second generation of software cybernetics, which is evolutionary, not revolutionary. Many of the discussed

issues have been studied at least to some extent in the past but were typically not in the central spotlight of the

new cybernetics. It is our hope that researchers from artificial intelligence, game theory, cloud computing,

creative computing, big data, IoT, cyber-physical system and other pertinent research areas to come together

and work towards the establishment of a solid foundation that can be used in practice for effective and

efficient development of modern complicated software, which may also give rise to new software engineering

methods and tools.

To build autonomic and self-adaptive large-scale software systems, both software systems, and external

environments need to be modelled so that they can understand or even learn from each other to produce better

responses to any changes. Artificial intelligence and software cybernetics might reunion in some way to

achieve such kind of software systems at the third-order/fourth-order software cybernetics level.

References

Abeywickrama, D. B., Hoch, N., Zambonelli, F., 2013. SimSOTA: Engineering and simulating feedback loops for self-

adaptive systems. ACM International Conference on Computer Science and Software Engineering. pp. 67-76.

http://dx.doi.org/10.1145/2494444.2494446

Abuseta, Y., Swesi, K., 2015. Towards a framework for testing and simulating self-adaptive systems. 6th IEEE

International Conference on Software Engineering and Service Science (ICSESS). pp. 70-76.

http://dx.doi.org/10.1109/ICSESS.2015.7339008

Adami, D., Donatini, L., Giordano, S., Pagano, M., 2015. A network control application enabling software-defined quality

of service. IEEE International Conference on Communications (ICC 2015). pp. 6074-6079.

http://dx.doi.org/10.1109/ICC.2015.7249290

Adams, M. D., Hitefield, S. D., Hoy, B., Fowler, M. C., Clancy, T. C., 2013. Application of cybernetics and control

theory for a new paradigm in cyber security. (CoRR), arXiv preprint arXiv:1311.0257.

Agepati, R., Gundala, N., Amari, S. V., 2013. Optimal software rejuvenation policies. IEEE conference on Reliability and

Maintainability Symposium (RAMS 2013). pp. 1-7. http://dx.doi.org/10.1109/RAMS.2013.6517695

Ahuja, K., Dangey, H., 2014. Autonomic Computing: An emerging perspective and issues. IEEE International Conference

on Issues and Challenges in Intelligent Computing Techniques (ICICT 2014). pp.471-475.

http://dx.doi.org/10.1109/ICICICT.2014.6781328

Alvares, F., Rutten, E., Seinturier, L., 2015. Behavioural model-based control for autonomic software components. IEEE

International Conference on Autonomic Computing (ICAC 2015). pp. 187-196.

Ashby, W. R., 1956. An Introduction to Cybernetics. London: Chapman & Hall.

Baeten, J., Markovski, J., 2015. The role of supervisory controller synthesis in automatic control software development.

Science of Computer Programming. 97, pp. 17-22. http://dx.doi.org/10.1016/j.scico.2013.11.016

Bai, X., Chen, Y., Shao, Z., 2007. Adaptive web services testing. 31st Annual IEEE International Computer Software and

Applications Conference (COMPSAC 2007). pp. 233-236. http://dx.doi.org/10.1109/COMPSAC.2007.53

Bay, J. S., Heck, B. S., 2003. Software-enabled control: An introduction to the special section. IEEE Control Systems

magazine. 23(1), pp. 19-20. http://dx.doi.org/10.1109/MCS.2003.1172826

Bellavista, P. et al., 2014. Software Engineering Key Enabler for Innovation. NESSI Working Group: Networked

European Software and Services Initiative. White Paper.

Belli, F., Cai, K. Y., DeCarlo, R., Mathur, A., 2006. Introduction to the special section on software cybernetics. J. Syst.

Software. 79(11), pp. 1483-1485. http://dx.doi.org/10.1016/j.jss.2006.03.037

Brooks, F. P., 1987. No Silver Bullet: Essence and Accidents of Software Engineering. IEEE Computer. 20, pp. 10-19.

http://dx.doi.org/10.1109/MC.1987.1663532

Brun, Y. et al., 2009. Engineering self-adaptive systems through feedback loops. In Software engineering for self-adaptive

systems, Springer Berlin Heidelberg. pp 48-70. http://dx.doi.org/10.1007/978-3-642-02161-9_3

Buyya, R., Calheiros, R. N., Li, X., 2012. Autonomic cloud computing: Open challenges and architectural elements. Third

International Conference on Emerging Applications of Information Technology (EAIT2012). pp. 3-10.

Cai, K. Y., 2002a. Optimal software testing and adaptive software testing in the context of software cybernetics.

Information and Software Technology. 44(14), pp. 841-855. http://dx.doi.org/10.1016/S0950-5849(02)00108-8

Cai, K. Y., Chen, T. Y., Tse, T. H., 2002b. Towards research on software cybernetics. 7th IEEE International Symposium

on High Assurance Systems Engineering (HASE‟02). pp. 240. http://dx.doi.org/10.1109/HASE.2002.1173129

Cai, K. Y., Cangussu, J. W., DeCarlo, R. A., Mathur, A. P., 2003. An overview of software cybernetics. Eleventh Annual

IEEE International Workshop on Software Technology and Engineering Practice. pp. 77-86.

http://dx.doi.org/10.1109/STEP.2003.4

Cai, K. Y., Li, Y. C., Liu, K., 2004a. Optimal and adaptive testing for software reliability assessment. Information and

Software Technology. 46(15), pp. 989-1000. http://dx.doi.org/10.1016/j.infsof.2004.07.006

Cai, K. Y., Wang, X. Y., 2004b. Towards a control-theoretical approach to software fault-tolerance. Fourth International

Conference on Quality Software (QSIC 2004). pp. 198-205. http://dx.doi.org/10.1109/QSIC.2004.1357961

Cai, K. Y., Li, Y. C., Ning, W. Y., 2005. Optimal software testing in the setting of controlled Markov chains. European

Journal of Operational Research. 162(2), pp. 552-579. http://dx.doi.org/10.1016/j.ejor.2002.11.002.

Cai, K. Y., Gu, B., Hu, H., Li, Y. C., 2007. Adaptive software testing with fixed memory feedback. J. Syst. Software.

80(8), pp. 1328-1348. http://dx.doi.org/10.1016/j.jss.2006.11.008

Cai, K. Y., Jiang, C. H., Hu, H., Bai, C. G., 2008. An experimental study of adaptive testing for software reliability

assessment. J. Syst. Software. 81(8), pp. 1406-1429. http://dx.doi.org/10.1016/j.jss.2007.11.721

Cangussu, J. W., Mathur, A. P., DeCarlo, R. A., 2001. Feedback control of the software test process through

measurements of software reliability. 12th International Symposium on Software Reliability Engineering (ISSRE 2001).

pp. 232-241. http://dx.doi.org/10.1109/ISSRE.2001.989477

Cangussu, J. W., DeCarlo, R. A., Mathur, A. P., 2002. A formal model of the software test process. IEEE Transactions on

Software Engineering. 28(5), pp. 782-796. http://dx.doi.org/10.1109/TSE.2002.1027800

Cangussu, J. W., Karcich, R. M., Mathur, A. P., DeCarlo, R. A., 2004. Software release control using defect based quality

estimation. 15th International Symposium on Software Reliability Engineering (ISSRE 2004). pp. 440-450.

http://dx.doi.org/10.1109/ISSRE.2004.36

Cangussu, J. W., Cai, K.-Y., Miller, S. D., Mathur, A. P. 2007. Software Cybernetics. Wiley Encyclopedia of Computer

Science and Engineering. http://dx.doi.org/10.1002/9780470050118.ecse707

Cao, P., Chen, F., 2009. A risk control optimization model for software project. International Conference on

Computational Intelligence and Software Engineering (CiSE 2009), pp. 1-4.

http://dx.doi.org/10.1109/CISE.2009.5362886

Chang, V., 2015. A Cybernetics Social Cloud. J. Syst. Software. pp. 1-17. http://dx.doi.org/10.1016/j.jss.2015.12.031

Chen, J., Zhang, Q., Bruda, S. D., 2009. Cybernetics in software system verification. International Conference on

Intelligent Human-Machine Systems and Cybernetics, 2009 (IHMSC'09). pp. 274-277.

http://dx.doi.org/10.1109/IHMSC.2009.192

Choi, T., Chan, H., Yue, X., 2016. Recent development in big data analytics for business operations and risk management.

IEEE Transactions on Cybernetics. PP(99), pp. 1-12. http://dx.doi.org/10.1109/TCYB.2015.2507599

Co, M., Coleman C. L., Davidson, J. W., Ghosh, S., Hiser, J. D., Knight, J. C., Nguyen-Tuong, A., 2009. A lightweight

software control system for cyber awareness and security. 2nd International Symposium on Resilient Control Systems

(ISRCS'09). pp. 19-24. http://dx.doi.org/10.1109/ISRCS.2009.5251353

Cotroneo, D., Natella, R., Pietrantuono, R., Russo, S., 2011. Software aging and rejuvenation: Where we are and where

we are going. IEEE Third International Workshop on Software Aging and Rejuvenation (WoSAR 2011). pp. 1-6.

http://dx.doi.org/ 10.1109/WoSAR.2011.15

Coutinho, E. F., Gomes, D. G., de Souza, J. N., 2015. An Autonomic Computing-based architecture for cloud computing

elasticity. IEEE Latin American Network Operations and Management Symposium (LANOMS 2015). pp. 111-112.

http://dx.doi.org/10.1109/LANOMS.2015.7332681

Dijkstra, E. W., 1972. The Humble Programmer - ACM Turing Lecture 1972. Communications of the ACM. 15(10), pp.

859-866. http://dx.doi.org/10.1145/355604.361591

Ding, Z., Wei, Z., Chen, H., 2016. A software cybernetics approach to self-tuning performance of on-line transaction

processing systems. J. Syst. Software. http://dx.doi.org/10.1016/j.jss.2016.03.012

Dobson, S., Bailey, E., Knox, S., Shannon, R., Quigley, A., 2007. A first approach to the closed-form specification and

analysis of an autonomic control system. 12th IEEE International Conference on Engineering Complex Computer

Systems. pp. 229-237. http://dx.doi.org/10.1109/ICECCS.2007.6

Donaires, O. S., 2010. Programming in the complex: Cybernetic insights into software process and architecture. Systems

Research and Behavioral Science. 27(6), pp. 667-679. http://dx.doi.org/10.1002/sres.1014

Filieri, A., et al., 2015. Software engineering meets control theory. 10th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems, IEEE Press. pp. 71-82.

Forsyth, H., Laws, A., Bendiab, A. T., 2011. Evolutionary environmental modelling in self-managing software systems.

Developments in E-systems Engineering (DeSE). pp. 370-375. http://dx.doi.org/10.1109/DeSE.2011.109

Gao, T., Li, T., Xie, Z., Xu, J., Qian, Y., 2011. A process model of software evolution requirement based on feedback.

International Conference on Information Technology, Computer Engineering and Management Sciences (ICM 2011). pp.

171-174. http://dx.doi.org/10.1109/ICM.2011.183.

Gaudin, B., Bagnato, A., 2011. Software maintenance through supervisory control. IEEE Software Engineering Workshop

(SEW). pp. 97-105. http://dx.doi.org/10.1109/SEW.2011.20.

Geyer, R. F., von der Zouwen J., 1978. Socio-cybernetics. Martinus Nijhoff, Leiden/Boston/London.

Girard, A., Pappas, G. J., 2007. Approximation metrics for discrete and continuous systems. IEEE Transactions on

Automatic Control. 52(5), pp. 782-798.

Gutierrez-Garcia, J. O., Sim, K. M., 2013. Agent-based cloud service composition. Applied intelligence. 38(3), pp. 436-

464. http://dx.doi.org/10.1007/s10489-012-0380-x

Harman, M., Jones, B. F., 2001. Search-based software engineering. Information and software Technology. 43(14), pp

833-839.

Harman, M., 2006. Search-based software engineering for maintenance and reengineering. 10th European Conference on

Software Maintenance and Reengineering (CSMR 2006). pp. 1-pp.

Harman, M., 2012a. The role of artificial intelligence in software engineering. First International Workshop on Realizing

AI Synergies in Software Engineering (IEEE Press). pp. 1-6.

Harman, M., Mansouri, S. A., Zhang, Y., 2012b. Search-based software engineering: Trends, techniques, and applications.

Journal of ACM Computing Surveys (CSUR) Surveys. 45(1). Article No. 11. http://dx.doi.org/10.1145/2379776.2379787.

Harman, M., Lakhotia, K., Singer, J., White, D. R., Yoo, S., 2013. Cloud engineering is search based software engineering

too. J. Syst. Software. 86(9), pp. 2225-2241. http://dx.doi.org/10.1016/j.jss.2012.10.027

Heck, B. S., Wills, L., Vachtsevanos, G. J., 2001. Software enabled control: background and motivation (I). American

Control Conference. pp. 3433-3438. http://dx.doi.org/10.1109/ACC.2001.946161

Heylighen, F., Joslyn, C., 2001. Cybernetics and Second-Order Cybernetics, in R.A. Meyers Encyclopaedia of Physical

Science & Technology, Third ed. Academic Press, New York.

Hu, H., Jiang, C. H., Cai, K. Y., 2008. Adaptive software testing in the context of an improved controlled Markov chain

model. 32nd Annual IEEE International Computer Software and Applications (COMPSAC'08). pp. 853-858.

http://dx.doi.org/10.1109/COMPSAC.2008.186

Huebscher, M., McCann, J., 2008. A survey of autonomic computing - degrees, models, and applications, Journal of ACM

Computing Surveys (CSUR), 40(3). http://dx.doi.org/10.1145/1380584.1380585

Insaurralde, C. C., Vassev, E., 2014. Autonomic control architecture for avionics software of unmanned space vehicles.

33rd IEEE/AIAA Digital Avionics Systems Conference. pp. 8B3-1. http://dx.doi.org/10.1109/DASC.2014.6979537

Ionescu, D., 2011. Autonomic computing: The path towards controlling cloud computing services. 3rd IEEE International

Symposium on Logistics and Industrial Informatics. pp. 11-11. http://dx.doi.org/10.1109/LINDI.2011.6031133

Joao, M. F., Simon, T., Jens, B. J., Oscar, R., 2007. Designing tool support for translating Use Cases and UML 2.0

sequence diagrams into a Coloured Petri Net. International Workshop on Scenarios and State Machines, Scenarios and

State Machines (SCESM, 2007). pp. 2. http://dx.doi.org/10.1109/SCESM.2007.1

Julius, A. A., Pappas, G. J., 2009. Approximations of stochastic hybrid systems. IEEE Transactions on Automatic Control.

54(6), pp. 1193-1203. http://dx.doi.org/10.1109/TAC.2009.2019791

Kandjani, H., Bernus, P., Wen, L., 2012. Enterprise architecture cybernetics for complex global software development:

reducing the complexity of global software development using extended axiomatic design theory. Seventh IEEE

International Conference on Global Software Engineering (ICGSE ‟12). pp. 169-173.

http://dx.doi.org/10.1109/ICGSE.2012.19.

Kenett, R. S., 2011. Future directions of software cybernetics: A position paper. 35th IEEE Annual Computer Software

and Applications Conference Workshops. pp. 43-44. http://dx.doi.org/10.1109/COMPSACW.2011.18

Kim, K. D., Kumar, P. R., 2012. Cyber–physical systems: A perspective at the centennial. IEEE Special Centennial Issue.

pp. 1287-1308. http://dx.doi.org/10.1109/JPROC.2012.2189792

Konstanteli, K., Cucinotta, T., Psychas, K., Varvarigou, T. A., 2014. Elastic admission control for federated cloud services.

IEEE Transactions on Cloud Computing. 2(3), pp. 348-361. http://dx.doi.org/10.1109/TCC.2014.2325034

Kumar, K. P., Naik, N. S., 2014. Self-Healing model for software application. In Recent Advances and Innovations in

Engineering (ICRAIE). pp. 1-6. http://dx.doi.org/10.1109/ICRAIE.2014.6909207

Kundu, J., Mukherjee, A., 2014. Implementation of software cybernetics for efficient resource usage in software

maintenance project. The fourth conference on Emerging Applications of Information Technology (EAIT). pp. 127-132.

http://dx.doi.org/10.1109/EAIT.2014.29.

Lee, E. A., 2008. Cyber-physical systems: Design challenges. 11th IEEE International Symposium on Object-Oriented

Real-Time Distributed Computing (ISORC). pp. 363-369. http://dx.doi.org/10.1109/ISORC.2008.25

Li, C., Ge, J., Huang, L., Hu, H., Wu, B., Hu, H., Luo, B., 2016. Software cybernetics in BPM: Modeling software

behaviour as feedback for evolution by a novel discovery method based on augmented event logs. J. Syst. Software.

http://dx.doi.org/10.1016/j.jss.2016.03.013

Li, G., Du, C., Song, C., Cai, X., 2009. A self-evolving control method for software in complex avionics system. IEEE

International Conference on Computational Intelligence and Software Engineering (CiSE 2009). pp. 1-4.

http://dx.doi.org/10.1109/CISE.2009.5365340

Liao, H., Wang, Y., Stanley, J., Lafortune, S., Reveliotis, S., Kelly, T., Mahlke, S., 2013. Eliminating concurrency bugs in

multithreaded software: A new approach based on discrete-event control. IEEE Transactions on Control Systems

Technology. 21(6), pp. 2067-2082. http://dx.doi.org/10.1109/TCST.2012.2226034

Lin, P., MacArthur, A., Leaney, J., 2005. Defining autonomic computing: a software engineering perspective. 2005

Australian Software Engineering Conference. pp. 88-97. http://dx.doi.org/10.1109/ASWEC.2005.19

Liu, C., Jiang, C., Hu, H., Cai, K. Y., Huang, D., Yau, S. S., 2009. A control-based approach to balance services

performance and security for adaptive service-based systems (ASBS). 33rd Annual IEEE International Computer

Software and Applications Conference (COMPSAC'09). pp. 473-478. http://dx.doi.org/10.1109/COMPSAC.2009.178.

Liu, C., Zhang, W., Zhao, H., Jin, Z., 2012. A problem-oriented approach to modelling feedback loops for self-adaptive

software systems. 19th Asia-Pacific Software Engineering Conference (APSEC). pp. 440-445.

http://dx.doi.org/10.1109/APSEC.2012.77

Liu, H., Liu, Y., Liu, L., 2016. The verification of program relationships in the context of software cybernetics. J. Syst.

Software. http://dx.doi.org/10.1016/j.jss.2016.01.031

Liu, J., Zhou, J., Buyya, R., 2015. Software Rejuvenation based fault tolerance scheme for cloud applications. 8th IEEE

International Conference on Cloud Computing (CLOUD). pp. 1115-1118. http://dx.doi.org/10.1109/CLOUD.2015.164

Liu, L., Jin, Z., Lu, R., 2007. Towards controllable requirements engineering processes based on cybernetics. 31st Annual

International Computer Software and Applications Conference (COMPSAC 2007). pp. 229-232.

http://dx.doi.org/10.1109/COMPSAC.2007.221

Liu, L., Zhou, Q., Liu, J., Cao, Z., 2016. Requirements cybernetics: elicitation based on user behavioural data. J. Syst.

Software. http://dx.doi.org/10.1016/j.jss.2015.12.030

Lorenzoli, D., Mariani, L., Pezzè, M., 2008. Automatic generation of software behavioural models. 30th international

ACM conference on Software engineering. pp. 501-510. http://dx.doi.org/10.1145/1368088.1368157

Machida, F., Kim, D. S., Trivedi, K. S., 2010. Modeling and analysis of software rejuvenation in a server virtualized

system. Second IEEE International Workshop on Software Aging and Rejuvenation (WoSAR). pp. 1-6.

http://dx.doi.org/10.1109/WOSAR.2010.5722098

Mayer, P., et al., 2013. The autonomic cloud: a vision of voluntary, peer-2-peer cloud computing. 7th IEEE International

Conference on Self-Adaptation and Self-Organizing Systems Workshops (SASOW). pp. 89-94.

http://dx.doi.org/10.1109/SASOW.2013.16

Miller, S. D., DeCarlo, R. A., Mathur, A. P., Cangussu, J. W., 2006. A control-theoretic approach to the management of

the software system test phase. J. Syst. Software. 79(11), 1486-1503. http://dx.doi.org/10.1016/j.jss.2006.03.033

Nakano, T., 2011. Biologically inspired network systems: a review and future prospects. IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Reviews. 41(5), pp. 630-643.

Novikov, D. A., 2016. Cybernetics: From Past to Future. Springer.

Okamura, H., Dohi, T., 2011. Application of reinforcement learning to software rejuvenation. 10th International

Symposium on Autonomous Decentralized Systems (ISADS). pp. 647-652. http://dx.doi.org/10.1109/ISADS.2011.92

Park, J., Yeom, K., 2013. A feedback-based approach to validate SWRL rules for developing situation-aware software.

37th Annual Computer Software and Applications Conference Workshops (COMPSACW). pp. 41-46.

http://dx.doi.org/10.1109/COMPSACW.2013.21

Park, J. S., 2015. Essence-based, goal-driven adaptive software engineering. IEEE/ACM 4th SEMAT Workshop on

General Theory of Software Engineering (GTSE). pp. 33-38. http://dx.doi.org/10.1109/GTSE.2015.12

Patikirikorala, T., Colman, A., Han, J., Wang, L., 2012. A systematic survey on the design of self-adaptive software

systems using control engineering approaches. 7th International Symposium on Software Engineering for Adaptive and

Self-Managing Systems (IEEE Press). pp. 33-42. http://dx.doi.org/10.1109/SEAMS.2012.6224389

Peng, X., Chen, B., Yu, Y., Zhao, W., 2010. Self-tuning of software systems through goal-based feedback loop control.

18th IEEE International Requirements Engineering Conference (RE). pp. 104-107. http://dx.doi.org/10.1109/RE.2010.22

Perera, C. and Vasilakos, A.V., 2016. A knowledge-based resource discovery for Internet of Things. Knowledge-Based

systems (In Press). http://dx.doi.org/10.1016/j.knosys.2016.06.030

Phoha, V., Nadgar, A., Ray, A., Phoha, S., 2005. Supervisory control of software systems. In Quantitative Measure for

Discrete Event Supervisory Control. Springer New York. pp. 207-238. http://dx.doi.org/10.1007/0-387-23903-0_8

Ponisio, L., van Eck, P., 2012. Metrics-based control in outsourced software development projects. Software, IET. 6(5),

pp. 438-450. http://dx.doi.org/10.1049/iet-sen.2011.0199

Rammig, F. J., Grosbrink, S., Stahl, K., Zhao, Y., 2014. Designing self-adaptive embedded real-time software--towards

system engineering of self-adaptation. Brazilian Symposium on Computing Systems Engineering (SBESC). pp. 37-42.

http://dx.doi.org/10.1109/SBESC.2014.15.

Ravindran, K., Rabby, M., 2013. Software cybernetics to infuse adaptation intelligence in networked systems. Fourth

IEEE International Conference on the Network of the Future. pp. 1-6. http://dx.doi.org/10.1109/NOF.2013.6724499

Ravindran, K., 2014. Software cybernetics to manage adaptation behaviour of complex network systems. 23rd IEEE

International Conference on Computer Communication and Networks (ICCCN). pp. 1-8.

http://dx.doi.org/10.1109/ICCCN.2014.6911727

Sayyad, A. S., Ammar, H., 2013. Pareto-optimal search-based software engineering (POSBSE): A literature survey. 2nd

IEEE International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE). pp. 21-27.

http://dx.doi.org/10.1109/RAISE.2013.6615200

Shankar, P. R., 2012. The cybernetics of enabling competence in people competence building to ensure quality and

productivity in people in software industries. IEEE International Conference on Computational Intelligence and

Cybernetics (CyberneticsCom). pp. 83-87. http://dx.doi.org/10.1109/CyberneticsCom.2012.6381622

Sim, K. M., 2012. Agent-based cloud computing. IEEE Transactions on Services Computing. 5(4), pp. 564-577.

http://dx.doi.org/10.1109/TSC.2011.52

Sim, K. M., 2015. Agent-based interactions and economic encounters in an intelligent InterCloud. IEEE Transactions on

Cloud Computing. 3(3), pp. 358-371. http://dx.doi.org/10.1109/TCC.2015.2389839

Singh, S., Chana, I., 2015. QoS-aware autonomic resource management in cloud computing: A systematic review. ACM

Computing Surveys (CSUR). 48(3), Article No. 42. http://dx.doi.org/10.1145/2843889

Solomon, B., Ionescu, D., Litoiu, M., Mihaescu, M., 2007. Towards a real-time reference architecture for autonomic

systems. IEEE International Workshop on Software Engineering for Adaptive and Self-Managing Systems. p. 10.

http://dx.doi.org/10.1109/SEAMS.2007.20

Souza, V. E. S., 2012. A requirements-based approach for the design of adaptive systems. 34th International Conference

on Software Engineering (IEEE). pp. 1635-1637. http://dx.doi.org/10.1109/ICSE.2012.6227218

Vinnakota, T., 2013. A cybernetics paradigms framework for cyberspace: key lens to cyber security. IEEE International

Conference on Computational Intelligence and Cybernetics (CYBERNETICSCOM). pp. 85-91.

http://dx.doi.org/10.1109/CyberneticsCom.2013.6865787

Von Foerster, H., 1979. Cybernetics of cybernetics. In: Communication and Control in Society. Klaus Krippendorff (Hg.),

Gordon and Breach, New York, pp. 5–8.

Wang, L., Gao, Y., Cao, C., Wang, L., 2012. Towards a general supporting framework for self-adaptive software systems.

36th Annual IEEE Computer Software and Applications Conference Workshops (COMPSACW). pp. 158-163.

http://dx.doi.org/10.1109/COMPSACW. 2012. 38.

Wang, P., Cai, K. Y., 2006. Representing extended finite state machines for SDL by a novel control model of discrete

event systems. Sixth IEEE International Conference on Quality Software (QSIC 2006). pp. 159-166.

http://dx.doi.org/10.1109/QSIC.2006.53

Wang, X. Y., Cai, K. Y., 2012. Supervisory control of a kind of extended finite state machines. 24th IEEE Chinese

Control and Decision Conference (CCDC). pp. 775-780. http://dx.doi.org/10.1109/CCDC.2012.6244119

Wiener, N., 1948. Cybernetics: or Control and Communication in the Animal and the Machine. Boston, MA: Technology

Press.

Xu, H., Sawyer, P., Sommerville, I., 2006. Requirement process establishment and improvement from the viewpoint of

cybernetics. J. Syst. Software. 79(11), pp. 1504-1513. http://dx.doi.org/10.1016/j.jss.2006.03.050

Yang, H., Chen, F., Zhou, Y., Zhao, M., Wang, Y., Guo, H., 2008. Software evolution for evolving China. In: Ordonez de

Pablos, P and Lytras, M. D, eds. The China information technology handbook. Springer, pp. 1-33. ISBN 9780387777429.

http://dx.doi.org/10.1007/978-0-387-77743-6_21

Yang, H., Zhang, L., 2014. Controlling and being creative: software cybernetics and creative computing. IEEE 38th

International Computer Software and Applications Conference Workshops (COMPSACW). pp. 19-24.

http://dx.doi.org/10.1109/COMPSACW.2014.7

Yang, Q., Lü, J., Xing, J., Tao, X., Hu, H., Zou, Y., 2011. Fuzzy control-based software self-adaptation: A case study in

mission critical systems. IEEE 35th Annual Computer Software and Applications Conference Workshops (COMPSACW).

pp. 13-18. http://dx.doi.org/10.1109/COMPSACW.2011.13.

Yang, Y., Gohari, P., 2005. Embedded supervisory control of discrete-event systems. IEEE International Conference on

Automation Science and Engineering. pp. 410-415. http://dx.doi.org/10.1109/COASE.2005.1506804

Yau, S. S., Huang, D., Zhu, L., Cai, K. Y., 2007. A software cybernetics approach to deploying and scheduling. 11th

IEEE International Workshop on Future Trends of Distributed Computing Systems, 2007 (FTDCS'07), pp. 149-156.

http://dx.doi.org/10.1109/FTDCS.2007.7

Ye, F., Liu, C., Hu, H., Jiang, C. H., Cai, K. Y., 2009. On the computational complexity of parameter estimation in

adaptive testing strategies. 15th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC'09). pp.

87-92. http://dx.doi.org/10.1109/PRDC.2009.22

Zhang, L., 2014. A framework to specify big data driven complex cyber physical control systems. IEEE international

Conference on Information and Automation (ICIA), pp. 548-553. http://dx.doi.org/10.1109/ICInfA.2014.6932715

Zhang, L., Yin, B. B., Lv, J., Cai, K. Y., Yau, S. S., Yu, J., 2014. A history-based dynamic random software testing. IEEE

38th International Computer Software and Applications Conference Workshops (COMPSACW). pp. 31-36.

http://dx.doi.org/10.1109/COMPSACW.2014.9

Zhao, X., Xue, J., Hu, C., Ma, R., Zhang, S., 2014. Research on software behavior modeling based on extended finite state

automata. IET Communications Security Conference (CSC 2014). pp. 1-5. http://dx.doi.org/10.1049/cp.2014.0744

Zhu, H., 2012. Software cybernetics in the age of cloud computing - challenges and opportunities. Speech at the 9th IEEE

International Conference on Software Cybernetics (IWSC „09).

	Article coversheet Elsevier
	new trends

