230 research outputs found

    Using Machine Learning to Predict Complications in Pregnancy:A Systematic Review

    Get PDF
    Introduction: Artificial intelligence is widely used in medical field, and machine learning has been increasingly used in health care, prediction, and diagnosis and as a method of determining priority. Machine learning methods have been features of several tools in the fields of obstetrics and childcare. This present review aims to summarize the machine learning techniques to predict perinatal complications. Objective: To identify the applicability and performance of machine learning methods used to identify pregnancy complications. Methods: A total of 98 articles were obtained with the keywords “machine learning,” “deep learning,” “artificial intelligence,” and accordingly as they related to perinatal complications (“complications in pregnancy,” “pregnancy complications”) from three scientific databases: PubMed, Scopus, and Web of Science. These were managed on the Mendeley platform and classified using the PRISMA method. Results: A total of 31 articles were selected after elimination according to inclusion and exclusion criteria. The features used to predict perinatal complications were primarily electronic medical records (48%), medical images (29%), and biological markers (19%), while 4% were based on other types of features, such as sensors and fetal heart rate. The main perinatal complications considered in the application of machine learning thus far are pre-eclampsia and prematurity. In the 31 studies, a total of sixteen complications were predicted. The main precision metric used is the AUC. The machine learning methods with the best results were the prediction of prematurity from medical images using the support vector machine technique, with an accuracy of 95.7%, and the prediction of neonatal mortality with the XGBoost technique, with 99.7% accuracy. Conclusion: It is important to continue promoting this area of research and promote solutions with multicenter clinical applicability through machine learning to reduce perinatal complications. This systematic review contributes significantly to the specialized literature on artificial intelligence and women’s health

    Non-communicable Diseases, Big Data and Artificial Intelligence

    Get PDF
    This reprint includes 15 articles in the field of non-communicable Diseases, big data, and artificial intelligence, overviewing the most recent advances in the field of AI and their application potential in 3P medicine

    Data mining for the identification of metabolic syndrome status

    Get PDF
    Metabolic syndrome (MS) is a condition associated with metabolic abnormalities that are characterized by central obesity (e.g. waist circumference or body mass index), hypertension (e.g. systolic or diastolic blood pressure), hyperglycemia (e.g. fasting plasma glucose) and dyslipidemia (e.g. triglyceride and high-density lipoprotein cholesterol). It is also associated with the development of diabetes mellitus (DM) type 2 and cardiovascular disease (CVD). Therefore, the rapid identification of MS is required to prevent the occurrence of such diseases. Herein, we review the utilization of data mining approaches for MS identification. Furthermore, the concept of quantitative population-health relationship (QPHR) is also presented, which can be defined as the elucidation/ understanding of the relationship that exists between health parameters and health status. The QPHR modeling uses data mining techniques such as artificial neural network (ANN), support vector machine (SVM), principal component analysis (PCA), decision tree (DT), random forest (RF) and association analysis (AA) for modeling and construction of predictive models for MS characterization. The DT method has been found to outperform other data mining techniques in the identification of MS status. Moreover, the AA technique has proved useful in the discovery of in-depth as well as frequently occurring health parameters that can be used for revealing the rules of MS development. This review presents the potential benefits on the applications of data mining as a rapid identification tool for classifying MS

    Prediction Models for Intrauterine Growth Restriction Using Artificial Intelligence and Machine Learning: A Systematic Review and Meta-Analysis

    Get PDF
    Background: IntraUterine Growth Restriction (IUGR) is a global public health concern and has major implications for neonatal health. The early diagnosis of this condition is crucial for obtaining positive outcomes for the newborn. In recent years Artificial intelligence (AI) and machine learning (ML) techniques are being used to identify risk factors and provide early prediction of IUGR. We performed a systematic review (SR) and meta-analysis (MA) aimed to evaluate the use and performance of AI/ML models in detecting fetuses at risk of IUGR. Methods: We conducted a systematic review according to the PRISMA checklist. We searched for studies in all the principal medical databases (MEDLINE, EMBASE, CINAHL, Scopus, Web of Science, and Cochrane). To assess the quality of the studies we used the JBI and CASP tools. We performed a meta-analysis of the diagnostic test accuracy, along with the calculation of the pooled principal measures. Results: We included 20 studies reporting the use of AI/ML models for the prediction of IUGR. Out of these, 10 studies were used for the quantitative meta-analysis. The most common input variable to predict IUGR was the fetal heart rate variability (n = 8, 40%), followed by the biochemical or biological markers (n = 5, 25%), DNA profiling data (n = 2, 10%), Doppler indices (n = 3, 15%), MRI data (n = 1, 5%), and physiological, clinical, or socioeconomic data (n = 1, 5%). Overall, we found that AI/ML techniques could be effective in predicting and identifying fetuses at risk for IUGR during pregnancy with the following pooled overall diagnostic performance: sensitivity = 0.84 (95% CI 0.80–0.88), specificity = 0.87 (95% CI 0.83–0.90), positive predictive value = 0.78 (95% CI 0.68–0.86), negative predictive value = 0.91 (95% CI 0.86–0.94) and diagnostic odds ratio = 30.97 (95% CI 19.34–49.59). In detail, the RF-SVM (Random Forest–Support Vector Machine) model (with 97% accuracy) showed the best results in predicting IUGR from FHR parameters derived from CTG. Conclusions: our findings showed that AI/ML could be part of a more accurate and cost-effective screening method for IUGR and be of help in optimizing pregnancy outcomes. However, before the introduction into clinical daily practice, an appropriate algorithmic improvement and refinement is needed, and the importance of quality assessment and uniform diagnostic criteria should be further emphasized

    A survey on computational intelligence approaches for predictive modeling in prostate cancer

    Get PDF
    Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be modelled are too complex forconventional statistical techniques to process quickly and eciently. These advanced approaches are based on mathematical models that have been especially developed for dealing with the uncertainty and imprecision which is typically found in clinical and biological datasets. This paper provides a survey of recent work on computational intelligence approaches that have been applied to prostate cancer predictive modeling, and considers the challenges which need to be addressed. In particular, the paper considers a broad definition of computational intelligence which includes evolutionary algorithms (also known asmetaheuristic optimisation, nature inspired optimisation algorithms), Artificial Neural Networks, Deep Learning, Fuzzy based approaches, and hybrids of these,as well as Bayesian based approaches, and Markov models. Metaheuristic optimisation approaches, such as the Ant Colony Optimisation, Particle Swarm Optimisation, and Artificial Immune Network have been utilised for optimising the performance of prostate cancer predictive models, and the suitability of these approaches are discussed

    Automatic quantitative MRI texture analysis in small-for-gestational-age fetuses discriminates abnormal neonatal neurobehavior

    Get PDF
    Background: We tested the hypothesis whether texture analysis (TA) from MR images could identify patterns associated with an abnormal neurobehavior in small for gestational age (SGA) neonates. Methods: Ultrasound and MRI were performed on 91 SGA fetuses at 37 weeks of GA. Frontal lobe, basal ganglia, mesencephalon and cerebellum were delineated from fetal MRIs. SGA neonates underwent NBAS test and were classified as abnormal if $1 area was ,5th centile and as normal if all areas were .5th centile. Textural features associated with neurodevelopment were selected and machine learning was used to model a predictive algorithm. Results: Of the 91 SGA neonates, 49 were classified as normal and 42 as abnormal. The accuracies to predict an abnormal neurobehavior based on TA were 95.12% for frontal lobe, 95.56% for basal ganglia, 93.18% for mesencephalon and 83.33% for cerebellum. Conclusions: Fetal brain MRI textural patterns were associate

    Prediction of neonatal deaths in NICUs: development and validation of machine learning models

    Get PDF
    Background: Prediction of neonatal deaths in NICUs is important for benchmarking and evaluating healthcare services in NICUs. Application of machine learning techniques can improve physicians� ability to predict the neonatal deaths. The aim of this study was to present a neonatal death risk prediction model using machine learning techniques. Methods: This study was conducted in Tehran, Iran in two phases. Initially, important risk factors in neonatal death were identified and then several machine learning models including Artificial Neural Network (ANN), decision tree (Random Forest (RF), C5.0 and CHART tree), Support Vector Machine (SVM), Bayesian Network and Ensemble models were developed. Finally, we prospectively applied these models to predict neonatal death in a NICU and followed up the neonates to compare the outcomes of these neonates with real outcomes. Results: 17 factors were considered important in neonatal mortality prediction. The highest Area Under the Curve (AUC) was achieved for the SVM and Ensemble models with 0.98. The best precision and specificity were 0.98 and 0.94, respectively for the RF model. The highest accuracy, sensitivity and F-score were achieved for the SVM model with 0.94, 0.95 and 0.96, respectively. The best performance of models in prospective evaluation was for the ANN, C5.0 and CHAID tree models. Conclusion: Using the developed machine learning models can help physicians predict the neonatal deaths in NICUs. © 2021, The Author(s)

    Predicting global distributions of eukaryotic plankton communities from satellite data

    Get PDF
    プランクトンを宇宙から観測する --衛星データを入力データとする海洋真核微生物群集予測モデルの開発--. 京都大学プレスリリース. 2023-10-19.Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a. The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic–subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming
    corecore