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Abstract: Background: IntraUterine Growth Restriction (IUGR) is a global public health concern
and has major implications for neonatal health. The early diagnosis of this condition is crucial for
obtaining positive outcomes for the newborn. In recent years Artificial intelligence (AI) and machine
learning (ML) techniques are being used to identify risk factors and provide early prediction of
IUGR. We performed a systematic review (SR) and meta-analysis (MA) aimed to evaluate the use
and performance of AI/ML models in detecting fetuses at risk of IUGR. Methods: We conducted a
systematic review according to the PRISMA checklist. We searched for studies in all the principal
medical databases (MEDLINE, EMBASE, CINAHL, Scopus, Web of Science, and Cochrane). To assess
the quality of the studies we used the JBI and CASP tools. We performed a meta-analysis of the
diagnostic test accuracy, along with the calculation of the pooled principal measures. Results: We
included 20 studies reporting the use of AI/ML models for the prediction of IUGR. Out of these, 10
studies were used for the quantitative meta-analysis. The most common input variable to predict
IUGR was the fetal heart rate variability (n = 8, 40%), followed by the biochemical or biological mark-
ers (n = 5, 25%), DNA profiling data (n = 2, 10%), Doppler indices (n = 3, 15%), MRI data (n = 1, 5%),
and physiological, clinical, or socioeconomic data (n = 1, 5%). Overall, we found that AI/ML tech-
niques could be effective in predicting and identifying fetuses at risk for IUGR during pregnancy
with the following pooled overall diagnostic performance: sensitivity = 0.84 (95% CI 0.80–0.88), speci-
ficity = 0.87 (95% CI 0.83–0.90), positive predictive value = 0.78 (95% CI 0.68–0.86), negative predictive
value = 0.91 (95% CI 0.86–0.94) and diagnostic odds ratio = 30.97 (95% CI 19.34–49.59). In detail, the
RF-SVM (Random Forest–Support Vector Machine) model (with 97% accuracy) showed the best
results in predicting IUGR from FHR parameters derived from CTG. Conclusions: our findings
showed that AI/ML could be part of a more accurate and cost-effective screening method for IUGR
and be of help in optimizing pregnancy outcomes. However, before the introduction into clinical daily
practice, an appropriate algorithmic improvement and refinement is needed, and the importance of
quality assessment and uniform diagnostic criteria should be further emphasized.

Keywords: artificial intelligence; machine learning; intrauterine growth restriction; fetal growth
restriction; prediction models; small for gestational age

1. Introduction

Intrauterine Growth Restriction (IUGR) is a major public health concern worldwide
and has significant implications for neonatal health. The early diagnosis of this condition is
crucial for obtaining positive outcomes for the newborn. IUGR is defined as fetuses that
did not reach their expected growth potential without major congenital anomalies. They
correspond to approximately 70% of small-for-gestational-age (SGA) fetuses, and their
growth curve is characterized by a declining trend (abdominal circumference measured
by ultrasound <10th percentile) [1]. IUGR is also a significant global burden and a major
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health issue in developing countries [2]: it is associated with an increased risk of stillbirth,
admission to a neonatal intensive care unit, neonatal mortality, cognitive and behavioral dis-
orders in infancy, and chronic noncommunicable diseases in adulthood [2,3]. The incidence
of IUGR varies among countries, with a global annual estimate of 30 million newborns
affected by this pathology [2,3]. Fifty-two percent of stillbirths are currently associated with
IUGR, and 10% of perinatal mortality is reputed to be a consequence of IUGR [4]. IUGR
diagnosis is very complex; its suspicion is based on clinical, biochemical, and instrumen-
tal criteria [5–7]. Ideally, the diagnosis of IUGR consists of the demonstration of growth
restriction by ultrasound and the identification of a specific cause [8]. The diagnostic
process includes a detailed maternal and family history regarding risk factors for IUGR,
maternal physical examination, cardiotocography (CTG), and Doppler ultrasonography to
estimate the gestational age (GA) [9]. By comparing these estimates with normal growth
curves in the population, it is possible to determine whether the fetus is maintaining its
growth potential throughout the pregnancy. This procedure is characterized by an error
of 7–10% [9] and low accuracy is reported in detecting decreased birth weight [10] or
neonatal morbidity [5] in the first [11], second [12], or third trimester [13] of pregnancy.
Usually, when only clinical or ultrasound techniques are used, most SGA newborns are
identified after birth using population-based methods [14] or individual curves [10]. Re-
cently, biomarkers such as placental growth factor (PlGF), soluble fms-like tyrosine kynase
1 (s-Flt-1), and alpha-fetoprotein [15] have been demonstrated to play a role in the IUGR
development. However, the performance of these angiogenic factors as predictors is
limited (positive likelihood ratio, LR +, of 1.3 for PlGF and 1.4 for s-Flt-1) [16]. Similarly,
placental proteins are not sufficiently robust biomarkers for IUGR (e.g., LR + of 3.7 for
placental protein-13 in the first trimester) [17]. Moreover, the clinical models based on
maternal background and Doppler ultrasound at first or second trimester showed moderate
performances [18,19]: for instance, Crovetto et al. [20] reported detection rates of 59% and
67% about FGR with a regression model that considered maternal characteristics, uterine
artery Doppler, placental growth factor, and soluble fms-like tyrosine kinase-1. Therefore,
the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) guidelines
provide only weak recommendations for the diagnosis and treatment of IUGR [8,9,21].

In this context, artificial intelligence (AI), and/or machine learning (ML), deep learn-
ing (DL), ensemble learning (EL), and semi-supervised learning (SSL) have emerged as
potential options and solutions for many applications (e.g., image recognition, data mining,
natural language processing, and for the diagnostic process [22–24]) to improve pregnancy
outcomes [25,26], including the diagnosis of IUGR.

Traditionally, the AI/ML techniques are divided mainly into unsupervised and super-
vised learning, with the latter mostly employed in IUGR diagnosis [27]. Among the most
widely used approaches in the literature we found the support vector machines (SVM),
neural networks (NN), and Random Forest (RF) [25,28]. However, the interpretability of
the resulting predictive models is very different among these algorithms: in fact, for many
of those (e.g., SVM or NN), it is not possible to know how the model utilizes the patient
characteristics to produce the final diagnosis. This raises two major concerns: the first one
is ethical, concerning patients that may not accept an automatic mechanism for his/her
diagnosis; the other one is legal, concerning physicians who may feel not responsible for
any error that may occur [29].

The application of AI/ML/DL/EL/SSL methods has already shown remarkable
performance in other fields of women health care [30–32], using different types of data such
as clinical data, computed tomography (CT), cardiotocography (CTG), electromyography
(EMG), genomic, metabolomic, biophysical, and biochemical data [33–36].

Therefore, we decided to perform a systematic review and meta-analysis in order to:

• describe the most widely used AI/ML algorithms applied in IUGR diagnosis
• evaluate the performance of AI/ML models in terms of accuracy
• determine whether there is a combination of these methods that has been shown to

provide better accuracy in early diagnosis.
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The article is organized as follows: In Section 2 we present the methodology of
the study. In Section 3 we report the results, both in qualitative and quantitative terms
(meta-analysis). In Section 4 we discuss our study findings, and in Section 5 we draw the
conclusions of the study.

2. Materials and Methods

Three reviewers (R.R., M.R., and A.B.P.) performed the systematic review according
to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
checklist [37]. In this section we summarize the search strategy, the inclusion/exclusion
criteria, the selection criteria, the quality assessment of the included materials, the data
extraction and, finally, the statistical plan.

2.1. Search Strategy

We conducted a literature search in the following electronic databases: MEDLINE
(PubMed), Excerpta Medical Database (EMBASE), Scopus, Cumulative Index to Nursing
and Allied Health Literature (CINAHL), and Web of Science and Cochrane Database of
Systematic Reviews (CDSR). The search was limited to English-language papers. The MeSH
(Medical Subject Headings) terms used were “Machine learning” AND “IUGR” OR “Fetal
growth retardation” OR “Fetal growth restriction”. Artificial Intelligence AND “IUGR” OR
“Fetal growth retardation” OR “Fetal growth restriction”. We also used a snowball search
strategy, that is, the reference lists of selected and published original research articles were
manually searched to identify other possible eligible studies. The following search strings
were created using the search terms or keywords in the databases to locate the records.

• MEDLINE (PubMed): “Fetal Growth Retardation [Mesh]) Machine Learning [Mesh]”,
“Fetal growth restriction machine learning”, “Machine learning IUGR”, “(Artificial
intelligence) AND (IUGR)”, “(Artificial Intelligence) AND (Fetal growth restriction)”,
“(Artificial Intelligence) AND (Fetal growth retardation)”

• EMBASE: “‘artificial intelligence’/exp AND ‘intrauterine growth retardation’/exp
EMTREE”, “‘machine learning’/exp AND ‘fetal growth retardation’/exp” AND “‘ma-
chine learning’/exp AND ‘fetal growth restriction’/exp”

• Scopus: “Fetal Growth Retardation Machine Learning”, “Fetal growth restriction
machine learning”, “Machine learning IUGR”, “(Artificial intelligence) AND (IUGR)”,
“(Artificial Intelligence) AND (Fetal growth restriction)” and “(Artificial Intelligence)
AND (Fetal growth retardation)”

• CINAHL: “Fetal Growth Retardation Machine Learning”, “Fetal growth restriction
Machine Learning”, “Machine learning IUGR”, “(Artificial intelligence) AND (IUGR)”,
“(Artificial Intelligence) AND (Fetal growth restriction)”, “(Artificial Intelligence) AND
(Fetal growth retardation)”

• Web of Science: “Machine learning IUGR”, “Fetal growth retardation machine learn-
ing”, “Fetal growth retardation machine learning”, “(artificial intelligence) and IUGR”,
“(artificial intelligence) and (fetal growth restriction)”, “(artificial intelligence) and
(fetal growth retardation)”

• Cochrane Database of Systematic Reviews: “Fetal Growth Retardation/restriction/IUGR
AND Machine Learning”, “Fetal Growth Retardation/restriction/ IUGR AND Artifi-
cial intelligence”

2.2. Inclusion and Exclusion Criteria

We included all studies involving women during fertile age and studies that inves-
tigated the use of AI and/or ML in pregnant women for early diagnosis and predictive
indicators of IUGR outcome. We included only English-language articles (published
as of November 2022). We considered all types of studies (observational studies, clin-
ical trials, systematic reviews, and meta-analyses). The studies dealing with animals,
cost-effectiveness studies, articles published as abstracts, letters to the editor, conference
proceedings, and dissertations were excluded.
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2.3. Selection Criteria

Based on the titles, two independent reviewers (M.R. and R.R.) screened the articles to
identify relevant studies. One reviewer (R.R.) assessed all article abstracts for eligibility after
the screening of titles was completed. Abstracts that met the inclusion criteria were included
in the review. Studies for which one reviewer (R.R.) was unsure whether they should
have been included were discussed by two further reviewers (M.R., R.R.). Disagreements
between the reviewers were resolved by the inclusion of a third reviewer (A.B.P.) and
discussion. The full text of the included articles were reviewed for the AI/ML model,
method used, pregnancy time, and performance measures (accuracy). The Covidence tool
was used for the article selection process [38].

2.4. Quality Assessments of Studies

The quality of all included studies was assessed by two independent reviewers
(M.R., A.B.P.) using the JBI (Joanna Briggs Institute) critical appraisal tool and the CASP
(Critical Appraisal Skills Programme) tool [39,40]. The JBI Critical Appraisal Tool is com-
monly used to assess the methodological quality of studies. It consists of ten items that
address the internal validity and risk of bias of studies, specifically confounding, selection
and information bias, and the importance of clear reporting. The CASP tool, instead, is
used to appraise the Clinical Prediction Rules of the studies. Disagreements between the
two reviewers were resolved by bringing in a third reviewer (M.P.) and through discussions.
A high risk of bias was identified when positive responses were ≤49%; moderate risk of
bias was assumed when the measure was between 50% and 69%; low risk of bias was
identified when positive responses were more than 70%.

2.5. Data Extraction

A data extraction sheet was developed to collect data of interest. Four reviewers
(R.R., M.P., M.R., and A.B.P) read all included articles. Two authors (A.B.P. and R.R.) ex-
tracted the data from the articles, and later they were double-checked by two other authors
(M.R., M.P.). The following information was extracted from each study: title, year, set-
ting, study type, sample size, pregnancy time, methods, AL and/or ML model, outcomes,
sensitivity, and specificity measures.

2.6. Statistical Analysis

For the meta-analysis, R version 4.1.0 (v. 2021-05-18) [41] and R Studio (v.2021.09.2) [42]
with the meta package (v.4.19-2) were used to calculate the overall pooled estimates of
sensitivity, specificity, diagnostic odds ratio (DOR) [43], and to generate the relative forest
plots. We considered a univariate approach (with logit transformations) along with a
random effect model. The confidence intervals were calculated with the Clopper–Pearson
method. The I2 test was used to assess the statistical heterogeneity between the included
studies, with the following interpretation: An I2 value greater than 75% indicates large
heterogeneity between studies. A value of 50 to 75% was interpreted as high heterogeneity,
25 to 50% moderate, and 0 to 25% low heterogeneity. This values explain the proportion
of the aggregate pooled effect that is not explainable by chance alone [44]. We will rec-
ommended caution in interpreting aggregate measure results when accompanied with
significant heterogeneity (more than 50%). The analysis of included studies was divided
into two subgroups and random effects analyses were performed to assess the performance
of ML methods in predicting IUGR. The abilities of the various ML algorithms to predict
IUGR were discussed for each subgroup.

3. Results

This section describes the results of the extracted studies and is organized as follows:
first we report the entries retrieved, then we describe the general characteristics of the
studies and the qualitative synthesis of the performance of the different AI/ML models.
Finally, we provide the results of the quantitative meta analysis.
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3.1. Study Selection

We found 381 entries in Medline (PubMed), Scopus, Cochrane Library, CINAHL, Web
of Science, and EMBASE. We did not find any systematic review or meta-analyses in the
Cochrane Library. After removing 226 duplicate entries, 155 articles remained for screening.
By reading the title and abstract, 118 entries were excluded because they did not meet our
inclusion criteria. Then, we processed 37 full-text articles for eligibility. After reading the
full text, 17 articles were excluded. Therefore, 20 studies were included in our systematic
review. The entire article selection process is shown in Figure 1. All studies met JBI
and CASP criteria for critical appraisal. A summary of the quality assessment results is
provided in the Supplementary Materials (Tables S1 and S2). In summary, when the quality
of studies was assessed with the JBI instrument, 17 studies had a low risk of bias with a high
percentage of positive responses to the JBI instrument questions, one study was assessed
as moderate risk of bias and two studies had a high risk of bias (Table S1). The CASP
instrument identified 18 studies that had a low risk of bias with a high percentage of
positive responses to the CASP instrument questions, whereas two studies had a moderate
risk of bias (Table S2).

Figure 1. PRISMA Flow Diagram for the selection of articles.

3.2. Study Characteristics

Table 1 describes the characteristics of the 20 included studies. Most studies (n = 18)
used data from a single country. Twelve studies used data from Europe (Italy and Slovenia),
two studies utilized data from the United States, three studies used data from China,
and the last study used data from the United States and South Africa. Considering the
study design, 16 studies were retrospective case-control studies; 3 were prospective case-
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control study and the last was a retrospective, nested case-control study for a cumulative
total of 11,800 subjects. In detail, one study had a sample size of 6004 subjects, another one
included 2199 subjects. Eight studies had more than 100 subjects, with two studies having
more than 500 subjects. Finally, ten studies had fewer than 100 subjects. Three studies were
conducted in the second trimester, fifteen studies predicting IUGR were conducted in the
third trimester of pregnancy and two studies did not report pregnancy time.

Among the 20 studies, the most important features or variables analyzed to predict
IUGR using AI/ML were based on FHR parameters from cardiotocography (n = 8, 40%)
followed by biochemical or biological characteristics (n = 5, 25%), Doppler indices parame-
ters (n = 3, 15%), DNA profiling data (n = 2, 10%), MRI magnetic resonance imaging data
(n = 1, 5%), and physiological, clinical or socioeconomic data (n = 1, 5%). Regarding the
AI/ML models used in the studies to predict IUGR: seven studies used the Support Vector
Machines (SVM) algorithm [45–48], with one study using a combination of the Radial
Basis Function (RBF) and SVM algorithms [47], one study used SVM and MLP [49]. Four
studies adapted logistic regression (LR) model [27,50–52]. Of these, three studies used LR
combined with Random Forest (RF) [51], Stochastic Gradient Decent & RF [27], and SVM
models [52]. Two studies used multiple models [25,53]. One study used a combination of
Auto-Contractive Map (ACM) & Activation and Competition System (ACS) [54]. The re-
maining studies used a single model including RUS Boost, Bayesian network (BN), Artificial
neural networks (ANNS), and Lempel–Ziv (LZ) complexity, CVR [55–59]. Regarding the
outcomes, as shown in Table 1, nine studies focused on finding the best classification model
ML to detect IUGR. Four studies focused on realizing an automatic system for detecting
IUGR, three studies focused on evaluating ML models for predicting IUGR and BW, two
studies focused on assessing ML models to predict pre-Eclampsia and IUGR [53,59], one
study focused on evaluating ML algorithms to identify latent risk clinical attributes [25] and
the last study focused on developing an ML screener for late IUGR. Among the included
studies, accuracy (measure) in predicting IUGR ranged from 78% (using the SVM) to 97%
(using the RF).
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Table 1. Characteristics of included studies: articles published using AI and/or ML to detect IUGR during various pregnancy timings.

Author Study Type Setting Sample (n) Preg Time (weeks) Methods AI/ML Model Outcomes Measures (Accuracy)

Guo, Z. [50] Obs. retr. case-control China 2199 12–28 DNA profiling LR Using ML to predict FGR
and BW 79%

Dahdoud, S. [58] Obs. retr. case-control USA 80 18–39 MRI RUSBoost Using ML to predict FGR
and BW 86%

Lunghi, F. [45] Obs. retr. case-control Italy 909 30–35 FHR by CTG SVM Realizing an automatic
system for identified FGR 84%

Magenes, G. [48] Obs. retr. case-control Italy 100 30–35 FHR by CTG SVM Realizing an automatic
system for identified FGR 78%

Signorini, M. [60] Obs. retr. case-control Italy 120 30–35 FHR by CTG RF (best)
Find the best

classification ML model
for identifying IUGR

91%

Crockart, I.C. [27] Obs. prosp. case-control USA and S. Africa 6004 20–29 FHR by CTG Stochastic Gradient
Descent, LR & RF

Using ML to predict FGR
and BW 91%

Bahado–Singh, R. [46] Obs. retr. case-control USA 80 Delivery Biochemical SVM
Find the best

classification ML model
for identifying IUGR

80%

Pini, N. [47] Obs. retr. case-control Italy 262 36–37 FHR by CTG RBF-SVM Build a ML screener for
late IUGR 93%

Magenes, G. [51] Obs. retr. case-control Italy 122 30–35 FHR by CTG RF & LR
Find the best

classification ML model
for identifying IUGR

RF = 85% ; LR = 83%

Xu, C. [52] Obs. retr. nested
case-control China 810 12–27 DNA profiling SVM & LR

Find the best
classification ML model

for identifying IUGR
83%

Buscema, M. [54] Obs. retr. case-control Italy 46 Delivery Biochemical ACM & ACS
Find the best

classification ML model
for identifying IUGR

87%

Foltran, F. [55] Obs. prosp. case-control Italy 46 20–32 Biochemical BN Realizing an automatic
system for identified FGR 90%

Street, M.E. [56] Obs. retr. case-control Italy 48 20–32 Biochemical ANNS
Find the best

classification ML model
for identifying IUGR

89%

Ferrario, M. [57] Obs. retr. case-control Italy 59 27–34 FHR by CTG LZ complexity Realizing an automatic
system for identified FGR 91%

Deval, R. [49] Obs. retr. case-control India 214 - Biochemical SVM, MLP Using ML models to
predict IUGR

SMO = 95.5%;
MLP = 8.5%

Gómez–Jemes, L. [53] Obs. retr. case-control Slovenia 95 24–38 Doppler indices: UA,
sFIt-1, and PIGF values

Multi-models
(extra-trees, RF)

Using ML models to
predict pre-Eclampsia,

IUGR

Extra trees = 78%,
RF = 73%

Sufriyana, H. [59] Obs. prosp. case-control Slovenia 95 24–37 Doppler indices: UA,
sFIt–1, and PIGF values CVR

Using ML models to
predict pre-Eclampsia,

IUGR
CVR = 90.6%

Aslam, N. [61] Obs. retr. case-control Italy 382 30–37 FHR by CTG SVM & RF Using ML models to
predict IUGR RF = 97%

Gürgen, F. [62] Obs. retr. case-control Turkey 44 <38
Doppler indices: PI & RI

of UA, MCA, DV,
and AFI

SVM Using ML models to
predict IUGR SVM = 81%

Van, S.N. [25] Obs. prosp. case-control China 75 - Physiological, clinical,
and socioeconomic Seven ML algorithms

Identify the latent risk
clinical attributes using

the ML algorithms.
94.73%
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3.3. Performance of ML Models for IUGR Prediction: Qualitative Synthesis
3.3.1. Prediction of IUGR from Biochemical and Clinical Parameters

Five studies examined biochemical and clinical factor data to detect IUGR using the BN,
ANNS, ACM&ACS, MLP and SVM models [46,49,54–56]. Three studies detected TNF-alfa,
IL-6, and IGF-2 as placental markers of fetal growth in IUGR [54–56] using AI/ML models.
Of these three studies, the BN model showed high predictive accuracy with 90%, followed
by ANN with 89%, and ACM-ACS with 87% respectively. Deval et al. analyzed maternal
features and blood biochemical parameters using SMO and MLP models. The study
showed a predictive accuracy of 95.5% with support vector machine (SVM) algorithm
and 88.5% with multilayer perceptron (MLP) algorithm [49]. Bahado et al. performed a
metabolomic analysis (with 40 IUGR and 40 healthy subjects) using the SVM model and
detected altered metabolic pathways (beta-oxidation of very long fatty acids, oxidation
of branched-chain fatty acids, phospholipid biosynthesis, lysine depletion, urea cycle,
and fatty acid metabolism) in IUGR cases. The model showed a predictive accuracy of
80% [46].

3.3.2. Prediction of IUGR from DNA Profiling

Two studies analysed nucleosome profiling data from cell-free DNA (cfDNA) to
predict IUGR [50,52]. Guo et al. predicted pregnancy complications associated with
placental changes (pre-eclampsia, gestational diabetes mellitus, fetal growth restriction,
and macrosomia) using whole-genome sequencing with low coverage of plasma DNA from
2199 pregnancies (with maternal age, BMI, neonatal weight, and adverse events in previous
pregnancies being the most influential characteristics in the study). This study suggested
that promoter profiling-based classifiers provide high predictive power for predicting
IUGR in early gestational age with 79% accuracy using the LR model. Moreover, cfDNA
profiling can be used as a biological marker for predicting IUGR in early gestational age [50].
In another study, Xu et al. successfully developed the best classifier (IUGR prediction
method) for assessing the risk of IUGR in early gestational age with 83% accuracy using
SVM-LR models [52].

3.3.3. Prediction of IUGR from MRI Data

Dahdoud et al. examined 3D (three-dimensional) MRI data (placental shape and tex-
ture features) to predict IUGR and BW (birth weight) using the RUSBoost model. The model
identified IUGR pregnancies with 86% accuracy, 77% precision, and 86% recall. Birth weight
(BW) estimates were 0.3 ± 13.4% (mean percent error ± standard error) for healthy fetuses
and −2.6 ± 15.9% for IUGR [58].

3.3.4. Prediction of IUGR from FHR Parameters by CTG

The use of fetal heart rate (FHR) in antepartum fetal monitoring (AFM) to predict
health status is widely used in clinical practice. We identified eight studies that used AI/ML
to classify IUGR and healthy fetuses based on FHR parameters [27,45,47,48,51,57,60,61].
Two studies investigated 15 data mining techniques to select the most reliable approach
to detecting IUGR fetuses [51,60]. Magenes et al. found that RF and LR models had the
best classification accuracy (RF = 85% and LR = 83%) and that both models outperformed
the best single parameter in terms of mean Area Under the Receiver Operating Charac-
teristics (AUROC) in the test sets [51]. In another study, Signorini et al. obtained the best
performance for the model RF with 91% accuracy [60]. Two studies aimed to implement
an automated system for the diagnosis of fetal sufferance in IUGR fetuses using an SVM
model applied to reliable indices extracted from FHR recordings [45,48]. Lunghi et al.
achieved 84% accuracy [45] while Magenes et al. obtained 78% accuracy in detecting fetal
sufferance in IUGR fetuses [48]. Crockart et al. developed a Stochastic Gradient Descent
model that accurately and consistently predicted IUGR with 91% accuracy between 34 + 0
and 37 + 6 weeks of gestation. In addition, the model identified the Umbilical Artery
Pulsatility Index as the strongest indicator for predicting IUGR, which is considered the
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gold standard in the literature [27]. Ferrario et al. analyzed FHR signals from fetuses
whose gestational age was between 27 and 34 weeks to detect severe IUGR by applying the
Lempel–Ziv (LZ) complexity model. The study showed that the model may be a potential
solution for detecting severe IUGR (with 91% accuracy). LZ values were higher for severe
IUGRs (>0.94, i.e., close to 1, the theoretical value assigned to a random string), whereas
the LZ value for healthy fetuses ranged from 0.85 to 0.9 [57]. Pini et al. used a Radial Basis
Function Support Vector Machine (RBF-SVM) classification model for quantitative features
extracted from FHR signals acquired by CTG in a population of 160 healthy and 102 late
IUGR fetuses. This study showed a satisfactory classification performance in the training
group (accuracy 0.93, sensitivity 0.93, specificity 0.84) and concluded that the model can
describe the relationships between features beyond the traditional linear approaches, thus
improving the classification performance. Moreover, the study found that the model has
the potential to be proposed as a screening tool for identifying fetuses with late IUGR [47].
Aslam et al. tested several ML models for the features extracted from FHR signals acquired
by CTG. Among the tested models SVM model had an outperformed positive predictive
value (PPV) and Specificity (SP), whereas RF model showed highest predictive accuracy
(97%) [61].

3.3.5. Prediction of IUGR from Doppler Indices

We identified three studies that analysed parameters (including UA, sFIt-1, PIGF
values, PI & RI of UA, MCA, DV, and AFI obtained using Doppler ultrasound) Using ML
models, in which two studies predicted IUGR and pre-eclampsia [53,59] and one study
to predict IUGR fetus at risk [62]. Of these three studies, the CVR model showed high
predictive accuracy 90.6% [59] followed by SVM model with 81% [62] and Extra trees (with
78%) and RF model (with 73%) respectively [53].

3.3.6. Detection of Latent Clinical Attributes for Children Born under IUGR Condition

Van et al. study proposed ML as a solution to identify key characteristics based on
physiological, clinical, or socioeconomic factors that correlate with previous IUGR status
after 10 years. A dataset of 75 children (41 IUGR and 34 non-IUGR subjects) was used for
the study. This study showed that the model ML (proposed classification system) had an
accuracy of up to 94.73%. The study concluded that the proposed classification system and
the indication of relevant attributes (latent factors such as HRV and BP monitoring) may
assist medical teams in the clinical monitoring of IUGR children during their childhood
development [25].

3.4. Meta-Analysis

A total of ten studies were included in the meta-analysis. Different parameters were
employed as inputs for AI systems: four studies used biological profiling parameters as
AI inputs to predict IUGR [46,50,52,54], six studies used FHR parameters as AI inputs to
predict IUGR [27,45,47,48,51,60]. We were unable to extract precise quantitative data from
ten studies; thus, they were excluded from the meta-analysis [55–58].

The results showed that AI/ML models applied to FHR by CTG and biological profil-
ing features for the detection of IUGR had comparable sensitivity and specificity. In partic-
ular, the sensitivity was 0.81 [0.73–0.87] for the biological profiling versus 0.86 [0.80–0.90]
for the FHR by CTG; the specificity was 0.83 [0.73–0.87] for the biological profiling versus
0.89 [0.85–0.92] for the FHR by CTG. The AI/ML algorithms were able to predict IUGR
with a pooled overall sensitivity, specificity, PPV and NPV of 0.84 (95% CI: 0.80–0.88)
[Figure 2], 0.87 (95% CI: 0.83–0.90) [Figure 3], 0.78 (95% CI: 0.68–0.86) [Figure 4] and 0.91
(95% CI: 0.86–0.94) [Figure 5] respectively. The pooled diagnostic odds ratio was 30.97
(95% CI: 19.34–49.59) [Figure 6]. We noticed no significant differences between the two
groups concerning the pooled sensitivity and specificity. Our results showed no differences
between the predictive values (both positive and negative) of the two groups as well. When
comparing the aggregate pooledpredictive values, we noticed that the NPV is substantially
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greater than the PPV, thereby indicating a possible more important role of AI/ML models
in detecting an healthy rather than an unhealthy fetus. Finally, the DOR summarizing
measure showed also a moderate heterogeneity (26%).

Figure 2. Pooled sensitivity of artificial intelligence and/or machine learning models for IUGR
prediction [27,45–48,50–52,54,60].

Figure 3. Pooled specificity of artificial intelligence and/or machine learning models for
IUGR prediction [27,45–48,50–52,54,60].
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Figure 4. Pooled positive predictive value of artificial intelligence and/or machine learning models
for IUGR prediction [27,45–48,50–52,54,60].

Figure 5. Pooled negative predictive value of artificial intelligence and/or machine learning models
for IUGR prediction [27,45–48,50–52,54,60].
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Figure 6. Diagnostic odds ratios of artificial intelligence and/or machine learning models for
IUGR prediction [27,45–48,50–52,54,60].

4. Discussion

In current practice, the diagnosis of IUGR is a process whose outcomes could be
affected by the complexity of the procedure [36,63].

Previous studies [18–20] showed moderate performance of clinical models that are
based on maternal background and Doppler ultrasound at first or second trimester. Given
the results of these studies, the use of AI and machine learning could be an improvement
of current models [64]. The quality of ultrasound examinations depends on the operator’s
skills and requires repeated measurements during pregnancy. Therefore, the precision
of the consequent fetal growth curve could be affected by the moderate reliability of the
method [1,8,9].

The results of our meta-analysis showed that AI/ML techniques could help to better
predict IUGR than conventional methods and reduce the intrinsic bias in image inter-
pretation, both in the general population and at-risk groups. However, we obtained our
findings by grouping several algorithms applied to the different diagnostic techniques
and this could be a first limitation of the study. We observed high performances for all
the AI/ML models, with an accuracy rate of the diagnostic process ranging from 79% to
97% [47,50,61]. However, it is important to note that the inputs of the AI/ML assisted
models were not completely identical among the studies included in the analysis and
therefore the interpretation of the aggregate diagnostic performances should be cautious,
despite the low/moderate heterogeneity values.

In overall, we observed that AI/ML models better predicted IUGR when applied
to CTG. In detail, the RBF-SVM model showed an accuracy of 93%; the LZ-Complexity,
Stochastic Gradient Descent, LR, and RF models had an accuracy of 91%. Lastly, the detec-
tion of TNF-alfa, IL-6 and IGF-2 as placental markers of fetal growth in IUGR using the
BN model had an accuracy of 90%. Therefore, these results suggest that AI/ML could help
clinical decisions for birth planning in terms of timing and detection of a more appropriate
structure in fetuses at risk of IUGR. Nevertheless, it is difficult to reach a consensus about
the best method to predict IUGR because not all the studies included in our review had
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the same input variables and samples. However, we think that FHR by CTG might lead
clinicians to prefer this method in the near future because of its actual widespread use and
the simplicity of its application in everyday practice [65].

It is also important to mention that all the studies reviewed were observational and
not applied in a clinical setting. To our knowledge, there is no randomized controlled
trial (RCT), or pilot study conducted in a medical centre or adaptation of an AI/ML-based
application (to predict IUGR) in a hospital. In this regard, to obtain a higher level of
evidence, we think that future prospective studies, in particular RCTs with large samples,
are needed to confirm the performances in IUGR prediction. These studies should be based
on a rigorous comparison between AI/ML models for IUGR prediction (interventions) and
usual care (i.e., conventional diagnostics as a control) and necessarily use standardized
outcomes to better compare the different AI/ML models for IUGR early diagnosis and to
effectively generalize the eventual findings [66,67]. In fact, from a methodological perspec-
tive, in order to maximize the performance of AI/ML models the selection of appropriate of
input parameters/features is needed [68]. Therefore, the actual lack of studies comparing
AI/ML and conventional diagnostic could have affected the actual selection of informative,
discriminative, and independent features and limiting the performances of algorithms
when applied in clinical setting.

Interestingly, we found that the most accurate algorithms (e.g., SVM) provide a model
that is not interpretable, therefore acting as a black box. Even though this aspect is not as
important as the absolute accuracy of the diagnosis, ethical concerns may arise because the
patients must be informed and accept the fact that not only the physician is not making
the diagnosis anymore, but also that he/she could not explain how the decision was made.
Finally, we noticed that there are no large scale validation studies in the literature, which
we believe are necessary before employing these techniques in current practice.

5. Conclusions

Our study provided a first overview of the role of AI/ML technology in predicting
IUGR and demonstrated its promising potential. Despite a few limitations, we think
that our review can be considered a robust and high-quality study for some reasons.
First, the most popular scientific databases were searched with a well-developed query.
The search was sensitive and accurate. Then, the use of techniques such as searching the
biomedical literature database (PubMed, Embase, and Scopus), the world’s leading citation
databases (Web of Science), subject-specific databases (CINAHL), and the world’s leading
source of journals and databases for systematic reviews in health care (CDSR) suggests that
the risk of publication bias in this study is low. Lastly, most of the studies included in our
review had a low risk of bias when assessed with the JBI and CASP tools.

We believe that integrating AI with conventional noninvasive methods could provide
doctors better diagnostic tools with an optimal balance of sensitivity and specificity. How-
ever, we also think that stronger studies are needed to better validate AI/ML models for
prediction of IUGR before their introduction into clinical practice, given the high variability
of variables included in all the studies and the possibility of lack of consideration of signif-
icant confounders (e.g., pre-eclampsia). These new studies will need to be designed not
only to evaluate the efficacy, but also to solve the issue of medical liability when applying
AI/ML model in clinical practice. This because some application of AI/ML models is
closely related to what is called a black box system [69,70], as the doctor views only input
and output parameters and cannot see the inner workings of the algorithm. It is a rather
controversial system and until all these processes are made transparent and understandable,
even if potentially effective, their application will be limited. Consequently, future research
will have to solve this issue as well before this technology can be widespread in everyday
clinical practice. Moreover, the introduction of routine use of AI/ML based systems in
health care facilities could lead to a better process performance and probably, to cost-saving
results. However, specific process indicators measuring AI performances in clinical practice
have yet to be developed.
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In conclusion, our findings showed that AI/ML methods are promising and could be
part of a more accurate and cost-effective screening method for IUGR and be of help in op-
timizing pregnancy outcomes. However, before the introduction into clinical daily practice,
an appropriate algorithmic improvement and refinement is needed and the importance of
quality assessment and uniform diagnostic criteria should be further emphasized.
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