117 research outputs found

    Remote Sensing of Tropical Cyclones: Applications from Microwave Radiometry and Global Navigation Satellite System Reflectometry

    Full text link
    Tropical cyclones (TCs) are important to observe, especially over the course of their lifetimes, most of which is spent over the ocean. Very few in situ observations are available. Remote sensing has afforded researchers and forecasters the ability to observe and understand TCs better. Every remote sensing platform used to observe TCs has benefits and disadvantages. Some remote sensing instruments are more sensitive to clouds, precipitation, and other atmospheric constituents. Some remote sensing instruments are insensitive to the atmosphere, which allows for unobstructed observations of the ocean surface. Observations of the ocean surface, either of surface roughness or emission can be used to estimate ocean surface wind speed. Estimates of surface wind speed can help determine the intensity, structure, and destructive potential of TCs. While there are many methods by which TCs are observed, this thesis focuses on two main types of remote sensing techniques: passive microwave radiometry and Global Navigation Satellite System reflectometry (GNSS-R). First, we develop and apply a rain rate and ocean surface wind speed retrieval algorithm for the Hurricane Imaging Radiometer (HIRAD). HIRAD, an airborne passive microwave radiometer, operates at C-band frequencies, and is sensitive to rain absorption and emission, as well as ocean surface emission. Motivated by the unique observing geometry and high gradient rain scenes that HIRAD typically observes, a more robust rain rate and wind speed retrieval algorithm is developed. HIRAD’s observing geometry must be accounted for in the forward model and retrieval algorithm, if high rain gradients are to be estimated from HIRAD’s observations, with the ultimate goal of improving surface wind speed estimation. Lastly, TC science data products are developed for the Cyclone Global Navigation Satellite System (CYGNSS). The CYGNSS constellation employs GNSS-R techniques to estimate ocean surface wind speed in all precipitating conditions. From inputs of CYGNSS level-2 wind speed observations and the storm center location, a variety of products are created: integrated kinetic energy, wind radii, radius of maximum wind speed, and maximum wind speed. These products provide wind structure and intensity information—valuable for situational awareness and science applications.PHDAtmospheric, Oceanic & Space ScienceUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137109/1/marygm_1.pd

    Downscaling GLDAS Soil Moisture Data in East Asia through Fusion of Multi-Sensors by Optimizing Modified Regression Trees

    Get PDF
    Soilmoisture is a key part of Earth's climate systems, including agricultural and hydrological cycles. Soil moisture data from satellite and numerical models is typically provided at a global scale with coarse spatial resolution, which is not enough for local and regional applications. In this study, a soil moisture downscaling model was developed using satellite-derived variables targeting Global Land Data Assimilation System (GLDAS) soil moisture as a reference dataset in East Asia based on the optimization of a modified regression tree. A total of six variables, Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced SCATterometer (ASCAT) soil moisture products, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and MODerate resolution Imaging Spectroradiometer (MODIS) products, including Land Surface Temperature, Normalized Difference Vegetation Index, and land cover, were used as input variables. The optimization was conducted through a pruning approach for operational use, and finally 59 rules were extracted based on root mean square errors (RMSEs) and correlation coefficients (r). The developed downscaling model showed a good modeling performance (r = 0.79, RMSE = 0.056 m(3)center dot m(3), and slope = 0.74). The 1 km downscaled soil moisture showed similar time series patterns with both GLDAS and ground soil moisture and good correlation with ground soil moisture (average r = 0.47, average RMSD = 0.038 m(3)center dot m(3)) at 14 ground stations. The spatial distribution of 1 km downscaled soil moisture reflected seasonal and regional characteristics well, although the model did not result in good performance over a few areas such as Southern China due to very high cloud cover rates. The results of this study are expected to be helpful in operational use to monitor soil moisture throughout East Asia since the downscaling model produces daily high resolution (1 km) real time soil moisture with a low computational demand. This study yielded a promising result to operationally produce daily high resolution soil moisture data from multiple satellite sources, although there are yet several limitations. In future research, more variables including Global Precipitation Measurement (GPM) precipitation, Soil Moisture Active Passive (SMAP) soil moisture, and other vegetation indices will be integrated to improve the performance of the proposed soil moisture downscaling model.ope

    Satellite remote sensing of surface winds, waves, and currents: Where are we now?

    Get PDF
    This review paper reports on the state-of-the-art concerning observations of surface winds, waves, and currents from space and their use for scientific research and subsequent applications. The development of observations of sea state parameters from space dates back to the 1970s, with a significant increase in the number and diversity of space missions since the 1990s. Sensors used to monitor the sea-state parameters from space are mainly based on microwave techniques. They are either specifically designed to monitor surface parameters or are used for their abilities to provide opportunistic measurements complementary to their primary purpose. The principles on which is based on the estimation of the sea surface parameters are first described, including the performance and limitations of each method. Numerous examples and references on the use of these observations for scientific and operational applications are then given. The richness and diversity of these applications are linked to the importance of knowledge of the sea state in many fields. Firstly, surface wind, waves, and currents are significant factors influencing exchanges at the air/sea interface, impacting oceanic and atmospheric boundary layers, contributing to sea level rise at the coasts, and interacting with the sea-ice formation or destruction in the polar zones. Secondly, ocean surface currents combined with wind- and wave- induced drift contribute to the transport of heat, salt, and pollutants. Waves and surface currents also impact sediment transport and erosion in coastal areas. For operational applications, observations of surface parameters are necessary on the one hand to constrain the numerical solutions of predictive models (numerical wave, oceanic, or atmospheric models), and on the other hand to validate their results. In turn, these predictive models are used to guarantee safe, efficient, and successful offshore operations, including the commercial shipping and energy sector, as well as tourism and coastal activities. Long-time series of global sea-state observations are also becoming increasingly important to analyze the impact of climate change on our environment. All these aspects are recalled in the article, relating to both historical and contemporary activities in these fields

    Selection of the key earth observation sensors and platforms focusing on applications for Polar Regions in the scope of Copernicus system 2020-2030

    Get PDF
    An optimal payload selection conducted in the frame of the H2020 ONION project (id 687490) is presented based on the ability to cover the observation needs of the Copernicus system in the time period 2020–2030. Payload selection is constrained by the variables that can be measured, the power consumption, and weight of the instrument, and the required accuracy and spatial resolution (horizontal or vertical). It involved 20 measurements with observation gaps according to the user requirements that were detected in the top 10 use cases in the scope of Copernicus space infrastructure, 9 potential applied technologies, and 39 available commercial platforms. Additional Earth Observation (EO) infrastructures are proposed to reduce measurements gaps, based on a weighting system that assigned high relevance for measurements associated to Marine for Weather Forecast over Polar Regions. This study concludes with a rank and mapping of the potential technologies and the suitable commercial platforms to cover most of the requirements of the top ten use cases, analyzing the Marine for Weather Forecast, Sea Ice Monitoring, Fishing Pressure, and Agriculture and Forestry: Hydric stress as the priority use cases.Peer ReviewedPostprint (published version

    Satellite and in situ observations for advancing global Earth surface modelling: a review

    Get PDF
    In this paper, we review the use of satellite-based remote sensing in combination with in situ data to inform Earth surface modelling. This involves verification and optimization methods that can handle both random and systematic errors and result in effective model improvement for both surface monitoring and prediction applications. The reasons for diverse remote sensing data and products include (i) their complementary areal and temporal coverage, (ii) their diverse and covariant information content, and (iii) their ability to complement in situ observations, which are often sparse and only locally representative. To improve our understanding of the complex behavior of the Earth system at the surface and sub-surface, we need large volumes of data from high-resolution modelling and remote sensing, since the Earth surface exhibits a high degree of heterogeneity and discontinuities in space and time. The spatial and temporal variability of the biosphere, hydrosphere, cryosphere and anthroposphere calls for an increased use of Earth observation (EO) data attaining volumes previously considered prohibitive. We review data availability and discuss recent examples where satellite remote sensing is used to infer observable surface quantities directly or indirectly, with particular emphasis on key parameters necessary for weather and climate prediction. Coordinated high-resolution remote-sensing and modelling/assimilation capabilities for the Earth surface are required to support an international application-focused effort

    Ground, Proximal, and Satellite Remote Sensing of Soil Moisture

    Get PDF
    Soil moisture (SM) is a key hydrologic state variable that is of significant importance for numerous Earth and environmental science applications that directly impact the global environment and human society. Potential applications include, but are not limited to, forecasting of weather and climate variability; prediction and monitoring of drought conditions; management and allocation of water resources; agricultural plant production and alleviation of famine; prevention of natural disasters such as wild fires, landslides, floods, and dust storms; or monitoring of ecosystem response to climate change. Because of the importance and wide‐ranging applicability of highly variable spatial and temporal SM information that links the water, energy, and carbon cycles, significant efforts and resources have been devoted in recent years to advance SM measurement and monitoring capabilities from the point to the global scales. This review encompasses recent advances and the state‐of‐the‐art of ground, proximal, and novel SM remote sensing techniques at various spatial and temporal scales and identifies critical future research needs and directions to further advance and optimize technology, analysis and retrieval methods, and the application of SM information to improve the understanding of critical zone moisture dynamics. Despite the impressive progress over the last decade, there are still many opportunities and needs to, for example, improve SM retrieval from remotely sensed optical, thermal, and microwave data and opportunities for novel applications of SM information for water resources management, sustainable environmental development, and food security

    NASA CYGNSS Mission Applications Workshop

    Get PDF
    NASA's Cyclone Global Navigation Satellite System, (CYGNSS), mission is a constellation of eight microsatellites that will measure surface winds in and near the inner cores of hurricanes, including regions beneath the eyewall and intense inner rainbands that could not previously be measured from space. The CYGNSS-measured wind fields, when combined with precipitation fields (e.g., produced by the Global Precipitation Measurement [GPM] core satellite and its constellation of precipitation imagers), will provide coupled observations of moist atmospheric thermodynamics and ocean surface response, enabling new insights into hurricane inner core dynamics and energetics. The outcomes of this workshop, which are detailed in this report, comprise two primary elements: (1) A report of workshop proceedings, and; (2) Detailed Applications Traceability Matrices with requirements and operational considerations to serve broadly for development of value-added tools, applications, and products

    CIRA annual report FY 2014/2015

    Get PDF
    Reporting period July 1, 2014-March 31, 2015
    corecore