286 research outputs found

    Belief merging in Dynamic Logic of Propositional Assignments

    Get PDF
    International audienceWe study syntactical merging operations that are defined semantically by means of the Hamming distance between valuations; more precisely, we investigate the ÎŁ-semantics, Gmax-semantics and max-semantics. We work with a logical language containing merging operators as connectives, as opposed to the metalanguage operations of the literature. We capture these merging operators as programs of Dynamic Logic of Propositional Assignments DL-PA. This provides a syntactical characterisation of the three semantically defined merging operators, and a proof system for DL-PA therefore also provides a proof system for these merging operators. We explain how PSPACE membership of the model checking and satisfiability problem of star-free DL-PA can be extended to the variant of DL-PA where symbolic disjunctions that are parametrised by sets (that are not defined as abbreviations, but are proper connectives) are built into the language. As our merging operators can be polynomially embedded into this variant of DL-PA, we obtain that both the model checking and the satisfiability problem of a formula containing possibly nested merging operators is in PSPACE

    The Basic Principles of Uncertain Information Fusion. An organized review of merging rules in different representation frameworks

    Get PDF
    We propose and advocate basic principles for the fusion of incomplete or uncertain information items, that should apply regardless of the formalism adopted for representing pieces of information coming from several sources. This formalism can be based on sets, logic, partial orders, possibility theory, belief functions or imprecise probabilities. We propose a general notion of information item representing incomplete or uncertain information about the values of an entity of interest. It is supposed to rank such values in terms of relative plausibility, and explicitly point out impossible values. Basic issues affecting the results of the fusion process, such as relative information content and consistency of information items, as well as their mutual consistency, are discussed. For each representation setting, we present fusion rules that obey our principles, and compare them to postulates specific to the representation proposed in the past. In the crudest (Boolean) representation setting (using a set of possible values), we show that the understanding of the set in terms of most plausible values, or in terms of non-impossible ones matters for choosing a relevant fusion rule. Especially, in the latter case our principles justify the method of maximal consistent subsets, while the former is related to the fusion of logical bases. Then we consider several formal settings for incomplete or uncertain information items, where our postulates are instantiated: plausibility orderings, qualitative and quantitative possibility distributions, belief functions and convex sets of probabilities. The aim of this paper is to provide a unified picture of fusion rules across various uncertainty representation settings

    Computational Complexity of Strong Admissibility for Abstract Dialectical Frameworks

    Get PDF
    Abstract dialectical frameworks (ADFs) have been introduced as a formalism for modeling and evaluating argumentation allowing general logical satisfaction conditions. Different criteria used to settle the acceptance of arguments arecalled semantics. Semantics of ADFs have so far mainly been defined based on the concept of admissibility. Recently, the notion of strong admissibility has been introduced for ADFs. In the current work we study the computational complexityof the following reasoning tasks under strong admissibility semantics. We address 1. the credulous/skeptical decision problem; 2. the verification problem; 3. the strong justification problem; and 4. the problem of finding a smallest witness of strong justification of a queried argument

    Egalitarian Judgment Aggregation

    Full text link
    Egalitarian considerations play a central role in many areas of social choice theory. Applications of egalitarian principles range from ensuring everyone gets an equal share of a cake when deciding how to divide it, to guaranteeing balance with respect to gender or ethnicity in committee elections. Yet, the egalitarian approach has received little attention in judgment aggregation -- a powerful framework for aggregating logically interconnected issues. We make the first steps towards filling that gap. We introduce axioms capturing two classical interpretations of egalitarianism in judgment aggregation and situate these within the context of existing axioms in the pertinent framework of belief merging. We then explore the relationship between these axioms and several notions of strategyproofness from social choice theory at large. Finally, a novel egalitarian judgment aggregation rule stems from our analysis; we present complexity results concerning both outcome determination and strategic manipulation for that rule.Comment: Extended version of paper in proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 202
    • …
    corecore