
Journal of Artificial Intelligence Research 60 (2017) 1-40 Submitted 12/16; published 09/17

Complexity Results and Algorithms for
Extension Enforcement in Abstract Argumentation

Johannes P. Wallner WALLNER@DBAI.TUWIEN.AC.AT

Institute of Information Systems,
TU Wien, Austria

Andreas Niskanen ANDREAS.NISKANEN@HELSINKI.FI

Matti Järvisalo MATTI.JARVISALO@HELSINKI.FI

Helsinki Institute for Information Technology HIIT,
Department of Computer Science,
University of Helsinki, Finland

Abstract

Argumentation is an active area of modern artificial intelligence (AI) research, with connec-
tions to a range of fields, from computational complexity theory and knowledge representation and
reasoning to philosophy and social sciences, as well as application-oriented work in domains such
as legal reasoning, multi-agent systems, and decision support. Argumentation frameworks (AFs) of
abstract argumentation have become the graph-based formal model of choice for many approaches
to argumentation in AI, with semantics defining sets of jointly acceptable arguments, i.e., exten-
sions. Understanding the dynamics of AFs has been recently recognized as an important topic in the
study of argumentation in AI. In this work, we focus on the so-called extension enforcement prob-
lem in abstract argumentation as a recently proposed form of argumentation dynamics. We provide
a nearly complete computational complexity map of argument-fixed extension enforcement under
various major AF semantics, with results ranging from polynomial-time algorithms to complete-
ness for the second level of the polynomial hierarchy. Complementing the complexity results, we
propose algorithms for NP-hard extension enforcement based on constraint optimization under the
maximum satisfiability (MaxSAT) paradigm. Going beyond NP, we propose novel MaxSAT-based
counterexample-guided abstraction refinement procedures for the second-level complete problems
and present empirical results on a prototype system constituting the first approach to extension
enforcement in its generality.

1. Introduction

Argumentation is a core topic in Artificial Intelligence (AI) (Bench-Capon & Dunne, 2007), with
applications in e.g. decision support (Amgoud & Prade, 2009), legal reasoning (Bench-Capon,
Prakken, & Sartor, 2009), and multi-agent systems (McBurney, Parsons, & Rahwan, 2012). Ar-
gumentation frameworks (AFs) proposed by Dung (1995) in the context of abstract argumentation
provide the fundamental formal model for many approaches to argumentation in AI. Syntactically,
AFs are directed graphs, where arguments are abstract entities represented by vertices. Conflicts
among arguments are formalized as attacks, and represented with directed edges between argu-
ments. Semantics of AFs—several of which have been proposed—specify criteria for arguments’
acceptance, resulting in sets of jointly acceptable arguments called extensions.

c©2017 AI Access Foundation. All rights reserved.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/146448882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WALLNER, NISKANEN, & JÄRVISALO

Argumentation is inherently a dynamic process. Recently, several works have focused on fun-
damental aspects of argumentation dynamics in terms of AFs, in particular, expansions (Baumann,
2012a; Cayrol, de Saint-Cyr, & Lagasquie-Schiex, 2010), revision (Baumann & Brewka, 2015;
Coste-Marquis, Konieczny, Mailly, & Marquis, 2014a, 2014b; Diller, Haret, Linsbichler, Rümmele,
& Woltran, 2015; Booth, Kaci, Rienstra, & van der Torre, 2013), aggregation (Delobelle, Konieczny,
& Vesic, 2015; Delobelle, Haret, Konieczny, Mailly, Rossit, & Woltran, 2016; Endriss & Grandi,
2017), and logical frameworks (Doutre, Herzig, & Perrussel, 2014). In this work, we focus on ex-
tension enforcement (Baumann, 2012b; Bisquert, Cayrol, de Saint-Cyr, & Lagasquie-Schiex, 2013;
de Saint-Cyr, Bisquert, Cayrol, & Lagasquie-Schiex, 2016; Coste-Marquis, Konieczny, Mailly, &
Marquis, 2015; Coste-Marquis et al., 2014b; Doutre et al., 2014), a specific form of AF dynamics
with connections to belief revision, concerned with finding changes to a given AF in order to support
a desired point of view, represented as a set of arguments, under pre-specified semantics.

The goal of extension enforcement is to modify a given argumentation framework in light of
new information in a way that a given set becomes an extension (Baumann & Brewka, 2010). The
extension enforcement problem in abstract argumentation was proposed by Baumann and Brewka
(2010), where the (im)possibilities of enforcing a set of arguments were studied under different con-
ditions, namely, addition of new arguments and attacks from and to them (i.e., under the so-called
normal, strong and weak expansions). This approach is viable in e.g. dialogue-based settings, where
the question is how to make (enforce) a certain point of view (extension) acceptable by drawing new
information into the discussion (de Saint-Cyr et al., 2016). Baumann (2012b) generalized the prob-
lem to enforcing a set of arguments under minimal change1, that is, the question is not only whether
the set can be enforced (a decision problem), but how many changes to the original framework
are required at minimum in order to achieve the desired enforcement (an optimization problem).
The removal of arguments and attacks associated with them was studied by Bisquert et al. (2013),
de Saint-Cyr et al. (2016), who also generalized the extension enforcement problem to arbitrary
goals expressible in first-order logic. All of these approaches make the assumption that the initial
attacks of the AF are fixed, and instead new arguments can arrive or old ones can leave.

However, as noted by Baumann and Brewka (2010) and Coste-Marquis et al. (2015), enforce-
ment under these expansions is impossible in the general case. Motivated by this, the argument-
fixed extension enforcement problem was proposed by Coste-Marquis et al. (2015), where instead
of adding new arguments and attacks, the arguments are fixed, and the original attack structure
may be subject to any change, viewed as an optimization problem by minimizing the number of
changes necessary. This view guarantees that both the so-called strict and non-strict variants—
the tasks being enforcing a given set of arguments exactly as an extension (strict enforcement) or
ensuring that a given set of arguments is contained in an extension (non-strict enforcement)—of
this argument-fixed extension enforcement problem always have a solution. A further motivation
for the argument-fixed extension enforcement problem is in the context of uncertain attacks, which
are amenable to change. Such uncertainty can occur, e.g., when an AF was generated from argu-
ments based on enthymemes (Mailly, 2016), i.e., arguments and attacks are created from partially
unspecified premises that are assumed—in a potentially erroneous manner—from common knowl-
edge. Enthymemes (incomplete syllogisms) are often used in natural language for technical and
strategical reasons, since in human communication one may assume a “common knowledge base”
from which to draw unspoken, or implicit, assumptions. Yet another motivation, from a more al-

1. Note that Baumann (2012b) uses the word ’minimal’ as a synonym for ’minimum’.

2

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

gorithmic perspective, for the argument-fixed extension enforcement problem is that it subsumes,
via addition of further constraints, enforcement under expansions when the set of new arguments is
bounded (Coste-Marquis et al., 2015).

In this work, we take the work of Coste-Marquis et al. (2015) considerably further in terms of
complexity analysis of and system implementations for the argument-fixed extension enforcement
problem. Indeed, while the complexity landscape of non-dynamic problems on AFs, including the
credulous and skeptical reasoning tasks for a given fixed AF, is already well-established (Dunne &
Wooldridge, 2009), the complexity of extension enforcement under different semantics and problem
variants has not been thoroughly studied until now. In terms of complexity studies, to the best of
our knowledge the most closely related recent results consider the complexity of problems in the
contexts of strategic argumentation (Maher, 2016c, 2016a, 2016b) and incomplete knowledge in ar-
gumentation (Baumeister, Neugebauer, & Rothe, 2015a; Baumeister, Rothe, & Schadrack, 2015b).
Furthermore, while several efficient systems for the NP-hard variants of non-dynamic problems
are available (Cerutti, Dunne, Giacomin, & Vallati, 2014a; Cerutti, Giacomin, & Vallati, 2014b;
Dvořák, Järvisalo, Wallner, & Woltran, 2014; Egly, Gaggl, & Woltran, 2010; Nofal, Atkinson, &
Dunne, 2014), to our best knowledge the single existing system for extension enforcement was only
recently proposed (Coste-Marquis et al., 2015) and supports extension enforcement only w.r.t. a
specific AF semantics (the stable semantics). This article aims at bridging these gaps.

1.1 Contributions

Our main contributions are the following.

• We provide a nearly complete computational complexity map of argument-fixed extension
enforcement, where the task is to enforce a given extension by modifying the attack relation
of a given AF. Our results cover nine standard AF semantics and both the strict and non-strict
variants of extension enforcement. For instance, we provide polynomial-time algorithms for
strict enforcement under the admissible and stable semantics (the latter of which was in fact
proposed to be solved using the NP-machinery of integer programming (IP) in Coste-Marquis
et al., 2015); we show that most non-strict enforcement problems are NP-complete, along
with strict enforcement under the complete and grounded semantics; and establish second-
level completeness for strict enforcement under preferred and semi-stable semantics as well
as for non-strict semi-stable and stage semantics.

• We propose algorithms for the NP-hard variants of the enforcement problems based on ap-
plying constraint optimization solvers. We detail maximum satisfiability (MaxSAT) encod-
ings for the NP-complete problem variants, and, perhaps most interestingly, propose novel
counterexample-guided abstraction refinement (CEGAR) (Clarke, Grumberg, Jha, Lu, &
Veith, 2003; Clarke, Gupta, & Strichman, 2004) procedures for the second-level ΣP

2 -complete
variants using optimization solvers as functional NP oracles. This results in a first extension
enforcement system in its generality, allowing for optimally solving instances of both the
non-strict and strict variants of NP-hard extension enforcement under various central AF se-
mantics. We also provide an extensive empirical evaluation of our system implementation.

While our main focus is argument-fixed extension enforcement, we also shortly discuss the nor-
mal, strong, and weak variants (Baumann, 2012b) of enforcement, and explain how our declarative
approach can be extended to capture some of such further variants of extension enforcement.

3

WALLNER, NISKANEN, & JÄRVISALO

This article considerably extends a preliminary version of the work presented at AAAI-16, 30th
AAAI Conference on Artificial Intelligence (Wallner, Niskanen, & Järvisalo, 2016), including full
previously unpublished formal proofs, new empirical results on the scalability of the approach, as
well as extended examples and discussion.

1.2 Paper Structure

The rest of this article is organized as follows. We start with necessary preliminaries on abstract ar-
gumentation and argumentation frameworks, maximum satisfiability, and the standard complexity
classes central to the following discussion (Section 2), and continue by formally defining extension
enforcement as studied in this work as an optimization problem (Section 3). We then proceed to
the main contributions of this work: a thorough complexity analysis of strict and non-strict exten-
sion enforcement under various central semantics (Section 4), algorithms for NP-hard extension
enforcement, including both direct MaxSAT encodings of the NP-complete variants of extension
enforcement (Section 5) and counterexample-guided abstraction refinement algorithms for the prob-
lem variants that are complete for the second level of the polynomial hierarchy (Section 6), followed
by a large-scale empirical evaluation of the algorithms (Section 7). Finally, before conclusions, we
briefly discuss other variants of extension enforcement, to what extent the algorithms proposed in
this work can be easily adapted to cover the further variants, as well as computational complexity
of some of the further variants (Section 8).

2. Preliminaries

We start by recalling the necessary background for the rest of our discussion: argumentation frame-
works in the context of abstract argumentation, the central argumentation semantics considered in
this work, and background on maximum satisfiability and some of the standard complexity classes.

2.1 Argumentation Frameworks

We recall concepts related to argumentation frameworks (Dung, 1995) and their semantics (Baroni,
Caminada, & Giacomin, 2011).

Definition 1. An argumentation framework (AF) is a pair F = (A,R), where A is a finite set of
arguments and R ⊆ A × A is the attack relation. The pair (a, b) ∈ R means that a attacks b. An
argument a ∈ A is defended (in F) by a set S ⊆ A if, for each b ∈ A such that (b, a) ∈ R, there
exists a c ∈ S such that (c, b) ∈ R.

Example 1. Let F = (A,R) be an AF with A = {a, b, c, d, e} and R = {(a, b),(b, c),(c, d),(d, c),
(d, e),(e, e)}. The corresponding graph representation is shown in Figure 1.

Semantics for argumentation frameworks are defined through a function σ which assigns to
each AF F = (A,R) a set σ(F) ⊆ 2A of extensions. We consider for σ the functions naive , stb,

a b c d e

Figure 1: Example argumentation framework in Example 1.

4

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

adm , com , grd , prf , sem , and stg which stand for naive, stable, admissible, complete, grounded,
preferred, semi-stable, and stage extensions, respectively. Towards the definition of these semantics
we introduce some auxiliary formal concepts.

Definition 2. Given an AF F = (A,R), the characteristic functionFF : 2A → 2A of F isFF (S) =
{x ∈ A | x is defended by S}. Moreover, for a set S ⊆ A, the range of S is S+

R = S ∪{x | (y, x) ∈
R, y ∈ S}.

The semantics considered in this paper are as follows.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F), if there are no a, b ∈ S,
such that (a, b) ∈ R. We denote the collection of conflict-free sets of F by cf (F). For a conflict-free
set S ∈ cf (F), it holds that

• S ∈ naive(F) iff there is no T ∈ cf (F) with S ⊂ T ;

• S ∈ stb(F) iff S+
R = A;

• S ∈ adm(F) iff S ⊆ FF (S);

• S ∈ com(F) iff S = FF (S);

• S ∈ grd(F) iff S is the least fixed-point of FF ;

• S ∈ prf (F) iff S ∈ adm(F) and there is no T ∈ adm(F) with S ⊂ T ;

• S ∈ sem(F) iff S ∈ adm(F) and there is no T ∈ adm(F) with S+
R ⊂ T

+
R ;

• S ∈ stg(F) iff there is no T ∈ cf (F) with S+
R ⊂ T

+
R .

It is a well-known fact that for any AF F it holds that cf (F) ⊇ adm(F) ⊇ com(F) ⊇
prf (F) ⊇ sem(F) ⊇ stb(F). We use the term σ-extension to refer to an extension under a se-
mantics σ ∈ {naive, stb, adm, com, grd , prf , sem, stg}.

Example 2. Consider the AF F in Example 1 on page 4. For the semantics σ considered, the
σ-extensions of F are enumerated in the following table.

σ σ(F)

naive {{a, c}, {a, d}, {b, d}}
stb {{a, d}}

adm {∅, {a}, {a, c}, {a, d}, {d}}
com {{a}, {a, c}, {a, d}}
grd {{a}}
prf {{a, c}, {a, d}}
sem {{a, d}}
stg {{a, d}}

5

WALLNER, NISKANEN, & JÄRVISALO

2.2 Central Complexity Classes

We briefly recall the complexity classes used in this paper (for more details we refer the reader
to Papadimitriou, 1994). The complexity class P contains all problems that can be solved with a
deterministic polynomial-time algorithm. The class NP contains all problems solvable via a non-
deterministic polynomial-time algorithm. The class coNP is the class of complements of NP prob-
lems. Finally, we make use of the class NPNP = ΣP

2 , which is the class of problems that can be
decided with a non-deterministic polynomial-time algorithm that has access to an NP-oracle, i.e.,
can decide a problem in NP in constant time. A problem P is C-hard if every problem P ′ in C is
polynomial-time reducible to P , i.e., there is a polynomial-time algorithm that transforms an in-
stance I ′ of P ′ to an instance I of P such that I ′ is a “yes” instance of P ′ if and only if I is a “yes”
instance of P . A problem P is complete for a complexity class C if P is in C and P is C-hard.

2.3 Maximum Satisfiability

In this work we present declarative encodings that can be used for solving extension enforce-
ment optimally under various semantics. We employ maximum satisfiability (MaxSAT) as a well-
suited declarative language. Specifically, we will present MaxSAT encodings as well as develop
counterexample-guided abstraction refinement algorithms for solving the ΣP

2 -complete problem
variants by applying the NP-encodings. For necessary background, we now recall the MaxSAT
problem.

For a variable x, there are two literals, x and ¬x. A clause is a disjunction (∨) of literals. A
truth assignment is a function from variables to {0, 1}. A clause c is satisfied by a truth assignment
τ (τ(c) = 1) if τ(x) = 1 for a literal x in c, or τ(x) = 0 for a literal ¬x in c; otherwise τ does not
satisfy c (τ(c) = 0).

An instance ϕ = (ϕh, ϕs) of the partial MaxSAT problem consists of a set ϕh of hard clauses
and a set ϕs of soft clauses. Any truth assignment τ that satisfies every clause in ϕh is a solution to
ϕ. The cost of a solution τ to ϕ is COST(ϕ, τ) =

∑
c∈ϕs

(1− τ(c)), i.e., the number of soft clauses
not satisfied by τ . A solution τ is optimal for ϕ if COST(ϕ, τ) ≤ COST(ϕ, τ ′) holds for any solution
τ ′ to ϕ. Given ϕ, the partial MaxSAT problem asks to find an optimal solution to ϕ. From here on,
we refer to partial MaxSAT simply as MaxSAT.

3. Extension Enforcement

We continue by recalling definitions of enforcement operators central to this work (Baumann,
2012b; Coste-Marquis et al., 2015) and by formally defining argument-fixed extension enforce-
ment (Coste-Marquis et al., 2015) as the optimization problem considered in this work.

Formally, the task of extension enforcement is to modify the attack structure R of an AF F =
(A,R) in a way that a given set T becomes (a subset of) an extension under a given semantics σ.
Strict enforcement requires that the given set of arguments has to be a σ-extension, while in non-
strict enforcement it is required to be a subset of a σ-extension. We denote strict by s and non-strict
by ns.

Denote by

enf (F, T, s, σ) = {R′ | F ′ = (A,R′), T ∈ σ(F ′)}

6

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

a

b

c

d

Figure 2: Argumentation framework from Example 3.

a

b

c

d

(a) Strictly enforcing {a}.

a

b

c

d

(b) Non-strictly enforcing {a}.

Figure 3: Enforcement under complete semantics in Example 3.

the set of attack structures that strictly enforce T under σ for an AF F , and analogously

enf (F, T, ns, σ) = {R′ | F ′ = (A,R′), ∃T ′ ∈ σ(F ′) : T ′ ⊇ T}

for non-strict enforcement.
The Hamming distance between two attack structuresR andR′ is |R∆R′| = |R\R′|+ |R′\R|,

i.e., the cardinality of the symmetric difference, or the number of changes (additions or removals
of attacks) of an enforcement. In this work we consider extension enforcement as an optimiza-
tion problem, where the number of changes is minimized. Formally, the problem can be stated as
follows.

Optimal Extension Enforcement (M ∈ {s, ns})
Input: AF F = (A,R), T ⊆ A, and semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈enf (F,T,M,σ)

|R∆R′|.

Example 3. Let F = (A,R) be an AF with A = {a, b, c, d} and R = {(b, a), (b, c), (c, a), (c, d),
(d, b)}. The corresponding graph representation is shown in Figure 2. Consider enforcing {a}
under the complete semantics. Note that for F we have com(F) = {∅}, i.e., the only complete
extension is the empty set. A way to strictly enforce {a} as a complete extension is to remove the
attacks (b, a) and (c, a) (Figure 3a). Adding (d, c) makes {a, d} a complete extension, and thereby
{a} becomes non-strictly enforced (Figure 3b).

For non-strict extension enforcement, the problems of enforcing an extension under the admis-
sible, complete and preferred semantics coincide.

Theorem 1. Let F = (A,R) be an AF, T ⊆ A. Now

enf (F, T, ns, adm) = enf (F, T, ns, com) = enf (F, T, ns, prf).

7

WALLNER, NISKANEN, & JÄRVISALO

Table 1: Complexity results for argument-fixed extension enforcement.

σ strict non-strict
Conflict-free in P in P

Naive in P in P
Admissible in P NP-complete

Stable in P NP-complete
Complete NP-complete NP-complete
Grounded NP-complete NP-complete
Preferred ΣP

2 -complete NP-complete
Semi-stable ΣP

2 -complete ΣP
2 -complete

Stage coNP-hard and in ΣP
2 ΣP

2 -complete

Proof. First, suppose R′ ∈ enf (F, T, ns, prf), and let F ′ = (A,R′). Since now there exists a
superset T ′ ⊇ T such that T ′ ∈ prf (F ′), and in addition prf (F ′) ⊆ com(F ′), it also holds
that T ′ ∈ com(F ′). Therefore R′ ∈ enf (F, T, ns, com), which shows that enf (F, T, ns, prf) ⊆
enf (F, T, ns, com) holds. The inclusion enf (F, T, ns, com) ⊆ enf (F, T, ns, adm) is handled
similarly by noting that complete extensions of the new AF are a subset of the admissible extensions.

Now, suppose R′ ∈ enf (F, T, ns, adm), and let again F ′ = (A,R′). From the definition we
know that there exists T ′ ⊇ T such that T ′ ∈ adm(F ′). Let now T ′′ ∈ adm(F ′) be a maximal ele-
ment with respect to set-inclusion such that T ′ ⊆ T ′′. It follows that T ′′ ∈ prf (F ′), and since T ⊆
T ′′, we know that R′ ∈ enf (F, T, ns, prf). Therefore the final inclusion enf (F, T, ns, adm) ⊆
enf (F, T, ns, prf) also holds, establishing equality between the three sets.

The fact that the optimal solutions are also the same for non-strict extension enforcement under
the admissible, complete, and preferred semantics follows trivially from Theorem 1.

4. Complexity Analysis

This section is dedicated to complexity analysis of non-strict and strict extension enforcement under
various central AF semantics. In the decision problem for extension enforcement, we are given an
AF F = (A,R), a semantics σ, a set T ⊆ A, and an integer k ≥ 0, and are asked to decide if there
is an F ′ = (A,R′) with |R∆R′| ≤ k that enforces T non-strictly (resp. strictly) for semantics σ.
That is, the decision problem for extension enforcement asks whether a given set of arguments can
be enforced non-strictly (strictly) with at most k modifications to the attack structure.

An overview of the complexity results of this paper is given in Table 1. Contrasting with the
central (non-dynamic) credulous acceptance problem, where we are given an AF F = (A,R), an
argument a ∈ A, and a semantics σ, and asked to decide whether a ∈

⋃
σ(F), we note that under

the grounded semantics, both variants of enforcement are NP-complete, while credulous accep-
tance is decidable in polynomial time. For all other semantics considered here, the complexities
of non-strict enforcement and credulous acceptance coincide (Dimopoulos & Torres, 1996; Coste-
Marquis, Devred, & Marquis, 2005; Dunne & Caminada, 2008; Dvořák & Woltran, 2010). On the
other hand, strict enforcement is computable in polynomial time under the admissible and stable
semantics, and credulous acceptance is NP-complete (Dimopoulos & Torres, 1996). Additionally,
strict enforcement under the preferred semantics is ΣP

2 -complete, and credulous acceptance is NP-

8

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

complete, since credulous acceptance under the admissible and preferred semantics, respectively,
coincide.

We begin our analysis with non-strict extension enforcement. A basic observation is that, to
enforce a set T under semantics σ, all attacks “inside” T need to be removed, since all considered
semantics are based on conflict-free sets. For non-strict enforcement under conflict-free and naive
semantics, this modification turns out to be optimal.

Theorem 2. Non-strict extension enforcement for conflict-free and naive semantics is in P.

Proof. Let F = (A,R) be an AF and T ⊆ A the set to be enforced. Define F ∗ = (A,R∗) with
R∗ = R \ (T × T). Now T ∈ cf (F ∗) and thus there is a T ′ ∈ naive(F ∗) with T ⊆ T ′. For any
R′ ⊆ A× A with |R∆R′| < |R∆R∗| it holds that T and all supersets of T are not conflict-free in
F ′ = (A,R′). Thus F ∗ is the unique optimal solution.

For the remaining semantics, non-strict enforcement is presumably harder. This follows from
the fact that it is computationally hard to check whether there is a superset of T that is a σ-extension
of the input AF F .

Theorem 3. Non-strict extension enforcement for admissible, complete, preferred, and stable se-
mantics is NP-complete.

Proof. Recall that non-strict extension enforcement under the admissible, complete and preferred
semantics coincide (Theorem 1). Therefore it is enough to consider one of these, for instance the
admissible semantics. Let F = (A,R) be an AF, T ⊆ A the set to be enforced, σ ∈ {adm, stb},
and k ≥ 0 an integer. Let R′ be a nondeterministic guess for the attack structure of the proposed
solution AF F ′ = (A,R′), and T ′ the guess for the superset of T that is a σ-extension. Since the
necessary checks |R∆R′| ≤ k, T ⊆ T ′ and T ′ ∈ σ(F ′) can be computed in polynomial time, it
holds that non-strict extension enforcement under these semantics is in NP.

NP-hardness follows from a reduction from the NP-complete credulous acceptance problem
under semantics σ (Dimopoulos & Torres, 1996), where we have to decide whether an argument a
is contained in one σ-extension of a given AF F . This problem is reduced to non-strict extension
enforcement as follows. Let F = (A,R) be an AF, and a ∈ A an argument whose credulous
acceptance is to be checked. Define a non-strict extension enforcement instance with the same
AF F and the singleton set T = {a} to be enforced. The reduction can clearly be computed in
polynomial time. Suppose T can be enforced with 0 changes to the attack structure. This implies
that a is credulously accepted, since there exists T ′ ⊇ T such that T ′ ∈ σ(F). On the other hand, if
a is credulously accepted, there exists some T ′ ∈ σ(F) such that T ⊆ T ′, that is, T is non-strictly
enforced with 0 changes.

The same complexity jump from NP-completeness of credulous acceptance under admissible,
complete, preferred, and stable semantics to ΣP

2 -completeness under semi-stable and stage seman-
tics holds with non-strict extension enforcement, as we show next.

Theorem 4. Non-strict extension enforcement for semi-stable and stage semantics is ΣP
2 -complete.

Proof. We show ΣP
2 -completeness for these problems similarly as in the NP-completeness proof of

Theorem 3. Let F = (A,R) be an AF, T ⊆ A the set to be enforced, σ ∈ {sem, stg}, and k ≥ 0
an integer. Let R′ be a nondeterministic guess for the attack structure of the proposed solution

9

WALLNER, NISKANEN, & JÄRVISALO

AF F ′ = (A,R′), and T ′ the guess for the superset of T that is a σ-extension. Since the checks
|R∆R′| ≤ k, T ⊆ T ′ can be computed in polynomial time, and T ′ ∈ σ(F ′) via a single call to an
NP-oracle, it is clear that non-strict extension enforcement under these semantics is in ΣP

2 .
ΣP
2 -hardness follows from a reduction from the ΣP

2 -complete credulous acceptance problem
under semantics σ (Dunne & Caminada, 2008; Caminada, Carnielli, & Dunne, 2012; Dvořák &
Woltran, 2010). Let F = (A,R) be an AF, and a ∈ A an argument whose credulous acceptance is
to be checked. Define a non-strict extension enforcement instance with the same AF F and the set
T = {a} to be enforced. The reduction can clearly be computed in polynomial time. Now T can be
enforced with 0 changes to the attack structure if and only if a is credulously accepted.

Coste-Marquis et al. (2015) established that the union of non-strict and strict extension enforce-
ment under stable semantics is NP-hard. As a more fine-grained analysis, by Theorem 3 non-strict
enforcement is in itself NP-complete; furthermore, in the following we will show that strict enforce-
ment under stable semantics is in fact in P.

From the previous theorems it might appear that the main source of intractability does not origi-
nate from the modifications of the attack structure, but from (credulous) acceptance problems asso-
ciated with the semantics under consideration. However, even for the grounded semantics, non-strict
enforcement turns out to be NP-complete. This suggests that the non-determinism introduced by
changes in the attack structure is another source for NP-hardness.

Theorem 5. Non-strict extension enforcement for grounded semantics is NP-complete.

Proof. Membership follows from a non-deterministic guess of a new attack structure and then com-
puting the grounded extension which can be done in polynomial time. Finally, we check whether
the desired set is contained in the grounded extension and whether the cardinality of the symmetric
difference between the original and new framework does not exceed the given bound.

For hardness, we provide a reduction from the problem of checking whether a given Boolean
formula φ in CNF is satisfiable. Let X = {x1, . . . , xn} be the vocabulary of φ and C the set of
clauses of φ. We view clauses as sets of literals. For a set X , let X = {x | x ∈ X}. We construct
an AF F = (A,R) as follows. We define the arguments by

A ={t1, t2} ∪X ∪X ∪
{cj | c ∈ C, 1 ≤ j ≤ n+ 1} ∪
{yji , y

j
i , z

j
i | xi ∈ X, 1 ≤ j ≤ n+ 1},

and the attacks by

R ={(xi, cj) | xi ∈ c, xi ∈ X, c ∈ C, 1 ≤ j ≤ n+ 1} ∪
{(xi, cj) | ¬xi ∈ c, xi ∈ X, c ∈ C, 1 ≤ j ≤ n+ 1} ∪
{(cj , t1) | c ∈ C, 1 ≤ j ≤ n+ 1} ∪
{(xi, xi), (xi, xi) | xi ∈ X} ∪
{(xi, yji), (xi, y

j
i) | xi ∈ X, 1 ≤ j ≤ n+ 1} ∪

{(yji , z
j
i), (y

j
i , z

j
i) | 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1} ∪

{(zji , t2) | 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1}.

10

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

x1 x1 xn xn

yj1 yj1

zj1

yjn yjn

zjn

t2

cj1 cjm

t1

. . .

. . .

. . .

Figure 4: Part of the reduction for Theorem 5 for one value of j (full reduction includes “copies”
for 1 ≤ j ≤ n+ 1) with clauses c1 = (x1 ∨ xn) and cm = (¬x1 ∨ ¬xn).

The constructed AF, restricted to one value of j, is shown in Figure 4. We claim that φ is
satisfiable iff there is an AF F ′ = (A,R′) such that T ′ ∈ grd(F ′), T ⊆ T ′, and |R∆R′| ≤ n,
where n = |X| and T = {t1, t2}.

Assume that φ is satisfiable. Then there is a truth assignment τ such that τ |= φ. Define the
shorthands X1 = {xi ∈ X | τ(xi) = 1} and X0 = {xi ∈ X | τ(xi) = 0}. We define R′ = R \D
with D = {(xi, xi) | xi ∈ X1} ∪ {(xi, xi) | xi ∈ X0}. In words, we remove attacks from
arguments in X1 onto arguments in X1 if the corresponding truth value is 1, and from X0 onto
X0 if the corresponding truth value is 0. For each pair xi and xi we remove one direction of the
mutual attacks between them. It holds that |D| = n. We now show that it holds that T ⊆ G with G
the grounded extension of F ′ = (A,R′). Since there is no attack in F ′ onto arguments in X1 and
X0, these arguments are all in the grounded extension of F ′. Since these are the only unattacked
arguments in F ′ it holds that (X1 ∪X0) = FF ′(∅). For each i with 1 ≤ i ≤ n it holds that exactly
one of {yji , y

j
i} for each j with 1 ≤ j ≤ n + 1 is defended by FF ′(∅). If xi ∈ FF ′(∅), then yji is

defended, otherwise if xi ∈ FF ′(∅), then yji is defended. This means that {yji , y
j
i} ∩ F2

F ′(∅) 6= ∅
for each i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ n + 1. This implies each zji is attacked by the grounded
extension and in turn t2 is defended by the grounded extension, implying that t2 is part of the
grounded extension. Finally, t1 is defended by FF ′(∅), since each cj with c ∈ C is attacked by
FF ′(∅) due to the assumption that τ |= φ. This can be seen due to the fact that for each c ∈ C there
exists a literal l ∈ C such that τ |= l. If l = xi, then xi ∈ X1 and xi ∈ G. Otherwise, if l = ¬xi,
then xi ∈ X0 and xi ∈ G. In both cases the corresponding attacking arguments for cj are in the
grounded extension. Therefore also t1 is in the grounded extension.

For the other direction assume that T is non-strictly enforced by F ′ = (A,R′) such that T ⊆ G
with G the grounded extension of F ′, and at most n changes are made from the original F , i.e.,
|R∆R′| ≤ n. We first prove some auxiliary results. We first argue that for each xi ∈ X at least one
of {xi, xi} is attacked by the grounded extension of F ′. For showing that consider Rj = {(a, b) |
a ∈ A, b ∈ {yji , y

j
i , z

j
i }} ∪ {(z

j
i , t2)}. That is, Rj contains all attacks from all arguments onto

{yji , y
j
i , z

j
i } and the single attack from zji to t2. For each j, j′ with 1 ≤ j, j′ ≤ n + 1 it holds that

Rj ∩ Rj′ = ∅ for j 6= j′. Now, we prove that there exists a j such that R ∩ Rj = R′ ∩ Rj , that is,

11

WALLNER, NISKANEN, & JÄRVISALO

there is no change between F and F ′ on the set Rj . Since |R∆R′| ≤ n, there must exist such a j
by a simple pigeon-hole argument (there are at most n changes, but we have n+ 1 such Rj). Now
let j be such that R ∩ Rj = R′ ∩ Rj . Since t2 is in the grounded extension of F ′, one of {yji , y

j
i}

must be too, since otherwise t2 would not be defended against zji . This in turn means that one of
{xi, xi} must be attacked by the grounded extension of F ′ (these two arguments attack each one of
{yji , y

j
i}).

We now show that the arguments in X ∪X which are in the grounded extension of F ′ form a
satisfying assignment of φ. Let R′j = {(a, b) | a ∈ A, b ∈ {cj | c ∈ C}} ∪ {(cj , t1) | c ∈ C}. By a
similar pigeon-hole argument as before, it holds that there exists a j such that R ∩ R′j = R′ ∩ R′j .
Let j now be such that this equation holds. Since t1 is in the grounded extension of F ′, each cj with
c ∈ C is attacked by the grounded extension. Since cj is only attacked by arguments in X ∪X , we
construct a partial truth assignment for φ by

τ(xi) =

{
1 if xi ∈ G ∩X
0 if xi ∈ G ∩X.

From the previous observation it holds that these arguments form a well-defined truth assignment,
i.e., for no i it holds that both xi and xi are in the grounded extension or are assigned both 1 and
0 by τ . This truth assignment may be partial. We now show that φ[τ] is a tautology. By ψ[τ] we
denote the formula ψ′ where every variable that is defined in τ is replaced by the corresponding
truth constant. Then, if ψ[τ] is a tautology (unsatisfiable), this means that every completion of τ to
all variables satisfies (does not satisfy) ψ. Suppose φ[τ] is not a tautology. Then ∃τ ′ defined on all
variables of φ such that τ ′ 6|= φ with τ ′(x) = τ(x) if τ is defined on x. It holds that ∃c ∈ C s.t.
τ ′ 6|= c. Let l ∈ c. We have that

τ ′(l) = 0

iff l = xi and τ ′(xi) = 0 or l = ¬xi and τ ′(xi) = 1

only if (xi, c
j) ∈ R′ and xi /∈ G or (xi, c

j) ∈ R′ and xi /∈ G.

If τ ′ 6|= l for all l ∈ c then t1 is not defended by the grounded extension ofF ′. This is a contradiction.
Thus φ[τ] is a tautology and φ is satisfiable.

We move on to strict enforcement. Here we establish polynomial-time results for conflict-
free and naive semantics, and, in contrast to non-strict extension enforcement, also for stable and
admissible semantics.

Theorem 6. Strict extension enforcement for conflict-free, naive, admissible, and stable semantics
is in P.

Proof. Let F = (A,R) be an AF, T ⊆ A the set to be enforced, and σ ∈ {cf ,naive, adm, stb}.
Suppose T 6= ∅, since otherwise the problem is trivial. Let t ∈ T be an arbitrary argument in the
set.

1. σ = cf : Let R∗cf = R \ (T × T), that is, R∗ is formed by deleting all attacks where both
arguments are in T .

12

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

2. σ = naive: Let

R∗naive = (R \ (T × T)) ∪ {(a, a) | a ∈ A \ T, @(b, a) ∈ R,@(a, b) ∈ R with b ∈ T ∪ {a}},

that is, add a self-attack to arguments a ∈ A \ T where T ∪ {a} would be conflict-free
otherwise.

3. σ = adm: Let

R∗adm = (R \ (T × T)) ∪ {(t, a) | a ∈ A \ T, ∃(a, b) ∈ R : b ∈ T, @(c, a) ∈ R : c ∈ T},

that is, remove all attacks inside T and add attacks to ensure admissibility by defending from
all attacks outside T .

4. σ = stb: Let R∗stb = (R \ (T × T)) ∪ {(t, a) | a ∈ A \ T, @b ∈ T : (b, a) ∈ R},
removing all attacks inside T and extending the range to arguments not attacked by T .

Now for each of these semantics σ, F ∗ = (A,R∗σ) is a solution AF where T ∈ σ(F ∗). These
solutions are also optimal, since in each case no less modifications can be made to the original
attack structure.

Example 4. Consider the AF F = (A,R) in Example 3 from page 7. Suppose we want to enforce
T = {a, b} strictly.

1. Under σ = cf , we need to remove the attack (b, a) in order to make T conflict-free, yielding
the AF F cf illustrated in Figure 5a.

2. Under σ = naive , it also suffices to remove the attack (b, a), since in the resulting AF T is
already a subset-maximal conflict-free set.

3. Under σ = adm , in addition to removing the attack inside T , we need a counterattack on the
argument d, since it attacks b and neither a or b attacks it. This is accomplished via adding
the attack (a, d), forming the AF F adm illustrated in Figure 5b.

4. Under σ = stb, T must be conflict-free and the range of T must be the whole set of arguments
A. Therefore we must delete the attack (b, a), and add an attack from T to argument d, e.g.,
(a, d). The resulting AF F stb is shown in Figure 5b.

a

b

c

d

(a) F cf = Fnaive

a

b

c

d

(b) F adm = F stb

Figure 5: Optimal solutions to strict extension enforcement in Example 4.

13

WALLNER, NISKANEN, & JÄRVISALO

t3

t1 t2

x x

dx1 dx2

(a) Basic structure.

t3

t1 t2

x x

dx1 dx2

(b) Defending dx1 , dx2 .

t3

t1 t2

x x

dx1 dx2

(c) Choice x.

t3

t1 t2

x x

dx1 dx2

(d) Choice x.

Figure 6: Choice gadget for hardness proofs under complete-based semantics.

In contrast to the admissible semantics, strict extension enforcement for complete and grounded
semantics is NP-complete. Intuitively, admissibility together with the fact that we must not defend
arguments outside any desired set can be used for reducing the NP-complete problem of Boolean
satisfiability to strict extension enforcement under complete or grounded semantics.

We present in the following a main part of the reduction that “simulates” truth value assignments
in strict extension enforcement for complete-based semantics.

Definition 4. Let X be a set. We define a function choice(X) = F that returns an AF F = (A,R)
as follows with T = {t1, t2, t3}.

• A = X ∪X ∪ {dx1 , dx2 | x ∈ X} ∪ T ; and

• R = {(z, t), (z, dx1), (z, dx2), (z, z) | z ∈ X ∪X, t ∈ {t1, t2}}.

We illustrate this “choice gadget” for a singleton set X = {x} in Figure 6a. Enforcing T to be
admissible and at the same time not defending one of the {dx1 , dx2} arguments, i.e., T to be a complete
extension, with at most three changes per element in X can only be achieved by “choosing” either
to modify the framework as shown in Figure 6c or in Figure 6d, modulo that the new attack may
come from an arbitrary argument in T . This leads to a new attack structure such that T attacks
either x or x, which naturally leads to a truth value assignment over X (“assigning” x to be 1 or 0).
Intuitively, with less than two modifications one cannot enforce T to be admissible, since there are
four attacks from two arguments (x and x) onto T . With two modifications, one can enforce T to
be admissible (see Figure 6b), but only by making T attacking both x and x, thereby defending dx1
and dx2 , implying that T is not complete (FF (T) = T ∪ {dx1 , dx2}). With three modifications one
can strictly enforce T to be admissible and not defending either dx1 or dx2 , by attacking either x or x
and removing attacks from the argument not counter-attacked. These properties of choice(X) = F
also hold if F is part of a larger AF, if there are no further attacks onto F from the larger embedding
AF.

The next lemma formalizes these observations; a full proof is provided in Appendix A.

Lemma 7. Let X be a set, choice(X) = Fg = (Ag, Rg), and T = {t1, t2, t3} with T ⊆ Ag.
Further, let F = (A,R) be an AF such that Ag ⊆ A, Rg ⊆ R, and @(a, a′) ∈ R with a′ ∈ Ag and
a ∈ A \Ag. We define

F̂ = {F ′ |F ′ = (A,R′), T ⊆ FF ′(T), T ∈ cf (F ′),

FF ′(T) ∩ {dx1 , dx2 | x ∈ X} = ∅, |R∆R′| ≤ 3 · |X|}.

14

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

For each F ′ ∈ F̂ with F ′ = (A,R′) and each x ∈ X exactly one of the following statements holds.

1. There exists a (t, x) ∈ R′ with t ∈ T , and there does not exist an (x, t′) ∈ R′ with t′ ∈ T .

2. There exists a (t, x) ∈ R′ with t ∈ T , and there does not exist an (x, t′) ∈ R′ with t′ ∈ T .

Further, it holds that (R∆R′ ⊆ (T ∪X ∪X)× (T ∪X ∪X)).

Equipped with this intermediate result, we are ready to show NP-completeness of strict exten-
sion enforcement for complete and grounded semantics.

Theorem 8. Strict extension enforcement for complete and grounded semantics is NP-complete.

Proof. Regarding membership, for a given F = (A,R), an integer k, and set T to be enforced, we
guess an F = (A,R′) and verify in polynomial time whether T ∈ com(F ′) or T ∈ grd(F ′), and
|R∆R′| ≤ k.

For hardness we reduce from the NP-complete problem of checking whether a given conjunctive
normal form propositional formula φ is satisfiable. LetX be the vocabulary of φ,C the set of clauses
in φ. Let Fg = (Ag, Rg) = choice(X) with T = {t1, t2, t3}. We construct an instance of the strict
enforcement problem as follows.

A =Ag ∪ C,
R =Rg ∪ {(x, c) | x ∈ X, c ∈ C, x ∈ c} ∪
{(x, c) | x ∈ X, c ∈ C,¬x ∈ c}.

Further, we define k = 3 · |X|. AF F = (A,R) can be constructed in polynomial time. See Figure 7
for an illustration. Let σ ∈ {com, grd}. We now claim T can be enforced in F under σ with at
most k modifications iff φ is satisfiable.

Assume φ is satisfiable. Then there is a truth assignment τ such that τ |= φ. We define the
changes in attack relation by D1 and D2 as follows.

D1 ={(x, t) | τ(x) = 1, t ∈ {t1, t2}} ∪
{(x, t) | τ(x) = 0, t ∈ {t1, t2}},

D2 ={(t3, x) | τ(x) = 0} ∪
{(t3, x) | τ(x) = 1}.

Now let R′ = (R \ D1) ∪ D2. In words, we add attacks onto x if x is assigned true in the
satisfying assignment of φ (onto x if x is assigned 0 in the satisfying assignment of φ). Further, we
remove attacks from x to T (from x onto T) if x is assigned 1 (0). It holds that |R∆R′| = 3 · |X|,
since for each x ∈ X we add one attack to, resp. remove two attacks from, F ′ compared to F .

The set T defends itself in F ′. This can be seen by the fact that for each x ∈ X and x ∈ X
either there is no attack onto T or T attacks the attacking argument. Further, Dx = {dx1 , dx2} is not
defended by T in F ′, since one of {x, x} is not attacked by T , but attacks both arguments in Dx.
Further, FF ′(∅) = {t3}, and FF ′({t3}) ⊇ {t1, t2}, i.e., the grounded extension of F ′ contains T .
What remains to be shown is that C ∩FF ′(T) = ∅, i.e., T is the grounded extension of F ′. Suppose

15

WALLNER, NISKANEN, & JÄRVISALO

t1 t2

t3

x1 x1

dx1
1 dx1

2

x2 x2

dx2
1 dx2

2

c1 c2

Figure 7: Reduction for Theorem 8 with clauses c1 = (¬x1 ∨ x2) and c2 = (x1 ∨ ¬x2) .

that there exists a c ∈ C such that c ∈ FF ′(T). It holds that

c ∈ FF ′(T)

iff ∀(z, c) ∈ R′,∃t ∈ T s.t. (t, z) ∈ R′

iff ∀l ∈ c,∃t ∈ T s.t.

if l = x then (x, c) ∈ R′ and (t, x) ∈ R′

and if l = ¬x then (x, c) ∈ R′ and (t, x) ∈ R′

iff ∀l ∈ c
if l = x then τ(x) = 0

and if l = ¬x then τ(x) = 1

iff τ 6|= c.

Therefore, T defends an argumentA\T iff τ is not a satisfying assignment of φ. By assumption
that τ |= φ, it holds that T is the grounded extension of F ′ (and a complete extension of F ′).

Now we show the other direction. It suffices to consider the case with σ = com (the grounded
extension is also a complete extension). Assume that there exists an F ′ = (A,F ′) such that T ∈
com(T) and |R∆R′| ≤ 3. Due to Lemma 7 we can immediately infer that exactly one of the two
statements in that lemma hold for each x ∈ X regarding F ′. Further, due to the same lemma, the
modifications specified in these two statements are the only changes in the new AF. Define a truth
assignment τ as follows.

τ(x) =

{
1 if @t ∈ T s.t. (t, x) ∈ R′

0 if @t ∈ T s.t. (t, x) ∈ R′

We now claim that τ |= φ. Suppose the contrary, that is, there exists a clause c in φ such that τ 6|= c.
This means that if x ∈ c, then τ(x) = 0 and if ¬x ∈ c then τ(x) = 1. This in turn implies that all
attackers of c in F ′ are attacked by T and T defends c, implying that T is not complete in F ′, which
is a contradiction.

16

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

t a1 b1 . . . an bn

Figure 8: Strict enforcement under preferred semantics.

For preferred and semi-stable semantics, we see a jump in complexity: the corresponding prob-
lems are in fact ΣP

2 -complete. Intuitively, in addition to the source of intractability that strict en-
forcement under complete semantics brings, one has to take into account that modifications to the
attack structure might give rise to supersets of T that are admissible. We show ΣP

2 -hardness by a
reduction from satisfiability of quantified Boolean formulas. The reduction utilizes the same choice
gadget (Definition 4) as the hardness proof for strict extension enforcement under complete and
grounded semantics, but, additionally, incorporates argument and attack constructions to represent
universally quantified variables. The full proof is provided in Appendix A.

Theorem 9. Strict extension enforcement for preferred and semi-stable semantics is ΣP
2 -complete.

As an example of when complete and preferred semantics differ w.r.t. strict enforcement, see
Figure 8. Here strictly enforcing {t} under complete semantics requires no modifications. In con-
trast, under preferred semantics each other argument requires one distinct modification.

Finally, for stage semantics we give straightforward bounds. Hardness follows from coNP-
hardness of verifying if a set is a stage extension (Dvořák & Woltran, 2010).

Corollary 10. Strict extension enforcement for stage semantics is in ΣP
2 and coNP-hard.

Proof. Membership follows by guessing a new attack structure and verifying if the given set is a
stage extension in the new framework (verification is in coNP) and checking whether the number of
changes is within the bound.

For hardness, we reduce from the verification problem of stage semantics to strict enforcement.
Given an AF F = (A,R) and S ⊆ A, we construct an instance of strict enforcement by defining
the input AF to be F , the enforced set to be S, and the allowed changes to be 0. Then S is strictly
enforceable in F iff S ∈ stg(F).

Based on our attempts to pinpoint its complexity, we conjecture that strict enforcement for stage
semantics is ΣP

2 -complete; this is the only missing piece in the complexity map (recall Table 1)
established in this paper. The same technique as for the ΣP

2 -hardness proof of preferred and semi-
stable semantics cannot be applied to stage semantics. For instance, for the AF in Figure 6a (the
choice gadget used to prove hardness for complete, grounded, preferred, and semi-stable semantics),
the set S = {t1, t2, t3, dx1 , dx2} is a stage extension. Enforcing T = {t1, t2, t3} strictly to be a stage
extension can be achieved by addition of two attacks to make T conflicting with {dx1 , dx2}. This is in
contrast to complete-based semantics, which, if restricted to three modifications, requires changes
to attacks between T and {x, x} to make T admissible and not defend {dx1 , dx2}.

Each stage extension is a naive extension, yet strict extension enforcement under naive semantics
(a problem that can be decided in polynomial time, recall Theorem 6) differs to strict extension

17

WALLNER, NISKANEN, & JÄRVISALO

t

a1 a2

b

. . . an

Figure 9: Strict enforcement under stage semantics.

enforcement under stage semantics. This is witnessed by the example in Figure 9, with an AF that
has an n-sized clique subgraph (ai attacks aj for 1 ≤ i, j ≤ n). In this AF, there is no stable
extension and each singleton set {ai} is a stage extension. An optimal solution to strictly enforcing
T = {t} as a stage extension is to have t attack each ai. In contrast, T is already a naive extension of
the original AF. Further, solving strict extension enforcement for stage semantics is different in this
example to strict extension enforcement under stable semantics (which can be solved in polynomial
time, recall Theorem 6), since b is not attacked by T in the modified AF.

5. Extension Enforcement via MaxSAT

In this section we present declarative encodings that can be used for solving extension enforcement
optimally under various semantics. We employ MaxSAT as a well-suited declarative language.
The NP-complete problems of strict extension enforcement under the complete semantics, and non-
strict extension enforcement under the admissible, complete, preferred and stable semantics are
solved via a direct MaxSAT encoding of the problem. For non-strict enforcement under stable se-
mantics, our encoding is essentially the same as the integer programming formulation presented
by Coste-Marquis et al. (2015). Note that by Theorem 1, non-strict enforcement under the admis-
sible, complete, and preferred semantics, respectively, coincide. Hence these problems may all be
solved using the encoding provided in this work for the admissible semantics. The encoding used
to solve each problem is summarized in Table 2. We return to the computationally harder problem
variants in the next section.

5.1 Soft Clauses for Optimization

In MaxSAT, soft clauses are used to encode the objective function, i.e., the function over which we
are optimizing. Let F = (A,R) be the AF of an enforcement instance. For each a, b ∈ A, define
Boolean variables ra,b with the interpretation τ(ra,b) = 1 iff the attack (a, b) is included in the
attack structure R′ of the solution AF F ′ = (A,R′). The objective function to be minimized is the
number of changes to the original attack structure. This can be expressed by the soft clauses

ϕs(F) =
∧
a,b∈A

r′a,b,

where

r′a,b =

{
ra,b if (a, b) ∈ R,
¬ra,b if (a, b) 6∈ R.

18

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

The above soft clauses are satisfiable if and only if there are no changes to the attack structure. By
maximizing the number of clauses satisfied, we are minimizing the Hamming distance between the
original and solution AFs.

5.2 Hard Clauses for Extension Enforcement

In addition to the objective function, we need to encode the underlying properties of the problem
into the MaxSAT instance. This is accomplished via hard clauses. Let F = (A,R) be an AF
and T ⊆ A the set to be enforced under semantics σ. In addition to the attack variables, for each
a ∈ A, define Boolean variables xa with the intended meaning of τ(xa) = 1 iff a is included in the
extension of the new AF F ′.

For non-strict extension enforcement, define

EXT(ns, F, T) =
∧
a∈T

xa,

which states that T is a subset of a σ-extension.
For conflict-free sets, if an attack is present between two arguments, they cannot occur in the

same extension. This is stated as

EXT(ns, F, T, cf) = EXT(ns, F, T) ∧
∧
a,b∈A

(ra,b → (¬xa ∨ ¬xb)) .

For admissible sets, if there is an attack on some argument in an extension, there must be some
argument in the same extension that attacks the attacker, i.e., the attacked argument is defended by
the extension, encoded as

EXT(ns, F, T, adm) = EXT(ns, F, T, cf) ∧
∧
a,b∈A

(
(xa ∧ rb,a)→

∨
c∈A

(xc ∧ rc,b)

)
.

For the stable semantics, the range of the extension is the whole set of arguments. Therefore, if an
argument is not included in the extension, there must be an attack on it from some argument in the
extension. This fact is expressed by

EXT(ns, F, T, stb) = EXT(ns, F, T, cf) ∧
∧
a∈A

(
¬xa →

∨
b∈A

(xb ∧ rb,a)

)
.

We move on to strict enforcement. Since here the values of the xa variables are fixed, i.e.,
τ(xa) = 1 if a ∈ T , and τ(xa) = 0 otherwise, there is no need for them in the encoding. Now
conflict-free sets can be encoded as

EXT(s, F, T, cf) =
∧
a,b∈T

¬ra,b,

i.e., all attacks inside the set T are removed.
Admissible sets are encoded by

EXT(s, F, T, adm) = EXT(s, F, T, cf) ∧
∧
a∈T

∧
b∈A\T

(
rb,a →

∨
c∈T

rc,b

)
.

19

WALLNER, NISKANEN, & JÄRVISALO

Table 2: Encodings and algorithms for the extension enforcement problem.

Type Semantics Encoding/Algorithm
ns adm , com , prf EXT(ns, F, T, adm)
ns stb EXT(ns, F, T, stb)
ns sem , stg Algorithm 1
s adm EXT(s, F, T, adm)
s com EXT(s, F, T, com)
s stb EXT(s, F, T, stb)
s prf , sem , stg Algorithm 1

For the complete semantics, in addition all defended arguments must be included in the exten-
sion. Therefore, there must be an attack on all arguments outside T that is not defended against by
T . This is expressed by the formula

EXT(s, F, T, com) = EXT(s, F, T, adm) ∧
∧

a∈A\T

∨
b∈A

(
rb,a ∧

∧
c∈T
¬rc,b

)
.

6. Counterexample-Guided Abstraction Refinement

In this section, we present algorithms for solving enforcement problems beyond NP, i.e., the ΣP
2 -

complete problems of strict extension enforcement under the preferred, semi-stable, and stage se-
mantics, and non-strict extension enforcement under the semi-stable and (the possibly ΣP

2 -complete)
stage semantics. Motivated by completeness of these problem variants for the second level of the
polynomial hierarchy, we employ a general approach called counterexample-guided abstraction re-
finement (CEGAR) (Clarke et al., 2004, 2003). The basic idea is to start with an NP-abstraction,
which is a problem in NP and an overapproximation of the original problem, and to solve it, lead-
ing to a candidate solution. Then we use an NP-oracle (such as a SAT solver) iteratively to check
whether the candidate is indeed a solution to the original, harder problem by asking the solver for a
counterexample. If there are none, we have found an optimal solution and exit the loop, and if there
is a counterexample, we refine the abstraction by adding constraints which rule out the counterex-
ample given by the oracle, and continue by solving the abstraction. While there are no guarantees on
finding the actual solution before an exponential blow-up of the encoding of the refinement in gen-
eral, this approach has been shown to be effective in practice in different domains (Janota, Grigore,
& Marques-Silva, 2010; Donaldson, Kaiser, Kroening, Tautschnig, & Wahl, 2012).

6.1 CEGAR Algorithm for Extension Enforcement

We provide CEGAR algorithms for solving the strict extension enforcement problem under the
preferred, semi-stable, and stage semantics, and for the non-strict extension enforcement problem
under the semi-stable and stage semantics. The NP-abstractions used are the admissible or com-
plete semantics for the preferred and semi-stable semantics, and conflict-free sets for stage, since
these overapproximate the problem at hand (recall Definition 3). The abstraction is solved using a
MaxSAT solver, leading to a candidate solution, i.e., an AF that is an optimal solution to the exten-
sion enforcement under the chosen NP semantics. The validity of the candidate AF is checked using

20

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

a SAT solver by constructing a formula which is unsatisfiable if and only if T has been enforced in
the AF, resulting in a refinement of the NP-abstraction in case a counterexample is found.

Let F = (A,R) be an AF, T ⊆ A the set to be enforced under semantics σ ∈ {prf , sem, stg},
and let M ∈ {ns, s} be the type of enforcement (non-strict or strict). The CEGAR algorithm for
solving these problems is presented as Algorithm 1. The first step is to choose the base semantics,
denoted by χ, that acts as an overapproximation of the original problem. We choose conflict-free
sets for stage, and the admissible or complete semantics for semi-stable and preferred, since these
are solvable via a direct MaxSAT call (recall Section 5.2). Next, we construct the MaxSAT clauses
for solving the corresponding extension enforcement problem under the semantics χ, and enter the
main loop of the algorithm. In the loop, we solve the problem via a MaxSAT solver call, extracting
a truth assignment τ . Then we use it to construct the candidate solution AF F ′ = (A,R′), where

R′ = {(a, b) | a, b ∈ A, τ(ra,b) = 1}.

Now we can use a SAT solver to check whether F ′ is also a solution to the enforcement problem
under the semantics σ. Recall that for strict enforcement, we need to check if T ∈ σ(F ′), and for
non-strict enforcement, we check if T ′ ∈ σ(F ′), where

T ′ = {a ∈ A | τ(xa) = 1}.

For this SAT solver call, we encode the base semantics following Besnard and Doutre (2004), by
defining for each a ∈ A a Boolean variable ya (to distinguish from the xa variables used in the
MaxSAT solver call) with the interpretation τ(ya) = 1 iff a is included in a χ-extension of the AF
F ′. Now, conflict-free sets are encoded as

EXTENSION(F ′, cf) =
∧

(a,b)∈R′
(¬ya ∨ ¬yb),

stating that for all attacks in R′, either the attacker or the attacked argument is not contained in the
conflict-free set. Admissible semantics can be expressed by the clauses

EXTENSION(F ′, adm) = EXTENSION(F ′, cf) ∧
∧

(b,a)∈R′

ya →
 ∨

(c,b)∈R

yc

 ,

Algorithm 1 CEGAR-based extension enforcement for σ ∈ {prf , sem, stg} with M = s, and for
σ ∈ {sem, stg} with M = ns.

1: if σ ∈ {prf , sem} then χ← com else χ← cf
2: ϕh ← EXT(M,F, T, σ)
3: if M = ns then ϕh ← ϕh ∧ RANGE(A)
4: while true do
5: (c, τ)← MAXSAT(ϕh, ϕs(F))
6: result ← SAT(CHECK(M,A, τ, S, σ))
7: if result = unsatisfiable then return (c, τ)
8: else ϕh ← ϕh∧ REFINE(τ,M)

21

WALLNER, NISKANEN, & JÄRVISALO

that is, an admissible extension is conflict-free, and if there is an attack on an argument in the exten-
sion, there must be a defending argument in the extension. Finally, we encode complete semantics
by

EXTENSION(F ′, com) = EXTENSION(F ′, adm) ∧
∧
a∈A

 ∧
(b,a)∈R′

 ∨
(c,b)∈R′

yc

→ ya

 ,

i.e., complete extensions are admissible, and each argument that is defended is also included in the
extension. For preferred semantics, we check whether there is a strict superset of T , which we
express via

SUPERSET(F ′, T, prf) =
∧
a∈T

ya ∧
∨

a∈A\T

ya.

In the case of semi-stable and stage semantics, we similarly need to search for a superset with respect
to the range of T (for strict enforcement) or T ′ (for non-strict enforcement), which we denote by S.
To accomplish this, we define for each a ∈ A a new Boolean variable y+a which encode the range
of each argument as a conjunction of equivalences

RANGE(F ′) =
∧
a∈A

y+a ↔
ya ∨ ∨

(b,a)∈R′
yb

 .

Now, under σ ∈ {sem, stg}, checking whether there is a superset of S with respect to the range is
encoded as

SUPERSET(F ′, S, σ) =
∧

a∈S+
R′

y+a ∧
∨

a∈A\S+
R′

y+a ∧ RANGE(F ′).

If such a superset that is a χ-extension exists, the formula

CHECK(M,A, τ, S, σ) = EXTENSION(F ′, σ) ∧ SUPERSET(F ′, S, σ)

is satisfiable, providing a counterexample that F ′ is not an actual solution, that is, T or T ′ is not a
σ-extension in F ′.

For the refinement step, we define the shorthand that encodes the attack structure R′ of F ′ via

ATTACK(τ) =
∧

(a,b)∈R′
ra,b ∧

∧
(a,b)∈(A×A)\R′

¬ra,b.

The current abstraction ψ is in the strict case refined by

REFINE(τ, s) = ¬ATTACK(τ),

which rules out the attack structure of the candidate solution. In the non-strict case, however, it may
be that the attack structure of our candidate solution is indeed correct, but the superset T ′ of T is
not. In other words, there might be a χ-extension T ′′ that is also a σ-extension in F ′. If this is the
case, then the range of the set T ′′ is not a subset of the range of T ′. This is ruled out by

REFINE(τ, ns) = ¬ATTACK(τ) ∨
∨

a∈A\T ′+
R′

x+a ,

22

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

where we have defined range variables (Line 3) via

RANGE(A) =
∧
a∈A

(
x+a ↔

(
xa ∨

∨
b∈A

(rb,a ∧ xb)

))
.

Algorithm 1 will produce an optimal solution to strict enforcement for {prf , sem, stg} and non-
strict enforcement for {sem, stg}, respectively, as at each iteration the current abstraction is solved
to optimum.

Example 5. Consider the AF F in Example 3 on page 7, and enforcing T = {d} strictly under the
preferred semantics. We go through a hypothetical run of the CEGAR algorithm. Start by defining
Boolean variables

ra,a, ra,b, ra,c, ra,d, rb,a, rb,b, rb,c, rb,d, rc,a, rc,b, rc,c, rc,d, rd,a, rd,b, rd,c, rd,d.

Using complete as the base semantics for the abstraction, we form the hard clauses ϕh =
EXT(s, F, T, com) along with the soft clauses ϕs(F), and enter the CEGAR loop of Algorithm 1.
Suppose the MaxSAT solver returns a truth assignment corresponding to AF F ′ = (A,R′), where

R′ = {(a, c), (b, a), (b, c), (c, a), (d, b)},

i.e., the attack (a, c) has been added and the attack (c, d) removed, illustrated in Figure 10.
Now we form a SAT instance with the variables ya, yb, yc, and yd, and the clauses

CHECK(s,A, τ, T, prf) = EXTENSION(F ′, adm) ∧ SUPERSET(F ′, T, prf)

= (¬ya ∨ ¬yb) ∧ (¬ya ∨ ¬yc)
∧ (¬yb ∨ ¬yc) ∧ (¬yb ∨ ¬yd)
∧ (yc → (yb ∨ yc)) ∧ (ya → yd)

∧ (yc → yd) ∧ (ya → (ya ∨ yb)) ∧ (yb → ⊥)

∧ yd ∧ (ya ∨ yb ∨ yc).

This instance is satisfiable via the truth assignment τ(ya) = 1, τ(yb) = 0, τ(yc) = 0, τ(yd) = 1,
corresponding to the admissible extension {a, d}. Therefore we get a counterexample, and we refine
the solution via adding the hard clause

REFINE(τ, s) = ¬ATTACK(τ)

and continue in the CEGAR loop. Now suppose the MaxSAT solver suggests the attack structure

R′′ = {(b, a), (b, c), (c, a), (c, d), (d, a), (d, b), (d, c)},

corresponding to an AF F ′′ = (A,R′′), where the attacks (d, a) and (d, c) have been added into
the framework, illustrated in Figure 10. Again, we form a SAT instance with the variables ya, yb,

23

WALLNER, NISKANEN, & JÄRVISALO

yc, and yd, and the clauses

CHECK(s,A, τ, T, prf) = EXTENSION(F ′′, adm) ∧ SUPERSET(F ′′, T, prf)

= (¬ya ∨ ¬yb) ∧ (¬ya ∨ ¬yc)
∧ (¬ya ∨ ¬yd) ∧ (¬yb ∨ ¬yc)
∧ (¬yb ∨ ¬yd) ∧ (¬yc ∨ ¬yd)
∧ (ya → yd) ∧ (yc → yd)

∧ (ya → (yb ∨ yd)) ∧ (yd → (yb ∨ yd))
∧ (ya → yc) ∧ (yb → yc) ∧ (yc → yc)

∧ yd ∧ (ya ∨ yb ∨ yc)

Since we must set τ(yd) = 1 due to the unit clause yd, we know that we must set τ(ya) = 0,
τ(yc) = 0 and τ(yd) = 0 due to the clauses encoding conflict-freeness. Therefore the instance is
unsatisfiable, since the clause ya ∨ yc ∨ yd is not satisfied. Now we know that the AF F ′′ = (A,R′′)
is an optimal solution to the enforcement problem.

a

b

c

d
a

b

c

d

Figure 10: The argumentation frameworks F ′ (left) and F ′′ (right) in Example 5.

7. Experiments

We implemented the MaxSAT encodings and CEGAR algorithms described in the previous sec-
tions in the software system Pakota (Niskanen, Wallner, & Järvisalo, 2016) available online in
open source at http://www.cs.helsinki.fi/group/coreo/pakota/. In addition to solv-
ing instances of the NP-hard variants of the extension enforcement problem optimally, for the NP-
complete problem variants Pakota offers an option for direct output of the produced encoding in
standard WCNF and LP file formats for MaxSAT solvers and IP solvers, respectively. This allows
for calling any MaxSAT or IP solver on the encoding. Pakota also offers a general interface for
plugging in essentially any MaxSAT solver of choice.

Here we present results of an empirical evaluation of the scalability of the Pakota system
under different problem variants for extension enforcement, both the NP- and the ΣP

2 -complete
ones. In addition we evaluate the impact of the choice of the underlying MaxSAT solver. For the
NP-complete problem variants, in the experiments we used the state-of-the-art MaxSAT solvers
MaxHS (Davies & Bacchus, 2013), Maxino (Alviano, Dodaro, & Ricca, 2015), MSCG (Mor-
gado, Ignatiev, & Marques-Silva, 2015), Open-WBO (Martins, Manquinho, & Lynce, 2014), and
WPM (Ansótegui, Didier, & Gabàs, 2015), using the MaxSAT Evaluation 2015 versions, as well
as the commercial IBM CPLEX integer programming solver (version 12.6), by directly solving the
CNF encoding as produced by Pakota. For CEGAR, we compare the performance of Open-WBO
and LMHS (Saikko, Berg, & Järvisalo, 2016) as the underlying MaxSAT solvers, as supported by

24

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

Pakota, and the complete semantics as the base abstraction2. Out of the solvers considered, Max-
ino, MSCG, Open-WBO, and WPM are core-guided MaxSAT solvers, and MaxHS and LMHS are
SAT-IP hybrids.

We also compare the performance of Pakota and the only other solver for extension enforcement
we are aware of, introduced by Coste-Marquis et al. (2015), which we obtained from the author and
developer of the solver, Jean-Guy Mailly. We refer to it as the IJCAI’15 solver. The obtained version
of the IJCAI’15 solver does not support any other AF semantics than stable, and therefore no results
for other semantics using this solver are presented here.

We generated benchmark instances for the experiments as follows. Given a number of argu-
ments and an edge probability p, we formed an AF based on the Erdős-Rényi random digraph
model, where each attack is included independently with probability p. Given an AF and a number
of enforced arguments, we constructed a corresponding enforcement instance by sampling the en-
forced arguments uniformly at random from the set of arguments, without replacement. For each
number of arguments |A| ∈ {25, 50, . . . } and each edge probability p ∈ {0.05, 0.1, 0.2, 0.3}, we
generated five AFs. For each AF, we generated five enforcement instances with |T | enforced argu-
ments, for each |T |/|A| ∈ {0.05, 0.1, 0.2, 0.3}. We thus obtained 400 instances for each |A|. The
generated instances and the benchmark generator are available through the Pakota webpage.

The experiments were run on 2.83-GHz Intel Xeon E5440 quad-core machines with 32-GB
RAM and Debian GNU/Linux 8 using a timeout of 900 seconds per instance.

7.1 Results for First-Level Problems

We start with the NP-complete extension enforcement problems of enforcing an extension non-
strictly under the admissible and stable semantics, and strictly under the complete semantics. Fig-
ures 11 (right), 12 (right) and 13 (right) provide overviews of the median runtimes for Open-WBO,
WPM, Maxino, MSCG, MaxHS, and CPLEX with respect to the number of arguments. Open-WBO
exhibits better performance than the rest of the solvers in terms of median runtimes. All in all, the
core-guided MaxSAT solvers Open-WBO, WPM, Maxino and MSCG perform the best. The plots
in Figures 11 (left), 12 (left) and 13 (left) give the number of instances solved (x-axis) as a function
of a per-instance time limit (y-axis). CPLEX performs considerably better in terms of solving more
instances than the rest of the solvers. However, on non-strict admissible (Figure 11 (left)) and strict
complete (Figure 12 (left)) CPLEX is slower than most of the other solvers. As seen from Figure 12
(left), on strict complete CPLEX and Maxino are the only solvers which solve all of the instances
generated within the time limit. Furthermore, for strict enforcement under complete semantics, all
of the MaxSAT solvers solve more instances compared to non-strict admissible and non-strict stable,
indicating that strict complete is empirically easier on these instances.

In Figure 14 (left) we show the median runtimes for Open-WBO and CPLEX on non-strict
admissible, strict complete, and non-strict stable extension enforcement, along with the IJCAI’15
solver on non-strict stable. The median runtimes for Open-WBO are clearly lower than for the rest
of the solvers, which indicates that using core-guided MaxSAT solvers is a promising approach
for solving the extension enforcement problem, with most of the instances even with |A| = 350
solved under one second. The performance of the IJCAI’15 solver is essentially the same as that

2. Based on preliminary experimentation, in terms of runtime performance the complete semantics serves as at least
as good a base semantics as admissible sets. This follows the natural intuition based on the subset relation between
complete and admissible.

25

WALLNER, NISKANEN, & JÄRVISALO

1000 1500 2000 2500

0
20

0
40

0
60

0
80

0

instances solved

C
P

U
 ti

m
e

●●
●●●

●●
●●

●●●
●●

●●●
●●●●●●●●
●●●●●●●●●●●
●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●
●●
●●●●
●
●
●●●
●●●●●
●

●
●●●
●●●
●●
●
●
●●●
●●
●
●●

●
●

●
●
●●

●

●

●
●●

●
●
●

●

MaxHS
WPM
Maxino
MSCG
OpenWBO
CPLEX

number of arguments

m
ed

ia
n

C
P

U
 ti

m
e

50 100 150 200 250 300 350

0.
00

1
0.

01
0.

1
1

10
10

0
10

00

●

●

●

●

●

●

●

●

CPLEX
MaxHS
Maxino
MSCG
WPM
OpenWBO

Figure 11: MaxSAT solver comparison for NP-complete non-strict extension enforcement under the
admissible semantics.

1000 1500 2000 2500

0
20

0
40

0
60

0
80

0

instances solved

C
P

U
 ti

m
e

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●

MaxHS
WPM
Maxino
MSCG
OpenWBO
CPLEX

number of arguments

m
ed

ia
n

C
P

U
 ti

m
e

50 100 150 200 250 300 350

0.
00

1
0.

01
0.

1
1

10
10

0
10

00

●

●

●

●

●

● ●

●

CPLEX
MaxHS
Maxino
MSCG
WPM
OpenWBO

Figure 12: MaxSAT solver comparison for NP-complete strict extension enforcement under the
complete semantics.

of CPLEX, which comes as no surprise as it also encodes the problem instance as an IP instance,
using CPLEX as the underlying solver.

The relative performance of Open-WBO and CPLEX on non-strict admissible, strict complete,
and non-strict stable is illustrated in Figure 14 (right) and Figure 15. For strict complete, Open-
WBO solves most instances considerably faster than CPLEX. However, some instances are not
solved within the time limit by Open-WBO, as opposed to CPLEX which solves all of the instances
within the time limit. For non-strict admissible and non-strict stable, on the other hand, the perfor-
mance of Open-WBO is not significantly better than that of CPLEX. A large number of instances
is solved faster by CPLEX, and CPLEX has only a few timeouts. Non-strict extension enforcement
under the admissible semantics seems to be empirically harder for CPLEX than under stable; the
distribution of runtimes in Figure 14 (right) is already approaching the time limit at |A| = 350.

26

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

1000 1500 2000 2500

0
20

0
40

0
60

0
80

0

instances solved

C
P

U
 ti

m
e

●●●
●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●
●●●●●
●●
●●●●●●
●●●●●
●●●●
●●●●●
●
●●●
●
●●●●●
●●●●
●●●
●●
●●
●●●

●

●

●
●
●
●
●●

●
●●

●
●●
●
●●

●

●
●

●
●●●●
●●
●●

●

MaxHS
WPM
Maxino
MSCG
OpenWBO
CPLEX

number of arguments

m
ed

ia
n

C
P

U
 ti

m
e

50 100 150 200 250 300 350

0.
01

0.
1

1
10

10
0

10
00

●

●

●
●

●
●

●

●

CPLEX
MaxHS
Maxino
MSCG
WPM
OpenWBO

Figure 13: MaxSAT solver comparison for NP-complete non-strict extension enforcement under the
stable semantics.

number of arguments

m
ed

ia
n

C
P

U
 ti

m
e

(s
ec

on
ds

)

50 100 150 200 250 300 350

0.
01

0.
1

1
10

10
0

10
00

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

com + CPLEX
adm + CPLEX
stb + CPLEX
stb + IJCAI'15
adm + OpenWBO
com + OpenWBO
stb + OpenWBO

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●

●

●

●●●

●

●

●
●
●●●●●●●

●

●

●
●

●
●

●

●

●●

●

●
●●

●
●

●●●●
●

●

●

●

●

●

●

●

●

●

●
●●●
●

●●
●●●

●

●

●

●

●

●

●
●●
●●

●●●●●●
●

●

●
●

●

●

●

●

●●

●
●

●

●
●
●
●●
●

●
●
●●●

●

●

●

●

●

●●
●
●●●●●●

●
●● ●●●

●

●●●●●●●
●●●●●●

●●
●●
●
●

●●
●

●
●

●●
●
●●●●●●●●●

●
●●

●

●

●

●

●

●●●●●●●●●●● ●●●●

●
●

●
●●●

●●
●
●

●
●●●●●●●●●

●●

●

●
●

CPLEX CPU time

O
pe

nW
B

O
 C

P
U

 ti
m

e

0.001 0.01 0.1 1 10 100 1000

0.
00

1
0.

01
0.

1
1

10
10

0
10

00

●

|A|=350
|A|=300
|A|=250
|A|=200
|A|=150
|A|=100
|A|=50

Figure 14: Left: NP-complete extension enforcement (non-strict under admissible and stable, strict
under complete); right: OpenWBO versus CPLEX on non-strict admissible.

7.2 Results for Second-Level Problems

Turning to the ΣP
2 -complete problem of enforcing an extension strictly under the preferred seman-

tics, the median runtimes for the CEGAR algorithm are shown in Figure 16 (left) together with the
distribution of the runtimes. Even with 175 arguments, most of the instances are solved within one
second. Similarly, for the ΣP

2 -complete problem of extension enforcement under the semi-stable
semantics, Figure 16 (right) and Figure 17 (left) include plots for the strict and non-strict variants
of the problem, on which we observe similar scalability as in the case of preferred semantics.

Figure 17 (right) gives an overview of the relative performance of the MaxSAT solvers Open-
WBO and LMHS on the CEGAR approach for strict enforcement under the preferred semantics.
Here we observe that Open-WBO solves most of the generated instances faster than LMHS. The

27

WALLNER, NISKANEN, & JÄRVISALO

●●●●●

●
●●●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●
●

●●

●●

●
●

●

●

●

●

●
●
●

●●
●
●
●●

●

●●

●
●

●
●
●●

●

●
●

●

●●

●

●
●

●●●

●

●
●
●●

●
●

●

●●
●

●

●
●
●

●
●

●

●

●●

●
●
●

●

●●
●●●

●●●●●
●
●

●
●

●

●●●
●●●

●●●

●

●
●

●

●

●

●

●●
●●

●
●

●●●
●●

●
●

●

●
●●●●
●●
●●

●●

●

●●●

●●
●
●
●

●

●●
●●

●●

●
●●

●
●

●●●●●

●●
●

●●●●

●

●●●●
●

●
●

●●●

●

●
●●
●

●
●●
●

● ●
●●●●●●
●

●
●

●

●
●●
●

●

●
●●

●

●●●●●●●
●●
●●

●●●●
●

●

●

●

●
●
●●

●
●

●●●●
●

●
●

●
●●

●●

●
●

●
●●●●●●●
●●●●

●
●
●●

●●●

●

●
●●●●●●
●●●
●

●
●
●

●
●

●
●
●
●●

●
●●●
●

●●●●●●●●●
● ●

●
●●●

●
●
●
●●●
●

●●●
●

●

●

●

●
●●
●●
●

●●●●
●●●
●
●
●

●●

●

●

●

●●
●●●

●●●
●

●

●●
●
●●

●
●
●

●

●

●

●
●●
●

●●
●
●●
●
●
●
●●

●
●●
●
●

CPLEX CPU time

O
pe

nW
B

O
 C

P
U

 ti
m

e

0.001 0.01 0.1 1 10 100 1000

0.
00

1
0.

01
0.

1
1

10
10

0
10

00

●

|A|=350
|A|=300
|A|=250
|A|=200
|A|=150
|A|=100
|A|=50

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●
●

●

●●

●

●
●●

●
●

●
●

●

●●●

●

●

●

●●

●

●
●

●
●●

●●●
●
●

●

●

●

●

●

●●

●

●

●

●●
●
●
●

●
●●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●●●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●●●

●●
●
●●●

●

●

●
●

●

●
●

●
●
●

●
●
●
●
●

●
●
●

●
●

●

●

●
●

●●●

●
●
●

●●●

●

●

●

●
●●●

●

●

●

●

●

●●
●●

●
●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●
●
●
●

●
●●

●

●●
●

●

●
●

●

●

●

●●
●
●

●

●
●

●

●●
●
●●

●
●
●
●

●●

●

● ●

CPLEX CPU time

O
pe

nW
B

O
 C

P
U

 ti
m

e

0.001 0.01 0.1 1 10 100 1000

0.
00

1
0.

01
0.

1
1

10
10

0
10

00

●

|A|=350
|A|=300
|A|=250
|A|=200
|A|=150
|A|=100
|A|=50

Figure 15: OpenWBO versus CPLEX on strict complete (left), non-strict stable (right)

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
● ●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●
●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●●

●

● ●

●
●

●
●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●
●

●

●●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●● ●

●

●●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

● ●●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

number of arguments

C
P

U
 ti

m
e

(s
ec

on
ds

)

25 50 75 100 125 150 175 200

0.
00

1
0.

01
0.

1
1

10
10

0
10

00

median

number of arguments

C
P

U
 ti

m
e

(s
ec

on
ds

)

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

● ●●●

●

●●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●●

●●

●

●●●

●

●

●●

●

● ●●●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●

●

●

●

●
●

● ●

●

●●●●

●

●●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

● ●●

●

●●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

● ●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●
●

●●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●● ●●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

● ●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●●

●

●

●

● ●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●●●●●● ●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●
●

●●

●

●

●

●● ●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●
●

●

● ●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

● ● ●●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●● ●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●●

●

●●

●

●

● ●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●
●

●● ●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●●

●●

● ●

●

●
●

●

●●

●

●●

● ●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●●

●

●

●

● ● ●

●

● ●

●

●

●

●●

●

●

●
●

● ●

●

●

●● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●●

●●
●

●

●●

●

● ●

●

●

●● ●●●

●

●●

●

●

●

● ●

●

●

●

●●

●

●●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

●

●●●

●

●●

●

●

●

●

●

●

● ●●●

●●

● ●●

●

●●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●●

●

●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●●

●

●●

●

●

●●● ●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

25 50 75 100 125 150 175 200

0.
00

1
0.

01
0.

1
1

10
10

0
10

00

median

Figure 16: ΣP
2 -complete strict extension enforcement under the preferred (left) and semi-stable

(right) semantics.

results of the empirical evaluation for stage semantics are not shown here, since the solvers time out
on most of the instances even at 25 arguments. This is due to using the conflict-free semantics as
the base abstraction, which basically just tells the MaxSAT solver to remove all attacks inside the
enforced set. This results in the solver guessing truth assignments, i.e., the attack structure, without
any further constraints. Therefore in practice the algorithm has too many iterations in the CEGAR
loop, resulting in high runtimes. To improve the approach, we hypothesize that a more restricting
base abstraction, or better refinement clauses, are needed.

In summary, we have shown that using MaxSAT solvers and a CEGAR-based approach for
extension enforcement is practically viable, solving instances with 200 arguments and beyond on
most of the problem variants. In general, core-guided MaxSAT solvers appear to provide the best
alternative in terms of the median runtimes.

28

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

number of arguments

C
P

U
 ti

m
e

(s
ec

on
ds

)

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●● ●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

25 50 75 100 125 150 175 200

0.
00

1
0.

01
0.

1
1

10
10

0
10

00

median

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●●● ●●●

●

●

●

●

●

● ●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●●
●●
●
●

●

●

●

●

●●

●

●

●

●
●
●

●● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
●
●
●
●

OpenWBO CPU time

LM
H

S
 C

P
U

 ti
m

e

●

number of arguments

200 175 150 125 100 75 50 25

0.01 0.1 1 10 100 1000

0.
01

0.
1

1
10

10
0

10
00

Figure 17: Left: ΣP
2 -complete non-strict extension enforcement under the semi-stable semantics;

right: OpenWBO versus LMHS on strict preferred.

8. Other Extension Enforcement Variants

Finally, we shortly discuss other variants of extension enforcement in light of our approach as well
as the related complexity questions. Baumann and Brewka (2010) consider enforcement under so-
called expansions of an AF F = (A,R), which result in AF F ′ = (A ∪ A′, R ∪ R′) with new
arguments A′ and new attacks R′ such that A ∩ A′ = R ∩ R′ = ∅ and one of A′ or R′ is non-
empty. An expansion is normal if for each (a, b) ∈ R′ we have a ∈ A′ or b ∈ A′; strong if a /∈ A;
and weak if b /∈ A. The tasks for enforcement under these variants are the same as for strict and
non-strict, with the additional requirement that the enforcing AF is to be a normal, strong, or weak
expansion. Analogously to the complexity results on argument-fixed enforcement already presented
in this paper, we give complexity results for non-strict enforcement under normal, strong, or weak
expansions for a fixed setA′ of additional arguments, i.e.,A′ is part of the input. A proof is provided
in Appendix A.

Theorem 11. Non-strict enforcement under normal, strong, or weak expansions

• for admissible, complete, preferred, and stable semantics is NP-complete; and

• for semi-stable and stage semantics is ΣP
2 -complete.

Argument-fixed extension enforcement, as considered in this work, allows arbitrary changes to
the attack structure, and does not allow additional arguments. However, by adjusting the MaxSAT
encoding in an appropriate way, further variants of these problems can be solved via the same
approach, including capturing normal, strong, and weak expansions under a bounded number of
additional arguments. First of all, as also pointed out by Coste-Marquis et al. (2015), enforcement
under expansions can be encoded via additional hard constraints for a fixed set A′ of additional
arguments; the same holds for the MaxSAT encodings. In particular, our encodings allow for intro-
ducing any bounded number of additional arguments A′ by considering A ∪ A′ instead of the set
A in the clauses of the encoding. However, we note that it is not clear under which condition the
cost of optimal solutions is preserved when restricting these problems by considering a fixed set A′

29

WALLNER, NISKANEN, & JÄRVISALO

(e.g., a singleton set). In fact, the following example shows that the costs of optimal solutions—and
the sets of optimal solutions—do not in general coincide. Consider strictly enforcing {t1, t2} under
semi-stable semantics and weak expansions. The AF in Figure 18 requires two new arguments (for
each argument t1 and t2 we need a new argument to extend their range); restricting A′ to singleton
sets does not yield any solutions.

More control on the attack structures of interest can be obtained by fixing a part of the attack
structure of the solution AF which is accomplished by making the corresponding soft clauses hard.
In other words, if we want the attacks R+ ⊆ A×A to be present, and the attacks R− ⊆ A×A not
to be present in the solution AF, we can introduce the hard clauses∧

(a,b)∈R+

ra,b ∧
∧

(a,b)∈R−
¬ra,b

to the encoding, and modify the soft clauses by enumerating through the set (A×A) \ (R+ ∪R−)
instead of A × A. By further including a bounded number of additional arguments in the encod-
ings, this allows for capturing normal, strong, and weak expansions by restricting changes to the
attack structure according to the restrictions imposed by these forms of expansions. Furthermore,
our CEGAR algorithm (Algorithm 1) with adapted hard constraints can also be applied for the
preferred, semi-stable, and stage semantics under normal, strong, or weak expansions. However,
as noted by Baumann and Brewka (2010) and Coste-Marquis et al. (2015), solutions to extension
enforcement are not guaranteed to exist under normal, strong, or weak expansions.

Weighted argument systems, as defined by Dunne et al. (2011), are an extension of Dung’s
argumentation frameworks. In addition to the arguments and attacks, a non-zero weight is assigned
to each attack, corresponding to the relative strength of the attack. Similarly to this approach, the
enforcement problem can be modified by introducing a non-zero weight to each (a, b) ∈ A×A via
the weight function w : A × A → Z+. Intuitively, if (a, b) ∈ R, the weight w(a, b) corresponds
to the strength of the existing attack, i.e., how reluctant we are to remove it, and if (a, b) 6∈ R,
the weight w(a, b) expresses how reluctant we are to add the attack. Now, using weighted partial
MaxSAT instead of partial MaxSAT, this problem can be solved via the same approach by assigning
to each soft clause r′a,b the weight w(a, b).

9. Conclusions

The study of computational aspects of argumentation dynamics is a topical area of research in AI
argumentation. We presented complexity results and novel algorithms, based on a declarative op-
timization approach, for several variants of argument-fixed extension enforcement. As the main
contributions, on the theoretical side we presented a nearly complete computational complexity
map of the considered problem variants. Complementing the theoretical analysis, we proposed al-
gorithms for the variants, ranging from constructive polytime results to procedures going beyond
NP for the second-level complete problem variants, and presented empirical results from an ex-
tended empirical evaluation of our system implementation of the algorithms on the scalability of

c1 c2t1 t2a1 a2b1 b2

Figure 18: Enforcement under weak expansions

30

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

the approach. Further improving the efficiency of the approach both via understanding what makes
enforcement instances hard and via employing optimization solvers incrementally with the CEGAR
approach, as well as studying potential extensions of the algorithmic ideas presented in this article
to other types of argumentation dynamics, are important aspects of future work. For example, ex-
tending the MaxSAT-based approach to cover extension enforcement under the grounded semantics
is a nontrivial problem. Scalability of the presented algorithms on other argumentation framework
generation models, such as those proposed by Cerutti, Giacomin, and Vallati (2016) as well as ones
arising from possible application scenarios, would also be interesting to study.

Acknowledgments

The authors gratefully acknowledge financial support from the Academy of Finland under grants
251170 COIN Centre of Excellence in Computational Inference Research, 276412, and 284591;
DoCS Doctoral School in Computer Science and Research Funds of the University of Helsinki; and
the Austrian Science Fund (FWF): P30168-N31.

Appendix A. Proofs

Lemma 7. Let X be a set, choice(X) = Fg = (Ag, Rg), and T = {t1, t2, t3} with T ⊆ Ag.
Further, let F = (A,R) be an AF such that Ag ⊆ A, Rg ⊆ R, and @(a, a′) ∈ R with a′ ∈ Ag and
a ∈ A \Ag. We define

F̂ = {F ′ |F ′ = (A,R′), T ⊆ FF ′(T), T ∈ cf (F ′),

FF ′(T) ∩ {dx1 , dx2 | x ∈ X} = ∅, |R∆R′| ≤ 3 · |X|}.

For each F ′ ∈ F̂ with F ′ = (A,R′) and each x ∈ X exactly one of the following statements holds.

1. There exists a (t, x) ∈ R′ with t ∈ T , and there does not exist an (x, t′) ∈ R′ with t′ ∈ T .

2. There exists a (t, x) ∈ R′ with t ∈ T , and there does not exist an (x, t′) ∈ R′ with t′ ∈ T .

Further, it holds that (R∆R′ ⊆ (T ∪X ∪X)× (T ∪X ∪X)).

Proof. Let F̂ be defined as in the lemma and let F ′ ∈ F̂ . For convenience we use the shorthand
Dx = {dx1 , dx2}. Consider

Rx = {(a, b) | a ∈ A, b ∈ {x, x} ∪Dx} ∪ {(z, t) | z ∈ {x, x} ∪Dx, t ∈ T}.

Here Rx contains all attacks onto arguments in the “gadget” made for x and all attacks from these
gadget arguments to T . It holds that for each x, x′ ∈ X with x 6= x′ that Rx ∩ Rx′ = ∅. We
now show that for each x ∈ X it holds that |(R ∩ Rx)∆(R′ ∩ Rx)| = 3. Let x ∈ X and m =
|(R ∩Rx)∆(R′ ∩Rx)|. We consider each case separately.

• Case m = 0: Then T 6⊆ FF ′(T), since (x, t1) ∈ R′ and @(t, x) ∈ R′ for t ∈ T .

• case m = 1: Then T 6⊆ FF ′(T), since both {x, x} attack T in F via four attacks. Removal
of one of these four attacks results in T not defending itself in F ′; likewise adding an attack
from T onto {x, x} cannot defend T against both arguments x and x.

31

WALLNER, NISKANEN, & JÄRVISALO

• Case m = 2: We consider here two subcases for F ′, namely that both {x, x} are attacked by
T , or at least one of these arguments is not attacked by T .

– Assume it holds that {(t, x), (t′, x)} ⊆ R′ for some t, t′ ∈ T . This implies that Dx ⊆
FF ′(T), since all attackers of Dx are attacked by T (see also Figure 6b).

– Assume there exists a z ∈ {x, x} such that there is no t ∈ T with (t, z) ∈ R′. Consider
again two subcases. Either there exists an attack from z to T or not in F ′. If such an
attack does not exist, then there must exist an undefended attack from {x, x} \ {z} onto
T (removing both attacks from z to T are the only changes on attacks in Rx). If there is
an attack from z to T in F ′, then T does not defend itself against this attack.

• Case m = 3: This case is possible, as witnessed by, e.g., one of the two statements in the
lemma.

• Case m > 3: Since |R∆R′| ≤ 3 · |X|, it holds that if m > 3, then there exists an x′ ∈ X
such that |(R ∩Rx′∆R′ ∩Rx′)| < 3 which is not possible (see previous cases).

Thus, under the assumptions of the lemma, for each x ∈ X we have |((R ∩Rx)∆(R′ ∩Rx))| = 3.
We now show that exactly one of the statements in the lemma holds. We use statement 1 and

statement 2 as shorthands for the two statements. Consider again x ∈ X and Rx as defined above.
If both statement 1 and statement 2 hold for x ∈ X , then |(R ∩ Rx∆R′ ∩ Rx)| > 3. This is a
contradiction. Now suppose both statements do not hold. For convenience, we state both again in
negated form.

∀t ∈ T it holds that (t, x) /∈ R′ (1)

∃t′ ∈ T s.t. (x, t′) ∈ R′ (2)

∀t ∈ T it holds that (t, x) /∈ R′ (3)

∃t′ ∈ T s.t. (x, t′) ∈ R′ (4)

Negated statement 1 is (1) or (2) and negated statement 2 is (3) or (4).
We again proceed by case analysis. We consider the four cases where both negated statements

hold (both negated statements consist of a disjunction of two assertions).

• Case (1) and (3) hold. In this case T does not attack {x, x}. Since in F there are four attacks
from {x, x} onto T at least one of them must be present in F ′. Therefore T does not defend
itself.

• Case (1) and (4) hold. Here T does not attack x and x attacks T . Thus T does not defend
itself.

• Case (2) and (3) hold. Symmetric to the second case ((1) and (4) hold).

• Case (2) and (4) hold. In this case both {x, x} attack T . To defend T in F ′ against these
two arguments, two attacks from T onto both x and x are required to be present in F ′. We
further know that Dx ∩ FF ′(T) = ∅. Since T defends both arguments in Dx from potential
attacks from {x, x}, we can infer that both dx1 and dx2 are attacked by at least one argument in
A\{x, x}. This is a contradiction, since inF there are no such attacks and one is required to be
present in F ′ for each argument in Dx, which would imply that |((R∩Rx)∆(R′∩Rx))| > 3
(two changes for attacks from T onto {x, x} and two attacks onto Dx).

32

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

Therefore either statement 1 holds or statement 2 holds but not both. This also implies the final
claim in the lemma, i.e., R∆R′ ⊆ (T ∪X ∪X × T ∪X ∪X).

Theorem 9. Strict extension enforcement for preferred and semi-stable semantics is ΣP
2 -complete.

Proof. Membership follows from guessing a new attack structure for a given enforcement prob-
lem, and verifying with an NP-oracle whether the given set is a preferred, resp. semi-stable, ex-
tension (Dunne & Caminada, 2008; Caminada et al., 2012; Dvořák & Woltran, 2010). Further,
we check whether the symmetric difference between the new and original attack structure does not
exceed the given bound.

For hardness we reduce from the problem of checking whether a given closed quantified Boolean
formula (QBF) in prenex normal form ψ = ∃X∀Y φ is satisfiable (or true). W.l.o.g. let φ be in
disjunctive normal form. We construct the following instance of our enforcement problem with
(Ag, Rg) = choice(X) and C the set of conjunctions of φ. Within this proof, we view conjunctions
also as sets. Let V = {vx | x ∈ X}.

A =Ag ∪ V ∪ V ∪ Y ∪ Y ∪ C ∪ {f, f}
R =Rg ∪ {(y, y), (y, y) | y ∈ Y } ∪
{(vx, vx), (vx, vx) | x ∈ X} ∪
{(x, vx) | x ∈ X} ∪ {(x, vx) | x ∈ X} ∪
{(vx, c) | vx ∈ V,¬x ∈ c} ∪
{(vx, c) | vx ∈ V , x ∈ c} ∪
{(y, c) | y ∈ Y,¬y ∈ c} ∪
{(y, c) | y ∈ Y , y ∈ c} ∪
{(c, f | c ∈ C} ∪ {(f, f)} ∪
{(f, z) | z ∈ V ∪ V ∪ Y ∪ Y }

Finally, we set k = 3 · |X|. The reduction is shown in Figure 19 and can be computed in
polynomial time. Let σ ∈ {prf , sem}. We now claim that there exists an F ′ = (A,R′) such that
T ∈ σ(F ′) with |R∆R′| ≤ 3 · |X| iff ψ is satisfiable. For some truth assignment τ defined on
variables X ∪ Y we denote by τ |X the restriction of τ to X , i.e., the truth assignment τ ′ that is
defined on X and τ(x) = τ ′(x) for all x ∈ X .

Assume that ψ is satisfiable. This means there is a partial truth assignment τ defined on variables
in X such that for every total interpretation τ ′ on X ∪ Y with τ ′|X = τ we have τ ′ |= φ. We define
two sets of attacks D1 and D2 as follows.

D1 ={(x, t) | x ∈ X, τ(x) = 0, t ∈ {t1, t2}} ∪
{(x, t) | x ∈ X, τ(x) = 1, t ∈ {t1, t2}},

D2 ={(t3, x) | x ∈ X, τ(x) = 1} ∪
{(t3, x) | x ∈ X, τ(x) = 0}.

We now define a new AF F ′ = (A,R′) with R′ = (R \D1) ∪D2. It holds that |R∆R′| = 3 · |X|.
We now claim that T ∈ sem(F ′) (which implies that T ∈ prf (F ′)).

33

WALLNER, NISKANEN, & JÄRVISALO

It holds that T ∈ grd(F ′) because t3 is not attacked at all in F ′ and for each x ∈ X there are
two attacks from {x, x} onto T which are counterattacked by t3, thus {t1, t2} is defended by t3.

We now show that there is no admissible set T ′ such that T ⊂ T ′. This claim implies that T is
a semi-stable extension of F ′. Suppose the contrary, i.e., ∃T ′ ∈ adm(F ′) for which T ⊂ T ′. First
some basic observations. No self-attacking argument in F ′ can be in T ′. For all x ∈ X it holds
that dx1 and dx2 are not in T ′, since one of their attackers (x or x) is not attacked by any argument
except themselves. Therefore, the only candidate arguments in A \ T to be present in T ′ are f and
the arguments in the sets Y , Y , V , and V . A further crucial observation is that if T ′ contains any
argument from the sets Y , Y , V , or V , then also f must be in T ′ (only f defends these arguments
against f). Thus, T ′ must contain f . Since f is attacked by all c ∈ C, at least one attacker of each
c must be present in T ′. From these arguments we create a partial truth assignment as follows.

τ ′′(z) =

1 if vz ∈ V ∩ T ′

1 if z ∈ Y ∩ T ′

0 if vz ∈ V ∩ T ′

0 if z ∈ Y ∩ T ′

This truth assignment is well-defined, i.e., no variable is assigned both 1 and 0, since the correspond-
ing arguments for assigning 1 resp. 0 are mutually attacking in F ′. It holds that for each x ∈ X if
τ ′′(x) is defined on x, then τ ′′(x) = τ(x). Suppose the contrary is true, i.e., τ ′′(x) 6= τ(x). We
consider the case that τ ′′(x) = 1 (τ ′′(x) = 0 is symmetric). Then vx ∈ T ′ and there is no attack
from T on x that is in turn attacking vx. This is in contradiction with T ′ being admissible.

We now prove that τ ′′ 6|= φ (in particular the partial truth assignment suffices to show this even
for all completions to all variables in φ). First note that φ[τ ′′] is unsatisfiable iff ∀c ∈ C, c[τ ′′] is
unsatisfiable. The latter statement holds if ∀c ∈ C,∃l ∈ c, τ ′′(l) = 0.

∀c ∈ C,∃l ∈ c, τ ′′(l) = 0

iff ∀c ∈ C,∃l ∈ c
if l = z then τ ′′(z) = 0 and

if l = ¬z then τ ′′(z) = 1

iff ∀c ∈ C,∃l ∈ c
if l = x, x ∈ X then vx ∈ T ′ and

if l = y, y ∈ Y then y ∈ T ′ and

if l = ¬x, x ∈ X then vx ∈ T ′ and

if l = ¬y, y ∈ Y then y ∈ T ′

iff ∀c ∈ C,∃(z, c) ∈ R′

if z = vx, x ∈ X then vx ∈ T ′ and

if z = y, y ∈ Y then y ∈ T ′ and

if z = vx, x ∈ X then vx ∈ T ′ and

if z = y, y ∈ Y then y ∈ T ′

iff ∀c ∈ C,∃(z, c) ∈ R′ it holds that z ∈ T ′

iff f ∈ FF ′(T ′).

34

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

t1 t2

t3

x1 x1

dx1
1 dx1

2

x2 x2

dx2
1 dx2

2

c1 c2

vx1 vx1
vx2 vx2

y1 y1 y2 y2

ff

Figure 19: Reduction for Theorem 9 with clauses c1 = (¬x1∧x2∧¬y1) and c2 = (x1∧¬x2∧y2).

Thus τ ′′ 6|= φ (or if τ ′′ is partial, then every completion of τ ′′ to all variables does not satisfy φ).

The previous observations imply that there exists an interpretation τ ′ defined on X ∪ Y such
that τ ′|X = τ with τ ′ 6|= φ. We define τ ′ by assigning the same truth values as τ to the variables
in X and the same truth values to the variables in Y as τ ′′. It follows that τ ′ is not a model of
φ. Therefore the assumption that f ∈ T ′ leads to a contradiction. This in turn implies that there
is no strictly larger admissible set than T containing f . This means that there is no strictly larger
admissible set than T in F ′ and also that T ∈ sem(F ′) (in fact, T is the only complete extension of
F ′). If T is semi-stable in F ′, then T is also preferred in F ′.

We now proceed to the other direction. Assume that there exists an F ′ = (A,R′) such that
T ∈ σ(F ′) and |R∆R′| ≤ 3 · |X|. Due to Lemma 7 we can infer that R∆R′ contains only attacks
from T to X ∪X as specified in that lemma. We construct a partial interpretation τ on X by

τ(x) =

{
1 if ∃(t, x) ∈ R′, t ∈ T
0 if ∃(t, x) ∈ R′, t ∈ T.

We now claim that for any interpretation τ ′ defined on X ∪ Y such that τ ′|X = τ we have τ ′ |= φ.
Suppose the contrary, that is, there exists such a τ ′ such that τ ′ 6|= φ. Then for all c ∈ C we have

35

WALLNER, NISKANEN, & JÄRVISALO

τ ′ 6|= c. We now construct a set of arguments T ′ as follows.

T ′ = T ∪ {f} ∪
{vx | vx ∈ V, τ ′(x) = 1} ∪
{vx | vx ∈ V , τ ′(x) = 0} ∪
{y | y ∈ Y, τ ′(y) = 1} ∪
{y | y ∈ Y , τ ′(y) = 0}

We claim that T ′ is a semi-stable extension of F ′. It is immediate that T ′ defends itself against
all attacks in F ′ except for those coming from C. Let (c, f) be such an attack for c ∈ C. By
assumption it holds that there exists a literal l in c such that τ ′ 6|= l. Then the variable of l is
assigned the complementary value in τ ′. The corresponding argument (vx or vx if variable is in X ,
otherwise y or y if variable is in Y) is present in T ′, thus defending f against c. This holds for all
c ∈ C. Thus T ′ is admissible. It is immediate that T ′ is also semi-stable (every argument except
dx1 , dx2 and one of x, x for each x ∈ X is in the range of T ′; these arguments are never in the range
of an admissible set). Since T ⊂ T ′ it holds that T /∈ prf (F ′) and in turn T /∈ sem(F ′). This is a
contradiction. Thus ψ is satisfiable.

Theorem 11. Non-strict enforcement under normal, strong, or weak expansions

• for admissible, complete, preferred, and stable semantics is NP-complete; and

• for semi-stable and stage semantics is ΣP
2 -complete.

Proof. First note that non-strict extension enforcement coincides for admissible, complete, and pre-
ferred semantics when we consider one type of expansions. In other words, non-strict extension
enforcement coincides under these three semantics under normal expansions, and, as well under
these three semantics, coincides under strong, and coincides under weak expansions. To see this,
assume a set X is non-strictly enforced under admissible semantics via an expansion with the solu-
tion AF F . It holds that X is part of an admissible set of F , which implies that X is contained in
a complete extension of F , and that X is contained in a preferred extension of F . Assume that X
is non-strictly enforced under preferred semantics via an expansion with the solution AF F ′. Then
X is contained in a preferred extension E of F ′. By definition, it holds that E is both complete and
admissible, and, in turn, X is contained in a complete extension (admissible set) of F ′.

Let σ ∈ {adm, stb, sem, stg}. Membership for all stated complexity results holds via a straight-
forward guess and check; guess a modified attack structure and superset of the given set to enforce,
and check whether the superset is a σ-extension. One can verify in polynomial time whether a set
is admissible or stable. The problem of verifying whether a set is a semi-stable or stage extension
is in coNP.

For hardness, similarly as for non-strict extension enforcement with a fixed set of arguments
(recall proofs of Theorem 3 and Theorem 4), we reduce from the problem of credulous acceptance
of a given argument a in a given AF F = (A,R) under semantics σ, i.e., checking whether a
σ-extension E ⊆ A exists with a ∈ E. The problem of credulous acceptance is NP-complete
for admissible and stable semantics and ΣP

2 -complete for semi-stable and stage semantics. We
reduce the problem of credulous acceptance to non-strict extension enforcement under expansion as
follows. Construct a new AF F ′ = (A′, R) with A′ = A ∪ {b} with b /∈ A. The AF F ′ is a normal,

36

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

strong, and weak expansion of F (no attacks added). From the definitions of the semantics it follows
that for anyE ⊆ A it holds thatE ∈ σ(F) iff (E∪{b}) ∈ σ(F ′). For σ′ ∈ {stb, sem, stg}we have
b ∈ E for all E ∈ σ′(F ′) (there are no attacks onto or from b in F ′). For admissible semantics, we
can infer that E′ ∈ adm(F ′) iff E′ ∪ {b} ∈ adm(F ′) (again by the fact that b is neither attacked or
attacks arguments inA′). Thus, if E ∈ σ(F ′), then E∪{b} ∈ σ(F ′). This implies that an argument
a is credulously accepted in F iff argument a is credulously accepted in F ′ iff one can non-strictly
enforce {a} under normal, strong, or weak expansions in F ′ with 0 modifications.

References

Alviano, M., Dodaro, C., & Ricca, F. (2015). A MaxSAT algorithm using cardinality constraints
of bounded size. In Yang, Q., & Wooldridge, M. (Eds.), Proc. IJCAI, pp. 2677–2683. AAAI
Press / IJCAI.

Amgoud, L., & Prade, H. (2009). Using arguments for making and explaining decisions. Artif.
Intell., 173(3-4), 413–436.

Ansótegui, C., Didier, F., & Gabàs, J. (2015). Exploiting the structure of unsatisfiable cores in
MaxSAT. In Yang, Q., & Wooldridge, M. (Eds.), Proc. IJCAI, pp. 283–289. AAAI Press.

Baroni, P., Caminada, M., & Giacomin, M. (2011). An introduction to argumentation semantics.
Knowl. Eng. Rev., 26(4), 365–410.

Baumann, R. (2012a). Normal and strong expansion equivalence for argumentation frameworks.
Artif. Intell., 193, 18–44.

Baumann, R. (2012b). What does it take to enforce an argument? Minimal change in abstract
argumentation. In Raedt, L. D., Bessière, C., Dubois, D., Doherty, P., Frasconi, P., Heintz,
F., & Lucas, P. J. F. (Eds.), Proc. ECAI, Vol. 242 of Frontiers in Artificial Intelligence and
Applications, pp. 127–132. IOS Press.

Baumann, R., & Brewka, G. (2010). Expanding argumentation frameworks: Enforcing and
monotonicity results. In Baroni, P., Cerutti, F., Giacomin, M., & Simari, G. R. (Eds.),
Proc. COMMA, Vol. 216 of Frontiers in Artificial Intelligence and Applications, pp. 75–86.
IOS Press.

Baumann, R., & Brewka, G. (2015). AGM meets abstract argumentation: Expansion and revision
for Dung frameworks. In Yang, Q., & Wooldridge, M. (Eds.), Proc. IJCAI, pp. 2734–2740.
AAAI Press.

Baumeister, D., Neugebauer, D., & Rothe, J. (2015a). Verification in attack-incomplete argumen-
tation frameworks. In Walsh, T. (Ed.), Proc. ADT, Vol. 9346 of Lecture Notes in Computer
Science, pp. 341–358. Springer.

Baumeister, D., Rothe, J., & Schadrack, H. (2015b). Verification in argument-incomplete argumen-
tation frameworks. In Walsh, T. (Ed.), Proc. ADT, Vol. 9346 of Lecture Notes in Computer
Science, pp. 359–376. Springer.

Bench-Capon, T. J. M., & Dunne, P. E. (2007). Argumentation in artificial intelligence. Artif. Intell.,
171(10-15), 619–641.

37

WALLNER, NISKANEN, & JÄRVISALO

Bench-Capon, T. J. M., Prakken, H., & Sartor, G. (2009). Argumentation in legal reasoning.
In Simari, G., & Rahwan, I. (Eds.), Argumentation in Artificial Intelligence, pp. 363–382.
Springer.

Besnard, P., & Doutre, S. (2004). Checking the acceptability of a set of arguments. In Delgrande,
J. P., & Schaub, T. (Eds.), Proc. NMR, pp. 59–64.

Bisquert, P., Cayrol, C., de Saint-Cyr, F. D., & Lagasquie-Schiex, M. (2013). Enforcement in
argumentation is a kind of update. In Liu, W., Subrahmanian, V. S., & Wijsen, J. (Eds.),
Proc. SUM, Vol. 8078 of Lecture Notes in Computer Science, pp. 30–43. Springer.

Booth, R., Kaci, S., Rienstra, T., & van der Torre, L. W. N. (2013). A logical theory about dynamics
in abstract argumentation. In Liu, W., Subrahmanian, V. S., & Wijsen, J. (Eds.), Proc. SUM,
Vol. 8078 of Lecture Notes in Computer Science, pp. 148–161. Springer.

Caminada, M. W. A., Carnielli, W. A., & Dunne, P. E. (2012). Semi-stable semantics. J. Logic
Comput., 22(5), 1207–1254.

Cayrol, C., de Saint-Cyr, F. D., & Lagasquie-Schiex, M. (2010). Change in abstract argumentation
frameworks: Adding an argument. J. Artif. Intell. Res., 38, 49–84.

Cerutti, F., Dunne, P. E., Giacomin, M., & Vallati, M. (2014a). Computing preferred extensions in
abstract argumentation: A SAT-based approach. In Black, E., Modgil, S., & Oren, N. (Eds.),
TAFA 2013 Revised Selected Papers, Vol. 8306 of Lecture Notes in Computer Science, pp.
176–193. Springer.

Cerutti, F., Giacomin, M., & Vallati, M. (2014b). ArgSemSAT: Solving argumentation problems
using SAT. In Parsons, S., Oren, N., Reed, C., & Cerutti, F. (Eds.), Proc. COMMA, Vol. 266
of Frontiers in Artificial Intelligence and Applications, pp. 455–456. IOS Press.

Cerutti, F., Giacomin, M., & Vallati, M. (2016). Generating structured argumentation frameworks:
Afbenchgen2. In Baroni, P., Gordon, T. F., Scheffler, T., & Stede, M. (Eds.), Proc. COMMA,
Vol. 287 of Frontiers in Artificial Intelligence and Applications, pp. 467–468. IOS Press.

Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., & Veith, H. (2003). Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM, 50(5), 752–794.

Clarke, E. M., Gupta, A., & Strichman, O. (2004). SAT-based counterexample-guided abstraction
refinement. IEEE TCAD, 23(7), 1113–1123.

Coste-Marquis, S., Devred, C., & Marquis, P. (2005). Symmetric argumentation frameworks. In
Godo, L. (Ed.), Proc. ECSQARU, Vol. 3571 of Lecture Notes in Computer Science, pp. 317–
328. Springer.

Coste-Marquis, S., Konieczny, S., Mailly, J., & Marquis, P. (2014a). On the revision of argumenta-
tion systems: Minimal change of arguments statuses. In Baral, C., Giacomo, G. D., & Eiter,
T. (Eds.), Proc. KR, pp. 52–61. AAAI Press.

Coste-Marquis, S., Konieczny, S., Mailly, J., & Marquis, P. (2014b). A translation-based approach
for revision of argumentation frameworks. In Fermé, E., & Leite, J. (Eds.), Proc. JELIA, Vol.
8761 of Lecture Notes in Computer Science, pp. 397–411. Springer.

Coste-Marquis, S., Konieczny, S., Mailly, J., & Marquis, P. (2015). Extension enforcement in ab-
stract argumentation as an optimization problem. In Yang, Q., & Wooldridge, M. (Eds.),
Proc. IJCAI, pp. 2876–2882. AAAI Press.

38

COMPLEXITY RESULTS AND ALGORITHMS FOR EXTENSION ENFORCEMENT

Davies, J., & Bacchus, F. (2013). Exploiting the power of MIP solvers in MAXSAT. In Järvisalo,
M., & Gelder, A. V. (Eds.), Proc. SAT, Vol. 7962 of Lecture Notes in Computer Science, pp.
166–181. Springer.

de Saint-Cyr, F. D., Bisquert, P., Cayrol, C., & Lagasquie-Schiex, M. (2016). Argumentation update
in YALLA (Yet Another Logic Language for Argumentation). Int. J. Approx. Reasoning, 75,
57–92.

Delobelle, J., Haret, A., Konieczny, S., Mailly, J., Rossit, J., & Woltran, S. (2016). Merging of ab-
stract argumentation frameworks. In Baral, C., Delgrande, J. P., & Wolter, F. (Eds.), Proc. KR,
pp. 33–42. AAAI Press.

Delobelle, J., Konieczny, S., & Vesic, S. (2015). On the aggregation of argumentation frameworks.
In Yang, Q., & Wooldridge, M. (Eds.), Proc. IJCAI, pp. 2911–2917. AAAI Press.

Diller, M., Haret, A., Linsbichler, T., Rümmele, S., & Woltran, S. (2015). An extension-based
approach to belief revision in abstract argumentation. In Yang, Q., & Wooldridge, M. (Eds.),
Proc. IJCAI, pp. 2926–2932. AAAI Press.

Dimopoulos, Y., & Torres, A. (1996). Graph theoretical structures in logic programs and default
theories. Theor. Comput. Sci., 170(1-2), 209–244.

Donaldson, A. F., Kaiser, A., Kroening, D., Tautschnig, M., & Wahl, T. (2012). Counterexample-
guided abstraction refinement for symmetric concurrent programs. Formal Methods in System
Design, 41(1), 25–44.

Doutre, S., Herzig, A., & Perrussel, L. (2014). A dynamic logic framework for abstract argumenta-
tion. In Baral, C., Giacomo, G. D., & Eiter, T. (Eds.), Proc. KR, pp. 62–71. AAAI Press.

Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell., 77(2), 321–358.

Dunne, P. E., & Caminada, M. (2008). Computational complexity of semi-stable semantics in
abstract argumentation frameworks. In Hölldobler, S., Lutz, C., & Wansing, H. (Eds.),
Proc. JELIA, Vol. 5293 of Lecture Notes in Computer Science, pp. 153–165. Springer.

Dunne, P. E., Hunter, A., McBurney, P., Parsons, S., & Wooldridge, M. (2011). Weighted argument
systems: Basic definitions, algorithms, and complexity results. Artif. Intell., 175(2), 457–486.

Dunne, P. E., & Wooldridge, M. (2009). Complexity of abstract argumentation. In Simari, G., &
Rahwan, I. (Eds.), Argumentation in Artificial Intelligence, pp. 85–104. Springer.

Dvořák, W., Järvisalo, M., Wallner, J. P., & Woltran, S. (2014). Complexity-sensitive decision
procedures for abstract argumentation. Artif. Intell., 206, 53–78.

Dvořák, W., & Woltran, S. (2010). Complexity of semi-stable and stage semantics in argumentation
frameworks. Inform. Process. Lett., 110(11), 425–430.

Egly, U., Gaggl, S. A., & Woltran, S. (2010). Answer-set programming encodings for argumentation
frameworks. Argument and Computation, 1(2), 147–177.

Endriss, U., & Grandi, U. (2017). Graph aggregation. Artif. Intell., 245, 86–114.

Janota, M., Grigore, R., & Marques-Silva, J. (2010). Counterexample guided abstraction refine-
ment algorithm for propositional circumscription. In Janhunen, T., & Niemelä, I. (Eds.),
Proc. JELIA, Vol. 6341 of Lecture Notes in Computer Science, pp. 195–207. Springer.

39

WALLNER, NISKANEN, & JÄRVISALO

Maher, M. J. (2016a). Corrupt strategic argumentation: The ideal and the naive. In Kang, B. H.,
& Bai, Q. (Eds.), Proc. AUS-AI, Vol. 9992 of Lecture Notes in Computer Science, pp. 17–28.
Springer.

Maher, M. J. (2016b). Resistance to corruption of general strategic argumentation. In Baldoni, M.,
Chopra, A. K., Son, T. C., Hirayama, K., & Torroni, P. (Eds.), Proc. PRIMA, Vol. 9862 of
Lecture Notes in Computer Science, pp. 61–75. Springer.

Maher, M. J. (2016c). Resistance to corruption of strategic argumentation. In Schuurmans, D., &
Wellman, M. P. (Eds.), Proc. AAAI, pp. 1030–1036. AAAI Press.

Mailly, J. (2016). Using enthymemes to fill the gap between logical argumentation and revision
of abstract argumentation frameworks. In Kern-Isberner, G., & Wassermann, R. (Eds.),
Proc. NMR, Vol. 852 of Technical Reports in Computer Science, pp. 95–104. Technische
Universität Dortmund.

Martins, R., Manquinho, V. M., & Lynce, I. (2014). Open-WBO: A modular MaxSAT solver. In
Sinz, C., & Egly, U. (Eds.), Proc. SAT, Vol. 8561 of Lecture Notes in Computer Science, pp.
438–445. Springer.

McBurney, P., Parsons, S., & Rahwan, I. (Eds.). (2012). ArgMAS 2011 Revised Selected Papers,
Vol. 7543 of Lecture Notes in Computer Science. Springer.

Morgado, A., Ignatiev, A., & Marques-Silva, J. (2015). MSCG: Robust core-guided MaxSAT solv-
ing. Journal on Satisfiability, Boolean Modeling and Computation, 9, 129–134.

Niskanen, A., Wallner, J. P., & Järvisalo, M. (2016). Pakota: A system for enforcement in abstract
argumentation. In Michael, L., & Kakas, A. C. (Eds.), Proc. JELIA, Vol. 10021 of Lecture
Notes in Computer Science, pp. 385–400. Springer.

Nofal, S., Atkinson, K., & Dunne, P. E. (2014). Algorithms for decision problems in argument
systems under preferred semantics. Artif. Intell., 207, 23–51.

Papadimitriou, C. H. (1994). Computational complexity. Addison-Wesley.

Saikko, P., Berg, J., & Järvisalo, M. (2016). LMHS: A SAT-IP hybrid MaxSAT solver. In Creignou,
N., & Berre, D. L. (Eds.), Proc. SAT, Vol. 9710 of Lecture Notes in Computer Science, pp.
539–546. Springer.

Wallner, J. P., Niskanen, A., & Järvisalo, M. (2016). Complexity results and algorithms for ex-
tension enforcement in abstract argumentation. In Schuurmans, D., & Wellman, M. (Eds.),
Proc. AAAI, pp. 1088–1094. AAAI Press.

40

