114 research outputs found

    Robustness and fragility of the susceptible-infected-susceptible epidemic models on complex networks

    Full text link
    We analyze two alterations of the standard susceptible-infected-susceptible (SIS) dynamics that preserve the central properties of spontaneous healing and infection capacity of a vertex increasing unlimitedly with its degree. All models have the same epidemic thresholds in mean-field theories but depending on the network properties, simulations yield a dual scenario, in which the epidemic thresholds of the modified SIS models can be either dramatically altered or remain unchanged in comparison with the standard dynamics. For uncorrelated synthetic networks having a power-law degree distribution with exponent γ<5/2\gamma<5/2, the SIS dynamics are robust exhibiting essentially the same outcomes for all investigated models. A threshold in better agreement with the heterogeneous rather than quenched mean-field theory is observed in the modified dynamics for exponent γ>5/2\gamma>5/2. Differences are more remarkable for γ>3\gamma>3 where a finite threshold is found in the modified models in contrast with the vanishing threshold of the original one. This duality is elucidated in terms of epidemic lifespan on star graphs. We verify that the activation of the modified SIS models is triggered in the innermost component of the network given by a kk-core decomposition for γ<3\gamma<3 while it happens only for γ3\gamma3, the activation in the modified dynamics is collective involving essentially the whole network while it is triggered by hubs in the standard SIS. The duality also appears in the finite-size scaling of the critical quantities where mean-field behaviors are observed for the modified, but not for the original dynamics. Our results feed the discussions about the most proper conceptions of epidemic models to describe real systems and the choices of the most suitable theoretical approaches to deal with these models.Comment: 13 pages, 8 figure

    Exact and approximate moment closures for non-Markovian network epidemics

    Full text link
    Moment-closure techniques are commonly used to generate low-dimensional deterministic models to approximate the average dynamics of stochastic systems on networks. The quality of such closures is usually difficult to asses and the relationship between model assumptions and closure accuracy are often difficult, if not impossible, to quantify. Here we carefully examine some commonly used moment closures, in particular a new one based on the concept of maximum entropy, for approximating the spread of epidemics on networks by reconstructing the probability distributions over triplets based on those over pairs. We consider various models (SI, SIR, SEIR and Reed-Frost-type) under Markovian and non-Markovian assumption characterising the latent and infectious periods. We initially study two special networks, namely the open triplet and closed triangle, for which we can obtain analytical results. We then explore numerically the exactness of moment closures for a wide range of larger motifs, thus gaining understanding of the factors that introduce errors in the approximations, in particular the presence of a random duration of the infectious period and the presence of overlapping triangles in a network. We also derive a simpler and more intuitive proof than previously available concerning the known result that pair-based moment closure is exact for the Markovian SIR model on tree-like networks under pure initial conditions. We also extend such a result to all infectious models, Markovian and non-Markovian, in which susceptibles escape infection independently from each infected neighbour and for which infectives cannot regain susceptible status, provided the network is tree-like and initial conditions are pure. This works represent a valuable step in deepening understanding of the assumptions behind moment closure approximations and for putting them on a more rigorous mathematical footing.Comment: Main text (45 pages, 11 figures and 3 tables) + supplementary material (12 pages, 10 figures and 1 table). Accepted for publication in Journal of Theoretical Biology on 27th April 201

    Temporal Networks

    Full text link
    A great variety of systems in nature, society and technology -- from the web of sexual contacts to the Internet, from the nervous system to power grids -- can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via email, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks

    PDE limits of stochastic SIS epidemics on networks

    Get PDF
    Stochastic epidemic models on networks are inherently high-dimensional and the resulting exact models are intractable numerically even for modest network sizes. Mean-field models provide an alternative but can only capture average quantities, thus offering little or no information about variability in the outcome of the exact process. In this article, we conjecture and numerically demonstrate that it is possible to construct partial differential equation (PDE)-limits of the exact stochastic susceptible-infected-susceptible epidemics on Regular, Erdős–Rényi, Barabási–Albert networks and lattices. To do this, we first approximate the exact stochastic process at population level by a Birth-and-Death process (BD) (with a state space of O(N) rather than O(2N)⁠) whose coefficients are determined numerically from Gillespie simulations of the exact epidemic on explicit networks. We numerically demonstrate that the coefficients of the resulting BD process are density-dependent, a crucial condition for the existence of a PDE limit. Extensive numerical tests for Regular, Erdős–Rényi, Barabási–Albert networks and lattices show excellent agreement between the outcome of simulations and the numerical solution of the Fokker–Planck equations. Apart from a significant reduction in dimensionality, the PDE also provides the means to derive the epidemic outbreak threshold linking network and disease dynamics parameters, albeit in an implicit way. Perhaps more importantly, it enables the formulation and numerical evaluation of likelihoods for epidemic and network inference as illustrated in a fully worked out example

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE
    corecore