2,984 research outputs found

    Robust Fault Detection of Switched Linear Systems with State Delays

    Get PDF
    This correspondence deals with the problem of robust fault detection for discrete-time switched systems with state delays under an arbitrary switching signal. The fault detection filter is used as the residual generator, in which the filter parameters are dependent on the system mode. Attention is focused on designing the robust fault detection filter such that, for unknown inputs, control inputs, and model uncertainties, the estimation error between the residuals and faults is minimized. The problem of robust fault detection is converted into an H infin-filtering problem. By a switched Lyapunov functional approach, a sufficient condition for the solvability of this problem is established in terms of linear matrix inequalities. A numerical example is provided to demonstrate the effectiveness of the proposed method

    On design of quantized fault detection filters with randomly occurring nonlinearities and mixed time-delays

    Get PDF
    This paper is concerned with the fault detection problem for a class of discrete-time systems with randomly occurring nonlinearities, mixed stochastic time-delays as well as measurement quantizations. The nonlinearities are assumed to occur in a random way. The mixed time-delays comprise both the multiple discrete time-delays and the infinite distributed delays that occur in a random way as well. A sequence of stochastic variables is introduced to govern the random occurrences of the nonlinearities, discrete time-delays and distributed time-delays, where all the stochastic variables are mutually independent but obey the Bernoulli distribution. The main purpose of this paper is to design a fault detection filter such that, in the presence of measurement quantization, the overall fault detection dynamics is exponentially stable in the mean square and, at the same time, the error between the residual signal and the fault signal is made as small as possible. Sufficient conditions are first established via intensive stochastic analysis for the existence of the desired fault detection filters, and then the explicit expression of the desired filter gains is derived by means of the feasibility of certain matrix inequalities. Also, the optimal performance index for the addressed fault detection problem can be obtained by solving an auxiliary convex optimization problem. A practical example is provided to show the usefulness and effectiveness of the proposed design method

    Probability-dependent gain-scheduled filtering for stochastic systems with missing measurements

    Get PDF
    Copyright @ 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This brief addresses the gain-scheduled filtering problem for a class of discrete-time systems with missing measurements, nonlinear disturbances, and external stochastic noise. The missing-measurement phenomenon is assumed to occur in a random way, and the missing probability is time-varying with securable upper and lower bounds that can be measured in real time. The multiplicative noise is a state-dependent scalar Gaussian white-noise sequence with known variance. The addressed gain-scheduled filtering problem is concerned with the design of a filter such that, for the admissible random missing measurements, nonlinear parameters, and external noise disturbances, the error dynamics is exponentially mean-square stable. The desired filter is equipped with time-varying gains based primarily on the time-varying missing probability and is therefore less conservative than the traditional filter with fixed gains. It is shown that the filter parameters can be derived in terms of the measurable probability via the semidefinite program method.This work was supported in part by the Leverhulme Trust of the U.K., the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the National Natural Science Foundation of China under Grants 61028008, 61074016 and 60974030, the Shanghai Natural Science Foundation of China under Grant 10ZR1421200, and the Alexander von Humboldt Foundation of Germany

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    H ? filtering for stochastic singular fuzzy systems with time-varying delay

    Get PDF
    This paper considers the H? filtering problem for stochastic singular fuzzy systems with timevarying delay. We assume that the state and measurement are corrupted by stochastic uncertain exogenous disturbance and that the system dynamic is modeled by Ito-type stochastic differential equations. Based on an auxiliary vector and an integral inequality, a set of delay-dependent sufficient conditions is established, which ensures that the filtering error system is e?t - weighted integral input-to-state stable in mean (iISSiM). A fuzzy filter is designed such that the filtering error system is impulse-free, e?t -weighted iISSiM and the H? attenuation level from disturbance to estimation error is belowa prescribed scalar.Aset of sufficient conditions for the solvability of the H? filtering problem is obtained in terms of a new type of Lyapunov function and a set of linear matrix inequalities. Simulation examples are provided to illustrate the effectiveness of the proposed filtering approach developed in this paper

    Discrete Time Systems

    Get PDF
    Discrete-Time Systems comprehend an important and broad research field. The consolidation of digital-based computational means in the present, pushes a technological tool into the field with a tremendous impact in areas like Control, Signal Processing, Communications, System Modelling and related Applications. This book attempts to give a scope in the wide area of Discrete-Time Systems. Their contents are grouped conveniently in sections according to significant areas, namely Filtering, Fixed and Adaptive Control Systems, Stability Problems and Miscellaneous Applications. We think that the contribution of the book enlarges the field of the Discrete-Time Systems with signification in the present state-of-the-art. Despite the vertiginous advance in the field, we also believe that the topics described here allow us also to look through some main tendencies in the next years in the research area

    Robust L2 - L∞ filtering for a class of dynamical systems with nonhomogeneous Markov jump process

    Get PDF
    This paper investigates the problem of robust L2 - L∞ filtering for a class of dynamical systems with nonhomogeneous Markov jump process. The time-varying transition probabilities which evolve as a nonhomogeneous jump process are described by a polytope, and parameter-dependent and mode-dependent Lyapunov function is constructed for such system, and then a robust L2 -L8 filter is designed which guarantees that the resulting error dynamic system is robustly stochasticallystable and satisfies a prescribed L2 - L∞ performance index. A numerical example is given to illustrate the effectiveness of the developed techniques
    corecore