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Robust Fault Detection for Switched Linear Systems with
State Delays

Dong Wang, Wei Wang and Peng Shi, Senior Member, IEEE

Abstract— This paper deals with the problem of robust fault detection
for discrete-time switched systems with state delays under arbitrary
switching signal. The fault detection filter is used as the residual
generator, in which the filter parameters are dependent on the system
mode. Attention is focused on designing the robust fault detection filter
such that, for unknown inputs, control inputs and model uncertainties,
the estimation error between the residuals and the faults is minimized.
The problem of robust fault detection is converted into an H∞ filter-
ing problem. By switched Lyapunov functional approach, a sufficient
condition for the solvability of this problem is established in terms of
linear matrix inequalities (LMIs). A numerical example is provided to
demonstrate the effectiveness of the proposed method.

Index Terms— Fault Detection and Isolation, Switched Systems, LMIs,
State Delays.

I. INTRODUCTION

Fault Detection and Isolation (FDI) in dynamic systems has
attracted great attention of many researchers over the past decades,
and some model-based fault detection approaches have been proposed
(see, e.g. [1]–[6] and the references therein). Among these model-
based approaches, the most common one is to use state observers or
filters to construct a residual signal and compare it with a predefined
threshold. When the residual evaluation function has a value larger
than the threshold, an alarm is generated. It is well known that
unknown inputs, control inputs, model uncertainties and the faults
are coupled in many industrial systems, which is a source of false
alarms. This means that FDI systems have to be sensitive to faults
and simultaneously robust to unknown inputs, control inputs and
model uncertainties. Therefore, it is of great significance to design a
robust FDI system [7]–[10]. Recently, an H∞-filtering formulation
of FDI problem has been presented to solve the robust FDI problem
[11]–[13]. In [11], the problem of Robust Fault Detection Filter
Design (RFDFD) for discrete-time Markovain jump linear systems
is formulated as an H∞-filtering problem. In [13], the problem
of RFDFD for discrete-time networked systems with multiple state
delays and unknown input is transformed into an H∞-filtering
problem for Markovain jumping system. In this paper, the problem
of RFDFD for discrete-time switched systems with state delays is
cast into an H∞ filtering problem.

On another research front line, there has been increasing interest
in the control problems of switched systems due to their significance
both in theory and applications (see, for instance, [14]–[25] and
the references therein). Many methods have been developed in the
study of switched systems such as multiple Lyapunov functions ap-
proach [23], average dwell time technology [24], switched Lyapunov
function approach [25] and so on. In [25], a switched Lyapunov
function approach is proposed for stability analysis for discrete-time
switched systems, but time delays are not considered. In this paper,
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state delays are involved. However, the existence of time delays in
a system may cause instability or bad system performance [26]–
[30]. Hence, switched systems with time delay have gained a great
deal of attention (see, for example, [19]–[22], [31]–[34] and the
references therein). However, to the best of the authors’ knowledge,
the problem of RFDFD for discrete-time switched systems with state
delays has not been investigated yet. This motivates us to study this
interesting and challenging problem, which has great potential in
practical applications.

This paper deals with the problem of RFDFD by using switched
Lyapunov functional approach for discrete-time switched systems
with state delays. Firstly, the residual generator is constructed based
on the filter. Secondly, by augmenting the states of the original system
and the fault detection filter, the problem of RFDFD is formulated
as an H∞ filtering problem. The objective is to make the difference
between the faults and the residuals as small as possible, and increase
robustness of the residuals to the unknown input. Then, by using
switched Lyapunov functional approach, a sufficient condition on the
existence of such filters is established in terms of LMIs. The desired
filter are constructed by solving the corresponding LMIs. Finally, a
simulation example is presented to demonstrate the effectiveness of
the proposed method.

The rest of this paper is organized as follows. In Section 2, system
descriptions and definitions are presented. A sufficient condition
on the existence of a robust fault detection filter for discrete-time
switched systems with state delays is presented in terms of LMIs,
and the desired filter are constructed in Section 3. To demonstrate the
validity of the proposed approach, an example is given in Section 4
which is followed by a conclusion in Section 5.

II. PROBLEM FORMULATION

Consider the following discrete-time switched systems with state
delays:

xk+1 =

N∑
i=1

ξi (k) (Aixk + Adixk−d + Eiuk + Bidk + Gifk)

yk =

N∑
i=1

ξi (k) (Cixk + Cdixk−d + Qiuk + Didk + Jifk) (1)

where xk ∈ Rn is the state, yk ∈ Rr is the measured output, dk ∈
Rp, uk ∈ Rs and fk ∈ Rq are, respectively, the unknown input, the
control input and the faults which belong to l2 [0,∞). The matrices
Ai, Adi, Bi, Ci, Cdi, Di, Ei, Gi, Ji, Qi are of the appropriate
dimensions, where Ai = Āi+∆Ai(k), Adi = Ādi+∆Adi(k), Ei =
Ēi+∆Ei(k). The modeling errors ∆Ai (k) , ∆Adi (k) , ∆Ei (k) are
norm-bounded uncertainties satisfying

[
∆Ai (k) ∆Adi (k) ∆Ei (k)

]
= H̄iF̄ (k)

[
C̄1i C̄2i C̄3i

]

where H̄i, C̄1i, C̄2i, C̄3i are known constant matrices, while F̄ (k) is
unknown time-varying matrices satisfying F̄ T (k) F̄ (k) ≤ I . The
positive integers N and d denote the number of subsystems and the

state delay, respectively. ξi (k) : Z+ → {0, 1} and
N∑

i=1

ξi (k) =
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1, k ∈ Z+, i ∈ N = {1, 2, · · · , N} is the switching signal which
specifies which subsystem is activated at the switching instant.

An FDI system consists of a residual generator and a residual
evaluation stage including an evaluation function and a threshold.
For the purpose of residual generation, the following fault detection
filter is constructed as a residual generator:

x̂k+1 =

N∑
i=1

ξi (k) (Afix̂k + Bfiyk)

rk =

N∑
i=1

ξi (k) (Cfix̂k + Dfiyk) (2)

where x̂k is the filter’s state, rk is the residual signal. The matrices
Afi, Bfi, Cfi and Dfi are the filter parameters to be determined.

For the purpose of fault detection, it is not necessary to estimate
the fault fk. Sometimes one is more interested in the fault signal of a
certain frequency interval, which can be formulated as the weighted
fault f̂(z) = Wf (z)f(z) with Wf (z) being a given stable weighting
matrix. A minimal realization of f̂(z) = Wf (z)f(z) is supposed to
be

x̄k+1 = Awx̄k + Bwfk

f̂k = Cwx̄k + Dwfk (3)

where x̄k ∈ Rn̄ is the state of the weighted fault, fk ∈ Rq is the
original fault and f̂k ∈ Rq is the weighted fault. Aw, Bw, Cw and
Dw are known constant matrices.

Remark 1: The parameters of filter (2) depend on the system
modes. This means that the switching signals in system (1) and
filter (2) are the same. In practice, each subsystem of filter (2) is
designed for the corresponding subsystem of system (1). Then, each
pair of subsystems can be actived by one signal. As in [32], [25],
it is assumed that the switching signal is not known a priori, but its
instantaneous value is available in real-time implementation. When
the swithing signal changes, the jumps between the modes occur
simultaneously and in pairs.

Remark 2: Similar to [11], [13], the introduction of Wf (z) could
limit the frequency ranges of interest, but the system performance
could be improved and the frequency characteristics required to
reflect the emphases of different frequency ranges could be captured.
Denoting ek = rk − f̂k and augmenting the model of system (1)
to include the states of (2), we can obtain the augmented system as
follows:

x̃k+1 =

N∑
i=1

ξi (k)
(
Ãix̃k + Ãdix̃k−d + B̃iwk

)

ek =

N∑
i=1

ξi (k)
(
C̃ix̃k + C̃dix̃k−d + D̃iwk

)
(4)

where

Ãi =




Ai 0 0
BfiCi Afi 0

0 0 Aw


 , x̃k =




xk

x̂k

x̄k


 ,

Ãdi =




Adi 0 0
BfiCdi 0 0

0 0 0


 , wk =




uk

dk

fk


 ,

B̃i =




Ei Bi Gi

BfiQi BfiDi BfiJi

0 0 Bw


 ,

C̃i =
[

DfiCi Cfi −Cw

]
,

C̃di =
[

DfiCdi 0 0
]
,

D̃i =
[

DfiQi DfiDi DfiJi −Dw

]
.

Remark 3: It should be noted from ek = rk−f̂k that the residual rk

generated by filter (2) provides an estimate of the fault f̂k. The stable
weighting matrix Wf (z) is given. Thus, detection and isolation of the
fault fk can be achieved by examining the values of the residual rk.
That is, the designed filter not only detects the occurred fault, but
also can isolate it.

Now, the problem of RFDFD can be transformed into an H∞
filtering problem for system (4): to develop filter (2) for system (1)
such that the augmented system (4) under arbitrary switching signal is
asymptotically stable when wk = 0 and, under zero-initial condition,
the infimum of γ is made small in the feasibility of

sup
wk 6=0,wk∈l2[0,∞)

‖ek‖2
‖wk‖2

< γ, γ > 0 (5)

After designing the residual generator, the remaining important task
is to evaluate the generated residual. One of the widely adopted
approaches is to select a threshold and a residual evaluation function.
In this paper, the residual evaluation function is chosen as

JL(r) = ‖rk‖2,L =




l0+L∑

k=l0

rT
k rk




1/2

(6)

where l0 is the initial evaluation time instant, L is the evaluation time
window.

Remark 4: In fact, the length of the evaluation window L is limit
since it is desired that the faults will be detected as early as possible,
while an evaluation of residual signal over the whole time range is
not practical. This point has been mentioned in [?], [10]–[12].
Once the evaluation function has been selected, we are able to
determine the threshold. Since the faults can be detected by using
the following logical relationship:

JL(r) > Jth ⇒ Faults ⇒ Alarm

JL(r) ≤ Jth ⇒ No Fault

it is reasonable to choose the threshold as

Jth = sup
d∈l2, u∈l2, f=0

‖rk‖2,L. (7)

It is clear that the computation of Jth involves the determination of
the unknown inputs dk and the control inputs uk on the residuals rk.

III. H∞ FAULT DETECTION FILTER DESIGN

In this section, a sufficient condition on the existence of the robust
fault detection filters would be given and a desired filer could be
constructed.

Lemma 1 [35]: Let Y , H and C be matrices with appropriate
dimensions. Supppose that Y is symmetric and ∆(k)T ∆(k) ≤ I ,
then,

Y + H∆(k)C + CT ∆(k)H < 0

if and only if

Y + ε−1HHT + εCT C < 0

where ε is a given positive scalar.
Lemma 2: For a given scalar γ > 0, system (4) under arbitrary

switching signals is asymptotically stable when wk = 0 and, under
zero-initial conditions, guarantees the performance index (5) for all
nonzero wk ∈ l2 [0,∞), if there exist the positive definite symmetric
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matrices Pi and Qi, i ∈ N such that the following inequality holds,



−P−1
j Ãi Ãdi B̃i 0 0

∗ −Pi 0 0 C̃T
i I

∗ ∗ −Ql 0 C̃T
di 0

∗ ∗ ∗ −γ2I D̃T
i 0

∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −Q−1

i




< 0 (8)

Proof. First, the asymptotical stability of system (4) with wk = 0
is established. The following Lyapunov functional is constructed by:

Vk = x̃T
k

(
N∑

i=1

ξi (k) Pi

)
x̃k

+

k−1∑

s=k−d

x̃T
s

(
N∑

i=1

ξi (k) Qi

)
x̃s (9)

where Pi and Qi are the positive define symmetric matrices. Then,
we get

∆Vk = Vk+1 − Vk

= x̃T
k+1

(
N∑

i=1

ξi (k + 1) Pi

)
x̃k+1

− x̃T
k

(
N∑

i=1

ξi (k) Pi

)
x̃k + x̃T

k

(
N∑

i=1

ξi (k) Qi

)
x̃k

− x̃T
k−d

(
N∑

i=1

ξi (k − d) Qi

)
x̃k−d (10)

As this has to be satisfied under arbitrary switching signals, it
follows that this has to hold for the configuration ξi (k) = 1,
ξr 6=i (k) = 0, ξj (k + 1) = 1, ξr 6=j (k + 1) = 0, ξl (k − d) = 1
and ξr 6=l (k − d) = 0, along the solution of system (4) with wk = 0,
we have

∆Vk|wk=0 = η̃T
k Λiη̃k (11)

where

η̃T
k =

[
x̃T

k x̃T
k−d

]
,

Λi =

[
ÃT

i

ÃT
di

]
Pj

[
Ãi Ãdi

]
+

[
Qi − Pi 0

∗ −Ql

]
.

By using Schur complement, it follows from (8) that Λi < 0. Thus,
from (11) we have ∆Vk|wk=0 < −ρ ‖xk‖2 for a sufficiently small
ρ > 0 and xk 6= 0, which establishes the asymptotical stability of
system (4).

Secondly, we consider the following performance index:

J =

K−1∑

k=0

[
eT

k ek − γ2wT
k wk

]
(12)

where K is an arbitrary positive integer. For any nonzero wk ∈
l2 [0,∞) and under zero-initial condition x̃0 = 0, one has

J =

K−1∑

k=0

[
eT

k ek − γ2wT
k wk + ∆Vk|(4)

]
− VK

≤
K−1∑

k=0

[
eT

k ek − γ2wT
k wk + ∆Vk|(4)

]
(13)

where ∆Vk|(4) defines ∆Vk along the solution of system (4). It is
noted that

eT
k ek − γ2wT

k wk + ∆Vk|(4) = ηT
k Πηk (14)

where

Π =




ÃT
i

ÃT
di

B̃T
i


 Pj

[
Ãi Ãdi B̃i

]

+



−Pi + Qi 0 0

∗ −Ql 0
∗ ∗ −γ2I




+




C̃T
i

C̃T
di

D̃T
i


 [

C̃i C̃di D̃i

]
, ηk =




x̃k

x̃k−d

wk




It follows from (8) and Schur complement that Π < 0, which implies
J < 0. Then, one has that for any nonzero wk ∈ l2 [0,∞), ‖ek‖2 <
γ ‖wk‖2, which completes the proof.

Lemma 3: For a given scalar γ > 0 and the augmented system
(4), LMI (8) is feasible, if there exist the positive definite symmetric
matrices Ri, Φi, and matrices Ωi, i ∈ N such that the following
inequality holds,




−Rj ÃiΩi ÃdiΩi B̃i 0 0

∗ R̄i 0 0 ΩT
i C̃T

i ΩT
i

∗ ∗ Φ̄l 0 ΩT
i C̃T

di 0

∗ ∗ ∗ −γ2I D̃T
i 0

∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −Φi




< 0. (15)

where R̄i = Ri −
(
ΩT

i + Ωi

)
and Φ̄l = Φl −

(
ΩT

i + Ωi

)
.

Proof. Assume that (15) is feasible, then it is easy to see that
Ri −

(
ΩT

i + Ωi

)
< 0 which means that Ωi is nonsingular. Since

Ri > 0, we have (Ri − Ωi)
T R−1

i (Ri − Ωi) ≥ 0 which implies
−ΩT

i R−1
i Ωi ≤ Ri −

(
Ωi + ΩT

i

)
. Similarly, one has −ΩT

i Φ−1
l Ωi ≤

Φl −
(
Ωi + ΩT

i

)
. Then, (15) is transformed into




−Rj ÃiΩi ÃdiΩi B̃i 0 0

∗ R̂−1
i 0 0 ΩT

i C̃T
i ΩT

i

∗ ∗ Φ̂−1
l 0 ΩT

i C̃T
di 0

∗ ∗ ∗ −γ2I D̃T
i 0

∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −Φi




< 0 (16)

where R̂−1
i = −ΩT

i R−1
i Ωi and Φ̂−1

l = −ΩT
i Φ−1

l Ωi.
Premultiplying diag

{
I, Ω−T

i , Ω−T
i , I, I, I

}
and postmultiplying

diag
{
I, Ω−1

i , Ω−1
i , I, I, I

}
to (16) yields




−Rj Ãi Ãdi B̃i 0 0

∗ −R−1
i 0 0 C̃T

i I

∗ ∗ −Φ−1
l 0 C̃T

di 0

∗ ∗ ∗ −γ2I D̃T
i 0

∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −Φi




< 0 (17)

Letting Ri = P−1
i and Φi = Q−1

i , by means of Schur Complement,
we can see that (17) is equivalent to (8). The proof is completed.

Remark 5: We can see from (8) in Lemma 2 that it is difficult to
deal with the problem of RFDFD due to the existence of P−1

j , which
leads to some product terms between Pj and Ãi, Ãdi and B̃i. To
overcome the difficulties, an auxiliary slack matrix Ωi is introduced
in Lemma 3 such that these product terms are decoupled. That is,
Ri and Rj are not involved in any product with Ãi, Ãdi and B̃i in
(15). This implies it is more tractable to cope with the problem of
RFDFD.

Now, we will present our main results in this paper as follows.
Theorem 1: For a given scalar γ > 0, the problem of RFDFD for

system (1) is solvable, if there exist the positive definite symmetric
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matrices R1i, R4i, R6i, X1i, X4i, X6i, and metrics R2i, R3i, R5i,
X2i, X3i, X5i, Zi, Yi, Wi, Hi, Mi, Li, Ni, Si and a scalar ε > 0,
i ∈ N such that the following LMI holds,



−Ψ11 Ψ12 Ψ13 Ψ14 0 0 Ψ17

∗ Ψ̂22 Ψ23 Ψ24 ΨT
25 ΨT

26 0

∗ ∗ Ψ̂33 Ψ34 ΨT
35 0 0

∗ ∗ ∗ Ψ̂44 ΨT
45 0 0

∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −Ψ66 0
∗ ∗ ∗ ∗ ∗ ∗ −εI




< 0 (18)

where

Ψ̂22 = Ψ22 −Ψ26 −ΨT
26, Ψ̂33 = Ψ33 −Ψ26 −ΨT

26,

Ψ̂44 = −γ2I + εCT
3iC3i, Ŷi = YiĀi + HiCi,

Ŷdi = YiĀdi + HiCdi, Yei = YiĒi + HiQi,
Ybi = YiBi + HiDi, Ygi = YiGi + HiJi,
C̄12i = εC̄T

1iC̄2i, C̄13i = εC̄T
1iC̄3i, C̄23i = εC̄T

2iC̄3i,

Ψ11 =




R1j R2j R3j

∗ R4j R5j

∗ ∗ R6j


 , Ψ66 =




X1i X2i X3i

∗ X4i X5i

∗ ∗ X6i


 ,

Ψ12 =




ZiĀi ZiĀi 0

Ŷi + Li Ŷi 0
0 0 WiAw


 , Ψ17 =




ZiH̄i

YiH̄i

0


 ,

Ψ13 =




ZiĀdi ZiĀdi 0

Ŷdi Ŷdi 0
0 0 0


 , Ψ23 =




C̄12i C̄12i 0
C̄12i C̄12i 0

0 0 0


 ,

Ψ14 =




ZiĒi ZiBi ZiGi

Yei Ybi Ygi

0 0 WiBw


 , Ψ24 =




C̄13i 0 0
C̄13i 0 0

0 0 0


 ,

Ψ22 =




R1i + εC̄T
1iC̄1i R2i + εC̄T

1iC̄1i R3i

∗ R4i + εC̄T
1iC̄1i R5i

∗ ∗ R6i


 ,

Ψ26 =




Zi Zi 0
Yi + Mi Yi 0

0 0 Wi


 , Ψ34 =




C̄23i 0 0
C̄23i 0 0

0 0 0


 ,

Ψ33 =




X1l + εC̄T
2iC̄2i X2l + εC̄T

2iC̄2i X3l

∗ X4l + εC̄T
2iC̄2i X5l

∗ ∗ X6l


 ,

Ψ25 =
[

NiCi + Si NiCi −Cw

]
,

Ψ35 =
[

NiCdi NiCdi 0
]
,

Ψ45 =
[

NiQi NiDi NiJi −Dw

]
.

then, a robust fault detection filter (2) can be constructed by
[

Afi Bfi

Cfi Dfi

]
=

[
V −1

i LiM
−1
i Vi V −1

i Hi

SiM
−1
i Vi Ni

]
(19)

where Vi ∈ Rn×n is any invertible matrix (for example, Vi could be
set as I).

Proof. By Lemmas 2 and 3, the augmented system (4) under
arbitrary switching signals is asymptotically stable when wk = 0
and, under zero-initial conditions, guarantees (5) for all nonzero
wk ∈ l2 [0,∞), if LMI (15) holds.
Note that from (18), we have




Zi + ZT
i Zi + Y T

i + MT
i 0

∗ Yi + Y T
i 0

∗ ∗ Wi + W T
i


 > 0 (20)

which means that Zi, Yi and Wi are nonsingular.
Premultiplying

[
I −I 0

]
and postmultiplying[

I −I 0
]T to (20), one has −Mi − MT

i > 0, which
implies that Mi is nonsingular. And thus, if (18) holds, there exist
nonsingular matrices Vi and Ui satisfying Mi = ViUi.

Now, introduce

F T
i =




Zi 0 0
Yi Vi 0
0 0 Wi


 , Ωi =




I I 0
Ui 0 0
0 0 I


 F−1

i ,

and define

Hi
∆
= ViBfi, Li

∆
= ViAfiUi, Si

∆
= CfiUi, Ni

∆
= Dfi,

Mi
∆
= ViUi, Rj

∆
= F−T

i Ψ11F
−1
i , Ri

∆
= F−T

i Ψ22F
−1
i ,

Φl
∆
= F−T

i Ψ33F
−1
i , Φi

∆
= F−T

i Ψ66F
−1
i . (21)

By using (4), (18) and (21), we can get

F T
i ÃiΩiFi = Ψ12, F T

i ÃdiΩiFi = Ψ13, F T
i B̃i = Ψ14,

F T
i ΩiFi = Ψ26, C̃iΩiF1 = Ψ25, C̃diΩiFi = Ψ35. (22)

Then, by using (22), Lemma 1 and Schur complement, performing
a congruence transformation to (15) via diag {Fi, Fi, Fi, I, I, Fi}
yields (18), which implies that (15) holds. Meanwhile, we know from
(21) that the parameters of a admissible filter are given by (19). The
proof is completed.

Remark 6. Note that in the derivation of [11] and [13], not only
a block-diagonal Lyapunov matrix is used, but also it is required
that a diagonal block is the same for different Markov modes. This
can bring conservatism in the filter design. The main reasons for
introducing such block-diagonal Lyapunov matrix rather than the
symmetric Lyapunov matrix are:

1) Coupling the parameter matrices of the original systems and
the filter with those of estimator of the fault can result from
the existence of the non-diagonal block of the latter.

2) The former can make the filter design feasible by introducing
less dimension of some auxiliary matrices than one of the latter.

However, the conservatism could be reduced by our proposed ap-
proach. That is, the symmetric Lyapunov matrix is introduced and
those problems mentioned above are solved by using F T

i and ΩiFi.
Thus, our approach could improve the results in [11] and [13].

Remark 7: Stability criteria for delayed systems can be classified
into two categories: delay-independent and delay-dependent. As time
delay is not considered during stability analysis, our results in this
paper are delay-independent. That is, our results can be applicable
to unknown value of time delay, or even time-varying delay. On the
contrary, as time delay is taken into consideration in delay-dependent
approach, stability result is less conservative comparatively, especially
when the value of time delay is small. To obtain delay-dependent
results would be one of our future topics.

Remark 8: For discrete-time systems with state delay, one can
transform a delayed system into a delay-free system by using state
augmentation methods. Stability of delay-free systems can be tested
by employing classical results. But delay-free systems will become
much complex and thus difficult to analyze with the increase of the
size of delays. Moreover, such method is not applicable to time-
varying case due to the limitation of available tools. On the contrary,
Lyapunov approaches can be particularly good to deal with discrete-
time systems with time-varying delay.

Remark 9: Based on [36], it is possible to extend the main results
to uncertain stochastic systems with missing measurements.

IV. ILLUSTRATIVE EXAMPLE

In this section, an example is provided to illustrate the effectiveness
of the proposed method.
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Consider discrete-time switched system (1) consisting of two
subsystems with parameters:

A1 =

[
0.2 −0.1
0 0.4

]
, Ad1 =

[
0.1 0
0.1 0.3

]
,

B1 =
[

0.2 0.1
]T

, E1 =
[

0.1 0.3
]T

,

G1 =
[

1.3 1.6
]T

, C1 =
[

0.1 0
]
,

Cd1 =
[

0 0.1
]
, H̄1 =

[
0.01 0.1

]T
,

C̄11 =
[

0.1 0.01
]
, C̄21 =

[
0.01 0.01

]
,

C̄31 = 0.01, D1 = 1.1, J1 = 1.4, Q1 = 1.0.

A2 =

[
0.4 0.1
0.1 0.3

]
, Ad2 =

[
0.1 0
0.2 0.1

]
,

B2 =
[

0.2 0.6
]T

, E2 =
[

0.3 0.2
]T

,

G2 =
[

1.5 1.2
]T

, C2 =
[

0 0.1
]
,

Cd2 =
[

0.1 0
]
, H̄1 =

[
0.1 0.1

]T
,

C̄12 = C̄22 =
[

0.1 0.1
]
, C̄32 = 0.1, D2 = 1.2,

J2 = 1.5, Q2 = 1.1, F̄ (k) = 1, τ = 1.

The weighted matrix of the fault is supposed to be Wf (z) =
0.5z/(z − 0.5) with the minimal realization: Aw = 0.5, Bw =
0.25, Cw = 1.0, Dw = 0.5. For a given γ = 1.2, by solving (18), we
can have a feasible solution. Furthermore, by (19), it follows from
Theorem 1 that:

[
Af1 Bf1

Cf1 Df1

]
=



−0.1065 −0.4050 0.0386

0.2451 0.6430 −0.2548

−0.2042 0.0671 0.4552




[
Af2 Bf2

Cf2 Df2

]
=




0.2392 0.0403 −0.0126
−0.0657 0.1803 −0.2144

−0.1760 −0.0792 0.4089




Furthermore, an unknown input is assumed to dk =
0.01exp(−0.04k)cos(0.03πk). The control input uk is the
unit step function. The fault signal fk is simulated as a square
wave of unit amplitude occurred from 20 to 40 steps. The switching
signal is generated randomly and shown in Fig.1. The generated
residual rk is shown in Fig.2. The threshold can be determined
as Jth = 15.8092 for l0 = 0 and L = 100. Fig.3 shows the
evolution of residual evaluation function JL(r), where the dashed
line is fault-free case, the solid line is the case with the fault fk.
The simulation results show that JL(r) = 15.9613 > 15.8092 for
L = 32, which means that the fault fk can be detected twelve time
steps after its occurrence.

V. CONCLUSION

The problem of RFDFD for discrete-time switched systems with
state delays has been investigated. A mode-dependent filter is con-
structed as a residual generator. By augmenting the states of the
original system and the filter, the problem of RFDFD has been
cast into an H∞ filtering problem. By using switched Lyapunov
functional approach, a sufficient condition for the solvability of this
problem is established in terms of LMIs and the desired filter has been
constructed. An example has been given to show the effectiveness of
the proposed methods.
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