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Discrete-Time Systems comprehend an important and broad research field. The 
consolidation of digital-based computational means in the present, pushes a 

technological tool into the field with a tremendous impact in areas like Control, 
Signal Processing, Communications, System Modelling and related Applications. 

This book attempts to give a scope in the wide area of Discrete-Time Systems. Their 
contents are grouped conveniently in sections according to significant areas, namely 

Filtering, Fixed and Adaptive Control Systems, Stability Problems and Miscellaneous 
Applications. We think that the contribution of the book enlarges the field of the 

Discrete-Time Systems with signification in the present state-of-the-art. Despite the 
vertiginous advance in the field, we also believe that the topics described here allow us 

also to look through some main tendencies in the next years in the research area.
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Preface

Discrete-Time Systems comprehend an important and broad research eld. The con-
solidation of digital-based computational means in the present, pushes a technological 
tool into the eld with a tremendous impact in areas like Control, Signal Processing, 
Communications, System Modelling and related Applications. This fact has enabled 
numerous contributions and developments which are either genuinely original as
discrete-time systems or are mirrors from their counterparts of previously existing
continuous-time systems. 

This book attempts to give a scope of the present state-of-the-art in the area of Discrete-
Time Systems from selected international research groups which were specially con-
voked to give expressions to their expertise in the  eld.

The works are presented in a uniform framework and with a formal mathematical 
context.

In order to facilitate the scope and global comprehension of the book, the chapters were 
grouped conveniently in sections according to their affinity in 5 signicant areas.

The rst group focuses the problem of Filtering that encloses above all designs of State 
Observers, Estimators, Predictors and Smoothers. It comprises Chapters 1 to 6.

The second group is dedicated to the design of Fixed Control Systems (Chapters 7 to 
12). Herein it appears designs for Tracking Control, Fault-Tolerant Control, Robust Con-
trol, and designs using LMI- and mixed LQR/Hoo techniques.

The third group includes Adaptive Control Systems (Chapter 13 to 15) oriented to the 
specialities of Predictive, Decentralized and Perturbed Control Systems.

The fourth group collects works that address Stability Problems (Chapter 16 to 20). 
They involve for instance Uncertain Systems with Multiple and Time-Varying Delays 
and Switched Linear Systems.  

Finally, the ft h group concerns miscellaneous applications (Chapter 21 to 27). They 
cover topics in Multitone Modulation and Equalisation, Image Processing, Fault Diag-
nosis, Event-Based Dynamics and Analysis of Deterministic/Stochastic and Multidi-
mensional Dynamics.   
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XIV Preface

We think that the contribution in the book, which does not have the intention to be 
all-embracing, enlarges the  eld of the Discrete-Time Systems with signi cation in the 
present state-of-the-art. Despite the vertiginous advance in the  eld, we think also that 
the topics described here allow us also to look through some main tendencies in the 
next years in the research area. 

Mario A. Jordán  and Jorge L. Bustamante
IADO-CCT-CONICET

Dep. of Electrical Eng. and Computers
National University of the South

Argentina



Part 1 

Discrete-Time Filtering 



Kerim Demirbaş
Department of Electrical and Electronics Engineering

Middle East Technical University
Inonu Bulvari, 06531 Ankara

Turkey

1. Introduction

Many systems in the real world are more accurately described by nonlinear models. Since
the original work of Kalman (Kalman, 1960; Kalman & Busy, 1961), which introduces the
Kalman filter for linear models, extensive research has been going on state estimation
of nonlinear models; but there do not yet exist any optimum estimation approaches for
all nonlinear models, except for certain classes of nonlinear models; on the other hand,
different suboptimum nonlinear estimation approaches have been proposed in the literature
(Daum, 2005). These suboptimum approaches produce estimates by using some sorts of
approximations for nonlinear models. The performances and implementation complexities
of these suboptimum approaches surely depend upon the types of approximations which
are used for nonlinear models. Model approximation errors are an important parameter
which affects the performances of suboptimum estimation approaches. The performance of a
nonlinear suboptimum estimation approach is better than the other estimation approaches for
specific models considered, that is, the performance of a suboptimum estimation approach is
model-dependent.
The most commonly used recursive nonlinear estimation approaches are the extended
Kalman filter (EKF) and particle filters. The EKF linearizes nonlinear models by Taylor
series expansion (Sage & Melsa, 1971) and the unscented Kalman filter (UKF) approximates
a posteriori densities by a set of weighted and deterministically chosen points (Julier, 2004).
Particle filters approximates a posterior densities by a large set of weighted and randomly
selected points (called particles) in the state space (Arulampalam et al., 2002; Doucet et al.,
2001; Ristic et al., 2004). In the nonlinear estimation approaches proposed in (Demirbaş,
1982; 1984; Demirbaş & Leondes, 1985; 1986; Demirbaş, 1988; 1989; 1990; 2007; 2010): the
disturbance noise and initial state are first approximated by a discrete noise and a discrete
initial state whose distribution functions the best approximate the distribution functions of the
disturbance noise and initial state, states are quantized, and then multiple hypothesis testing
is used for state estimation; whereas Grid-based approaches approximate a posteriori densities
by discrete densities, which are determined by predefined gates (cells) in the predefined state
space; if the state space is not finite in extent, then the state space necessitates some truncation
of the state space; and grid-based estimation approaches assume the availability of the state
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transition density p(x(k)|x(k − 1)), which may not easily be calculated for state models with
nonlinear disturbance noise (Arulampalam et al., 2002; Ristic et al., 2004). The Demirbaş
estimation approaches are more general than grid-based approaches since 1) the state space
need not to be truncated, 2) the state transition density is not needed, 3) state models can be
any nonlinear functions of the disturbance noise.
This chapter presents an online recursive nonlinear state filtering and prediction scheme for
nonlinear dynamic systems. This scheme is recently proposed in (Demirbaş, 2010) and is
referred to as the DF throughout this chapter. The DF is very suitable for state estimation of
nonlinear dynamic systems under either missing observations or constraints imposed on state
estimates. There exist many nonlinear dynamic systems for which the DF outperforms the
extended Kalman filter (EKF), sampling importance resampling (SIR) particle filter (which is
sometimes called the bootstrap filter), and auxiliary sampling importance resampling (ASIR)
particle filter. Section 2 states the estimation problem. Section 3 first discusses discrete noises
which approximate the disturbance noise and initial state, and then presents approximate
state and observation models. Section 4 discusses optimum state estimation of approximate
dynamic models. Section 5 presents the DF. Section 6 yields simulation results of two
examples for which the DF outperforms the EKF, SIR, and ASIR particle filters. Section 7
concludes the chapter.

2. Problem statement

This section defines state estimation problem for nonlinear discrete dynamic systems. These
dynamic systems are described by

State Model
x(k + 1) = f (k, x(k), w(k)) (1)
Observation Model
z(k) = g(k, x(k), v(k)), (2)

where k stands for the discrete time index; f : RxRmxRn → Rm is the state transition function;
Rm is the m-dimensional Euclidean space; w(k) ∈ Rn is the disturbance noise vector at time
k; x(k) ∈ Rm is the state vector at time k; g : RxRmxRp → Rr is the observation function;
v(k) ∈ Rp is the observation noise vector at time k; z(k) ∈ Rr is the observation vector at time
k; x(0), w(k), and v(k) are all assumed to be independent with known distribution functions.
Moreover, it is assumed that there exist some constraints imposed on state estimates. The DF
recursively yields a predicted value x̂(k|k− 1) of the state x(k) given the observation sequence

from time one to time k − 1, that is, Zk−1 Δ
= {z(1), z(2), . . . , z(k − 1)}; and a filtered value

x̂(k|k) of the state x(k) given the observation sequence from time one to time k, that is, Zk.
Estimation is accomplished by first approximating the disturbance noise and initial state with
discrete random noises, quantizing the state, that is, representing the state model with a time
varying state machine, and an online suboptimum implementation of multiple hypothesis
testing.

3. Approximation

This section first discusses an approximate discrete random vector which approximates a
random vector, and then presents approximate models of nonlinear dynamic systems.

4 Discrete Time Systems

3.1 Approximate discrete random noise
In this subsection: an approximate discrete random vector with n possible values of a
random vector is defined; approximate discrete random vectors are used to approximate
the disturbance noise and initial state throughout the chapter; moreover, a set of equations
which must be satisfied by an approximate discrete random variable with n possible values
of an absolutely continuous random variable is given (Demirbaş, 1982; 1984; 2010); finally, the
approximate discrete random variables of a Gaussian random variable are tabulated.
Let w be an m-dimensional random vector. An approximate discrete random vector with n
possible values of w, denoted by wd, is defined as an m-dimensional discrete random vector
with n possible values whose distribution function the best approximates the distribution
function of w over the distribution functions of all m-dimensional discrete random vectors
with n possible values, that is

wd = min
yεD

−1{
�

Rn
[Fy(a)− Fw(a)]2da} (3)

where D is the set of all m-dimensional discrete random vectors with n possible values, Fy(a)
is the distribution function of the discrete random vector y, Fw(a) is the distribution function
of the random vector w, and Rm is the m-dimensional Euclidean space. An approximate
discrete random vector wd is, in general, numerically, offline-calculated, stored and then used
for estimation. The possible values of wd are denoted by wd1, wd2, ...., and wdn ; and the
occurrence probability of the possible value wdi is denoted by Pwdi , that is

Pwdi

Δ
= Prob{wd = wdi}. (4)

where Prob{wd(0) = wdi} is the occurrence probability of wdi.
Let us now consider the case that w is an absolutely continuous random variable. Then, wd is
an approximate discrete random variable with n possible values whose distribution function
the best approximates the distribution function Fw(a) of w over the distribution functions of
all discrete random variables with n possible values, that is

wd = min
yεD

−1{J(Fy(a))}

in which the distribution error function (the objective function) J(Fy(a)) is defined by

J(Fy(a)) Δ
=

�

R
[Fy(a)− Fw(a)]2da

where D is the set of all discrete random variables with n possible values, Fy(a) is the
distribution function of the discrete random variable y, Fw(a) is the distribution function of the
absolutely continuous random variable w, and R is the real line. Let the distribution function
Fy(a) of a discrete random variable y be given by

Fy(a) Δ
=

⎧⎨
⎩

0 if a < y1
Fyi if yi ≤ a < yi+1, i = 1, 2, . . . , n − 1
1 if a ≥ yn.

Then the distribution error function J(Fy(a)) can be written as

J(Fy(a)) =
� y1

−∞
F2

w(a)da +
n−1

∑
i=1

� yi+1

yi

[Fyi − Fw(a)]2da +
� ∞

yn

[1 − Fw(a)]2da.

5
Real-time Recursive State Estimation for Nonlinear
Discrete Dynamic Systems with Gaussian or non-Gaussian Noise



transition density p(x(k)|x(k − 1)), which may not easily be calculated for state models with
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referred to as the DF throughout this chapter. The DF is very suitable for state estimation of
nonlinear dynamic systems under either missing observations or constraints imposed on state
estimates. There exist many nonlinear dynamic systems for which the DF outperforms the
extended Kalman filter (EKF), sampling importance resampling (SIR) particle filter (which is
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concludes the chapter.
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from time one to time k − 1, that is, Zk−1 Δ
= {z(1), z(2), . . . , z(k − 1)}; and a filtered value
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3. Approximation
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4 Discrete Time Systems
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−1{
�

Rn
[Fy(a)− Fw(a)]2da} (3)
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Let the distribution function Fwd (a) of an approximate discrete random variable wd be

Fwd (a) Δ
=

⎧⎨
⎩

0 if a < wd1
Fwdi if wdi ≤ a < wdi+1, i = 1, 2, . . . , n − 1
1 if a ≥ wdn.

It can readily be shown that the distribution function Fwd (a) of the approximate discrete
random variable wd must satisfy the set of equations given by

Fwd1=2Fw(wd1);
Fwdi + Fwdi+1=2Fw(wdi+1), i = 1, 2, . . . , n − 2; (5)

1 + Fwdn−1=2Fw(wdn);

Fwdi [wdi+1 − wdi]=
� wdi+1

wdi

Fw(a)da, i = 1, 2, . . . , n − 1.

The values wd1, wd2, ..., wdn, Fwd1 , Fwd2 , ...,Fwdn satisfying the set of Eqs. (5) determine the
distribution function of wd. These values can be, in general, obtained by numerically solving
Eqs. (5). Then the possible values of the approximate discrete random variable wd become
wd1, wd2, ..., and wdn ; and the occurrence probabilities of these possible values are obtained
by

Pwdi =

⎧⎨
⎩

Fwd1 if i = 1
Fwdi − Fwdi−1 if i = 2, 3, . . . , n − 1
1 − Fwdn if i = n.

where Pwdi = Prob{wd = wdi}, which is the occurrence probability of wdi.
Let y be a Gaussian random variable with zero mean and unit variance. An approximate
discrete random variable yd with n possible values was numerically calculated for different
n’s by using the set of Eqs. (5). The possible values yd1, yd2, ..., ydn of yd and the
occurrence probabilities Pyd1 , Pyd2 , ..., Pydn of these possible values are given in Table 1, where

Pydi

Δ
= Prob{yd = ydi}. As an example, the possible values of an approximate discrete

random variable with 3 possible values of a Gaussian random variable with zero mean and
unit variance are -1.005, 0.0, and 1.005; and the occurrence probabilities of these possible
values are 0.315, 0.370, and 0.315, respectively. Let w be a Gaussian random variable with
mean E{w} and variance σ2. This random variable can be expressed as w = yσ + E{w}.
Hence, the possible values of an approximate discrete random variable of w are given by
wdi = ydiσ + E{w}, where i = 1, 2, 3, ..., n; and the occurrence probability of the possible value
wdi is the same as the occurrence probability of ydi, which is given in Table 1.

3.2 Approximate models
For state estimation, the state and observation models of Eqs. (1)and (2) are approximated by
the time varying finite state model and approximate observation model which are given by

Finite State Model
xq(k + 1) = Q( f (k, xq(k), wd(k))) (6)
Approximate Observation Model
z(k) = g(k, xq(k), v(k)), (7)

6 Discrete Time Systems

n yd1 yd2 yd3 yd4 yd5 yd6 yd7 yd8 yd9 yd10
Pyd1 Pyd2 Pyd3 Pyd4 Pyd5 Pyd6 Pyd7 Pyd8 Pyd9 Pyd10

1 0.000
1.000

2 -0.675 0.675
0.500 0.500

3 -1.005 0.0 1.005
0.315 0.370 0.315

4 -1.218 -0.355 0.355 1.218
0.223 0.277 0.277 0.223

5 -1.377 -0.592 0.0 0.592 1.377
0.169 0.216 0.230 0.216 0.169

6 -1.499 -0.768 -0.242 0.242 0.768 1.499
0.134 0.175 0.191 0.191 0.175 0.134

7 -1.603 -0.908 -0.424 0.0 0.424 0.908 1.603
0.110 0.145 0.162 0.166 0.162 0.145 0.110

8 -1.690 -1.023 -0.569 -0.184 0.184 0.569 1.023 1.690
0.092 0.124 0.139 0.145 0.145 0.139 0.124 0.092

9 -1.764 -1.120 -0.690 -0.332 0 0.332 0.690 1.120 1.764
0.079 0.106 0.121 0.129 0.130 0.129 0.121 0.106 0.079

10 -1.818 -1.199 -0.789 -0.453 -0.148 0.148 0.453 0.789 1.199 1.818
0.069 0.093 0.106 0.114 0.118 0.118 0.114 0.106 0.093 0.069

Table 1. Approximate Discrete Random Variables the best Approximating the Gaussian
Random Variable with Zero Mean and Unit Variance

where wd(k) is an approximate discrete random vector with, say, n possible values of the
disturbance noise vector w(k); this approximate vector is pre(offline)-calculated, stored and
then used for estimation to calculate quantization levels at time k + 1; the possible values of
wd(k) are denoted by wd1(k), wd2(k), ...., and wdn(k) ; Q : Rm → Rm is a quantizer which
first divides the m-dimensional Euclidean space into nonoverlapping generalized rectangles
(called gates) such that the union of all rectangles is the m-dimensional Euclidean space, and
then assigns to each rectangle the center point of the rectangle, Fig. 1 (Demirbaş, 1982; 1984;
2010); xq(k), k > 0, is the quantized state vector at time k and its quantization levels, whose
number is (say) mk, are denoted by xq1(k), xq2(k), ...., and xqmk (k). The quantization levels
of xq(k + 1) are calculated by substituting xq(k) = xqi(k) (i = 1, 2, . . . , mk) for xq(k) and
wd(k) = wdj(k) (j = 1, 2, . . . , n) for wd(k) in the finite state model of Eq. (6). As an example,
let the quantization level xqi(k) in the gate Gi be mapped into the gate Gj by the lth-possible
value wdl(k) of wd(k), then, x(k + 1) is quantized to xqj(k + 1), Fig. 1. One should note that
the approximate models of Eqs. (6) and (7) approach the models of Eqs. (1) and (2) as the gate
sizes (GS) → 0 and n → ∞. An optimum state estimation of the models of Eqs. (6) and (7) is
discussed in the next section.

4. Optimum state estimation

This section discuses an optimum estimation of the models of Eqs. (6) and (7) by using
multiple hypothesis testing. On the average overall error probability sense, optimum
estimation of states of the models of Eqs. (6) and (7) is done as follows: Finite state model
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Fig. 1. Quantization of States

of Eq. (6) is represented by a trellis diagram from time 0 to time k (Demirbaş, 1982; 1984;
Demirbaş & Leondes, 1985; Demirbaş, 2007). The nodes at time j of this trellis diagram
represent the quantization levels of the state x(j). The branches of the trellis diagram represent
the transitions between quantization levels. There exist, in general, many paths through this
trellis diagram. Let Hi denote the ith path (sometimes called the ith hypothesis) through the
trellis diagram. Let xi

q(j) be the node (quantization level) through which the path Hi passes
at time j. The estimation problem is to select a path (sometimes called the estimator path)
through the trellis diagram such that the average overall error probability is minimized for
decision (selection). The node at time k along this estimator path will be the desired estimate
of the state x(k). In Detection Theory (Van Trees, 2001; Weber, 1968): it is well-known that the
optimum decision rule which minimizes the average overall error probability is given by

Select Hn as the estimator path i f M(Hn) ≥ M(Hl) f or all l �= n, (8)

where M(Hn) is called the metric of the path M(Hn) and is defined by

M(Hn)
Δ
= ln{p(Hn)Prob{observation sequence | Hn}}, (9)

where ln stands for the natural logarithm, p(Hn) is the occurrence probability (or the a
priori probability) of the path Hn, and Prob{observation sequence | Hn} is the conditional
probability of the observation sequence given that the actual values of the states are equal
to the quantization levels along the path Hn. If the inequality in the optimum decision rule
becomes an equality for an observation sequence, anyone of the paths satisfying the equality
can be chosen as the estimator path, which is a path having the biggest metric.
It follows, from the assumption that samples of the observation noise are independent, that
Prob{observation sequence | Hn} can be expressed as

Prob{observation sequence | Hn} =
k

∏
j=1

λ(z(j) | xn
q (j)) (10)

8 Discrete Time Systems

where

λ(z(j)|xn
q )(j)) Δ

=

{
1 if z(j) is neither available nor used for estimation
p(z(j)|xn

q (j)) if z(j) is available and used for estimation, (11)

in which, p(z(j)|xn
q (j)) is the conditional density function of z(j) given that the actual value

of state is equal to xn
q (j), that is, x(j) = xn

q (j); and this density function is calculated by using
the observation model of Eq. (2).
It also follows, from the assumption that all samples of the disturbance noise and the initial
state are independent, that the a priori probability of Hn can be expressed as

p(Hn) = Prob{xq(0) = xn
q (0)}

k

∏
j=1

T(xn
q (j − 1) → xn

q (j)), (12)

where Prob{xq(0) = xn
q (0)} is the occurrence probability of the initial node (or quantization

level) xn
q (0), and T(xn

q (j − 1) → xn
q (j)) is the transition probability from the quantization

level xn
q (j − 1) to the quantization level xn

q (j)), that is, T(xj
q(i − 1) → xn

q (j)) Δ
= Prob{xq(j) =

xn
q (j)|xq(j − 1) = xn

q (j − 1)}, which is the probability that xn
q (j − 1) is mapped to xn

q (j) by
the finite state model of Eq. (6) with possible values of wd(j − 1). Since the transition from
xn

q (j − 1) to xn
q (j) is determined by possible values of wd(j − 1), this transition probability is

the sum of occurrence probabilities of all possible values of wd(j − 1) which map xn
q (j − 1) to

xn
q (j).

The estimation problem is to find the estimator path, which is the path having the biggest
metric through the trellis diagram. This is accomplished by the Viterbi Algorithm (Demirbaş,
1982; 1984; 1989; Forney, 1973); which systematically searches all paths through the trellis
diagram. The number of quantization levels of the finite state model, in general, increases
exponentially with time k. As a result, the implementation complexity of this approach
increases exponentially with time k (Demirbaş, 1982; 1984; Demirbaş & Leondes, 1985;
Demirbaş, 2007). In order to overcome this obstacle, a block-by-block suboptimum estimation
scheme was proposed in (Demirbaş, 1982; 1984; Demirbaş & Leondes, 1986; Demirbaş, 1988;
1989; 1990). In this estimation scheme: observation sequence was divided into blocks of
constant length. Each block was initialized by the final state estimate from the last block. The
initialization of each block with only a single quantization level (node), that is, the reduction
of the trellis diagram to one node at the end of each block, results in state estimate divergence
for long observation sequences, i.e., large time k, even though the implementation complexity
of the proposed scheme does not increase with time (Kee & Irwin, 1994). The online and
recursive state estimation scheme which is recently proposed in (Demirbaş, 2010) prevents
state estimate divergence caused by one state initialization of each block for the block-by-block
estimation. This recently proposed estimation scheme, referred to as the DF throughout
this chapter, first prunes all paths going through the nodes which do not satisfy constraints
imposed on estimates and then assigns a metric to each node (or quantization level) in the
trellis diagram. Furthermore, at each time (step, or iteration), the number of considered state
quantization levels (nodes) is limited by a selected positive integer MN, which stands for
the maximum number of quantization levels considered through the trellis diagram; in other
words , MN nodes having the biggest metrics are kept through the trellis diagram and all the
paths going through the other nodes are pruned. Hence, the implementation complexity of
the DF does not increase with time. The number MN is one of the parameters determining
the implementation complexity and the performance of the DF.
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Demirbaş & Leondes, 1985; Demirbaş, 2007). The nodes at time j of this trellis diagram
represent the quantization levels of the state x(j). The branches of the trellis diagram represent
the transitions between quantization levels. There exist, in general, many paths through this
trellis diagram. Let Hi denote the ith path (sometimes called the ith hypothesis) through the
trellis diagram. Let xi

q(j) be the node (quantization level) through which the path Hi passes
at time j. The estimation problem is to select a path (sometimes called the estimator path)
through the trellis diagram such that the average overall error probability is minimized for
decision (selection). The node at time k along this estimator path will be the desired estimate
of the state x(k). In Detection Theory (Van Trees, 2001; Weber, 1968): it is well-known that the
optimum decision rule which minimizes the average overall error probability is given by

Select Hn as the estimator path i f M(Hn) ≥ M(Hl) f or all l �= n, (8)

where M(Hn) is called the metric of the path M(Hn) and is defined by

M(Hn)
Δ
= ln{p(Hn)Prob{observation sequence | Hn}}, (9)

where ln stands for the natural logarithm, p(Hn) is the occurrence probability (or the a
priori probability) of the path Hn, and Prob{observation sequence | Hn} is the conditional
probability of the observation sequence given that the actual values of the states are equal
to the quantization levels along the path Hn. If the inequality in the optimum decision rule
becomes an equality for an observation sequence, anyone of the paths satisfying the equality
can be chosen as the estimator path, which is a path having the biggest metric.
It follows, from the assumption that samples of the observation noise are independent, that
Prob{observation sequence | Hn} can be expressed as

Prob{observation sequence | Hn} =
k

∏
j=1

λ(z(j) | xn
q (j)) (10)

8 Discrete Time Systems

where

λ(z(j)|xn
q )(j)) Δ

=

{
1 if z(j) is neither available nor used for estimation
p(z(j)|xn

q (j)) if z(j) is available and used for estimation, (11)

in which, p(z(j)|xn
q (j)) is the conditional density function of z(j) given that the actual value

of state is equal to xn
q (j), that is, x(j) = xn

q (j); and this density function is calculated by using
the observation model of Eq. (2).
It also follows, from the assumption that all samples of the disturbance noise and the initial
state are independent, that the a priori probability of Hn can be expressed as

p(Hn) = Prob{xq(0) = xn
q (0)}

k

∏
j=1

T(xn
q (j − 1) → xn

q (j)), (12)

where Prob{xq(0) = xn
q (0)} is the occurrence probability of the initial node (or quantization

level) xn
q (0), and T(xn

q (j − 1) → xn
q (j)) is the transition probability from the quantization

level xn
q (j − 1) to the quantization level xn

q (j)), that is, T(xj
q(i − 1) → xn

q (j)) Δ
= Prob{xq(j) =

xn
q (j)|xq(j − 1) = xn

q (j − 1)}, which is the probability that xn
q (j − 1) is mapped to xn

q (j) by
the finite state model of Eq. (6) with possible values of wd(j − 1). Since the transition from
xn

q (j − 1) to xn
q (j) is determined by possible values of wd(j − 1), this transition probability is

the sum of occurrence probabilities of all possible values of wd(j − 1) which map xn
q (j − 1) to

xn
q (j).

The estimation problem is to find the estimator path, which is the path having the biggest
metric through the trellis diagram. This is accomplished by the Viterbi Algorithm (Demirbaş,
1982; 1984; 1989; Forney, 1973); which systematically searches all paths through the trellis
diagram. The number of quantization levels of the finite state model, in general, increases
exponentially with time k. As a result, the implementation complexity of this approach
increases exponentially with time k (Demirbaş, 1982; 1984; Demirbaş & Leondes, 1985;
Demirbaş, 2007). In order to overcome this obstacle, a block-by-block suboptimum estimation
scheme was proposed in (Demirbaş, 1982; 1984; Demirbaş & Leondes, 1986; Demirbaş, 1988;
1989; 1990). In this estimation scheme: observation sequence was divided into blocks of
constant length. Each block was initialized by the final state estimate from the last block. The
initialization of each block with only a single quantization level (node), that is, the reduction
of the trellis diagram to one node at the end of each block, results in state estimate divergence
for long observation sequences, i.e., large time k, even though the implementation complexity
of the proposed scheme does not increase with time (Kee & Irwin, 1994). The online and
recursive state estimation scheme which is recently proposed in (Demirbaş, 2010) prevents
state estimate divergence caused by one state initialization of each block for the block-by-block
estimation. This recently proposed estimation scheme, referred to as the DF throughout
this chapter, first prunes all paths going through the nodes which do not satisfy constraints
imposed on estimates and then assigns a metric to each node (or quantization level) in the
trellis diagram. Furthermore, at each time (step, or iteration), the number of considered state
quantization levels (nodes) is limited by a selected positive integer MN, which stands for
the maximum number of quantization levels considered through the trellis diagram; in other
words , MN nodes having the biggest metrics are kept through the trellis diagram and all the
paths going through the other nodes are pruned. Hence, the implementation complexity of
the DF does not increase with time. The number MN is one of the parameters determining
the implementation complexity and the performance of the DF.
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5. Online state estimation

This section first yields some definitions, and then presents the DF.

5.1 Definitions

Admissible initial state quantization level : a possible value xqi(0)
Δ
= xdi(0) of an

approximate discrete random vector xq(0)
Δ
= xd(0) of the initial state vector x(0) is said

to be an admissible quantization level of the initial state vector (or an admissible initial
state quantization level) if this possible value satisfies the constraints imposed on the state
estimates. Obviously, if there do not exist any constraints imposed on the state estimates,
then all possible values of the approximate discrete random vector xq(0) are admissible.

Metric of an admissible initial state quantization level: the natural logarithm of the
occurrence probability of an admissible initial quantization level xqi(0) is referred to as the
metric of this admissible initial quantization level. This metric is denoted by M(xqi(0)), that
is

M(xqi(0))
Δ
= ln{Prob{xq(0) = xqi(0)}}. (13)

where Prob{xq(0) = xqi(0)} is the occurrence probability of xqi(0).
Admissible state quantization level at time k: a quantization level xqi(k) of a state vector
x(k), where k ≥ 1, is called an admissible quantization level of the state (or an admissible
state quantization level) at time k if this quantization level satisfies the constraints imposed
on the state estimates. Surely, if there do not exist any constraints imposed on the state
estimates, then all the quantization levels of the state vector x(k), which are calculated by Eq.
(6), are admissible.

Maximum number of considered state quantization levels at each time: MN stands for the
maximum number of admissible state quantization levels which are considered at each time
(step or iteration) of the DF. MN is a preselected positive integer. A bigger value of MN yields
better performance, but increases implementation complexity of the DF.
Metric of an admissible quantization level (or node) at time k, where k ≥ 1: the metric of an
admissible quantization level xqj(k), denoted by M(xqj(k)), is defined by

M(xqj(k))
Δ
=max

n
{M(xqn(k − 1)) + ln[T(xqn(k − 1) → xqj(k))]}

+ ln[λ(z(k)|xqj(k))], (14)

where the maximization is taken over all considered state quantization levels at time k − 1
which are mapped to the quantization level xqj(k) by the possible values of wd(k − 1); ln
stands for the natural logarithm; T(xqn(k − 1) → xqj(k)) is the transition probability from
xqi(k − 1) to xqj(k) is given by

T(xqi(k − 1) → xqj(k)) = ∑
n

Prob{wd(k − 1) = wdn(k − 1)}, (15)

where Prob{wd(k − 1) = wdn(k − 1)} is the occurrence probability of wdn(k − 1) and the
summation is taken over all possible values of wd(k − 1) which maps xqi(k − 1) to xqj(k); in
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other words, the summation is taken over all possible values of wd(k − 1) such that

Q( f (k − 1, xqi(k − 1), wdn(k − 1))) = xqj(k); (16)

and

λ(z(k)|xqj(k))
Δ
=

{
1 if z(j) is neither available nor used for estimation
p(z(k)|xqj(k)) if z(j) is available and used for estimation, (17)

in which, p(z(k)|xqj(k)) is the conditional density function of z(k) given that the actual value
of state x(k) = xqj(k), and this density function is calculated by using the observation model
of Eq. (2).

5.2 Estimation scheme (DF)
A flowchart of the DF is given in Fig. 3 for given Fw(k)(a), Fx(0)(a), MN, n, m , and GS; where
Fw(k)(a) and Fx(0)(a) are the distribution functions of w(k) and x(0) respectively, n and m are
the numbers of possible values of approximate random vectors of w(k) and x(0) respectively;
GS is the gate size; and z(k) is the observation at time k. The parameters MN, n, m , and
GS determine the implementation complexity and performance of the DF. The number of
possible values of the approximate disturbance noise wd(k) is assumed to be the same, n , for
all iterations, i.e., for all k. The filtered value x̂(k|k) and predicted value x̂(k|k − 1) of the state
x(k) are recursively determined by considering only MN admissible state quantization levels
with the biggest metrics and discarding other quantization levels at each recursive step (each
iteration or time) of the DF. Recursive steps of the DF is described below.
Initial Step (Step 0): an approximate discrete random vector xd(0) with m possible values of
the initial state x(0) is offline calculated by Eq. (3). The possible values of this approximate
random vector are defined as the initial state quantization levels (nodes). These initial state

quantization levels are denoted by xq1(0), xq2(0), ..., and xqm(0), where xqi(0)
Δ
= xdi(0) (i =

1 2 ...m). Admissible initial state quantization levels, which satisfy the constraints imposed
on state estimates, are determined and the other initial quantization levels are discarded. If
the number of admissible initial quantization levels is zero, then the number, m, of possible
values of the approximate initial random vector xd(0) is increased and the initial step of the
DF is repeated from the beginning; otherwise, the metrics of admissible initial quantization
levels are calculated by Eq. (13). The admissible initial state quantization levels (represented
by xq1(0), xq2(0), ..., and xqN0 (0)) and their metrics are considered in order to calculate state
quantization levels and their metrics at time k = 1. These considered quantization levels are
denoted by nodes (at time 0) on the first row (or column) of two rows (or columns) trellis
diagram at the first step k = 1 of the DF, Fig. 2.
State estimate at time 0: if the mean value of x(0) satisfies constraints imposed on state estimates
such as the case that there do not exist any estimate constraints , then this mean value is taken
as both x̂(0|0) and x̂(0|0 − 1); otherwise, the admissible initial state quantization level (node)
with the biggest metric is taken as both the filtered value x̂(0|0) and predicted value x̂(0|0− 1)
of the state x(0), given no observation.
Recursive Step (Step k): An approximate discrete disturbance noise vector wd(k − 1) with
n possible values of the disturbance noise w(k − 1) is offline obtained by Eq. (3). The
quantization levels of the state vector at time k are calculated by using the finite state model
of Eq. (6) with all the considered quantization levels (or nodes) xq1(k − 1), xq2(k − 1) ...
xqNk−1 (k − 1) at time k − 1; and all possible values wd1(k − 1), wd2(k − 1), ..., wdn(k − 1)
of the approximate discrete disturbance noise vector wd(k − 1) . That is, substituting the
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Fig. 2. Two Row Trellis Diagram of Admissible State Quantization Levels

considered state quantization levels xqi(k − 1) (i = 1, 2, . . . , Nk−1) for xq(k − 1) and the
possible values wd(k − 1) = wdj(k − 1) (j = 1, 2, . . . , n) for wd(k − 1) in the finite state
model of Eq. (6), the quantization levels of the state at time k are calculated (generated). The
admissible quantization levels at time k, which satisfy constraints imposed on state estimates,
are determined and non-admissible state quantization levels are discarded. If the number
of admissible state quantization levels at time k is zero, then a larger n, MN or smaller GS
is taken and the recursive step at time k of the DF is repeated from the beginning; otherwise,
the metrics of all admissible state quantization levels at time k are calculated by using Eq.
(14). If the number of admissible state quantization levels at time k is greater than MN, then
only MN admissible state quantization levels with biggest metrics, otherwise, all admissible
state quantization levels with their metrics are considered for the next step of the DF. The
considered admissible quantization levels (denoted by xq1(k), xq2(k), ...,xqNk (k)) and their
metrics are used to calculate the state quantization levels and their metrics at time k + 1. The
considered state quantization levels at time k are represented by the nodes on the second row
(or column) of two rows (or columns) trellis diagram at the recursive step k and on the first row
(or column) of two rows (or columns) trellis diagram at the recursive step k + 1, Fig. 2; where
the subscript Nk, which is the number of considered nodes at the end of Recursive step k, is less
than or equal to MN; and the transition from a node at time k − 1, say xqi(k − 1), to a node at
time k , say xqj(k), is represented by a directed line which is called a branch. Estimate at time
k: the admissible quantization level (node) with the biggest metric at time k is taken as the
desired estimate of the state at time k, that is, the node with the biggest metric at time k is the
desired predicted value of x(k) if z(k) is neither available nor used for estimation; otherwise,
the node at time k with the biggest metric is the filtered value of x(k). If there exist more than
one nodes having the same biggest metric, anyone of these nodes can be taken as the desired
estimate.
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model of Eq. (6), the quantization levels of the state at time k are calculated (generated). The
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are determined and non-admissible state quantization levels are discarded. If the number
of admissible state quantization levels at time k is zero, then a larger n, MN or smaller GS
is taken and the recursive step at time k of the DF is repeated from the beginning; otherwise,
the metrics of all admissible state quantization levels at time k are calculated by using Eq.
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only MN admissible state quantization levels with biggest metrics, otherwise, all admissible
state quantization levels with their metrics are considered for the next step of the DF. The
considered admissible quantization levels (denoted by xq1(k), xq2(k), ...,xqNk (k)) and their
metrics are used to calculate the state quantization levels and their metrics at time k + 1. The
considered state quantization levels at time k are represented by the nodes on the second row
(or column) of two rows (or columns) trellis diagram at the recursive step k and on the first row
(or column) of two rows (or columns) trellis diagram at the recursive step k + 1, Fig. 2; where
the subscript Nk, which is the number of considered nodes at the end of Recursive step k, is less
than or equal to MN; and the transition from a node at time k − 1, say xqi(k − 1), to a node at
time k , say xqj(k), is represented by a directed line which is called a branch. Estimate at time
k: the admissible quantization level (node) with the biggest metric at time k is taken as the
desired estimate of the state at time k, that is, the node with the biggest metric at time k is the
desired predicted value of x(k) if z(k) is neither available nor used for estimation; otherwise,
the node at time k with the biggest metric is the filtered value of x(k). If there exist more than
one nodes having the same biggest metric, anyone of these nodes can be taken as the desired
estimate.
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Fig. 4. Average Filtering Errors for Eqs. (18) and (19)

6. Simulations

In this section, Monte Carlo simulation results of two examples are given. More examples are
presented in (Demirbaş, 2010). The first example is given by

State Model

x(k + 1) = x(k)[1 +
k

k + 1
cos(0.8x(k) + 2w(k))] + w(k) (18)

Observation Model

z(k) =
6x(k)

1 + x2(k)
+ v(k), (19)

where the random variables x(0), w(k), and v(k) are independent Gaussian random variables
with means 6, 0, 0 and variances 13, 20, 15 respectively. It was assumed that there did not
exist any constraints imposed on state estimates. The state model of Eq. (18) is an highly
nonlinear function of the disturbance noise w(k). The extended Kalman filter (EKF) and the
grid-based approaches may not be used for the state estimation of this example, since the
EKF assumes a linear disturbance noise in the state model and the grid based approaches
assumes the availability of the state transition density p(x(k)|x(k − 1)) which may not readily
calculated (Arulampalam et al., 2002; Ristic et al., 2004). States of this example were estimated
by using the DF, the sampling importance resampling (SIR) particle filter (which is sometimes
called the bootstrap filter, and auxiliary sampling importance resampling (ASIR) particle filter
(Arulampalam et al., 2002; Gordon et al., 1993). Average absolute filtering and prediction
errors are sketched in Figs. 4 and 5 for 2000 runs each of which consists of 100 iterations.
These estimation errors were obtained by using the SIR and ASIR particle filters with 1000
particles and the DF for which the random variables x(0) and w(k) were approximated by the
approximate random variables with 3 possible values (which are given in Section 3); the gate
size (GS) and MN were taken as 0.1 and 8 respectively. The average filtering and prediction
errors per one estimation (one iteration) were 33.8445, 45.6377, 71.5145 and 34.0660, 45.4395,
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70.2305 respectively. A typical run with 100 iteration took 0.0818, 0.2753, 0.3936 seconds for
the DF, SIR and ASIR particle filters, respectively. The DF clearly performs better than both
the SIR and ASIR particle filter. Moreover, the DF is much faster than both the SIR and ASIR
particle filters with 1000 particles.
The second example is described by

State Model

x(k + 1) = x(k)[1 +
k

k + 1
cos(0.8x(k))] + w(k) (20)

Observation Model

z(k) =
6x(k)

1 + x2(k)
+ v(k), (21)

where the random variables x(0), w(k),and v(k) are independent Gaussian random variables
with means 3, 0, 0 and variances 8, 9, 9 respectively. It was assumed that there did not
exist any constraints imposed on state estimates. Average absolute filtering and prediction
errors are sketched in Figs. 6 and 7 for 2000 runs each of which consists of 200 iterations.
These estimation errors were obtained by using the SIR and ASIR particle filters with 1000
particles and the DF for which the random variables x(0) and w(k) were approximated by the
approximate random variables with 3 possible values (which are given in Section 3); the gate
size (GS) and MN were taken as 0.1 and 4 respectively. The average filtering and prediction
errors per one estimation (one iteration) were 38.4913, 61.5432, 48.4791 and 38.5817, 61.4818,
48.5088 respectively. A typical run with 200 iteration took 0.0939, 0.5562, 0.8317 seconds for
the DF, SIR and ASIR particle filters, respectively. The state model of the second example is
a linear function of the disturbance noise. Hence, the extended Kalman filter (EKF) was also
used for state estimation, but the EKF estimation errors quickly diverged, hence, the EKF state
estimation errors are not sketched. The DF clearly performs better than the EKF, SIR and ASIR
particle filters and also the DF is much faster than both the SIR and ASIR particle filters with
1000 particles for the second example.
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Fig. 4. Average Filtering Errors for Eqs. (18) and (19)

6. Simulations

In this section, Monte Carlo simulation results of two examples are given. More examples are
presented in (Demirbaş, 2010). The first example is given by

State Model

x(k + 1) = x(k)[1 +
k

k + 1
cos(0.8x(k) + 2w(k))] + w(k) (18)

Observation Model

z(k) =
6x(k)

1 + x2(k)
+ v(k), (19)

where the random variables x(0), w(k), and v(k) are independent Gaussian random variables
with means 6, 0, 0 and variances 13, 20, 15 respectively. It was assumed that there did not
exist any constraints imposed on state estimates. The state model of Eq. (18) is an highly
nonlinear function of the disturbance noise w(k). The extended Kalman filter (EKF) and the
grid-based approaches may not be used for the state estimation of this example, since the
EKF assumes a linear disturbance noise in the state model and the grid based approaches
assumes the availability of the state transition density p(x(k)|x(k − 1)) which may not readily
calculated (Arulampalam et al., 2002; Ristic et al., 2004). States of this example were estimated
by using the DF, the sampling importance resampling (SIR) particle filter (which is sometimes
called the bootstrap filter, and auxiliary sampling importance resampling (ASIR) particle filter
(Arulampalam et al., 2002; Gordon et al., 1993). Average absolute filtering and prediction
errors are sketched in Figs. 4 and 5 for 2000 runs each of which consists of 100 iterations.
These estimation errors were obtained by using the SIR and ASIR particle filters with 1000
particles and the DF for which the random variables x(0) and w(k) were approximated by the
approximate random variables with 3 possible values (which are given in Section 3); the gate
size (GS) and MN were taken as 0.1 and 8 respectively. The average filtering and prediction
errors per one estimation (one iteration) were 33.8445, 45.6377, 71.5145 and 34.0660, 45.4395,
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70.2305 respectively. A typical run with 100 iteration took 0.0818, 0.2753, 0.3936 seconds for
the DF, SIR and ASIR particle filters, respectively. The DF clearly performs better than both
the SIR and ASIR particle filter. Moreover, the DF is much faster than both the SIR and ASIR
particle filters with 1000 particles.
The second example is described by
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k

k + 1
cos(0.8x(k))] + w(k) (20)

Observation Model

z(k) =
6x(k)
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+ v(k), (21)

where the random variables x(0), w(k),and v(k) are independent Gaussian random variables
with means 3, 0, 0 and variances 8, 9, 9 respectively. It was assumed that there did not
exist any constraints imposed on state estimates. Average absolute filtering and prediction
errors are sketched in Figs. 6 and 7 for 2000 runs each of which consists of 200 iterations.
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size (GS) and MN were taken as 0.1 and 4 respectively. The average filtering and prediction
errors per one estimation (one iteration) were 38.4913, 61.5432, 48.4791 and 38.5817, 61.4818,
48.5088 respectively. A typical run with 200 iteration took 0.0939, 0.5562, 0.8317 seconds for
the DF, SIR and ASIR particle filters, respectively. The state model of the second example is
a linear function of the disturbance noise. Hence, the extended Kalman filter (EKF) was also
used for state estimation, but the EKF estimation errors quickly diverged, hence, the EKF state
estimation errors are not sketched. The DF clearly performs better than the EKF, SIR and ASIR
particle filters and also the DF is much faster than both the SIR and ASIR particle filters with
1000 particles for the second example.
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The performance of the DF is determined by the possible values (n and m) of the approximate
discrete random disturbance noise and approximate discrete initial state, gate size (GS),
maximum number (MN) of considered state quantization levels at each iteration. As GS goes
to zero and the parameters n, m, and MN approach infinity, the approximate models of Eq.
(6) and (7) approach the models of Eqs. (1) and (2), hence, the DF approaches an optimum
estimation scheme, but the implementation complexity of the DF exponentially increases with
time k. The parameters n, m, GS, MN which yield the best performance for given models
are determined by Monte Carlo simulations for available hardware speed and storage. For
given nonlinear models: the performances of the DF, EKF, particle filters, and others must
be compared by Monte Carlo simulations with available hardware speed and storage. The
estimation scheme yielding the best performance should be used. The EKF is surely much

16 Discrete Time Systems

faster than both the DF and particle filters. The speed of the DF is based upon the parameters
n, m, GS, MN; whereas the speeds of particle filters depend upon the number of particles
used.

7. Conclutions

Presented is a real-time (online) recusive state filtering and prediction scheme for nonlinear
discrete dynamic systems with Gaussian or non-Gaussian disturbance and observation noises.
This scheme, referred to as the DF, is recently proposed in (Demirbaş, 2010). The DF is very
suitable for state estimation of nonlinear dynamic systems under either missing observations
or constraints imposed on state estimates. The DF is much more general than grid based
estimation approaches. This is based upon discrete noise approximation, state quantization,
and a suboptimum implementation of multiple hypothesis testing , whereas particle filters
are based upon sequential Monte Carlo Methods. The models of the DF is as general as
the models of particle filters, whereas the models of the extended Kalman filter (EKF) are
linear functions of the disturbance and observation noises. The DF uses state models only to
calculate transition probabilities from gates to gates. Hence, if these transition probabilities
are known or can be estimated, state models are not needed for estimation with the DF,
whereas state models are needed for both the EKF and particle filters. The performance
and implementation complexity of the DF depend upon the gate size (GS), numbers n and
m of possible values of approximate discrete disturbance noise and approximate discrete
initial state, and maximum number (MN) of considered quantization levels at each iteration
of the DF; whereas the performances and implementation complexities of particle filters
depend upon numbers of particles used. The implementation complexity of the DF increases
with a smaller value of GS, bigger values of n, m, and MN. These yield more accurate
approximations of state and observation models; whereas the implementation complexities
of particle filters increase with larger numbers of particles, which yield better approximations
of conditional densities. Surely, the EKF is the simplest one to implement. The parameters
(GS, n,m, MN) for which the DF yields the best performance for a real-time problem should
be determined by Monte Carlo simulations. As GS → 0, n → ∞, m → ∞,and MN → ∞;
the DF approaches the optimum one in the average overall error probability sense, but its
implementation complexity exponentially increases with time. The performances of the DF,
particle filters, EKF are all model-dependent. Hence, for a real-time problem with available
hardware speed and storage; the DF, particle filters, and EKF (if applicable) should all be
tested by Monte Carlo simulations, and the one which yields the best results should be used.
The implementation complexity of the DF increases with the dimensions of multidimensional
systems, as in the particle filters.
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The performance of the DF is determined by the possible values (n and m) of the approximate
discrete random disturbance noise and approximate discrete initial state, gate size (GS),
maximum number (MN) of considered state quantization levels at each iteration. As GS goes
to zero and the parameters n, m, and MN approach infinity, the approximate models of Eq.
(6) and (7) approach the models of Eqs. (1) and (2), hence, the DF approaches an optimum
estimation scheme, but the implementation complexity of the DF exponentially increases with
time k. The parameters n, m, GS, MN which yield the best performance for given models
are determined by Monte Carlo simulations for available hardware speed and storage. For
given nonlinear models: the performances of the DF, EKF, particle filters, and others must
be compared by Monte Carlo simulations with available hardware speed and storage. The
estimation scheme yielding the best performance should be used. The EKF is surely much
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faster than both the DF and particle filters. The speed of the DF is based upon the parameters
n, m, GS, MN; whereas the speeds of particle filters depend upon the number of particles
used.

7. Conclutions

Presented is a real-time (online) recusive state filtering and prediction scheme for nonlinear
discrete dynamic systems with Gaussian or non-Gaussian disturbance and observation noises.
This scheme, referred to as the DF, is recently proposed in (Demirbaş, 2010). The DF is very
suitable for state estimation of nonlinear dynamic systems under either missing observations
or constraints imposed on state estimates. The DF is much more general than grid based
estimation approaches. This is based upon discrete noise approximation, state quantization,
and a suboptimum implementation of multiple hypothesis testing , whereas particle filters
are based upon sequential Monte Carlo Methods. The models of the DF is as general as
the models of particle filters, whereas the models of the extended Kalman filter (EKF) are
linear functions of the disturbance and observation noises. The DF uses state models only to
calculate transition probabilities from gates to gates. Hence, if these transition probabilities
are known or can be estimated, state models are not needed for estimation with the DF,
whereas state models are needed for both the EKF and particle filters. The performance
and implementation complexity of the DF depend upon the gate size (GS), numbers n and
m of possible values of approximate discrete disturbance noise and approximate discrete
initial state, and maximum number (MN) of considered quantization levels at each iteration
of the DF; whereas the performances and implementation complexities of particle filters
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1. Introduction

The observer design problem for nonlinear time-delay systems becomes more and
more a subject of research in constant evolution Germani et al. (2002), Germani &
Pepe (2004), Aggoune et al. (1999), Raff & Allgöwer (2006), Trinh et al. (2004), Xu et al.
(2004), Zemouche et al. (2006), Zemouche et al. (2007). Indeed, time-delay is frequently
encountered in various practical systems, such as chemical engineering systems, neural
networks and population dynamic model. One of the recent application of time-delay is
the synchronization and information recovery in chaotic communication systems Cherrier
et al. (2005). In fact, the time-delay is added in a suitable way to the chaotic system in the
goal to increase the complexity of the chaotic behavior and then to enhance the security of
communication systems. On the other hand, contrary to nonlinear continuous-time systems,
little attention has been paid toward discrete-time nonlinear systems with time-delay. We
refer the readers to the few existing references Lu & Ho (2004a) and Lu & Ho (2004b), where
the authors investigated the problem of robust H∞ observer design for a class of Lipschitz
time-delay systems with uncertain parameters in the discrete-time case. Their method show
the stability of the state of the system and the estimation error simultaneously.
This chapter deals with observer design for a class of Lipschitz nonlinear discrete-time
systems with time-delay. The main result lies in the use of a new structure of the proposed
observer inspired from Fan & Arcak (2003). Using a Lyapunov-Krasovskii functional, a
new nonrestrictive synthesis condition is obtained. This condition, expressed in term of
LMI, contains more degree of freedom than those proposed by the approaches available in
literature. Indeed, these last use a simple Luenberger observer which can be derived from the
general form of the observer proposed in this paper by neglecting some observer gains.
An extension of the presented result to H∞ performance analysis is given in the goal to
take into account the noise which affects the considered system. A more general LMI is
established. The last section is devoted to systems with differentiable nonlinearities. In
this case, based on the use of the Differential Mean Value Theorem (DMVT), less restrictive
synthesis conditions are proposed.

Notations : The following notations will be used throughout this chapter.

• ‖.‖ is the usual Euclidean norm;
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Demirbaş, K. (1984). Information Theoretic Smoothing Algorithms for Dynamic Systems with
or without Interference, Advances in Control and Dynamic Systems, C.T. Leonde, (Ed.),
Volume XXI, pp. 175-295, Academic Press, New York
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The observer design problem for nonlinear time-delay systems becomes more and
more a subject of research in constant evolution Germani et al. (2002), Germani &
Pepe (2004), Aggoune et al. (1999), Raff & Allgöwer (2006), Trinh et al. (2004), Xu et al.
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networks and population dynamic model. One of the recent application of time-delay is
the synchronization and information recovery in chaotic communication systems Cherrier
et al. (2005). In fact, the time-delay is added in a suitable way to the chaotic system in the
goal to increase the complexity of the chaotic behavior and then to enhance the security of
communication systems. On the other hand, contrary to nonlinear continuous-time systems,
little attention has been paid toward discrete-time nonlinear systems with time-delay. We
refer the readers to the few existing references Lu & Ho (2004a) and Lu & Ho (2004b), where
the authors investigated the problem of robust H∞ observer design for a class of Lipschitz
time-delay systems with uncertain parameters in the discrete-time case. Their method show
the stability of the state of the system and the estimation error simultaneously.
This chapter deals with observer design for a class of Lipschitz nonlinear discrete-time
systems with time-delay. The main result lies in the use of a new structure of the proposed
observer inspired from Fan & Arcak (2003). Using a Lyapunov-Krasovskii functional, a
new nonrestrictive synthesis condition is obtained. This condition, expressed in term of
LMI, contains more degree of freedom than those proposed by the approaches available in
literature. Indeed, these last use a simple Luenberger observer which can be derived from the
general form of the observer proposed in this paper by neglecting some observer gains.
An extension of the presented result to H∞ performance analysis is given in the goal to
take into account the noise which affects the considered system. A more general LMI is
established. The last section is devoted to systems with differentiable nonlinearities. In
this case, based on the use of the Differential Mean Value Theorem (DMVT), less restrictive
synthesis conditions are proposed.

Notations : The following notations will be used throughout this chapter.
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• (�) is used for the blocks induced by symmetry;

• AT represents the transposed matrix of A;

• Ir represents the identity matrix of dimension r;

• for a square matrix S, S > 0 (S < 0) means that this matrix is positive definite (negative
definite);

• zt(k) represents the vector x(k− t) for all z;

• The notation �x��s2
=

(
∑∞

k=0 �x(k)�2
) 1

2
is the �s2 norm of the vector x ∈ Rs. The set �s2 is

defined by

�s2 =
{
x ∈ Rs : �x��s2

< +∞
}

.

2. Problem formulation and observer synthesis

In this section, we introduce the class of nonlinear systems to be studied, the proposed state
observer and the observer synthesis conditions.

2.1 Problem formulation
Consider the class of systems described in a detailed forme by the following equations :

x(k + 1) = Ax(k) + Adxd(k) + B f
(
Hx(k), Hdxd(k)

)
(1a)

y(k) = Cx(k) (1b)

x(k) = x0(k), for k = −d, ..., 0 (1c)

where the constant matrices A, Ad, B,C, H and Hd are of appropriate dimensions.
The function f : Rs1 × Rs2 → Rq satisfies the Lipschitz condition with Lipschitz constant γ f ,
i.e : ∥∥∥ f

(
z1, z2

)
− f

(
ẑ1, ẑ2

)∥∥∥ ≤ γ f

∥∥∥∥
[
z1 − ẑ1
z2 − ẑ2

]∥∥∥∥ , ∀ z1, z2, ẑ1, ẑ2. (2)

Now, consider the following new structure of the proposed observer defined by the
equations (78) :

x̂(k + 1) = Ax̂(k) + Adx̂d(k) + B f
(
v(k), w(k)

)

+ L
(
y(k) − Cx̂(k)

)
+ Ld

(
yd(k) − Cx̂d(k)

) (3a)

v(k) = Hx̂(k) + K1
(
y(k) − Cx̂(k)

)
+ K1

d

(
yd(k) − Cx̂d(k)

)
(3b)

w(k) = Hdx̂d(k) + K2
(
y(k) − Cx̂(k)

)
+ K2

d

(
yd(k) − Cx̂d(k)

)
. (3c)
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The dynamic of the estimation error is :

ε(k + 1) =
�
A− LC

�
ε(k) +

�
Ad − LdC

�
εd(k) + Bδ fk (4)

with
δ fk = f

�
Hx(k), Hdxd(k)

�
− f

�
v(k), w(k)

�
.

From (35), we obtain

���δ fk
��� ≤ γ f

����
�

(H− K1C)ε(k) − K1
dCεd(k)

(Hd − K2
dC)εd(k) − K2Cε(k)

����� . (5)

2.2 Observer synthesis conditions
This subsection is devoted to the observer synthesis method that provides a sufficient
condition ensuring the asymptotic convergence of the estimation error towards zero. The
synthesis conditions, expressed in term of LMI, are given in the following theorem.

Theorem 2.1. The estimation error is asymptotically stable if there exist a scalar α > 0 and matrices
P = PT > 0, Q = QT > 0, R, Rd, K̄1, K̄2, K̄1

d and K̄2
d of appropriate dimensions such that the

following LMI is feasible :
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P + Q 0 M13 M14 MT
15 MT

16

(�) −Q M23 M24 MT
25 MT

26

(�) (�) M33 0 0 0

(�) (�) (�) −P 0 0

(�) (�) (�) (�) −αγ2
f Is1 0

(�) (�) (�) (�) (�) −αγ2
f Is2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (6)

where

M13 = ATPB− CTRB (7a)

M14 = ATP− CTR (7b)

M15 = γ2
f

�
αH− K̄1C

�
(7c)

M16 = γ2
f K̄

2C (7d)

M23 = AT
d PB− CTRdB (7e)

M24 = AT
d P− CTRd (7f)

M25 = γ2
f K̄

1
dC (7g)

M26 = γ2
f

�
αHd − K̄2

dC
�

(7h)

M33 = BTPB− αIq (7i)
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• AT represents the transposed matrix of A;
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(
∑∞

k=0 �x(k)�2
) 1

2
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�s2 =
{
x ∈ Rs : �x��s2

< +∞
}

.
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Now, consider the following new structure of the proposed observer defined by the
equations (78) :

x̂(k + 1) = Ax̂(k) + Adx̂d(k) + B f
(
v(k), w(k)

)

+ L
(
y(k) − Cx̂(k)

)
+ Ld

(
yd(k) − Cx̂d(k)

) (3a)

v(k) = Hx̂(k) + K1
(
y(k) − Cx̂(k)

)
+ K1

d

(
yd(k) − Cx̂d(k)

)
(3b)

w(k) = Hdx̂d(k) + K2
(
y(k) − Cx̂(k)

)
+ K2

d

(
yd(k) − Cx̂d(k)

)
. (3c)

20 Discrete Time Systems

The dynamic of the estimation error is :

ε(k + 1) =
�
A− LC

�
ε(k) +

�
Ad − LdC

�
εd(k) + Bδ fk (4)

with
δ fk = f

�
Hx(k), Hdxd(k)

�
− f

�
v(k), w(k)

�
.

From (35), we obtain

���δ fk
��� ≤ γ f

����
�

(H− K1C)ε(k) − K1
dCεd(k)

(Hd − K2
dC)εd(k) − K2Cε(k)

����� . (5)

2.2 Observer synthesis conditions
This subsection is devoted to the observer synthesis method that provides a sufficient
condition ensuring the asymptotic convergence of the estimation error towards zero. The
synthesis conditions, expressed in term of LMI, are given in the following theorem.

Theorem 2.1. The estimation error is asymptotically stable if there exist a scalar α > 0 and matrices
P = PT > 0, Q = QT > 0, R, Rd, K̄1, K̄2, K̄1

d and K̄2
d of appropriate dimensions such that the

following LMI is feasible :
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P + Q 0 M13 M14 MT
15 MT

16

(�) −Q M23 M24 MT
25 MT

26

(�) (�) M33 0 0 0

(�) (�) (�) −P 0 0

(�) (�) (�) (�) −αγ2
f Is1 0

(�) (�) (�) (�) (�) −αγ2
f Is2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (6)

where

M13 = ATPB− CTRB (7a)

M14 = ATP− CTR (7b)

M15 = γ2
f

�
αH− K̄1C

�
(7c)

M16 = γ2
f K̄

2C (7d)

M23 = AT
d PB− CTRdB (7e)

M24 = AT
d P− CTRd (7f)

M25 = γ2
f K̄

1
dC (7g)

M26 = γ2
f

�
αHd − K̄2

dC
�

(7h)

M33 = BTPB− αIq (7i)

21Observers Design for a Class of Lipschitz Discrete-Time Systems with Time-Delay



The gains L and Ld,K1,K2,K1
d and K2

d are given respectively by

L = P−1RT , Ld = P−1RT
d

K1 =
1
α
K̄1, K2 =

1
α
K̄2,

K1
d =

1
α
K̄1
d, K2

d =
1
α
K̄2
d.

Proof. Consider the following Lyapunov-Krasovskii functional :

Vk = εT(k)Pε(k) +
i=d

∑
i=1

�
εTi (k)Qε i(k)

�
. (8)

Using the dynamics (4), we obtain

Vk+1 −Vk = ζTk M1ζk

where

M1 =

⎡
⎣
ÃTPÃ− P + Q ÃTPÃd ÃTPB

(�) ÃT
d PÃd −Q ÃT

d PB
(�) (�) BTPB

⎤
⎦ , (9a)

ζTk =
�
εT(k) εTd (k) δ f Tk

�
, (9b)

Ã = A− LC, (9c)

Ãd = Ad − LdC. (9d)

Using the notations K̄1 = αK1, K̄2 = αK2, K̄1
d = αK1

d and K̄2
d = αK2

d, the condition (5) can be
rewritten as follows :

ζTk M2ζk ≥ 0 (10)

with

M2 =

� 1
αγ2

f
M3 0

0 −αIq

�
, (11a)

M3 =
�

MT
15M15 + MT

16M16 MT
15M25 + MT

16M26
(�) MT

26M26 + MT
25M25

�
, (11b)

and M15, M16, M25, M26 are defined in (7).
Consequently

Vk+1 −Vk ≤ ζTk

�
M1 + M2

�
ζk. (12)

By using the Schur lemma (see the Appendix), we deduce that the inequality

M1 + M2 < 0
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is equivalent to
M4 < 0

where

M4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P + Q 0 ÃTPB ÃTP MT
15 MT

16

(�) −Q ÃT
d PB ÃT

d P MT
25 MT

26

(�) (�) M33 0 0 0

(�) (�) (�) −P 0 0

(�) (�) (�) (�) −αγ2
f Is1 0

(�) (�) (�) (�) (�) −αγ2
f Is2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

Using the notations R = LTP and Rd = LTd P, we deduce that the inequality M4 < 0 is
identical to (6). This means that under the condition (6) of Theorem 2.1, the function Vk is
strictly decreasing and therefore the estimation error is asymptotically stable. This ends the
proof of Theorem 2.1.

Remark 2.2. The Schur lemma and its application in the proof of Theorem 2.1 are detailed in the
Appendix of this paper.

2.3 Illustrative example
In this section, we present a numerical example in order to valid the proposed results.
Consider an example of an instable system under the form (1) described by the following
parameters :

A =

⎡
⎣

4 2 0
0 4 2
0 0 3

⎤
⎦ , Ad =

⎡
⎣

0 0.5 0.3
0.5 0 0.3
0.3 0.3 0

⎤
⎦ ,

B =

⎡
⎣

0.01 0
0 0.01
0 0

⎤
⎦ , H =

�
1 0 1

�
,

Hd =
�
1 0 0

�
, C =

�
1 0 0

�

and

f (Hx, Hdxd , y) = γ f

�
sin(x1(k) + x3(k))

cos(x2(k− 1))

�

where
x =

�
x1 x2 x3�T

and γ f = 10 is the Lipschitz constant of the function f .
Applying the proposed method (condition (6)), we obtain the following gains :

L =
�
0.0701 1.8682 2.9925

�T ,

Ld =
�
0.3035 0.2942 0.0308

�T ,
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K1 = 0.9961, K2 = −2.8074 × 10−5,

K1
d = −9.0820 × 10−4, K2

d = −0.0075

and
α = 10−7.

3. Extension to H∞ performance analysis

In this section, we propose an extension of the previous result to H∞ robust observer design
problem. In this case, we give an observer synthesis method which takes into account the
noises affecting the system.
Consider the disturbed system described by the equations :

x(k + 1) = Ax(k) + Adxd(k) + Eωω(k) + B f
(
Hx(k), Hdxd(k)

)
(14a)

y(k) = Cx(k) + Dωω(k) (14b)

x(k) = x0(k), for k = −d, ..., 0 (14c)

where ω(k) ∈ �s2 is the vector of bounded disturbances. The matrices Eω and Dω are constants
with appropriate dimensions.

The corresponding observer has the same structure as in (3). We recall it hereafter
with some different notations.

x̂(k + 1) = Ax̂(k) + Adx̂d(k) + B f
(
v1(k), v2(k)

)

+ L
(
y(k) − Cx̂(k)

)
+ Ld

(
yd(k) − Cx̂d(k)

) (15a)

v1(k) = Hx̂(k) + K1
(
y(k) − Cx̂(k)

)
+ K1

d

(
yd(k) − Cx̂d(k)

)
(15b)

v2(k) = Hdx̂d(k) + K2
(
y(k) − Cx̂(k)

)
+ K2

d

(
yd(k) − Cx̂d(k)

)
. (15c)

Our aim is to design the matrices L, Ld,K1,K2,K1
d and K2

d such that (15) is an asymptotic
observer for the system (14). The dynamics of the estimation error

ε(k) = x(k) − x̂(k)

is given by the equation :

ε(k + 1) =
(
A− LC

)
ε(k) +

(
Ad − LdC

)
εd(k) + Bδ fk

+
(
Eω − LDω

)
ω(k)− LdDωωd(k)

(16)
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with
δ fk = f

(
Hx(k), Hdxd(k)

)
− f

(
v1(k), v2(k))

)

satisfies (5).
The objective is to find the gains L, Ld,K1,K2,K1

d and K2
d such that the estimation error

converges robustly asymptotically to zero, i.e :

�ε��s2
≤ λ�ω��s2

(17)

where λ > 0 is the disturbance attenuation level to be minimized under some conditions that
we will determined later.
The inequality (17) is equivalent to

�ε��s2
≤ λ√

2

(
�ω�2

�s2
+ �ωd�2

�s2
−

−1

∑
k=−d

ω2(k)
) 1

2
. (18)

Without loss of generality, we assume that

ω(k) = 0 for k = −d, ...,−1.

Then, (18) becomes

�ε��s2
≤ λ√

2

(
�ω�2

�s2
+ �ωd�2

�s2

) 1
2
. (19)

Remark 3.1. In fact, if ω(k) �= 0 for k = −d, ...,−1, we must replace the inequality (17) by

�ε��s2
≤ λ

(
�ω�2

�s2
+

1
2

−1

∑
k=−d

ω2(k)
) 1

2
(20)

in order to obtain (19).

Robust H∞ observer design problem Li & Fu (1997) : Given the system (14) and the
observer (15), then the problem of robust H∞ observer design is to determine the matrices
L, Ld,K1,K2,K1

d and K2
d so that

lim
k→∞

ε(k) = 0 for ω(k) = 0; (21)

�ε��s2
≤ λ�ω��s2

∀ ω(k) �= 0; ε(k) = 0, k = −d, ..., 0. (22)

From the equivalence between (17) and (19), the problem of robust H∞ observer design (see
the Appendix) is reduced to find a Lyapunov function Vk such that

Wk = ΔV + εT(k)ε(k)− λ2

2
ωT(k)ω(k)− λ2

2
ωT

d (k)ωd(k) < 0 (23)

where
ΔV = Vk+1 −Vk.

At this stage, we can state the following theorem, which provides a sufficient condition
ensuring (23).
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Theorem 3.2. The robust H∞ observer design problem corresponding to the system (14) and the
observer (15) is solvable if there exist a scalar α > 0 matrices P = PT > 0, Q = QT > 0,
R, Rd, K̄1, K̄2, K̄1

d and K̄2
d of appropriate dimensions so that the following convex optimization problem

is feasible :
min(γ) subject to Γ < 0 (24)

where

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

−P + Q + In 0 M13 0 0
(�) −Q M23 0 0
(�) (�) M33 M34 M35
(�) (�) (�) −γIs 0
(�) (�) (�) (�) −γIs

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

M14 MT
15 MT

16
MT

24 MT
25 MT

26
0 0 0

ET
ωP− CTR 0 0
−DωRd 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

M14 MT
15 MT

16
MT

24 MT
25 MT

26
0 0 0

ET
ωP− CTR 0 0
−DωRd 0 0

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎣
−P 0 0
(�) −αγ2

f Is1 0
(�) (�) −αγ2

f Is2

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

with

M34 = BTPEω − BTRTC, (26a)

M35 = −BTRT
d Dω , (26b)

and M13, M14, M15, M16, M24, M25, M26, M33 are de�ned in (7).
The gains L and Ld,K1,K2,K1

d,K2
d and the minimum disturbance attenuation level λ are given

respectively by
L = P−1RT , Ld = P−1RT

d

K1 =
1
α
K̄1, K2 =

1
α
K̄2,

K1
d =

1
α
K̄1
d, K2

d =
1
α
K̄2
d,

λ =
�

2γ.

Proof. The proof of this theorem is an extension of that of Theorem 2.1.
Let us consider the same Lyapunov-Krasovskii functional defined in (8). We show that if the
convex optimization problem (24) is solvable, we have Wk < 0. Using the dynamics (16), we
obtain

Wk = ηTS1η (27)

where

S1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M1 +

⎡
⎣
In 0 0
0 0 0
0 0 0

⎤
⎦

⎡
⎣
ÃTPẼω −ÃTPD̃ω

ÃT
d PẼω −ÃT

d PD̃ω

BTPẼω −BTPD̃ω

⎤
⎦

⎡
⎣
ÃTPẼω −ÃTPD̃ω

ÃT
d PẼω −ÃT

d PD̃ω

BTPẼω −BTPD̃ω

⎤
⎦
T �

ẼT
ωPẼω − γIs ẼT

ωPD̃ω

D̃T
ωPẼω D̃T

ωPD̃ω − γIs

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (28)
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where

Ẽω = Eω − LC (29a)

D̃ω = LdDω (29b)

ηT =
�
εT εTd δ fk ωT ωT

d

�
, (29c)

γ =
λ2

2
. (29d)

The matrices M1, Ã and Ãd are defined in (9).
As in the proof of Theorem 2.1, since δ fk satisfies (5), we deduce, after multiplying by a scalar
α > 0, that

ηTS2η ≥ 0 (30)

where

S2 =

⎡
⎢⎢⎢⎣

1
αγ2

f
M3 0 0 0

0 −αIq 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ (31)

and M3 is defined in (11b).
The inequality (31) implies that

Wk = ηT(S1 + S2)η. (32)

Now, using the Schur Lemma and the notations R = LTP and Rd = LTd P, we deduce that
the inequality S1 + S2 < 0 is equivalent to Γ < 0. The estimation error converges robustly
asymptotically to zero with a minimum value of the disturbance attenuation level λ =

√
2γ if

the convex optimization problem (24) is solvable. This ends the proof of Theorem 3.2.

Remark 3.3. We can obtain a synthesis condition which contains more degree of freedom than the
LMI (6) by using a more general design of the observer. This new design of the observer can take the
following structure :

x̂(k + 1) = Ax̂(k) + Adx̂d(k) + B f
�
v(k), w(k)

�

+ L
�
y(k) − Cx̂(k)

�
+

d

∑
i=1

Li
�
yi(k) − Cx̂i(k)

� (33a)

v(k) = Hx̂(k) + K1
�
y(k) − Cx̂(k)

�
+

d

∑
i=1

K1
i

�
yi(k) − Cx̂i(k)

�
(33b)

w(k) = Hdx̂d(k) + K2
�
y(k) − Cx̂(k)

�
+

d

∑
i=1

K2
i

�
yi(k) − Cx̂i(k)

�
. (33c)
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If such an observer is used, the adequate Lyapunov-Krasovskii functional that we propose is under
the following form :

Vk = εT(k)Pε(k) +
j=d

∑
j=1

i=j

∑
i=1

�
εTi (k)Qjε i(k)

�
. (34)

4. Systems with differentiable nonlinearities

4.1 Reformulation of the problem
In this section, we need to assume that the function f is differentiable with respect to x.
Rewrite also f under the detailed form :

f (Hx, Hdz) =

⎡
⎢⎢⎢⎢⎣

f1(H1x, Hd
1 z)

.

.

.
fq(Hqx, Hd

q z)

⎤
⎥⎥⎥⎥⎦

. (35)

where Hi ∈ Rsi×n and Hd
i ∈ Rri×n for all i ∈ {1, ..., q}. Here, we use the following

reformulation of the Lipschitz condition :

− ∞ < aij ≤ ∂ fi
∂ζ ij

(ζ i, zi) ≤ bij < +∞, ∀ ζ i ∈ Rsi , ∀ zi ∈ Rri (36)

− ∞ < adij ≤
∂ fi
∂ζ ij

(xi, ζ i) ≤ bdij < +∞, ∀ ζ i ∈ Rri , ∀ xi ∈ Rsi (37)

where xi = Hix and zi = Hd
i z.

The conditions (36)-(37) imply that the differentiable function f is γ f -Lipschitz where

γ f =

�����
i=q

∑
i=1

max

⎛
⎝

j=si

∑
j=1

max
�
|aij|2, |bij|2

�
,
j=ri

∑
j=1

max
�
|adij|2, |bdij|2

�
⎞
⎠

The reformulation of the Lipschitz condition for differentiable functions as in (36) and (37)
plays an important role on the feasibility of the synthesis conditions and avoids high gain as
shown in Zemouche et al. (2008). In addition, it is shown in Alessandri (2004) that the use of
the classical Lipschitz property leads to restrictive synthesis conditions.

Remark 4.1. For simplicity of the presentation, we assume, without loss of generality, that f
satis�es (36) and (37) with aij = 0 and adlm = 0 for all i, l = 1, ..., q, j = 1, ..., s and m = 1, ..., r, where
s = max

1≤i≤q
(si) and r = max

1≤i≤q
(ri). Indeed, if there exist subsets S1, Sd1 ⊂ {1, ..., q}, S2 ⊂ {1, ..., s} and

Sd2 ⊂ {1, ..., r} such that aij �= 0 for all (i, j) ∈ S1 × S2 and adlm �= 0 for all (l,m) ∈ Sd1 × Sd2 , we can
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consider the nonlinear function

f̃ (xk, xk−d) = f (Hxk, Hdxk−d) −
(

∑
(i,j)∈S1×S2

aijHijHi

)
xk

−
(

∑
(l,m)∈Sd

1×Sd
2

adlmH
d
lmH

d
l

)
xk−d

(38)

where
Hij = eq(i)eTsi(j) and Hd

lm = eq(l)eTrl(m).

Therefore, f̃ satis�es (36) and (37) with ãij = 0, ãdij = 0, b̃ij = bij − aij and b̃dij = bdij − adij, and then
we rewrite (1a) as

xk+1 = Ãxk + Ãdxk−d + B f̃ (xk, xk−d)

with
Ã = A + B ∑

(i,j)∈S1×S2

aijHijHi, Ãd = Ad + B ∑
(i,j)∈Sd

1×Sd
2

adijH
d
ijH

d
i

Inspired by Fan & Arcak (2003), we consider the following state observer :

x̂k+1 = Ax̂k + Adx̂k−d +
i=q

∑
i=1

Beq(i) fi(vik,wi
k)

+ L
(
yk − Cx̂k

)
+ Ld

(
yk−d − Cx̂k−d

) (39a)

vik = Hix̂k + Ki

(
yk − Cx̂k

)
(39b)

wi
k = Hd

i x̂k−d + Kd
i

(
yk−d − Cx̂k−d

)
(39c)

x̂k = x̂0, ∀ k ∈ {−d, ..., 0} (39d)

Therefore, the aim is to find the gains L ∈ Rn×p, Ld ∈ Rn×p, Ki ∈ Rsi×p and Kd
i ∈ Rri×p, for

i = 1, ..., q, such that the estimation error

εk = xk − x̂k (40)

converges asymptotically towards zero.
The dynamics of the estimation error is given by :

εk+1 =
(
A− LC

)
εk +

(
Ad − LdC

)
εk−d +

i=q

∑
i=1

Beq(i)δ fi (41)

where
δ fi = fi(Hixk, Hd

i x̂k) − fi(vik, w
i
k).
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i = 1, ..., q, such that the estimation error
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)
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)
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i x̂k) − fi(vik, w
i
k).
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Using the DMVT-based approach given firstly in Zemouche et al. (2008), there exist zi ∈
Co(Hix, vi), zdi ∈ Co(Hd

i xk−d, wi) for all i = 1, ..., q such that :

δ fi =
j=si

∑
j=1

hij(k)eTsi(j)χi +
j=ri

∑
j=1

hdij(k)e
T
ri(j)χd

i (42)

where
χi =

�
Hi − KiC

�
εk (43)

χd
i =

�
Hd
i − Kd

i C
�

εk−d (44)

hij(k) =
∂ fi
∂vij

�
zi(k), Hd

i xk−d

�
(45)

hdij(k) =
∂ fi
∂vij

�
vik, zdi (k)

�
(46)

Hence, the estimation error dynamics (41) becomes :

εk+1 =
�
A− LC

�
εk +

�
Ad − LdC

�
εk−d

+
i=q

∑
i=1

j=si

∑
j=1

hij(k)BHijχi

+
i=q

∑
i=1

j=ri

∑
j=1

hdij(k)BH
d
ijχ

d
i

(47)

4.2 New synthesis method
The content of this section consists in a new observer synthesis method. A novel sufficient
stability condition ensuring the asymptotic convergence of the estimation error towards zero
is provided. This condition is expressed in term of LMI easily tractable.

Theorem 4.2. The estimation error (40) converges asymptotically towards zero if there exist matrices
P = PT > 0, Q = QT > 0, R, Rd, Ki and Kd

i , for i = 1, ..., q, of adequate dimensions so that the
following LMI is feasible :

⎡
⎢⎢⎢⎢⎣

−P + Q 0 M 0 ATP− CTR
(�) −Q 0 N AT

d P− CTRd

(�) (�) −Υ 0 ΣTP
(�) (�) (�) −Υd (Σd)TP
(�) (�) (�) (�) −P

⎤
⎥⎥⎥⎥⎦

< 0 (48)

where
M =

�
M1(K1) · · ·Mq(Kq)

�
(49)

Mi(Ki) =
�
(Hi − KiC)T...(Hi − KiC)T� �� �

si times

�
(50)
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N =
�
N1(Kd

1) · · ·Nq(Kd
q)
�

(51)

Ni(Kd
i ) =

�
(Hd

i − Kd
i C)T...(Hd

i − Kd
i C)T� �� �

ri times

�
(52)

Σ = B
�
H11 · · ·H1s1 H21 · · ·Hqsq

�
(53)

Σd = B
�
Hd

11 · · ·Hd
1r1

H21 · · ·Hqrq

�
(54)

Υ = diag
�

β11 Is1 , ..., β1s1 Is1 , β21 Is2 , ..., βqsq Isq
�

(55)

Υd = diag
�

βd
11 Ir1 , ..., βd

1r1
Ir1 , βd

21 Ir2 , ..., βd
qrq Irq

�
(56)

βij =
2
bij

, βd
ij =

2
bdij

(57)

Hence, the gains L, Ld are given, respectively, by L = P−1RT , Ld = P−1(Rd)T and the matrices
Ki, Kd

i are free solutions of the LMI (48).

Proof. For the proof, we use the following Lyapunov-Krasovskii functional candidate :

Vk = εTk Pεk +
i=d

∑
i=1

εTk−iQεk−i

Considering the difference ΔV = Vk+1 −Vk along the system (1), we have

ΔV = εTk

��
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�T
P
�
A− LC

�
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�
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��
Ad − LdC

�T
P
�
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�
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�
εk−d
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�
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�T
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�
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�
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�T
P

⎛
⎝

i=q
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BHijζij
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⎠
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�
A− LC

�T
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⎛
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∑
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d
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⎞
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�
Ad − LdC

�T
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∑
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j=si

∑
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BHijζij

⎞
⎠
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�
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P
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∑
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BHd
ijζ

d
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⎞
⎠ +

⎛
⎝
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∑
i=1
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∑
j=1

BHijζij

⎞
⎠

T

P

⎛
⎝
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∑
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j=si

∑
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BHijζij

⎞
⎠

+
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⎝
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BHd
ijζ
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⎞
⎠

T

P
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j=ri
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BHd
ijζ

d
ij

⎞
⎠

(58)

where
ζ ij = hij(k)χi, ζdij = hdij(k)χd

i . (59)
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Using the DMVT-based approach given firstly in Zemouche et al. (2008), there exist zi ∈
Co(Hix, vi), zdi ∈ Co(Hd

i xk−d, wi) for all i = 1, ..., q such that :

δ fi =
j=si

∑
j=1

hij(k)eTsi(j)χi +
j=ri

∑
j=1

hdij(k)e
T
ri(j)χd

i (42)

where
χi =

�
Hi − KiC

�
εk (43)

χd
i =

�
Hd
i − Kd

i C
�

εk−d (44)

hij(k) =
∂ fi
∂vij

�
zi(k), Hd

i xk−d

�
(45)

hdij(k) =
∂ fi
∂vij

�
vik, zdi (k)

�
(46)

Hence, the estimation error dynamics (41) becomes :

εk+1 =
�
A− LC

�
εk +

�
Ad − LdC

�
εk−d

+
i=q

∑
i=1

j=si

∑
j=1

hij(k)BHijχi

+
i=q

∑
i=1

j=ri

∑
j=1

hdij(k)BH
d
ijχ

d
i

(47)

4.2 New synthesis method
The content of this section consists in a new observer synthesis method. A novel sufficient
stability condition ensuring the asymptotic convergence of the estimation error towards zero
is provided. This condition is expressed in term of LMI easily tractable.

Theorem 4.2. The estimation error (40) converges asymptotically towards zero if there exist matrices
P = PT > 0, Q = QT > 0, R, Rd, Ki and Kd

i , for i = 1, ..., q, of adequate dimensions so that the
following LMI is feasible :

⎡
⎢⎢⎢⎢⎣

−P + Q 0 M 0 ATP− CTR
(�) −Q 0 N AT

d P− CTRd

(�) (�) −Υ 0 ΣTP
(�) (�) (�) −Υd (Σd)TP
(�) (�) (�) (�) −P

⎤
⎥⎥⎥⎥⎦

< 0 (48)

where
M =

�
M1(K1) · · ·Mq(Kq)

�
(49)

Mi(Ki) =
�
(Hi − KiC)T...(Hi − KiC)T� �� �

si times

�
(50)
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N =
�
N1(Kd

1) · · ·Nq(Kd
q)
�

(51)
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i ) =

�
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i C)T� �� �
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�
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�
(53)

Σd = B
�
Hd

11 · · ·Hd
1r1

H21 · · ·Hqrq

�
(54)

Υ = diag
�

β11 Is1 , ..., β1s1 Is1 , β21 Is2 , ..., βqsq Isq
�
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�
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(57)
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From (36) and (37), we have

i=q

∑
i=1

j=si

∑
j=1

ζTij

�
1
hij

− 1
bij

�
ζij ≥ 0 (60)

i=q

∑
i=1

j=ri

∑
j=1

(ζdij)
T

�
1
hdij

− 1
bdij

�
ζdij ≥ 0 (61)

Using (43) and (59), the inequalities (60) and (61) become, respectively,

i=q

∑
i=1

j=si

∑
j=1

εT
�
Hi − KiC

�T
ζij −

i=q

∑
i=1

j=si

∑
j=1

1
bij

ζTijζij ≥ 0 (62)

i=q

∑
i=1

j=ri

∑
j=1

εTk−d

�
Hd
i − Kd

i C
�T

ζdij −
i=q

∑
i=1

j=ri

∑
j=1

1
bdij

(ζdij)
Tζdij ≥ 0 (63)

Consequently,

ΔV ≤

⎡
⎢⎢⎣

εk
εk−d
ζk
ζdk

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣

Γ11 Γ12 Γ13 Γ14
(�) Γ22 Γ23 Γ24
(�) (�) Γ33 Γ34
(�) (�) (�) Γ44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

εk
εk−d

ζk
ζdk

⎤
⎥⎥⎦ (64)

where

Γ11 =
�
A− LC

�T
P
�
A− LC

�
− P + Q (65)

Γ12 =
�
A− LC

�T
P
�
Ad − LdC

�
(66)

Γ13 = MT(K1, ...,Kq) +
�
A− LC

�T
PΣ (67)

Γ14 =
�
A− LC

�T
PΣd (68)

Γ22 =
�
Ad − LdC

�T
P
�
Ad − LdC

�
−Q (69)

Γ23 =
�
Ad − LdC

�T
PΣ (70)

Γ24 = NT(Kd
1, ...,Kd

q) +
�
Ad − LdC

�T
PΣd (71)

Γ33 = ΣTPΣ − Υ (72)

Γ34 = ΣTPΣd (73)

Γ44 = (Σd)TPΣd − Υd (74)

ζk = [ζT11, ..., ζT1s1
, ζT21, ..., ζTqsq ]

T (75)

ζdk = [(ζd11)
T, ..., (ζd1r1

)T, (ζd21)
T, ..., (ζdqrq)

T]T (76)
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and M(K1, ...,Kq), Σ, Υ are defined in (49), (53) and (55) respectively.
Using the Schur Lemma and the notation R = LTP, the inequality (48) is equivalent to

⎡
⎢⎢⎣

Γ11 Γ12 Γ13 Γ14
(�) Γ22 Γ23 Γ24
(�) (�) Γ33 Γ34
(�) (�) (�) Γ44

⎤
⎥⎥⎦ < 0. (77)

Consequently, we deduce that under the condition (48), the estimation error converges
asymptotically towards zero. This ends the proof of Theorem 4.2.

Remark 4.3. Note that we can consider a more general observer with more degree of freedoms as
follows :

x̂k+1 = Ax̂k + Adxk−d +
i=q

∑
i=1

Beq(i) fi(vik,wi
k) +

l=d

∑
l=0

Ll
�
yk−l − Cx̂k−l

�
(78a)

vik = Hix̂k +
l=d

∑
l=0

Ki,l

�
yk−l − Cx̂k−l

�
(78b)

wi
k = Hd

i x̂k−d +
l=d

∑
l=0

Kd
i,l

�
yk−d − Cx̂k−d

�
(78c)

This leads to a more general LMI using the general Lyapunov-Krasovskii functional :

Vk = εTk Pεk +
j=d

∑
j=1

i=j

∑
i=1

εTk−iQjεk−i

4.3 Numerical example
Now, we present a numerical example to show the performances of the proposed method. We
consider the modified chaotic system introduced in Cherrier et al. (2006), and described by :

ẋ = Gx + F(x(t), x(t− τ)) (79)

where

G =

⎡
⎣
−α α 0
1 −1 1
0 −β −γ

⎤
⎦ , F(x(t), x(t− τ)) =

⎡
⎣
−αδ tanh(x1(t))

0
� sin(σx1(t− τ))

⎤
⎦

Since the proposed method concerns discrete-time systems, then we consider the discrete-time
version of (79) obtained from the Euler discretization with sampling period T = 0.01. Hence,
we obtain a system under the form (1a) with the following parameters :

A = I3 + TG, Ad = 0R3×3 , B =

⎡
⎣
−αδT 0

0 0
0 �T

⎤
⎦

and

f (xk, xk−d) =
�

tanh(x1(k))
sin(σx1(k− d)

�
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that we can write under the form (35) with

H1 =
�
1 0 0

�
, Hd

1 =
�
0 0 0

�

H2 =
�
0 0 0

�
, Hd

2 =
�
σ 0 0

�

Assume that the first component of the state x is measured, i.e. : C =
�
1 0 0

�
.

The system exhibits a chaotic behavior for the following numerical values :

α = 9, β = 14, γ = 5, d = 2

δ = 5, � = 1000, σ = 100

as can be shown in the figure 1.
The bounds of the partial derivatives of f are
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Fig. 1. Phase plot of the system

a11 = 1, b11 = 1, ad21 = −1, bd21 = 1

According to the remark 4.1, we must solve the LMI (48) with

b̃d21 = bd21 − ad21 = 2, Ãd =

⎡
⎣

0 0 0
0 0 0
0 0 −T�σ

⎤
⎦

Hence, we obtain the following solutions :

L =

⎡
⎣

1.3394
4.9503
40.8525

⎤
⎦ , Ld =

⎡
⎣

0
0

−1000

⎤
⎦ , K1 = 0.9999, K2 = −0.0425, Kd

1 = −1.792× 10−13, Kd
2 = 100

The simulation results are shown in figure 2.
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Fig. 2. Estimation error behavior

5. Conclusion

This chapter investigates the problem of observer design for a class of Lipschitz nonlinear
time-delay systems in the discrete-time case. A new observer synthesis method is proposed,
which leads to a less restrictive synthesis condition. Indeed, the obtained synthesis condition,
expressed in term of LMI, contains more degree of freedom because of the general structure
of the proposed observer. In order to take into account the noise (if it exists) which affects
the considered system, a section is devoted to the study of H∞ robustness. A dilated LMI
condition is established particularly for systems with differentiable nonlinearities. Numerical
examples are given in order to show the effectiveness of the proposed results.

A. Schur Lemma

In this section, we recall the Schur lemma and how it is used in the proof of Theorem 2.1.
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5. Conclusion

This chapter investigates the problem of observer design for a class of Lipschitz nonlinear
time-delay systems in the discrete-time case. A new observer synthesis method is proposed,
which leads to a less restrictive synthesis condition. Indeed, the obtained synthesis condition,
expressed in term of LMI, contains more degree of freedom because of the general structure
of the proposed observer. In order to take into account the noise (if it exists) which affects
the considered system, a section is devoted to the study of H∞ robustness. A dilated LMI
condition is established particularly for systems with differentiable nonlinearities. Numerical
examples are given in order to show the effectiveness of the proposed results.

A. Schur Lemma

In this section, we recall the Schur lemma and how it is used in the proof of Theorem 2.1.
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Lemma A.1. Boyd et al. (1994) Let Q1, Q2 and Q3 be three matrices of appropriate dimensions such
that Q1 = QT

1 and Q3 = QT
3 . Then, the two following inequalities are equivalent :

�
Q1 Q2
QT

2 Q3

�
< 0, (80)

Q3 < 0 and Q1 −Q2Q
−1
3 QT

2 < 0. (81)

Now, we use the Lemma A.1 to demonstrate the equivalence between M1 + M2 < 0 and
M4 < 0.
We have

M1 + M2 =

⎡
⎣
−P+ Q 0 ÃTPB

(�) −Q ÃT
d PB

(�) (�) BTPB− αIq

⎤
⎦ +

⎡
⎣
ÃTPÃ ÃTPÃd 0
(�) ÃT

d PÃd 0
(�) (�) 0

⎤
⎦

+
1

αγ2
f

⎡
⎣

MT
15M15 + MT

16M16 MT
15M25 + MT

16M26 0
(�) MT

26M26 + MT
25M25 0

(�) (�) 0

⎤
⎦ .

(82)

By isolating the matrix
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P 0 0
0 αγ2

f Is1 0
0 0 αγ2

f Is2

⎤
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ÃT
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where
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⎤
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we have
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3 QT
2 . (84)

Since Q3 < 0, we deduce from the Lemma A.1 that

M1 + M2 < 0
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is equivalent to (80), which is equivalent to

M4 < 0

where M4 is defined in (13). This ends the proof of equivalence between M1 + M2 < 0 and
M4 < 0. The Lemma A.1 is used of the same manner in theorem 3.2.

B. Some Details on Robust H∞ Observer Design Problem

Hereafter, we show why the problem of robust H∞ observer design is reduced to find a
Lyapunov function Vk so that Wk < 0, where Wk is defined in (23). In other words, we show
that Wk < 0 implies that the inequalities (21) and (22) are satisfied.
If ω(k) = 0, we have Wk < 0 implies that ΔV < 0. Then, from the Lyapunov theory, we deduce
that the estimation error converges asymptotically towards zero, and then we have (21).
Now, if ω(k) �= 0; ε(k) = 0, k = −d, ..., 0, we obtain Wk < 0 implies that

N

∑
k=0

�ε(k)�2 <
λ2

2

N

∑
k=0

�ω(k)�2 +
λ2

2

N

∑
k=0

�ωd(k)�2 −
N

∑
k=0

(Vk+1 −Vk) (85)

Since without loss of generality, we have assumed that ω(k) = 0 for k = −d, ...,−1 and
ε(k) = 0, k = −d, ..., 0, we deduce that

N

∑
k=0

�ε(k)�2 <
λ2

2

N

∑
k=0

�ω(k)�2 +
λ2

2

N−d

∑
k=0

�ω(k)�2 −VN <
λ2

2

N

∑
k=0

�ω(k)�2 +
λ2

2

N−d

∑
k=0

�ω(k)�2. (86)

When N tends toward infinity, we obtain

∞

∑
k=0

�ε(k)�2 ≤ λ2

2

∞

∑
k=0

�ω(k)�2 +
λ2

2

∞−d

∑
k=0

�ω(k)�2 ≤ λ2

2

N

∑
k=0

�ω(k)�2 +
λ2

2

N−d

∑
k=0

�ω(k)�2. (87)

As
∞

∑
k=0

�ω(k)�2 =
∞−d

∑
k=0

�ω(k)�2 = �ω�2
�s2

then the final relation (22) is inferred.
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d PB

(�) (�) BTPB− αIq

⎤
⎦ +

⎡
⎣
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1. Introduction  
The integration of information from a combination of different types of observed 
instruments (sensors) are often used in the design of high-accuracy control systems. Typical 
applications that benefit from this use of multiple sensors include industrial tasks, military 
commands, mobile robot navigation, multi-target tracking, and aircraft navigation (see (hall, 
1992, Bar-Shalom, 1990, Bar-Shalom & Li, 1995, Zhu, 2002, Ren & Key, 1989) and references 
therein). One problem that arises from the use of multiple sensors is that if all local sensors 
observe the same target, the question then becomes how to effectively combine the 
corresponding local estimates. Several distributed fusion architectures have been discussed 
in (Alouani, 2005, Bar-Shalom & Campo, 1986, Bar-Shalom, 2006, Li et al., 2003, Berg & 
Durrant-Whyte, 1994, Hamshemipour et al., 1998) and algorithms for distributed estimation 
fusion have been developed in (Bar-Shalom & Campo, 1986, Chang et al., 1997, Chang et al, 
2002, Deng et al., 2005, Sun, 2004, Zhou et al., 2006, Zhu et al., 1999, Zhu et al., 2001, Roecker 
& McGillem, 1998, Shin et al, 2006). To this end, the Bar-Shalom and Campo fusion formula 
(Bar-Shalom & Campo, 1986) for two-sensor systems has been generalized for an arbitrary 
number of sensors in (Deng et al., 2005, Sun, 2004, Shin et al., 2007) The formula represents 
an optimal mean-square linear combination of the local estimates with matrix weights. The 
analogous formula for weighting an arbitrary number of local estimates using scalar weights 
has been proposed in (Shin et al., 2007, Sun & Deng, 2005, Lee & Shin 2007). 
However, because of lack of prior information, in general, the distributed filtering using the 
fusion formula is globally suboptimal compared with optimal centralized filtering (Chang et 
al., 1997). Nevertheless, in this case it has advantages of lower computational requirements, 
efficient communication costs, parallel implementation, and fault-tolerance (Chang et al., 
1997, Chang et al, 2002, Roecker & McGillem, 1998). Therefore, in spite of its limitations, the 
fusion formula has been widely used and is superior to the centralized filtering in real 
applications.  
The aforementioned papers have not focused on prediction problem, but most of them have 
considered only distributed filtering in multisensory continuous and discrete dynamic 
models. Direct generalization of the distributed fusion filtering algorithms to the prediction 
problem is impossible. The distributed prediction requires special algorithms one of which 
for discrete-time systems was presented in (Song et al. 2009). In this paper, we generalize the 
results of (Song et al. 2009) on mixed continuous-discrete systems. The continuous-discrete 
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approach allows system to avoid discretization by propagating the estimate and error 
covariance between observations in continuous time using an integration routine such as 
Runge-Kutta. This approach yields the optimal or suboptimal estimate continuously at all 
times, including times between the data arrival instants. One advantage of the continuous-
discrete filter over the alternative approach using system discretization is that in the former, 
it is not necessary for the sample times to be equally spaced. This means that the cases of 
irregular and intermittent measurements are easy to handle. In the absensce of data the 
optimal prediction is given by performing only the time update portion of the algorithm. 
Thus, the primary aim of this paper is to propose two distributed fusion predictors using 
fusion formula with matrix weights, and analysis their statistical properties and relationship 
between them. Then, through a comparison with an optimal centralized predictor, 
performance of the novel predictors is evaluated. 
This chapter is organized as follows. In Section 2, we present the statement of the 
continuous-discrete prediction problem in a multisensor environment and give its optimal 
solution. In Section 3, we propose two fusion predictors, derived by using the fusion 
formula and establish the equivalence between them. Unbiased property of the fusion 
predictors is also proved. The performance of the proposed predictors is studied on 
examples in Section 4. Finally, concluding remarks are presented in Section 5. 

2. Statement of problem – centralized predictor 
We consider a linear system described by the stochastic differential equation 

 t t t t tx F x G v , t 0 ,= + ≥�  (1) 

where n
tx ∈ℜ is the state, q

tv ∈ℜ is a zero-mean Gaussian white noise with covariance 
( ) ( )T

t s tE v v Q δ t-s= , and t ,n nF ×∈ℜ t ,n qG ×∈ℜ  and t .q qQ ×∈ℜ  
Suppose that overall discrete observations tk
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of N  observation subvectors (local sensors) 
k k

(1) (N)
t ty ,...,y , i.e., 

 
T T

k k k

(1) (N) T
t t tY =[y y ] ,…  (2) 

where 
k

(i)
ty , i=1, ,N…  are determined by the equations 

 

1
kk k k k

N
kk k k k

(1) (1) (1) (1) m
tt t t t

(N) (N) (N) (N) m
tt t t t

k+1 k 0 1 N

y =H x +w ,  y ,

                     

y =H x +w ,  y ,

k=1,2,...; t >t t =0 ; m=m + +m ,

∈ℜ

∈ℜ

≥

�

�

 (3) 

where i
k

(i) m
ty ∈ℜ  is the local sensor observation, i

k
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are zero-mean white Gaussian sequences, ( )k k
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t tw ~ 0,R , i=1,...,N� . The distribution of the 

initial state 0x  is Gaussian, ( )0 0 0x ~ x ,P� , and 0x , tv , and { }k
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mutually uncorrelated. 
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A problem associated with such systems is to find the distributed weighted fusion predictor 
t+Δx̂ , 0Δ ≥  of the state t+Δx  based on overall current sensor observations 

 { }k
1 k1

t
t t 1 ktY = Y ,...,Y , t <...<t t t , 0.≤ ≤ + Δ Δ ≥  (4) 

2.1 The optimal centralized predictor 
The optimal centralized predictor is constructed by analogy with the continuous-discrete 
Kalman filter (Lewis, 1986, Gelb, 1974). In this case the prediction estimate opt

t+Δx̂  and its error 
covariance opt

t+ΔP  are determined by the combining of time update and observation update, 
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where the initial conditions represent filtering estimate of the state 
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are defined in (1)-(3). Note that in the absence of observation 
ktY , the centralized predictor 

includes two time update equations (5) and (6a), and in case of presence at time kt=t  the 

initial conditions 
k

opt
tx̂  and 

k

opt
tP  for (5) computed by the observation update equations (6b). 

Many advanced systems now make use of a large number of sensors in practical 
applications ranging from aerospace and defence, robotics automation systems, to the 
monitoring and control of process generation plants. Recent developments in integrated 
sensor network systems have further motivated the search for decentralized signal 
processing algorithms. An important practical problem in the above systems is to find a 
fusion estimate to combine the information from various local estimates to produce a global 
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approach allows system to avoid discretization by propagating the estimate and error 
covariance between observations in continuous time using an integration routine such as 
Runge-Kutta. This approach yields the optimal or suboptimal estimate continuously at all 
times, including times between the data arrival instants. One advantage of the continuous-
discrete filter over the alternative approach using system discretization is that in the former, 
it is not necessary for the sample times to be equally spaced. This means that the cases of 
irregular and intermittent measurements are easy to handle. In the absensce of data the 
optimal prediction is given by performing only the time update portion of the algorithm. 
Thus, the primary aim of this paper is to propose two distributed fusion predictors using 
fusion formula with matrix weights, and analysis their statistical properties and relationship 
between them. Then, through a comparison with an optimal centralized predictor, 
performance of the novel predictors is evaluated. 
This chapter is organized as follows. In Section 2, we present the statement of the 
continuous-discrete prediction problem in a multisensor environment and give its optimal 
solution. In Section 3, we propose two fusion predictors, derived by using the fusion 
formula and establish the equivalence between them. Unbiased property of the fusion 
predictors is also proved. The performance of the proposed predictors is studied on 
examples in Section 4. Finally, concluding remarks are presented in Section 5. 

2. Statement of problem – centralized predictor 
We consider a linear system described by the stochastic differential equation 
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where i
k

(i) m
ty ∈ℜ  is the local sensor observation, i

k

(i) n m
tH ×∈ℜ , and { }i
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(i) m
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initial state 0x  is Gaussian, ( )0 0 0x ~ x ,P� , and 0x , tv , and { }k

(i)
tw , i 1,...,N=  are assumed 

mutually uncorrelated. 
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A problem associated with such systems is to find the distributed weighted fusion predictor 
t+Δx̂ , 0Δ ≥  of the state t+Δx  based on overall current sensor observations 
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(fusion) estimate. Moreover, there are several limitations for the centralized estimators in 
practical implementation, such as computational cost and capacity of data transmission. 
Also numerical errors of the centralized estimator design are drastically increased with 
dimension of the state n

tx ∈ℜ  and overall observations 
k

m
tY ∈ℜ . In these cases the 

centralized estimators may be impractical. In next Section, we propose two new fusion 
predictors for multisensor mixed continuous-discrete linear systems (1), (3). 

3. Two distributed fusion predictors 

The derivation of the fusion predictors is based on the assumption that the overall 
observation vector 

ktY combines the local subvectors (individual sensors) 
k k

(1) (N)
t ty ,...,y , which 

can be processed separately. According to (1) and (3), we have N  unconnected dynamic 
subsystems ( i 1,...,N= ) with the common state tx  and local sensor 

k

(i)
ty : 

 
kk k k

t t t t t 0
(i) (i) (i)

tt t t

k+1 k 0

x =F x +G v , t t ,
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k=1,2,...; t >t t 0 ,

≥

≥ =

  (7) 

where i is the index of subsystem. Then by the analogy with the centralized prediction 
equations (5), (6) the optimal local predictor (i)

t+Δx̂  based on the overall local observations 
{ }1 k

(i) (i)
kt ty ,...,y , t t t≤ ≤ + Δ  satisfies the following time update and observation update 

equations: 
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where the initial conditions 
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Thus from (8) we have N  local filtering (i) (i)
t s=tˆ ˆx =x  and prediction (i) (i)

t+Δ s=t+Δˆ ˆx x=  estimates, 
and corresponding error covariances (ii)

tP  and (ii)
t+ΔP  for i=1,...,N  and kt t≥ . Using these 

values we propose two fusion prediction algorithms. 
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3.1 The fusion of local predictors (FLP Algorithm) 
The fusion predictor FLP

t+Δx̂  of the state t+Δx  based on the overall sensors (2), (3) is 
constructed from the local predictors (i)

t+Δx̂ , i 1,...,N=  by using the fusion formula (Zhou et 
al., 2006, Shin et al., 2006): 

 
N N

(i) (i) (i)FLP
t+Δ nt+Δ t+Δ t+Δ

i=1 i=1
ˆx = a x ,  a =I ,∑ ∑  (10) 

where (1) (N)
t+Δ t+Δa , ,a…  are n n×  time-varying matrix weights determined from the mean-

square criterion, 
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J =E x - a x .
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The Theorems 1 and 2 completely define the fusion predictor FLP
t+Δx̂  and its overall error 

covariance FLP FLP FLP FLP FLP
t+Δ t+Δ t+Δ t+Δ t+Δ t+ΔˆP =cov(x ,x ) , x =x -x .  

Theorem 1: Let (1) (N)
t+Δ t+Δˆ ˆx , ,x…  are the local predictors of an unknown state t+Δx . Then  

a. The weights (1) (N)
t+Δ t+Δa , ,a…  satisfy the linear algebraic equations 
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t t tP x x i j+Δ +Δ +Δ= ≠  describes the time update and observation update 

equations: 
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c. The fusion error covariance FLP
t+ΔP  is given by  
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i,j=1
P = a P a .∑  (14) 

Theorem 2: The local predictors (1) (N)
t+Δ t+Δˆ ˆx , ,x…  and fusion predictor FLP

t+Δx̂  are unbiased, i.e., 

( ) ( )(i)
τ τˆE x =E x  and ( ) ( )FLP

t+Δ t+ΔˆE x =E x  for 0 τ t+Δ≤ ≤ . 

The proofs of Theorems 1 and 2 are given in Appendix. 
Thus the local predictors (8) and fusion equations (10)-(14) completely define the FLP 
algorithm. In particular case at N 2= , formulas (10)-(12) reduce to the Bar-Shalom and 
Campo formulas (Bar-Shalom & Campo, 1986): 
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(fusion) estimate. Moreover, there are several limitations for the centralized estimators in 
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(1) (1) (2) (2)FLP
t+Δ t+Δ t+Δ t+Δ t+Δ

-1(1) (22) (21) (11) (22) (12) (21)
t+Δ t+Δ t+Δ t+Δ t+Δ t+Δ t+Δ

-1(2) (11) (12) (11) (22) (12) (21)
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ˆ ˆ ˆx =a x +a x ,

a = P -P P +P -P -P ,
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⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

 (15) 

Further, in parallel with the FLP we offer the other algorithm for fusion prediction. 

3.2 The prediction of fusion filter (PFF Algorithm) 
This algorithm consists of two parts. The first part fuses the local filtering estimates 

k k

(1) (N)
t tˆ ˆx , ,x .…  Using the fusion formula, we obtain the fusion filtering (FF) estimate 
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t nt t t
i=1 i=1

ˆ ˆx = b x , b =I ,∑ ∑  (16) 

where the weights 
k k

(1) (N)
t tb , ,b…  do not depend on lead Δ . 

In the second part we predict the fusion filtering estimate 
k

FF
tx̂  using the time update 

prediction equations. Then the fusion predictor PFF
t+x̂ Δ  and its error covariance 

PFF PFF PFF PFF PFF
t+Δ t+Δ t+Δ t+Δ t+Δ t+ΔˆP =cov(x ,x ), x =x -x� � �  satisfy the following equations: 
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Next Theorem completely defines the PFF algorithm. 
Theorem 3: Let 

k k

(1) (N)
t tˆ ˆx , ,x…  are the local filtering estimates of an unknown state tx . Then  

a. The weights 
k k

(1) (N)
t tb , ,b…  satisfy the linear algebraic equations 
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k
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b. The local covariance 
k

(ii)
tP  and cross-covariance 

k

(ij)
tP  in (18) are determined by equations (9) and 

(13), respectively; 
c. The initial conditions 

k

FF
tx̂  and 

k

FF
tP  in (17) are determined by (16) and formula  
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N
(ij) (j)(i)FF

t t t t
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P = b P b ,∑  (19) 

respectively; 
d. The fusion predictor PFF

t+Δx̂  in (17) is unbiased, i.e., PFF
t+Δ t+ΔˆE(x )=E(x ) . 

The proof of Theorem 3 is given in Appendix. 

3.3 The relationship between FLP and PFF 
Here we establish the relationship between the prediction fusion estimates FLP

t+Δx̂  and PFF
t+Δx̂  

determined by (10) and (16), respectively. 
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Theorem 4: Let FLP
t+Δx̂  and PFF

t+Δx̂  be the fusion prediction estimates determined by (10) and (16), 
respectively, and the local error covariances (ij)

s kP , t s t+Δ , i,j 1,...,N≤ ≤ =  are nonsingular. Then  

 FLP PFF
t+Δ t+Δˆ ˆx =x for 0.Δ >  (20) 

The proof of Theorem 4 is given in Appendix. 
Remark 1 (Uniqueness solution): When the local prediction covariances (ij)

t+ΔP , i,j 1,...,N=  are 
nonsingular, the quadratic optimization problem (11) has a unique solution, and the wights 

(1) (N)
t+Δ t+Δa , ,a…  are defined by the expressions (11). The same result is true for the covariance 

k

(ij)
tP  and the weights 

k k

(1) (N)
t tb , ,b…  (Zhu et al., 1999, Zhu, 2002). 

Remark 2 (Computational complexity): According to Theorem 4, both the predictors FLP and 
PFF are equivalent; however, from a computational point of view they are different. To 
predict the state t+Δx  using FLP we need to compute the matrix weights (1) (N)

t+Δ t+Δa , ,a…  for 
each lead 0Δ > . This contrasts with PFF, wherein the weights 

k k

(1) (N)
t tb , ,b…  are computed 

only once, since they do not depend on the leads Δ . Therefore, FLP is deemed more 
complex than PFF, especially for large leads. 
Remark 3 (Real-time implementation): We may note that the local filter gains (i)

tL , the error 
cross-covariances (ij)

tP , (ij)
t+ΔP , and the weights (i)

t+Δa , 
k

(i)
tb  may be pre-computed, since they do 

not depend on the current observations 
k

(i)
ty , i 1,...,N= , but only on the noises statistics tQ  

and (i)
tR , and system matrices tF , tG , (i)

tH , which are part of the system model (1), (3). 
Thus, once the observation schedule has been settled, the real-time implementation of the 
fusion predictors FLP and PFF requires only the computation of the local estimates (i)

tx̂ , 
(i)
t+Δx̂ , i 1,...,N=  and final fusion predictors FLP

t+Δx̂  and PFF
t+Δx̂ . 

Remark 4 (Parallel implementation): The local estimates (i)
tx̂ , (i)

t+Δx̂ , i 1,...,N=  are separated 
for different sensors. Therefore, they can be implemented in parallel for various types of 
observations (i)

ty , i 1,...,N= . 

4. Examples 
4.1 The damper harmonic oscillator motion 
System model of the harmonic oscillator is considered in (Lewis, 1986). We have 

 *
t t t2

n

   0         1 0
x = x + v ,  0 t ,  

1-ω    -2α
t

⎡ ⎤ ⎡ ⎤
≤ ≤⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦
�  (21) 

where T
t 1,t 2,t=[x x ]x , and 1,tx  is position, 2,tx  is velocity, and tv  is zero-mean white 

Gaussian noise with intensity q , t s t-sE(v v )=qδ , 0 0 0x ~ (x ,P )� . Assume that the observation 
system contains N  sensors which are observing the position 1,tx . Then we have 

 
kk k k

kk k k

(1) (1) (1)
tt t t

(N) (N) (N) *
t 0 1 2t t t

y =H x +w ,

                

y =H x +w , 0=t <t <t <...<t ,

�  (22) 

where 
k

(j)
tH [1 0]= , and 

k

(j)
tw , 1,...,Nj =  are uncorrelated zero-mean white Gaussian noises 

with constant variances ( )r j , respectively. 
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(1) (1) (2) (2)FLP
t+Δ t+Δ t+Δ t+Δ t+Δ

-1(1) (22) (21) (11) (22) (12) (21)
t+Δ t+Δ t+Δ t+Δ t+Δ t+Δ t+Δ

-1(2) (11) (12) (11) (22) (12) (21)
t+Δ t+Δ t+Δ t+Δ t+Δ t+Δ t+Δ

ˆ ˆ ˆx =a x +a x ,

a = P -P P +P -P -P ,

a = P -P P +P -P -P .

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

 (15) 

Further, in parallel with the FLP we offer the other algorithm for fusion prediction. 

3.2 The prediction of fusion filter (PFF Algorithm) 
This algorithm consists of two parts. The first part fuses the local filtering estimates 

k k

(1) (N)
t tˆ ˆx , ,x .…  Using the fusion formula, we obtain the fusion filtering (FF) estimate 

 
k k k k

N N
(i) (i) (i)FF

t nt t t
i=1 i=1

ˆ ˆx = b x , b =I ,∑ ∑  (16) 

where the weights 
k k

(1) (N)
t tb , ,b…  do not depend on lead Δ . 

In the second part we predict the fusion filtering estimate 
k

FF
tx̂  using the time update 

prediction equations. Then the fusion predictor PFF
t+x̂ Δ  and its error covariance 

PFF PFF PFF PFF PFF
t+Δ t+Δ t+Δ t+Δ t+Δ t+ΔˆP =cov(x ,x ), x =x -x� � �  satisfy the following equations: 

 k k

k k

PFF PFF PFF FF
s s s k s=t t
PFF PFF PFF T PFF FF
s s s s s s s=t t

ˆ ˆ ˆ ˆx =F x , t s t+Δ , x =x ,

P =F P +P F +Q , P =P .

⎧ ≤ ≤⎪
⎨
⎪⎩

�

��
 (17) 

Next Theorem completely defines the PFF algorithm. 
Theorem 3: Let 

k k

(1) (N)
t tˆ ˆx , ,x…  are the local filtering estimates of an unknown state tx . Then  

a. The weights 
k k

(1) (N)
t tb , ,b…  satisfy the linear algebraic equations 

 
k k k

N N
(ij)(i) (iN) (i)

nt t t t
i=1 i=1

b P -P =0, b =I , j 1, ,N 1;
k
⎡ ⎤ = −⎣ ⎦∑ ∑ …  (18) 

b. The local covariance 
k

(ii)
tP  and cross-covariance 

k

(ij)
tP  in (18) are determined by equations (9) and 

(13), respectively; 
c. The initial conditions 

k

FF
tx̂  and 

k

FF
tP  in (17) are determined by (16) and formula  

 
T

k k k k

N
(ij) (j)(i)FF

t t t t
i,j=1

P = b P b ,∑  (19) 

respectively; 
d. The fusion predictor PFF

t+Δx̂  in (17) is unbiased, i.e., PFF
t+Δ t+ΔˆE(x )=E(x ) . 

The proof of Theorem 3 is given in Appendix. 

3.3 The relationship between FLP and PFF 
Here we establish the relationship between the prediction fusion estimates FLP

t+Δx̂  and PFF
t+Δx̂  

determined by (10) and (16), respectively. 
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Theorem 4: Let FLP
t+Δx̂  and PFF

t+Δx̂  be the fusion prediction estimates determined by (10) and (16), 
respectively, and the local error covariances (ij)

s kP , t s t+Δ , i,j 1,...,N≤ ≤ =  are nonsingular. Then  

 FLP PFF
t+Δ t+Δˆ ˆx =x for 0.Δ >  (20) 

The proof of Theorem 4 is given in Appendix. 
Remark 1 (Uniqueness solution): When the local prediction covariances (ij)

t+ΔP , i,j 1,...,N=  are 
nonsingular, the quadratic optimization problem (11) has a unique solution, and the wights 

(1) (N)
t+Δ t+Δa , ,a…  are defined by the expressions (11). The same result is true for the covariance 

k

(ij)
tP  and the weights 

k k

(1) (N)
t tb , ,b…  (Zhu et al., 1999, Zhu, 2002). 

Remark 2 (Computational complexity): According to Theorem 4, both the predictors FLP and 
PFF are equivalent; however, from a computational point of view they are different. To 
predict the state t+Δx  using FLP we need to compute the matrix weights (1) (N)

t+Δ t+Δa , ,a…  for 
each lead 0Δ > . This contrasts with PFF, wherein the weights 

k k

(1) (N)
t tb , ,b…  are computed 

only once, since they do not depend on the leads Δ . Therefore, FLP is deemed more 
complex than PFF, especially for large leads. 
Remark 3 (Real-time implementation): We may note that the local filter gains (i)

tL , the error 
cross-covariances (ij)

tP , (ij)
t+ΔP , and the weights (i)

t+Δa , 
k

(i)
tb  may be pre-computed, since they do 

not depend on the current observations 
k

(i)
ty , i 1,...,N= , but only on the noises statistics tQ  

and (i)
tR , and system matrices tF , tG , (i)

tH , which are part of the system model (1), (3). 
Thus, once the observation schedule has been settled, the real-time implementation of the 
fusion predictors FLP and PFF requires only the computation of the local estimates (i)

tx̂ , 
(i)
t+Δx̂ , i 1,...,N=  and final fusion predictors FLP

t+Δx̂  and PFF
t+Δx̂ . 

Remark 4 (Parallel implementation): The local estimates (i)
tx̂ , (i)

t+Δx̂ , i 1,...,N=  are separated 
for different sensors. Therefore, they can be implemented in parallel for various types of 
observations (i)

ty , i 1,...,N= . 

4. Examples 
4.1 The damper harmonic oscillator motion 
System model of the harmonic oscillator is considered in (Lewis, 1986). We have 
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t t t2
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   0         1 0
x = x + v ,  0 t ,  

1-ω    -2α
t

⎡ ⎤ ⎡ ⎤
≤ ≤⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦
�  (21) 

where T
t 1,t 2,t=[x x ]x , and 1,tx  is position, 2,tx  is velocity, and tv  is zero-mean white 

Gaussian noise with intensity q , t s t-sE(v v )=qδ , 0 0 0x ~ (x ,P )� . Assume that the observation 
system contains N  sensors which are observing the position 1,tx . Then we have 

 
kk k k

kk k k

(1) (1) (1)
tt t t

(N) (N) (N) *
t 0 1 2t t t

y =H x +w ,

                

y =H x +w , 0=t <t <t <...<t ,

�  (22) 

where 
k

(j)
tH [1 0]= , and 

k

(j)
tw , 1,...,Nj =  are uncorrelated zero-mean white Gaussian noises 

with constant variances ( )r j , respectively. 
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For model (21), (22), three predictors are applied: centralized predictor (CP) in (5), (6), FLP 
in (10) and PFF in (16), (17). The performance comparison of the fusion predictors for 
N 2,3=  was expressed in the terms of computation load (CPU time CPUT ) and MSEs, 

2
, i,t+Δ i,t+ΔˆP =E(x -x ) ,i t+Δ where CP FLP

i,t+Δ i,t+Δ i,t+Δˆ ˆ ˆx =x , x  or PFF
i,t+Δx̂ , i=1, 2.  The model parameters, 

noise statistics, initial conditions, and lead are taken to 

 [ ] [ ]
( )

(1) (2) (3)2 *
n

T
0 0

k k-1

ω =3, α=2.5, t =3, q=5, r =3.0, r =2.0, r =1.0,

x = 10.0 0.0 , P =diag 0.5 0.5 ,
Δ=0.1~0.5 sec , t -t =0.1.

 (23) 

Figs. 1 and 2 illustrate the MSEs for position 1(x ) , CP
1,t+ΔP , FLP

1,t+ΔP , PFF
1,t+ΔP , and analogously for 

velocity 2(x ) , CP
2,t+ΔP , FLP

2,t+ΔP , PFF
2,t+ΔP  at N 2,3=  and lead Δ =0.2. The analysis of results in 

Figs. 1 and 2 show that the fusion predictors FLP and PFF have the same accuracy, i.e., 
FLP PFF
i,t+Δ i,t+ΔP =P , and the MSEs of each predictor are reduced from N 2=  to N 3= . The usage of 

three sensors allows to increase the accuracy of fusion predictors compared with the optimal 
CP for two sensors, i.e., i,t+ΔPFLP (N=3) = PFF

i,t+ΔP (N=3) < CP
i,t+ΔP (N=2). Moreover the differences 

between optimal CP
i,t+ΔP  and fusion MSEs FLP

i,t+ΔP , PFF
i,t+ΔP  are small, especially for steady-state 

regime. The results of numerical experiments on an Intel® Core 2 Duo with 2.6GHz CPU 
and 3G RAM are reported. The CPU time for CP, FLP, and PFF are represented in Table 1. 
We find that although FLP

i,t+ΔP  and PFF
i,t+ΔP  are equal (see Theorem 4), the CPU time PFF

CPUT  for 
evaluation of the prediction PFF

i,t+Δx̂  is 4~5 times less than FLP
CPUT  for FLP

i,t+Δx̂  ( PFF
CPUT < FLP

CPUT ) and 
this difference tends to increase with increasing the dimension of the state n or the number 
of sensors N. This is due to the fact that the PFF’s weights 

k

(i)
tb  do not depend on the leads 

Δ  in contrast to the FLP’s weights (i)
t+Δa . Also, since CPU time difference between CP and 

PFF is negligible, PFF algorithm prefer to implement in real application rather than CP, 
especially for distributed system or sensor network. 
 

 
Fig. 1. Position MSE comparison of three predictors at N 2,3= and lead Δ =0.2. 

Distributed Fusion Prediction for Mixed Continuous-Discrete Linear Systems   

 

47 

 
Fig. 2. Velocity MSE comparison of three predictors at N 2,3= and lead Δ =0.2. 

 
CPU time (sec) Number 

of sensors Lead Δ (sec) CP
CPUT  FLP

CPUT  PFF
CPUT  

0.1 0.172 0.826 0.185 
0.2 0.298 1.475 0.310 
0.3 0.384 1.863 0.405 
0.4 0.500 2.552 0.550 

N = 2 

0.5 0.656 3.137 0.691 
0.1 0.187 1.024 0.200 
0.2 0.305 1.743 0.340 
0.3 0.452 2.454 0.471 
0.4 0.602 3.306 0.621 

N = 3 

0.5 0.754 4.203 0.776 

Table 1. Comparison of CPU time at N 2,3=  and 0.1 ~ 0.5Δ =  

4.2 The water tank mixing system 
Consider the water tank system which accepts two types of different temperature of the 
water and throw off the mixed water simultaneously (Jannerup & Hendricks, 2006). This 
system is described by  

 
0.0139 0 0 1

0 0.0277 0 1 ,   0,
0 0.1667 0.1667 1

t t tx x v t
−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + ≥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (24) 

where 1, 2, 3,[ ]Tt t t tx x x x=  and 1,tx  is water level, 2,tx  is water temperature, 3,tx  is sensor 
temperature, and tv  is a white Gaussian noise with intensity ,q ( ) ,t s t sE v v qδ −=  

0 0 0~ ( , )x x P . The measurement model contains two sensors (N = 2) which sense water 
level. Then we have  
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For model (21), (22), three predictors are applied: centralized predictor (CP) in (5), (6), FLP 
in (10) and PFF in (16), (17). The performance comparison of the fusion predictors for 
N 2,3=  was expressed in the terms of computation load (CPU time CPUT ) and MSEs, 

2
, i,t+Δ i,t+ΔˆP =E(x -x ) ,i t+Δ where CP FLP

i,t+Δ i,t+Δ i,t+Δˆ ˆ ˆx =x , x  or PFF
i,t+Δx̂ , i=1, 2.  The model parameters, 

noise statistics, initial conditions, and lead are taken to 
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Figs. 1 and 2 illustrate the MSEs for position 1(x ) , CP
1,t+ΔP , FLP

1,t+ΔP , PFF
1,t+ΔP , and analogously for 

velocity 2(x ) , CP
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2,t+ΔP  at N 2,3=  and lead Δ =0.2. The analysis of results in 

Figs. 1 and 2 show that the fusion predictors FLP and PFF have the same accuracy, i.e., 
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i,t+Δ i,t+ΔP =P , and the MSEs of each predictor are reduced from N 2=  to N 3= . The usage of 
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i,t+ΔP (N=2). Moreover the differences 

between optimal CP
i,t+ΔP  and fusion MSEs FLP
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i,t+ΔP  are small, especially for steady-state 

regime. The results of numerical experiments on an Intel® Core 2 Duo with 2.6GHz CPU 
and 3G RAM are reported. The CPU time for CP, FLP, and PFF are represented in Table 1. 
We find that although FLP

i,t+ΔP  and PFF
i,t+ΔP  are equal (see Theorem 4), the CPU time PFF

CPUT  for 
evaluation of the prediction PFF

i,t+Δx̂  is 4~5 times less than FLP
CPUT  for FLP

i,t+Δx̂  ( PFF
CPUT < FLP

CPUT ) and 
this difference tends to increase with increasing the dimension of the state n or the number 
of sensors N. This is due to the fact that the PFF’s weights 

k

(i)
tb  do not depend on the leads 

Δ  in contrast to the FLP’s weights (i)
t+Δa . Also, since CPU time difference between CP and 

PFF is negligible, PFF algorithm prefer to implement in real application rather than CP, 
especially for distributed system or sensor network. 
 

 
Fig. 1. Position MSE comparison of three predictors at N 2,3= and lead Δ =0.2. 
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Fig. 2. Velocity MSE comparison of three predictors at N 2,3= and lead Δ =0.2. 

 
CPU time (sec) Number 

of sensors Lead Δ (sec) CP
CPUT  FLP

CPUT  PFF
CPUT  

0.1 0.172 0.826 0.185 
0.2 0.298 1.475 0.310 
0.3 0.384 1.863 0.405 
0.4 0.500 2.552 0.550 
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0.3 0.452 2.454 0.471 
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N = 3 

0.5 0.754 4.203 0.776 

Table 1. Comparison of CPU time at N 2,3=  and 0.1 ~ 0.5Δ =  

4.2 The water tank mixing system 
Consider the water tank system which accepts two types of different temperature of the 
water and throw off the mixed water simultaneously (Jannerup & Hendricks, 2006). This 
system is described by  

 
0.0139 0 0 1

0 0.0277 0 1 ,   0,
0 0.1667 0.1667 1

t t tx x v t
−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + ≥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
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where 1, 2, 3,[ ]Tt t t tx x x x=  and 1,tx  is water level, 2,tx  is water temperature, 3,tx  is sensor 
temperature, and tv  is a white Gaussian noise with intensity ,q ( ) ,t s t sE v v qδ −=  

0 0 0~ ( , )x x P . The measurement model contains two sensors (N = 2) which sense water 
level. Then we have  
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 [ ]( ) ( ) *
0 1 21 0 0 , 0=t <t <t <...<t ,   i=1,2, 

kk k

i i
tt ty x w= +  (25) 

where (1)
ktw  and (2)

ktw  are uncorrelated white Gaussian sequences with zero-mean and 
constant intensities (1)r  and (2)r , respectively. 
 

 
Fig. 3. CP, FLP and PFF MSEs for water level at lead ∆ = 0.2s 
 

 
Fig. 4. Computational time of water tank mixing system using 3 predictors at leads  
∆ = 0.05, 0.1,…,0.5s. 

The parameters are subjected to 1,q =  (1) 2,r =  (2) 1,r =  * 3,t =  0 [1 1 0] ,Tx =  
0 [0.7 0.7 0.1]P diag= , k k-1t -t =0.1 , 0.05 ~ 0.5Δ = . Fig. 3 illustrates the MSEs of the water 

level 1,
CP

tP +Δ , 1,
FLP

tP +Δ  and 1,
PFF

tP +Δ  at lead Δ =0.2. As we can see in Fig. 3 the CP is better than the 
fusion predictors and the fusion MSEs for water level 1( )x  of FLP and PFF are equal, i.e., 

1,
CP

tP +Δ < 1,
FLP

tP +Δ = 1,
PFF

tP +Δ . The CPU times for CP, FLP and PFF are represented in Fig. 4, where it 
is shown that FLP requires considerably more CPU time than PFF, but CPU time of PFF is 
similar to CP. 
Thus, from Examples 4.1 and 4.2 we can confirm that PFF is preferable to FLP in terms of 
computation efficiency. 
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5. Conclusions 

In this chapter, two fusion predictors (FLP and PFF) for mixed continuous-discrete linear 
systems in a multisensor environment are proposed. Both of these predictors are derived by 
using the optimal local Kalman estimators (filters and predictors) and fusion formula. The 
fusion predictors represent the optimal linear combination of an arbitrary number of local 
Kalman estimators and each is fused by the MSE criterion. Equivalence between the two 
fusion predictors is established. However, the PFF algorithm is found to more significantly 
reduce the computational complexity, due to the fact that the PFF’s weights 

k

(i)
tb  do not 

depend on the leads 0Δ >  in contrast to the FLP’s weights (i)
t+Δa . 

Appendix 
Proof of Theorem 1 
(a), (c) Equation (12) and formula (14) immediately follow as a result of application of the 
general fusion formula [20] to the optimization problem (10), (11). 
(b) In the absence of observations differential equation for the local prediction error 

(i) (i)
τ τ τˆx x -x=  takes the form  

 (i) (i) (i)
τ τ τ τ τ τ τˆx =x -x =F x +G v .  (A.1) 

Then the prediction cross-covariance ( )T(ij) (j)(i)
τ τ τP =E x x  associated with the (i)

τx  and (j)
τx  

satisfies the time update Lyapunov equation (see the first and third equations in (13)). At 
kt=t  the local error 

k

(i)
tx  can be written as 

( )- - - - -

k k kk k k k k k k k k k k k k k k k k k

(i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i)
t t t nt t t t t t t t t t t t t t t t t tˆ ˆ ˆ ˆx =x -x =x -x -L y -H x =x -L H x +w -H x I -L H x -L w .⎡ ⎤ ⎡ ⎤ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (A.2) 

Given that random vectors 
k k

(i) (i)
t tx , w  and 

k

(j)
tw  are mutually uncorrelated at i j≠ , we obtain 

observation update equation (13) for ( )T

k k k

(ij) (j)(i)
t t tP =E x x . 

This completes the proof of Theorem 1. 
Proof of Theorem 2 
It is well known that the local Kalman filtering estimates (i)

τx̂  are unbiased, i.e., (i)
τ τˆE(x )=E(x )  

or ( ) ( )(i) (i)
τ τ τˆE x =E x -x =0  at k0 τ t≤ ≤ . With this result we can prove unbiased property at 

kt τ t+Δ< ≤ . Using (8) we obtain 

 
k k

(i) (i)(i) (i) (i)
τ τ τ τ τ τ τ kτ=t tˆx =x -x =F x +G v , x =x , t τ t+Δ ,≤ ≤  (A.3) 

or 

 ( ) ( ) ( ) ( )k k

(i) (i)(i) (i)d
τ τ τ kτ=t tdτ E x =F E x , E x =E x =0 , t τ t+Δ .≤ ≤  (A.4) 

Differential equation (A.4) is homogeneous with zero initial condition therefore it has zero 
solution ( ) ( ) ( )(i) (i)

τ τ τ kˆE x 0 or E x =E x , t τ t+Δ .≡ ≤ ≤  

Since the local predictors (i)
t+Δx̂ , i 1,...,N=  are unbiased, then we have  

 ( ) ( ) ( ) ( )
N N

(i) (i) (i)FLP
t+Δ t+Δ t+Δt+Δ t+Δ t+Δ

i=1 i=1
ˆ ˆE x = a E x = a E x =E x .

⎡ ⎤
⎢ ⎥
⎣ ⎦

∑ ∑  (A.5) 
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 [ ]( ) ( ) *
0 1 21 0 0 , 0=t <t <t <...<t ,   i=1,2, 

kk k

i i
tt ty x w= +  (25) 

where (1)
ktw  and (2)

ktw  are uncorrelated white Gaussian sequences with zero-mean and 
constant intensities (1)r  and (2)r , respectively. 
 

 
Fig. 3. CP, FLP and PFF MSEs for water level at lead ∆ = 0.2s 
 

 
Fig. 4. Computational time of water tank mixing system using 3 predictors at leads  
∆ = 0.05, 0.1,…,0.5s. 

The parameters are subjected to 1,q =  (1) 2,r =  (2) 1,r =  * 3,t =  0 [1 1 0] ,Tx =  
0 [0.7 0.7 0.1]P diag= , k k-1t -t =0.1 , 0.05 ~ 0.5Δ = . Fig. 3 illustrates the MSEs of the water 

level 1,
CP

tP +Δ , 1,
FLP

tP +Δ  and 1,
PFF

tP +Δ  at lead Δ =0.2. As we can see in Fig. 3 the CP is better than the 
fusion predictors and the fusion MSEs for water level 1( )x  of FLP and PFF are equal, i.e., 

1,
CP

tP +Δ < 1,
FLP

tP +Δ = 1,
PFF

tP +Δ . The CPU times for CP, FLP and PFF are represented in Fig. 4, where it 
is shown that FLP requires considerably more CPU time than PFF, but CPU time of PFF is 
similar to CP. 
Thus, from Examples 4.1 and 4.2 we can confirm that PFF is preferable to FLP in terms of 
computation efficiency. 
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5. Conclusions 

In this chapter, two fusion predictors (FLP and PFF) for mixed continuous-discrete linear 
systems in a multisensor environment are proposed. Both of these predictors are derived by 
using the optimal local Kalman estimators (filters and predictors) and fusion formula. The 
fusion predictors represent the optimal linear combination of an arbitrary number of local 
Kalman estimators and each is fused by the MSE criterion. Equivalence between the two 
fusion predictors is established. However, the PFF algorithm is found to more significantly 
reduce the computational complexity, due to the fact that the PFF’s weights 

k

(i)
tb  do not 

depend on the leads 0Δ >  in contrast to the FLP’s weights (i)
t+Δa . 

Appendix 
Proof of Theorem 1 
(a), (c) Equation (12) and formula (14) immediately follow as a result of application of the 
general fusion formula [20] to the optimization problem (10), (11). 
(b) In the absence of observations differential equation for the local prediction error 

(i) (i)
τ τ τˆx x -x=  takes the form  

 (i) (i) (i)
τ τ τ τ τ τ τˆx =x -x =F x +G v .  (A.1) 

Then the prediction cross-covariance ( )T(ij) (j)(i)
τ τ τP =E x x  associated with the (i)

τx  and (j)
τx  

satisfies the time update Lyapunov equation (see the first and third equations in (13)). At 
kt=t  the local error 

k

(i)
tx  can be written as 

( )- - - - -

k k kk k k k k k k k k k k k k k k k k k

(i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i)
t t t nt t t t t t t t t t t t t t t t t tˆ ˆ ˆ ˆx =x -x =x -x -L y -H x =x -L H x +w -H x I -L H x -L w .⎡ ⎤ ⎡ ⎤ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (A.2) 

Given that random vectors 
k k

(i) (i)
t tx , w  and 

k

(j)
tw  are mutually uncorrelated at i j≠ , we obtain 

observation update equation (13) for ( )T

k k k

(ij) (j)(i)
t t tP =E x x . 

This completes the proof of Theorem 1. 
Proof of Theorem 2 
It is well known that the local Kalman filtering estimates (i)

τx̂  are unbiased, i.e., (i)
τ τˆE(x )=E(x )  

or ( ) ( )(i) (i)
τ τ τˆE x =E x -x =0  at k0 τ t≤ ≤ . With this result we can prove unbiased property at 

kt τ t+Δ< ≤ . Using (8) we obtain 

 
k k

(i) (i)(i) (i) (i)
τ τ τ τ τ τ τ kτ=t tˆx =x -x =F x +G v , x =x , t τ t+Δ ,≤ ≤  (A.3) 

or 

 ( ) ( ) ( ) ( )k k

(i) (i)(i) (i)d
τ τ τ kτ=t tdτ E x =F E x , E x =E x =0 , t τ t+Δ .≤ ≤  (A.4) 

Differential equation (A.4) is homogeneous with zero initial condition therefore it has zero 
solution ( ) ( ) ( )(i) (i)

τ τ τ kˆE x 0 or E x =E x , t τ t+Δ .≡ ≤ ≤  

Since the local predictors (i)
t+Δx̂ , i 1,...,N=  are unbiased, then we have  

 ( ) ( ) ( ) ( )
N N

(i) (i) (i)FLP
t+Δ t+Δ t+Δt+Δ t+Δ t+Δ

i=1 i=1
ˆ ˆE x = a E x = a E x =E x .

⎡ ⎤
⎢ ⎥
⎣ ⎦

∑ ∑  (A.5) 
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This completes the proof of Theorem 2. 
Proof of Theorem 3 
a., c. Equations (18) and (19) immediately follow from the general fusion formula for the 
filtering problem (Shin et al., 2006) 
b. Derivation of observation update equation (13) is given in Theorem 1.  
d. Unbiased property of the fusion estimate PFF

t+Δx̂  is proved by using the same method as in 
Theorem 2. 
This completes the proof of Theorem 3. 
Proof of Theorem 4 
By integrating (8) and (17), we get 

 ( )
kk

(i) (i) PFF FF
k t+Δ k tt+Δ tˆ ˆ ˆ ˆx =Φ t+Δ,t x , i 1,...,N , x =Φ(t+Δ,t )x ,=  (A.6) 

where Φ(t,s)  is the transition matrix of (8) or (17). From (10) and (16), we obtain 

 
k k k

k k k k k

N N N
(i) (i) (i) (i) (i) (i)FLP

t+Δ kt+Δ t+Δ t+Δ t t,t ,Δ t
i=1 i=1 i=1

N N
(i) (i) (i) (i)PFF FF

t+Δ k t k t t t,t ,Δ t
i=1 i=1

ˆ ˆ ˆ ˆx = a x = a Φ(t+Δ,t )x = A x ,

ˆ ˆ ˆ ˆx =Φ(t+Δ,t )x = Φ(t+Δ,t )b x = B x ,

∑ ∑ ∑

∑ ∑
 (A.7) 

where the new weights take the form:  

 ( ) ( )
k k k

(i) (i) (i) (i)
k kt+Δt,t ,Δ t,t ,Δ tA =a Φ t+Δ,t , B =Φ t+Δ,t b .  (A.8) 

Next using (12) and (18) we will derive equations for the new weights (A.8). Multiplying the 
first (N-1) homogeneous equations (18) on the left hand side and right hand side by the 
nonsingular matrices Φ(t+Δ,tk) and Φ(t+Δ,tk)T, respectively, and multiplying the last non-
homogeneous equation (18) by Φ(t+Δ,tk) we obtain  

 
( ) ( )

( )

k k k

k

N T(ij)(i) (iN)
k kt t t

i=1
N

(i)
k kt

i=1

Φ t+Δ,t b P -P t+Δ,t =0, j=1,...,N-1;

Φ t+Δ,t b =Φ(t+Δ,t ).

⎡ ⎤Φ⎣ ⎦∑

∑
 (A.9) 

Using notation for the difference (ijN) (ij) (iN)
s s sδP =P -P  we obtain equations for 

k

(i)
t,t ,ΔB , i 1,...,N=  such that 

 ( )
k k k

N NT(ijN)(i) (i)
k kt,t ,Δ t t,t ,Δ

i=1 i=1
B δP t+Δ,t =0, j=1,...,N-1; B =Φ(t+Δ,t ).Φ∑ ∑  (A.10) 

Analogously after simple manipulations equation (12) takes the form  

 
( ) ( ) ( )

k

k

N N1 1(ij) (ijN)(i) (iN) (i)
k k kt+Δ t+Δ t+Δ t+Δt,t ,Δ

i=1 i=1
N N

(i) (i)
k kt+Δ t,t ,Δ

i=1 i=1

a Φ t+Δ,t Φ t+Δ,t P -P = A Φ t+Δ,t δP =0,

a Φ(t+Δ,t )= A =Φ(t+Δ,t ).

− −⎡ ⎤
⎣ ⎦∑ ∑

∑ ∑
 (A.11) 
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or  

 ( )
k k

N N1 (ijN)(i) (i)
k kt+Δt,t ,Δ t,t ,Δ

i=1 i=1
A Φ t+Δ,t δP =0, j 1,...,N-1; A =Φ(t+Δ,t ).− =∑ ∑  (A.12) 

As we can see from (A.10) and (A.12) if the equality  

 ( ) ( )
k

T -1(ijN) (ijN)
k k t+ΔtδP Φ t+Δ,t =Φ t+Δ,t δP  (A.13) 

will be hold then the new weights 
k

(i)
t,t ,ΔA  and 

k

(i)
t,t ,ΔB  satisfy the identical equations. To 

show that let consider differential equation for the difference (ijN) (ij) (iN)
s s sδP =P -P . Using (13) 

we obtain the Lyapunov homogeneous matrix differential equation 

 ( ) ( )(ijN) (ij) (ij) (ij) (ijN) (ijN)(iN) (iN) (iN) T T
s s s s s s s s s s s s s kδP =P -P =F P -P + P -P F =F δP +δP F , t s t+Δ,≤ ≤  (A.14) 

which has the solution 

 ( ) ( )
k

T(ijN) (ijN)
k kt+Δ tδP =Φ t+Δ,t δP Φ t+Δ,t .  (A.15) 

By the nonsingular property of the transition matrix k(t+Δ,t )Φ  the equality (A.13) holds, 
then 

k k

(i) (i)
t,t ,Δ t,t ,ΔA B= , and finally using (A.7) we get 

 
k k k k

N N
(i) (i) (i) (i)FLP PFF

t+Δ t+Δt,t ,Δ t t,t ,Δ t
i=1 i=1

ˆ ˆ ˆ ˆx = A x B x x .= =∑ ∑  (A.16) 

This completes the proof of Theorem 4. 
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t+Δx̂  is proved by using the same method as in 
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This completes the proof of Theorem 3. 
Proof of Theorem 4 
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1. Introduction

We consider discrete-time linear stochastic systems with unknown inputs (or disturbances)
and propose recursive algorithms for estimating states of these systems. If mathematical
models derived by engineers are very accurate representations of real systems, we do not
have to consider systems with unknown inputs. However, in practice, the models derived by
engineers often contain modelling errors which greatly increase state estimation errors as if
the models have unknown disturbances.
The most frequently discussed problem on state estimation is the optimal filtering problem
which investigates the optimal estimate of state xt at time t or xt+1 at time t+ 1 with minimum
variance based on the observation Yt of the outputs {y0, y1, · · · , yt}, i.e., Yt = σ{ys, s =
0, 1, · · · , t} ( the smallest σ-field generated by {y0, y1, · · · , yt} (see e.g., Katayama (2000),
Chapter 4)). It is well known that the standard Kalman filter is the optimal linear filter in
the sense that it minimizes the mean-square error in an appropriate class of linear filters (see
e.g., Kailath (1974), Kailath (1976), Kalman (1960), Kalman (1963) and Katayama (2000)). But
we note that the Kalman filter can work well only if we have accurate mathematical modelling
of the monitored systems.
In order to develop reliable filtering algorithms which are robust with respect to unknown
disturbances and modelling errors, many research papers have been published based on the
disturbance decoupling principle. Pioneering works were done by Darouach et al. (Darouach;
Zasadzinski; Bassang & Nowakowski (1995) and Darouach; Zasadzinski & Keller (1992)),
Chang and Hsu (Chang & Hsu (1993)) and Hou and Müller (Hou & Müller (1993)). They
utilized some transformations to make the original systems with unknown inputs into some
singular systems without unknown inputs. The most important preceding study related to
this paper was done by Chen and Patton (Chen & Patton (1996)). They proposed the simple
and useful optimal filtering algorithm, ODDO (Optimal Disturbance Decoupling Observer),
and showed its excellent simulation results. See also the papers such as Caliskan; Mukai; Katz
& Tanikawa (2003), Hou & Müller (1994), Hou & R. J. Patton (1998) and Sawada & Tanikawa
(2002) and the book Chen & Patton (1999). Their algorithm recently has been modified by the
author in Tanikawa (2006) (see Tanikawa & Sawada (2003) also).
We here consider smoothing problems which allow us time-lags for computing estimates of
the states. Namely, we try to find the optimal estimate x̂t−L/t of the state xt−L based on the
observation Yt with L > 0. We often classify smoothing problems into the following three
types. For the first problem, the fixed-point smoothing, we investigate the optimal estimate
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1. Introduction

We consider discrete-time linear stochastic systems with unknown inputs (or disturbances)
and propose recursive algorithms for estimating states of these systems. If mathematical
models derived by engineers are very accurate representations of real systems, we do not
have to consider systems with unknown inputs. However, in practice, the models derived by
engineers often contain modelling errors which greatly increase state estimation errors as if
the models have unknown disturbances.
The most frequently discussed problem on state estimation is the optimal filtering problem
which investigates the optimal estimate of state xt at time t or xt+1 at time t+ 1 with minimum
variance based on the observation Yt of the outputs {y0, y1, · · · , yt}, i.e., Yt = σ{ys, s =
0, 1, · · · , t} ( the smallest σ-field generated by {y0, y1, · · · , yt} (see e.g., Katayama (2000),
Chapter 4)). It is well known that the standard Kalman filter is the optimal linear filter in
the sense that it minimizes the mean-square error in an appropriate class of linear filters (see
e.g., Kailath (1974), Kailath (1976), Kalman (1960), Kalman (1963) and Katayama (2000)). But
we note that the Kalman filter can work well only if we have accurate mathematical modelling
of the monitored systems.
In order to develop reliable filtering algorithms which are robust with respect to unknown
disturbances and modelling errors, many research papers have been published based on the
disturbance decoupling principle. Pioneering works were done by Darouach et al. (Darouach;
Zasadzinski; Bassang & Nowakowski (1995) and Darouach; Zasadzinski & Keller (1992)),
Chang and Hsu (Chang & Hsu (1993)) and Hou and Müller (Hou & Müller (1993)). They
utilized some transformations to make the original systems with unknown inputs into some
singular systems without unknown inputs. The most important preceding study related to
this paper was done by Chen and Patton (Chen & Patton (1996)). They proposed the simple
and useful optimal filtering algorithm, ODDO (Optimal Disturbance Decoupling Observer),
and showed its excellent simulation results. See also the papers such as Caliskan; Mukai; Katz
& Tanikawa (2003), Hou & Müller (1994), Hou & R. J. Patton (1998) and Sawada & Tanikawa
(2002) and the book Chen & Patton (1999). Their algorithm recently has been modified by the
author in Tanikawa (2006) (see Tanikawa & Sawada (2003) also).
We here consider smoothing problems which allow us time-lags for computing estimates of
the states. Namely, we try to find the optimal estimate x̂t−L/t of the state xt−L based on the
observation Yt with L > 0. We often classify smoothing problems into the following three
types. For the first problem, the fixed-point smoothing, we investigate the optimal estimate
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x̂k/t of the state xk for a fixed k based on the observations {Yt, t = k+ 1, k+ 2, · · · }. Algorithms
for computing x̂k/t, t = k + 1, k + 2, · · · , recursively are called fixed-point smoothers. For
the second problem, the fixed-interval smoothing, we investigate the optimal estimate x̂t/N

of the state xt at all times t = 0, 1, · · · , N based on the observation YN of all the outputs
{y0, y1, · · · , yN}. Fixed-interval smoothers are algorithms for computing x̂t/N , t = 0, 1, · · · , N
recursively. The third problem, the fixed-lag smoothing, is to investigate the optimal estimate
x̂t−L/t of the state xt−L based on the observation Yt for a given L ≥ 1. Fixed-lag smoothers
are algorithms for computing x̂t−L/t, t = L + 1, L + 2, · · · , recursively. See the references such
as Anderson & Moore (1979), Bryson & Ho (1969), Kailath (1975) and Meditch (1973) for early
research works on smoothers. More recent papers have been published based on different
approaches such as stochastic realization theory (e.g., Badawi; Lindquist & Pavon (1979) and
Faurre; Clerget & Germain (1979)), the complementary models (e.g., Ackner & Kailath (1989a),
Ackner & Kailath (1989b), Bello; Willsky & Levy (1989), Bello; Willsky; Levy & Castanon (1986)
Desai; Weinert & Yasypchuk (1983) and Weinert & Desai (1981)) and others. Nice surveys can
be found in Kailath; Sayed & Hassibi (2000) and Katayama (2000).
When stochastic systems contain unknown inputs explicitly, Tanikawa (Tanikawa (2006))
obtained a fixed-point smoother for the first problem. The second and the third problems
were discussed in Tanikawa (2008). In this chapter, all three problems are discussed
in a comrehensive and self-contained manner as much as possible. Namely, after some
preliminary results in Section 2, we derive the fixed-point smoothing algorithm given in
Tanikawa (2006) in Section 3 for the system with unknown inputs explicitly by applying the
optimal filter with disturbance decoupling property obtained in Tanikawa & Sawada (2003).
In Section 4, we construct the fixed-interval smoother given in Tanikawa (2008) from the
fixed-point smoother obtained in Section 3. In Section 5, we construct the fixed-lag smoother
given in Tanikawa (2008) from the optimal filter in Tanikawa & Sawada (2003).
Finally, the new feature and advantages of the obtained results are summarized here. To the
best of our knowledge, no attempt has been made to investigate optimal fixed-interval and
fixed-lag smoothers for systems with unknown inputs explicitly (see the stochastic system
given by (1)-(2)) before Tanikawa (2006) and Tanikawa (2008). Our smoothing algorithms have
similar recursive forms to the standard optimal filter (i.e., the Kalman filter) and smoothers.
Moreover, our algorithms reduce to those known smoothers derived from the Kalman filter
(see e.g., Katayama (2000)) when the unknown inputs disappear. Thus, our algorithms are
consistent with the known smoothing algorithms for systems without unknown inputs.

2. Preliminaries

Consider the following discrete-time linear stochastic system for t = 0, 1, 2, · · · :

xt+1 = At xt + Bt ut + Et dt + ζt, (1)

yt = Ct xt + ηt, (2)

where

xt ∈ Rn the state vector,

yt ∈ Rm the output vector,
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ut ∈ Rr the known input vector,

dt ∈ Rq the unknown input vector.

Suppose that ζt and ηt are independent zero mean white noise sequences with covariance
matrices Qt and Rt. Let At, Bt , Ct and Et be known matrices with appropriate dimensions.
In Tanikawa & Sawada (2003), we considered the optimal estimate x̂t+1/t+1 of the state xt+1

which was proposed by Chen and Patton (Chen & Patton (1996) and Chen & Patton (1999))
with the following structure:

zt+1 = Ft+1 zt + Tt+1 Bt ut + Kt+1 yt, (3)

x̂t+1/t+1 = zt+1 + Ht+1 yt+1, (4)

for t = 0, 1, 2, · · · . Here, x̂0/0 is chosen to be z0 for a fixed z0. Denote the state estimation error
and its covariance matrix respectively by et and Pt. Namely, we use the notations et = xt − x̂t/t

and Pt = E{et et
T} for t = 0, 1, 2, · · · . Here, E denotes expectation and T denotes transposition

of a matrix. We assume in this paper that random variables e0, {ηt}, {ζt} are independent. As
in Chen & Patton (1996), Chen & Patton (1999) and Tanikawa & Sawada (2003), we consider
state estimate (3)-(4) with the matrices Ft+1, Tt+1, Ht+1 and Kt+1 of the forms:

Kt+1 = K1
t+1 + K2

t+1, (5)

Et = Ht+1 Ct+1 Et, (6)

Tt+1 = I − Ht+1 Ct+1, (7)

Ft+1 = At − Ht+1 Ct+1 At − K1
t+1 Ct, (8)

K2
t+1 = Ft+1 Ht. (9)

The next lemma on equality (6) was obtained and used by Chen and Patton (Chen & Patton
(1996) and Chen & Patton (1999)). Before stating it, we assume that Ek is a full column rank
matrix. Notice that this assumption is not an essential restriction.

Lemma 2.1. Equality (6) holds if and only if

rank (Ct+1 Et) = rank (Et) . (10)

When this condition holds true, matrix Ht+1 which satisfies (6) must have the form

Ht+1 = Et

{
(Ct+1 Et)

T (Ct+1 Et)
}−1

(Ct+1 Et)
T . (11)

Hence, we have

Ct+1 Ht+1 = Ct+1 Et

{
(Ct+1 Et)

T (Ct+1 Et)
}−1

(Ct+1 Et)
T (12)

which is a non-negative definite symmetric matrix.
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given by (1)-(2)) before Tanikawa (2006) and Tanikawa (2008). Our smoothing algorithms have
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for t = 0, 1, 2, · · · . Here, x̂0/0 is chosen to be z0 for a fixed z0. Denote the state estimation error
and its covariance matrix respectively by et and Pt. Namely, we use the notations et = xt − x̂t/t
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When the matrix K1
t+1 has the form

K1
t+1 = A1

t+1

(
Pt Ct

T − Ht Rt

) (
Ct Pt Ct

T + Rt

)−1
, (13)

A1
t+1 = At − Ht+1 Ct+1 At, (14)

we obtained the following result (Theorem 2.7 in Tanikawa & Sawada (2003)) on the optimal
filtering algorithm.

Proposition 2.2. If Ct Ht and Rt are commutative, i.e.,

Ct Ht Rt = Rt Ct Ht, (15)

then the optimal gain matrix K1
t+1 which makes the variance of the state estimation error et+1 minimum

is determined by (13). Hence, we obtain the optimal filtering algorithm:

x̂t+1/t+1 = A1
t+1 {x̂t/t + Gt (yt − Ct x̂t/t)}+ Ht+1 yt+1 + Tt+1 Bt ut, (16)

Pt+1 = A1
t+1 Mt A1

t+1
T
+ Tt+1 Qt Tt+1

T + Ht+1 Rt+1 Ht+1
T, (17)

where

Gt =
(

Pt Ct
T − Ht Rt

) (
Ct Pt Ct

T + Rt

)−1
, (18)

and

Mt = Pt − Gt

(
Ct Pt − Rt Ht

T
)

. (19)

Remark 2.3. If the matrix Rt has the form

Rt = rt I

with some positive number rt for each t = 1, 2, · · · , then it is obvious to see that condition (15)
holds.

Finally, we have the following proposition which indicates that the standard Kalman filter is
a special case of the optimal filter proposed in this section (see e.g., Theorem 5.2 (page 90) in
Katayama (2000)).

Proposition 2.4. Suppose that Et ≡ O holds for all t (i.e., the unknown input term is zero). Then,
Lemma 2.1 cannot be applied directly. But, we can choose Ht ≡ O for all t in this case, and the optimal
filter given in Proposition 2.2 reduces to the standard Kalman filter.

3. The xed-point smoothing

Let k be a fixed time. We study an iterative algorithm to compute the optimal estimate x̂k/t of
the state xk based on the observation Yt, t = k + 1, k + 2, · · · , with Yt = σ{ys, s = 0, 1, · · · , t}.
We define state vectors θt, t = k, k + 1, · · · , by

θt+1 = θt, t = k, k + 1, · · · ; θk = xk. (20)
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It is easy to observe that the optimal estimate θ̂t/t of the state θt based on the observation Yt

is identical to the optimal smoother x̂k/t in view of the equalities θt = xk , t = k, k + 1, · · · .
In order to derive the optimal fixed-point smoother, we consider the following augmented
system for t = k, k + 1, · · · :

[
xt+1

θt+1

]
=

[
At O
O I

] [
xt

θt

]
+

[
Bt

O

]
ut +

[
Et

O

]
dt +

[
I
O

]
ζt, (21)

yt+1 = [Ct+1 O]

[
xt+1

θt+1

]
+ ηt+1. (22)

Denote these equations respectively by

x̃t+1 = Ãt x̃t + B̃t ut + Ẽt dt + J̃t ζt, (23)

yt+1 = C̃t+1 x̃t+1 + ηt+1, (24)

where

x̃t =

[
xt

θt

]
, Ãt =

[
At O
O I

]
, B̃t =

[
Bt

O

]
, Ẽt =

[
Et

O

]
, J̃t =

[
I
O

]

and C̃t+1 = [Ct+1 O] .

Here, I and O are the identity matrix and the zero matrix respectively with appropriate
dimensions. By making use of the notations

H̃t+1 =

[
Ht+1

O

]
, T̃t+1 =

[
I O
O I

]
− H̃t+1 C̃t+1,

we have the equalities:

C̃t+1 Ẽt = Ct+1 Et, T̃t+1 =

[
Tt+1 O

O I

]
, Ã1

t+1 = T̃t+1 Ãt =

[
A1

t+1 O

O I

]
.

We introduce the covariance matrix P̃t of the state estimation error of the augmented system
(23)-(24):

P̃t =

[
P
(1,1)
t P

(1,2)
t

P
(2,1)
t P

(2,2)
t

]
= E

{[
xt − x̂t/t

θt − θ̂t/t

] [
xt − x̂t/t

θt − θ̂t/t

]T
}

. (25)

Notice that P
(1,1)
t is equal to Pt. Applying the optimal filter given in Proposition 2.2 to the

augmented system (21)-(22), we obtain the following optimal fixed-point smoother.

Theorem 3.1. If Ct Ht and Rt are commutative, i.e.,

Ct Ht Rt = Rt Ct Ht, (26)

then we have the optimal fixed-point smoother for (21)-(22) as follows:
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Notice that P
(1,1)
t is equal to Pt. Applying the optimal filter given in Proposition 2.2 to the

augmented system (21)-(22), we obtain the following optimal fixed-point smoother.

Theorem 3.1. If Ct Ht and Rt are commutative, i.e.,

Ct Ht Rt = Rt Ct Ht, (26)

then we have the optimal fixed-point smoother for (21)-(22) as follows:
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(i) the fixed-point smoother

x̂k/t+1 = x̂k/t + Dt(k) [yt − Ct x̂t/t] , (27)

(ii) the gain matrix

Dt(k) = P
(2,1)
t Ct

T
�

Ct Pt Ct
T + Rt

�−1
, (28)

(iii) the covariance matrix of the mean-square error

P
(2,1)
t+1 =

�
P
(2,1)
t − P

(2,1)
t Ct

T
�

Ct Pt Ct
T + Rt

�−1 �
Ct Pt − Rt Ht

T
��

A1
t+1

T
, (29)

P
(2,2)
t+1 = P

(2,2)
t − P

(2,1)
t Ct

T
�

Ct Pt Ct
T + Rt

�−1
Ct P

(2,1)
t

T
. (30)

Here, we note that P
(2,1)
k = P

(2,2)
k = Pk. We notice that x̂t/t is the optimal filter of the original system

(1)-(2) given in Tanikawa & Sawada (2003).

Proof Applying the optimal filter given by (16)-(17) in Proposition (2.2) to the augmented
system (23)-(24), we have

̂̃xt+1/t+1 = Ãt+1
1 ���xt/t +�Gt

�
yt − Ct

��xt/t

��
+ H̃t+1 yt+1 + �Tt+1

�Bt ut. (31)

This can be rewritten as

�
x̂t+1/t+1

θ̂t+1/t+1

�
=

�
A1

t+1 O

O I

�⎧⎨
⎩

�
x̂t/t

θ̂t/t

�
+

�
P
(1,1)
t Ct

T − HtRt

P
(2,1)
t Ct

T

�

×
�

Ct Pt Ct
T + Rt

�−1
(yt − Ct x̂t/t)

⎫⎬
⎭+

�
Ht+1 yt+1

O

�
+

�
Tt+1 Bt ut

O

�
.

Thus, we have

x̂t+1/t+1 = A1
t+1

�
x̂t/t +

�
P
(1,1)
t Ct

T − HtRt

� �
Ct Pt Ct

T + Rt

�−1
(yt − Ct x̂t/t)

�

+Ht+1 yt+1 + Tt+1 Bt ut (32)

and

θ̂t+1/t+1 = θ̂t/t + P
(2,1)
t Ct

T
�

Ct Pt Ct
T + Rt

�−1
(yt − Ct x̂t/t) . (33)

Here, we used the equalities

�Ct �Pt
�Ct

T
+ Rt = [Ct O]

�
P
(1,1)
t P

(1,2)
t

P
(2,1)
t P

(2,2)
t

� �
Ct

T

O

�
+ Rt

= Ct Pt Ct
T + Rt (34)
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and

G̃t =

(
P̃t

[
Ct

T

O

]
− H̃t Rt

)(
C̃t P̃t C̃t

T
+ Rt

)−1

=

([
P
(1,1)
t P

(1,2)
t

P
(2,1)
t P

(2,2)
t

] [
Ct

T

O

]
−

[
Ht

O

]
Rt

)(
C̃t P̃t C̃t

T
+ Rt

)−1

=

[
P
(1,1)
t Ct

T − Ht Rt

P
(2,1)
t Ct

T

] (
Ct Pt Ct

T + Rt

)−1
. (35)

Thus, equalities (27)-(28) can be obtained from (33) due to θ̂t/t = x̂k/t.

By using the notation M̃t for the augmented system (23)-(24)which corresponds to the matrix
Mt in Proposition (2.2), we have

M̃t =

[
M

(1,1)
t M

(1,2)
t

M
(2,1)
t M

(2,2)
t

]

= P̃t − G̃t

(
C̃t P̃t − Rt

[
Ht

T O
])

=

[
P
(1,1)
t P

(1,2)
t

P
(2,1)
t P

(2,2)
t

]
−

[
P
(1,1)
t Ct

T − Ht Rt

P
(2,1)
t Ct

T

] (
Ct Pt Ct

T + Rt

)−1

×

(
[Ct O]

[
P
(1,1)
t P

(1,2)
t

P
(2,1)
t P

(2,2)
t

]
−

[
Rt Ht

T O
])

.

Thus, we have

M
(1,1)
t = P

(1,1)
t −

(
P
(1,1)
t Ct

T − Ht Rt

) (
Ct Pt Ct

T + Rt

)−1(
Ct P

(1,1)
t − Rt Ht

T
)

, (36)

M
(1,2)
t = P

(1,2)
t −

(
P
(1,1)
t Ct

T − Ht Rt

) (
Ct Pt Ct

T + Rt

)−1
Ct P

(1,2)
t , (37)

M
(2,1)
t = P

(2,1)
t − P

(2,1)
t Ct

T
(

Ct Pt Ct
T + Rt

)−1 (
Ct P

(1,1)
t − Rt Ht

T
)

, (38)

and

M
(2,2)
t = P

(2,2)
t − P

(2,1)
t Ct

T
(

Ct Pt Ct
T + Rt

)−1
Ct P

(1,2)
t . (39)

It follows from (17) in Proposition 2.2 that

P̃t+1 = Ã1
t+1 M̃t Ã1

t+1

T
+ T̃t+1 J̃t+1 Qt+1 J̃t+1

T
T̃t+1 + H̃t+1 Rt+1 H̃t+1

T

=

[
A1

t+1 O

O I

] [
M

(1,1)
t M

(1,2)
t

M
(2,1)
t M

(2,2)
t

] [
A1

t+1
T

O

O I

]

+

[
Tt+1 O

O I

] [
I
O

]
Qt+1 [I O]

[
Tt+1

T O

O I

]

+

[
Ht+1

O

]
Rt+1

[
Ht+1

T O
]

. (40)
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(i) the fixed-point smoother
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Dt(k) = P
(2,1)
t Ct

T
�

Ct Pt Ct
T + Rt

�−1
, (28)

(iii) the covariance matrix of the mean-square error

P
(2,1)
t+1 =

�
P
(2,1)
t − P

(2,1)
t Ct

T
�

Ct Pt Ct
T + Rt

�−1 �
Ct Pt − Rt Ht

T
��

A1
t+1

T
, (29)

P
(2,2)
t+1 = P

(2,2)
t − P

(2,1)
t Ct

T
�

Ct Pt Ct
T + Rt

�−1
Ct P

(2,1)
t

T
. (30)

Here, we note that P
(2,1)
k = P

(2,2)
k = Pk. We notice that x̂t/t is the optimal filter of the original system

(1)-(2) given in Tanikawa & Sawada (2003).
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�
yt − Ct

��xt/t

��
+ H̃t+1 yt+1 + �Tt+1

�Bt ut. (31)
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�
x̂t+1/t+1

θ̂t+1/t+1

�
=

�
A1

t+1 O

O I

�⎧⎨
⎩

�
x̂t/t

θ̂t/t

�
+

�
P
(1,1)
t Ct

T − HtRt

P
(2,1)
t Ct

T

�

×
�

Ct Pt Ct
T + Rt

�−1
(yt − Ct x̂t/t)

⎫⎬
⎭+

�
Ht+1 yt+1

O

�
+

�
Tt+1 Bt ut

O

�
.

Thus, we have

x̂t+1/t+1 = A1
t+1

�
x̂t/t +

�
P
(1,1)
t Ct

T − HtRt

� �
Ct Pt Ct

T + Rt

�−1
(yt − Ct x̂t/t)

�

+Ht+1 yt+1 + Tt+1 Bt ut (32)

and

θ̂t+1/t+1 = θ̂t/t + P
(2,1)
t Ct

T
�

Ct Pt Ct
T + Rt

�−1
(yt − Ct x̂t/t) . (33)

Here, we used the equalities

�Ct �Pt
�Ct

T
+ Rt = [Ct O]

�
P
(1,1)
t P

(1,2)
t

P
(2,1)
t P

(2,2)
t

� �
Ct

T

O

�
+ Rt

= Ct Pt Ct
T + Rt (34)
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and

G̃t =

(
P̃t

[
Ct

T

O

]
− H̃t Rt

)(
C̃t P̃t C̃t

T
+ Rt

)−1

=

([
P
(1,1)
t P

(1,2)
t

P
(2,1)
t P

(2,2)
t

] [
Ct

T

O

]
−

[
Ht

O

]
Rt

)(
C̃t P̃t C̃t

T
+ Rt

)−1

=

[
P
(1,1)
t Ct

T − Ht Rt

P
(2,1)
t Ct

T

] (
Ct Pt Ct

T + Rt

)−1
. (35)

Thus, equalities (27)-(28) can be obtained from (33) due to θ̂t/t = x̂k/t.

By using the notation M̃t for the augmented system (23)-(24)which corresponds to the matrix
Mt in Proposition (2.2), we have

M̃t =

[
M

(1,1)
t M

(1,2)
t

M
(2,1)
t M

(2,2)
t

]

= P̃t − G̃t

(
C̃t P̃t − Rt

[
Ht

T O
])

=

[
P
(1,1)
t P

(1,2)
t

P
(2,1)
t P

(2,2)
t

]
−

[
P
(1,1)
t Ct

T − Ht Rt

P
(2,1)
t Ct

T

] (
Ct Pt Ct

T + Rt

)−1

×

(
[Ct O]

[
P
(1,1)
t P

(1,2)
t

P
(2,1)
t P

(2,2)
t

]
−

[
Rt Ht

T O
])

.

Thus, we have

M
(1,1)
t = P

(1,1)
t −

(
P
(1,1)
t Ct

T − Ht Rt

) (
Ct Pt Ct

T + Rt

)−1(
Ct P

(1,1)
t − Rt Ht

T
)

, (36)

M
(1,2)
t = P

(1,2)
t −

(
P
(1,1)
t Ct

T − Ht Rt

) (
Ct Pt Ct

T + Rt

)−1
Ct P

(1,2)
t , (37)

M
(2,1)
t = P

(2,1)
t − P

(2,1)
t Ct

T
(

Ct Pt Ct
T + Rt

)−1 (
Ct P

(1,1)
t − Rt Ht

T
)

, (38)

and

M
(2,2)
t = P

(2,2)
t − P

(2,1)
t Ct

T
(

Ct Pt Ct
T + Rt

)−1
Ct P

(1,2)
t . (39)

It follows from (17) in Proposition 2.2 that

P̃t+1 = Ã1
t+1 M̃t Ã1

t+1

T
+ T̃t+1 J̃t+1 Qt+1 J̃t+1

T
T̃t+1 + H̃t+1 Rt+1 H̃t+1

T

=

[
A1

t+1 O

O I

] [
M

(1,1)
t M

(1,2)
t

M
(2,1)
t M

(2,2)
t

] [
A1

t+1
T

O

O I

]

+

[
Tt+1 O

O I

] [
I
O

]
Qt+1 [I O]

[
Tt+1

T O

O I

]

+

[
Ht+1

O

]
Rt+1

[
Ht+1

T O
]

. (40)
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Equalities (29)-(30) follow from (38)-(40). Finally, we have equalities P
(2,1)
k = P

(2,2)
k = P

(1,1)
k =

Pk by the definition of P̃k.
We thus have derived the fixed-point smoothing algorithm for the state-space model which
explicitly contains the unknown inputs. We can indicate that the algorithm has a rather simple
form and also has consistency with both the Kalman filter and the standard optimal smoother
derived from the Kalman filter as shown in the following remark.

Remark 3.2. Suppose that Et ≡ O holds for all t (i.e., the unknown input term is zero) and
that Ht ≡ O for all t(as in Proposition 2.4). In this case, it follows from Theorem 3.1 that

x̂t+1/t+1 = At

{
x̂t/t + Pt Ct

T
(

Ct Pt Ct
T + Rt

)−1
(yt − Ct x̂t/t)

}
+ Bt ut, (41)

θ̂t+1/t+1 = θ̂t/t + P
(2,1)
t Ct

T
(

Ct Pt Ct
T + Rt

)−1
(yt − Ct x̂t/t) , (42)

P
(2,1)
t+1 =

{
P
(2,1)
t − P

(2,1)
t Ct

T
(

Ct Pt Ct
T + Rt

)−1
Ct Pt

}
At

T , (43)

and

P
(2,2)
t+1 = P

(2,2)
t − P

(2,1)
t Ct

T
(

Ct Pt Ct
T + Rt

)−1
Ct P

(2,1)
t

T
. (44)

Here, we note that the state estimate x̂t+1/t+1 reduces to the state estimate x̂t+1/t in Katayama
(2000) when Ht ≡ O holds. Moreover, Equalities (37)-(40) with the state estimates x̂t+1/t+1

and x̂t/t replaced respectively by x̂t+1/t and x̂t/t−1 are identical to those for the pair of the
standard Kalman filter and the optimal fixed-point smoother in Katayama (2000). Thus, it has
been shown that this algorithm reduces to the well known optimal smoother derived from
the Kalman filter when the unknown inputs disappear. This indicates that our smoothing
algorithm is a natural extension of the standard optimal smoother to linear systems possibly
with unknown inputs.

Let us introduce some notations:

νt = yt − Ct x̂t/t, (45)

Lt = A1
t+1 (I − Gt Ct) , (46)

Ψ(t, τ) =

{
Lt−1 Lt−2 · · · Lτ , t > τ

I , t = τ ,
(47)

where the matrix Gt was defined by (18), i.e.,

Gt =
(

Pt Ct
T − Ht Rt

) (
Ct Pt Ct

T + Rt

)−1
. (48)

We then have the following results due to (27).

Corollary 3.3. We have the equalities:

x̂k/t+1 = x̂k/k +
t

∑
i=k

Di(k)νi = x̂k/k + Pk

t

∑
i=k

Ψ(i, k)TCi
T
(

CiPiCi
T + Ri

)−1
νi . (49)
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Proof It is straightforward to show the first equality from (27). For the second equality, it is
sufficient to prove the equality

Dt(k) = Pk Ψ(t, k)T Ct
T
(

Ct Pt Ct
T + Rt

)−1
(50)

for t ≥ k. By virtue of (46), equality (29) can be rewritten as

P
(2,1)
t = P

(2,1)
t−1

(
I − Ct−1

T Gt−1
T
)

A1
t

T
= P

(2,1)
t−1 Lt−1

T . (51)

By using this equality recursively, we have

P
(2,1)
t = P

(2,1)
t−2 Lt−2

T Lt−1
T = · · · · · · = P

(2,1)
k Lk

T Lk+1
T · · · Lt−1

T

= Pk Ψ(t, k)T . (52)

Substituting this equality into (28), we obtain

Dt(k) = Pk Ψ(t, k)T Ct
T
(

Ct Pt Ct
T + Rt

)−1
, (53)

i.e., (50).

Finally, we study the reduction of the estimation error by the fixed-point smoothing over the
optimal filtering. Due to (27), we have

P
(2,2)
t = E

[
(xk − x̂k/t) (xk − x̂k/t)

T
]

. (54)

Denote this matrix simply by Pk/t. It then follows from (30) that

Pk/t+1 = Pk/t − P
(2,1)
t Ct

T
(

CtPtCt
T+ Rt

)−1
CtP

(2,1)
t

T
. (55)

Summing up these equalities for t = k, k + 1, · · · , s, we have

Pk/k − Pk/s+1 =
s

∑
i=k

P
(2,1)
i Ci

T
(

CiPiCi
T + Ri

)−1
CiP

(2,1)
i

T
. (56)

Thus, the right hand side indicates the amount of the reduction of the estimation error by the
fixed-point smoothing over the optimal filtering.

4. The xed-interval smoothing

We consider the fixed-interval smoothing problem in this section. Namely, we investigate the
optimal estimate x̂t/N of the state xt at all times t = 0, 1, · · · , N based on the observation YN of
all the states {y0, y1, · · · , yN}. Applying equality (49), we easily obtain the following equality.

Lemma 4.1. The equality

x̂t/N = x̂t/t+1 + Pt Lt
T Pt+1

−1 (x̂t+1/N − x̂t+1/t+1) (57)
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Equalities (29)-(30) follow from (38)-(40). Finally, we have equalities P
(2,1)
k = P

(2,2)
k = P

(1,1)
k =

Pk by the definition of P̃k.
We thus have derived the fixed-point smoothing algorithm for the state-space model which
explicitly contains the unknown inputs. We can indicate that the algorithm has a rather simple
form and also has consistency with both the Kalman filter and the standard optimal smoother
derived from the Kalman filter as shown in the following remark.

Remark 3.2. Suppose that Et ≡ O holds for all t (i.e., the unknown input term is zero) and
that Ht ≡ O for all t(as in Proposition 2.4). In this case, it follows from Theorem 3.1 that

x̂t+1/t+1 = At

{
x̂t/t + Pt Ct

T
(

Ct Pt Ct
T + Rt

)−1
(yt − Ct x̂t/t)

}
+ Bt ut, (41)
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t Ct

T
(

Ct Pt Ct
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)−1
(yt − Ct x̂t/t) , (42)
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(2,1)
t+1 =
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(2,1)
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t Ct

T
(

Ct Pt Ct
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)−1
Ct Pt
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T , (43)

and

P
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(2,2)
t − P
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T
(
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)−1
Ct P

(2,1)
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T
. (44)

Here, we note that the state estimate x̂t+1/t+1 reduces to the state estimate x̂t+1/t in Katayama
(2000) when Ht ≡ O holds. Moreover, Equalities (37)-(40) with the state estimates x̂t+1/t+1

and x̂t/t replaced respectively by x̂t+1/t and x̂t/t−1 are identical to those for the pair of the
standard Kalman filter and the optimal fixed-point smoother in Katayama (2000). Thus, it has
been shown that this algorithm reduces to the well known optimal smoother derived from
the Kalman filter when the unknown inputs disappear. This indicates that our smoothing
algorithm is a natural extension of the standard optimal smoother to linear systems possibly
with unknown inputs.

Let us introduce some notations:

νt = yt − Ct x̂t/t, (45)

Lt = A1
t+1 (I − Gt Ct) , (46)

Ψ(t, τ) =

{
Lt−1 Lt−2 · · · Lτ , t > τ

I , t = τ ,
(47)

where the matrix Gt was defined by (18), i.e.,

Gt =
(

Pt Ct
T − Ht Rt

) (
Ct Pt Ct

T + Rt

)−1
. (48)

We then have the following results due to (27).

Corollary 3.3. We have the equalities:

x̂k/t+1 = x̂k/k +
t

∑
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Di(k)νi = x̂k/k + Pk

t

∑
i=k

Ψ(i, k)TCi
T
(
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)−1
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Proof It is straightforward to show the first equality from (27). For the second equality, it is
sufficient to prove the equality

Dt(k) = Pk Ψ(t, k)T Ct
T
(

Ct Pt Ct
T + Rt

)−1
(50)

for t ≥ k. By virtue of (46), equality (29) can be rewritten as

P
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t = P
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t−1

(
I − Ct−1

T Gt−1
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)
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t

T
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t−1 Lt−1
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By using this equality recursively, we have
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T Lt−1
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(2,1)
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T Lk+1
T · · · Lt−1
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= Pk Ψ(t, k)T . (52)

Substituting this equality into (28), we obtain

Dt(k) = Pk Ψ(t, k)T Ct
T
(

Ct Pt Ct
T + Rt

)−1
, (53)

i.e., (50).

Finally, we study the reduction of the estimation error by the fixed-point smoothing over the
optimal filtering. Due to (27), we have

P
(2,2)
t = E

[
(xk − x̂k/t) (xk − x̂k/t)

T
]

. (54)

Denote this matrix simply by Pk/t. It then follows from (30) that

Pk/t+1 = Pk/t − P
(2,1)
t Ct

T
(

CtPtCt
T+ Rt

)−1
CtP

(2,1)
t

T
. (55)

Summing up these equalities for t = k, k + 1, · · · , s, we have

Pk/k − Pk/s+1 =
s

∑
i=k

P
(2,1)
i Ci

T
(

CiPiCi
T + Ri

)−1
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(2,1)
i

T
. (56)

Thus, the right hand side indicates the amount of the reduction of the estimation error by the
fixed-point smoothing over the optimal filtering.

4. The xed-interval smoothing

We consider the fixed-interval smoothing problem in this section. Namely, we investigate the
optimal estimate x̂t/N of the state xt at all times t = 0, 1, · · · , N based on the observation YN of
all the states {y0, y1, · · · , yN}. Applying equality (49), we easily obtain the following equality.

Lemma 4.1. The equality

x̂t/N = x̂t/t+1 + Pt Lt
T Pt+1

−1 (x̂t+1/N − x̂t+1/t+1) (57)
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holds for t = 0, 1, · · · , N − 1.

Proof Using the notation

ν̃i = Ci
T
(

CiPiCi
T+Ri

)−1
νi, (58)

we have

x̂k/t+1 = x̂k/k + Pk

t

∑
i=k

Ψ(i, k)T ν̃i (59)

for k ≤ t due to (49). In view of (59) , we also have

x̂k/t+1 = x̂k/k + Pk ν̃k + Pk

t

∑
i=k+1

Ψ(i, k)T ν̃i = x̂k/k+1 + Pk

t

∑
i=k+1

Ψ(i, k)T ν̃i (60)

for k + 1 ≤ t. Putting t + 1 = N and k = t + 1 in equality (59), we have

x̂t+1/N = x̂t+1/t+1 + Pt+1

N−1

∑
i=t+1

Ψ(i, t + 1)T ν̃i. (61)

Putting t + 1 = N and k = t in equality (60), we have

x̂t/N = x̂t/t+1 + Pt

N−1

∑
i=t+1

Ψ(i, t)T ν̃i = x̂t/t+1 + PtLt
T

N−1

∑
i=t+1

Ψ(i, t + 1)T ν̃i. (62)

Substituting (61) into (62), we have

x̂t/N = x̂t/t+1 + Pt Lt
T Pt+1

−1 (x̂t+1/N − x̂t+1/t+1) .

The above derivation is valid for t = 0, 1, · · · , N − 2. It is easy to observe that equality (57)
also holds for t = N − 1.
It is a simple task to obtain the following Fraser-type algorithm from (57).

Theorem 4.2. We obtain the fixed-interval smoother

x̂t/N = x̂t/t+1 + Pt Lt
T λt+1 , (63)

λt = Lt
Tλt+1 + Ct

T
(

CtPtCt
T+Rt

)−1
νt . (64)

for t = N − 1, N − 2, · · · , 1, 0. Here, we have λN = 0.

Proof For t = 0, 1, · · · , N, we put

λt = Pt
−1 (x̂t/N − x̂t/t) . (65)

We then have λN = 0. Substituting (65) into (57), we obtain equality (63). Then, by utilizing
(63) and (65), we have

λt = Pt
−1

(
x̂t/t+1 + Pt Lt

T λt+1 − x̂t/t

)
. (66)

In view of the equality
x̂t/t+1 − x̂t/t = Pt ν̃t (67)
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which follows from (27) in Tanikawa & Sawada (2003), we obtain

λt = Lt
T λt+1 + ν̃t

= Lt
T λt+1 + Ct

T
�

CtPtCt
T+Rt

�−1
νt. (68)

Thus, we proved (64).

Remark 4.3. When Et ≡ O holds for all t (i.e., the unknown input term is zero), we shall see
that fixed-interval smoother (63)-(64) is identical to the fixed-interval smoother obtained from
the standard Kalman filter (see e.g., Katayama (2000)). Thus, our algorithm is consistent with
the known fixed-interval smoothing algorithm for systems without unknown inputs. This
can be shown as follows. Assuming that Et = O, we have Ht = O for t = 0, 1, · · · , N (see
Propositin 2.4). Note that in (59), i.e.,

x̂k/t+1 = x̂k/k + Pk

t

∑
i=k

Ψ(i, k)T ν̃i

x̂k/t+1 and x̂k/k respectively reduce to x̂k/t and x̂k/k−1 which are respectively the optimal
smoother and the optimal filter obtained from the standard Kalman filter. Then, the above
equality is identical to (7.18) in Katayama (2000). Since the rest of the proof can be done in the
same way as in Katayama (2000), we obtain the same smoother.

5. The xed-lag smoothing

We study the fixed-lag smoothing problem in this section. For a fixed L > 0, we investigate
an iterative algorithm to compute the optimal state estimate x̂t−L/t of the state xt−L based on
the observation Yt.
We consider the following augmented system:

⎡
⎢⎢⎢⎣

xt+1

xt

...
xt−L+1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

At O . . . O
I O . . . O

. . .

O I O

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

xt

xt−1
...

xt−L

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

Bt

O
...

O

⎤
⎥⎥⎥⎦ ut +

⎡
⎢⎢⎢⎣

Et

O
...

O

⎤
⎥⎥⎥⎦ dt +

⎡
⎢⎢⎢⎣

I
O
...

O

⎤
⎥⎥⎥⎦ ζt, (69)

yt+1 = [Ct+1 O . . . O]

⎡
⎢⎢⎢⎣

xt+1

xt

...
xt−L+1

⎤
⎥⎥⎥⎦+ ηt+1. (70)

Denote these equations respectively by

�xt+1 = �At �xt + �Bt ut + �Et dt + �Jt ζt, (71)

yt+1 = C̃t+1 �xt+1 + ηt+1, (72)
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O I O
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I
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where

�xt =

⎡
⎢⎢⎢⎣

xt

xt−1
...

xt−L

⎤
⎥⎥⎥⎦ , �At =

⎡
⎢⎢⎢⎣

At O . . . O
I O . . . O

. . .

O I O

⎤
⎥⎥⎥⎦ , �Bt =

⎡
⎢⎢⎢⎣

Bt

O
...

O

⎤
⎥⎥⎥⎦ , �Et =

⎡
⎢⎢⎢⎣

Et

O
...

O

⎤
⎥⎥⎥⎦ ,

�Jt =

⎡
⎢⎢⎢⎣

I
O
...

O

⎤
⎥⎥⎥⎦ and C̃t+1 = [Ct+1 O . . . O] .

Here, I and O are the identity matrix and the zero matrix respectively with appropriate
dimensions. By making use of the notations

H̃t+1 =

⎡
⎢⎢⎢⎣

Ht+1

O
...

O

⎤
⎥⎥⎥⎦ and �Tt+1 = I − H̃t+1 C̃t+1,

we have the equalities:

C̃t+1
�Et = [Ct+1 O . . . O]

⎡
⎢⎢⎢⎣

Et

O
...

O

⎤
⎥⎥⎥⎦ = Ct+1 Et,

�Tt+1 = I −

⎡
⎢⎢⎢⎣

Ht+1

O
...

O

⎤
⎥⎥⎥⎦ [Ct+1 O . . . O] =

⎡
⎢⎢⎢⎣

Tt+1 O . . . O
O I . . . O

. . .

O O . . . I

⎤
⎥⎥⎥⎦ ,

Ã1
t+1 = �Tt+1

�At =

⎡
⎢⎢⎢⎣

Tt+1 O . . . O
O I . . . O

. . .

O O . . . I

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

At O . . . O
I O . . . O

. . .

O I O

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A1
t+1 O . . . O

I O . . . O
. . .

O I O

⎤
⎥⎥⎥⎦ .

We introduce the covariance matrix �Pt of the state estimation error of augmented system
(71)-(72):

�Pt = E

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

xt − x̂t/t

xt−1 − x̂t−1/t
...

xt−L − x̂t−L/t

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

xt − x̂t/t

xt−1 − x̂t−1/t
...

xt−L − x̂t−L/t

⎤
⎥⎥⎥⎦

T
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (73)
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By using the notations

Pt−i,t−j/t = E

�
(xt−i − x̂t−i/t)

�
xt−j − x̂t−j/t

�T
�

,

Pt−i/t = Pt−i,t−i/t ,

we can write

�Pt =

⎡
⎢⎢⎢⎣

Pt/t Pt,t−1/t . . . Pt,t−L/t

Pt−1,t/t Pt−1/t . . . Pt−1,t−L/t
...

. . .
...

Pt−L,t/t Pt−L,t−1/t . . . Pt−L/t

⎤
⎥⎥⎥⎦ . (74)

Here, it is easy to observe that Pt/t = Pt holds. We also note that

�Ct �Pt
�Ct

T
+ Rt = Ct Pt/t Ct

T + Rt. (75)

From now on, we use the following notation for brevity:

Ct := Ct Pt Ct
T + Rt. (76)

Applying the optimal filter given in Proposition 2.2 to augmented system (71)-(72), we have

̂̃xt+1/t+1 = Ã1
t+1

���xt/t +�Gt

�
yt − �Ct

��xt/t

��
+ H̃t+1 yt+1 + �Tt+1

�Bt ut, (77)

where

�Gt =
� �Pt �Ct

T
− �Ht Rt

� � �Ct �Pt �Ct
T
+ Rt

�−1
=

⎡
⎢⎢⎢⎢⎣

Pt/t Ct
T − Ht Rt

Pt−1,t/t Ct
T

...

Pt−L,t/t Ct
T

⎤
⎥⎥⎥⎥⎦

Ct
−1

. (78)

Identifying the component matrices of (77)-(78), we have the following optimal fixed-lag
smoother.

Theorem 5.1. If Ct Ht and Rt are commutative, i.e.,

Ct Ht Rt = Rt Ct Ht, (79)

then we have the optimal fixed-lag smoother for (1)-(2) as follows:
(i) the fixed-lag smoother

x̂t−j/t+1 = x̂t−j/t + St(j) (yt − Ct x̂t/t) (j = 0, 1, · · · , L − 1) , (80)

(ii) the optimal filter

x̂t+1/t+1 = A1
t+1 {x̂t/t + Gt (yt − Ct x̂t/t)}+ Ht+1yt+1 + Tt+1Btut, (81)

with Gt defined by (18) in Proposition 2.2,
(iii) the gain matrices

St(j) =
�

Pt−j,t/t Ct
T − δ0,j Ht Rt

�
Ct

−1
(j = 0, 1, · · · , L − 1) , (82)
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where δi,j stands for the Kronecker’s delta, i.e.,

δi,j =

�
1 for i = j
0 for i �= j

, (83)

(iv) the covariance matrix of the mean-square error

Pt+1/t+1 = A1
t+1 M

(0,0)
t A1

t+1
T
+ Tt+1 Qt Tt+1

T + Ht+1 Rt+1 Ht+1
T, (84)

Pt+1,t−j/t+1 = A1
t+1 M

(0,j)
t (j = 0, 1, · · · , L − 1) , (85)

Pt−j,t+1/t+1 =
�

Pt+1,t−j/t+1

�T
(j = 0, 1, · · · , L − 1) , (86)

Pt−i,t−j/t+1 = M
(i,j)
t (i, j = 0, 1, · · · , L − 1) , (87)

and

M
(i,j)
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�
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�
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T
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Remark 5.2. Since the equalities

Pt/t = Pt ( in Proposition 2.2 )

and
M

(0,0)
t = Mt ( in Proposition 2.2 )

hold, the part of the optimal filter in Theorem 5.1 is identical to that in Proposition 2.2. When
Et ≡ O holds for all t (i.e., the unknown input term is zero), we shall see that fixed-lag
smoother (80)-(88) is identical to the well known fixed-lag smoother (see e.g. Katayama (2000))
obtained from the standard Kalman filter. Thus, our algorithm is consistent with the known
fixed-lag smoothing algorithm for systems without unknown inputs. This can be readily
shown as in Remark 4.3.

Proof of Theorem 5.1 Rewriting (77)-(78) with the component matrices explicitly, we have

⎡
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�
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O
O
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O

⎤
⎥⎥⎥⎥⎥⎦
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The statements in (i)-(iii) easily follow from (89).
Let �Mt be defined by
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Pt/tCt
T−Ht Rt

Pt−1,t/t Ct
T

Pt−2,t/t Ct
T

...

Pt−L,t/t Ct
T

⎤
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T
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We also introduce component matrices of �Mt as follows:
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.

Concerning �Pt+1, we have
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+ �Tt+1

�Jt Qt �Jt
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1
t+1M

(0,0)
t A1

t+1
T

A1
t+1M

(0,0)
t A1

t+1M
(0,1)
t . . . A1

t+1M
(0,L−1)
t

M
(0,0)
t A1

t+1
T

M
(0,0)
t M

(0,1)
t . . . M

(0,L−1)
t

M
(1,0)
t A1

t+1
T

M
(1,0)
t M

(1,1)
t . . . M

(1,L−1)
t

...
...

...
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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...
. . .

...

O O O . . . O
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⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The final part (iv) can be obtained from the last three equalities.
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6. Conclusion

In this chapter, we considered discrete-time linear stochastic systems with unknown inputs

(or disturbances) and studied three types of smoothing problems for these systems. We

derived smoothing algorithms which are robust to unknown disturbances from the optimal

filter for stochastic systems with unknown inputs obtained in our previous papers. These

smoothing algorithms have similar recursive forms to the standard optimal filters and

smoothers. Moreover, since our algorithms reduce to those known smoothers derived from

the Kalman filter when unknown inputs disappear, these algorithms are consistent with the

known smoothing algorithms for systems without unknown inputs.
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1. Introduction

The fast development of network (particularly wireless) technology has encouraged its use

in control and signal processing applications. Under the control system’s perspective, this

new technology has imposed new challenges concerning how to deal with the effects of

quantisation, delays and loss of packets, leading to the development of a new networked

control theory Schenato et al. (2007). The study of state estimators, when measurements are

subject to random delays and losses, finds applications in both control and signal processing.

Most estimators are based on the well-known Kalman filter Anderson & Moore (1979). In

order to cope with network induced effects, the standard Kalman filter paradigm needs to

undergo certain modifications.

In the case of missing measurements, the update equation of the Kalman filter depends on

whether a measurement arrives or not. When a measurement is available, the filter performs

the standard update equation. On the other hand, if the measurement is missing, it must

produce open loop estimation, which as pointed out in Sinopoli et al. (2004), can be interpreted

as the standard update equation when the measurement noise is infinite. If the measurement

arrival event is modeled as a binary random variable, the estimator’s error covariance (EC)

becomes a random matrix. Studying the statistical properties of the EC is important to

assess the estimator’s performance. Additionally, a clear understanding of how the system’s

parameters and network delivery rates affect the EC, permits a better system design, where

the trade-off between conflicting interests must be evaluated.

Studies on how to compute the expected error covariance (EEC) can be dated back at least

to Faridani (1986), where upper and lower bounds for the EEC were obtained using a constant

gain on the estimator. In Sinopoli et al. (2004), the same upper bound was derived as the

limiting value of a recursive equation that computes a weighted average of the next possible

error covariances. A similar result which allows partial observation losses was presented

in Liu & Goldsmith (2004). In Dana et al. (2007); Schenato (2008), it is shown that a system in

which the sensor transmits state estimates instead of raw measurements will provide a better

error covariance. However, this scheme requires the use of more complex sensors. Most of

the available research work is concerned with the expected value of the EC, neglecting higher

order statistics. The problem of finding the complete distribution function of the EC has been

recently addressed in Shi et al. (2010).
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This chapter investigates the behavior of the Kalman filter for discrete-time linear systems

whose output is intermittently sampled. To this end we model the measurement arrival event

as an independent identically distributed (i.i.d.) binary random variable. We introduce a

method to obtain lower and upper bounds for the cumulative distribution function (CDF) of

the EC. These bounds can be made arbitrarily tight, at the expense of increased computational

complexity. We then use these bounds to derive upper and lower bounds for the EEC.

2. Problem description

In this section we give an overview of the Kalman filtering problem in the presence of

randomly missing measurements. Consider the discrete-time linear system:

{
xt+1 = Axt + wt

yt = Cxt + vt
(1)

where the state vector xt ∈ Rn has initial condition x0 ∼ N(0, P0), y ∈ Rp is the measurement,

w ∼ N(0, Q) is the process noise and v ∼ N(0, R) is the measurement noise. The goal of the

Kalman filter is to obtain an estimate x̂t of the state xt , as well as providing an expression for

the covariance matrix Pt of the error x̃t = xt − x̂t.

We assume that the measurements yt are sent to the Kalman estimator through a network

subject to random packet losses. The scheme proposed in Schenato (2008) can be used to

deal with delayed measurements. Hence, without loss of generality, we assume that there is

no delay in the transmission. Let γt be a binary random variable describing the arrival of a

measurement at time t. We define that γt = 1 when yt was received at the estimator and γt = 0

otherwise. We also assume that γt is independent of γs whenever t �= s. The probability to

receive a measurement is given by

λ = P(γt = 1). (2)

Let x̂t|s denote the estimate of xt considering the available measurements up to time s. Let

x̃t|s = xt − x̂t|s denote the estimation error and Σt|s = E{(x̃t|s − E{x̃t|s})(x̃t|s − E{x̃t|s})
�}

denote its covariance matrix. If a measurement is received at time t (i.e., if γt = 1), the estimate

and its EC are recursively computed as follows:

x̂t|t = x̂t|t−1 + Kt(yt − Cxt) (3)

Σt|t = (I − KtC)Σt|t−1 (4)

x̂t+1|t = Ax̂t|t (5)

Σt+1|t = AΣt|tA� + Q, (6)

with the Kalman gain Kt given by

Kt = Σt|t−1C�(CΣt|t−1C� + Q)−1. (7)

On the other hand, if a measurement is not received at time t (i.e., if γt = 0), then (3) and (4)

are replaced by

x̂t|t = x̂t|t−1 (8)
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Σt|t = Σt|t−1. (9)

We will study the statistical properties of the EC Σt|t−1. To simplify the notation, we define

Pt = Σt|t−1. Then, the update equation of Pt can be written as follows:

Pt+1 =

{
Φ1(Pt), γt = 1

Φ0(Pt), γt = 0
(10)

with

Φ1(Pt) = APt A� + Q − APtC
�(CPtC

� + R)−1CPtA� (11)

Φ0(Pt) = APt A� + Q. (12)

We point out that when all the measurements are available, and the Kalman filter reaches its

steady state, the EC is given by the solution of the following algebraic Riccati equation

P = APA� + Q − APC�(CPC� + R)−1CPA�. (13)

Throughout this chapter we use the following notation. For given T ∈ N and 0 ≤ m ≤ 2T − 1,

the symbol ST
m denotes the binary sequence of length T formed by the binary representation

of m. We also use ST
m(i), i = 1, · · · , T to denote the i-th entry of the sequence, i.e.,

ST
m = {ST

m(1), ST
m(2), . . . , ST

m(T)} (14)

and

m =
T

∑
k=1

2k−1ST
m(k). (15)

(Notice that ST
0 denotes a sequence of length T formed exclusively by zeroes.) We use |ST

m| to

denote the number of ones in the sequence ST
m, i.e.,

|ST
m| =

T

∑
k=1

ST
m(k). (16)

For a given sequence ST
m, and a matrix P ∈ Rn×n, we define the map

φ(P, ST
m) = ΦST

m(T) ◦ ΦST
m(T−1) ◦ . . . ΦST

m(1)
(P) (17)

where ◦ denotes the composition of functions (i.e. f ◦ g(x) = f (g(x))). Notice that if m is

chosen so that

ST
m = {γt−1, γt−2, . . . , γt−T}, (18)

then the map φ(·, ST
m) updates Pt−T according to the measurement arrivals in the last T

sampling times, i.e.,

Pt = φ(Pt−T, ST
m) = Φγt−1 ◦ Φγt−1 ◦ . . . Φγt−T(Pt−T). (19)
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3. Bounds for the cumulative distribution function

In this section we present a method to compute lower and upper bounds for the limit CDF

F(x) of the trace of the EC, which is defined by

F(x) = lim
T→∞

FT(x) (20)

FT(x) = P (Tr{PT} < x) (21)

=
2T−1

∑
m=0

P
(

ST
m

)
H
(

x − Tr{φ(P0, ST
m)}

)
, (22)

where H(·) is the Heaviside step function, and the probability to observe the sequence ST
m is

given by

P
(

ST
m

)
= λ|ST

m|(1 − λ)T−|ST
m|. (23)

The basic idea is to start with either the lowest or the highest possible value of EC, and then

evaluate the CDF resulting from each starting value after a given time horizon T. Doing so,

for each T, we obtain a lower bound FT(x) and an upper bound F
T
(x) for F(x), i.e.,

FT(x) ≤ F(x) ≤ F
T
(x), for all T ∈ R. (24)

As we show in Section 3.3, both bounds monotonically approach F(x) as T increases.

To derive these results we make use of the following lemma stating properties of the maps

Φ0(·) and Φ1(·) defined in (11)-(12).

Lemma 3.1. Let X, Y ∈ Rn×n be two positive semi-definite matrices. Then,

Φ1(X) < Φ0(X). (25)

If Y ≥ X,

Φ0(Y) ≥ Φ0(X) (26)

Φ1(Y) ≥ Φ1(X). (27)

Proof: The proof of (25) is direct from (11)-(12). Equation (26) follows straightforwardly since

Φ0(X) is affine in X. Using the matrix inversion lemma, we have that

Φ1(X) = A(X−1 + C�R−1C)−1A� + Q (28)

which shows that Φ1(X) is monotonically increasing with respect to X.

3.1 Upper bounds for the CDF
The smallest possible value of the EC is obtained when all the measurements are available

and the Kalman filter reaches its steady state. In this case, the EC P is given by (13). Now,
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fix T, and suppose that m is such that ST
m = {γT−1, γT−2, . . . , γ0} describes the measurement

arrival sequence. Then, assuming that1 P0 ≥ P , from (26)-(27), it follows that PT ≥ φ(P, ST
m).

Hence, from (22), an upper bound of F(x) is given by

F
T
(x) =

2T−1

∑
m=0

P
�

ST
m

�
H
�

x − Tr{φ(P, ST
m)}

�
. (29)

3.2 Lower bounds for the CDF
A lower bound for the CDF can be obtained using an argument similar to the one we used

above to derive an upper bound. To do this we need to replace in (22) Tr{φ(P0, ST
m)} by an

upper bound of Tr{PT} given the arrival sequence ST
m. To do this we use the following lemma.

Lemma 3.2. Let m be such that ST
m = {γT−1, γT−2, · · · , γ0} and 0 ≤ t1, t2, · · · , tI ≤ T − 1 denote

the indexes where γti
= 1, i = 1, · · · , I. Define

O =

⎡
⎢⎢⎢⎣

CAt1

CAt2

...

CAtI

⎤
⎥⎥⎥⎦ , ΣQ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1−1

∑
j=0

CAjQA�T−t1+j

t2−1

∑
j=0

CAjQA�T−t2+j

...
tI−1

∑
j=0

CAjQA�T−tI+j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

, (30)

and the matrix ΣV ∈ RpI×pI, whose (i, j)-th submatrix [ΣV ]i,j ∈ Rp×p is given by

[ΣV ]i,j =
min{ti ,tj}−1

∑
k=0

CAti−1−kQA�tj−1−kC� + Rδ(i, j) (31)

where

δ(i, j) =

�
1, i = j

0, i �= j.
(32)

If O has full column rank, then

PT ≤ P(ST
m), (33)

where the ST
m-dependant matrix P(ST

m) is given by

P(ST
m) = AT

�
O�Σ−1

V O
�−1

A�T +
T−1

∑
j=0

AjQA�j − AT(Σ
− 1

2
V O)†Σ

− 1
2

V Σ�
Q + (34)

−ΣQΣ
− 1

2
V (Σ

− 1
2

V O)�† A�T − ΣQ

�
Σ−1

V − Σ−1
V O(O�Σ−1

V O)−1O�Σ−1
V

�
Σ�

Q,

with (Σ
− 1

2
V O)† denoting the Moore-Penrose pseudo-inverse of Σ

− 1
2

V O Ben-Israel & Greville (2003).

1 If this assumption does not hold, one can substitute P by P0 without loss of generality.
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Proof: Let YT be the vector formed by the available measurements

YT =
�

y�t1
y�t2

· · · y�tI

��
(35)

= Ox0 + VT , (36)

where

VT =

⎡
⎢⎢⎢⎢⎢⎣

∑t1−1
j=0 CAt1−1−jwj + vt1

∑t2−1
j=0 CAt2−1−jwj + vt2

...

∑tI−1
j=0 CAtI−1−jwj + vtI

⎤
⎥⎥⎥⎥⎥⎦

. (37)

From the model (1), it follows that

�
xT

YT

�
∼ N

��
0

0

�
,

�
Σx ΣxY

Σ�
xY ΣY

��
(38)

where

Σx = ATP0 A�T +
T−1

∑
j=0

AjQA�j (39)

ΣxY = ATP0O� + ΣQ (40)

ΣY = OP0O� + ΣV . (41)

Since the Kalman estimate x̂T at time T is given by,

x̂T = E {xT |YT} , (42)

it follows from (Anderson & Moore, 1979, pp. 39) that the estimation error covariance is given

by

PT = Σx − ΣxYΣ−1
Y Σ�

xY. (43)

Substituting (39)-(41) in (43), we have

PT = ATP0 A�T +
T−1

∑
j=0

AjQA�j + (44)

−
�

ATP0O� + ΣQ

� �
OP0O� + ΣV

�−1
�

ATP0O� + ΣQ

��

= AT
�

P0 − P0O� �OP0O� + ΣV

�−1
O�P0

�
AT +

T−1

∑
j=0

AjQA�j + (45)

−ATP0O� �OP0O� + ΣV

�−1 Σ�
Q − ΣQ

�
OP0O� + ΣV

�−1
O�P0 AT +

−ΣQ

�
OP0O� + ΣV

�−1 Σ�
Q.

Now, from (19),

PT = φ(P0, ST
m). (46)
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Notice that for any P0 we can always find a k such that kIn ≥ P0, where In is the identity

matrix of order n. From the monotonicity of φ(·, ST
m) (Lemma 3.1), it follows that

PT ≤ lim
k→∞

φ(kIn, ST
m). (47)

We then have that

PT ≤ PT,1 + PT,2 + PT,3 + P�
T,3 + PT,4, (48)

with

PT,1 = lim
k→∞

AT
(

kIn − k2O
(
kOO� + ΣV

)−1
O�

)
A�T (49)

PT,2 =
T−1

∑
j=0

AjQA�j

PT,3 = − lim
k→∞

kATO
(
kOO� + ΣV

)−1 Σ�
Q

PT,4 = − lim
k→∞

ΣQ

(
kOO� + ΣV

)−1 Σ�
Q.

Using the matrix inversion lemma, we have that

PT,1 = AT lim
k→∞

(
k−1 In + O�Σ−1

V O
)−1

A�T (50)

= AT
(

O�Σ−1
V O

)−1
A�T. (51)

It is straightforward to see that PT,3 can be written as

PT,3 = − lim
k→∞

ATO�
(

OO� + ΣVk−1
)−1

Σ�
Q (52)

= −AT lim
k→∞

O�Σ
− 1

2
V

(
Σ
− 1

2
V OO�Σ

− 1
2

V + k−1 In

)−1

Σ
− 1

2
V Σ�

Q. (53)

From (Ben-Israel & Greville, 2003, pp. 115), it follows that limk→∞ X�
(
XX� + k−1 In

)
= X†, for

any matrix X. By making X = Σ
− 1

2

V O, we have that

PT,3 = −AT

(
Σ
− 1

2
V O

)†

Σ
− 1

2
V Σ�

Q. (54)

Using the matrix inversion lemma, we have

PT,4 = − lim
k→∞

ΣQ

(
Σ−1

V − Σ−1
V O

(
O�Σ−1

V O + k−1 In

)−1
O�Σ−1

V

)
Σ�

Q (55)

= ΣQ

(
Σ−1

V − Σ−1
V O

(
O�Σ−1

V O
)−1

O�Σ−1
V

)
Σ�

Q

and the result follows by substituting (51), (54) and (55) in (48).
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In order to keep the notation consistent with that of Section 3.1, with some abuse of notation

we introduce the following definition:

φ(∞, ST
m) �

{
P(ST

m), if O has full column rank

∞In, otherwise
(56)

where ∞In is an n × n diagonal matrix with ∞ on every entry of the main diagonal. Then, we

obtain a lower bound for F(x) as follows

FT(x) =
2T−1

∑
m=0

P
(

ST
m

)
H

(
x − Tr{φ(∞, ST

m)}
)

. (57)

3.3 Monotonic approximation of the bounds to F(x)

In this section we show that the bounds FT(x) and F
T
(x) in (24) approach monotonically F(x),

as T tends to infinity. This is stated in the following theorem.

Theorem 3.1. We have that

FT+1(x) ≥ FT(x) (58)

F
T+1

(x) ≤ F
T
(x). (59)

Moreover, the bounds FT(x) and F
T
(x) approach monotonically the true CDF F(x) as T tends to ∞.

Proof: Let ST
m be a sequence of length T. From (17) and Lemma 3.1 and for any P0 > 0, we

have

φ(P0, {ST
m, 0}) = φ(Φ0(P0), ST

m) ≤ φ(∞, ST
m). (60)

From the monotonicity of φ(·, ST
m) and Φ0(·), stated in Lemma 3.1 we have

φ(P0, {ST
m, 0}) = φ(Φ0(P0), ST

m) ≥ φ(P0, ST
m) (61)

which implies that

φ(∞, {ST
m, 0}) ≥ φ(∞, ST

m). (62)

From (60) and (62), we have

φ(∞, {ST
m, 0}) = φ(∞, ST

m). (63)

Also, if the matrix O (defined in Lemma 3.2) resulting from the sequence ST
m has full column

rank, then so has the same matrix resulting from the sequence {ST
m, 1}. This implies that

φ(∞, {ST
m, 1}) ≤ φ(∞, ST

m). (64)

Now, from Lemma 3.1, Φ0(P) ≥ P, and therefore,

φ(P, {ST
m, 0}) = φ(Φ0(P), ST

m) (65)

≥ φ(P, ST
m). (66)
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Also, since Φ1(P) = P, we have that

φ(P, {ST
m, 1}) = φ(φ1(P), ST

m) (67)

= φ(P, ST
m). (68)

Hence, for any binary variable γ, we have that

φ(∞, {ST
m, γ}) ≤ φ(∞, ST

m) (69)

φ(P, {ST
m, γ}) ≥ φ(P, ST

m). (70)

Now notice that the bounds (29) and (57) only differ in the position of the step functions H(·).
Hence, the result follows from (69) and (70).

3.4 Example
Consider the system below, which is taken from Sinopoli et al. (2004),

A =

[
1.25 0

1 1.1

]
C =

[
1

1

]�

Q =

[
20 0

0 20

]
R = 2.5,

(71)

with λ = 0.5. In Figure 1 we show the upper bound F
T
(x) and the lower bound FT(x), for

T = 3, T = 5 and T = 8. We also show an estimate of the true CDF F(x) obtained from a

Monte Carlo simulation using 10, 000 runs. Notice that, as T increases, the bounds become

tighter, and for T = 8, it is hard to distinguish between the lower and the upper bounds.
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4. Bounds for the expected error covariance

In this section we derive upper and lower bounds for the trace G of the asymptotic EEC, i.e.,

G = lim
t→∞

Tr{E{Pt}}. (72)

Since Pt is positive-semidefinite, we have that,

Tr{E{Pt}} =
� ∞

0
(1 − Ft(x))dx. (73)

Hence, 2

G =
� ∞

0
(1 − lim

t→∞
Ft(x))dx (75)

=
� ∞

0
(1 − F(x))dx (76)

4.1 Lower bounds for the EEC
In view of (76), a lower bound for G, can be obtained from an upper bound of F(x). One

such bound is F
T
(x), derived in Section 3.1. A limitation of F

T
(x) is that F

T
(x) = 1, for all

x > φ(P, ST
0 ), hence it is too conservative for large values of x. To go around this, we introduce

an alternative upper bound for F(x), denoted by F�(x).
Our strategy for doing so is to group the sequences ST

m, m = 0, 1, · · · , 2T − 1, according to the

number of consecutive lost measurements at its end. Then, from each group, we only consider

the worst sequence, i.e., the one producing the smallest EEC trace.

Notice that the sequences ST
m with m < 2T−z, 0 ≤ z ≤ T, are those having the last z elements

equal to zero. Then, from (25) and (26), it follows that

arg min
0≤m<2T−z

Tr{φ(X, ST
m)} = 2T−z − 1, (77)

i.e., from all sequences with z zeroes at its end, the one that produces the smallest EEC trace

has its first T − z elements equal to one. Using this, an upper bound for F(x) is given by

F(x) ≤ F�(x) � 1 − (1 − λ)k(x) (78)

where

k(x) =

⎧⎨
⎩

0, x ≤ P

min
�

j : Tr
�

φ(P, S
j
0)
�
> x

�
, x > P.

(79)

2 Following the argument in Theorem 3.1, it can be verified that (1 − Ft(x)) ≤ F(x) with

F(x) =

�
1 x ≤ Tr{P0}

F(x) x > Tr{P0}.
(74)

Hence, using Lebesgue’s dominated convergence theorem, the limit can be exchanged with the integral
whenever

� ∞
0 (1 − F(x))dx < ∞, i.e., whenever the asymptotic EEC is finite.
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We can now use both F
T
(x) and F�(x) to obtain a lower bound GT for G as follows

GT =
∫ ∞

0
1 − min{F

T
(x), F�(x)}dx. (80)

The next lemma states the regions in which each bound is less conservative.

Lemma 4.1. The following properties hold true:

F
T
(x) ≤ F�(x), ∀x ≤ Tr

(
φ(P, ST

0 )
)

(81)

F
T
(x) > F�(x), ∀x > Tr

(
φ(P, ST

0 )
)

. (82)

Proof: Define

Z(i, j) � Tr
(

φ(P, S
j
i)
)

. (83)

To prove (81), notice that F
T
(x) can be written as

F
T
(x) =

2T−1

∑
j=0

j:Z(j,T)≤x

P(ST
j ). (84)

Substituting x = Z(0, K) we have for all 1 < K ≤ T

F
T
(Z(0, K)) =

2T−1

∑
j=0

j:Z(j,T)≤Z(0,K)

P(ST
j ) (85)

= 1 −
2T−1

∑
j=0

j:Z(j,T)>Z(0,K)

P(ST
j ) (86)

Now, notice that the summation in (86) includes, but is not limited to, all the sequences

finishing with K zeroes. Hence

2T−1

∑
j=0

j:Z(j,T)>Z(0,K)

P(ST
j ) ≥ (1 − λ)K (87)

and we have

F
T
(Z(0, K)) ≤ 1 − (1 − λ)K (88)

= F�(Z(0, K)). (89)

Proving (82) is trivial, since F
T
(x) = 1, x > Z(0, T).

We can now present a sequence of lower bounds GT, T ∈ N, for the EEC G. We do so in the

next theorem.
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We can now present a sequence of lower bounds GT, T ∈ N, for the EEC G. We do so in the

next theorem.
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Theorem 4.1. Let Ej, 0 < j ≤ 2T denote the set of numbers Tr
(
φ(P, ST

m)
)
, 0 ≤ m < 2T, arranged

in ascending order, (i.e., Ej = Tr
(

φ(P, ST
mj
)
)

, for some mj, and E1 ≤ E1 ≤ · · · < E2T ). For each

0 < j ≤ 2T, let πj = ∑
mj

k=0 P(ST
k ). Also define E0 = π0 = 0. Then, GT defined in (80) is given by

GT = GT
1 + GT

2 (90)

where

GT
1 =

2T−1

∑
j=0

(1 − πj)(Ej+1 − Ej) (91)

GT
2 =

∞

∑
j=T

(1 − λ)jTr
{

Aj (APA� + Q − P
)

A�j
}

(92)

Moreover, if the following condition holds

max |eig(A)|2(1 − λ) < 1, (93)

and A is diagonalizable, i.e., it can be written as

A = VDV−1, (94)

with D diagonal, then,

GT
2 = Tr{Γ} −

T−1

∑
j=0

(1 − λ)jTr
{

Aj
(

APA� + Q − P
)

A�j
}

(95)

where

Γ �
(

X1/2V �−1 ⊗ V
)

Δ
(

X1/2V �−1 ⊗ V
)�

(96)

X � APA� + Q − P. (97)

Also, the n2 × n2 matrix Δ is such that its i, j-th entry [Δ]i,j is given by

[Δ]i,j �
1

1 − (1 − λ)[
−→
D ]i[

−→
D ]j

, (98)

where
−→
D denotes a column vector formed by stacking the columns of D, i.e.,

−→
D �

[
[D]1,1 · · · [D]n,1 [D]1,2 · · · [D]n,n

]�
(99)

Proof: In view of lemma 4.1, (90) can be written as

GT =
∫ Z(0,T)

0
(1 − F

T
(x))dx +

∫ ∞

Z(0,T)
(1 − F�(x))dx (100)
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Now, F
T
(x) can be written as

F
T
(x) = πi(x), i(x) = max{i : Ei < x}. (101)

In view of (101), it is easy to verify that

� Z(0,T)

0
1 − F

T
(x)dx =

2T

∑
j=1

(1 − πj)(Ej − Ej−1) = GT
1 . (102)

The second term of (90) can be written using the definition of F�(x) as

� ∞

Z(0,T)
1 − F̃(x)dx =

∞

∑
j=T

(1 − λ)j (Z(0, j + 1)− Z(0, j)) (103)

=
∞

∑
j=T

(1 − λ)jTr
�

Aj �APA� + Q − P
�

A�j
�

(104)

= GT
2 . (105)

and (90) follows from (100), (102) and (105).

To show (95), we use Lemma 7.1 (in the Appendix), with b = (1 − λ) and X = APA� + Q − P,

to obtain
∞

∑
j=0

(1 − λ)jTr
�

Aj
�

APA� + Q − P
�

A�j
�
= Tr{Γ}. (106)

The result then follows immediately.

4.2 Upper bounds for the EEC
Using an argument similar to the one in the previous section, we will use lower bounds of the

CDF to derive a family of upper bounds G
T,N

, T ≤ N ∈ N, of G. Notice that, in general, there

exists δ > 0 such that 1 − FT(x) > δ, for all x. Hence, using FT(x) in (76) will result in G being

infinite valued. To avoid this, we will present two alternative lower bounds for F(x), which

we denote by FT,N
� (x) and FN

� (x).
Recall that A ∈ Rn×n, and define

N0 � min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k : rank

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

CAk−1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

= n

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (107)

The lower bounds FT,N
� (x) and FN

� (x) are stated in the following two lemmas.

Lemma 4.2. Let T ≤ N ∈ N, with N0 ≤ T and N satisfying

|SN
m | ≥ N0 ⇒ Tr{φ(∞, SN

m )} < ∞. (108)
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m )} < ∞. (108)

83On the Error Covariance Distribution for Kalman Filters with Packet Dropouts



For each T ≤ n ≤ N, let

P
∗
(n) � max

m:|Sn
m|=N0

φ(∞, Sn
m) (109)

p∗(n) � Tr(P
∗
(n)). (110)

Then, for all p∗(T) ≤ x ≤ p∗(N),
F(x) ≥ FT,N

�
(x), (111)

where, for each T ≤ n < N and all p∗(n) ≤ x ≤ p∗(n + 1),

FT,N
�

(x) = 1 −
N0−1

∑
l=0

λl(1 − λ)n−l n!

l!(n − l)!
. (112)

Remark 4.1. Lemma 4.2 above requires the existence of an integer constant N satisfying (108). Notice

that such constant always exists since (108) is trivially satisfied by N0.

Proof: We first show that, for all T ≤ n < N,

p∗(n) < p∗(n + 1). (113)

To see this, suppose we add a zero at the end of the sequence used to generate p∗(n). Doing

so we have

P
∗
(n) < Φ0

(
P
∗
(n)

)
≤ P

∗
(n + 1). (114)

Now, for a given n, we can obtain a lower bound for Fn(x) by considering in (57) that

Tr(φ(∞, Sn
m)) = ∞, whenever |Sn

m| < N0. Also, from (25) we have that if |Sn
m| ≥ N0,

then Tr(φ(∞, Sn
m)) < p∗(n). Hence, a lower bound for F(x) is given by P(|Sn

m| < N0), for

x ≥ p∗(n).
Finally, the result follows by noting that the probability to observe sequences Sn

m with m such

that |Sn
m| < N0 is given by

P(|Sn
m| < N0) = 1 −

N0−1

∑
l=0

λl(1 − λ)n−l n!

l!(n − l)!
, (115)

since λl(1 − λ)n−l is the probability to receive a given sequence Sn
m with |Sn

m| = l, and the

number of sequences of length n with l ones is given by the binomial coefficient

(
n

l

)
=

n!

l!(n − l)!
. (116)

Lemma 4.3. Let N, P
∗
(N) and p∗(N) be as defined in Lemma 4.2, and let L =

N0−1

∑
n=0

(
N

n

)
. Then,

for all x ≥ p∗(N),
F(x) ≥ FN

� (x), (117)
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where, for each n ∈ N and all φ(P
∗
(N), Sn−1

0 ) ≤ x < φ(P
∗
(N), Sn

0 ),

FN
� (x) = 1 − u�Mnz (118)

with the vectors u, z ∈ RL defined by

u =
�

1 1 · · · 1
��

(119)

z =
�

1 0 · · · 0
��

. (120)

The i, j-th entry of the matrix M ∈ RL×L is given by

[M]i,j =

⎧⎪⎪⎨
⎪⎪⎩

λ, ZN
i = U+(Z

N
j , 1)

1 − λ, ZN
i = U+(ZN

j , 0)

0, otherwise.

(121)

where ZN
m , m = 0, · · · , L − 1 denotes the set of sequences of length N with less than N0 ones, with

ZN
0 = SN

0 , but otherwise arranged in any arbitrary order (i.e.,

|ZN
m | < N0 for all m = 0, · · · , L − 1. (122)

and ZN
m = SN

nm
, for some nm ∈ {0, · · · , 2N − 1}). Also, for γ ∈ {0, 1}, the operation U+(ZT

m, γ) is

defined by

U+(Z
T
m, γ) = {ZT

m(2), ZT
m(3), · · · , ZT

m(T), γ}. (123)

Proof: The proof follows an argument similar to the one used in the proof of Lemma 4.2.

In this case, for each n, we obtain a lower bound for Fn(x) by considering in (57) that

Tr(φ(∞, Sn
m)) = ∞, whenever Sn

m does not contain a subsequence of length N with at least

N0 ones. Also, if Sn
m contains such a subsequence, the resulting EC is smaller that or equal to

φ(∞, {SN
m∗ , Sn

0}) = φ(φ(∞, SN
m∗ ), Sn

0 ) (124)

= φ(P
∗
(N), Sn

0 ), (125)

where SN
m∗ denotes the sequence required to obtain P

∗
(N).

To conclude the proof we need to compute the probability pN,n of receiving a sequence of

length N + n that does not contain a subsequence of length N with at least N0 ones. This is

done in Lemma 7.2 (in the Appendix), where it is shown that

pN,n = u�Mnz. (126)

Now, for a given T and N, we can obtain an upper bound G
T,N

for G using the lower bounds

FT(x), FT,N
� (x) and FN

� (x), as follows

G
T,N

=
� ∞

0
1 − max{FT(x), FT,N

�
(x), FN

� (x)}dx. (127)
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∗
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∗
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Now, for a given T and N, we can obtain an upper bound G
T,N

for G using the lower bounds

FT(x), FT,N
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0
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�
(x), FN

� (x)}dx. (127)
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We do so in the next theorem.

Theorem 4.2. Let T and N be two given positive integers with N0 ≤ T ≤ N and such that for all

0 ≤ m < 2N, |SN
m | ≥ N0 ⇒ φ(∞, SN

m ) < ∞. Let J be the number of sequences such that O(ST
m) has

full column rank. Let E0 � 0 and Ej, 0 < j ≤ J denote the set of numbers Tr
(
φ(∞, ST

m)
)
, 0 < m ≤ J,

arranged in ascending order, (i.e., Ej = Tr
(

φ(∞, ST
mj
)
)

, for some mj, and E0 ≤ E1 ≤ · · · ≤ E f ). For

each 0 ≤ j < J, let πj = ∑
mj

k=0 P(ST
k ), and let M, u and v be as defined as in Lemma 4.3. Then, an

upper bound for the EEC is given by

G ≤ G
T,N

, (128)

where

G
T,N

= Tr(G
T
1 + G

T,N
2 + G

N
3 ), (129)

and

G
T
1 =

J

∑
j=0

(1 − πj)(Ej+1 − Ej) (130)

G
T,N
2 =

N−1

∑
j=T

N0−1

∑
l=0

λl(1 − λ)j−l j!

l!(j − l)!

(
P
∗
(j + 1)− P

∗
(j)

)
(131)

G
N
3 =

∞

∑
j=0

u�MN+jz{Aj(AP
∗
(N)A� + Q − P

∗
(N))A�j}. (132)

Moreover, if A is diagonalizable, i.e.

A = VDV−1, (133)

with D diagonal, and

max |eig(A)|2ρ < 1, (134)

where

ρ = (max |svM|), (135)

then the EEC is finite and

G
N
3 ≤ u�MNzTr(Γ�), (136)

where

Γ� �
(

X1/2V �−1 ⊗ V
)

Δ
(

X1/2V �−1 ⊗ V
)�

(137)

X � APA� + Q − P. (138)

Also, the i, j-th entry [Δ]i,j of the n2 × n2 matrix Δ is given by

[Δ]i,j �

√
2N0 − 1

1 − ρ[
−→
D ]i[

−→
D ]j

. (139)

Proof: First, notice that FT(x) is defined for all x > 0, whereas FT
�
(x) is defined on the range

P
�

(T) < x ≤ P
�

(N) and FT
� (x) on P

�

(N) < x. Now, for all x ≥ p∗(T), we have
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FT(x) = ∑
j:|ST

j |≥N0

P(ST
j ) = 1 −

N0−1

∑
l=0

λl(1 − λ)T−l T!

l!(T − l)!
, (140)

which equals the probability of receiving a sequence of length T with N0 or more ones. Now,

for each integer 1 < n < N − T, and for p∗(T + n) ≤ x < p∗(T + n + 1), FT,N
� (x) represents

the probability of receiving a sequence of length T + n with more than or exactly N0 ones.

Hence, FT,N
� (x) is greater than FT(x) on the range P

�

(T) < x ≤ P
�

(N). Also, FN
� (x) measures

the probability of receiving a sequence of length N with a subsequence of length T with N0 or

more ones. Hence, it is greater than FT(x) on P
�

(N) < x. Therefore, we have that

max{FT(x), FT,N
�

(x), FN
� (x)} =

⎧
⎪⎨
⎪⎩

FT(x), x ≤ p∗(T)

FT,N
� (x), p∗(T) < x ≤ p∗(N)

FN
� (x), p∗(N) < x.

(141)

We will use each of these three bounds to compute each term in (129). To obtain (130), notice

that FT(x) can be written as

FT(x) = πi(x), i(x) = max{i : Ei < x}. (142)

In view of the above, we have that

� p∗(T)

0
(1 − FT(x))dx =

J

∑
j=0

(1 − πj)(Ej+1 − Ej) = G
T
1 . (143)

Using the definition of FT,N
� (x) in (112) we obtain

� p∗(N)

p∗(T)
(1 − FT,N

�
(x))dx =

N−1

∑
j=T

N0−1

∑
l=0

λl(1 − λ)j−l j!

l!(j − l)!

�
P
∗
(j + 1)− P

∗
(j)

�
(144)

= G
T,N
2 . (145)

Similarly, the definition of FN
� (x) in (118) can be used to obtain

� ∞

p∗(N)
(1 − FN

� (x))dx =
∞

∑
j=0

u�MjzTr{Aj(AP
∗
(N)A� + Q − P

∗
(N))A�j} = G

T,N
3 . (146)

To conclude the proof, notice that

uMjz = < u, Mjz > (147)

≤ �u�2�Mjz�2 (148)

≤ �u�2�Mj��z�2 (149)

≤ �u�2�M�j�z�2 (150)

= �u�2(max svM)j�z�2 (151)

=
�

2N0 − 1(max svM)j. (152)

87On the Error Covariance Distribution for Kalman Filters with Packet Dropouts



We do so in the next theorem.
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(
φ(∞, ST

m)
)
, 0 < m ≤ J,
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(

φ(∞, ST
mj
)
)
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T,N
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G
T,N
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T
1 + G

T,N
2 + G

N
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G
T
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J

∑
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G
T,N
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N−1

∑
j=T

N0−1

∑
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λl(1 − λ)j−l j!

l!(j − l)!

(
P
∗
(j + 1)− P

∗
(j)

)
(131)

G
N
3 =

∞

∑
j=0

u�MN+jz{Aj(AP
∗
(N)A� + Q − P

∗
(N))A�j}. (132)
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N
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)

Δ
(

X1/2V �−1 ⊗ V
)�

(137)
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√
2N0 − 1

1 − ρ[
−→
D ]i[

−→
D ]j

. (139)

Proof: First, notice that FT(x) is defined for all x > 0, whereas FT
�
(x) is defined on the range

P
�

(T) < x ≤ P
�

(N) and FT
� (x) on P

�
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where max svM denotes the maximum singular value of M. Then, to obtain (136), we use the

result in Lemma 7.1 (in the Appendix) with b = max svM and X = AP
∗
(N)A�+ Q− P

∗
(N).

5. Examples

In this section we present a numerical comparison of our results with those available in the

literature.

5.1 Bounds on the CDF
In Shi et al. (2010), the bounds of the CDF are given in terms of the probability to observe

missing measurements in a row. Consider the scalar system below, taken from Shi et al. (2010).

A = 1.4, C = 1, Q = 0.2, R = 0.5 (153)

We consider two different measurement arrival probabilities (i.e., λ = 0.5 and λ = 0.8) and

compute the upper and lower bounds for the CDF. We do so using the expressions derived

in Section 3, as well as those given in Shi et al. (2010). We see in Figure 2 how our proposed

bounds are significantly tighter.

5.2 Bounds on the EEC
In this section we compare our proposed EEC bounds with those in Sinopoli et al. (2004)

and Rohr et al. (2010).
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Bound Lower Upper
From Sinopoli et al. (2004) 4.57 11.96

From Rohr et al. (2010) - 10.53

Proposed 10.53 11.14

Table 1. Comparison of EEC bounds using a scalar system.

Bound Lower Upper

From Sinopoli et al. (2004) 2.15 × 104 2.53 × 105

From Rohr et al. (2010) - 1.5 × 105

Proposed 9.54 × 104 3.73 × 105

Table 2. Comparison of EEC bounds using a system with a single unstable eigenvalue.

5.2.1 Scalar example
Consider the scalar system (153) with λ = 0.5. For the lower bound (90) we use T = 14, and

for the upper bound (129) we use T = N = 14. Notice that in the scalar case N0 = 1, that is,

whenever a measurement is received, an upper bound for the EC is promptly available and

using N > T will not give any advantage. Also, for the upper bound in Rohr et al. (2010),

we use a window length of 14 sampling times (notice that no lower bound for the EEC is

proposed in Rohr et al. (2010)).

In Table 1 we compare the bounds resulting from the three works. We see that although the

three upper bounds are roughly similar, our proposed lower bound is significantly tighter

than that resulting from Sinopoli et al. (2004).

5.2.2 Example with single unstable eigenvalue
Consider the following system, taken from Sinopoli et al. (2004), where λ = 0.5 and

A =

⎡
⎣

1.25 1 0

0 0.9 7

0 0 0.6

⎤
⎦ C� =

�
1 0 2

�

R = 2.5 Q = 20I.

(154)

Table 2 compares the same bounds described above, with T = 10 and N = 40. The same

conclusion applies.

6. Conclusion

We considered a Kalman filter for a discrete-time linear system whose output is intermittently

sampled according to an independent sequence of binary random variables. We derived

lower and upper bounds for the CDF of the EC, as well as for the EEC. These bounds can be

made arbitrarily tight, at the expense of increased computational complexity. We presented

numerical examples demonstrating that the proposed bounds are tighter than those derived

using other available methods.
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6. Conclusion

We considered a Kalman filter for a discrete-time linear system whose output is intermittently

sampled according to an independent sequence of binary random variables. We derived

lower and upper bounds for the CDF of the EC, as well as for the EEC. These bounds can be

made arbitrarily tight, at the expense of increased computational complexity. We presented

numerical examples demonstrating that the proposed bounds are tighter than those derived

using other available methods.
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7. Appendix

Lemma 7.1. Let 0 ≤ b ≤ 1 be a scalar, X ∈ Rn×n be a positive-semidefinite matrix and A ∈ Rn×n

be diagonalizable, i.e., it can be written as

A = VDV−1, (155)

with D diagonal. If

max eig(A)2b < 1, (156)

then,

Tr

⎛
⎝ ∞

∑
j=0

bj AjXA�j

⎞
⎠ = Tr(Γ) (157)

where

Γ �
�

X1/2V �−1 ⊗ V
�

Δ
�

X1/2V �−1 ⊗ V
��

(158)

with ⊗ denoting the Kronecker product. The n2 × n2 matrix Δ is such that its i, j-th entry [Δ]i,j is

given by

[Δ]i,j �
1

1 − b[
−→
D ]i[

−→
D ]j

, (159)

where
−→
D denotes a column vector formed by stacking the columns of D, i.e.,

−→
D �

�
[D]1,1 · · · [D]n,1 [D]1,2 · · · [D]n,n

��
. (160)

Proof: For any matrix

B =

⎡
⎢⎢⎢⎣

B1,1 B1,2 . . . B1,n

B2,1 B2,2 . . . B2,n

...
...

. . .
...

Bn,1 Bn,2 . . . Bn,n

⎤
⎥⎥⎥⎦ (161)

with Bi,j ∈ Rn×n, we define the following linear transformation

Dn(B) =
n

∑
j=1

Bj,j. (162)

Now, substituting (155) in (157), and using the vectorization operation −→· defined above we

have

∞

∑
j=0

bj AjXA�j =
∞

∑
j=0

bjVDjV−1X1/2
�

VDjV−1X1/2
��

(163)

=
∞

∑
j=0

Dn

�
bj
−−−−−−−−→
VDjV−1X1/2

�−−−−−−−−→
VDjV−1X1/2

��
�

(164)

= Dn

⎡
⎣�X1/2V �−1 ⊗ V

� ∞

∑
j=0

bj
−→
Dj

−→
Dj �

�
X1/2V �−1 ⊗ V

��
⎤
⎦ , (165)
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where the last equality follows from the property

−−→
ABC = (C� ⊗ A)

−→
B . (166)

Let δi,j denote the i, j-th entry of b
−→
D
−→
D �, and pow(Y, j) denote the matrix obtained after

elevating each entry of Y to the j-th power. Then, if every entry of b
−→
D
−→
D � has magnitude

smaller than one, we have that

⎡
⎣ ∞

∑
j=0

bj
−−→
(D)j

−−→
(D)j �

⎤
⎦

i,j

=

⎡
⎣ ∞

∑
j=0

pow(b
−→
D
−→
D �, j)

⎤
⎦

i,j

(167)

=
1

1 − δi,j
. (168)

where [Y]i,j denotes the i, j-th entry of Y. Notice that
−→
D
−→
D � if formed by the products of the

eigenvalues of A, so the series will converge if and only if

max eig(A)2b < 1. (169)

Putting (168) into (165), we have that

∞

∑
j=0

bj AjXA�j = Dn

��
X1/2V �−1 ⊗ V

�
Δ
�

X1/2V �−1 ⊗ V
���

(170)

= Dn (Γ) (171)

and the result follows since Tr{Dn{Y}} = Tr{Y}.

Lemma 7.2. Let u, z, N0, L and M be as defined in Lemma 4.3. The probability pN,n of receiving

a sequence of length N + n that does not contain a subsequence of length N with at least N0 ones is

given by

pN,n = uMN+nz. (172)

Proof:

Let ZN
m , m = 0, · · · , L − 1, and U+(Z

T
m, γ) be as defined in Lemma (4.3). Also, for each N, t ∈

N, define the random sequence VN
t = {γt, γt−1, · · · , γt−N+1}. Let Wt be the probability

distribution of the sequences ZN
m , i.e.

Wt =

⎡
⎢⎢⎣

P(VN
t = ZN

0 )
P(VN

t = ZN
1 )

· · ·
P(VN

t = ZN
L−1)

⎤
⎥⎥⎦ . (173)

One can write a recursive equation for Wt+1 as

Wt+1 = MWt. (174)
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m, γ) be as defined in Lemma (4.3). Also, for each N, t ∈

N, define the random sequence VN
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Hence, for a given n, the distribution Wn of VN
n is given by

Wn = MnW0. (175)

To obtain the initial distribution W0, we make VN
−N = ZN

0 , which gives

W−N = z. (176)

Then, applying (175), we obtain

W0 = MNz. (177)

Finally, to obtain the probability pN,n, we add all the entries of the vector Wn by

pre-multiplying Wn by u. Doing so, and substituting (177) in (175), we obtain

pN,n = uMN+nz. (178)
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1. Introduction

State estimation plays an important role in any application dealing with modeling of dynamic
systems. In fact, many fields of knowledge use a mathematical representation of a behavior
of interest, such as, but not limited to, engineering (mechanical, electrical, aerospace, civil and
chemical), physics, economics, mathematics and biology Simon (2006).
A typical system dynamics can be represented as a transfer function or using the space-state
approach. The state-space approach is based on the time-evolution of the "states" of the
system, which are considered all the necessary information to represent its dynamic at the
desired point of operation. That is why the knowledge about the states of a model is so
important. However, in real applications there can be two reasons where the states of a system
can not be measured: a) measuring a state implies in the need of a sensor. In order to measure
all the states of a system it will be required a large amount of sensors, making the project
more expensive and sometimes unfeasible. Usually the whole cost includes not only the price
of the sensors, but also modifies the project itself to fix all of them (engineering hours, more
material to buy, a heavier product). b) Some states are impossible to be physically measured
because they are a mathematically useful representation of the system, such as, the attitude
parameterization of an aircraft altitude.
Suppose we have access to all the states of a system. What can we do with them? As the states
contain all the information necessary about the system, one can use them to:
a) Implement a state-feedback controller Simon (2006). Almost in the same time the state
estimation theory was being developed, the optimal control was growing in popularity
mainly because its theory can guarantees closed loop stability margins. However, the
Linear-Quadratic-Gaussian (LQG) control problem (the most fundamental optimal control
problem) requires the knowledge of the states of the model, which motivated the development
of the state estimation for those states that could not be measured in the plant to be controlled.
b) Process monitoring. In this case, the knowledge of the state allows the monitoring of the
system. This is very useful for navigation systems where it is necessary to know the position
and the velocity of a vehicle, for instance, an aircraft or a submarine. In a radar system, this
is its very purpose: keep tracking the position and velocity of all targets of interest in a given
area. For an autonomous robot is very important to know its current position in relation to an
inertial reference in order to keep it moving to its destiny. For a doctor is important to monitor
the concentration of a given medicine in his patient.
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Hence, for a given n, the distribution Wn of VN
n is given by

Wn = MnW0. (175)

To obtain the initial distribution W0, we make VN
−N = ZN

0 , which gives

W−N = z. (176)

Then, applying (175), we obtain

W0 = MNz. (177)

Finally, to obtain the probability pN,n, we add all the entries of the vector Wn by

pre-multiplying Wn by u. Doing so, and substituting (177) in (175), we obtain

pN,n = uMN+nz. (178)
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1. Introduction

State estimation plays an important role in any application dealing with modeling of dynamic
systems. In fact, many fields of knowledge use a mathematical representation of a behavior
of interest, such as, but not limited to, engineering (mechanical, electrical, aerospace, civil and
chemical), physics, economics, mathematics and biology Simon (2006).
A typical system dynamics can be represented as a transfer function or using the space-state
approach. The state-space approach is based on the time-evolution of the "states" of the
system, which are considered all the necessary information to represent its dynamic at the
desired point of operation. That is why the knowledge about the states of a model is so
important. However, in real applications there can be two reasons where the states of a system
can not be measured: a) measuring a state implies in the need of a sensor. In order to measure
all the states of a system it will be required a large amount of sensors, making the project
more expensive and sometimes unfeasible. Usually the whole cost includes not only the price
of the sensors, but also modifies the project itself to fix all of them (engineering hours, more
material to buy, a heavier product). b) Some states are impossible to be physically measured
because they are a mathematically useful representation of the system, such as, the attitude
parameterization of an aircraft altitude.
Suppose we have access to all the states of a system. What can we do with them? As the states
contain all the information necessary about the system, one can use them to:
a) Implement a state-feedback controller Simon (2006). Almost in the same time the state
estimation theory was being developed, the optimal control was growing in popularity
mainly because its theory can guarantees closed loop stability margins. However, the
Linear-Quadratic-Gaussian (LQG) control problem (the most fundamental optimal control
problem) requires the knowledge of the states of the model, which motivated the development
of the state estimation for those states that could not be measured in the plant to be controlled.
b) Process monitoring. In this case, the knowledge of the state allows the monitoring of the
system. This is very useful for navigation systems where it is necessary to know the position
and the velocity of a vehicle, for instance, an aircraft or a submarine. In a radar system, this
is its very purpose: keep tracking the position and velocity of all targets of interest in a given
area. For an autonomous robot is very important to know its current position in relation to an
inertial reference in order to keep it moving to its destiny. For a doctor is important to monitor
the concentration of a given medicine in his patient.
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c) Process optimization. Once it is possible to monitor the system, the natural consequence
is to make it work better. An actual application is the next generation of smart planes.
Based on the current position and velocity of a set of aircraft, it is possible to a computer
to better schedule arrivals, departures and routes in order to minimize the flight time, which
also considers the waiting time for a slot in an airport to land the aircraft. Reducing the
flight time means less fuel consumed, reducing the operation costs for the company and the
environmental cost for the planet. Another application is based on the knowledge of the
position and velocities of cell phones in a network, allowing an improved handover process
(the process of transferring an ongoing call or data session from one channel connected to
the core network to another), implying in a better connection for the user and smart network
resource utilization.
d) Fault detection and prognostics. This is another immediate consequence of process
monitoring. For example, suppose we are monitoring the current of an electrical actuator.
In the case this current drops below a certain threshold we can conclude that the actuator
is not working properly anymore. We have just detected a failure and a warning message
can be sent automatically. In military application, this is essentially important when a system
can be damaged by exterior reasons. Based on the knowledge of a failure occurrence, it is
possible to switch the controller in order to try to overcome the failures. For instance, some
aircraft prototypes were still able to fly and land after losing 60% of its wing. Thinking about
the actuator system, but in a prognostics approach, we can monitor its current and note that
it is dropping along the time. Usually, this is not an abrupt process: it takes so time to the
current drop below its acceptable threshold. Based on the decreasing rate of the current, one
is able to estimate when the actuator will stop working, and then replace it before it fails.
This information is very important when we think about the safety of a system, preventing
accidents in cars, aircrafts and other critical systems.
e) Reduce noise effect. Even in cases where the states are measured directly, state estimation
schemes can be useful to reduce noise effect Anderson & Moore (1979). For example,
a telecommunication engineer wants to know the frequency and the amplitude of a sine
wave received at his antenna. The environment and the hardware used may introduce
some perturbations that disturb the sin wave, making the required measures imprecise. A
state-state model of a sine wave and the estimation of its state can improve precision of the
amplitude and frequency estimations.
When the states are not directly available, the above applications can still be performed
by using estimates of the states. The most famous algorithm for state estimation is the
Kalman filter Kalman (1960). It was initially developed in the 1960s and achieved a wide
success to aerospace applications. Due its generic formulation, the same estimation theory
could be applied to other practical fields, such as meteorology and economics, achieving
the same success as in the aerospace industry. At our present time, the Kalman filter is the
most popular algorithm to estimate the states of a system. Although its great success, there
are some situations where the Kalman filter does not achieve good performance Ghaoui &
Clafiore (2001). The advances of technology lead to smaller and more sensible components.
The degradation of these component became more often and remarkable. Also, the number
and complexity of these components kept growing in the systems, making more and more
difficult to model them all. Even if possible, it became unfeasible to simulate the system with
these amounts of details. For these reasons (lack of dynamics modeling and more remarkable
parameters changes), it became hard to provide the accurate models assumed by the Kalman.
Also, in a lot of applications, it is not easy to obtain the required statistic information about
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noises and perturbations affecting the system. A new theory capable to deal with plant
uncertainties was required, leading robust extensions of the Kalman filter. This new theory is
referred as robust estimationGhaoui & Clafiore (2001).
This chapter presents a robust prediction algorithm used to perform the state estimation of
discrete time systems. The first part of the chapter describes how to model an uncertain
system. In the following, the chapter presents the new robust technique used when dealing
with linear inaccurate models. A numerical example is given to illustrate the advantages of
using a robust estimator when dealing with an uncertain system.

2. State Estimation

The Estimation Theory was developed to solve the following problem: given the values of
a observed signal though time, 1 also known as measured signal, we require to estimate
(smooth, correct or predict) the values of another signal that cannot be accessed directly or
it is corrupted by noise or external perturbation.
The first step is to establish a relationship (or a model) between the measured and the
estimated signal. Then we shall to define the criteria we will use to evaluate the model. In this
sense, it is important to choose a criteria that is compatible with the model. The estimation is
shown briefly at Figure 1.

Fig. 1. Block diagram representing the estimation problem.

At Figure 1, we wish to estimate signal x. The signal y are the measured values from the plant.
The signal w indicate an unknown input signal and it is usually represented by an stochastic
behavior with known statistical properties. The estimation problem is about designing an
algorithm that is able to provide x̂, using the measures y, that are close of x for several
realizations of y. This same problem can also be classically formulated as a minimization
of the estimation error variance. At the figure, the error is represented by e and can be defined
as x̂ minus x. When we are dealing with a robust approach, our concern is to minimize an
upper for the error variance as will be explained later on this chapter.
The following notation will be used along this chapter: Rn represents the n-dimensional
Euclidean space, �n×m is the set of real n×m matrices, E {•} denotes the expectation operator,
cov {•} stands for the covariance, Z† represents the pseudo-inverse of the matrix Z, diag {•}
stands for a block-diagonal matrix.

3. Uncertain system modeling

The following discrete-time model is a representation of a linear uncertain plant:

xk+1 = AΔ,kxk + w̃k, (1)

yk = CΔ,kxk + ṽk, (2)

1 Signal here is used to define a data vector or a data set.
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e) Reduce noise effect. Even in cases where the states are measured directly, state estimation
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wave received at his antenna. The environment and the hardware used may introduce
some perturbations that disturb the sin wave, making the required measures imprecise. A
state-state model of a sine wave and the estimation of its state can improve precision of the
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When the states are not directly available, the above applications can still be performed
by using estimates of the states. The most famous algorithm for state estimation is the
Kalman filter Kalman (1960). It was initially developed in the 1960s and achieved a wide
success to aerospace applications. Due its generic formulation, the same estimation theory
could be applied to other practical fields, such as meteorology and economics, achieving
the same success as in the aerospace industry. At our present time, the Kalman filter is the
most popular algorithm to estimate the states of a system. Although its great success, there
are some situations where the Kalman filter does not achieve good performance Ghaoui &
Clafiore (2001). The advances of technology lead to smaller and more sensible components.
The degradation of these component became more often and remarkable. Also, the number
and complexity of these components kept growing in the systems, making more and more
difficult to model them all. Even if possible, it became unfeasible to simulate the system with
these amounts of details. For these reasons (lack of dynamics modeling and more remarkable
parameters changes), it became hard to provide the accurate models assumed by the Kalman.
Also, in a lot of applications, it is not easy to obtain the required statistic information about
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uncertainties was required, leading robust extensions of the Kalman filter. This new theory is
referred as robust estimationGhaoui & Clafiore (2001).
This chapter presents a robust prediction algorithm used to perform the state estimation of
discrete time systems. The first part of the chapter describes how to model an uncertain
system. In the following, the chapter presents the new robust technique used when dealing
with linear inaccurate models. A numerical example is given to illustrate the advantages of
using a robust estimator when dealing with an uncertain system.

2. State Estimation

The Estimation Theory was developed to solve the following problem: given the values of
a observed signal though time, 1 also known as measured signal, we require to estimate
(smooth, correct or predict) the values of another signal that cannot be accessed directly or
it is corrupted by noise or external perturbation.
The first step is to establish a relationship (or a model) between the measured and the
estimated signal. Then we shall to define the criteria we will use to evaluate the model. In this
sense, it is important to choose a criteria that is compatible with the model. The estimation is
shown briefly at Figure 1.
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At Figure 1, we wish to estimate signal x. The signal y are the measured values from the plant.
The signal w indicate an unknown input signal and it is usually represented by an stochastic
behavior with known statistical properties. The estimation problem is about designing an
algorithm that is able to provide x̂, using the measures y, that are close of x for several
realizations of y. This same problem can also be classically formulated as a minimization
of the estimation error variance. At the figure, the error is represented by e and can be defined
as x̂ minus x. When we are dealing with a robust approach, our concern is to minimize an
upper for the error variance as will be explained later on this chapter.
The following notation will be used along this chapter: Rn represents the n-dimensional
Euclidean space, �n×m is the set of real n×m matrices, E {•} denotes the expectation operator,
cov {•} stands for the covariance, Z† represents the pseudo-inverse of the matrix Z, diag {•}
stands for a block-diagonal matrix.

3. Uncertain system modeling

The following discrete-time model is a representation of a linear uncertain plant:

xk+1 = AΔ,kxk + w̃k, (1)

yk = CΔ,kxk + ṽk, (2)

1 Signal here is used to define a data vector or a data set.

95Kalman Filtering for Discrete Time Uncertain Systems



4 Discrete Time Systems

where xk ∈ Rnx is the state vector, yk ∈ Rny stands for the output vector and �wk ∈ Rnx

and �vk ∈ Rny are the output and measurement noises respectively. The uncertainties are
characterized as:

1. Additive uncertainties at the dynamic represented as AΔ,k = Ak + ΔAk, where Ak is the
known, or expected, dynamic matrix and ΔAk is the associated uncertainty.

2. Additive uncertainties at the output equation represented as CΔ,k = Ck + ΔCk, where Ck is
the known output matrix and ΔCk characterizes its uncertainty.

3. Uncertainties at the mean, covariance and cross-covariance of the noises �wk and �vk. We
assume that the initial conditions {x0} and the noises { �wk, �vk} are uncorrelated with the
statistical properties
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where �Wk, �Vk and X0 denotes the noises and initial state covariance matrices, �Sk is the cross
covariance and δkj is the Kronecker delta function.
Although the exact values of the means and of the covariances are unknown, it is assumed
that they are within a known set. The notation at (5) will be used to represent the covariances
sets.

�Wk ∈ Wk, �Vk ∈ Vk, �Sk ∈ Sk. (5)

In the next sub section, it will be presented how to characterize a system with uncertain
covariance as a system with known covariance, but with uncertain parameters.

3.1 The noises means and covariances spaces
In this sub section, we will analyze some features of the noises uncertainties. The approach
shown above considered correlated �wk and �vk with unknown mean, covariance and cross
covariance, but within a known set. As will be shown later on, these properties can be
achieved when we define the following noises structures:

�wk := BΔw,kwk + BΔv,kvk, (6)

�vk := DΔw,kwk + DΔv,kvk. (7)

Also here we assume that the initial conditions {x0} and the noises {wk} , {vk} are
uncorrelated with the statistical properties
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where Wk, Vk and X0 denotes the noises and initial state covariance matrices and Sk stands for
the cross covariance matrix of the noises.
Therefore using the properties (8) and (9) and the noises definitions (6) and (7), we can note
that the noises �wk and �vk have uncertain mean given by

E { �wk} = BΔw,kwk + BΔv,kvk, (10)

E {�vk} = DΔw,kwk + DΔv,kvk. (11)

Their covariances are also uncertain and given by

E

⎧⎪⎨
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� �wk − E { �wk}
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Using the descriptions (6) and (7) for the noises, we obtain
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�T
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The notation at (13) is able to represent noises with the desired properties of uncertain
covariance and cross covariance. However we can consider some simplifications and achieve
the same properties. There are two possible ways to simplify equation (13):

1. Set
�

BΔw,k BΔv,k
DΔw,k DΔv,k

�
=

�
BΔw,k 0

0 DΔv,k

�
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In this case, the covariance matrices can be represented as
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2. The other approach is to consider
�
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�
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In this case, the covariance matrices are given by
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(17)

So far we did not make any assumption about the structure of noises uncertainties at (6)
and (7). As we did for the dynamic and the output matrices, it will be assumed additive
uncertainties for the structure of the noises such as

BΔw,k := Bw,k + ΔBw,k, BΔv,k := Bv,k + ΔBv,k, (18)

DΔw,k := Dw,k + ΔDw,k, DΔv,k := Dv,k + ΔDv,k, (19)
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where xk ∈ Rnx is the state vector, yk ∈ Rny stands for the output vector and �wk ∈ Rnx

and �vk ∈ Rny are the output and measurement noises respectively. The uncertainties are
characterized as:

1. Additive uncertainties at the dynamic represented as AΔ,k = Ak + ΔAk, where Ak is the
known, or expected, dynamic matrix and ΔAk is the associated uncertainty.

2. Additive uncertainties at the output equation represented as CΔ,k = Ck + ΔCk, where Ck is
the known output matrix and ΔCk characterizes its uncertainty.

3. Uncertainties at the mean, covariance and cross-covariance of the noises �wk and �vk. We
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where �Wk, �Vk and X0 denotes the noises and initial state covariance matrices, �Sk is the cross
covariance and δkj is the Kronecker delta function.
Although the exact values of the means and of the covariances are unknown, it is assumed
that they are within a known set. The notation at (5) will be used to represent the covariances
sets.

�Wk ∈ Wk, �Vk ∈ Vk, �Sk ∈ Sk. (5)

In the next sub section, it will be presented how to characterize a system with uncertain
covariance as a system with known covariance, but with uncertain parameters.

3.1 The noises means and covariances spaces
In this sub section, we will analyze some features of the noises uncertainties. The approach
shown above considered correlated �wk and �vk with unknown mean, covariance and cross
covariance, but within a known set. As will be shown later on, these properties can be
achieved when we define the following noises structures:

�wk := BΔw,kwk + BΔv,kvk, (6)

�vk := DΔw,kwk + DΔv,kvk. (7)

Also here we assume that the initial conditions {x0} and the noises {wk} , {vk} are
uncorrelated with the statistical properties
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where Wk, Vk and X0 denotes the noises and initial state covariance matrices and Sk stands for
the cross covariance matrix of the noises.
Therefore using the properties (8) and (9) and the noises definitions (6) and (7), we can note
that the noises �wk and �vk have uncertain mean given by

E { �wk} = BΔw,kwk + BΔv,kvk, (10)

E {�vk} = DΔw,kwk + DΔv,kvk. (11)

Their covariances are also uncertain and given by

E

⎧⎪⎨
⎪⎩

� �wk − E { �wk}
�vk − E {�vk}

� ⎡
⎣ �wj − E

�
�wj

�

�vj − E
�
�vj

�
⎤
⎦

T
⎫⎪⎬
⎪⎭

=

� �Wkδkj �Skδkj
�ST

k δkj �Vkδkj

�
. (12)

Using the descriptions (6) and (7) for the noises, we obtain
� �Wkδkj �Skδkj
�ST

k δkj �Vkδkj

�
=

�
BΔw,k BΔv,k
DΔw,k DΔv,k

� �
Wkδkj Skδkj
ST

k δkj Vkδkj

� �
BΔw,k BΔv,k
DΔw,k DΔv,k

�T
. (13)

The notation at (13) is able to represent noises with the desired properties of uncertain
covariance and cross covariance. However we can consider some simplifications and achieve
the same properties. There are two possible ways to simplify equation (13):

1. Set
�

BΔw,k BΔv,k
DΔw,k DΔv,k

�
=

�
BΔw,k 0

0 DΔv,k

�
. (14)

In this case, the covariance matrices can be represented as
� �Wkδkj �Skδkj
�ST

k δkj �Vkδkj

�
=

�
BΔw,kWkBT

Δw,k BΔw,kSkDT
Δv,k

DΔv,kST
k BT

Δw,k DΔv,kVkDT
Δv,k

�
δkj. (15)

2. The other approach is to consider
�

Wkδkj Skδkj
ST

k δkj Vkδkj

�
=

�
Wkδkj 0

0 Vkδkj

�
. (16)

In this case, the covariance matrices are given by
� �Wkδkj �Skδkj
�ST

k δkj �Vkδkj

�
=

�
BΔw,kWkBT

Δw,k + BΔv,kVkBT
Δv,k BΔw,kWkDT

Δw,k + BΔv,kVkDT
Δv,k

DΔw,kWkBT
Δw,k + DΔv,kVkBT

Δv,k DΔw,kWkDT
Δw,k + DΔv,kVkDT

Δv,k

�
δkj.

(17)

So far we did not make any assumption about the structure of noises uncertainties at (6)
and (7). As we did for the dynamic and the output matrices, it will be assumed additive
uncertainties for the structure of the noises such as

BΔw,k := Bw,k + ΔBw,k, BΔv,k := Bv,k + ΔBv,k, (18)

DΔw,k := Dw,k + ΔDw,k, DΔv,k := Dv,k + ΔDv,k, (19)
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where Bw,k, Bv,k, Dw,k and Dv,k denote the nominal matrices. Their uncertainties are
represented by ΔBw,k, ΔBv,k, ΔDw,k and ΔDv,k respectively. Using the structures (18)-(19) for
the uncertainties, then we are able to obtain the following representation

w̃k =
(

Bw,k + ΔBw,k
)

wk +
(

Bv,k + ΔBv,k
)

vk, (20)

ṽk =
(

Dw,k + ΔDw,k
)

wk +
(

Dv,k + ΔDv,k
)

vk. (21)

In this case, we can note that the mean of the noises depend on the uncertain parameters of
the model. The same applies to the covariance matrix.

4. Linear robust estimation

4.1 Describing the model
Consider the following class of uncertain systems presented at (1)-(2):

xk+1 = (Ak + ΔAk) xk + w̃k, (22)

yk = (Ck + ΔCk) xk + ṽk, (23)

where xk ∈ Rnx is the state vector, yk ∈ Rny is the output vector and w̃k ∈ Rnx and ṽk ∈
Rny are noise signals. It is assumed that the noise signals w̃k and ṽk are correlated and their
time-variant mean, covariance and cross-covariance are uncertain but within known bounded
sets. We assume that these known sets are described as presented previously at (20)-(21) with
the same statistical properties as (8)-(9).
Using the noise modeling (20) and (21), the system (22)-(23) can be written as

xk+1 = (Ak + ΔAk) xk +
(

Bw,k + ΔBw,k
)

wk +
(

Bv,k + ΔBv,k
)

vk, (24)

yk = (Ck + ΔCk) xk +
(

Dw,k + ΔDw,k
)

wk +
(

Dv,k + ΔDv,k
)

vk. (25)

The dimensions are shown at Table (1).

Matrix or vector Set
xk Rnx

yk Rny

wk Rnw

vk Rnv

Ak Rnx×nx

Bw,k Rnx×nw

Bv,k Rnx×nv

Ck Rny×nx

Dw,k Rny×nw

Dv,k Rny×nv

Table 1. Matrices and vectors dimensions.

The model (24)-(25) with direct feedthrough is equivalent to one with only one noise vector at
the state and output equations and that wk and vk could have cross-covariance Anderson &
Moore (1979). However, we have preferred to use the redundant noise representation (20)-(21)
with wk and vk uncorrelated in order to get a more accurate upper bound for the predictor
covariance error. The nominal matrices Ak, Bw,k, Bv,k, Ck, Dw,k and Dv,k are known and the
matrices ΔAk, ΔBw,k, ΔBv,k, ΔCk, ΔDw,k and ΔDv,k represent the associated uncertainties.
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The only assumptions we made on the uncertainties is that they are additive and are within
a known set. In order to proceed the analysis it is necessary more information about the
uncertainties. Usually the uncertainties are assumed norm bounded or within a polytope. The
second approach requires more complex analysis, although the norm bounded set is within
the set represented by a polytope.
In this chapter, it will be considered norm bounded uncertainties. For the general case, each
uncertainty of the system can be represented as

ΔAk := HA,kFA,kGA,k, (26)

ΔBw,k := HBw,kFBw,kGBw,k, (27)

ΔBv,k := HBv,kFBv,kGBv,k, (28)

ΔCk := HC,kFC,kGC,k, (29)

ΔDw,k := HDw,kFDw,kGDw,k, (30)

ΔDv,k := HDv,kFDv,kGDv,k. (31)

where HA,k, HBw,k, HBv,k, HC,k, HDw,k, HDv,k, Gx,k, Gw,k and Gv,k are known. The matrices
FA,k, FBw,k, FBv,k, FC,k, FDw,k and FDv,k are unknown, time varying and norm-bounded, i.e.,

FT
A,kFA,k ≤ I, FT

Bw,kFBw,k ≤ I, FT
Bv,kFBv,k ≤ I, FT

C,kFC,k ≤ I, FT
Dw,kFDw,k ≤ I, FT

Dv,kFDv,k ≤ I.

(32)

These uncertainties can also be represented at a matrix format as
�

ΔAk ΔBw,k ΔBv,k
ΔCk ΔDw,k ΔDv,k

�

=

�
HA,kFA,kGA,k HBw,kFBw,kGBw,k HBv,kFBv,kGBv,k
HC,kFC,kGC,k HDw,kFDw,kGDw,k HDv,kFDv,kGDv,k

�

=

�
HA,k HBw,k HBv,k 0 0 0

0 0 0 HC,k HDw,k HDv,k

�

× diag
�

FA,k, FBw,k, FBv,k, FC,k, FDw,k, FDv,k
�

⎡
⎢⎢⎢⎢⎢⎢⎣

GA,k 0 0
0 GBw,k 0
0 0 GBv,k

GC,k 0 0
0 GDw,k 0
0 0 GDv,k

⎤
⎥⎥⎥⎥⎥⎥⎦

. (33)

However, there is another way to represent distinct uncertainties for each matrix by the
appropriate choice of the matrices H as follows

�
ΔAk
ΔCk

�
:=

�
HA,k
HC,k

�
Fx,kGx,k (34)

�
ΔBw,k
ΔDw,k

�
:=

�
HBw,k
HDw,k

�
Fw,kGw,k (35)

�
ΔBv,k
ΔDv,k

�
:=

�
HBv,k
HDv,k

�
Fv,kGv,k, (36)
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The model (24)-(25) with direct feedthrough is equivalent to one with only one noise vector at
the state and output equations and that wk and vk could have cross-covariance Anderson &
Moore (1979). However, we have preferred to use the redundant noise representation (20)-(21)
with wk and vk uncorrelated in order to get a more accurate upper bound for the predictor
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uncertainties. Usually the uncertainties are assumed norm bounded or within a polytope. The
second approach requires more complex analysis, although the norm bounded set is within
the set represented by a polytope.
In this chapter, it will be considered norm bounded uncertainties. For the general case, each
uncertainty of the system can be represented as
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FT
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0 GDw,k 0
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. (33)

However, there is another way to represent distinct uncertainties for each matrix by the
appropriate choice of the matrices H as follows
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ΔAk
ΔCk
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:=
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HC,k
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Fx,kGx,k (34)
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ΔBw,k
ΔDw,k

�
:=
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HBw,k
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where the matrices Fx,k, Fw,k and Fv,k of dimensions rx,k × sx,k, rw,k × sw,k, rv,k × sv,k are
unknown and norm-bounded, ∀k ∈ [0, N], i.e.,

FT
x,kFx,k ≤ I, FT

w,kFw,k ≤ I, FT
v,kFv,k ≤ I. (37)

Rewriting the uncertainties into a matrix structure, we obtain
�

ΔAk ΔBw,k ΔBv,k
ΔCk ΔDw,k ΔDv,k

�
=

�
HA,kFx,kGx,k HBw,kFw,kGw,k HBv,kFv,kGv,k
HC,kFx,kGx,k HDw,kFw,kGw,k HDv,kFv,kGv,k

�

=

�
HA,k HBw,k HBv,k
HC,k HDw,k HDv,k

� ⎡
⎣

Fx,k 0 0
0 Fw,k 0
0 0 Fv,k

⎤
⎦
⎡
⎣

Gx,k 0 0
0 Gw,k 0
0 0 Gv,k

⎤
⎦ . (38)

Our goal is to design a finite horizon robust predictor for state estimation of the uncertain
system described by (24)-(37). We consider predictors with the following structure

�x0|−1 = x0, (39)

�xk+1|k = Φk�xk|k−1 + Bw,kwk + Bv,kvk + Kk

�
yk − Ck�xk|k−1 − Dw,kwk − Dv,kvk

�
. (40)

The predictor is intended to ensure an upper limit in the error estimation variance. In other

words, we seek a sequence of non-negative definite matrices
�

Pk+1|k
�

that, for all allowed
uncertainties, satisfy for each k

cov
�

ek+1|k
�
≤ Pk+1|k, (41)

where ek+1|k = xk+1 − �xk+1|k. The matrices Φk and Kk are time-varying and shall be
determined in such way that the upper bound Pk+1|k is minimized.

4.2 A robust estimation solution
At this part, we shall choose an augmented state vector. There are normally found two options
are found in the literature:

x̃k :=
�

xk
�xk|k−1

�
, x̃k :=

�
xk − �xk|k−1

�xk|k−1

�
. (42)

One can note that there is a similarity transformation between both vectors. This
transformation matrix and its inverse are given by

T =

�
I I
0 I

�
, T−1 =

�
I −I
0 I

�
. (43)

Using the system definition (24)-(25) and the structure of the estimator in (40) then we define
an augmented system as

�xk+1 =
� �Ak + �Hx,kFx,k �Gx,k

�
�xk +

��Bk + �Hw,kFw,kGw,k

�
wk +

�Bkwk

+
� �Dk + �Hv,kFv,kGv,k

�
vk +

�Dkvk, (44)
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where

D̃k =

[
Bv,k

KkDv,k

]
, H̃v,k =

[
HBv,k

Kk HDv,k

]
, G̃x,k =

[
Gx,k 0

]
,

B̃k =

[
Bw,k

KkDw,k

]
, H̃w,k =

[
HBw,k

Kk HDw,k

]
, x̃k =

[
xk

x̂k|k−1

]
,

Ãk =

[
Ak 0

KkCk Φk − KkCk

]
, H̃x,k =

[
HA,k

Kk HC,k

]
,

B̃k =

[
0

Bw,k − KkDw,k

]
, D̃k =

[
0

Bv,k − KkDv,k

]
. (45)

Consider P̃k+1|k = cov {x̃k+1}. The next lemma give us an upper bound for the covariance
matrix of the augmented system (44).
Lemma 1. An upper limit for the covariance matrix of the augmented system (44) is given by
P0|−1 = diag {X0, 0} and

Pk+1|k = ÃkPk|k−1 ÃT
k + B̃kWc,k B̃T

k + D̃kVc,kD̃T
k

+ ÃkPk|k−1G̃T
x,k

(
α−1

x,k I − G̃x,kPk|k−1G̃T
x,k

)−1
G̃x,kPk|k−1 ÃT

k

+ α−1
x,k H̃x,k H̃T

x,k + α−1
w,k H̃w,k H̃T

w,k + α−1
v,k H̃v,k H̃T

v,k, (46)

where α−1
x,k , α−1

w,k and α−1
v,k satisfy

α−1
x,k I − G̃x,kPk|k−1G̃T

x,k > 0, (47)

α−1
w,k I − Gw,kWkGT

w,k > 0, (48)

α−1
v,k I − Gv,kVkGT

v,k > 0. (49)

Proof : Since x̃k, wk and vk are uncorrelated signals, and using (8), (9), (39) and (44), it is
straightforward that P̃0|−1 = diag {X0, 0} and

P̃k+1|k =
(

Ãk + H̃x,kFx,kG̃x,k

)
P̃k|k−1

(
Ãk + H̃x,kFx,kG̃x,k

)T

+
(

B̃k + H̃w,kFw,kGw,k

)
Wk

(
B̃k + H̃w,kFw,kGw,k

)T

+
(

D̃k + H̃v,kFv,kGv,k

)
Vk

(
D̃k + H̃v,kFv,kGv,k

)T
.

Choose scaling parameters α−1
x,k , α−1

w,k and α−1
v,k satisfying (47)-(49). Using Lemma 2 of Wang

et al. (1999) and Lemma 3.2 of Theodor & Shaked (1996), we have that the sequence
{

Pk+1|k
}

given by (46) is such that P̃k+1|k ≤ Pk+1|k for all instants k. QED.
Replacing the augmented matrices (45) into (46), the upper bound Pk+1|k can be partitioned as

Pk+1|k =

[
P11,k+1|k P12,k+1|k
PT

12,k+1|k P22,k+1|k

]
, (50)
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Pk+1|k = ÃkPk|k−1 ÃT
k + B̃kWc,k B̃T

k + D̃kVc,kD̃T
k

+ ÃkPk|k−1G̃T
x,k

(
α−1

x,k I − G̃x,kPk|k−1G̃T
x,k

)−1
G̃x,kPk|k−1 ÃT

k

+ α−1
x,k H̃x,k H̃T

x,k + α−1
w,k H̃w,k H̃T

w,k + α−1
v,k H̃v,k H̃T

v,k, (46)

where α−1
x,k , α−1

w,k and α−1
v,k satisfy

α−1
x,k I − G̃x,kPk|k−1G̃T

x,k > 0, (47)

α−1
w,k I − Gw,kWkGT

w,k > 0, (48)

α−1
v,k I − Gv,kVkGT

v,k > 0. (49)

Proof : Since x̃k, wk and vk are uncorrelated signals, and using (8), (9), (39) and (44), it is
straightforward that P̃0|−1 = diag {X0, 0} and

P̃k+1|k =
(

Ãk + H̃x,kFx,kG̃x,k

)
P̃k|k−1

(
Ãk + H̃x,kFx,kG̃x,k

)T

+
(

B̃k + H̃w,kFw,kGw,k

)
Wk

(
B̃k + H̃w,kFw,kGw,k

)T

+
(

D̃k + H̃v,kFv,kGv,k

)
Vk

(
D̃k + H̃v,kFv,kGv,k

)T
.

Choose scaling parameters α−1
x,k , α−1

w,k and α−1
v,k satisfying (47)-(49). Using Lemma 2 of Wang

et al. (1999) and Lemma 3.2 of Theodor & Shaked (1996), we have that the sequence
{

Pk+1|k
}

given by (46) is such that P̃k+1|k ≤ Pk+1|k for all instants k. QED.
Replacing the augmented matrices (45) into (46), the upper bound Pk+1|k can be partitioned as

Pk+1|k =

[
P11,k+1|k P12,k+1|k
PT

12,k+1|k P22,k+1|k

]
, (50)
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where, using the definitions presented in Step 1 of Table 2, we obtain

P11,k+1|k = AkP11c,k AT
k + BkUc,kBT

k + Δ3,k, (51)

P12,k+1|k = AkP12c,kΦT
k + AkS1,kCT

k KT
k +

(
BkUc,kDT

k + Δ1,k

)
KT

k , (52)

P22,k+1|k = ΦkP22c,kΦT
k + KkCkS2,kΦT

k + ΦkST
2,kCT

k KT
k

+ Kk

(
CkS3,kCT

k + DkUc,kDT
k + Δ2,k

)
KT

k (53)

with

Uc,k :=
[

Wc,k 0
0 Vc,k

]
, (54)

Δ1,k := α−1
x,k HA,k HT

C,k + α−1
w,k HBw,k HT

Dw,k + α−1
v,k HBv,k HT

Dv,k, (55)

Δ2,k := α−1
x,k HC,k HT

C,k + α−1
w,k HDw,k HT

Dw,k + α−1
v,k HDv,k HT

Dv,k, (56)

Δ3,k := α−1
x,k HA,k HT

A,k + α−1
w,k HBw,k HT

Bw,k + α−1
v,k HBv,k HT

Bv,k, (57)

Mk := GT
x,k

(
α−1

x,k I − Gx,kP11,k|k−1GT
x,k

)−1
Gx,k, (58)

P11c,k := P11,k|k−1 + P11,k|k−1 MkP11,k|k−1, (59)

P12c,k := P12,k|k−1 + P11,k|k−1 MkP12,k|k−1, (60)

P22c,k := P22,k|k−1 + PT
12,k|k−1 MkP12,k|k−1, (61)

S1,k := P11c,k − P12c,k, (62)

S2,k := P12c,k − P22c,k, (63)

S3,k := S1,k − ST
2,k. (64)

Since Pk+1|k ≥ P̃k+1|k ≥ 0, ∀k, it is clear that if we define

Pk+1|k =
[

I −I
]

Pk+1|k
[

I −I
]T , (65)

then we have that Pk+1|k is an upper bound of the error variance on the state estimation.
Using the definitions (50) and (65), the initial condition for Pk+1|k is P0|−1 = X0 and Pk+1|k
can be written as

Pk+1|k = (Ak − KkCk) P11,c (Ak − KkCk)
T − (Ak − KkCk) P12,c (Φk − KkCk)

T

− (Φk − KkCk) PT
12,c (Ak − KkCk)

T + (Φk − KkCk) P22,c1 (Φk − KkCk)
T

+
(

Bw,k − KkDw,k
)

Wc,k
(

Bw,k − KkDw,k
)T

+
(

Bv,k − KkDv,k
)

Vc,k
(

Bv,k − KkDv,k
)T

+ α−1
x,k

(
HA,k − Kk HC,k

) (
HA,k −k HC,k

)T

+ α−1
w,k

(
HBw,k − Kk HDw,k

) (
HBw,k − Kk HDw,k

)T

+ α−1
v,k

(
HBv,k − Kk HDv,k

) (
HBv,k − Kk HDv,k

)T . (66)
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Note that Pk+1|k given by (66) satisfies (41) for any Φk and Kk. In this sense, we can choose
them to minimize the covariance of the estimation error given by Pk+1|k. We calculate the first
order partial derivatives of (66) with respect to Φk and Kk and making them equal to zero, i.e.,

∂

∂Φk
Pk+1|k = 0 (67)

∂

∂Kk
Pk+1|k = 0. (68)

Then the optimal values Φk = Φ∗
k and Kk = K∗

k are given by

K∗
k =

�
AkSkCT

k + Ψ1,k

� �
CkSkCT

k + Ψ2,k

�†
, (69)

Φ∗
k = Ak + (Ak − K∗

k Ck)
�

P12c,kP†
22c,k − I

�
, (70)

where

Sk := P11c,k − P12c,kP†
22c,kPT

12c,k, (71)

Ψ1,k := Bw,kWc,kDT
w,k + Bv,kVc,kDT

v,k + Δ1,k, (72)

Ψ2,k := Dw,kWc,kDT
w,k + Dv,kVc,kDT

v,k + Δ2,k. (73)

Actually Φ∗
k and K∗

k provide the global minimum of Pk+1|k. This can be proved though the
convexity of Pk+1|k at (66). We first have that �Pk+1|k > 0, Wk > 0 and Vk > 0, ∀k. Then we
calculate the Hessian matrix to conclude that we have the global minimum:

He
�

Pk+1|k
�

:=

⎡
⎣

∂2

∂2Φk
Pk+1|k ∂2

∂2[Φk ,Kk ]
Pk+1|k

∂2

∂2[Kk ,Φk ]
Pk+1|k ∂2

∂2Kk
Pk+1|k

⎤
⎦ =

�
2P22,k|k−1 2CkS2,k
2ST

2,kCT
k CkSkCT

k + Ψ3,k

�
> 0.

At the previous equations we used the pseudo-inverse instead of the simple matrix inverse.
Taking a look at the initial conditions P12,0|−1 = PT

12,0|−1 = P22,0|−1 = 0, one can note that
P22,0 = 0 and, as consequence, the inverse does not exist for all instant k. However, it can be
proved that the pseudo-inverse does exist.
Replacing (70) and (69) in (52) and (53), we obtain

P12,k+1|k = PT
12,k+1|k = P22,k+1|k =

= AkP12c,kP−1
22c,kPT

12c,k AT
k +

�
AkSkCT

k + Ψ1,k

� �
CkSkCT

k + Ψ2,k

�† �
AkSkCT

k + Ψ1,k

�T
. (74)

Since (74) holds for any symmetric Pk+1|k, if we start with a matrix Pn+1|n satisfying P12,n+1|n =

PT
12,n+1|n = P22,n+1|n for some n ≥ 0, then we can conclude that (74) is valid for any k ≥ n.

The equality allows us some simplifications. The first one is

Sk = Pc,k|k−1 := Pk|k−1 + Pk|k−1GT
x,k

�
α−1

x,k I − Gx,kPk|k−1GT
x,k

�−1
Gx,kPk|k−1. (75)

In fact, the covariance matrix of the estimation error presents a modified notation to deal with
the uncertain system. At this point, we can conclude that αx,k shall now satisfy

α−1
x,k I − Gx,kPk|k−1GT

x,k > 0. (76)

103Kalman Filtering for Discrete Time Uncertain Systems



10 Discrete Time Systems

where, using the definitions presented in Step 1 of Table 2, we obtain

P11,k+1|k = AkP11c,k AT
k + BkUc,kBT

k + Δ3,k, (51)

P12,k+1|k = AkP12c,kΦT
k + AkS1,kCT

k KT
k +

(
BkUc,kDT

k + Δ1,k

)
KT

k , (52)

P22,k+1|k = ΦkP22c,kΦT
k + KkCkS2,kΦT

k + ΦkST
2,kCT

k KT
k

+ Kk

(
CkS3,kCT

k + DkUc,kDT
k + Δ2,k

)
KT

k (53)

with

Uc,k :=
[

Wc,k 0
0 Vc,k

]
, (54)

Δ1,k := α−1
x,k HA,k HT

C,k + α−1
w,k HBw,k HT

Dw,k + α−1
v,k HBv,k HT

Dv,k, (55)

Δ2,k := α−1
x,k HC,k HT

C,k + α−1
w,k HDw,k HT

Dw,k + α−1
v,k HDv,k HT

Dv,k, (56)

Δ3,k := α−1
x,k HA,k HT

A,k + α−1
w,k HBw,k HT

Bw,k + α−1
v,k HBv,k HT

Bv,k, (57)

Mk := GT
x,k

(
α−1

x,k I − Gx,kP11,k|k−1GT
x,k

)−1
Gx,k, (58)

P11c,k := P11,k|k−1 + P11,k|k−1 MkP11,k|k−1, (59)

P12c,k := P12,k|k−1 + P11,k|k−1 MkP12,k|k−1, (60)

P22c,k := P22,k|k−1 + PT
12,k|k−1 MkP12,k|k−1, (61)

S1,k := P11c,k − P12c,k, (62)

S2,k := P12c,k − P22c,k, (63)

S3,k := S1,k − ST
2,k. (64)

Since Pk+1|k ≥ P̃k+1|k ≥ 0, ∀k, it is clear that if we define

Pk+1|k =
[

I −I
]

Pk+1|k
[

I −I
]T , (65)

then we have that Pk+1|k is an upper bound of the error variance on the state estimation.
Using the definitions (50) and (65), the initial condition for Pk+1|k is P0|−1 = X0 and Pk+1|k
can be written as

Pk+1|k = (Ak − KkCk) P11,c (Ak − KkCk)
T − (Ak − KkCk) P12,c (Φk − KkCk)

T

− (Φk − KkCk) PT
12,c (Ak − KkCk)

T + (Φk − KkCk) P22,c1 (Φk − KkCk)
T

+
(

Bw,k − KkDw,k
)

Wc,k
(

Bw,k − KkDw,k
)T

+
(

Bv,k − KkDv,k
)

Vc,k
(

Bv,k − KkDv,k
)T

+ α−1
x,k

(
HA,k − Kk HC,k

) (
HA,k −k HC,k

)T

+ α−1
w,k

(
HBw,k − Kk HDw,k

) (
HBw,k − Kk HDw,k

)T

+ α−1
v,k

(
HBv,k − Kk HDv,k

) (
HBv,k − Kk HDv,k

)T . (66)
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Note that Pk+1|k given by (66) satisfies (41) for any Φk and Kk. In this sense, we can choose
them to minimize the covariance of the estimation error given by Pk+1|k. We calculate the first
order partial derivatives of (66) with respect to Φk and Kk and making them equal to zero, i.e.,

∂

∂Φk
Pk+1|k = 0 (67)

∂

∂Kk
Pk+1|k = 0. (68)

Then the optimal values Φk = Φ∗
k and Kk = K∗

k are given by

K∗
k =

�
AkSkCT

k + Ψ1,k

� �
CkSkCT

k + Ψ2,k

�†
, (69)

Φ∗
k = Ak + (Ak − K∗

k Ck)
�

P12c,kP†
22c,k − I

�
, (70)

where

Sk := P11c,k − P12c,kP†
22c,kPT

12c,k, (71)

Ψ1,k := Bw,kWc,kDT
w,k + Bv,kVc,kDT

v,k + Δ1,k, (72)

Ψ2,k := Dw,kWc,kDT
w,k + Dv,kVc,kDT

v,k + Δ2,k. (73)

Actually Φ∗
k and K∗

k provide the global minimum of Pk+1|k. This can be proved though the
convexity of Pk+1|k at (66). We first have that �Pk+1|k > 0, Wk > 0 and Vk > 0, ∀k. Then we
calculate the Hessian matrix to conclude that we have the global minimum:

He
�

Pk+1|k
�

:=

⎡
⎣

∂2

∂2Φk
Pk+1|k ∂2

∂2[Φk ,Kk ]
Pk+1|k

∂2

∂2[Kk ,Φk ]
Pk+1|k ∂2

∂2Kk
Pk+1|k

⎤
⎦ =

�
2P22,k|k−1 2CkS2,k
2ST

2,kCT
k CkSkCT

k + Ψ3,k

�
> 0.

At the previous equations we used the pseudo-inverse instead of the simple matrix inverse.
Taking a look at the initial conditions P12,0|−1 = PT

12,0|−1 = P22,0|−1 = 0, one can note that
P22,0 = 0 and, as consequence, the inverse does not exist for all instant k. However, it can be
proved that the pseudo-inverse does exist.
Replacing (70) and (69) in (52) and (53), we obtain

P12,k+1|k = PT
12,k+1|k = P22,k+1|k =

= AkP12c,kP−1
22c,kPT

12c,k AT
k +

�
AkSkCT

k + Ψ1,k

� �
CkSkCT

k + Ψ2,k

�† �
AkSkCT

k + Ψ1,k

�T
. (74)

Since (74) holds for any symmetric Pk+1|k, if we start with a matrix Pn+1|n satisfying P12,n+1|n =

PT
12,n+1|n = P22,n+1|n for some n ≥ 0, then we can conclude that (74) is valid for any k ≥ n.

The equality allows us some simplifications. The first one is

Sk = Pc,k|k−1 := Pk|k−1 + Pk|k−1GT
x,k

�
α−1

x,k I − Gx,kPk|k−1GT
x,k

�−1
Gx,kPk|k−1. (75)

In fact, the covariance matrix of the estimation error presents a modified notation to deal with
the uncertain system. At this point, we can conclude that αx,k shall now satisfy

α−1
x,k I − Gx,kPk|k−1GT

x,k > 0. (76)
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Using (74), we can simplify the expressions for Φ∗
k , K∗

k and Pk+1|k. We can define Φk given in
Step 4 of Table 2 as Φk = Φ∗

k . The simplified expression for the predictor gain is given by

K∗
k =

(
AkPc,k|k−1CT

k + Ψ1,k

) (
CkPc,k|k−1CT

k + Ψ2,k

)†
,

which can be rewritten as presented in Step 4 of Table 2. The expression for the Riccati
equation can be written as

Pk+1|k = (Ak − K∗
k Ck) Pc,k|k−1 (Ak − K∗

k Ck)
T

+
(

Bw,k − K∗
k Dw,k

)
Wc,k

(
Bw,k − K∗

k Dw,k
)T

+
(

Bv,k − K∗
k Dv,k

)
Vc,k

(
Bv,k − K∗

k Dv,k
)T

+ α−1
x,k

(
HA,k − K∗

k HC,k
) (

HA,k − K∗
k HC,k

)T

+ α−1
w,k

(
HBw,k − K∗

k HDw,k
) (

HBw,k − K∗
k HDw,k

)T

+ α−1
v,k

(
HBv,k − K∗

k HDv,k
) (

HBv,k − K∗
k HDv,k

)T .

Replacing the expression for K∗
k in Pk+1|k, we obtain the Riccati equation given in Step 5 of

Table 2.
Using an alternative representation, remember the predictor structure:

x̂k+1|k = Φk x̂k|k−1 + Bw,kwk + Bv,kvk + Kk

(
yk − Ckx̂k|k−1 − Dw,kwk − Dv,kvk

)
. (77)

Replace Φ∗
k into (77) to obtain

x̂k+1|k = Ac,k x̂k|k−1 + Bw,kwk + Bv,kvk + Kk

(
yk − Cc,k x̂k|k−1 − Dw,kwk − Dv,kvk

)
, (78)

where

Ac,k := Ak + AkPk|k−1GT
x,k

(
α−1

x,k I − Gx,kPk|k−1GT
x,k

)−1
Gx,k, (79)

Cc,k := Ck + CkPk|k−1GT
x,k

(
α−1

x,k I − Gx,kPk|k−1GT
x,k

)−1
Gx,k. (80)

Once again, it is possible to obtain the classic estimator from the structure (79)-(80) for a system
without uncertainties.

5. Numerical example

At this section we perform a simulation to illustrate to importance to consider the
uncertainties at your predictor design.
One good way to quantify the performance of the estimator would be using its real variance
to the error estimation. However, this is difficult to obtain from the response of the
model. For this reason, we approximate the real variance of the estimation error using the
ensemble-average (see Ishihara et al. (2006) and Sayed (2001)) given by:

var
{

ei,k
} ≈ 1

N

N

∑
j=1

(
e(j)

i,k − E
{

e(j)
i,k

})2
, (81)

E
{

e(j)
i,k

}
≈ 1

N

N

∑
j=1

e(j)
i,k , (82)
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Step 0 (Initial conditions): x̂0|−1 = x0 and P0|−1 = X0.

Step 1: Obtain scalar parameters αx,k, αw,k and αv,k that satisfy (76),
(48) and (49), respectively. Then define

Δ1,k := α−1
x,k HA,k HT

C,k + α−1
w,k HBw,k HT

Dw,k + α−1
v,k HBv,k HT

Dv,k,
Δ2,k := α−1

x,k HC,k HT
C,k + α−1

w,k HDw,k HT
Dw,k + α−1

v,k HDv,k HT
Dv,k,

Δ3,k := α−1
x,k HA,k HT

A,k + α−1
w,k HBw,k HT

Bw,k + α−1
v,k HBv,k HT

Bv,k.

Step 2: Calculate the corrections due to the presence of uncertainties

Pc,k|k−1 := Pk|k−1 + Pk|k−1GT
x,k

(
α−1

x,k I − Gx,kPk|k−1GT
x,k

)−1
Gx,kPk|k−1,

Wc,k := Wk + WkGT
w,k

(
α−1

w,k I − Gw,kWkGT
w,k

)−1
Gw,kWk.

Vc,k := Vk + VkGT
v,k

(
α−1

v,k I − Gv,kVkGT
v,k

)−1
Gv,kVk,

Step 3: Define the augmented matrices

Bk :=
[

Bw,k Bv,k
]

, Dk :=
[

Dw,k Dv,k
]

, Uc,k := diag
{

Wc,k, Vc,k
}

.

Step 4: Calculate the parameters of the predictor as

Kk =
(

AkPc,k|k−1CT
k + BkUc,kDT

k + Δ1,k

) (
CkPc,k|k−1CT

k + DkUc,kDT
k + Δ2,k

)†
,

Φk = Ak + (Ak − KkCk) Pk|k−1GT
x,k

(
α−1

x,k I − Gx,kPk|k−1GT
x,k

)−1
Gx,k.

Step 5: Update
{

x̂k+1|k
}

and
{

Pk+1|k
}

as

x̂k+1|k = Φk x̂k|k−1 + Bw,kwk + Bv,kvk + Kk

(
yk − Ckx̂k|k−1 − Dw,kwk − Dv,kvk

)
,

Pk+1|k = AkPc,k|k−1 AT
k + BkUc,kBT

k + Δ3,k

−
(

AkPc,k|k−1CT
k + Δ1,k

) (
CkPc,k|k−1CT

k + DkUc,kDT
k + Δ2,k

)† (
AkPc,k|k−1CT

k + Δ1,k

)T

Table 2. The Enhanced Robust Predictor.

where e(j)
i,k is the i-th component of the estimation error vector e(j)

k of the realization j defined
as

e(j)
k := x(j)

k − x̂(j)
k|k−1. (83)

Another way to quantify the performance of the estimation is though covariance ellipses. The
use of covariance ellipses allows us to visualize the variance and the cross covariance of a
system with two states.
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Using (74), we can simplify the expressions for Φ∗
k , K∗

k and Pk+1|k. We can define Φk given in
Step 4 of Table 2 as Φk = Φ∗

k . The simplified expression for the predictor gain is given by

K∗
k =

(
AkPc,k|k−1CT

k + Ψ1,k

) (
CkPc,k|k−1CT

k + Ψ2,k

)†
,

which can be rewritten as presented in Step 4 of Table 2. The expression for the Riccati
equation can be written as

Pk+1|k = (Ak − K∗
k Ck) Pc,k|k−1 (Ak − K∗

k Ck)
T

+
(

Bw,k − K∗
k Dw,k

)
Wc,k

(
Bw,k − K∗

k Dw,k
)T

+
(

Bv,k − K∗
k Dv,k

)
Vc,k

(
Bv,k − K∗

k Dv,k
)T

+ α−1
x,k

(
HA,k − K∗

k HC,k
) (

HA,k − K∗
k HC,k

)T

+ α−1
w,k

(
HBw,k − K∗

k HDw,k
) (

HBw,k − K∗
k HDw,k

)T

+ α−1
v,k

(
HBv,k − K∗

k HDv,k
) (

HBv,k − K∗
k HDv,k

)T .

Replacing the expression for K∗
k in Pk+1|k, we obtain the Riccati equation given in Step 5 of

Table 2.
Using an alternative representation, remember the predictor structure:

x̂k+1|k = Φk x̂k|k−1 + Bw,kwk + Bv,kvk + Kk

(
yk − Ckx̂k|k−1 − Dw,kwk − Dv,kvk

)
. (77)

Replace Φ∗
k into (77) to obtain

x̂k+1|k = Ac,k x̂k|k−1 + Bw,kwk + Bv,kvk + Kk

(
yk − Cc,k x̂k|k−1 − Dw,kwk − Dv,kvk

)
, (78)

where

Ac,k := Ak + AkPk|k−1GT
x,k

(
α−1

x,k I − Gx,kPk|k−1GT
x,k

)−1
Gx,k, (79)

Cc,k := Ck + CkPk|k−1GT
x,k

(
α−1

x,k I − Gx,kPk|k−1GT
x,k

)−1
Gx,k. (80)

Once again, it is possible to obtain the classic estimator from the structure (79)-(80) for a system
without uncertainties.

5. Numerical example

At this section we perform a simulation to illustrate to importance to consider the
uncertainties at your predictor design.
One good way to quantify the performance of the estimator would be using its real variance
to the error estimation. However, this is difficult to obtain from the response of the
model. For this reason, we approximate the real variance of the estimation error using the
ensemble-average (see Ishihara et al. (2006) and Sayed (2001)) given by:

var
{

ei,k
} ≈ 1

N

N

∑
j=1

(
e(j)

i,k − E
{

e(j)
i,k

})2
, (81)

E
{

e(j)
i,k

}
≈ 1

N

N

∑
j=1

e(j)
i,k , (82)
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Step 0 (Initial conditions): x̂0|−1 = x0 and P0|−1 = X0.

Step 1: Obtain scalar parameters αx,k, αw,k and αv,k that satisfy (76),
(48) and (49), respectively. Then define

Δ1,k := α−1
x,k HA,k HT

C,k + α−1
w,k HBw,k HT

Dw,k + α−1
v,k HBv,k HT

Dv,k,
Δ2,k := α−1

x,k HC,k HT
C,k + α−1

w,k HDw,k HT
Dw,k + α−1

v,k HDv,k HT
Dv,k,

Δ3,k := α−1
x,k HA,k HT

A,k + α−1
w,k HBw,k HT

Bw,k + α−1
v,k HBv,k HT

Bv,k.

Step 2: Calculate the corrections due to the presence of uncertainties

Pc,k|k−1 := Pk|k−1 + Pk|k−1GT
x,k

(
α−1

x,k I − Gx,kPk|k−1GT
x,k

)−1
Gx,kPk|k−1,

Wc,k := Wk + WkGT
w,k

(
α−1

w,k I − Gw,kWkGT
w,k

)−1
Gw,kWk.

Vc,k := Vk + VkGT
v,k

(
α−1

v,k I − Gv,kVkGT
v,k

)−1
Gv,kVk,

Step 3: Define the augmented matrices

Bk :=
[

Bw,k Bv,k
]

, Dk :=
[

Dw,k Dv,k
]

, Uc,k := diag
{

Wc,k, Vc,k
}

.

Step 4: Calculate the parameters of the predictor as

Kk =
(

AkPc,k|k−1CT
k + BkUc,kDT

k + Δ1,k

) (
CkPc,k|k−1CT

k + DkUc,kDT
k + Δ2,k

)†
,

Φk = Ak + (Ak − KkCk) Pk|k−1GT
x,k

(
α−1

x,k I − Gx,kPk|k−1GT
x,k

)−1
Gx,k.

Step 5: Update
{

x̂k+1|k
}

and
{

Pk+1|k
}

as

x̂k+1|k = Φk x̂k|k−1 + Bw,kwk + Bv,kvk + Kk

(
yk − Ckx̂k|k−1 − Dw,kwk − Dv,kvk

)
,

Pk+1|k = AkPc,k|k−1 AT
k + BkUc,kBT

k + Δ3,k

−
(

AkPc,k|k−1CT
k + Δ1,k

) (
CkPc,k|k−1CT

k + DkUc,kDT
k + Δ2,k

)† (
AkPc,k|k−1CT

k + Δ1,k

)T

Table 2. The Enhanced Robust Predictor.

where e(j)
i,k is the i-th component of the estimation error vector e(j)

k of the realization j defined
as

e(j)
k := x(j)

k − x̂(j)
k|k−1. (83)

Another way to quantify the performance of the estimation is though covariance ellipses. The
use of covariance ellipses allows us to visualize the variance and the cross covariance of a
system with two states.
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Consider the benchmark model, used for instance in Fu et al. (2001) and Theodor & Shaked
(1996), where we added uncertainties in order to affect every matrix of the system,

xk+1 =

[
0 −0.5

1 + δx,k 1 + 0.3δx,k

]
xk +

[ −6
1 + 0.1δw,k

]
wk,

yk =
[−100 + 5δx,k 10 + 1.5δx,k

]
xk + 100δv,kvk,

where δn,k varies uniformly at each step on the unit interval for n = x, w, v. We also use
wk = 0.1, vk = 0.9, Wk = 0.1 and Vk = 2 with initial conditions x0 = [2 1]T and X0 = 0.1I.
The matrices associated to the uncertainties are given by

HA,k =

[
0
10

]
, HBw,k =

[
0
10

]
, HBv,k =

[
0
0

]
,

HC,k = 50, HDw,k = 0, HDv,k = 100,

Gx,k =
[

0.1 0.03
]

, Gw,k = 0.01, Gv,k = 1. (84)

The scalar parameters are calculated at each step as

α−1
x,k = σmax

{
Gx,kPk|k−1GT

x,k

}
+ �x, (85)

α−1
w,k = σmax

{
Gw,kWkGT

w,k

}
+ �w, (86)

α−1
v,k = σmax

{
Gv,kVkGT

v,k

}
+ �v, (87)

where σmax {•} indicates the maximum singular value of a matrix. Numerical simulations
show that, in general, smaller values of �x, �w and �v result in better bounds. However, this
can lead to bad inverses calculation. In this example, we have chosen �x = �w = �v = 0.1.
The mean value of the covariance matrices obtained over 500 experiments at k = 1500 for the
robust predictor and the classic predictor are

Probust =

[
14.4 −22.7
−22.7 76.4

]
, Pclassic =

[
3.6 −0.6
−0.6 0.1

]
.

Fig. 2 shows the time evolution of the mean value (over 500 experiments) of both states and
of their estimated values using the classic and the robust predictors.. It can be verified that
the estimates of the classic predictor keep oscillating while the robust predictor reaches an
approximate stationary value. The dynamics of the actual model also presents approximate
stationary values for both state. It means that the robust predictor were able to better estimate
the dynamics of the model.
The covariance ellipses obtained from both predictors and the actually obtained states at
k = 1500 are shown at Fig. 3. Although the size of the ellipse is smaller for the classic
Kalman predictor, some states of the actual model are outside this bound. Fig. 4 presents
the time evolution of the error variances for both states of the system. The error variances
were approximated using the ensemble-average, defined in Sayed (2001).
The proposed filter reaches their approximate stationary states after a few steps while the
Kalman filter did not. Fig. 4 also shows that the actual error variance of the proposed filter
is always below its upper bound. Although the error variance of the Kalman filter is lower
than the upper bound of the robust estimator, the actual error variance of the Kalman filter is
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above its error variance prediction, i.e., the Kalman filter does not guarantee the containment
of the true signal yk. This is a known result and it is presented in Ghaoui & Clafiore (2001).

Fig. 2. Evolution of state 2 and its robust estimates.

Fig. 3. Mean covariance ellipses after 1500 experiments.

A comparison with using the robust predictor presented here and another predictor found
in the literature is shown at ?????. The results presented therein show that the enhanced
predictor presented here provides a less conservative design, with lower upper bound and
lower experimental value of the error variance.

6. Conclusions

This chapter presented how to design robust predictor for linear systems with norm-bounded
and time-varying uncertainties in their matrices. The design is based on a guaranteed cost
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Fig. 4. Error variances for uncorrelated noise simulation.

approach using the Riccati equation. The obtained estimator is is capable of dealing with
systems that present correlated dynamical and measurement noises with unknown mean and
variance. In most of real life applications this is a common situation. It is also remarkable that
the separated structure for the noises allows the estimator to have a less conservative upper
bound for the covariance of the estimation error.
Further studies may include the use of approach of this chapter to design estimators for
infinite time horizon discrete systems. Future studies may also investigate the feasibility to
design a estimator for a more general description of systems: the descriptor systems.
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1. Introduction 
It is well known that, for the design of tracking control systems, preview information of 
reference signals is very useful for improving performance of the systems, and recently 
much work has been done for preview control systems [Cohen & Shaked (1997); Gershon et 
al. (2004a); Gershon et al. (2004b); Nakura (2008a); Nakura (2008b); Nakura (2008c); Nakura 
(2008d); Nakura (2008e); Nakura (2009); Nakura (2010); Sawada (2008); Shaked & Souza 
(1995); Takaba (2000)]. Especially, in order to design tracking control systems for a class of 
systems with rapid or abrupt changes, it is effective in improving the tracking performance 
to construct tracking control systems considering future information of reference signals. 
Shaked et al. have constructed the H∞ tracking control theory with preview for continuous- 
and discrete-time linear time-varying systems by a game theoretic approach [Cohen & 
Shaked (1997); Shaked & Souza (1995)]. Recently the author has extended their theory to 
linear impulsive systems [Nakura (2008b); Nakura (2008c)]. It is also very important to 
consider the effects of stochastic noise or uncertainties for tracking control systems. By 
Gershon et al., the theory of stochastic H∞ tracking with preview has been presented for 
linear continuous- and discrete-time systems [Gershon et al. (2004a); Gershon et al. (2004b)]. 
The H∞ tracking theory by the game theoretic approach can be restricted to the optimal or 
stochastic optimal tracking theory and also extended to the stochastic H∞ tracking control 
theory. While some command generators of reference signals are needed in the papers 
[Sawada (2008); Takaba (2000)], a priori knowledge of any dynamic models for reference 
signals is not assumed on the game theoretic approach. Also notice that all these works have 
been studied for the systems with no mode transitions, i.e., the single mode systems. 
Tracking problems with preview for systems with some mode transitions are also very 
important issues to research. 
Markovian jump systems [Boukas (2006); Costa & Tuesta (2003); Costa et al. (2005); Dragan 
& Morozan (2004); Fragoso (1989); Fragoso (1995); Lee & Khargonekar (2008); Mariton 
(1990); Souza & Fragoso (1993); Sworder (1969); Sworder (1972)] have abrupt random mode 
changes in their dynamics. The mode changes follow Markov processes. Such systems may 
be found in the area of mechanical systems, power systems, manufacturing systems, 
communications, aerospace systems, financial engineering and so on. Such systems are 
classified into continuous-time [Boukas (2006); Dragan & Morozan (2004); Mariton (1990); 
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Souza & Fragoso (1993); Sworder (1969); Sworder (1972)] and discrete-time [Costa & Tuesta 
(2003); Costa et al. (2005); Lee & Khargonekar (2008); Fragoso (1989); Fragoso et al. (1995)] 
systems. The optimal, stochastic optimal and H∞ control theory has been presented for each 
of these systems respectively [Costa & Tuesta (2003); Fragoso (1989); Fragoso et al. (1995); 
Souza & Fragoso (1993); Sworder (1969); Sworder (1972)]. The stochastic LQ and H∞ control 
theory for Markovian jump systems are of high practice. For example, these theories are 
applied to the solar energy system, the underactuated manipulator system and so on [Costa 
et al. (2005)]. Although preview compensation for hybrid systems including the Markovian 
jump systems is very effective for improving the system performance, the preview tracking 
theory for the Markovian jump systems had not been yet constructed. Recently the author 
has presented the stochastic LQ and H∞ preview tracking theories by state feedback for 
linear continuous-time Markovian jump systems [Nakura (2008d) Nakura (2008e); Nakura 
(2009)], which are the first theories of the preview tracking control for the Markovian jump 
systems. For the discrete-time Markovian jump systems, he has presented the stochastic LQ 
preview tracking theory only by state feedback [Nakura (2010)]. The stochastic LQ preview 
tracking problem for them by output feedback has not been yet fully investigated. 
In this paper we study the stochastic optimal tracking problems with preview by state 
feedback and output feedback for linear discrete-time Markovian jump systems on the finite 
time interval and derive the forms of the preview compensator dynamics. In this paper it is 
assumed that the modes are fully observable in the whole time interval. We consider three 
different tracking problems according to the structures of preview information and give the 
control strategies for them respectively. The output feedback dynamic controller is given by 
using solutions of two types of coupled Riccati difference equations. Feedback controller 
gains are designed by using one type of coupled Riccati difference equations with terminal 
conditions, which give the necessary and sufficient conditions for the solvability of the 
stochastic optimal tracking problem with preview by state feedback, and filter gains are 
designed by using another type of coupled Riccati difference equations with initial 
conditions. Correspondingly compensators introducing future information are coupled with 
each other. This is our very important point in this paper. Finally we consider numerical 
examples and verify the effectiveness of the preview tracking theory presented in this paper. 
The organization of this paper is as follows: In section 2 we describe the systems and 
problem formulation. In section 3 we present the solution of the stochastic optimal preview 
tracking problems over the finite time interval by state feedback.  In section 4 we consider 
the output feedback problems. In section 5 we consider numerical examples and verify the 
effectiveness of the stochastic optimal preview tracking design theory. In the appendices we 
present the proof of the proposition, which gives the necessary and sufficient conditions of 
the solvability for the stochastic optimal preview tracking problems by state feedback, and 
the orthogonal property of the variable of the error system and that of the output feedback 
controller, which plays the important role to solve the output feedback problems. 
Notations: Throughout this paper the superscript ' stands for the matrix transposition, |·| 
denotes the Euclidean vector norm and |v 2|R  also denotes the weighted norm v'Rv. O 
denotes the matrix with all zero components. 

2. Problem formulation 
Let (Ω, F, P) be a probability space and, on this space, consider the following linear discrete-
time time-varying system with reference signal and Markovian mode transitions. 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

d,m(k) d,m(k) d 2d,m(k) d 3d,m(k) d

d 1d,m(k) 12d,m(k) d 13d,m(k) d

2d,m(k) d,m(k) d

x k 1 A k x k G k k  B k u k B k r k

z k C k x k D k u k D k r k

y k C k x k H k k

ω

ω

+ = + + +

= + +

= +

 (1) 

                                                                                                                      ( ) ( )0, 0x 0 x  m 0 i= =  

where x∈ nR is the state, ωd∈ pdR  is the exogenous random noise, u d∈ mR  is the control 
input, zd∈ kdR is the controlled output, rd(·)∈ rdR is known or measurable reference signal 
and y∈ kR is the measured output. x0 is an unknown initial state and i0 is a given initial 
mode. 
Let M be an integer and {m(k)} is a Markov process taking values on the finite set  
φ={1,2, ···,M} with the following transition probabilities: 

P{m(k+1)=j|m(k)=i}:= pd,ij(k) 

where pd,ij(k)≥0 is also the transition rate at the jump instant from the mode i to j, i ≠ j, and 

,1 ( ) 1M
d ijj p k

=
=∑ . Let Pd(k) =[ pd,ij(k)] be the transition probability matrix. We assume that all 

these matrices are of compatible dimensions. Throughout this paper the dependence of the 
matrices on k will be omitted for the sake of notational simplicity. 
For this system (1), we assume the following conditions: 
A1: D12d,m(k)(k) is of full column rank. 
A2: D12d,m(k)'(k)C1d,m(k)(k)=O, D12d,m(k)'(k)D13d,m(k)(k)=O 
A3: E{x(0)}=μ0, E{ωd(k)}=0, 

E{ωd(k)ωd'(k)1{m(k)=i}}=Χi, 
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E{ωd(0)x'(0)1{m(0)= 0i } }=O, 
E{ωd(k)x'(k)1{m(k)=i}}=O, 
E{ωd(k)ud'(k)1{m(k)=i}}=O, 
E{ωd(k)rd'(k)1{m(k)=i}}=O 

where E is the expectation with respect to m(k), and the indicator function 1{m(k)=i}:=1 if 
m(k)=i, and 1{m(k)=i}:=0 if m(k)≠i. 

The stochastic optimal tracking problems we address in this section for the system (1) are to 
design control laws ud(·)∈ l2[0,N-1] over the finite horizon [0,N], using the information 
available on the known part of the reference signal rd(·) and minimizing the sum of the 
energy of zd(k), for the given initial mode i0 and the given distribution of x0. Considering the 
stochastic mode transitions and the average of the performance indices over the statistical 
information of the unknown part of rd, we define the following performance index. 
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future information on rd at the current time k, i.e., kR :={rd(l); k<l≤N}. This introduction of 
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Souza & Fragoso (1993); Sworder (1969); Sworder (1972)] and discrete-time [Costa & Tuesta 
(2003); Costa et al. (2005); Lee & Khargonekar (2008); Fragoso (1989); Fragoso et al. (1995)] 
systems. The optimal, stochastic optimal and H∞ control theory has been presented for each 
of these systems respectively [Costa & Tuesta (2003); Fragoso (1989); Fragoso et al. (1995); 
Souza & Fragoso (1993); Sworder (1969); Sworder (1972)]. The stochastic LQ and H∞ control 
theory for Markovian jump systems are of high practice. For example, these theories are 
applied to the solar energy system, the underactuated manipulator system and so on [Costa 
et al. (2005)]. Although preview compensation for hybrid systems including the Markovian 
jump systems is very effective for improving the system performance, the preview tracking 
theory for the Markovian jump systems had not been yet constructed. Recently the author 
has presented the stochastic LQ and H∞ preview tracking theories by state feedback for 
linear continuous-time Markovian jump systems [Nakura (2008d) Nakura (2008e); Nakura 
(2009)], which are the first theories of the preview tracking control for the Markovian jump 
systems. For the discrete-time Markovian jump systems, he has presented the stochastic LQ 
preview tracking theory only by state feedback [Nakura (2010)]. The stochastic LQ preview 
tracking problem for them by output feedback has not been yet fully investigated. 
In this paper we study the stochastic optimal tracking problems with preview by state 
feedback and output feedback for linear discrete-time Markovian jump systems on the finite 
time interval and derive the forms of the preview compensator dynamics. In this paper it is 
assumed that the modes are fully observable in the whole time interval. We consider three 
different tracking problems according to the structures of preview information and give the 
control strategies for them respectively. The output feedback dynamic controller is given by 
using solutions of two types of coupled Riccati difference equations. Feedback controller 
gains are designed by using one type of coupled Riccati difference equations with terminal 
conditions, which give the necessary and sufficient conditions for the solvability of the 
stochastic optimal tracking problem with preview by state feedback, and filter gains are 
designed by using another type of coupled Riccati difference equations with initial 
conditions. Correspondingly compensators introducing future information are coupled with 
each other. This is our very important point in this paper. Finally we consider numerical 
examples and verify the effectiveness of the preview tracking theory presented in this paper. 
The organization of this paper is as follows: In section 2 we describe the systems and 
problem formulation. In section 3 we present the solution of the stochastic optimal preview 
tracking problems over the finite time interval by state feedback.  In section 4 we consider 
the output feedback problems. In section 5 we consider numerical examples and verify the 
effectiveness of the stochastic optimal preview tracking design theory. In the appendices we 
present the proof of the proposition, which gives the necessary and sufficient conditions of 
the solvability for the stochastic optimal preview tracking problems by state feedback, and 
the orthogonal property of the variable of the error system and that of the output feedback 
controller, which plays the important role to solve the output feedback problems. 
Notations: Throughout this paper the superscript ' stands for the matrix transposition, |·| 
denotes the Euclidean vector norm and |v 2|R  also denotes the weighted norm v'Rv. O 
denotes the matrix with all zero components. 

2. Problem formulation 
Let (Ω, F, P) be a probability space and, on this space, consider the following linear discrete-
time time-varying system with reference signal and Markovian mode transitions. 
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where x∈ nR is the state, ωd∈ pdR  is the exogenous random noise, u d∈ mR  is the control 
input, zd∈ kdR is the controlled output, rd(·)∈ rdR is known or measurable reference signal 
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mode. 
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=∑ . Let Pd(k) =[ pd,ij(k)] be the transition probability matrix. We assume that all 

these matrices are of compatible dimensions. Throughout this paper the dependence of the 
matrices on k will be omitted for the sake of notational simplicity. 
For this system (1), we assume the following conditions: 
A1: D12d,m(k)(k) is of full column rank. 
A2: D12d,m(k)'(k)C1d,m(k)(k)=O, D12d,m(k)'(k)D13d,m(k)(k)=O 
A3: E{x(0)}=μ0, E{ωd(k)}=0, 
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E{x(0)x'(0) 1{m(0)= 0i } }= 0iQ (0), 
E{ωd(0)x'(0)1{m(0)= 0i } }=O, 
E{ωd(k)x'(k)1{m(k)=i}}=O, 
E{ωd(k)ud'(k)1{m(k)=i}}=O, 
E{ωd(k)rd'(k)1{m(k)=i}}=O 

where E is the expectation with respect to m(k), and the indicator function 1{m(k)=i}:=1 if 
m(k)=i, and 1{m(k)=i}:=0 if m(k)≠i. 

The stochastic optimal tracking problems we address in this section for the system (1) are to 
design control laws ud(·)∈ l2[0,N-1] over the finite horizon [0,N], using the information 
available on the known part of the reference signal rd(·) and minimizing the sum of the 
energy of zd(k), for the given initial mode i0 and the given distribution of x0. Considering the 
stochastic mode transitions and the average of the performance indices over the statistical 
information of the unknown part of rd, we define the following performance index. 
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kRE  means that the unknown part of the reference signal follows a stochastic process, 
whose distribution is allowed to be unknown. 
Now we formulate the following optimal fixed-preview tracking problems for the system (1) 
and the performance index (2). In these problems, it is assumed that, at the current time k, 
rd(l) is known for l ≤ min(N, k+h), where h is the preview length. 
The Stochastic Optimal Fixed-Preview Tracking Problem by State Feedback: 
Consider the system (1) and the performance index (2), and assume the conditions A1, A2 
and A3. Then, find *

du  minimizing the performance index (2) where the control strategy *
du  

(k), 0 ≤ k ≤ N-1, is based on the information Rk+h:={rd(l); 0 ≤ l ≤ k+h} with 0 ≤ h ≤ N and the 
state information Xk:={x(l); 0 ≤ l ≤ k}. 
The Stochastic Optimal Fixed-Preview Tracking Problem by Output Feedback: 
Consider the system (1) and the performance index (2), and assume the conditions A1, A2 
and A3. Then, find *

du  minimizing the performance index (2) where the control strategy *
du  

(k), 0 ≤ k ≤ N-1, is based on the information Rk+h:={rd(l); 0 ≤ l ≤ k+h} with 0 ≤ h ≤ N and the 
observed information Yk:={y(l); 0 ≤ l ≤ k}. 
Notice that, on these problems, at the current time k to decide the control strategies, Rk+h can 
include any noncausal information in the meaning of that it is allowed that the future 
information of the reference signals {rd(l); k ≤ l ≤ k+h} is inputted to the feedback controllers. 

3. Design of tracking controllers by state feedback 
In this section we consider the state feedback problems. 
Now we consider the coupled Riccati difference equations [Costa et al. (2005); Fragoso 
(1989)] 

 Xi(k)=Ad,i’(k)Ei(X(k+1),k)Ad,i(k)+C1d,i‘C1d,i–F2,i‘T2,iF2,i(k), k=0, 1, ··· (3) 
 

where Ei(X(k+1),k)= ,1 ( )M
d ijj p k

=∑ Xj+1(k+1), X(k)=(X1(k), ···, XM (k)), 
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and the following scalar coupled difference equations. 

 iα (k)=Ei(α (k+1),k)+tr{Gd,iΧiGd,i ‘Ei(X(k+1),k)} (4) 
 

where Ei(α (k+1),k)= ,1 ( ),M
d ijj p k

=∑ jα (k+1) and α (k)=( 1α (k), ... , Mα (k)). 

Remark 3.1 Note that these coupled Riccati difference equations (3) are the same as those for 
the standard stochastic linear quadratic (LQ) optimization problem of linear discrete-time 
Markovian jump systems without considering any exogeneous reference signals nor any 
preview information [Costa et al. (2005); Fragoso (1989)]. Also notice that the form of the 
equation (4) is different from [Costa et al. (2005); Fragoso (1989)] in the points that the 
solution α (·) does not depend on any modes in [Costa et al. (2005)] and the noise matrix Gd 

does not depend on any modes in [Fragoso (1989)]. 
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We obtain the following necessary and sufficient conditions for the solvability of the 
stochastic optimal fixed-preview tracking problem by state feedback and an optimal control 
strategy for it. 
Theorem 3.1 Consider the system (1) and the performance index (2). Suppose A1, A2 and 
A3. Then the Stochastic Optimal Fixed-Preview Tracking Problem by State Feedback for (1) 
and (2) is solvable if and only if there exist matrices Xi(k)≥O and scalar functions iα (k), i=1, 
···,M, satisfying the conditions Xi(N)=C1d,i'(N)C1d,i(N) and iα (N)=0 such that the coupled 
Riccati equations (3) and the coupled scalar equations (4) hold over [0,N]. Moreover an 
optimal control strategy for the tracking problem (1) and (2) is given by 

*
du (k)=F2,i(k)x(k)+Du,i(k)rd(k)+Dθu,i(k)Ei( cθ (k+1),k) for i=1, ···,M 

where Du,i(k)=- 1
2,iT − (k)B2d,i‘Ei(X(k+1),k)B3d,i and Dθu,i(k)=- 1

2,iT − (k)B2d,i‘. iθ (k), i=1, ···,M, 
k∈ [0,N] satisfies 

 ( ) ( ) ( ) ( ) ( )
( ) ( )

, ,i d

1d,i 13d,i d

k ’ k E ( k 1 ,k) k r k ,
N C ‘D r N

d i d ii

i

A Bθ θ

θ

= + +

=
 (5) 

where Ei(θ (k+1),k)= ,1 ( )M
d ijj p k

=∑ jθ (k+1) and θ (k)=( 1θ (k), ···, Mθ (k)), 

( ) ( )
( ) ( )( ) ( )

, d,i u,i 2,i 2,i

, d,i i 3d,i 2,i 2,i u,i 1d,i 13d,i

’ k A D ’T F k ,

k A ’ E X k 1 ,k B F ’T D k C ‘D

d i

d i

A

B
θ= −

= + − +
 

and ,c iθ (k) is the 'causal' part of iθ (·) at time k. This ,c iθ  is the expected value of iθ  over kR  
and given by 
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where Ei( cθ (k+1),k)= ,1 ( )M
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=∑ ,c jθ (k+1) and cθ (k)=( ,1cθ (k) , ···, ,c Mθ (k)).  

Moreover, the optimal value of the performance index is 
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kRE  means that the unknown part of the reference signal follows a stochastic process, 
whose distribution is allowed to be unknown. 
Now we formulate the following optimal fixed-preview tracking problems for the system (1) 
and the performance index (2). In these problems, it is assumed that, at the current time k, 
rd(l) is known for l ≤ min(N, k+h), where h is the preview length. 
The Stochastic Optimal Fixed-Preview Tracking Problem by State Feedback: 
Consider the system (1) and the performance index (2), and assume the conditions A1, A2 
and A3. Then, find *

du  minimizing the performance index (2) where the control strategy *
du  

(k), 0 ≤ k ≤ N-1, is based on the information Rk+h:={rd(l); 0 ≤ l ≤ k+h} with 0 ≤ h ≤ N and the 
state information Xk:={x(l); 0 ≤ l ≤ k}. 
The Stochastic Optimal Fixed-Preview Tracking Problem by Output Feedback: 
Consider the system (1) and the performance index (2), and assume the conditions A1, A2 
and A3. Then, find *

du  minimizing the performance index (2) where the control strategy *
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(k), 0 ≤ k ≤ N-1, is based on the information Rk+h:={rd(l); 0 ≤ l ≤ k+h} with 0 ≤ h ≤ N and the 
observed information Yk:={y(l); 0 ≤ l ≤ k}. 
Notice that, on these problems, at the current time k to decide the control strategies, Rk+h can 
include any noncausal information in the meaning of that it is allowed that the future 
information of the reference signals {rd(l); k ≤ l ≤ k+h} is inputted to the feedback controllers. 

3. Design of tracking controllers by state feedback 
In this section we consider the state feedback problems. 
Now we consider the coupled Riccati difference equations [Costa et al. (2005); Fragoso 
(1989)] 

 Xi(k)=Ad,i’(k)Ei(X(k+1),k)Ad,i(k)+C1d,i‘C1d,i–F2,i‘T2,iF2,i(k), k=0, 1, ··· (3) 
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and the following scalar coupled difference equations. 

 iα (k)=Ei(α (k+1),k)+tr{Gd,iΧiGd,i ‘Ei(X(k+1),k)} (4) 
 

where Ei(α (k+1),k)= ,1 ( ),M
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=∑ jα (k+1) and α (k)=( 1α (k), ... , Mα (k)). 

Remark 3.1 Note that these coupled Riccati difference equations (3) are the same as those for 
the standard stochastic linear quadratic (LQ) optimization problem of linear discrete-time 
Markovian jump systems without considering any exogeneous reference signals nor any 
preview information [Costa et al. (2005); Fragoso (1989)]. Also notice that the form of the 
equation (4) is different from [Costa et al. (2005); Fragoso (1989)] in the points that the 
solution α (·) does not depend on any modes in [Costa et al. (2005)] and the noise matrix Gd 

does not depend on any modes in [Fragoso (1989)]. 
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We obtain the following necessary and sufficient conditions for the solvability of the 
stochastic optimal fixed-preview tracking problem by state feedback and an optimal control 
strategy for it. 
Theorem 3.1 Consider the system (1) and the performance index (2). Suppose A1, A2 and 
A3. Then the Stochastic Optimal Fixed-Preview Tracking Problem by State Feedback for (1) 
and (2) is solvable if and only if there exist matrices Xi(k)≥O and scalar functions iα (k), i=1, 
···,M, satisfying the conditions Xi(N)=C1d,i'(N)C1d,i(N) and iα (N)=0 such that the coupled 
Riccati equations (3) and the coupled scalar equations (4) hold over [0,N]. Moreover an 
optimal control strategy for the tracking problem (1) and (2) is given by 

*
du (k)=F2,i(k)x(k)+Du,i(k)rd(k)+Dθu,i(k)Ei( cθ (k+1),k) for i=1, ···,M 

where Du,i(k)=- 1
2,iT − (k)B2d,i‘Ei(X(k+1),k)B3d,i and Dθu,i(k)=- 1
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and ,c iθ (k) is the 'causal' part of iθ (·) at time k. This ,c iθ  is the expected value of iθ  over kR  
and given by 

 
( ) ( ) ( ) ( ) ( )
( )
( ) ( )

, ,, i d

,

, 1d,i 13d,i d

l ’ l E ( l 1 ,l) l r l ,  k 1 l k h,
k h 1 0 if k h N 1
k h 1 C ‘D r N ,  k h N

d i d ic i c

c i

c i

A Bθ θ

θ

θ

= + + + ≤ ≤ +

+ + = + ≤ −

+ + = + =

 (6) 

where Ei( cθ (k+1),k)= ,1 ( )M
d ijj p k

=∑ ,c jθ (k+1) and cθ (k)=( ,1cθ (k) , ···, ,c Mθ (k)).  

Moreover, the optimal value of the performance index is 

 
( )

( ) ( ) ( ) ( )

0 0 0 00

*
dN d 0

1
1/2 2

m(k) d2, ( ) u,m k
0

J (x0,  ,r ) tr{ } 0 E{ {2 ‘x }} 

              E{ {| D k E ( k 1 ,k)| }} r
k

d i i i iR
N

c dm kR
k

u Q E

E T Jθ

α θ

θ
−

−

=

= Χ + +

+ + +∑
 (7) 

where , ( )c m kθ − (k)= ( )m kθ (k)- , ( )c m kθ (k), k∈ [0,N],  
 Ei( cθ

− (k+1),k)= ,1 ( )M
d ijj p k

=∑ ,c jθ − (k+1), cθ
− (k)=( ,1cθ

−  (k), ···, ,c Mθ − (k)) and 

( ) ( ) ( ){ } ( ) ( ) ( )( )

( ) ( ) ( ) ( )

1
2 1/2 2

d 13d,m(N) d m(k)2, ( ) u,m k
0

m(k) 2, ( ) u,m(k) du,m k

r E {|D N r N | } E { | D k E k 1 ,k |

                                                                                 -2E ( ‘ k+1 ,k)D ‘ D k r k

N k

N

d m kR R
k

m k

J E E T

T

θ

θ

θ

θ

−

=

⎧⎪= + − +⎨
⎪⎩
∑

( ) ( ) ( ) ( ) }m(k) 3d,m(k) d d,k ,m(k) d                                                                               2E ( ‘ k+1 ,k)B k r k +J r } ,θ+

 



 Discrete Time Systems 

 

116 

( ) ( ) ( ) ( )( )
( )

d,k ,m(k) d d u,m(k) 2, ( ) u,m(k) 3d,m(k) m(k) 3d,m(k)

13d,m(k) 13d,m(k) d

J r r ‘ k D ‘ D k B ‘E X k 1 ,k B

                                  +D ‘D r k .

m kT⎡= − + +⎣
⎤⎦

 

(Proof) See the appendix 1. 
Remark 3.2 Note that each dynamics (6) of ,c iθ , which composes the compensator 
introducing the preview information, is coupled with the others. It corresponds to the 
characteristic that the Riccati difference equations (3) are coupled with each other, which 
give the necessary and sufficient conditions for the solvability of the stochastic optimal 
tracking problem by state feedback. 
Next we consider the following two extreme cases according to the information structures 
(preview lengths) of rd: 
i. Stochastic Optimal Tracking of Causal {rd(·)}: 
In this case, {rd(k)} is measured on-line, i.e., at time k, rd(l) is known only for l≤k. 
ii. Stochastic Optimal Tracking of Noncausal {rd(·)}: 
In this case, the signal {rd(k)} is assumed to be known a priori for the whole time interval 
k∈ [0,N]. 
Utilizing the optimal control strategy for the stochastic optimal tracking problem in 
Theorem 3.1, we present the solutions to these two extreme cases. 
Corollary 3.1 Consider the system (1) and the performance index (2). Suppose A1, A2 and 
A3. Then each of the stochastic optimal tracking problems for (1) and (2) is solvable by state 
feedback if and only if there exist matrices Xi(k) ≥O and scalar functions iα (k), i=1, ···,M, 
satisfying the conditions Xi(N)=C1d,i'(N)C1d,i(N) and iα (N)=0 such that the coupled Riccati 
difference equations (3) and the coupled scalar equations (4) hold over [0,N]. Moreover, the 
following results hold using the three types of gains 

Kd,x,i(k)=F2,i(k), Krd,i(k)=Du,i(k) and Kd,θ,i(k)=Dθu,i(k) for i=1, ···,M. 

i. The control law for the Stochastic Optimal Tracking of Causal {rd(·)} is 

ud,s1(k)=Kd,x,i(k)x(k)+Krd,i(k)rd(k) for i=1, ···,M 

and the value of the performance index is 

JdN(x0, ud,s1, rd)=tr{
0iQ
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ii. The control law for the Stochastic Optimal Tracking of Noncausal {rd(·)} is 
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with iθ (·) given by (5) and the value of the performance index is 
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0iQ

0iΧ }+
0iα (0)+2

0iθ ‘μ0+ dJ (rd). 

(Proof) 
i. In this causal case, the control law is not affected by the effects of any preview 

information and so cθ (k)=0 for all k∈ [0,N] since the each dynamics of ,c iθ  becomes 
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autonomous. As a result we obtain θ (k)= cθ
− (k) for all k∈ [0,N]. Therefore we obtain 

the value of the performance index JdN(x0, ud,s1, rd). 
ii. In this noncausal case, h=N-k and (5) and (6) becomes identical. As a result we obtain 

θ (k)= cθ (k) for all k∈ [0,N]. Therefore we obtain cθ
− (k)=0 for all k∈ [0,N] and the value 

of the performance index JdN(x0, ud,s2, rd). Notice that, in this case, we can obtain the 
deterministic value of 

0iθ (0) using the information of {rd(·)} until the final time N and so 
the term E{
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0iθ ‘x0}} in the right hand side of (7) reduces to 2

0iθ ‘μ0. (Q.E.D.) 

4. Output feedback case 
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 and the dynamics can be written as follows: 

x(k+1)=Ad,m(k)(k)x(k)+Gd,m(k)(k)ωd(k)+B2d,m(k)(k) ,d cu (k)+ ,d cr (k) 
where 
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For this plant dynamics, consider the controller 
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where Mm(k) are the controller gains to decide later, using the solutions of another coupled 
Riccati equations introduced below. 
Define the error variable 

e(k):=x(k)- ˆ ex (k) 
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autonomous. As a result we obtain θ (k)= cθ
− (k) for all k∈ [0,N]. Therefore we obtain 
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ii. In this noncausal case, h=N-k and (5) and (6) becomes identical. As a result we obtain 
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 and the dynamics can be written as follows: 

x(k+1)=Ad,m(k)(k)x(k)+Gd,m(k)(k)ωd(k)+B2d,m(k)(k) ,d cu (k)+ ,d cr (k) 
where 

,d cr (k)=B2d,m(k){Du,m(k)(k)rd(k)+Dθu,m(k)(k)Em(k)( cθ (k+1),k)}+B3d,m(k)(k)rd(k). 
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where Mm(k) are the controller gains to decide later, using the solutions of another coupled 
Riccati equations introduced below. 
Define the error variable 

e(k):=x(k)- ˆ ex (k) 
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and the error dynamics is as follows: 

e(k+1)=Ad,m(k)(k)e(k)+Gd,m(k)(k)ωd(k)+Mm(k)(k)[y(k)-C2d,m(k) ˆ ex (k)] 
              =[Ad,m(k)+Mm(k)C2d,m(k)](k)e(k)+[Gd,m(k)+Mm(k)Hd,m(k)](k)ωd(k) 

Note that this error dynamics does not depend on the exogenous inputs ud nor rd. Our 
objective is to design the controller gain Mm(k) which minimizes 

JdN(x0, , *d cu , rd)=tr{
0iQ

0iΧ }+
0iα (0)+E{

0RE {2
0iθ ‘x0}} 

+E{
1

0

N

k

−

=
∑ kRE {|F2,m(k)(k)e(k) 

                                                -Dθu,m(k)(k)Em(k)( cθ
− (k +1),k)

2 , ( )

2|
m kT }}+ dJ ( rd) 

Notice that e(k) and Em(k)( cθ
− (k +1),k) are mutually independent.  

We decide the gain matrices Mi(k), i=1, ···,M by designing the LMMSE filter such that 
1

0
N
k
−
=∑ E{

kRE {|e(k) 2| }} is minimized. Now we consider the following coupled Riccati 

difference equations and the initial conditions. 
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 where 

πi(k):=P{m(k)=i}, ,1 ( )M
d ijj p k

=∑ πi=πj, ( )i1 k 1M
i Π
=

=∑ , J(k):={i∈N; πi(k)>0}. 

These equations are also called the filtering coupled Riccati difference equations [Costa & 
Tuesta (2003)]. 
Now since 

E{
0RE {e(0)}}=E{

0RE {x0}-E{
0RE {x0}}}=E{

0RE x0}}-μ0=0 

and ,d cr (0) is deterministic if rd(l) is known at all l∈ [0,k+h], 

E{
0RE {e(0) ,d cr '(0)1{m(0)=i}}}=πi(0)E{

0RE {e(0)}} ,d cr '(0)=O 

and so we obtain, for each k∈ [0,N], 

E{
kRE {e(k) ,d cr '(k)1{m(k)=i}}}=πi(k)E{

kRE {e(k)}} ,d cr '(k)=O. 

Namely there exist no couplings between e(·) and ,d cr (·). The development of e(·) on time k 
is independent of the development of ,d cr (·) on time k. Then we can show the following 
orthogonal property as [Theorem 5.3 in (Costa et al. (2005)) or Theorem 2 in (Costa & Tuesta 
(2003))] by induction on k (See the appendix 2). 
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 E{
kRE {e(k) ˆ ex '(k) 1{m(k)=i}}}=O. (10) 

Moreover define 

iY (k):=E{
kRE e(k)e'(k) 1{m(k)=i}}} 

and then we can show 

Yi(k)= iY (k). 

From all these results (orthogonal properties), as the case of rd(·)≡0, using the solutions of 
the coupled difference Riccati equations, it can be shown that the gains Mm(k) minimizing JdN 
are decided as follows (cf. [Costa & Tuesta (2003); Costa et al. (2005)]): 
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Finally the following theorem, which gives the solution of the output feedback problem, 
holds. 
Theorem 4.1 Consider the system (1) and the performance index (2). Suppose A1, A2, A3 
and A4. Then an optimal control strategy which, gives the solution of the Stochastic Optimal 
Fixed-Preview Tracking Problem by Output Feedback for (1) and (2) is given by the 
dynamic controller (8) with the gains (11) using the solutions of the two types of the coupled 
Riccati difference equations (3) with Xi(N)=C1d,i'(N)C1d,i(N) and (9) with Yi(0)= πi(0)(

0iQ -
μ0μ0’). 
Remark 4.1 Notice that 
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Then, with regard to the performance index, the following result holds. 
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by the orthogonal property (10). 
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and the error dynamics is as follows: 
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Note that the second and third terms in the right hand side do not depend on the input ud. 
Then we obtain 
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Therefore minimizing (12) is equivalent to minimizing E{
0

N

k=
∑ kRE {| ˆez (k) 2| } subject to the 

dynamics 

ˆ ex (k+1)=Ad,m(k)(k) ˆ ex (k)+B2d,m(k)(k) , *d cu (k)+ ,d cr (k) -Mm(k)(k)ν(k), ˆ ex (0)= 
0RE {x0}=μ0 

where 

ν(k)=y(k)-C2d,m(k) ˆ ex (k) 

and , *d cu (k) is the state feedback controller with the form 
Kd,x,i(k) ˆex (k)+Krd,i(k)rd(k)+Kd,θ,i(k)Ei(θ (k +1),k) for some gains Kd,x,i, Krd,i and Kd,θ,i. Note 
that the term Mm(k)(k)ν(k) plays the same role as the "noise" term Gd,m(k)(k)ωd(k) of the plant 
dynamics in the state feedback case. 
Remark 4.2 As the case of rd(·)≡0, the separation principle holds in the case of rd(·)≢0. 
Namely we can design the state feedback gains F2,m(k)(k) and the filter gains Mm(k) separately.  
Utilizing the optimal control strategy for the stochastic optimal tracking problem in 
Theorem 4.1, we present the solutions to the two extreme cases. 
Corollary 4.1 Consider the system (1) and the performance index (2). Suppose A1, A2, A3 
and A4. Then optimal control strategies by output feedback for the two extreme cases are as 
follows using the solutions of the two types of the coupled Riccati difference equations (3) 
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ii. The control law by output feedback for the Stochastic Optimal Tracking of Noncausal 
{rd(·)} is 
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(Proof) As the state feedback cases, cθ (k)=0, i.e., θ (k)= cθ
− (k) for all k∈ [0,N] in the case i), 

and θ (k)= cθ (k), i.e., cθ
− (k)=0 for all k∈ [0,N] in the case ii). 

5. Numerical examples 
In this section, we study numerical examples to demonstrate the effectiveness of the 
presented stochastic LQ preview tracking design theory. 
We consider the following two mode systems and assume that the system parameters are as 
follows. (cf. [Cohen & Shaked (1997); Shaked & Souza (1995)].): 
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where 
 

Mode 1:                   Mode 2: 

Ad,1=
0 1
0.8 1.6

⎡ ⎤
⎢ ⎥−⎣ ⎦

, Ad,2=
0 1

1.6 1.6
⎡ ⎤
⎢ ⎥
⎣ ⎦
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⎡ ⎤
⎢ ⎥
⎣ ⎦
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Pd= 0.3 0.7
0.6 0.4
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

be a stationary transition matrix of {m(k)}. We set x0=col(0,0) and i0=1. 
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Note that the second and third terms in the right hand side do not depend on the input ud. 
Then we obtain 
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ii. The control law by output feedback for the Stochastic Optimal Tracking of Noncausal 
{rd(·)} is 
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(Proof) As the state feedback cases, cθ (k)=0, i.e., θ (k)= cθ
− (k) for all k∈ [0,N] in the case i), 

and θ (k)= cθ (k), i.e., cθ
− (k)=0 for all k∈ [0,N] in the case ii). 

5. Numerical examples 
In this section, we study numerical examples to demonstrate the effectiveness of the 
presented stochastic LQ preview tracking design theory. 
We consider the following two mode systems and assume that the system parameters are as 
follows. (cf. [Cohen & Shaked (1997); Shaked & Souza (1995)].): 
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be a stationary transition matrix of {m(k)}. We set x0=col(0,0) and i0=1. 
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Then we introduce the following objective function. 

JdN(x 0, ud, rd):=E{
0

N

k=
∑ kRE {|C1d,m(k)(k)x(k)+D13d,m(k)(k)rd(k) 2| }} 

                           +0.01E{
1

0

N

k

−

=
∑ kRE {|u d(k) 2| }} 

By the term B3d,i(k)rd(k), i=1,2, the tracking performance can be expected to be improved as 
[Cohen & Shaked (1997); Shaked & Souza (1995)] and so on. The paths of m(k) are generated 
randomly, and the performances are compared under the same condition, that is, the same 
set of the paths so that the performances can be easily compared. 
We consider the whole system (13) with mode transition rate Pd over the time interval 
k∈ [0,100]. For this system (13) with the rate matrix Pd , we apply the results of the optimal 
tracking design theory by output feedback for rd(k)=0.5sin(πk/20) and rd(k)=0.5sin(πk/100) 
with various step lengths of preview, and show the simulation results for sample paths. 
 

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time[s]

Tr
ac

ki
ng

 e
rro

r

h=0 

h=1 

h=2 

h=3 

h=4  
Fig. 1(a). rd(k)=0.5sin(πk/20) 

 

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

Time[s]

Tr
ac

ki
ng

 e
rro

r

h=0 

h=1 

h=2 

h=3 

h=4  
Fig. 1(b). rd(k)=0.5sin(πk/100) 

Fig. 1. The whole system consisting of mode 1 and mode 2: The errors of tracking for various 
preview lengths 

Stochastic Optimal Tracking with Preview for Linear Discrete Time Markovian Jump Systems   

 

123 

It is shown in Fig. 1(a) for rd(k)= 0.5sin(πk/20) and Fig. 1(b) rd(k)=0.5sin(πk/100) that 
increasing the preview steps from h=0 to h=1,2,3,4 improves the tracking performance. In 
fact, the square values |C1d,i(k)x(k) + D13d(k)rd(k) 2|  of the tracking errors are shown in  
Fig. 1(a) and (b) and it is clear the tracking error decreases as increasing the preview steps 
by these figures. 

6. Conclusion 
In this paper we have studied the stochastic linear quadratic (LQ) optimal tracking control 
theory considering the preview information by state feedback and output feedback for the 
linear discrete-time Markovian jump systems affected by the white noises, which are a class 
of stochastic switching systems, and verified the effectiveness of the design theory by 
numerical examples. In order to solve the output feedback problems, we have introduced 
the LMMSE filters adapted to the effects of preview feedforward compensation. In order to 
design the output feedback controllers, we need the solutions of two types of coupled 
Riccati difference equations, i.e., the ones to decide the state feedback gains and the ones to 
decide the filter gains. These solutions of two types of coupled Riccati difference equations 
can be obtained independently i.e., the separation principle holds. Correspondingly the 
compensators introducing the preview information of the reference signal are coupled with 
each other. This is the very important research result in this paper. 
We have considered both of the cases of full and partial observation. However, in these 
cases, we have considered the situations that the switching modes are observable over 
whole time interval. The construction of the design theory for the case that the switching 
modes are unknown is a very important further research issue. 

Appendix 1. Proof of Proposition 3.1 
(Proof of Proposition 3.1) 
Sufficiency: 
Let Xi(k)>O and iα , i=1, …, M, be solutions to (3) and (4) over [0,N] such that 
Xi(N)=C1d,i'(N)C1d,i (N) and iα (N)=0. 
Define 
 

, ( )k m kφ :=
1kRE

+
{E{x’(k+1)Xm(k+1) (k+1)x(k+1)+α m(k+1)(k+1)|x(k),m(k)}} 

-
kRE {x’(k)Xm(k) x(k)+α m(k)(k)}  

 
We first consider the case of rd(·)≡0. Then the following equalities hold by the assumptions 
A3. 
 

                     E{x’(k+1)Xm(k+1) (k+1)x(k+1)+α m(k+1)(k+1)|x(k),m(k)} 

                         = E{ (Ad,m(k)(k) x(k)+Gd,m(k)(k)ωd(k)+B2d,m(k)(k)ud(k))’ 
                                  ×Xm(k+1) (k+1) (Ad,m(k)(k) x(k)+Gd,m(k)(k)ωd(k)+B2d,m(k)(k)ud(k)) 
                                     +α m(k+1)(k+1)|x(k),m(k)} 
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It is shown in Fig. 1(a) for rd(k)= 0.5sin(πk/20) and Fig. 1(b) rd(k)=0.5sin(πk/100) that 
increasing the preview steps from h=0 to h=1,2,3,4 improves the tracking performance. In 
fact, the square values |C1d,i(k)x(k) + D13d(k)rd(k) 2|  of the tracking errors are shown in  
Fig. 1(a) and (b) and it is clear the tracking error decreases as increasing the preview steps 
by these figures. 
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theory considering the preview information by state feedback and output feedback for the 
linear discrete-time Markovian jump systems affected by the white noises, which are a class 
of stochastic switching systems, and verified the effectiveness of the design theory by 
numerical examples. In order to solve the output feedback problems, we have introduced 
the LMMSE filters adapted to the effects of preview feedforward compensation. In order to 
design the output feedback controllers, we need the solutions of two types of coupled 
Riccati difference equations, i.e., the ones to decide the state feedback gains and the ones to 
decide the filter gains. These solutions of two types of coupled Riccati difference equations 
can be obtained independently i.e., the separation principle holds. Correspondingly the 
compensators introducing the preview information of the reference signal are coupled with 
each other. This is the very important research result in this paper. 
We have considered both of the cases of full and partial observation. However, in these 
cases, we have considered the situations that the switching modes are observable over 
whole time interval. The construction of the design theory for the case that the switching 
modes are unknown is a very important further research issue. 

Appendix 1. Proof of Proposition 3.1 
(Proof of Proposition 3.1) 
Sufficiency: 
Let Xi(k)>O and iα , i=1, …, M, be solutions to (3) and (4) over [0,N] such that 
Xi(N)=C1d,i'(N)C1d,i (N) and iα (N)=0. 
Define 
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-
kRE {x’(k)Xm(k) x(k)+α m(k)(k)}  

 
We first consider the case of rd(·)≡0. Then the following equalities hold by the assumptions 
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                        =(Ad,m(k)(k)x(k)+B2d,m(k)(k)ud(k))’ 
                                  ×  Em(k)(X(k+1),k) (Ad,m(k)(k) x(k)+B2d,m(k)(k)ud(k)) 

                                  + 1
M
j=∑ tr { Gd,i (k) iΧ  (k)Gd,i ‘(k)Ei(X(k+1),k)}+E{α m(k+1) (k+1)|x(k),m(k)} 

 
It can be shown that the following equality holds, using the system (1) and the coupled 
Riccati equations (3) and the coupled scalar equations (4). ([Costa et al. (2005); Fragoso 
(1989)]) 

, ( )k m kφ =
kRE {-|zd(k) 2| +| 1/2

2, ( )m kT (k)[ud(k)-F2,m(k)(k) x(k)] 2| } 

Moreover, in the genaral case that rd(·) is arbitrary, we have the following equality. 

, ( )k m kφ =
kRE {-|zd(k) 2| +| 1/2

2, ( )m kT (k)[ud(k)-F2,m(k)(k)x(k)]-Du,m(k)(k)rd(k) 2|  

+ 2x'(k) , ( )d m kB (k)rd(k)+Jd,k,m(k)(rd)} 
 

Notice that, in the right hand side of this equality, Jd,k,m(k) (rd), which means the tracking 
error without considering the effect of the preview information, is added. 
Now introducing the vector ( )m kθ , which can include some preview information of the 
tracking signals, 

1kRE
+

{E{ ( 1)m kθ + ’ (k+1)x(k+1)|x(k),m(k)}}-
kRE { ( )m kθ ’(k)x(k)} 

=
kRE {Em(k)(θ '(k+1),k)(Ad,m(k)(k)x(k)+Gd,m(k)(k)ωd(k) 

        +B2d,m(k)(k)ud(k)+B3d,m(k)(k)rd(k))}-
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+
{ ( )m kθ ’ (k)x(k)} 

Then we obtain 
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(14) 

where 

iθ (k)= ,d iA ’(k)Ei(θ (k+1),k)+ ,d iB (k)rd(k) 
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to get rid of the mixed terms of rd and x, or ( )m kθ  and x. , , ( )d k m kJ (rd) means the tracking error 
including the preview information vector θ  and can be expressed by 

, , ( )d k m kJ (rd)=-| 1/2
2, ( )m kT  Dθu,m(k)(k)Em(k)(θ (k+1),k)] 2|  

-Em(k)(θ '(k+1),k)Dθu,m(k) ’ T2,m(k)Du,m(k)(k)rd(k) 
+2 Em(k)(θ '(k+1),k)B3d,m(k)rd(k)+Jd,k,m(k) (rd) 

Taking the sum of the quantities (14) from k=0 to k=N-1 and adding E{|C1d,m(N)(N)x(N)+ 
D13d,m(N)(N)rd(N) 2| } and taking the expectation E{ }, 
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where 
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                        =(Ad,m(k)(k)x(k)+B2d,m(k)(k)ud(k))’ 
                                  ×  Em(k)(X(k+1),k) (Ad,m(k)(k) x(k)+B2d,m(k)(k)ud(k)) 
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It can be shown that the following equality holds, using the system (1) and the coupled 
Riccati equations (3) and the coupled scalar equations (4). ([Costa et al. (2005); Fragoso 
(1989)]) 
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to get rid of the mixed terms of rd and x, or ( )m kθ  and x. , , ( )d k m kJ (rd) means the tracking error 
including the preview information vector θ  and can be expressed by 
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+2 Em(k)(θ '(k+1),k)B3d,m(k)rd(k)+Jd,k,m(k) (rd) 

Taking the sum of the quantities (14) from k=0 to k=N-1 and adding E{|C1d,m(N)(N)x(N)+ 
D13d,m(N)(N)rd(N) 2| } and taking the expectation E{ }, 
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where 
ˆdu (k)= ud(k)-F2,m(k)(k) x(k)-Du,m(k)(k)rd(k). 

 
Since the left hand side reduces to 
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noticing that the equality 
 

NRE {E{x’(N)Xm(N)(N)x(N)+ ( )m Nα (N)+2 ( )m Nθ ’(N)x(N)|x(l),m(l)}} 

-
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=
1N
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1kRE
+

{E{x’(k+1)Xm(k+1)(k+1)x(k+1)+ ( 1)m kα + (k+1) 
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-
kRE {x’(k)Xm(k)x(k)+ ( )m kα (k)+2 ( )m kθ ’(k)x(k)}|x(l),m(l)} 

   =
1N

k l

−

=
∑  E{ , ( )k m kφ  

+2{
1kRE

+
{E{ ( 1)m kθ + ’ (k+1)x(k+1)|x(k),m(k)}}  

-{
kRE ( )m kθ ’ (k)x(k)}} x(l),m(l)} 

 
 
holds for l, 0 ≤ l ≤ N-1, we obtain 
 

JdN(x0, ud, rd)=tr{
0iQ

0iX }+
0iα (0)+E{

0RE {2
0iθ ’(0)x0}} 

+E{
1

0

N

k

−

=
∑ kRE {| ˆdu (k)-Dθu,m(k)(k)Em(k)(θ (k+1),k)

2 , ( )

2
( )|

m kT k }}+E{ dJ (rd)} 

 

 

where we have used the terminal conditions Xi(N)=C1d,i'(N)C1d,i(N),  iθ (N)=C1d,i‘D13d,ird(N) 
and iα (N)=0. Note that  dJ (rd) is independent of ud and x0. Since the average of , ( )c m kθ − (k) 
over kR  is zero, including the 'causal' part , ( )c m kθ (k) of θ (·) at time k, we adopt 
 

*ˆdu (k)= Dθu,m(k) (k) Em(k)( cθ (k+1),k) 

as the minimizing control strategy. 
Then finally we obtain 
 

JdN(x0, ud, rd)=tr{
0iQ

0iX }+
0iα (0)+E{

0RE {2
0iθ ’(0)x0}} 

+E{
1

0

N

k

−

=
∑ kRE {| ˆdu (k)-Dθu,m(k)(k)Em(k)(θ (k+1),k)

2 , ( )

2
( )|

m kT k }}+E{ dJ (rd)} 

≥tr{
0iQ

0iX }+
0iα (0)+E{

0RE {2
0iθ ’(0)x0}} 

+ E{
1

0

N

k

−

=
∑ kRE {|Dθu,m(k)(k)Em(k)( cθ

− (k+1),k)
2 , ( )

2
( )|

m kT k }}+E{ dJ (rd)} 

= JdN(x0, 
*ˆdu , rd) 

 

 
which concludes the proof of sufficiency.  
Necessity: 
Because of arbitrariness of the reference signal rd(·), by considering the case of rd(·) ≡  0, one 
can easily deduce the necessity for the solvability of the stochastic LQ optimal tracking 
problem [Costa et al. (2005); Fragoso (1989)]. Also notice that, in the proof of sufficiency, on 
the process of the evaluation of the performance index, by getting rid of the mixed terms of 
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rd and x, or ( )m kθ  and x, we necessarily obtain the form of the preview compensator 
dynamics. (Q.E.D.) 

Appendix 2. Proof of Orthogonal Property (10) 
In this appendix we give the proof of the orthogonal property (10). 
We prove it by induction on k. 
For k=0, since ˆ ex (0) is deterministic, 
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-
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where we have used the terminal conditions Xi(N)=C1d,i'(N)C1d,i(N),  iθ (N)=C1d,i‘D13d,ird(N) 
and iα (N)=0. Note that  dJ (rd) is independent of ud and x0. Since the average of , ( )c m kθ − (k) 
over kR  is zero, including the 'causal' part , ( )c m kθ (k) of θ (·) at time k, we adopt 
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as the minimizing control strategy. 
Then finally we obtain 
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which concludes the proof of sufficiency.  
Necessity: 
Because of arbitrariness of the reference signal rd(·), by considering the case of rd(·) ≡  0, one 
can easily deduce the necessity for the solvability of the stochastic LQ optimal tracking 
problem [Costa et al. (2005); Fragoso (1989)]. Also notice that, in the proof of sufficiency, on 
the process of the evaluation of the performance index, by getting rid of the mixed terms of 
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rd and x, or ( )m kθ  and x, we necessarily obtain the form of the preview compensator 
dynamics. (Q.E.D.) 

Appendix 2. Proof of Orthogonal Property (10) 
In this appendix we give the proof of the orthogonal property (10). 
We prove it by induction on k. 
For k=0, since ˆ ex (0) is deterministic, 
 

E{
0RE {e(0) ˆex '(0)1{m(0)=i}}}= (0)iπ E{

0RE {e(0)}} ˆex '(0)=O. 

 
We have already shown that, for each k∈ [0,N], 
 

E{
kRE {e(k) ,d cr '(k)1{m(k)=i}}}=O 

 
in section 4. Suppose  
 

E{
kRE {e(k) ˆex '(k)1{m(k)=i}}}=O. 

Then, since ωd(k) is zero mean, not correlated with  ˆ ex (k) and  ,d cr (k) and independent of 
m(k), we have 

( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( )

1 {m k 1 i}

, d,i i i d,i i 2d,i{m k i}
( )

d,i i d,i d d,i i 2d,i{m k i}

d,i

ˆE {e k 1 ’ k 1  1 }

ˆA M C k E {e k ' k 1 } A M C ’ k

ˆ                   G M H k E { k ' k 1 } A M C ’ k  

                    A M

k

k

k

eR

d ij eR
i J k

eR

E x

p E x

E xω

+ + =

=
∈

=

+ +

⎡⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦⎢⎣

⎡ ⎤ ⎡ ⎤+ + +⎣ ⎦ ⎣ ⎦

+ +

∑

( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( )

, *i 2d,i 2d,i{m k i}

, *d,i i d,i d 2d,i{m k i}

,d,i i 2d,i 3d,i{m k i}

d,i i

C k E {e k ' k 1 } B ’ k

                    G M H k E { k ' k 1 } B ’ k

                    A M C k E {e k ' k 1 } B ’ k

                   G M

k

k

k

d cR

d cR

d cR

E u

E u

E r

ω

=

=

=

⎡ ⎤⎣ ⎦

⎡ ⎤+ +⎣ ⎦

⎡ ⎤+ +⎣ ⎦

+ + ( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( )

( ) ( )

,d,i d 3d,i{m k i}

d,i i 2d,i i{m k i}

d,i i d,i d i{m k i}

, d,i i 2d,i
( )

H k E { k ' k 1 } B ’ k

                    A M C k E {e k y' k 1 } M ’ k

                   G M H k E { k y' k 1 } M ’ k

A M C k E {e k y'

k

k

k

k

d cR

R

R

d ij R
i J k

E r

E

E

p E

ω

ω

=

=

=

∈

⎡ ⎤⎣ ⎦

⎡ ⎤− +⎣ ⎦

⎤⎡ ⎤− +⎣ ⎦ ⎥⎦

⎡ ⎤= − +⎣ ⎦∑ ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( )

i{m k i}

d,i i d,i d i{m k i}

k 1 } M ’ k

                    G M H k E { k y' k 1 } M ’ k
kRE ω

=

=

⎡
⎢⎣

⎤⎡ ⎤− +⎣ ⎦ ⎥⎦

 



 Discrete Time Systems 

 

128 

where  , *d cu (k)=F2,i(k) ˆex (k) , i=1, ···,M. Notice that 

y(k)= C2d,m(k)(k)x(k)+Hd,m(k)(k)ωd(k)= C2d,m(k)(k)(e(k)+ ˆ ex (k))+Hd,m(k)(k)ωd(k). 
 

Then, by induction on k, we obtain 
 

E{
kRE {e(k)y’(k)1{m(k)=i}}}= E{

kRE {e(k)e'(k)1{m(k)=i}}}C2d,i'(k)+E{
kRE {e(k) ˆ ex '(k)1{m(k)=i}}}C2d,i'(k) 

+ E{
kRE {e(k)ωd'(k)1{m(k)=i}}}Hd,i'(k) 

 =Yi(k)C2d,i'(k)     
 

We also obtain  

   E{
kRE {ωd(k)y’(k)1{m(k)=i}}} 

                  = E{
kRE {ωd(k)e'(k)1{m(k)=i}}}C2d,i'(k)+E{

kRE {ωd(k) ˆ ex '(k)1{m(k)=i}}}C2d,i'(k) 

                                    + E{
kRE {ωd(k)ωd'(k)1{m(k)=i}}}Hd,i'(k) 

                  = E{ωd(k)ωd'(k)}P{m(k)=i}Hd,i'(k)= πi(k)Hd,i'(k). 
 

 
Then considering the assumption A4 Gd,i(k)Hd,i'(k) = O, i=1, ···,M, and  

Mi(k)(Hd,iHd,i’πi(k)+ C2d,iYi(k)C2d,i’)= - Ad,iYi(k)C2d,i’ 

by (11), we finally obtain 

E{
1kRE

+
{e(k+1) ˆex '(k+1) 1{m(k+1)=i}}} 

                  = ,
( )

d ij
i J k

p
∈
∑ [-[Ad,i+MiC2d,i](k)Yi(k)C2d,i'(k)-[Gd,i+MiHd,i](k)πi(k)Hd,i'(k)]Mi’(k) 

                  = ,
( )

d ij
i J k

p
∈
∑ [-Ad,iYi(k)C2d,i'(k)-Mi(k)(Hd,iHd,i’πi(k)+ C2d,iYi(k)C2d,i’)]Mi’(k) 

                  = ,
( )

d ij
i J k

p
∈
∑ [-Ad,iYi(k)C2d,i'(k)+ Ad,iYi(k)C2d,i’]Mi’(k) 

                  =0 

which concludes the proof. (Q.E.D.) 

7. References 
E. K. Boukas. (2006). Stochastic Switching Systems: Analysis and Design, Birkhauser, 0-8176-

3782-6, Boston, 
A. Cohen. & U. Shaked. (1997). Linear Discrete-Time H∞-Optimal Tracking with Preview. 

IEEE Trans. Automat. Contr., 42, 2, 270-276 
O. L. V. Costa. & E. F. Tuesta. (2003). Finite Horizon Quadratic Optimal Control and a 

Separation Principle for Markovian Jump Linear Systems. IEEE Trans. Automat. 
Contr., 48, 10, 1836-1842 

Stochastic Optimal Tracking with Preview for Linear Discrete Time Markovian Jump Systems   

 

129 

O. L. V. Costa.; M. D. Fragoso. & R. P. Marques. (2005). Discrete-Time Markov Jump Linear 
Systems, Springer, 1-85233-761-3, London 

V. Dragan. & T. Morozan. (2004). The linear quadratic optimization problems for a class of 
linear stochastic systems with multiplicative white noise and Markovian jumping. 
IEEE Trans. Automat. Contr., 49, 5, 665-675 

M. D. Fragoso. (1989). Discrete-Time Jump LQG Problem. Int. J. Systems Science, 20, 12, 2539-
2545 

M. D. Fragoso.; J. B. R. do Val . & D. L. Pinto Junior. (1995). Jump Linear H∞ Control: the 
discrete-time case. Control-Theory and Advanced Technology, 10, 4, 1459-1474 

E. Gershon.; D. J. N. Limebeer.; U. Shaked. & I. Yaesh. (2004). Stochastic H∞ Tracking with 
Preview for State-Multiplicative Systems. IEEE Trans. Automat. Contr., 49, 11, 2061-
2068 

E. Gershon.; U. Shaked. & I. Yaesh. (2004). H∞ tracking of linear continuous-time systems 
with stochastic uncertainties and preview. Int. J. Robust and Nonlinear Control, 14, 7, 
607-626 

E. Gershon.; U. Shaked. & I. Yaesh. (2005). H∞ Control and Estimation of State-Multiplicative 
Linear Systems, LNCIS 318, Springer, 1-85233-997-7, London 

J.-W. Lee. & P. P. Khargonekar. (2008). Optimal output regulation for discrete-time switched 
and Markovian jump linear systems, SIAM J. Control Optim., 47, 1, 40-72 

M. Mariton. (1990). Jump Linear Systems in Automatic Control, Marcel Dekker, 0-8247-8200-3, 
New York 

G. Nakura. (2008a). Noncausal Optimal Tracking for Linear Switched Systems. In: Hybrid 
Systems: Computation and Control: 11th International Workshop, HSCC 2008, St. Louis, 
MO, USA, April, 2008, Proceedings, LNCS 4981, M. Egerstedt. & B. Mishra. (eds.), 
pp.372-385, Springer, 3-540-78928-6, Berlin, Heidelberg. 

G. Nakura. (2008b). H∞ Tracking with Preview for Linear Systems with Impulsive Effects -
State Feedback and Full Information Cases-. Proceedings of the 17th IFAC World 
Congress, TuA08.4 (CD-ROM), Seoul, Korea 

G. Nakura. (2008c). H∞ Tracking with Preview by Output Feedback for Linear Systems with 
Impulsive Effects. Proceedings of the 17th IFAC World Congress, TuA08.5 (CD-ROM), 
Seoul, Korea 

G. Nakura. (2008d). Stochastic Optimal Tracking with Preview for Linear Continuous-Time 
Markovian Jump Systems. Proceedings of SICE Annual Conference 2008, 2A09-2 (CD-
ROM), Chofu, Tokyo, Japan 

G. Nakura. (2008e). H∞ Tracking with Preview for Linear Continuous-Time Markovian 
Jump Systems. Proceedings of SICE 8th Annual Conference on Control Systems, 073-2-1 
(CD-ROM), Kyoto, Japan 

G. Nakura. (2009). Stochastic Optimal Tracking with Preview for Linear Discrete-Time 
Markovian Jump Systems (Extended Abstract). In: Hybrid Systems: Computation and 
Control: 12th Conference, HSCC 2009, San Francisco, CA, USA, April, 2009, Proceedings, 
LNCS 5469, R. Majumdar. & P. Tabuada. (Eds.), pp. 455-459, Springer, 3-642-00601-
9, Berlin, Heidelberg 



 Discrete Time Systems 

 

128 

where  , *d cu (k)=F2,i(k) ˆex (k) , i=1, ···,M. Notice that 

y(k)= C2d,m(k)(k)x(k)+Hd,m(k)(k)ωd(k)= C2d,m(k)(k)(e(k)+ ˆ ex (k))+Hd,m(k)(k)ωd(k). 
 

Then, by induction on k, we obtain 
 

E{
kRE {e(k)y’(k)1{m(k)=i}}}= E{

kRE {e(k)e'(k)1{m(k)=i}}}C2d,i'(k)+E{
kRE {e(k) ˆ ex '(k)1{m(k)=i}}}C2d,i'(k) 

+ E{
kRE {e(k)ωd'(k)1{m(k)=i}}}Hd,i'(k) 

 =Yi(k)C2d,i'(k)     
 

We also obtain  

   E{
kRE {ωd(k)y’(k)1{m(k)=i}}} 

                  = E{
kRE {ωd(k)e'(k)1{m(k)=i}}}C2d,i'(k)+E{

kRE {ωd(k) ˆ ex '(k)1{m(k)=i}}}C2d,i'(k) 

                                    + E{
kRE {ωd(k)ωd'(k)1{m(k)=i}}}Hd,i'(k) 

                  = E{ωd(k)ωd'(k)}P{m(k)=i}Hd,i'(k)= πi(k)Hd,i'(k). 
 

 
Then considering the assumption A4 Gd,i(k)Hd,i'(k) = O, i=1, ···,M, and  

Mi(k)(Hd,iHd,i’πi(k)+ C2d,iYi(k)C2d,i’)= - Ad,iYi(k)C2d,i’ 

by (11), we finally obtain 

E{
1kRE

+
{e(k+1) ˆex '(k+1) 1{m(k+1)=i}}} 

                  = ,
( )

d ij
i J k

p
∈
∑ [-[Ad,i+MiC2d,i](k)Yi(k)C2d,i'(k)-[Gd,i+MiHd,i](k)πi(k)Hd,i'(k)]Mi’(k) 

                  = ,
( )

d ij
i J k

p
∈
∑ [-Ad,iYi(k)C2d,i'(k)-Mi(k)(Hd,iHd,i’πi(k)+ C2d,iYi(k)C2d,i’)]Mi’(k) 

                  = ,
( )

d ij
i J k

p
∈
∑ [-Ad,iYi(k)C2d,i'(k)+ Ad,iYi(k)C2d,i’]Mi’(k) 

                  =0 

which concludes the proof. (Q.E.D.) 

7. References 
E. K. Boukas. (2006). Stochastic Switching Systems: Analysis and Design, Birkhauser, 0-8176-

3782-6, Boston, 
A. Cohen. & U. Shaked. (1997). Linear Discrete-Time H∞-Optimal Tracking with Preview. 

IEEE Trans. Automat. Contr., 42, 2, 270-276 
O. L. V. Costa. & E. F. Tuesta. (2003). Finite Horizon Quadratic Optimal Control and a 

Separation Principle for Markovian Jump Linear Systems. IEEE Trans. Automat. 
Contr., 48, 10, 1836-1842 

Stochastic Optimal Tracking with Preview for Linear Discrete Time Markovian Jump Systems   

 

129 

O. L. V. Costa.; M. D. Fragoso. & R. P. Marques. (2005). Discrete-Time Markov Jump Linear 
Systems, Springer, 1-85233-761-3, London 

V. Dragan. & T. Morozan. (2004). The linear quadratic optimization problems for a class of 
linear stochastic systems with multiplicative white noise and Markovian jumping. 
IEEE Trans. Automat. Contr., 49, 5, 665-675 

M. D. Fragoso. (1989). Discrete-Time Jump LQG Problem. Int. J. Systems Science, 20, 12, 2539-
2545 

M. D. Fragoso.; J. B. R. do Val . & D. L. Pinto Junior. (1995). Jump Linear H∞ Control: the 
discrete-time case. Control-Theory and Advanced Technology, 10, 4, 1459-1474 

E. Gershon.; D. J. N. Limebeer.; U. Shaked. & I. Yaesh. (2004). Stochastic H∞ Tracking with 
Preview for State-Multiplicative Systems. IEEE Trans. Automat. Contr., 49, 11, 2061-
2068 

E. Gershon.; U. Shaked. & I. Yaesh. (2004). H∞ tracking of linear continuous-time systems 
with stochastic uncertainties and preview. Int. J. Robust and Nonlinear Control, 14, 7, 
607-626 

E. Gershon.; U. Shaked. & I. Yaesh. (2005). H∞ Control and Estimation of State-Multiplicative 
Linear Systems, LNCIS 318, Springer, 1-85233-997-7, London 

J.-W. Lee. & P. P. Khargonekar. (2008). Optimal output regulation for discrete-time switched 
and Markovian jump linear systems, SIAM J. Control Optim., 47, 1, 40-72 

M. Mariton. (1990). Jump Linear Systems in Automatic Control, Marcel Dekker, 0-8247-8200-3, 
New York 

G. Nakura. (2008a). Noncausal Optimal Tracking for Linear Switched Systems. In: Hybrid 
Systems: Computation and Control: 11th International Workshop, HSCC 2008, St. Louis, 
MO, USA, April, 2008, Proceedings, LNCS 4981, M. Egerstedt. & B. Mishra. (eds.), 
pp.372-385, Springer, 3-540-78928-6, Berlin, Heidelberg. 

G. Nakura. (2008b). H∞ Tracking with Preview for Linear Systems with Impulsive Effects -
State Feedback and Full Information Cases-. Proceedings of the 17th IFAC World 
Congress, TuA08.4 (CD-ROM), Seoul, Korea 

G. Nakura. (2008c). H∞ Tracking with Preview by Output Feedback for Linear Systems with 
Impulsive Effects. Proceedings of the 17th IFAC World Congress, TuA08.5 (CD-ROM), 
Seoul, Korea 

G. Nakura. (2008d). Stochastic Optimal Tracking with Preview for Linear Continuous-Time 
Markovian Jump Systems. Proceedings of SICE Annual Conference 2008, 2A09-2 (CD-
ROM), Chofu, Tokyo, Japan 

G. Nakura. (2008e). H∞ Tracking with Preview for Linear Continuous-Time Markovian 
Jump Systems. Proceedings of SICE 8th Annual Conference on Control Systems, 073-2-1 
(CD-ROM), Kyoto, Japan 

G. Nakura. (2009). Stochastic Optimal Tracking with Preview for Linear Discrete-Time 
Markovian Jump Systems (Extended Abstract). In: Hybrid Systems: Computation and 
Control: 12th Conference, HSCC 2009, San Francisco, CA, USA, April, 2009, Proceedings, 
LNCS 5469, R. Majumdar. & P. Tabuada. (Eds.), pp. 455-459, Springer, 3-642-00601-
9, Berlin, Heidelberg 



 Discrete Time Systems 

 

130 

G. Nakura. (2010). Stochastic Optimal Tracking with Preview by State Feedback for Linear 
Discrete-Time Markovian Jump Systems. International Journal of Innovative 
Computing, Information and Control (IJICIC), 6, 1, 15-27 

Y. Sawada. (2008). Risk-sensitive tracking control of stochastic systems with preview action. 
International Journal of Innovative Computing, Information and Control (IJICIC), 4, 1, 
189-198 

U. Shaked. & C. E. de Souza. (1995). Continuous-Time Tracking Problems in an H∞ Setting: 
A Game Theory Approach. IEEE Trans. Automat. Contr., 40, 5, 841-852 

C. E. de Souza. & M. D. Fragoso. (1993). H∞ Control for Linear Systems with Markovian 
Jumping Parameters. Control-Theory and Advanced Technology, 9, 2, 457-466 

D. D. Sworder. (1969). Feedback Control of a Class of Linear Systems with Jump Parameters. 
IEEE Trans. Automat. Contr., AC-14, 1, 9-14 

D. D. Sworder. (1972). Control of Jump Parameter Systems with Discontinuous State 
Trajectories. IEEE Trans. Automat. Contr., AC-17, 5, 740-741 

K. Takaba. (2000). Robust servomechanism with preview action for polytopic uncertain 
systems. Int. J. Robust and Nonlinear Control, 10, 2, 101-111 

8 

The Design of a Discrete Time Model Following  
Control System for Nonlinear Descriptor System 

Shigenori Okubo1 and Shujing Wu2 
1Yamagata University 

2Shanghai University of Engineering Science  
1Japan 

2P. R. China 

1. Introduction 
This paper studies the design of a model following control system (MFCS) for nonlinear 
descriptor system in discrete time. In previous studies, a method of nonlinear model 
following control system with disturbances was proposed by Okubo,S. and also a nonlinear 
model following control system with unstable zero of the linear part, a nonlinear model 
following control system with containing inputs in nonlinear parts, and a nonlinear model 
following control system using stable zero assignment. In this paper, the method of MFCS 
will be extended to descriptor system in discrete time, and the effectiveness of the method 
will be verified by numerical simulation. 

2. Expressions of the problem 
The controlled object is described below, which is a nonlinear descriptor system in discrete 
time. 

 ( 1) ( ) ( ) ( ( )) ( )fEx k Ax k Bu k B f v k d k+ = + + +  (1) 

 ( ) ( )fv k C x k=  (2) 

 0( ) ( ) ( )y k Cx k d k= +  (3) 

The reference model is given below, which is assumed controllable and observable. 

 ( 1) ( ) ( )m m m m mx k A x k B r k+ = +  (4) 

 ( ) ( )m m my k C x k=  (5) 
, where 

0( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ( )) ,fn n
mx k R d k R u k R y k R y k R d k R f v k R∈ ∈ ∈ ∈ ∈ ∈ ∈  

( ) , ( ) , ( ) ,f m mn
m mv k R r k R x k R∈ ∈ ∈ ( )y k  is the available states output vector, ( )v k  is the 

measurement output vector, ( )u k  is the control input vector, ( )x k  is the internal state vector 
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whose elements are available, 0( ), ( )d k d k  are bounded disturbances, ( )my k  is the model 
output. 
The basic assumptions are as follows: 
1. Assume that ( , , )C A B  is controllable and observable, i.e. 

[ , ] ,
zE A

rank zE A B n rank n
C
−⎡ ⎤

− = =⎢ ⎥
⎣ ⎦

. 

2. In order to guarantee the existence and uniqueness of the solution and have exponential 
function mode but an impulse one for (1), the following conditions are assumed. 

0,     degzE A rankE zE A r n− ≡ = − = ≤/  

3. Zeros of [ ] 1C zE A B−−  are stable. 
In this system, the nonlinear function ( ( ))f v k  is available and satisfies the following 
constraint. 

( ( )) ( )f v k v k γα β≤ + , 

where 0, 0,0 1,α β γ≥ ≥ ≤ < ⋅  is Euclidean norm, disturbances 0( ), ( )d k d k  are bounded and 
satisfy 

 ( ) ( ) 0dD z d k =  (6) 

 0( ) ( ) 0dD z d k = . (7) 

Here, ( )dD z  is a scalar characteristic polynomial of disturbances. Output error is given as 

 ( ) ( ) ( )me k y k y k= − . (8) 

The aim of the control system design is to obtain a control law which makes the output error 
zero and keeps the internal states be bounded. 

3. Design of a nonlinear model following control system 
Let z be the shift operator, Eq.(1) can be rewritten as follows. 

[ ] 1 ( ) / ( )C zE A B N z D z−− =  

[ ] 1 ( ) / ( )f fC zE A B N z D z−− = , 

where 
ir( ) ,  ( ( )) iD z zE A N z σ= − ∂ =  and ( ( ))

i ir f fN z σ∂ = . 
 Then the representations of input-output equation is given as 

 ( ) ( ) ( ) ( ) ( ) ( ( )) ( )fD z y k N z u k N z f v k w k= + + .  (9) 

Here [ ] 0( ) ( ) ( ) ( )w k Cadj zE A d k D z d k= − + , ( , , )m m mC A B is controllable and observable. Hence, 

[ ] 1 ( ) / ( )m m m m mC zI A B N z D z−− = . 
Then, we have 
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 ( ) ( ) ( ) ( )m m m mD z y k N z r k= , (10) 

where ( )m mD z zI A= −  and ( ( ))
i ir m mN z σ∂ = . 

Since the disturbances satisfy Eq.(6) and Eq.(7), and ( )dD z is a monic polynomial, one has 

 ( ) ( ) 0dD z w k = . (11) 

The first step of design is that a monic and stable polynomial ( )T z , which has the degree of 
( 2 1 )d m in n nρ ρ σ≥ + − − − , is chosen. Then, ( )R z and ( )S z  can be obtained from 

 ( ) ( ) ( ) ( ) ( ) ( )m dT z D z D z D z R z S z= + , (12) 

where the degree of each polynomial is: ( ) , ( ) , ( ) ,d d m mT z D z n D z nρ∂ = ∂ = ∂ =  
( ) , ( ) m dD z n R z n n nρ∂ = ∂ = + − −  and ( ) 1dS z n n∂ ≤ + − . 

From Eq.(8)～(12), the following form is obtained: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ))
                             ( ) ( ) ( ) ( ) ( ).

m d d f

m m

T z D z e k D z R z N z u k D z R z N z f v k
S z y k T z N z r z

= +

+ −
 

The output error ( )e k is represented as following. 

 
1( ) {[ ( ) ( ) ( ) ( ) ] ( ) ( ) ( )

( ) ( )
           ( ) ( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( )}

d r r
m

d f m m

e k D z R z N z Q z N u k Q z N u k
T z D z

D z R z N z f v k S z y k T z N z r k

= − +

+ + −
 (13) 

 

Suppose ( ( ))r rN z NΓ = , where ( )rΓ ⋅ is the coefficient matrix of the element with maximum 
of row degree, as well as 0rN ≠ . The next control law ( )u k  can be obtained by making the 
right-hand side of Eq.(13) be  equal to zero. Thus, 

 
1 1

1 1 1 1

( ) ( ){ ( ) ( ) ( ) ( ) } ( )

          ( ) ( ) ( ) ( ) ( ( )) ( ) ( ) ( ) ( )
r d r

r d f r m

u k N Q z D z R z N z Q z N u k

N Q z D z R z N z f v k N Q z S z y k u k

− −

− − − −

= − −

− − +
 (14) 

 1 1( ) ( ) ( ) ( ) ( )m r m mu k N Q z T z N z r k− −= . (15) 

Here, ( ) , ( 1,2, , )i
i m iQ z diag z n n iδ δ ρ σ⎡ ⎤= = + − + = ⋅ ⋅ ⋅⎣ ⎦ , and ( )u k  of Eq.(14) is obtained from 

( ) 0.e k =  The model following control system can be realized if the system internal states are 
bounded. 

4. Proof of the bounded property of internal states 

System inputs are both reference input signal ( )mr k  and disturbances 0( ), ( ),d k d k  which are 
all assumed to be bounded. The bounded property can be easily proved if there is no 
nonlinear part ( ( ))f v k . But if ( ( ))f v k  exits, the bound has a relation with it. 
The state space expression of ( )u k is 

 1 1 2 2 2 3 3 3( ) ( ) ( ) ( ) ( ( )) ( ) ( )mu k H k E y k H k E f v k H k u kξ ξ ξ= − − − − − +  (16) 

 4 4 4( ) ( ) ( )m mu k E r k H kξ= + . (17) 
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where 
ir( ) ,  ( ( )) iD z zE A N z σ= − ∂ =  and ( ( ))

i ir f fN z σ∂ = . 
 Then the representations of input-output equation is given as 

 ( ) ( ) ( ) ( ) ( ) ( ( )) ( )fD z y k N z u k N z f v k w k= + + .  (9) 

Here [ ] 0( ) ( ) ( ) ( )w k Cadj zE A d k D z d k= − + , ( , , )m m mC A B is controllable and observable. Hence, 

[ ] 1 ( ) / ( )m m m m mC zI A B N z D z−− = . 
Then, we have 
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 ( ) ( ) ( ) ( )m m m mD z y k N z r k= , (10) 

where ( )m mD z zI A= −  and ( ( ))
i ir m mN z σ∂ = . 

Since the disturbances satisfy Eq.(6) and Eq.(7), and ( )dD z is a monic polynomial, one has 

 ( ) ( ) 0dD z w k = . (11) 

The first step of design is that a monic and stable polynomial ( )T z , which has the degree of 
( 2 1 )d m in n nρ ρ σ≥ + − − − , is chosen. Then, ( )R z and ( )S z  can be obtained from 

 ( ) ( ) ( ) ( ) ( ) ( )m dT z D z D z D z R z S z= + , (12) 

where the degree of each polynomial is: ( ) , ( ) , ( ) ,d d m mT z D z n D z nρ∂ = ∂ = ∂ =  
( ) , ( ) m dD z n R z n n nρ∂ = ∂ = + − −  and ( ) 1dS z n n∂ ≤ + − . 

From Eq.(8)～(12), the following form is obtained: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ))
                             ( ) ( ) ( ) ( ) ( ).

m d d f

m m

T z D z e k D z R z N z u k D z R z N z f v k
S z y k T z N z r z

= +

+ −
 

The output error ( )e k is represented as following. 

 
1( ) {[ ( ) ( ) ( ) ( ) ] ( ) ( ) ( )

( ) ( )
           ( ) ( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( )}

d r r
m

d f m m

e k D z R z N z Q z N u k Q z N u k
T z D z

D z R z N z f v k S z y k T z N z r k

= − +

+ + −
 (13) 

 

Suppose ( ( ))r rN z NΓ = , where ( )rΓ ⋅ is the coefficient matrix of the element with maximum 
of row degree, as well as 0rN ≠ . The next control law ( )u k  can be obtained by making the 
right-hand side of Eq.(13) be  equal to zero. Thus, 

 
1 1

1 1 1 1

( ) ( ){ ( ) ( ) ( ) ( ) } ( )

          ( ) ( ) ( ) ( ) ( ( )) ( ) ( ) ( ) ( )
r d r

r d f r m

u k N Q z D z R z N z Q z N u k

N Q z D z R z N z f v k N Q z S z y k u k

− −

− − − −

= − −

− − +
 (14) 

 1 1( ) ( ) ( ) ( ) ( )m r m mu k N Q z T z N z r k− −= . (15) 

Here, ( ) , ( 1,2, , )i
i m iQ z diag z n n iδ δ ρ σ⎡ ⎤= = + − + = ⋅ ⋅ ⋅⎣ ⎦ , and ( )u k  of Eq.(14) is obtained from 

( ) 0.e k =  The model following control system can be realized if the system internal states are 
bounded. 

4. Proof of the bounded property of internal states 

System inputs are both reference input signal ( )mr k  and disturbances 0( ), ( ),d k d k  which are 
all assumed to be bounded. The bounded property can be easily proved if there is no 
nonlinear part ( ( ))f v k . But if ( ( ))f v k  exits, the bound has a relation with it. 
The state space expression of ( )u k is 

 1 1 2 2 2 3 3 3( ) ( ) ( ) ( ) ( ( )) ( ) ( )mu k H k E y k H k E f v k H k u kξ ξ ξ= − − − − − +  (16) 

 4 4 4( ) ( ) ( )m mu k E r k H kξ= + . (17) 
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The following must be satisfied: 

 1 1 1 1( 1) ( ) ( )k F k G u kξ ξ+ = +  (18) 

 2 2 2 2( 1) ( ) ( )k F k G y kξ ξ+ = +  (19) 

 3 3 3 3( 1) ( ) ( ( ))k F k G f v kξ ξ+ = +  (20) 

 4 4 4 4( 1) ( ) ( ).mk F k G r kξ ξ+ = +  (21) 

Here,  
( ) ,    ( 1,2,3,4)izI F Q z i− = = . 

Note that there are connections between the polynomial matrices and the system matrices, 
as follows: 

 1 1 1
1 1 1( ){ ( ) ( ) ( ) ( ) } ( )r d rN Q z D z R z N z Q z N H zI F G− − −− = −  (22) 

 1 1 1
2 2 2 2( ) ( ) ( )rN Q z S z H zI F G E− − −= − +  (23) 

 1 1 1
3 3 3 3( ) ( ) ( ) ( ) ( )r d fN Q z D z R z N z H zI F G E− − −= − +  (24) 

 1 1 1
4 4 4 4( ) ( ) ( ) ( )r mN Q z T z N z H zI F G E− − −= − + . (25) 

Firstly, remove ( )u k  from Eq.(1)～(3) and Eq.(18)～(21). Then, the representation of the 
overall system can be obtained as follows. 

  

1

2

3

2 1 2 3

1 2 1 1 1 1 2 1 3 1

2 2 2

3 3

34

1 4
4

0 0 0 ( 1)
0 0 0 ( 1)
0 0 0 ( 1)
0 0 0 ( 1)

( )
( )

0 0 ( )
0 0 0 ( )

( )
0
0

f

E x k
I k

I k
I k

A BE C BH BH BH x k
G E C F G H G H G H k
G C F k

F k

B BEBH
G H

k

ξ
ξ
ξ

ξ
ξ
ξ

ξ

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥ =
⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥

+⎣ ⎦ ⎣ ⎦

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

−⎡ ⎤
⎢ ⎥ −⎢ ⎥+ +
⎢ ⎥
⎢ ⎥
⎣ ⎦

4 2 0

1 4 1 2 01 3

2 0

3

( ) ( )
( )

( ( )) ( )
0 ( )0
0 0

m

BE d k BE d k
G E G E d kG E f v k r k

G d k
G

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (26) 

 4 4 4 4( 1) ( ) ( )mk F k G r kξ ξ+ = +  (27) 
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 1

2

3

( )
( )

( ) 0 0 0
( )
( )

f

x k
k

v k C
k
k

ξ
ξ
ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

 (28) 

 [ ] 1
0

2

3

( )
( )

( ) 0 0 0 ( ).
( )
( )

x k
k

y k C d k
k
k

ξ
ξ
ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥= +
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (29) 

 

In Eq.(27), the 4( )kξ  is bounded because 4 ( )zI F Q z− =  is a stable polynomial and ( )mr k  is 
the bounded reference input. Let ( ), , , ( ), , ,s s s v sz k A E d k B C C be as follows respectively: 
 

1 2 3( ) ( ) ( ) ( ) ( )
TT T T Tz k x k k k kξ ξ ξ⎡ ⎤= ⎣ ⎦ ,    

2 1 2 3

1 2 1 1 1 1 2 1 3

2 2

3

0 0
0 0 0

s

A BE C BH BH BH
G E C F G H G H G H

A
G C F

F

− − − −⎡ ⎤
⎢ ⎥− − − −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

0 0 0
0 0 0
0 0 0
0 0 0

E
I

E
I

I

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,   

2 0

1 1 2 0

2 0

( ) ( ) ( )
( ) ( )

( )
( )

0

m

m
s

Bu k d k BE d k
G u k G E d k

d k
G d k

+ −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,    

3

1 3

3

0

f

s

B BE
G E

B

G

−⎡ ⎤
⎢ ⎥
−⎢ ⎥= ⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

 

0 0 0v fC C⎡ ⎤= ⎣ ⎦ ,   [ ]0 0 0sC C= . 

With the consideration that 4( )kξ  is bounded, the necessary parts to an easy proof of the 
bounded property are arranged as 

 ( 1) ( ) ( ( )) ( )s s sEz k A z k B f v k d k+ = + +  (30) 

 ( ) ( )vv k C z k=  (31) 

 0( ) ( ) ( )sy k C z k d k= + , (32) 

where the contents of , , ( ), , ,s s s v sA E d k B C C  are constant matrices, and ( )sd k  is bounded. 
Thus, the internal states are bounded if ( )z k  can be proved to be bounded. So it needs to 
prove that szE A−  is a stable polynomial. The characteristic polynomial of SA  is calculated 
as the next equation. 
From Eq.(26), szE A− can be shown as 

 
2 1 2 3

1 2 1 1 1 1 2 1 3

2 2

3

0 0
0 0 0

s

zE A BE C BH BH BH
G E C zI F G H G H G H

zE A
G C zI F

zI F

− +
− +

− =
− −

−

. (33) 
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The following must be satisfied: 

 1 1 1 1( 1) ( ) ( )k F k G u kξ ξ+ = +  (18) 

 2 2 2 2( 1) ( ) ( )k F k G y kξ ξ+ = +  (19) 

 3 3 3 3( 1) ( ) ( ( ))k F k G f v kξ ξ+ = +  (20) 

 4 4 4 4( 1) ( ) ( ).mk F k G r kξ ξ+ = +  (21) 

Here,  
( ) ,    ( 1,2,3,4)izI F Q z i− = = . 

Note that there are connections between the polynomial matrices and the system matrices, 
as follows: 

 1 1 1
1 1 1( ){ ( ) ( ) ( ) ( ) } ( )r d rN Q z D z R z N z Q z N H zI F G− − −− = −  (22) 

 1 1 1
2 2 2 2( ) ( ) ( )rN Q z S z H zI F G E− − −= − +  (23) 

 1 1 1
3 3 3 3( ) ( ) ( ) ( ) ( )r d fN Q z D z R z N z H zI F G E− − −= − +  (24) 

 1 1 1
4 4 4 4( ) ( ) ( ) ( )r mN Q z T z N z H zI F G E− − −= − + . (25) 

Firstly, remove ( )u k  from Eq.(1)～(3) and Eq.(18)～(21). Then, the representation of the 
overall system can be obtained as follows. 

  

1

2

3

2 1 2 3

1 2 1 1 1 1 2 1 3 1

2 2 2

3 3

34

1 4
4

0 0 0 ( 1)
0 0 0 ( 1)
0 0 0 ( 1)
0 0 0 ( 1)

( )
( )

0 0 ( )
0 0 0 ( )

( )
0
0

f

E x k
I k

I k
I k

A BE C BH BH BH x k
G E C F G H G H G H k
G C F k

F k

B BEBH
G H

k

ξ
ξ
ξ

ξ
ξ
ξ

ξ

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥ =
⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥

+⎣ ⎦ ⎣ ⎦

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

−⎡ ⎤
⎢ ⎥ −⎢ ⎥+ +
⎢ ⎥
⎢ ⎥
⎣ ⎦

4 2 0

1 4 1 2 01 3

2 0

3

( ) ( )
( )

( ( )) ( )
0 ( )0
0 0

m

BE d k BE d k
G E G E d kG E f v k r k

G d k
G

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (26) 

 4 4 4 4( 1) ( ) ( )mk F k G r kξ ξ+ = +  (27) 
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 1

2

3

( )
( )

( ) 0 0 0
( )
( )

f

x k
k

v k C
k
k

ξ
ξ
ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

 (28) 

 [ ] 1
0

2

3

( )
( )

( ) 0 0 0 ( ).
( )
( )

x k
k

y k C d k
k
k

ξ
ξ
ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥= +
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (29) 

 

In Eq.(27), the 4( )kξ  is bounded because 4 ( )zI F Q z− =  is a stable polynomial and ( )mr k  is 
the bounded reference input. Let ( ), , , ( ), , ,s s s v sz k A E d k B C C be as follows respectively: 
 

1 2 3( ) ( ) ( ) ( ) ( )
TT T T Tz k x k k k kξ ξ ξ⎡ ⎤= ⎣ ⎦ ,    

2 1 2 3

1 2 1 1 1 1 2 1 3

2 2

3

0 0
0 0 0

s

A BE C BH BH BH
G E C F G H G H G H

A
G C F

F

− − − −⎡ ⎤
⎢ ⎥− − − −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

0 0 0
0 0 0
0 0 0
0 0 0

E
I

E
I

I

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,   

2 0

1 1 2 0

2 0

( ) ( ) ( )
( ) ( )

( )
( )

0

m

m
s

Bu k d k BE d k
G u k G E d k

d k
G d k

+ −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,    

3

1 3

3

0

f

s

B BE
G E

B

G

−⎡ ⎤
⎢ ⎥
−⎢ ⎥= ⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

 

0 0 0v fC C⎡ ⎤= ⎣ ⎦ ,   [ ]0 0 0sC C= . 

With the consideration that 4( )kξ  is bounded, the necessary parts to an easy proof of the 
bounded property are arranged as 

 ( 1) ( ) ( ( )) ( )s s sEz k A z k B f v k d k+ = + +  (30) 

 ( ) ( )vv k C z k=  (31) 

 0( ) ( ) ( )sy k C z k d k= + , (32) 

where the contents of , , ( ), , ,s s s v sA E d k B C C  are constant matrices, and ( )sd k  is bounded. 
Thus, the internal states are bounded if ( )z k  can be proved to be bounded. So it needs to 
prove that szE A−  is a stable polynomial. The characteristic polynomial of SA  is calculated 
as the next equation. 
From Eq.(26), szE A− can be shown as 

 
2 1 2 3

1 2 1 1 1 1 2 1 3

2 2

3

0 0
0 0 0

s

zE A BE C BH BH BH
G E C zI F G H G H G H

zE A
G C zI F

zI F

− +
− +

− =
− −

−

. (33) 
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Prepare the following formulas: 

1 ,( 0)
X Y

Z X YZ W Z
W Z

−= − ≠ , 

1 1( ) ( )I X I YX Y I XY− −− + = +  

I XY I YX+ = + . 

Using the above formulas, szE A−  is described as 

[ ]

[ ] [ ]

[ ] [ ] [ ]

[ ]

[ ]

1
3 2 1 1 1 1

1 1
1 1 1 1 1 2 2 2 2

1 1 13 1
1 1 1 1 1 1 2 2 2 2

13 1
1 1 2

13
1 2

   

   { }{ }

( ) { } { }

( )

( ) .

szE A

zI F zI F zI F I H zI F G

zE A B I H zI F G H G E H zI F G C

Q z I H zI F G zE A B I H zI F G E H zI F G C

Q z J zE A I BJ J zE A

Q z zE A J J zE A B

−

− −

− − −−

−−

−

−

= − − − + −

⋅ − + − − + + −

= + − − + + − + −

= − + −

= − + −

 (34) 

Here 

 [ ] 1
1 1 1 1J I H zI F G−= + −  (35) 

 [ ] 1
2 2 2 2 2{ } .J E H zI F G C−= + −  (36) 

From Eq.(22),(23),(35) and Eq.(36), we have 

 1 1
1 ( ) ( ) ( ) ( )r dJ N Q z D z R z N z− −=  (37) 

 1 1
2 ( ) ( )rJ N Q z S z C− −= . (38) 

Using [ ] 1 ( ) / ( )C zE A B N z D z−− =  and ( )D z zE A= − , furthermore, szE A−  is shown as 

 
1

2
1

( )
( ) ( ) ( )

( )
r

s m
N z N

zE A T z D z Q z
D z

−

−− =  

and ( )V z  is the zeros polynomial of [ ] 1 1( ) / ( ) ( ) ( )C zE A B N z D z U z V z− −− = =  (left coprime 
decomposition), ( ) ( )U z D z= , that is, 1( ) ( ) ( )N z D z V z−= . So szE A−  can be rewritten as 

 1 2( ) ( ) ( ) ( )s r mzE A N T z D z Q z V z−− =  (39) 

As ( ), ( ), ( ) , ( )mT z D z Q z V z   are all stable polynomials, sA  is a stable system matrix. 
Consider the following: 
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 1

2

( )
( ) ( )

( )
z k

z k Qz k Q
z k
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

. (40) 

Using Eq.(40), one obtains 

( 1) ( ) ( ( )) ( )s s sPEQz k PA Qz k PB f v k Pd k+ = + + . 
Namely, 

 1 1 1 1

2 2 2 2

0 ( 1) 0 ( ) ( )
( ( ))

0 0 ( 1) 0 ( ) ( )
s s s

s s

I z k A z k B d k
f v k

z k I z k B d k
+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (41) 

One can rewritten Eq.(41) as 

 1 1 1 1 1( 1) ( ) ( ( )) ( )s s sz k A z k B f v k d k+ = + +  (42) 

 2 2 20 ( ) ( ( )) ( )s sz k B f v k d k= + +  (43) 

, where  ( ), ( ), ,s s sz k Pd k PA Q PB  can be represented by 

  1 1 1 1

2 2 2

( ) ( ) 0
( ) ,   ( ) ,   ,   

( ) ( ) 0
s s s

s s s
s s

z k d k A B
z k Pd k PA Q PB

z k d k I B
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (44) 

Let [ ]1 2 ,v v vC Q C C= then 

 1 1 2 2( ) ( ) ( )v vv k C z k C z k= + . (45) 

From Eq.(43) and Eq.(45), we have 

 2 2 1 2 2( ) ( ( )) ( ) ( )v s v v sv k C B f v k C z k C d k+ = − . (46) 

From Eq.(46), we have 

 2 2 2 2
( ( ))( ( ) ( ( ))

( ) ( )v s v sT T
f v kv k C B f v k I C B

v k v k
∂∂

+ = +
∂ ∂

. 

Existing condition of ( )v k  is 

 2 2
( ( )) 0

( )v s T
f v kI C B
v k

∂
+ ≠

∂
. (47) 

From Eq.(44), we have 

 1
1

0
0

s
s PQ s I s

zI A
P zE A Q zE A zI A

I
α α

−
− = − = = −

−
. (48) 

Here, PQα  and Iα  are fixed. So, from Eq.(39), 1sA  is a stable system matrix. 
Consider a quadratic Lyapunov function candidate 

 1 1( ) ( ) ( )T
sV k z k P z k= . (49) 
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Prepare the following formulas: 

1 ,( 0)
X Y

Z X YZ W Z
W Z

−= − ≠ , 

1 1( ) ( )I X I YX Y I XY− −− + = +  

I XY I YX+ = + . 

Using the above formulas, szE A−  is described as 

[ ]

[ ] [ ]

[ ] [ ] [ ]

[ ]

[ ]

1
3 2 1 1 1 1

1 1
1 1 1 1 1 2 2 2 2

1 1 13 1
1 1 1 1 1 1 2 2 2 2

13 1
1 1 2

13
1 2

   

   { }{ }

( ) { } { }

( )

( ) .

szE A

zI F zI F zI F I H zI F G

zE A B I H zI F G H G E H zI F G C

Q z I H zI F G zE A B I H zI F G E H zI F G C

Q z J zE A I BJ J zE A

Q z zE A J J zE A B

−

− −

− − −−

−−

−

−

= − − − + −

⋅ − + − − + + −

= + − − + + − + −

= − + −

= − + −

 (34) 

Here 

 [ ] 1
1 1 1 1J I H zI F G−= + −  (35) 

 [ ] 1
2 2 2 2 2{ } .J E H zI F G C−= + −  (36) 

From Eq.(22),(23),(35) and Eq.(36), we have 

 1 1
1 ( ) ( ) ( ) ( )r dJ N Q z D z R z N z− −=  (37) 

 1 1
2 ( ) ( )rJ N Q z S z C− −= . (38) 

Using [ ] 1 ( ) / ( )C zE A B N z D z−− =  and ( )D z zE A= − , furthermore, szE A−  is shown as 

 
1

2
1

( )
( ) ( ) ( )

( )
r

s m
N z N

zE A T z D z Q z
D z

−

−− =  

and ( )V z  is the zeros polynomial of [ ] 1 1( ) / ( ) ( ) ( )C zE A B N z D z U z V z− −− = =  (left coprime 
decomposition), ( ) ( )U z D z= , that is, 1( ) ( ) ( )N z D z V z−= . So szE A−  can be rewritten as 

 1 2( ) ( ) ( ) ( )s r mzE A N T z D z Q z V z−− =  (39) 

As ( ), ( ), ( ) , ( )mT z D z Q z V z   are all stable polynomials, sA  is a stable system matrix. 
Consider the following: 

The Design of a Discrete Time Model Following Control System for Nonlinear Descriptor System   

 

137 

 1

2

( )
( ) ( )

( )
z k

z k Qz k Q
z k
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

. (40) 

Using Eq.(40), one obtains 

( 1) ( ) ( ( )) ( )s s sPEQz k PA Qz k PB f v k Pd k+ = + + . 
Namely, 

 1 1 1 1

2 2 2 2

0 ( 1) 0 ( ) ( )
( ( ))

0 0 ( 1) 0 ( ) ( )
s s s

s s

I z k A z k B d k
f v k

z k I z k B d k
+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (41) 

One can rewritten Eq.(41) as 

 1 1 1 1 1( 1) ( ) ( ( )) ( )s s sz k A z k B f v k d k+ = + +  (42) 

 2 2 20 ( ) ( ( )) ( )s sz k B f v k d k= + +  (43) 

, where  ( ), ( ), ,s s sz k Pd k PA Q PB  can be represented by 

  1 1 1 1

2 2 2

( ) ( ) 0
( ) ,   ( ) ,   ,   

( ) ( ) 0
s s s

s s s
s s

z k d k A B
z k Pd k PA Q PB

z k d k I B
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (44) 

Let [ ]1 2 ,v v vC Q C C= then 

 1 1 2 2( ) ( ) ( )v vv k C z k C z k= + . (45) 

From Eq.(43) and Eq.(45), we have 

 2 2 1 2 2( ) ( ( )) ( ) ( )v s v v sv k C B f v k C z k C d k+ = − . (46) 

From Eq.(46), we have 

 2 2 2 2
( ( ))( ( ) ( ( ))

( ) ( )v s v sT T
f v kv k C B f v k I C B

v k v k
∂∂

+ = +
∂ ∂

. 

Existing condition of ( )v k  is 

 2 2
( ( )) 0

( )v s T
f v kI C B
v k

∂
+ ≠

∂
. (47) 

From Eq.(44), we have 

 1
1

0
0

s
s PQ s I s

zI A
P zE A Q zE A zI A

I
α α

−
− = − = = −

−
. (48) 

Here, PQα  and Iα  are fixed. So, from Eq.(39), 1sA  is a stable system matrix. 
Consider a quadratic Lyapunov function candidate 

 1 1( ) ( ) ( )T
sV k z k P z k= . (49) 
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The difference of ( )V k  along the trajectories of system Eq.(42) is given by 

[ ] [ ]
1 1 1 1

1 1 1 1 1 1 1 1 1 1

( ) ( 1) ( )

           ( 1) ( 1) ( ) ( )

           ( ) ( ( )) ( ) ( ) ( ( )) ( ) ( ) ( )

T T
s s

T T
s s s s s s s s

V k V k V k

z k P z k z k P z k

A z k B f v k d k P A z k B f v k d k z k P z k

Δ = + −

= + + −

= + + + + −

 (50) 

 1 1
T
s s s s sA P A P Q− = − , (51) 

where sQ  and sP  are symmetric positive definite matrices defined by Eq.(51). If 1sA  is a 
stable matrix, we can get a unique sP  from Eq.(51) when sQ  is given. As 1( )sd k  is bounded 
and 0 1γ≤ < , ( )V kΔ  satisfies 

 1 1 1 1
2

2 1 2 3 4

( ) ( ) ( ) ( ) ( ( ))

              ( ) ( ( )) ( ( ))

T
sV k z k Q z k X z k f v k

X z k f v k X f v k Xμ

Δ ≤ − +

+ + + +
 (52) 

From Eq.(40), we have 

 1( ) ( )z k M z k≤ . (53) 

Here, M is positive constant. From Eq.(52), Eq.(53), we have 

 

2 1
1 5 1 6

2

2
1 1

( ) ( ) ( )

            ( )

             ( )
( ) ,

c

c

m

V k z k X z k X

z k X

z k X
V k X

γμ

μ

μ
μ

+Δ ≤ − + +

≤ − +

≤ − +

≤ − +

 (54) 

where 1 min 20 ( ), 0sQμ λ μ< = ≥  and 10 min( ,1)m cμ μ μ< < < . Also, 1 2, ,μ μ  ( 1 6)iX i = ∼  and 
X  are positive constants. As a result of Eq.(54), ( )V k  is bounded: 

 ( ) (0) / mV k V X μ≤ + . (55) 

Hence, 1( )z k  is bounded. From Eq.(43), 2( )z k  is also bounded. Therefore, ( )z k  is bounded. 
The above result is summarized as Theorem1. 
[Theorem1] 
In the nonlinear system 

 

0

( 1) ( ) ( ) ( ( )) ( )
( ) ( )
( ) ( ) ( ),

f

f

Ex k Ax k Bu k B f v k d k
v k C x k
y k Cx k d k

+ = + + +

=

= +

 (56) 

where 0( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( ( ))f fn nx k R u k R y k R v k R d k R d k R f v k R∈ ∈ ∈ ∈ ∈ ∈ ∈� �� � � , ( )d k  and  
0( )d k  are assumed to be bounded. All the internal states are bounded and the output error 
( ) ( ) ( )me k y k y k= −  asymptotically converges to zero in the design of the model following 

control system for a nonlinear descriptor system in discrete time, if the following conditions 
are held: 
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1. Both the controlled object and the reference model are controllable and observable. 
2. 0.rN ≠  
3. Zeros of [ ] 1C zE A B−−  are stable. 
4. ( ( )) ( ) ,( 0, 0,0 1)f v k v k γα β α β γ≤ + ≥ ≥ ≤ < . 

5. Existing condition of ( )v k is 2 2
( ( )) 0

( )v s T
f v kI C B
v k

∂
+ ≠

∂
. 

6. 0zE A− ≡/  and  degrankE zE A r n= − = ≤ . 

5. Numerical simulation 
An example is given as follows: 

1 0 1 0 1 0 0 0 1 0
0 1 1 ( 1) 0 0 1 ( ) 1 0 ( ) 0 ( ( )) 1 ( )
1 0 1 0.2 0.5 0.6 0 1 1 1

x k x k u k f v k d k
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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0.1 0 0.1 1

3 ( ) 4 ( ) 1( ( ))  .
1 ( )

v k x k

y k x k

v k v kf v k
v k

=

⎡ ⎤ ⎡ ⎤
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⎣ ⎦ ⎣ ⎦

+ +
=

+

 (57) 

Reference model is given by 

 [ ]

0 1 0
( 1) ( ) ( )

0.12 0.7 1
( ) 1 0 ( )
( ) sin( /16) .

m m m

m m

m

x k x k r k

y k x k
r k kπ

⎡ ⎤ ⎡ ⎤
+ = +⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
=

=

 (58) 

In this example, disturbances ( )d k  and 0( )d k  are ramp and step disturbances respectively. 
Then ( )d k  and 0( )d k are given as 

 
0

( ) 0.05( 85),(85 100)
( ) 1.2,(20 50)

d k k k
d k k

= − ≤ ≤
= ≤ ≤

 (59) 

We show a result of simulation in Fig. 1. It can be concluded that the output signal follows 
the reference even if disturbances exit in the system. 

6. Conclusion 

In the responses (Fig. 1) of the discrete time model following control system for nonlinear 
descriptor system, the output signal follows the references even though disturbances exit in 
the system. The effectiveness of this method has thus been verified. The future topic is that 
the case of nonlinear system for 1γ ≥  will be proved and analysed. 
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Fig. 1. Responses of the system for nonlinear descriptor system in discrete time 
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1. Introduction

Most physical systems have only limited states to be measured and fed back for system
controls. Although sometimes, a reduced-order observer can be designed to meet the
requirements of full-state feedback, it does introduce extra dynamics, which increases the
complexity of the design. This naturally motivates the employment of output feedback, which
only use measurable output in its feedback design. From implementation point of view, static
feedback is more cost effective, more reliable and easier to implement than dynamic feedback
(Khalil, 2002; Kučera & Souza, 1995; Syrmos et al., 1997). Moreover, many other problems are
reducible to some variation of it. Simply stated, the static output feedback problem is to find
a static output feedback so that the closed-loop system has some desirable characteristics, or
determine the nonexistence of such a feedback (Syrmos et al., 1997). This problem, however,
still marked as one important open question even for LTI systems in control engineering.
Although this problem is also known NP-hard (Syrmos et al., 1997), the curious fact to
note here is that these early negative results have not prevented researchers from studying
output feedback problems. In fact, there are a lot of existing works addressing this problem
using different approaches, say, for example, Riccati equation approach, rank-constrained
conditions, approach based on structural properties, bilinear matrix inequality (BMI)
approaches and min-max optimization techniques (e.g., Bara & Boutayeb (2005; 2006); Benton
(Jr.); Gadewadikar et al. (2006); Geromel, de Oliveira & Hsu (1998); Geromel et al. (1996);
Ghaoui et al. (2001); Henrion et al. (2005); Kučera & Souza (1995); Syrmos et al. (1997) and the
references therein). Nevertheless, the LMI approaches for this problem remain popular (Bara
& Boutayeb, 2005; 2006; Cao & Sun, 1998; Geromel, de Oliveira & Hsu, 1998; Geromel et al.,
1996; Prempain & Postlethwaite, 2001; Yu, 2004; Zečević & Šiljak, 2004) due to simplicity and
efficiency.
Motivated by the recent work (Bara & Boutayeb, 2005; 2006; Geromel et al., 1996; Xu & Xie,
2005a;b; 2006), this paper proposes several scaling linear matrix inequality (LMI) approaches
to static output feedback control of discrete-time linear time invariant (LTI) plants. Based on
whether a similarity matrix transformation is applied, we divide these approaches into two
parts. Some approaches with similarity transformation are concerned with the dimension
and rank of system input and output. Several different methods with respect to the system
state dimension, output dimension and input dimension are given based on whether the
distribution matrix of input B or the distribution matrix of output C is full-rank. The other
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approaches apply Finsler’s Lemma to deal with the Lyapunov matrix and controller gain
directly without similarity transformation. Compared with the BMI approach (e.g., Henrion
et al. (2005)) or VK-like iterative approach (e.g.,Yu (2004)), the scaling LMI approaches are
much more efficient and convergence properties are generally guaranteed. Meanwhile, they
can significantly reduce the conservatism of non-scaling method, (e.g.,Bara & Boutayeb (2005;
2006)). Hence, we show that our approaches actually can be treated as alternative and
complemental methods for existing works.
The remainder of this paper is organized as follows. In Section 2, we state the system and
problem. In Section 3, several approaches based on similarity transformation are given. In
Subection 3.1, we present the methods for the case that B is full column rank. Based on
the relationship between the system state dimension and input dimension, we discuss it in
three parts. In Subsection 3.2, we consider the case that C is full row rank in the similar way.
In Subsection 3.3, we propose another formulations based on the connection between state
feedback and output feedback. In Section 4, we present the methods based on Finsler’s lemma.
In Section 5, we compare our methods with some existing works and give a brief statistical
analysis. In Section 6, we extend the latter result to H∞ control. Finally, a conclusion is given
in the last section. The notation in this paper is standard. Rn denotes the n dimensional real
space. Matrix A > 0 (A ≥ 0) means A is positive definite (semi-definite).

2. Problem formulation

Consider the following discrete-time linear time-invariant (LTI) system:

x(t + 1) = Aox(t) + Bou(t) (1)

y(t) = Cox(t) (2)

where x ∈ Rn, u ∈ Rm and y ∈ Rl . All the matrices mentioned in this paper are appropriately
dimensioned. m < n and l < n.
We want to stabilize the system (1)-(2) by static output feedback

u(t) = Ky(t) (3)

The closed-loop system is

x(t + 1) = Ãx(t) = (Ao + BoKCo)x(t) (4)

The following lemma is well-known.

Lemma 1. (Boyd et al., 1994) The closed-loop system (4) is (Schur) stable if and only if either one of
the following conditions is satisfied:

P > 0, ÃTPÃ − P < 0 (5)

Q > 0, ÃQÃT − Q < 0 (6)

3. Scaling LMIs with similarity transformation

This section is motivated by the recent LMI formulation of output feedback control (Bara
& Boutayeb, 2005; 2006; Geromel, de Souze & Skelton, 1998) and dilated LMI formulation
(de Oliveira et al., 1999; Xu et al., 2004).

142 Discrete Time Systems

3.1 Bo with full column-rank
We assume that Bo is of full column-rank, which means we can always find a non-singular

matrix Tb such that TbBo =
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�
. In fact, using singular value decomposition (SVD), we can

obtain such Tb. Hence the new state-space representation of this system is given by

A = Tb AoT−1
b =
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A21 A22

�
, B = TbBo, C = CoT−1

b (7)

The closed-loop system (4) is stable if and only if
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Theorem 1. The discrete-time system (1)-(2) is stabilized by (3) if there exist P > 0 defined in (8) and
R, such that ⎧
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Φ(Θ1) < 0, m = n − m
Φ(Θ2) < 0, m < n − m
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.

Furthermore, a static output feedback controller gain is given by

K = P−1
11 R (13)

Proof: Noting that
(BKC)TP(BKC) = CTKTP11KC,
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approaches apply Finsler’s Lemma to deal with the Lyapunov matrix and controller gain
directly without similarity transformation. Compared with the BMI approach (e.g., Henrion
et al. (2005)) or VK-like iterative approach (e.g.,Yu (2004)), the scaling LMI approaches are
much more efficient and convergence properties are generally guaranteed. Meanwhile, they
can significantly reduce the conservatism of non-scaling method, (e.g.,Bara & Boutayeb (2005;
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complemental methods for existing works.
The remainder of this paper is organized as follows. In Section 2, we state the system and
problem. In Section 3, several approaches based on similarity transformation are given. In
Subection 3.1, we present the methods for the case that B is full column rank. Based on
the relationship between the system state dimension and input dimension, we discuss it in
three parts. In Subsection 3.2, we consider the case that C is full row rank in the similar way.
In Subsection 3.3, we propose another formulations based on the connection between state
feedback and output feedback. In Section 4, we present the methods based on Finsler’s lemma.
In Section 5, we compare our methods with some existing works and give a brief statistical
analysis. In Section 6, we extend the latter result to H∞ control. Finally, a conclusion is given
in the last section. The notation in this paper is standard. Rn denotes the n dimensional real
space. Matrix A > 0 (A ≥ 0) means A is positive definite (semi-definite).
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PBKC =

[
P11

PT
12

]
KC

(5) is equivalent to

([P11 P12]A + P11KC)TP−1
11 ([P11 P12]A + P11KC)

−AT

[
P11

PT
12

]
P−1

11 [P11 P12]A + ATPA − P < 0
(14)

Considering that

P −

[
P11

PT
12

]
P−1

11 [P11 P12] =

[
0 0

0 P22 − PT
12P−1

11 P12

]

For the first situation m = n − m, consider the following inequality:

(P12 − εP11)
TP−1

11 (P12 − εP11) ≥ 0 (15)

or equivalently
PT

12P−1
11 P12 ≥ εPT

12 + εP12 − ε2P11 (16)

(14) is equivalent to [
ATΘ0 A − P ∗

P11KC + [P11 P12]A −P11

]
< 0 (17)

where

Θ0 =

[
0 0

0 P22 − PT
12P−1

11 P12

]

Using the fact (16), we have Θ0 ≤ Θ1, and consequentially, Φ(Θ0) ≤ Φ(Θ1). Hence if (11) is
satisfied, (5) is satisfied as well.
For the second situation, let the inequality

([
P12

0

]
− ε

[
P11 0
0 0

])T [
P11 0
0 I

]−1 ([
P12

0

]
− ε

[
P11 0
0 0

])
≥ 0 (18)

where

[
P12

0

]
∈ R(n−m)×(n−m) and

[
P11 0
0 I

]
∈ R(n−m)×(n−m). Note that (18) is equivalent to

PT
12P−1

11 P12 ≥ ε

[
P12

0

]T

+ ε

[
P12

0

]
− ε2

[
P11 0
0 0

]
(19)

For the third situation, noting that

(
[

P12 0
]
− εP11)

TP−1
11 (

[
P12 0

]
− εP11) ≥ 0 (20)

we have [
PT

12
0

]
P−1

11

[
P12 0

]
≥ ε

[
PT

12
0

]
+ ε

[
P12 0

]
− ε2P11 (21)

(21) implies

PT
12P−1

11 P12 ≥ εP
(1)T
12 + εP

(1)
12 − ε2P

(1)
11 (22)
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Hence we complete the proof.

Remark 1. If ε ≡ 0 is set , then Theorem 1 recovers the result stated in (Bara & Boutayeb, 2006). We
shall note that ε actually plays an important role in the scaling LMI formulation in Theorem 1. If ε ≡ 0,
Theorem 1 implies AT

22P22 A22 − P22 < 0 and P22 > 0, i.e., the system matrix A22 must be Schur
stable, which obviously is an unnecessary condition and limits the application of this LMI formulation.
However, with the aid of ε, we relax this constraint. A searching routine, such as fminsearch (simplex
search method) in Matlab ©, can be applied to the following optimization problem (for a fixed ε, we have
an LMI problem):

min
ε,P,R

λI, s.t. Φ(Θ) < λI (23)

The conservatism of Theorem 1 lies in these relaxations (15) or (16) on (5). To further relax the
conservatism, we may choose a diagonal matrix � = diag{ε1, ..., εm}, ε i ≥ 0, instead of the single
scalar ε. For example,

PT
12P−1

11 P12 ≥ PT
12�+�P12 −�P11� (24)

Then we shall search the optimal value over multiple scalars for (23).

Remark 2. In (Bara & Boutayeb, 2006), a different variable replacement is given:

P2 = P22 − PT
12P−1

11 P12 (25)

in (8). However, it is easily proved that these two transformations actually are equivalent. In fact, in
(8), we have P11 > 0 and P2 > 0 since P > 0. Based on (17), we have

⎡
⎣ AT

�
0 0
0 P2

�
A − Λ0 ∗

P11KC + [P11 P12]A −P11

⎤
⎦ < 0 (26)

where

Λ0 =

�
P11 P12

PT
12 P2 + PT

12P−1
11 P12

�
= P (27)

Hence, for the above three situations, we have an alternative condition, which is stated in the
following lemma.

Theorem 2. The discrete-time system (1)-(2) is stabilized by (3) if there exist P11 > 0, P2 > 0, P12

and R with P defined in (27), such that

⎧
⎨
⎩

Υ(Λ1) < 0, m = n − m
Υ(Λ2) < 0, m < n − m
Υ(Λ3) < 0, m > n − m

(28)

where ε ∈ R,

Υ(Λi) =

⎡
⎣ AT

�
0 0
0 P2

�
A − Λi ∗

RC + [P11 P12]A −P11

⎤
⎦ ,

Λ1 =

�
P11 P12

PT
12 P2 − ε2P11 + εP12 + εPT

12

�
,
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scalar ε. For example,
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Then we shall search the optimal value over multiple scalars for (23).

Remark 2. In (Bara & Boutayeb, 2006), a different variable replacement is given:

P2 = P22 − PT
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in (8). However, it is easily proved that these two transformations actually are equivalent. In fact, in
(8), we have P11 > 0 and P2 > 0 since P > 0. Based on (17), we have
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and R with P defined in (27), such that
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Λ2 =

⎡
⎣

P11 P12

PT
12 P2 + ε

�
P12

0

�
+ ε[PT

12 0]− ε2

�
P11 0
0 I

�
⎤
⎦ ,

Λ3 =

�
P11 P12

PT
12 P2 + εP

(1)T
12 + εP

(1)
12 − ε2P

(1)
11

�
.

Furthermore, a static output controller gain is given by (13).

Proof: We only consider the first case. Replacing P2 and R by P22 and K using (25) and (13), we
can derive that (28) is a sufficient condition for (5) with the P defined in (8).

3.2 Co with full row-rank
When Co is full row rank, there exists a nonsingular matrix Tc such that CoT−1

o = [Il 0].
Applying a similarity transformation to the system (1)-(2), the closed-loop system (4) is stable
if and only if

Ãc = A + BKC is stable

where A = Tc AoT−1
c , B = TcBo and C = CoT−1

c = [Il 0].
Similarly to Section 3.1, we can also divide this problem into three situations: l = n − l,

l < n − l and l > n − l. We use the condition (6) here and partition Q as Q =

�
Q11 Q12

QT
12 Q22

�
,

where Q11 ∈ Rl×l.

Theorem 3. The discrete-time system (1)-(2) is stabilized by (3) if there exist Q > 0 and R, such that

⎧
⎨
⎩

Γ(Θ̄1) < 0, l = n − l
Γ(Θ̄2) < 0, l < n − l
Γ(Θ̄3) < 0, l > n − l

(29)

where ε ∈ R,

Γ(Θ̄i) =

�
AΘ̄iA

T − Q ∗
(A[Q11 Q12]

T + BR)T −Q11

�
,

Θ̄1 =

�
0 0

0 Q22 + ε2Q11 − εQ12 − εQT
12

�
,

Θ̄2 =

⎡
⎣

0 0

0 Q22 + ε2

�
Q11 0

0 0

�
− ε

�
Q12

0

�
− ε[QT

12 0]

⎤
⎦ ,

Θ̄3 =

�
0 0

0 Q22 + ε2Q
(1)
11 − εQ

(1)T
12 − εQ

(1)
12

�
,

Q
(1)
11 and Q

(1)
12 are properly dimensioned partitions of Q11 and Q12. Furthermore, a static output

feedback controller gain is given by
K = RQ−1

11 (30)
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Proof: We only prove the first case l = n − l, since the others are similar. Noting that
(BKC)Q(BKC)T = BKQ11KTB and BKCQ = BK[Q11 Q12], (6) is equivalent to

(A[Q11 Q12]
T + BKQ11)Q

−1
11 (A[Q11 Q12]

T + BKQ11)
T

−A

[
Q11

QT
12

]
Q−1

11 [Q11 Q12]A
T + AQAT − Q < 0

(31)

Using the fact that

Q −

[
Q11

QT
12

]
Q−1

11 [Q11 Q12] =

[
0 0

0 QT
12Q−1

11 Q12

]

we infer that stability of the close-loop system is equivalent to the existing of a Q > 0 such
that [

AΘ̄0AT − Q ∗
(A[Q11 Q12] + BKQ11)

T −Q11

]
< 0 (32)

where

Θ̄0 =

[
0 0

0 Q22 − QT
12Q−1

11 Q12

]

Since
(Q12 − εQ11)

T Q−1
11 (Q12 − εQ11) ≥ 0 (33)

or equivalently,
QT

12Q−1
11 Q12 ≥ εQT

12 + εQ12 − ε2Q11 (34)

It follows that (29) implies (32). Hence we complete the proof.

Remark 3. How to compare the conditions in Theorem 3 and Theorem 1 remains a difficult problem.
In the next section, we only give some experiential results based on numerical simulations, which give
some suggestions on the dependence of the results with respect to m and l.

3.3 Transformation-dependent LMIs
The result in this subsection builds a connection between the sets L, Kc, Ko, K̃c and K̃o, which
are defined as follows. Without causing confusion, we omit the subscript o for Ao, Bo and Co

in this subsection.
L = {K ∈ Rm×l : Ā stable} (35)

i.e., the set of all admissible output feedback matrix gains;

Kc = {Kc ∈ Rm×n : A + BKc stable} (36)

i.e., the set of all admissible state feedback matrix gains;

Ko = {Ko ∈ Rn×l : A + KoC stable} (37)

i.e., the set of all admissible observer matrix gains. Based on Lemma 1, we can easily formulate
the LMI solution for sets Kc and Ko. In fact, they are equivalent to following two sets
respectively:

K̃c = {Kc = Wc2W−1
c1 ∈ Rm×n : (Wc1, Wc2) ∈ Wc} (38)
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]
Q−1

11 [Q11 Q12]A
T + AQAT − Q < 0

(31)

Using the fact that

Q −

[
Q11

QT
12

]
Q−1

11 [Q11 Q12] =

[
0 0

0 QT
12Q−1

11 Q12

]

we infer that stability of the close-loop system is equivalent to the existing of a Q > 0 such
that [

AΘ̄0AT − Q ∗
(A[Q11 Q12] + BKQ11)

T −Q11

]
< 0 (32)

where

Θ̄0 =

[
0 0

0 Q22 − QT
12Q−1

11 Q12

]

Since
(Q12 − εQ11)

T Q−1
11 (Q12 − εQ11) ≥ 0 (33)

or equivalently,
QT

12Q−1
11 Q12 ≥ εQT

12 + εQ12 − ε2Q11 (34)

It follows that (29) implies (32). Hence we complete the proof.

Remark 3. How to compare the conditions in Theorem 3 and Theorem 1 remains a difficult problem.
In the next section, we only give some experiential results based on numerical simulations, which give
some suggestions on the dependence of the results with respect to m and l.

3.3 Transformation-dependent LMIs
The result in this subsection builds a connection between the sets L, Kc, Ko, K̃c and K̃o, which
are defined as follows. Without causing confusion, we omit the subscript o for Ao, Bo and Co

in this subsection.
L = {K ∈ Rm×l : Ā stable} (35)

i.e., the set of all admissible output feedback matrix gains;

Kc = {Kc ∈ Rm×n : A + BKc stable} (36)

i.e., the set of all admissible state feedback matrix gains;

Ko = {Ko ∈ Rn×l : A + KoC stable} (37)

i.e., the set of all admissible observer matrix gains. Based on Lemma 1, we can easily formulate
the LMI solution for sets Kc and Ko. In fact, they are equivalent to following two sets
respectively:

K̃c = {Kc = Wc2W−1
c1 ∈ Rm×n : (Wc1, Wc2) ∈ Wc} (38)
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and
Wc = {Wc1 ∈ Rn×n, Wc2 ∈ Rm×n : Wc1 > 0, Ψc < 0} (39)

where Ψc =

[
−Wc1 AWc1 + BWc2

Wc1AT + WT
c2BT −Wc1

]
.

K̃o = {Ko = W−1
o1 Wo2 ∈ Rn×l : (Wo1, Wo2) ∈ Wo} (40)

and

Wo = {Wo1 ∈ Rn×n, Wo2 ∈ Rn×l : Wo1 > 0, Ψo < 0} (41)

where Ψo =

[
−W1o Wo1A + Wo2C

ATWo1 + CTWT
o2 −W1o

]
.

Lemma 2. L �= ∅ if and only if

1. K̄c = Kc
⋂
{Kc : KcYc = 0, Yc = N (C)} �= ∅; or

2. K̄o = Ko
⋂
{Kc : YoKo = 0, Yo = N (B�)} �= ∅.

In the affirmative case, any K ∈ L can be rewritten as

1. K = KcQCT(CQCT)−1; or

2. K = (BT PB)−1BT PKo.

where Q > 0 and P > 0 are arbitrarily chosen.

Proof: The first statement has been proved in Geromel et al. (1996). For complement, we
give the proof of the second statement. The necessity is obvious since Ko = BK. Now we
prove the sufficiency, i.e., given Ko ∈ K̄o, there exists a K, such that the constraint Ko = BK

is solvable. Note that for ∀P > 0, Θo =

[
BT P

YT
o

]
is full rank, where Yo = N (BT). In fact,

rank(ΘoYo) = rank(

[
BTPYo

In−m

]
) ≥ n − m. Multiplying Θo at the both side of Ko = BK we have

[
BTPKo

YT
o Ko

]
=

[
BTPBL

0

]

Since BTPB is invertible, we have K = (BTPB)−1BTPK0. Hence, we can derive the result.

Lemma 3. L �= ∅ if and only if there exists Ec ∈ Rn×(n−l) or Eo ∈ Rn×(n−m), such that one of the
following conditions holds:

1. rank(Tc =

[
C

ET
c

]
) = n and C(Ec) �= ∅; or

2. rank(To =
[

B Eo
]
) = n and O(Eo) �= ∅.

where
C(Ec) = Wc

⋂
{(Wc1, Wc2) : CWc1Ec = 0, Wc2Ec = 0}

O(Eo) = Wo

⋂
{(Wo1, Wo2) : BTWo1Eo = 0, ET

o Wo2 = 0}

In the affirmative case, any K ∈ L can be rewritten as

1. K = Wc2CT(CWc1CT)−1; or

2. K = (BTWo1B)−1BTWo2.
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Proof: We only prove the statement 2, since the statement 1 is similar. For the necessity, if there
exist K ∈ L, then it shall satisfy Lemma 1. Now we let

Wo1 = P, Wo2 = PBK

Choose Eo = P−1Yo, Yo = N (BT). It is known that
[

B Eo
]

is full rank. Then we have

BTWo1E = BTYo = 0, ETWo2 = YT
o BK = 0

For sufficiency, we assume there exists Eo such that the statement 2) is satisfied. Notice that
Wo1 > 0 and the item Wo2 in Ψo can be rewritten as Wo1W−1

o1 Wo2.

W−1
o1 Wo2 = To(T

T
o Wo1To)

−1TT
o Wo2 = B(BTWo1B)−1BTWo2 (42)

since To is invertible and BTWo1E = 0, ETWo2 = 0. Hence, W−1
o1 Wo2 can be factorized as

BK, where K = (BTWo1B)−1BTWo2. Now we can derive (5) from the fact Ψo < 0. Thus we
complete the proof.

Remark 4. For a given To, since T−1
o To = In, T−1

o B =

[
Im

0

]
and T−1

o E =

[
0

In−m

]
. Similarly, For

a given Tc, CT−1
c =

[
Il 0

]
.

Theorem 4. L �= ∅ if and only if there exists Tc or To, such that one of the following conditions holds:

1.
W̃c �= ∅, W̃c = {Ŵc1 ∈ Rn×n, Ŵc2 ∈ Rm×n : Ŵc1 > 0, Φc < 0} (43)

where

Â = Tc AT−1
c , B̂ = TcB, Ŵc1 =

[
Wc11 0

0 Wc22

]
,

and
Ŵc2 =

[
Wc21 0

]
, Wc11 ∈ Rl×l, Wc22 ∈ R(n−l)×(n−l), Wc21 ∈ Rm×l,

Φc =

[
−Ŵc1 ÂŴc1 + B̂Ŵc2

Ŵc1ÂT + ŴT
c2B̂T −Ŵc1

]
;

2.
W̃o �= ∅, W̃o = {W̌o1 ∈ Rn×n, W̌o2 ∈ Rn×r : W̌o1 > 0, Φo < 0} (44)

where

Ǎ = T−1
o ATo, Č = CTo, W̌o1 =

[
Wo11 0

0 Wo22

]
,

and

W̌o2 =

[
Wo21

0

]
,

Wo11 ∈ Rm×m, Wo22 ∈ R(n−m)×(n−m), Wo21 ∈ Rm×r,

Φo =

[
−W̌o1 W̌o1Ǎ + W̌o2Č

ǍTW̌o1 + ČTW̌T
o2 −W̌o1

]
.

In the affirmative case, any K ∈ L can be rewritten as

1. K = Wc21W−1
c11; or
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2. K = W−1
o11Wo21.

Proof: We also only consider the statement 2) here. The sufficiency is obvious according to
Lemma 3, hence, we only prove the necessity.
Note that

[
−W̌o1 W̌o1Ǎ + W̌o2Č

ǍTW̌o1 + ČTW̌T
o2 −W̌o1

]

= T T
o

[
−Wo1 Wo1A + Wo2C

ATWo1 + CTWT
o2 −Wo1

]
To

where To =

[
To 0
0 To

]
. Hence, we can conclude that

W̌o1 = TT
o Wo1To, W̌02 = TT

o Wo2

Since the system matrices also satisfy

BTWo1E = 0, ETWo2 = 0

which implies
BTT−T

o W̌o1T−1
o E = 0, ETT−T

o W̌o2 = 0 (45)

Let

W̌o1 =

[
Wo11 Wo12

WT
o12 Wo22

]
, W̌o2 =

[
Wo21

Wo23

]

With the conclusion from Remark 4, (45) implies

Wo12 = 0, Wo23 = 0

Hence we have the structural constraints on W̌o1 and W̌o2. Using the results of Lemma 3, we
can easily get the controller L. Thus we complete the proof.

Remark 5. The first statements of Lemma 3 and Theorem 4 are corollaries of the results in Geromel,
de Souze & Skelton (1998); Geromel et al. (1996). Based on Theorem 4, we actually obtain a useful
LMI algorithm for output feedback control design of general LTI systems with fixed Ec and/or Eo. For
these LTI systems, we can first make a similarity transformation that makes C = [I 0] (or BT = [I 0]).
Then we force the Wc1 and Wc2 (or Wo1 and Wo2) to be constrained structure shown in Theorem
4. If the corresponding LMIs have solution, we may conclude that the output feedback gain exists;
otherwise, we cannot make a conclusion, as the choice of Ec or Eo is simply a special case. Thus we
can choose a scaled Ec or Eo, i.e., �Ec or �Eo to perform a one-dimensional search, which converts
the LMI condition in Theorem 4 a scaling LMI. For example, Φc in (43) should be changed as Φc =[

−Ŵ1c AŴc1 + εBŴc2

Ŵc1AT + εŴT
c2BT −Ŵ1c

]
.

All the approaches in this section require similarity transformation, which can be done
by some techniques, such as the singular value decomposition (SVD). However, those
transformations often bring numerical errors, which sometimes leads to some problems for
the marginal solutions. Hence in the next section, using Finsler’s lemma, we introduce some
methods without the pretreatment on system matrices.
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4. Scaling LMIs without similarity transformation

Finsler’s Lemma has been applied in many LMI formulations, e.g., (Boyd et al., 1994; Xu
et al., 2004). With the aid of Finsler’s lemma, we can obtain scaling LMIs without similarity
transformation.

Lemma 4. (Boyd et al., 1994) The following expressions are equivalent:

1. xT Ax > 0 for ∀x �= 0, subject to Bx = 0;

2. B⊥T AB⊥
> 0, where B⊥ is the kernel of BT, i.e., B⊥BT = 0;

3. A + σBT B > 0, for some scale σ ∈ R;

4. A + XB + BT XT
> 0, for some matrix X.

In order to apply Finsler’s lemma, several manipulation on the Lyapunov inequalities should
be done first. Note that the condition (5) actually states V(x(t)) = xT(t)Px(t) > 0 and
ΔV(x) = V(x(t + 1))− V(x(t)) < 0. The latter can be rewritten as

ξTPξ < 0, ξ = [xT(t) xT(t + 1)]T,P =

[
−P 0
0 P

]
(46)

Define ζ = [xT uT]T. It is easy to verify:

ξ = Mpζ (47)

[K − 1]Npζ = 0 (48)

where

Mp =

[
I 0
A B

]
, Np =

[
C 0
0 I

]
(49)

That is
(46) s.t. (47)-(48) (50)

Now based on the statements 1) and 4) of Finsler’s Lemma, we can conclude that (50) is
equivalent to

MT
pPMp + NT

p

[
KT

−I

]
X T +X

[
K −I

]
Np < 0 (51)

for some X . Now we let
X T = [εZ̃T ZT ] (52)

where ε is a given real scalar, Z = [zT
1 , zT

2 , · · · , zT
m]

T ∈ Rm×m and Z̃ ∈ Rn×m. Note that Z̃ is

constructed from Z with n rows drawing from Z, i.e., Z̃ = [zT
1̃

, zT
2̃

, · · · , zT
ñ ]

T, where zT
ĩ

, 1 ≤

ĩ ≤ m is a vector from Z. Since n ≥ m, there are some same vectors in Z̃. Now we define

W = ZK = [wT
1 , wT

2 , · · · , wT
m]

T (53)

and
W̃ = Z̃K = [wT

1̃
, wT

2̃
, · · · , wT

ñ ]
T (54)

where wT
ĩ

, 1 ≤ ĩ ≤ m is a vector from W. Then (51) can be transferred into following LMI:

MT
pPMp +

[
ε(CTW̃T + W̃C) ∗

WC − εZ̃T −(ZT + Z)

]
< 0 (55)
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−Ŵ1c AŴc1 + εBŴc2
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Since ZT + Z > BT PB ≥ 0, Z is invertible, K = Z−1W.

Theorem 5. The discrete-time system (1)-(2) is stabilized by (3) if there exist P > 0 and Z, W, such
that (55) is satisfied for some scalar ε. Furthermore, the controller is given by K = Z−1W.

The conservatism lies in the construction of Z̃, which has to be a special structure. Z̃ can be
further relaxed using a transformation Z̃ = εẐZ, where Ẑ ∈ Rn×m is a given matrix. In
Theorem 5, the condition (5) is applied. Based on the condition (6), we have the following
Lemma.

Theorem 6. The discrete-time system (1)-(2) is stabilized by (3) if there exist Q > 0 and Z, W, such
that

MqQMT
q +

[
ε(W̃TBT + BW̃) ∗

WTBT − εZ̃ −(ZT + Z)

]
< 0 (56)

where

Mq =

[
I A
0 C

]
,Q =

[
−Q 0

0 Q

]
(57)

is satisfied for some scalar ε. Furthermore, the controller is given by K = Z−1W.

Proof: The condition (6) can be rewritten as

[
I

(BK)T

]T

MqQMT
q

[
I

(BK)T

]
< 0 (58)

Since

[
I

(BK)T

]T [
(BK)
−I

]
= 0, (58) can be rewritten as

[
(BK)
−I

]⊥
MqQMT

q

[
(BK)
−I

]⊥T

< 0 (59)

Now applying Finsler’s lemma, we have

MqQMT
q +

[
(BK)
−I

]
X +X T

[
(BK)
−I

]T

< 0 (60)

for some X = [εZ̃ Z]. Similar to (52), we construct Z̃ from Z with its columns. Hence we have
(56), which is a sufficient condition for (6). Thus we complete the proof.

Remark 6. The proof of Theorem 6 is based on the equivalence between 1 and 2 of Finsler’s lemma. It
also provides an alterative proof of Theorem 5 if we note that (5) is equivalent to

[
I

KC

]T

MT
pPMp

[
I

KC

]
< 0 (61)

Remark 7. Except for the case that m = 1 for Theorem 5 and l = 1 for Theorem 6, the construction of
Z̃ is a problem to be considered. So far, we have no systematic method for this problem. However, based
on our experience, the choose of different vectors and their sequence do affect the result.

The following simple result is the consequence of the equivalence of 1 and 3 in Finsler’s
Lemma.
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Theorem 7. The discrete-time system (1)-(2) is stabilized by (3) if there exist P > 0 and K, such that

[
−P − εĀ − εĀT + ε2 I ĀT

Ā P − I

]
< 0 (62)

where ε ∈ R.

Proof: It is obvious that inequality (42) holds subject to [Ā − I]ξ = 0. Now we apply the
equivalence between 1 and 3 of Finsler’s lemma and obtain

P − σ[Ā − I]

[
Ā
−I

]
=

[
−P − σĀT Ā σĀ

σĀ P − σI

]
< 0 (63)

for some σ > 0. Note that −ĀT Ā < −εĀT − εĀ + ε2 I, (63) can be implied by

[
−P + σ(−εĀT − εĀ + ε2 I) σĀT

σĀ P − σI

]
< 0 (64)

By redefining P as 1
σ P, we can obtain the result.

Remark 8. Inequality (51) is also equivalent to

MT
pPMp − σNT

p

[
KT

−I

] [
K −I

]
Np < 0 (65)

for some positive scalar σ. Hence, we have

MT
p P̃Mp − NT

p

[
KT

−I

] [
K −I

]
Np < 0 (66)

where P̃ =

[
−P̃ 0
0 P̃

]
, P̃ = σ−1P. Using the fact that (K − K0)

T(K − K0) ≥ 0, we may obtain an

iterative solution from initial condition K0, where K0 may be gotten from Lemma 5.

5. Comparison and examples

We shall note that the comparisons of some existing methods (Bara & Boutayeb, 2005; Crusius
& Trofino, 1999; Garcia et al., 2001) with the case of ε = 0 in Theorem 1 has been given in
(Bara & Boutayeb, 2006), where it states that there are many numerical examples for which
Theorem 1 with ε = 0 works successfully while the methods in (Bara & Boutayeb, 2005;
Crusius & Trofino, 1999; Garcia et al., 2001) do not and vice-versa. It also stands for our
conditions. Hence, in the section, we will only compare these methods introduced above. The
LMI solvers used here are SeDuMi (v1.3) Sturm et al. (2006) and SDPT3 (v3.4) Toh et al. (2006)
with YALMIP Löfberg (2004) as the interface.
In the first example, we will show the advantage of the scaling LMI with ε compared with the
non-scaling ones. In the second example, we will show that different scaling LMI approaches
have different performance for different situations. As a by-product, we will also illustrate the
different solvability of the different solvers.
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Example 1. Consider the unstable system as follows.

Ao =

⎡
⎢⎢⎢⎢⎣

0.82 0.0576 0.2212 0.8927 0.0678
0.0574 0.0634 0.6254 0.0926 0.9731
0.0901 0.7228 0.5133 0.2925 0.9228
0.6967 0.0337 0.5757 0.8219 0.9587
0.1471 0.6957 0.2872 0.994 0.5632

⎤
⎥⎥⎥⎥⎦

Bo =

⎡
⎢⎢⎢⎢⎣

0.9505 0.2924
0.3182 0.4025
0.2659 0.0341
0.0611 0.2875
0.3328 0.2196

⎤
⎥⎥⎥⎥⎦

Co =

�
0.5659 0.255 0.5227 0.0038 0.3608
0.8701 0.5918 0.1291 0.3258 0.994

�

This example is borrowed from (Bara & Boutayeb, 2006), where output feedback controllers
have been designed. For A22 from A, it has stable eigenvalue. In this paper, we compare the
design problem with the maximum decay rate, i.e.,

max ρ s.t. ÃTPÃ − P < −ρP

Note that in this example, m < n − m. With ε = 0, i.e., using the method in (Bara & Boutayeb,
2006), we obtain the maximum ρ = 0.16, while Theorem 1 gives ρ = 0.18 with ε = −0.09.
However, Theorem 5 only obtains a maximum ρ = 0.03 with a choice of Ẑ = [I2 I2 0]T.
Note that the solvability heavily depends on the choice of ε. For example, when ε = 0.09 for
Theorem 1, the LMI is not feasible.
Now we consider a case that A22 has an unstable eigenvalue. Consider the above example
with slight changes on Ao

Ao =

⎡
⎢⎢⎢⎢⎣

0.9495 0.12048 0.14297 0.19192 0.019139
0.8656 0.28816 0.67152 0.01136 0.38651
0.5038 0.46371 0.9712 0.93839 0.42246

0.13009 0.76443 0.47657 0.54837 0.4089
0.34529 0.61187 0.15809 0.46639 0.53536

⎤
⎥⎥⎥⎥⎦

We can easily verify that A22 from A has one unstable eigenvalue 1.004. Hence, the method
in (Bara & Boutayeb, 2006) cannot solve it. However, Theorem 1 generates a solution as

K =

�
−0.233763 −0.31506
−3.61207 0.376493

�
. Meanwhile, Theorem 5 also can get a feasible solution for

ε = −0.1879 and K =

�
0.9373 −0.4008
1.5244 −0.7974

�
. Theorem 4 via a standard SVD without scaling

can also obtain K =

�
−0.3914 −0.3603
−2.3604 −1.1034

�
using (43) or K =

�
1.4813 0.5720
−3.7203 −1.8693

�
using (44).

Example 2. We randomly generate 5000 stabilizable and detectable systems of dimension n =
4(6, 6, 6, 7, 7), m = 2(3, 1, 5, 4, 3) and l = 2(3, 5, 1, 3, 4).
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T 1 T 3

SeDuMi 5000 4982
SDPT3 4975 5000

Table 1. Different solvability of different solvers

T 1α T 3 4.2.2β 6.3.3 6.1.5 6.5.1 7.4.3 7.3.4

Y Y 4999 4999 4994 4996 4998 4998
Y N 1 0 2 3 1 1
N Y 0 1 4 1 1 1
N N 0 0 0 0 0 0

Superscriptγ: Y (N) means that the problem can (not) be solved by the corresponding theorems. For
example, the value 4 of third row and third column means that in the random 5000 examples, there are 4
cases that cannot be solved by Theorem 1 while can be solved by Theorem 3.

Table 2. Comparison of Theorem 1 and Theorem 3

Hence we can use Theorem 1 and Theorem 3 with ε = 0 to solve this problem. Note that
different solvers may give different solvability. For example, given n = 6, m = 3 and l = 3,
in a one-time simulation, the result is given in Table 1. Thus in order to partially eliminate
the effect of the solvers, we choose the combined solvability result from two solvers in this
section.
Table 2 shows the comparison of Theorem 1 and Theorem 3. Some phenomenons (the
solvability of Theorem 1 and Theorem 3 depends on the l and m. When m > l, Theorem 1
tends to have a higher solvability than Theorem 3. And vise verse.) was observed from these
results obtained using LMITOOLS provided by Matlab is not shown here.

6. Extension to H∞ synthesis

The aforementioned results can contribute to other problems, such as robust control. In this
section, we extend it to H∞ output feedback control problem. Consider the following system:

x(t + 1) = Ax(t) + B2u(t) + B1w (67)

y(t) = Cx(t) + Dw (68)

z(t) = Ex(t) + Fw (69)

We only consider the case that B2 is with full rank and assume that the system has been
transferred into the form like (7). Using the controller as (3), the closed-loop system is

x(t + 1) = Âx(t) + B̂w
= (A + B2KC)x(t) + (B1 + B2KD)w

(70)

We attempt to design the controller, such that the L2 gain sup
�z�2

�w�2
≤ γ. It should be noted

that all the aforementioned scaling LMI approaches can be applied here. However, we only
choose one similar to Theorem 1.
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Theorem 8. The discrete-time system (67)-(69) is stabilized by (3) and satisfies H∞, if there exist a
matrix P > 0 defined in (8) and R, such that

⎧⎨
⎩

�(Θ1) < 0, m = n − m
�(Θ2) < 0, m < n − m
�(Θ3) < 0, m > n − m

(71)

where ε ∈ R, Θi is defined in Theorem 1,

�(Θi) =⎡
⎢⎢⎣

−P11 RC + [P11 P12]A RD + [P11 P12]B1 0

∗ ATΘi A − P ATΘiB1 ET

∗ ∗ BT
1 ΘiB − γI FT

∗ ∗ ∗ −γI

⎤
⎥⎥⎦

(72)

Proof: Following the arguments in Theorem 1, we can see that (71) implies

�(Θi) =

⎡
⎣

ÂTPÂ − P ÂTPB̂ ET

∗ B̂T PB̂ − γI FT

∗ ∗ −γI

⎤
⎦ < 0 (73)

Using bounded real lemma (Boyd et al., 1994), we can complete the proof.

7. Conclusion

In this paper, we have presented some sufficient conditions for static output feedback control
of discrete-time LTI systems. Some approaches require a similarity transformation to convert
B or C to a special form such that we can formulate the design problem into a scaling
LMI problem with a conservative relaxation. Based on whether B or C is full rank, we
consider several cases with respect to the system state dimension, output dimension and
input dimension. These methods are better than these introduced in (Bara & Boutayeb, 2006)
and might achieve statistical advantages over other existing results (Bara & Boutayeb, 2005;
Crusius & Trofino, 1999; Garcia et al., 2001). The other approaches apply Finsler’s lemma
directly such that the Lyapunov matrix and the controller gain can be separated, and hence
gain benefits for the design. All the presented approaches can be extended to some other
problems. Note that we cannot conclude that the approaches presented in this paper is
definitely superior to all the existing approaches, but introduce some alternative conditions
which may achieve better performance than others in some circumstances.
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∗ ∗ BT
1 ΘiB − γI FT

∗ ∗ ∗ −γI

⎤
⎥⎥⎦

(72)

Proof: Following the arguments in Theorem 1, we can see that (71) implies

�(Θi) =

⎡
⎣

ÂTPÂ − P ÂTPB̂ ET

∗ B̂T PB̂ − γI FT

∗ ∗ −γI

⎤
⎦ < 0 (73)

Using bounded real lemma (Boyd et al., 1994), we can complete the proof.

7. Conclusion

In this paper, we have presented some sufficient conditions for static output feedback control
of discrete-time LTI systems. Some approaches require a similarity transformation to convert
B or C to a special form such that we can formulate the design problem into a scaling
LMI problem with a conservative relaxation. Based on whether B or C is full rank, we
consider several cases with respect to the system state dimension, output dimension and
input dimension. These methods are better than these introduced in (Bara & Boutayeb, 2006)
and might achieve statistical advantages over other existing results (Bara & Boutayeb, 2005;
Crusius & Trofino, 1999; Garcia et al., 2001). The other approaches apply Finsler’s lemma
directly such that the Lyapunov matrix and the controller gain can be separated, and hence
gain benefits for the design. All the presented approaches can be extended to some other
problems. Note that we cannot conclude that the approaches presented in this paper is
definitely superior to all the existing approaches, but introduce some alternative conditions
which may achieve better performance than others in some circumstances.
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1. Introduction 
This chapter will consider two discrete time mixed LQR/ H∞ control problems. One is the 
discrete time state feedback mixed LQR/ H∞ control problem, another is the non-fragile 
discrete time state feedback mixed LQR/ H∞  control problem. Motivation for mixed 
LQR/ H∞  control problem is to combine the LQR and suboptimal H∞  controller design 
theories, and achieve simultaneously the performance of the two problems. As is well 
known, the performance measure in optimal LQR control theory is the quadratic 
performance index, defined in the time-domain as 

 
0

: ( ( ) ( ) ( ) ( ))T T

k
J x k Qx k u k Ru k

∞

=
= +∑  (1) 

while the performance measure in H∞  control theory is H∞  norm, defined in the  
frequency-domain for a stable transfer matrix ( )zwT z  as  

[ ]
max

0,2
( ) : sup [ ( )]jw

zw zw
w

T z T e
π
σ∞

∈
=  

where, 0Q ≥ , 0R > , max[ ]σ •  denotes the largest singular value. 
The linear discrete time system corresponding to the discrete time state feedback mixed 
LQR/ H∞ control problem is 

 1 2( 1) ( ) ( ) ( )x k Ax k B w k B u k+ = + +  (2.a) 

 1 12( ) ( ) ( )z k C x k D u k= +  (2.b) 

with state feedback of the form  

 ( ) ( )u k Kx k=  (3) 

where, ( ) nx k R∈  is the state, ( ) mu k R∈  is the control input, ( ) qw k R∈  is the disturbance 
input that belongs to 2[0, )L ∞ , ( ) pz k R∈  is the controlled output. A , 1B  , 2B  , 1C  and 12D  
are known matrices of appropriate dimensions. Let 0(0)x x= .  
The closed loop transfer matrix from the disturbance input w  to the controlled output z  is 
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0

K K
zw K K K

K

A B
T z C zI A B

C
−⎡ ⎤

= = −⎢ ⎥
⎣ ⎦

 

where, 2:KA A B K= + , 1:KB B=  , 1 12:KC C D K= + . 
Recall that the discrete time state feedback optimal LQR control problem is to find an 
admissible controller that minimizes the quadratic performance index (1) subject to the 
systems (2) (3) with 0w = , while the discrete time state feedback H∞  control problem is to 
find an admissible controller such that ( )zwT z γ∞ <  subject to the systems (2)(3) for a given 
number 0γ > . While we combine the two problems for the systems (2)(3) with 2[0, )w L∈ ∞ , 
the quadratic performance index (1) is a function of the control input ( )u k  and disturbance 
input ( )w k  in the case of (0)x  being given and γ  being fixed. Thus, it is not possible to pose 
a mixed LQR/ H∞  control problem that is to find an admissible controller that achieves the 
minimization of quadratic performance index (1) subject to ( )zwT z γ∞ <  for the systems 
(2)(3) with 2[0, )w L∈ ∞  because the quadratic performance index (1) is an uncertain function 
depending on the uncertain disturbance input ( )w k . In order to eliminate this difficulty, the 
design criteria of state feedback mixed LQR/ H∞  control problem should be replaced by the 
design criteria 

2

sup inf{ }
Kw L

J
+∈

subject to ( )zwT z γ∞ <  

because for all 2[0, )w L∈ ∞ , the following inequality always exists 

2

inf{ } sup inf{ }
K Kw L

J J
+∈

≤  

The stochastic problem corresponding to this problem is the combined LQG/ H∞  control 
problem that was first presented by Bernstein & Haddad (1989). This problem is to find an 
admissible fixed order dynamic compensator that minimizes the expected cost function of 
the form  

lim ( )T T
t

J x Qx u Ru
→∞

= Ε +  subject to zwT γ∞ < . 

Here, the disturbance input w  of this problem is restricted to be white noise. Since the 
problem of Bernstein & Haddad (1989) involves merely a special case of fixing weighting 
matrices Q  and R , it is considered as a mixed 2H / H∞  problem in special case. Doyle et 
al. (1989b) considered a related output feedback mixed 2 /H H∞  problem (also see Doyle et 
al., 1994). The two approaches have been shown in Yeh et al. (1992) to be duals of one 
another in some sense. Also, various approaches for solving the mixed 2 /H H∞  problem 
are presented (Rotea & Khargonekar , 1991; Khargonekar & Rotea, 1991; Zhou et al., 1994; 
Limebeer et al. 1994; Sznaier ,1994; Rotstein & Sznaier, 1998 ; Sznaier et al. , 2000) . How-
ever, no approach has involved the mixed LQR/ H∞  control problem until the discrete time 
state feedback controller for solving this problem was presented by Xu (1996). Since then, 
several approaches to the mixed LQR / H∞  control problems have been presented in Xu 
(2007, 2008).  
 The first goal of this chapter is to, based on the results of Xu (1996,2007), present the simple 
approach to discrete time state feedback mixed LQR / H∞  control problem by combining 
the Lyapunov method for proving the discrete time optimal LQR control pro-blem with an 
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extension of the discrete time bounded real lemma, the argument of compl-etion of squares 
of Furuta & Phoojaruenchanachi (1990) and standard inverse matrix man-ipulation of Souza 
& Xie (1992). 
On the other hand, unlike the discrete time state feedback mixed LQR / H∞  control 
problem, state feedback corresponding to the non-fragile discrete time state feedback mixed 
LQR/ H∞  control problem is a function of controller uncertainty ( )F kΔ , and is given by 

 ˆ( ) ( )u k F x k∞= , ˆ ( )F F F k∞ ∞= + Δ  (4) 

where, ( )F kΔ  is the controller uncertainty. 
The closed-loop transfer matrix from disturbance input w  to the controlled output z and 
quadratic performance index for the closed-loop system (2) (4) is respectively  
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ˆ:FA A B F

∞
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∞
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ˆ:FC C D F
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∞= + , 0γ >  is a given number.  

Note that the feedback matrix F̂∞  of the considered closed-loop system is a function of the 
controller uncertainty ( )F kΔ , this results in that the quadratic performance index (1) is not 
only a function of the controller F∞  and disturbance input ( )w k  but also a function of the 
controller uncertainty ( )F kΔ  in the case of (0)x being given and γ  being fixed. We can 
easily know that the existence of disturbance input ( )w k  and controller uncertainty ( )F kΔ  
makes it impossible to find 

2
sup inf { }w L K J

+∈ , while the existence of controller uncertainty 
( )F kΔ  also makes it difficult to find 

2
sup { }w L J

+∈ . In order to eliminate these difficulties, the 
design criteria of non-fragile discrete time state feedback mixed LQR/ H∞  control problem 
should be replaced by the design criteria 

2
ˆsup { }w L J

+∈  subject to ( )zwT z γ∞ < . 

Motivation for non-fragile problem came from Keel & Bhattacharyya (1997). Keel & 
Bhattacharyya (1997) showed by examples that optimum and robust controllers, designed 
by using the 2H  , H∞ , 1l , and μ formulations, can produce extremely fragile controllers, in 
the sense that vanishingly small perturbations of the coefficients of the designed controller 
destabilize the closed-loop system; while the controller gain variations could not be avoided 
in most applications.This is because many factors, such as the limitations in available com-
puter memory and word-length capabilities of digital processor and the A/D and D/A 
converters,result in the variation of the controller parameters in controller implementation. 
Also, the controller gain variations might come about because of external effects such as 
temperature changes.Thus, any controller must be insensitive to the above-mentioned con-
toller gain variation. The question arised from this is how to design a controller that is inse-
nsitive, or non-fragile to error/uncertainty in controller parameters for a given plant. This 
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problem is said to be a non-fragile control problem. Recently, the non-fragile controller  
approach has been used to a very large class of control problems (Famularo et al. 2000, 
Haddad et al. 2000, Yang et al 2000, Yang et al. 2001 and Xu 2007).  
The second aim of this chapter is to, based on the results of Xu (2007), present a non-fragile 
controller approach to the discrete-time state feedback mixed LQR/ H∞  control problem 
with controller uncertainty.  
This chapter is organized as follows. In Section 2, we review several preliminary results, and 
present two extensions of the well known discrete time bounded real lamma. In Section 3, 
we define the discrete time state feedback mixed LQR/ H∞  control problem. Based on this 
definition, we present the both Riccati equation approach and state space approach to the 
discrete time state feedback mixed LQR/ H∞  control problem. In Section 4, we intro-duce 
the definition of non-fragile discrete time state feedback mixed LQR/ H∞  control problem, 
give the design method of a non-fragile discrete time state feedback mixed LQR / H∞  
controller, and derive the necessary and sufficient conditions for the existence of this 
controller. In Section 5, we give two examples to illustrate the design procedures and their 
effectiveness, respectively. Section 6 gives some conclusions. 
Throughout this chapter, TA  denotes the transpose of A , 1A−  denotes the inverse of A , 

TA−  is the shorthand for 1( )TA− , ~( )G z  denotes the conjugate system of ( )G z  and is the 
shorthand for 1( )TG z− , 2( , )L −∞ +∞  denotes the time domain Lebesgue space, 2[0, )L +∞  
denotes the subspace of 2( , )L −∞ +∞  , 2( ,0]L −∞  denotes the subspace of 2( , )L −∞ +∞ , 2L +  is 
the shorthand for 2[0, )L +∞  and 2L −  is the shorthand for 2( ,0]L −∞ . 

2. Preliminaries  
This section reviews several preliminary results. First, we consider the discerete time Riccati 
equation and discrete time Riccati inequality, respectively 

 1( )TX A X I RX A Q−= + +  (5) 
and 

 1( ) 0TA X I RX A Q X−+ + − <  (6) 

with 0TQ Q= ≥  and 0TR R= > . 
We are particularly interested in solution s X  of (5) and (6) such that 1( )I RX A−+  is stable. 
A symmetric matrix X  is said to the stabilizing solution of discrete time Riccati equation (5) 
if it satisfies (5) and is such that 1( )I RX A−+  is stable. Moreover, for a sufficiently small 
constant 0δ > , the discrete time Riccati inequality (6) can be rewritten as  

 1( )TX A X I RX A Q Iδ−= + + +  (7) 

Based on the above relation, we can say that if a symmetric matrix X  is a stabilizing 
solution to the discrete time Riccati equation (7), then it also is a stabilizing solution to the 
discrete time Riccati inequality (6). According to the concept of stabilizing solution of 
discrete time Riccati equation, we can define the stabilizing solution X  to the discrete time 
Riccati inequality (6) as follow: if there exists a symmetric solution X  to the discrete time 
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If A  is invertible, the stabilizing solution to the discerete time Riccati equation (5) can be 
obtained through the following simplectic matrix 

 :
T T

T T

A RA Q RA
S

A Q A

− −

− −

⎡ ⎤+ −
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
 (8) 

Assume that S  has no eigenvalues on the unit circle, then it must have n  eigenvalues in 
1iλ <  and n in 1iλ >  ( 1,2, , , 1, ,2i n n n= + ). If n  eigenvectors corresponding to n  

eigenvalues in 1iλ < of the simplectic matrix (8) is computed as 

i

i

u
v
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

then a stabilizing solution to the discerete time Riccati equation (5) is given by 

[ ][ ] 1
1 1n nX v v u u −=  

Secondly, we will introduce the well known discrete time bounded real lemma (see Zhou et 
al. , 1996; Iglesias & Glover, 1991; Souza & Xie, 1992) . 
Lemma 2.1 (Discrete Time Bounded Real Lemma)  

Suppose that 0γ > , ( )
A B

M z RH
C D ∞
⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦

, then the following two statements are 

equivalent: 
i. ( )M z γ∞ <  . 
ii. There exists a stabilizing solution 0X ≥  ( 0X >  if ( , )C A is observable ) to the discrete 

time Riccati equation 

2 1
1( ) ( ) 0T T T T T TA XA X A XB C D U B XA D C C Cγ − −− + + + + =  

such that 2
1 ( ) 0T TU I D D B XBγ −= − + > . 

In order to solve the two discrete time state feedback mixed LQR/ H∞  control problems 
considered by this chapter, we introduce the following reference system  

 1 2( 1) ( ) ( ) ( )x k Ax k B w k B u k+ = + +  
1 12

1 1
2 2

ˆ 0( ) ( ) ( )
0

C D
Iz k x k u k

I

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥Ω Ω⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (9) 

where, 
0

0
Q

R
⎡ ⎤

Ω = ⎢ ⎥
⎣ ⎦

 and 
0

( )ˆ( )
( )

z k
z k

z k
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

The following lemma is an extension of the discrete time bounded real lemma. 
Lemma 2.2 Given the system (2) under the influence of the state feedback (3), and suppose 
that 0γ > , ( )zwT z RH∞∈ ; then there exists an admissible controller K  such that  

( )zwT z γ∞ <  if there exists a stabilizing solution 0X∞ ≥  to the discrete time Riccati 
equation  

 2 1
1 0T T T T T

K K K K K K K KA X A X A X B U B X A C C Q K RKγ − −
∞ ∞ ∞ ∞− + + + + =  (10) 
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problem is said to be a non-fragile control problem. Recently, the non-fragile controller  
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A symmetric matrix X  is said to the stabilizing solution of discrete time Riccati equation (5) 
if it satisfies (5) and is such that 1( )I RX A−+  is stable. Moreover, for a sufficiently small 
constant 0δ > , the discrete time Riccati inequality (6) can be rewritten as  
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discrete time Riccati inequality (6). According to the concept of stabilizing solution of 
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Riccati inequality (6) as follow: if there exists a symmetric solution X  to the discrete time 
Riccati inequality (6) such that 1( )I RX A−+ is stable, then it is said to be a stabilizing 
solution to the discrete time Riccati inequality (6) . 
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such that 2
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considered by this chapter, we introduce the following reference system  
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The following lemma is an extension of the discrete time bounded real lemma. 
Lemma 2.2 Given the system (2) under the influence of the state feedback (3), and suppose 
that 0γ > , ( )zwT z RH∞∈ ; then there exists an admissible controller K  such that  

( )zwT z γ∞ <  if there exists a stabilizing solution 0X∞ ≥  to the discrete time Riccati 
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such that 2
1 0T

K KU I B X Bγ −
∞= − > . 

Proof: Consider the reference system (9) under the influence of the state feedback (3), and 
define 0T  as 

10 2
( ) :

0

K KA B
IT z
K

⎡ ⎤
⎢ ⎥= ⎡ ⎤⎢ ⎥Ω ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 

then the closed-loop transfer matrix from disturbance input w  to the controlled output ẑ  is 

ˆ
0

( )
( )

( )
zw

zw
T z

T z
T z

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. Note that 2 ~
ˆ ˆ 0zw zwI T Tγ − >  is equivalent to  

 2 ~ ~
0 0 0zw zwI T T T Tγ − > > for all 2[0, )w L∈ ∞  , 

and ( )zwT z RH∞∈ is equivalent to ˆ ( )zwT z RH∞∈ , so ˆ ( )zwT z γ∞ <  implies ( )zwT z γ∞ <  
Hence, it follows from Lemma 2.1. Q.E.D.  
To prove the result of non-fragile discrete time state feedback mixed LQR/ H∞  control 
problem, we define the inequality  

 2 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ 0T T T T T
F F F F F F F FA X A X A X B U B X A C C Q F RFγ
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

− −
∞ ∞ ∞ ∞ ∞ ∞− + + + + <  (11) 

where, 2
ˆ ˆ1 0T
F FU I B X Bγ
∞ ∞

−
∞= − > . 

In terms of the inequality (11), we have the following lemma: 
Lemma 2.3 Consider the system (2) under the influence of state feedback (4) with controler 
uncertainty, and suppose that 0γ > is a given number, then there exists an admissible non-
fragile controller F∞  such that zwT γ∞ <  if for any admissible uncertainty ( )F kΔ , there 
exists a stabilizing solution 0X∞ ≥  to the inequality (11) such that 1U =  

2
ˆ ˆ 0T
F FI B X Bγ
∞ ∞

−
∞− > . 

Proof: Suppose that for any admissible uncertainty ( )F kΔ , there exists a stabilizing solution 
0X∞ ≥  to the inequality (11) such that 2

ˆ ˆ1 0T
F FU I B X Bγ
∞ ∞

−
∞= − >  . This implies that the 

solution 0X∞ ≥  is such that 2 1
ˆ ˆ ˆ ˆ1

T
F F F FA B U B X Aγ
∞ ∞ ∞ ∞

− −
∞+  is stable.  

Let 2FA A B F
∞ ∞= +  and 1 12FC C D F

∞ ∞= + ; then we can rewrite (11) as 

2 1
ˆ ˆ1

1
3 2 2 2 2 3 2    ( ) ( ) 0

T T T T
F F F F F FF F

T T T T
F

A X A X A X B U B X A C C Q

F RF A U B F U U B U A U F N

γ
∞ ∞ ∞ ∞ ∞ ∞∞ ∞

− −
∞ ∞ ∞ ∞

−
∞ ∞ ∞ ∞

− + + +

+ − + + + Δ <
 

where, 2 2 3 2
TU B U B I R= + + ,  2 1

ˆ ˆ3 1
T

F FU X B U B X Xγ
∞ ∞

− −
∞ ∞ ∞= + ,  

1
3 2 2 2 2 2 3 2 2( ( ) ) ( ( ))T T T T

FN A U B F U F k U U B U A U F U F k−
∞ ∞Δ = + + Δ + + Δ . 

Since ( )F kΔ  is an admissible norm-bounded time- varying uncertainty, there exists a time-
varying uncertain number ( ) 0kδ > satisfying  

 
2 1

ˆ ˆ1

1
3 2 2 2 2 3 2                 ( ) ( ) ( ) 0

T T T T T
F F F F F FF F

T T T
F

A X A X A X B U B X A C C Q F RF

A U B F U U B U A U F N k I

γ

δ
∞ ∞ ∞ ∞ ∞ ∞∞ ∞

− −
∞ ∞ ∞ ∞ ∞ ∞

−
∞ ∞

− + + + +

− + + + Δ + =
 (12) 
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Note that 2 1
ˆ ˆ ˆ ˆ1

T
F F F FA B U B X Aγ
∞ ∞ ∞ ∞

− −
∞+  is stable for any admissible uncertainty ( )F kΔ . This 

implies that 2 1
ˆ ˆ1

T
F FF FA B U B X Aγ
∞ ∞∞ ∞

− −
∞+  is stable. 

Hence, 1
ˆ1( , )T

F FFU B X A A
∞ ∞∞

−
∞  is detectable. Then it follows from standard results on 

Lyapunov equations (see Lemma 2.7 a), Iglesias & Glover 1991) and the equation (12) that 
FA
∞

 is stable. Thus, ˆ 2 ( )FFA A B F k
∞∞

= + Δ  is stable for any admissible uncertainty ( )F kΔ . 
Define ( ( )) : ( ) ( )TV x k x k X x k∞= , where, x  is the solution to the plant equations for a given 
input w , then it can be easily established that  

0
212 22 2 2 12

ˆ ˆ11
0

2 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

0 { ( ( )) ( 1) ( 1) ( ) ( )}

{ ( ( )) ( )

( ) }

T T

k

T
F F

k
T T T T T

F F F F F F F F

V x k x k X x k x k X x k

V x k z w U w U B X A x

x A X A X A X B U B X A C C x

γ γ γ

γ

∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞

∞ ∞
=

∞
− −

∞
=

− −
∞ ∞ ∞ ∞

= −Δ + + + −

= −Δ − + − −

+ − + +

∑

∑  

Add the above zero equality to J  to get  

212 22 2 2 12
ˆ ˆ11

0
2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

{ ( ( )) ( )

ˆ ˆ( ) }

T
F F

k
T T T T T T

F F F F F F F F

J V x k z w U w U B X A x

x A X A X A X B U B X A C C Q F RF x

γ γ γ

γ

∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞
− −

∞
=

− −
∞ ∞ ∞ ∞ ∞ ∞

= −Δ − + − −

+ − + + + +

∑
 

Substituting (11) for the above formula,we get that for any ( )u k  and ( )w k  and (0) 0x = , 

212 22 2 2 12
ˆ ˆ112 2

2
( )T

F FJ z w U w U B X A xγ γ γ
∞ ∞

− −
∞< − + − −  

 

Note that 2
0 2

0
ˆ ˆ( ) ( )T

k
z x k x k

∞

=
= Ω∑ , and define that 2 1

ˆ ˆ1: T
F Fr w U B X A xγ
∞ ∞

− −
∞= − , we get  

212 22 2 2
12 2

2
ẑ w U rγ γ− < −  

Suppose that Γ  is the operator with realization  

ˆ2

2 1
ˆ ˆ1

ˆ( 1) ( ) ( ) ( )

( ) ( ) ( )
F

T
F F

x k A B F x k B w k

r k U B X A x k w kγ
∞

∞ ∞

∞

− −
∞

+ = + +

= − +
 

which maps w  to r .  
Since 1−Γ  exists ( and is given by 2 1

ˆ ˆ ˆ ˆ2 1
ˆ( 1) ( ) ( ) ( )T

F F F Fx k A B F B U B X A x k B r kγ
∞ ∞ ∞ ∞

− −
∞ ∞+ = + + + , 

2 1
ˆ ˆ1( ) ( ) ( )T
F Fw k U B X A x k r kγ
∞ ∞

− −
∞= + ), we can write 

212 2 2 22 2 22
12 2 2 2

2
ẑ w U r w wγ γ γ κ− < − = − Γ ≤  
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such that 2
1 0T

K KU I B X Bγ −
∞= − > . 

Proof: Consider the reference system (9) under the influence of the state feedback (3), and 
define 0T  as 
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( ) :
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K KA B
IT z
K

⎡ ⎤
⎢ ⎥= ⎡ ⎤⎢ ⎥Ω ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 

then the closed-loop transfer matrix from disturbance input w  to the controlled output ẑ  is 

ˆ
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( )
( )

( )
zw

zw
T z

T z
T z

⎡ ⎤
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⎣ ⎦

. Note that 2 ~
ˆ ˆ 0zw zwI T Tγ − >  is equivalent to  

 2 ~ ~
0 0 0zw zwI T T T Tγ − > > for all 2[0, )w L∈ ∞  , 

and ( )zwT z RH∞∈ is equivalent to ˆ ( )zwT z RH∞∈ , so ˆ ( )zwT z γ∞ <  implies ( )zwT z γ∞ <  
Hence, it follows from Lemma 2.1. Q.E.D.  
To prove the result of non-fragile discrete time state feedback mixed LQR/ H∞  control 
problem, we define the inequality  

 2 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ 0T T T T T
F F F F F F F FA X A X A X B U B X A C C Q F RFγ
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

− −
∞ ∞ ∞ ∞ ∞ ∞− + + + + <  (11) 

where, 2
ˆ ˆ1 0T
F FU I B X Bγ
∞ ∞

−
∞= − > . 

In terms of the inequality (11), we have the following lemma: 
Lemma 2.3 Consider the system (2) under the influence of state feedback (4) with controler 
uncertainty, and suppose that 0γ > is a given number, then there exists an admissible non-
fragile controller F∞  such that zwT γ∞ <  if for any admissible uncertainty ( )F kΔ , there 
exists a stabilizing solution 0X∞ ≥  to the inequality (11) such that 1U =  
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F FI B X Bγ
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−
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Proof: Suppose that for any admissible uncertainty ( )F kΔ , there exists a stabilizing solution 
0X∞ ≥  to the inequality (11) such that 2
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F FU I B X Bγ
∞ ∞

−
∞= − >  . This implies that the 

solution 0X∞ ≥  is such that 2 1
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T
F F F FA B U B X Aγ
∞ ∞ ∞ ∞

− −
∞+  is stable.  

Let 2FA A B F
∞ ∞= +  and 1 12FC C D F

∞ ∞= + ; then we can rewrite (11) as 
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∞ ∞ ∞ ∞

−
∞ ∞ ∞ ∞

− + + +
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where, 2 2 3 2
TU B U B I R= + + ,  2 1

ˆ ˆ3 1
T

F FU X B U B X Xγ
∞ ∞

− −
∞ ∞ ∞= + ,  

1
3 2 2 2 2 2 3 2 2( ( ) ) ( ( ))T T T T

FN A U B F U F k U U B U A U F U F k−
∞ ∞Δ = + + Δ + + Δ . 

Since ( )F kΔ  is an admissible norm-bounded time- varying uncertainty, there exists a time-
varying uncertain number ( ) 0kδ > satisfying  

 
2 1
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1
3 2 2 2 2 3 2                 ( ) ( ) ( ) 0

T T T T T
F F F F F FF F

T T T
F
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Note that 2 1
ˆ ˆ ˆ ˆ1
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∞+  is stable for any admissible uncertainty ( )F kΔ . This 

implies that 2 1
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∞+  is stable. 

Hence, 1
ˆ1( , )T

F FFU B X A A
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−
∞  is detectable. Then it follows from standard results on 

Lyapunov equations (see Lemma 2.7 a), Iglesias & Glover 1991) and the equation (12) that 
FA
∞

 is stable. Thus, ˆ 2 ( )FFA A B F k
∞∞

= + Δ  is stable for any admissible uncertainty ( )F kΔ . 
Define ( ( )) : ( ) ( )TV x k x k X x k∞= , where, x  is the solution to the plant equations for a given 
input w , then it can be easily established that  

0
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Add the above zero equality to J  to get  
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Substituting (11) for the above formula,we get that for any ( )u k  and ( )w k  and (0) 0x = , 
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= Ω∑ , and define that 2 1
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∞

∞ ∞

∞

− −
∞

+ = + +

= − +
 

which maps w  to r .  
Since 1−Γ  exists ( and is given by 2 1

ˆ ˆ ˆ ˆ2 1
ˆ( 1) ( ) ( ) ( )T

F F F Fx k A B F B U B X A x k B r kγ
∞ ∞ ∞ ∞

− −
∞ ∞+ = + + + , 

2 1
ˆ ˆ1( ) ( ) ( )T
F Fw k U B X A x k r kγ
∞ ∞

− −
∞= + ), we can write 

212 2 2 22 2 22
12 2 2 2

2
ẑ w U r w wγ γ γ κ− < − = − Γ ≤  
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for some positive κ .This implies that there exists an admissible non-fragile controller such 
that ẑwT γ∞ < . Note that 2 ~

ˆ ˆ 0zw zwI T Tγ − >  is equivalent to  

2 ~ ~
0 0 0zw zwI T T T Tγ − > > for all 2[0, )w L∈ ∞  

so ẑwT γ∞ <  implies zwT γ∞ < , and we conclude that there exists an admissible non-fragile 

controller such that zwT γ∞ < . Q. E. D. 

3. State Feedback 
In this section, we will consider the discrete time state feedback mixed LQR/ H∞  control 
problem. This problem is defined as follows: Given the linear discrete-time systems (2)(3) 
with w∈  2[0, )L ∞  and 0(0)x x=  and the quadratic performance index (1), for a given 
number  γ  0,>   determine an admissible controller K  that achieves  

2

sup inf{ }
Kw L

J
+∈

 subject to ( )zwT z γ∞ < . 

If this controller K  exists, it is said to be a discrete time state feedback mixed LQR/ H∞  
controller. 
Here, we will discuss the simplified versions of the problem defined in the above. In order 
to do this, the following assumptions are imposed on the system 
Assumption 1 1( , )C A  is detectable. 
Assumption 2 2( , )A B  is stabilizable. 

Assumption 3 [ ] [ ]12 1 12 0TD C D I= . 
The solution to the problem defined in the above involves the discrete time Riccati equation 

 1
1 1

ˆ ˆ ˆ ˆ ˆ( ) 0T T T T TA X A X A X B B X B R B X A C C Q−
∞ ∞ ∞ ∞ ∞− − + + + =  (13) 

 

where, 1
1 2B̂ B Bγ −⎡ ⎤= ⎣ ⎦ , 

0ˆ
0
I

R
R I

−⎡ ⎤
= ⎢ ⎥+⎣ ⎦

. If A  is invertible, the stabilizing solution to the 

discrete time Riccati equation (13) can be obtained through the following simplectic matrix  

1 1
1 1

1 1

ˆ ˆ ˆ ˆ ˆ ˆ( )
:

( )

T T T T T

T T T

A BR B A C C Q BR B A
S

A C C Q A

− − − −

∞ − −

⎡ ⎤+ + −
= ⎢ ⎥

− +⎢ ⎥⎣ ⎦
 

In the following theorem, we provide the solution to discrete time state feedback mixed 
LQR/ H∞  control problem.  
Theorem 3.1 There exists a state feedback mixed LQR/ H∞  controller if the discrete time 
Riccati equation (13) has a stabilizing solution 0X∞ ≥  and 2

1 1 1 0TU I B X Bγ − ∞= − > .  
Moreover, this state feedback mixed LQR/ H∞  controller is given by 

1
2 2 3

TK U B U A−= −  

where, 2 2 3 2
TU R I B U B= + + , and 2 1

3 1 1 1
TU X X B U B Xγ − −

∞ ∞ ∞= + . 
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In this case, the state feedback mixed LQR/ H∞ controller will achieve  

2

2
0 0sup inf{ } ( )T

w zKw L
J x X X X xγ

+

−
∞

∈
= + −  subject to zwT γ∞ < . 

where, 2 1
1

ˆ T
K K K K KA A B U B X Aγ − −

∞= + , 2
1

0

ˆ ˆ{( ) }k T T T k
w K K K K K K

k
X A A X B U B X A A

∞
−

∞ ∞
=

= ∑ , and 

0

ˆ ˆ{( ) }k T T k
z K K K K

k
X A C C A

∞

=
= ∑ . 

Before proving Theorem 3.1, we will give the following lemma. 
Lemma 3.1 Suppose that the discrete time Riccati equation (13) has a stabilizing solution 

0X∞ ≥  and 2
1 1 1 0TU I B X Bγ − ∞= − > , and let 2KA A B K= +  and 1

2 2 3
TK U B U A−= − ; then KA  is 

stable. 
Proof: Suppose that the discrete time Riccati equation (13) has a stabilizing solution 0X∞ ≥  
and 2

1 1 1 0TU I B X Bγ − ∞= − > . Observe that  

1 1
1 1 1 21

1 2 1
2 2 1 2 2

0ˆ ˆ ˆ
0

T T
T

T T T

B I U B X B
B X B R X B B

R IB B X B B X B R I

γ γ
γ

γ

− −
∞−

∞ ∞ −
∞ ∞

⎡ ⎤ ⎡ ⎤− −⎡ ⎤⎡ ⎤+ = + =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ + + +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
 

Also, note that 2
1 1 1 0TU I B X Bγ − ∞= − > , 2 1

3 1 1 1
TU X X B U B Xγ − −

∞ ∞ ∞= + , and 2U R I= +  
2 3 2
TB U B+ ; then it can be easily shown by using the similar standard matrix manipulations as 

in the proof of Theorem 3.1 in Souza & Xie (1992) that 

 
1 1 1 1 1 1

1 1 1 2 1 1 1 1 21
1 1 1

2 1 1 2

ˆ ˆ ˆ
ˆ ˆ ˆ( ) ˆ

T
T

T

U U B U B U U B U
B X B R

U B U U

− − − − − −
−

∞ − − −

⎡ ⎤− +
+ = ⎢ ⎥

⎢ ⎥⎣ ⎦
 

where, 1
1 1 2

ˆ TB B X Bγ − ∞= . 
Thus, we have 

1 2 1 1
1 1 1 3 2 2 2 3

ˆ ˆ ˆ ˆ ˆ( )T T T T T T TA X B B X B R B X A A X B U B X A A U B U B U Aγ− − − −
∞ ∞ ∞ ∞ ∞+ = − +  

Rearraging the discrete time Riccati equation (13), we get  

2 1 1
1 1 1 3 2 2 2 3 1 1

2 1 1 2 1
1 1 1 1 1 3 2 2 2 1 1 1

2 1 1
1 1 1 2 2 2 3

1 2 1
3 2 2 2 1 1 1

( )

  ( )

  [ (

T T T T T T

T T T T T T T

T T T

T T T

X A X A A X B U B X A A U B U B U A C C Q

A X A A X B U B X A C C Q A U B U B X X B U B X A

A X X B U B X B U B U A

A U B U R I B X X B U B

γ

γ γ

γ

γ

− − −
∞ ∞ ∞ ∞

− − − − −
∞ ∞ ∞ ∞ ∞ ∞

− − −
∞ ∞ ∞

− − −
∞ ∞

= + − + +

= + + + − +

− +

+ + + + 1
2 2 2 3

1 1 1 1
3 2 2 2 2 2 2 3 3 2 2 2 2 2 2 3

1 1 1 1
1 1 3 2 2 2 2 3 3 2 2 2 2 3
2 1 2 1 1

1 1 1 3 2 2 2 1 1 1

) ]

( )

  ( )

  (

     

T

T T T T T T T T

T T T T T

T T T T T

X B U B U A

A X A A U B U B X A A X B U B U A A U B U B X B U B U A

C C A U B U U B U A A U B U RU B U A Q

A X B U B X A A U B U B X B U B X Aγ γ

−
∞

− − − −
∞ ∞ ∞ ∞

− − − −

− − − − −
∞ ∞ ∞ ∞

= − − +

+ + + +

+ −
2 1 1 2 1 1 1

1 1 1 2 2 2 3 3 2 2 2 1 1 1 2 2 2 3
1 1 1 1

2 2 2 3 2 2 2 3 1 12 2 2 3 1 12 2 2 3
2 1 1

2 2 2 3 1 1 1 2 2

 )

( ) ( ) ( ) ( )

  ( ) (

T T T T T T T

T T T T T T

T T T T

A X B U B X B U B U A A U B U B X B U B X B U B U A

A B U B U A X A B U B U A C D U B U A C D U B U A

K RK Q A B U B U A X B U B X A B U

γ γ

γ

− − − − − − −
∞ ∞ ∞ ∞

− − − −
∞

− − − −
∞ ∞

− +

= − − + − −

+ + + − − 1
2 3 )TB U A
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for some positive κ .This implies that there exists an admissible non-fragile controller such 
that ẑwT γ∞ < . Note that 2 ~

ˆ ˆ 0zw zwI T Tγ − >  is equivalent to  

2 ~ ~
0 0 0zw zwI T T T Tγ − > > for all 2[0, )w L∈ ∞  

so ẑwT γ∞ <  implies zwT γ∞ < , and we conclude that there exists an admissible non-fragile 

controller such that zwT γ∞ < . Q. E. D. 

3. State Feedback 
In this section, we will consider the discrete time state feedback mixed LQR/ H∞  control 
problem. This problem is defined as follows: Given the linear discrete-time systems (2)(3) 
with w∈  2[0, )L ∞  and 0(0)x x=  and the quadratic performance index (1), for a given 
number  γ  0,>   determine an admissible controller K  that achieves  

2

sup inf{ }
Kw L

J
+∈

 subject to ( )zwT z γ∞ < . 

If this controller K  exists, it is said to be a discrete time state feedback mixed LQR/ H∞  
controller. 
Here, we will discuss the simplified versions of the problem defined in the above. In order 
to do this, the following assumptions are imposed on the system 
Assumption 1 1( , )C A  is detectable. 
Assumption 2 2( , )A B  is stabilizable. 

Assumption 3 [ ] [ ]12 1 12 0TD C D I= . 
The solution to the problem defined in the above involves the discrete time Riccati equation 

 1
1 1

ˆ ˆ ˆ ˆ ˆ( ) 0T T T T TA X A X A X B B X B R B X A C C Q−
∞ ∞ ∞ ∞ ∞− − + + + =  (13) 

 

where, 1
1 2B̂ B Bγ −⎡ ⎤= ⎣ ⎦ , 

0ˆ
0
I

R
R I

−⎡ ⎤
= ⎢ ⎥+⎣ ⎦

. If A  is invertible, the stabilizing solution to the 

discrete time Riccati equation (13) can be obtained through the following simplectic matrix  

1 1
1 1

1 1

ˆ ˆ ˆ ˆ ˆ ˆ( )
:

( )

T T T T T

T T T

A BR B A C C Q BR B A
S

A C C Q A

− − − −

∞ − −

⎡ ⎤+ + −
= ⎢ ⎥

− +⎢ ⎥⎣ ⎦
 

In the following theorem, we provide the solution to discrete time state feedback mixed 
LQR/ H∞  control problem.  
Theorem 3.1 There exists a state feedback mixed LQR/ H∞  controller if the discrete time 
Riccati equation (13) has a stabilizing solution 0X∞ ≥  and 2

1 1 1 0TU I B X Bγ − ∞= − > .  
Moreover, this state feedback mixed LQR/ H∞  controller is given by 

1
2 2 3

TK U B U A−= −  

where, 2 2 3 2
TU R I B U B= + + , and 2 1

3 1 1 1
TU X X B U B Xγ − −

∞ ∞ ∞= + . 
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In this case, the state feedback mixed LQR/ H∞ controller will achieve  

2

2
0 0sup inf{ } ( )T

w zKw L
J x X X X xγ

+

−
∞

∈
= + −  subject to zwT γ∞ < . 

where, 2 1
1

ˆ T
K K K K KA A B U B X Aγ − −

∞= + , 2
1

0

ˆ ˆ{( ) }k T T T k
w K K K K K K

k
X A A X B U B X A A

∞
−

∞ ∞
=

= ∑ , and 

0

ˆ ˆ{( ) }k T T k
z K K K K

k
X A C C A

∞

=
= ∑ . 

Before proving Theorem 3.1, we will give the following lemma. 
Lemma 3.1 Suppose that the discrete time Riccati equation (13) has a stabilizing solution 

0X∞ ≥  and 2
1 1 1 0TU I B X Bγ − ∞= − > , and let 2KA A B K= +  and 1

2 2 3
TK U B U A−= − ; then KA  is 

stable. 
Proof: Suppose that the discrete time Riccati equation (13) has a stabilizing solution 0X∞ ≥  
and 2

1 1 1 0TU I B X Bγ − ∞= − > . Observe that  

1 1
1 1 1 21

1 2 1
2 2 1 2 2

0ˆ ˆ ˆ
0

T T
T

T T T

B I U B X B
B X B R X B B

R IB B X B B X B R I

γ γ
γ

γ

− −
∞−

∞ ∞ −
∞ ∞

⎡ ⎤ ⎡ ⎤− −⎡ ⎤⎡ ⎤+ = + =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ + + +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
 

Also, note that 2
1 1 1 0TU I B X Bγ − ∞= − > , 2 1

3 1 1 1
TU X X B U B Xγ − −

∞ ∞ ∞= + , and 2U R I= +  
2 3 2
TB U B+ ; then it can be easily shown by using the similar standard matrix manipulations as 

in the proof of Theorem 3.1 in Souza & Xie (1992) that 

 
1 1 1 1 1 1

1 1 1 2 1 1 1 1 21
1 1 1

2 1 1 2

ˆ ˆ ˆ
ˆ ˆ ˆ( ) ˆ

T
T

T

U U B U B U U B U
B X B R

U B U U

− − − − − −
−

∞ − − −

⎡ ⎤− +
+ = ⎢ ⎥

⎢ ⎥⎣ ⎦
 

where, 1
1 1 2

ˆ TB B X Bγ − ∞= . 
Thus, we have 

1 2 1 1
1 1 1 3 2 2 2 3

ˆ ˆ ˆ ˆ ˆ( )T T T T T T TA X B B X B R B X A A X B U B X A A U B U B U Aγ− − − −
∞ ∞ ∞ ∞ ∞+ = − +  

Rearraging the discrete time Riccati equation (13), we get  

2 1 1
1 1 1 3 2 2 2 3 1 1

2 1 1 2 1
1 1 1 1 1 3 2 2 2 1 1 1

2 1 1
1 1 1 2 2 2 3

1 2 1
3 2 2 2 1 1 1

( )

  ( )

  [ (

T T T T T T

T T T T T T T

T T T

T T T

X A X A A X B U B X A A U B U B U A C C Q

A X A A X B U B X A C C Q A U B U B X X B U B X A

A X X B U B X B U B U A

A U B U R I B X X B U B

γ

γ γ

γ

γ

− − −
∞ ∞ ∞ ∞

− − − − −
∞ ∞ ∞ ∞ ∞ ∞

− − −
∞ ∞ ∞

− − −
∞ ∞

= + − + +

= + + + − +

− +

+ + + + 1
2 2 2 3

1 1 1 1
3 2 2 2 2 2 2 3 3 2 2 2 2 2 2 3

1 1 1 1
1 1 3 2 2 2 2 3 3 2 2 2 2 3
2 1 2 1 1

1 1 1 3 2 2 2 1 1 1

) ]

( )

  ( )

  (

     

T

T T T T T T T T

T T T T T

T T T T T

X B U B U A

A X A A U B U B X A A X B U B U A A U B U B X B U B U A

C C A U B U U B U A A U B U RU B U A Q

A X B U B X A A U B U B X B U B X Aγ γ

−
∞

− − − −
∞ ∞ ∞ ∞

− − − −

− − − − −
∞ ∞ ∞ ∞

= − − +

+ + + +

+ −
2 1 1 2 1 1 1

1 1 1 2 2 2 3 3 2 2 2 1 1 1 2 2 2 3
1 1 1 1

2 2 2 3 2 2 2 3 1 12 2 2 3 1 12 2 2 3
2 1 1

2 2 2 3 1 1 1 2 2

 )

( ) ( ) ( ) ( )

  ( ) (

T T T T T T T

T T T T T T

T T T T

A X B U B X B U B U A A U B U B X B U B X B U B U A

A B U B U A X A B U B U A C D U B U A C D U B U A

K RK Q A B U B U A X B U B X A B U

γ γ

γ

− − − − − − −
∞ ∞ ∞ ∞

− − − −
∞

− − − −
∞ ∞

− +

= − − + − −

+ + + − − 1
2 3 )TB U A
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that is, 

 2 1
1 0T T T T T

K K K K K K K KA X A X A X B U B X A C C Q K RKγ − −
∞ ∞ ∞ ∞− + + + + =  (14) 

Since the discrete time Riccati equation (13) has a stabilizing solution 0X∞ ≥ , the discrete 
time Riccati equation (14) also has a stabilizing solution 0X∞ ≥ . This implies that  

2 1
1

ˆ T
K K K K KA A B U B X Aγ − −

∞= +  is stable. Hence 1
1( , )T

K K KU B X A A−
∞  is detectable. Based on this, 

it follows from standard results on Lyapunov equations (see Lemma 2.7 a), Iglesias & 
Glover 1991) that KA  is stable.Q. E. D. 
Proof of Theorem 3.1: Suppose that the discrete time Riccati equation (13) has a stabilizing 
solution 0X∞ ≥  and 2

1 1 1 0TU I B X Bγ − ∞= − > . Then, it follows from Lemma 3.1 that KA  is 
stable. This implies that ( )zwT z RH∞∈ . By using the same standard matrix manipulations as 
in the proof of Lemma 3.1, we can rewrite the discrete time Riccati equation (13) as follows: 

2 1 1
1 1 1 3 2 2 2 3 1 1 0T T T T T TA X A X A X B U B X A A U B U B U A C C Qγ − − −

∞ ∞ ∞ ∞− + − + + =  

or equivalently, 

2 1
1 0T T T T T

K K K K K K K KA X A X A X B U B X A C C Q K RKγ − −
∞ ∞ ∞ ∞− + + + + =  

Thus, it follows from Lemma 2.2 that ( )zwT z γ∞ < . 
Define ( ( )) ( ) ( )TV x k x k X x k∞= , where X∞  is the solution to the discrete time Riccati equation 
(13), then taking the difference ( ( ))V x kΔ  and completing the squares we get 

212 22 2 2 12
11

2 1
1

( ( )) ( 1) ( 1) ( ) ( )

( )( ) ( ) ( ) ( )

 ( ) ( ) ( ) ( )

( )

( )

T T

T T T T
K K K K

T T T T
K K K K

T
K K

T T T T T
K K K K K K K K

V x k x k X x k x k X x k

x k A X A X x k x k A X B w k

w k B X A x k w k B X B w k

z w U w U B X A x

x A X A X A X B U B X A C C x

γ γ γ

γ

∞ ∞

∞ ∞ ∞

∞ ∞

− −
∞

− −
∞ ∞ ∞ ∞

Δ = + + −

= − +

+ +

= − + − −

+ − + +

 

Based on the above, the cost function J  can be rewritten as: 

212 22 2 2 12
11

0 0
2 1

1

ˆ ˆ( ) ( ) { ( ( )) ( )

                            ( ) }

T T
K K

k k
T T T T T T

K K K K K K K K

J x k x k V x k z w U w U B X A x

x A X A X A X B U B X A C C Q K RK x

γ γ γ

γ

∞ ∞
− −

∞
= =

− −
∞ ∞ ∞ ∞

= Ω = −Δ − + − −

+ − + + + +

∑ ∑  (15) 

On the other hand, it follows from the similar argumrnts as in the proof of Theorem 3.1 in 
Furuta & Phoojaruenchanachai (1990) that 

2 1
1

2 1 1
1 1 1 3 2 2 2 3 1 1

1 1
2 2 3 2 2 2 3                         ( ) ( )

T T T T T
K K K K K K K K

T T T T T T

T T T

A X A X A X B U B X A C C Q K RK

A X A X A X B U B X A A U B U B U A C C Q

K U B U A U K U B U A

γ

γ

− −
∞ ∞ ∞ ∞

− − −
∞ ∞ ∞ ∞

− −

− + + + +

= − + − + +

+ + +

 

At the same time note that 
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2 1 1
1 1 1 3 2 2 2 3

1 1 1 1 1 1
1 1 1 2 1 1 1 1 2

1 1 1
2 1 1 2

1

ˆ ˆ ˆ
ˆ ˆ

ˆ

ˆ ˆ ˆ ˆ ˆ( )

T T T T

T
T T

T

T T T

A X B U B X A A U B U B U A

U U B U B U U B U
A X B B X A

U B U U

A X B B X B R B X A

γ − − −
∞ ∞

− − − − − −

∞ ∞− − −

−
∞ ∞ ∞

− +

⎡ ⎤− +
= ⎢ ⎥

⎢ ⎥⎣ ⎦
= +

 

We have   

2 1
1

1
1 1

1 1
2 2 3 2 2 2 3

ˆ ˆ ˆ ˆ ˆ( )

         ( ) ( )

T T T T T
K K K K K K K K

T T T T T

T T T

A X A X A X B U B X A C C Q K RK

A X A X A X B B X B R B X A C C Q

K U B U A U K U B U A

γ − −
∞ ∞ ∞ ∞

−
∞ ∞ ∞ ∞ ∞

− −

− + + + +

= − − + + +

+ + +

 

Also, noting that the discrete time Riccati equation (13) and substituting the above equality 
for (15), we get 

 

212 22 2 2 12
11

0 0
21 12

2 2 32

ˆ ˆ( ) ( ) { ( ( )) ( )

                             ( ) }

T T
K K

k k

T

J x k x k V x k z w U w U B X A x

U K U B U A x

γ γ γ
∞ ∞

− −
∞

= =

−

= Ω = −Δ − + − −

+ +

∑ ∑
 (16) 

Based on the above, it is clear that if 1
2 2 3

TK U B U A−= − , then we get 

 
212 22 2 2 12

0 0 112 2
2

inf{ } ( )T T
K KK

J x X x z w U w U B X A xγ γ γ − −
∞ ∞= − + − −  (17) 

By letting 2 1
1( ) ( )T

K Kw k U B X A x kγ − −
∞=  for all 0k ≥ , we get that 0

ˆ( ) k
Kx k A x=  with ˆ

KA  which 
belongs to 2[0, )L +∞  since 1ˆ ˆ ˆ ˆ ˆ ˆ( )T T

KA A B B X B R B X A−
∞ ∞= − +  is stable. Also, we have 

2 4
0 02( ) T

ww k x X xγ −= , 2
0 02( ) T

zz k x X x=  

Then it follows from (17) that 

2

2
0 0sup inf{ } ( )T

w zKw L
J x X X X xγ

+

−
∞

∈
= + −  

Thus we conclude that there exists an admissible state feedback controller such that  

 
2

2
0 0sup inf{ } ( )T

w zKw L
J x X X X xγ

+

−
∞

∈
= + −  subject to zwT γ∞ <  Q.E.D. 

4. Non-fragile controller 
In this section, we will consider the non-fragile discrete-time state feedback mixed  
LQR/ H∞  control problem with controller uncertainty. This problem is defined as follows: 
Consider the system (2) (4) satisfying Assumption 1-3 with w∈  2[0, )L ∞  and 0(0)x x= , for a 
given number 0γ >  and any admissible controller uncertainty, determine an admissible 
non-fragile controller F∞  such that 
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that is, 

 2 1
1 0T T T T T

K K K K K K K KA X A X A X B U B X A C C Q K RKγ − −
∞ ∞ ∞ ∞− + + + + =  (14) 

Since the discrete time Riccati equation (13) has a stabilizing solution 0X∞ ≥ , the discrete 
time Riccati equation (14) also has a stabilizing solution 0X∞ ≥ . This implies that  

2 1
1

ˆ T
K K K K KA A B U B X Aγ − −

∞= +  is stable. Hence 1
1( , )T

K K KU B X A A−
∞  is detectable. Based on this, 

it follows from standard results on Lyapunov equations (see Lemma 2.7 a), Iglesias & 
Glover 1991) that KA  is stable.Q. E. D. 
Proof of Theorem 3.1: Suppose that the discrete time Riccati equation (13) has a stabilizing 
solution 0X∞ ≥  and 2

1 1 1 0TU I B X Bγ − ∞= − > . Then, it follows from Lemma 3.1 that KA  is 
stable. This implies that ( )zwT z RH∞∈ . By using the same standard matrix manipulations as 
in the proof of Lemma 3.1, we can rewrite the discrete time Riccati equation (13) as follows: 

2 1 1
1 1 1 3 2 2 2 3 1 1 0T T T T T TA X A X A X B U B X A A U B U B U A C C Qγ − − −

∞ ∞ ∞ ∞− + − + + =  

or equivalently, 

2 1
1 0T T T T T

K K K K K K K KA X A X A X B U B X A C C Q K RKγ − −
∞ ∞ ∞ ∞− + + + + =  

Thus, it follows from Lemma 2.2 that ( )zwT z γ∞ < . 
Define ( ( )) ( ) ( )TV x k x k X x k∞= , where X∞  is the solution to the discrete time Riccati equation 
(13), then taking the difference ( ( ))V x kΔ  and completing the squares we get 

212 22 2 2 12
11

2 1
1

( ( )) ( 1) ( 1) ( ) ( )

( )( ) ( ) ( ) ( )

 ( ) ( ) ( ) ( )

( )

( )

T T

T T T T
K K K K

T T T T
K K K K

T
K K

T T T T T
K K K K K K K K

V x k x k X x k x k X x k

x k A X A X x k x k A X B w k

w k B X A x k w k B X B w k

z w U w U B X A x

x A X A X A X B U B X A C C x

γ γ γ

γ

∞ ∞

∞ ∞ ∞

∞ ∞

− −
∞

− −
∞ ∞ ∞ ∞

Δ = + + −

= − +

+ +

= − + − −

+ − + +

 

Based on the above, the cost function J  can be rewritten as: 

212 22 2 2 12
11

0 0
2 1

1

ˆ ˆ( ) ( ) { ( ( )) ( )

                            ( ) }

T T
K K

k k
T T T T T T

K K K K K K K K

J x k x k V x k z w U w U B X A x

x A X A X A X B U B X A C C Q K RK x

γ γ γ

γ

∞ ∞
− −

∞
= =

− −
∞ ∞ ∞ ∞

= Ω = −Δ − + − −

+ − + + + +

∑ ∑  (15) 

On the other hand, it follows from the similar argumrnts as in the proof of Theorem 3.1 in 
Furuta & Phoojaruenchanachai (1990) that 

2 1
1

2 1 1
1 1 1 3 2 2 2 3 1 1

1 1
2 2 3 2 2 2 3                         ( ) ( )

T T T T T
K K K K K K K K

T T T T T T

T T T

A X A X A X B U B X A C C Q K RK

A X A X A X B U B X A A U B U B U A C C Q

K U B U A U K U B U A

γ

γ

− −
∞ ∞ ∞ ∞

− − −
∞ ∞ ∞ ∞

− −

− + + + +

= − + − + +

+ + +

 

At the same time note that 
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2 1 1
1 1 1 3 2 2 2 3

1 1 1 1 1 1
1 1 1 2 1 1 1 1 2

1 1 1
2 1 1 2

1

ˆ ˆ ˆ
ˆ ˆ

ˆ

ˆ ˆ ˆ ˆ ˆ( )

T T T T

T
T T

T

T T T

A X B U B X A A U B U B U A

U U B U B U U B U
A X B B X A

U B U U

A X B B X B R B X A

γ − − −
∞ ∞

− − − − − −

∞ ∞− − −

−
∞ ∞ ∞

− +

⎡ ⎤− +
= ⎢ ⎥

⎢ ⎥⎣ ⎦
= +

 

We have   

2 1
1

1
1 1

1 1
2 2 3 2 2 2 3

ˆ ˆ ˆ ˆ ˆ( )

         ( ) ( )

T T T T T
K K K K K K K K

T T T T T

T T T

A X A X A X B U B X A C C Q K RK

A X A X A X B B X B R B X A C C Q

K U B U A U K U B U A

γ − −
∞ ∞ ∞ ∞

−
∞ ∞ ∞ ∞ ∞

− −

− + + + +

= − − + + +

+ + +

 

Also, noting that the discrete time Riccati equation (13) and substituting the above equality 
for (15), we get 

 

212 22 2 2 12
11

0 0
21 12

2 2 32

ˆ ˆ( ) ( ) { ( ( )) ( )

                             ( ) }

T T
K K

k k

T

J x k x k V x k z w U w U B X A x

U K U B U A x

γ γ γ
∞ ∞

− −
∞

= =

−

= Ω = −Δ − + − −

+ +

∑ ∑
 (16) 

Based on the above, it is clear that if 1
2 2 3

TK U B U A−= − , then we get 

 
212 22 2 2 12

0 0 112 2
2

inf{ } ( )T T
K KK

J x X x z w U w U B X A xγ γ γ − −
∞ ∞= − + − −  (17) 

By letting 2 1
1( ) ( )T

K Kw k U B X A x kγ − −
∞=  for all 0k ≥ , we get that 0

ˆ( ) k
Kx k A x=  with ˆ

KA  which 
belongs to 2[0, )L +∞  since 1ˆ ˆ ˆ ˆ ˆ ˆ( )T T

KA A B B X B R B X A−
∞ ∞= − +  is stable. Also, we have 

2 4
0 02( ) T

ww k x X xγ −= , 2
0 02( ) T

zz k x X x=  

Then it follows from (17) that 

2

2
0 0sup inf{ } ( )T

w zKw L
J x X X X xγ

+

−
∞

∈
= + −  

Thus we conclude that there exists an admissible state feedback controller such that  

 
2

2
0 0sup inf{ } ( )T

w zKw L
J x X X X xγ

+

−
∞

∈
= + −  subject to zwT γ∞ <  Q.E.D. 

4. Non-fragile controller 
In this section, we will consider the non-fragile discrete-time state feedback mixed  
LQR/ H∞  control problem with controller uncertainty. This problem is defined as follows: 
Consider the system (2) (4) satisfying Assumption 1-3 with w∈  2[0, )L ∞  and 0(0)x x= , for a 
given number 0γ >  and any admissible controller uncertainty, determine an admissible 
non-fragile controller F∞  such that 
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2

ˆsup { }
w L

J
+∈

 subject to ( )zwT z γ
∞
< . 

where, the controller uncertainty ( )F kΔ  considered here is assumed to be of the following 
structure: 

( ) ( )K KF k H F k EΔ =  

where, KH  and KE are known matrices of appropriate dimensions. ( )F k  is an uncertain 
matrix satisfying 

( ) ( )TF k F k I≤  

with the elements of ( )F k being Lebesgue measurable. 
If this controller exists, it is said to be a non-fragile discrete time state feedback mixed 
LQR/ H∞  controller. 
In order to solve the problem defined in the above, we first connect the its design criteria 
with the inequality (11).  
Lemma 4.1 Suppose that 0γ > , then there exists an admissible non-fragile controller F∞  
that achieves  

2

0 0
ˆsup { } T

w L
J x X x

+

∞
∈

=  subject to zwT γ
∞
<  

if for any admissible uncertainty ( )F kΔ , there exists a stabilizing solution 0X∞ ≥  to the 
inequality (11) such that 2

ˆ ˆ1 0T
F FU I B X Bγ
∞ ∞

−
∞= − > . 

Proof: Suppose that for any admissible uncertainty ( )F kΔ , there exists a stabilizing solution 
0X∞ ≥  to the inequality (11) such that 2

ˆ ˆ1 0T
F FU I B X Bγ
∞ ∞

−
∞= − > . This implies that the 

solution 0X∞ ≥  is such that 2 1
ˆ ˆ ˆ ˆ1

T
F F F FA B U B X Aγ
∞ ∞ ∞ ∞

− −
∞+  is stable. Then it follows from 

Lemma 2.3 that zwT γ
∞
< . Using the same argument as in the proof of Lemma 2.3, we get 

that F̂A
∞

 is stable and J  can be rewritten as follows: 

 

212 22 2 2 12
ˆ ˆ11

0
2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

{ ( ( )) ( )

ˆ ˆ( ) }

T
F F

k
T T T T T T

F F F F F F F F

J V x k z w U w U B X A x

x A X A X A X B U B X A C C Q F RF x

γ γ γ

γ

∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞
− −

∞
=

− −
∞ ∞ ∞ ∞ ∞ ∞

= −Δ − + − −

+ − + + + +

∑
 (18) 

Substituting (11) for (18) to get  

 
212 22 2 2 12

ˆ ˆ0 0 112 2
2

( )T T
F FJ x X x z w U w U B X A xγ γ γ
∞ ∞

− −
∞ ∞< − + − −  (19a) 

or 

 
212 2 2 12

ˆ ˆ0 0 112
2

ˆ ( )T T
F FJ x X x z U w U B X A xγ γ
∞ ∞

− −
∞ ∞< − − −  (19b) 

By letting 2 1
ˆ ˆ1
T
F Fw U B X A xγ
∞ ∞

− −
∞=  for all 0k ≥ , we get that ˆ 0

ˆ( ) k
Fx k A x
∞

=  with 
2 1

ˆ ˆ ˆ ˆ ˆ1
ˆ T

F F F F FA A B U B X Aγ
∞ ∞ ∞ ∞ ∞

− −
∞= +  which belongs to 2[0, )L +∞  since ˆ

ˆ
FA
∞

 is stable. It follows 
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from (19b) that 
2 0 0

ˆsup{ } T
w LJ x X x

+∈ ∞= . Thus, we conclude that there exists an admissible 

non-fragile controller such that 
2 0 0

ˆsup{ } T
w LJ x X x

+∈ ∞=  subject to zwT ∞  γ< . Q. E. D.   

Remark 4.1 In the proof of Lemma 4.1, we let 2 1
ˆ ˆ1
T
F Fw U B X A xγ
∞ ∞

− −
∞=  for all 0k ≥  to get that 

ˆ 0
ˆ( ) k

Fx k A x
∞

=  with 2 1
ˆ ˆ ˆ ˆ ˆ1

ˆ T
F F F F FA A B U B X Aγ
∞ ∞ ∞ ∞ ∞

− −
∞= +  which belongs to 2[0, )L +∞  since ˆ

ˆ
FA
∞

 is 

stable. Also, we have  

2 4
0 02
T

ww x X xγ −= , 2
0 02
T

zz x X x= . 

Then it follows from (19a) that  

 2
0 0( )T

w zJ x X X X xγ −∞< + −  (20) 
 

where, 2
ˆ ˆ ˆ ˆ1 1 1

0

ˆ ˆ{( ) }k T T T k
w F F F F

k
X A A X B U B X A A

∞ ∞ ∞ ∞

∞
−

∞ ∞
=

= ∑  , and ˆ ˆ ˆ ˆ
0

ˆ ˆ{( ) }k T T k
z F F F F

k
X A C C A

∞ ∞ ∞ ∞

∞

=
= ∑ . 

Note that ˆ
ˆ

FA
∞

 depends on the controller uncertainty ( )F kΔ , thus it is difficult to find an 
upper bound of either of wX  and zX . This implies that the existence of controller 
uncertainty ( )F kΔ  makes it difficult to find 

2
sup { }w L J

+∈  by using (20). Thus, it is clear that 
the existence of the controller uncertainty makes the performance of the designed system 
become bad.  
In order to give necessary and sufficient conditions for the existence of an admissible non-
fragile controller for solving the non-fragile discrete-time state feedback mixed LQR/ H∞  
control problem, we define the following parameter-dependent discrete time Riccati 
equation: 

 1 2
1 1

ˆ ˆ ˆ ˆ ˆ( ) 0T T T T T T
K KA X A X A X B B X B R B X A E E C C Qδρ−

∞ ∞ ∞ ∞ ∞− − + + + + =  (21) 

where, 1
1 2B̂ B Bγ −⎡ ⎤= ⎣ ⎦ ,

0ˆ
0
I

R
I R

−⎡ ⎤
= ⎢ ⎥+⎣ ⎦

, Q Q Iδ δ= +  with 0δ >  being a sufficiently small 

constant, ρ  is a given number satisfying 2
2 0T

K KI H U Hρ − > , 2
1 1 1

TU I B X Bγ − ∞= −  0> , 

2 2 3 2
TU B U B I R= + +  and 2 1

3 1 1 1
TU X X B U B Xγ − −

∞ ∞ ∞= + . If A  is invertible, the parameter-
dependent discrete time Riccati equation (21) can be solved by using the following 
symplectic matrix 

1 2 1
1 1

2
1 1

ˆ ˆ ˆ ˆ ˆ ˆ( )ˆ :
( )

T T T T T T
K K

T T T T
K K

A BR B A E E C C Q BR B A
S

A E E C C Q A
δ

δ

ρ

ρ

− − − −

∞ − −

⎡ ⎤+ + + −
= ⎢ ⎥

− + +⎢ ⎥⎣ ⎦
 

The following theorem gives the solution to non-fragile discrete time state feedback mixed 
LQR/ H∞  control problem. 
Theorem 4.1 There exists a non-fragile discrete time state feedback mixed LQR/ H∞  
controller iff for a given number ρ  and a sufficiently small constant 0δ > , there exists a 
stabilizing solution 0X∞ ≥  to the parameter-dependent discrete time Riccati equation (21) 
such that 2

1 1 1 0TU I B X Bγ − ∞= − >  and 2
2 0T

K KI H U Hρ − > . 
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2

ˆsup { }
w L

J
+∈

 subject to ( )zwT z γ
∞
< . 

where, the controller uncertainty ( )F kΔ  considered here is assumed to be of the following 
structure: 

( ) ( )K KF k H F k EΔ =  

where, KH  and KE are known matrices of appropriate dimensions. ( )F k  is an uncertain 
matrix satisfying 

( ) ( )TF k F k I≤  

with the elements of ( )F k being Lebesgue measurable. 
If this controller exists, it is said to be a non-fragile discrete time state feedback mixed 
LQR/ H∞  controller. 
In order to solve the problem defined in the above, we first connect the its design criteria 
with the inequality (11).  
Lemma 4.1 Suppose that 0γ > , then there exists an admissible non-fragile controller F∞  
that achieves  

2

0 0
ˆsup { } T

w L
J x X x

+

∞
∈

=  subject to zwT γ
∞
<  

if for any admissible uncertainty ( )F kΔ , there exists a stabilizing solution 0X∞ ≥  to the 
inequality (11) such that 2

ˆ ˆ1 0T
F FU I B X Bγ
∞ ∞

−
∞= − > . 

Proof: Suppose that for any admissible uncertainty ( )F kΔ , there exists a stabilizing solution 
0X∞ ≥  to the inequality (11) such that 2

ˆ ˆ1 0T
F FU I B X Bγ
∞ ∞

−
∞= − > . This implies that the 

solution 0X∞ ≥  is such that 2 1
ˆ ˆ ˆ ˆ1

T
F F F FA B U B X Aγ
∞ ∞ ∞ ∞

− −
∞+  is stable. Then it follows from 

Lemma 2.3 that zwT γ
∞
< . Using the same argument as in the proof of Lemma 2.3, we get 

that F̂A
∞

 is stable and J  can be rewritten as follows: 

 

212 22 2 2 12
ˆ ˆ11

0
2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

{ ( ( )) ( )

ˆ ˆ( ) }

T
F F

k
T T T T T T

F F F F F F F F

J V x k z w U w U B X A x

x A X A X A X B U B X A C C Q F RF x

γ γ γ

γ

∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞
− −

∞
=

− −
∞ ∞ ∞ ∞ ∞ ∞

= −Δ − + − −

+ − + + + +

∑
 (18) 

Substituting (11) for (18) to get  

 
212 22 2 2 12

ˆ ˆ0 0 112 2
2

( )T T
F FJ x X x z w U w U B X A xγ γ γ
∞ ∞

− −
∞ ∞< − + − −  (19a) 

or 

 
212 2 2 12

ˆ ˆ0 0 112
2

ˆ ( )T T
F FJ x X x z U w U B X A xγ γ
∞ ∞

− −
∞ ∞< − − −  (19b) 

By letting 2 1
ˆ ˆ1
T
F Fw U B X A xγ
∞ ∞

− −
∞=  for all 0k ≥ , we get that ˆ 0

ˆ( ) k
Fx k A x
∞

=  with 
2 1

ˆ ˆ ˆ ˆ ˆ1
ˆ T

F F F F FA A B U B X Aγ
∞ ∞ ∞ ∞ ∞

− −
∞= +  which belongs to 2[0, )L +∞  since ˆ

ˆ
FA
∞

 is stable. It follows 
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from (19b) that 
2 0 0

ˆsup{ } T
w LJ x X x

+∈ ∞= . Thus, we conclude that there exists an admissible 

non-fragile controller such that 
2 0 0

ˆsup{ } T
w LJ x X x

+∈ ∞=  subject to zwT ∞  γ< . Q. E. D.   

Remark 4.1 In the proof of Lemma 4.1, we let 2 1
ˆ ˆ1
T
F Fw U B X A xγ
∞ ∞

− −
∞=  for all 0k ≥  to get that 

ˆ 0
ˆ( ) k

Fx k A x
∞

=  with 2 1
ˆ ˆ ˆ ˆ ˆ1

ˆ T
F F F F FA A B U B X Aγ
∞ ∞ ∞ ∞ ∞

− −
∞= +  which belongs to 2[0, )L +∞  since ˆ

ˆ
FA
∞

 is 

stable. Also, we have  

2 4
0 02
T

ww x X xγ −= , 2
0 02
T

zz x X x= . 

Then it follows from (19a) that  

 2
0 0( )T

w zJ x X X X xγ −∞< + −  (20) 
 

where, 2
ˆ ˆ ˆ ˆ1 1 1

0

ˆ ˆ{( ) }k T T T k
w F F F F

k
X A A X B U B X A A

∞ ∞ ∞ ∞

∞
−

∞ ∞
=

= ∑  , and ˆ ˆ ˆ ˆ
0

ˆ ˆ{( ) }k T T k
z F F F F

k
X A C C A

∞ ∞ ∞ ∞

∞

=
= ∑ . 

Note that ˆ
ˆ

FA
∞

 depends on the controller uncertainty ( )F kΔ , thus it is difficult to find an 
upper bound of either of wX  and zX . This implies that the existence of controller 
uncertainty ( )F kΔ  makes it difficult to find 

2
sup { }w L J

+∈  by using (20). Thus, it is clear that 
the existence of the controller uncertainty makes the performance of the designed system 
become bad.  
In order to give necessary and sufficient conditions for the existence of an admissible non-
fragile controller for solving the non-fragile discrete-time state feedback mixed LQR/ H∞  
control problem, we define the following parameter-dependent discrete time Riccati 
equation: 

 1 2
1 1

ˆ ˆ ˆ ˆ ˆ( ) 0T T T T T T
K KA X A X A X B B X B R B X A E E C C Qδρ−

∞ ∞ ∞ ∞ ∞− − + + + + =  (21) 

where, 1
1 2B̂ B Bγ −⎡ ⎤= ⎣ ⎦ ,

0ˆ
0
I

R
I R

−⎡ ⎤
= ⎢ ⎥+⎣ ⎦

, Q Q Iδ δ= +  with 0δ >  being a sufficiently small 

constant, ρ  is a given number satisfying 2
2 0T

K KI H U Hρ − > , 2
1 1 1

TU I B X Bγ − ∞= −  0> , 

2 2 3 2
TU B U B I R= + +  and 2 1

3 1 1 1
TU X X B U B Xγ − −

∞ ∞ ∞= + . If A  is invertible, the parameter-
dependent discrete time Riccati equation (21) can be solved by using the following 
symplectic matrix 

1 2 1
1 1

2
1 1

ˆ ˆ ˆ ˆ ˆ ˆ( )ˆ :
( )

T T T T T T
K K

T T T T
K K

A BR B A E E C C Q BR B A
S

A E E C C Q A
δ

δ

ρ

ρ

− − − −

∞ − −

⎡ ⎤+ + + −
= ⎢ ⎥

− + +⎢ ⎥⎣ ⎦
 

The following theorem gives the solution to non-fragile discrete time state feedback mixed 
LQR/ H∞  control problem. 
Theorem 4.1 There exists a non-fragile discrete time state feedback mixed LQR/ H∞  
controller iff for a given number ρ  and a sufficiently small constant 0δ > , there exists a 
stabilizing solution 0X∞ ≥  to the parameter-dependent discrete time Riccati equation (21) 
such that 2

1 1 1 0TU I B X Bγ − ∞= − >  and 2
2 0T

K KI H U Hρ − > . 
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Moreover, this non-fragile discrete time state feedback mixed LQR/ H∞  controller is 

1
2 2 3

TF U B U A−
∞ = −  

and achieves 
2 0 0

ˆsup{ } T
w LJ x X x

+∈ ∞=  subject to zwT γ∞ < . 
Proof: Sufficiency: Suppose that for a given number ρ  and a sufficiently small constant 

0δ > , there exists a stabilizing solution 0X∞ ≥  to the parameter-dependent Riccati 
equation (21) such that 2

1 1 1 0TU I B X Bγ − ∞= − >  and 2
2 0T

K KI H U Hρ − > . This implies that the 
solution 0X∞ ≥  is such that 1ˆ ˆ ˆ ˆ ˆ( )T TA B B X B R B X A−

∞ ∞− +  is stable. Define respectively the 
state matrix and controlled output matrix of closed-loop system 

1
ˆ 2 2 2 3

1
ˆ 1 12 2 2 3

( ( ) )

( ( ) )

T
K KF

T
K KF

A A B U B U A H F k E

C C D U B U A H F k E
∞

∞

−

−

= + − +

= + − +
 

 

and let 1
2 2 2 3

T
FA A B U B U A
∞

−= −  and 1
2 2 3 ( )T

K KF U B U A H F k E−
∞ = − + , then it follows from the 

square completion that 

 

2 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

2 1
1 1 1 1 1 2 3 3 2 2

2 1 1
1 1 1 1 1 3 2 2 2 3

T T T T T
F F F F F F F F

T T T T T T T T

T T T T T T

A X A X A X B U B X A C C Q F RF

A X A X A X B U B X A C C Q F B U A A U B F F U F

A X A X A X B U B X A C C Q A U B U B U A N

γ

γ

γ

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

− −
∞ ∞ ∞ ∞ ∞ ∞

− −
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

− − −
∞ ∞ ∞ ∞

− + + + +

= − + + + + + +

= − + + + − + Δ

 (22) 

 

where, 2( ) ( )T T T
K K K KN E F k H U H F k EΔ = . 

Noting that 2
2 0T

K KI H U Hρ − > , we have 

 2 2 2
2( )( ) ( ) ( ) ( )     T T T T T T

K K K K K K K KN E F k I H U H F k E E F k F k E E Eρ ρ ρΔ = − − + ≤  (23) 

Considering (22) and (23) to get 

 
2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

2 1 2 1
1 1 1 1 1 3 2 2 2 3

T T T T T
F F F F F F F F

T T T T T T T
K K

A X A X A X B U B X A C C Q F RF

A X A X A X B U B X A C C Q E E A U B U B U A

γ

γ ρ
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

− −
∞ ∞ ∞ ∞ ∞ ∞

− − −
∞ ∞ ∞ ∞

− + + + +

≤ − + + + + −
 (24) 

 

Also, it can be easily shown by using the similar standard matrix manipulations as in the 
proof of Theorem 3.1 in Souza & Xie (1992) that 

1 2 1 1
1 1 1 3 2 2 2 3

ˆ ˆ ˆ ˆ ˆ( )T T T T T T TA X B B X B R B X A A X B U B X A A U B U B U Aγ− − − −
∞ ∞ ∞ ∞ ∞+ = − +  

This implies that (21) can be rewritten as 

 2 1 1 2
1 1 1 1 1 3 2 2 2 3 0T T T T T T T

K KA X A X A X B U B X A C C Q A U B U B U A E Eδγ ρ− − −
∞ ∞ ∞ ∞− + + + − + =  (25) 

Thus, it follows from (24) and (25) that there exists a non-negative-definite solution to the 
inequality 

2 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 0T T T T T
F F F F F F F FA X A X A X B U B X A C C Q F RFγ
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

− −
∞ ∞ ∞ ∞ ∞ ∞− + + + + <  
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Note that 1 2 1
1 1 1

ˆ ˆ ˆ ˆ ˆ( )T T T
F FA B B X B R B X A A B U B X Aγ
∞ ∞

− − −
∞ ∞ ∞− + = +  is stable and ( )F kΔ  is an 

admissible uncertainty, we get that 2 1
ˆ ˆ ˆ ˆ1

T
F F F FA B U B X Aγ
∞ ∞ ∞ ∞

− −
∞+ is stable. By Lemma 4.1, there 

exists a non- fragile discrete time state feedback mixed LQR/ H∞  controller. 
Necessity: Suppose that there exists a non-fragile discrete time state feedback mixed 
LQR/ H∞  controller. By Lemma 4.1, there exists a stabilizing solution 0X∞ ≥  to the 

inequality (11) such that 2
ˆ ˆ1 0T
F FU I B X Bγ
∞ ∞

−
∞= − > , i.e., there exists a symmetric non-

negative-definite solution X∞ to the inequality (11) such that 2 1
ˆ ˆ ˆ ˆ1

T
F F F FA B U B X Aγ
∞ ∞ ∞ ∞

− −
∞+  is 

stable and 2
ˆ ˆ1 0T
F FU I B X Bγ
∞ ∞

−
∞= − >  for any admissible uncertainty ( )F kΔ . 

Rewriting (11) to get 
 

 
2 1

1 1 1

3 2 2 2 3 2 2

ˆ 0
ˆ ( ) ( ) ( )( ) ( ) ( )

T T T T T
F F F F F F

T T T T T

A X A X A X B U B X A C C Q F RF N

N A U B F U F k F k B U A U F F k U F k

γ
∞ ∞ ∞ ∞ ∞ ∞

− −
∞ ∞ ∞ ∞ ∞ ∞

∞ ∞

− + + + + + Δ <

Δ = + Δ + Δ + + Δ Δ
 (26) 

 

Note that 2
2 0T

K KI H U Hρ − >  and 
 

 

2 2 1
3 2 2 2

2 1
2 3 2 3 2 2 2
2 2 1

2 2 2 3 2
2 2

3 2 2

ˆ ( ) ( ) ( ) ( )

  ( ) (( ) ( ) ( ))

  ( )(( ) ( ) ( ) )

( ) (

T T T T T T
K K K K K K
T T T T T T

K K K K
T T T T
K K K K K K

T T T
K K K

N E F k F k E A U B F U H I H U H H

B U A U F A U B F U H I H U H E F k

I H U H I H U H H B U A U F F k E

E E A U B F U H I

ρ ρ

ρ

ρ ρ

ρ ρ

−
∞

−
∞ ∞

−
∞

∞

Δ = + + −

× + − + − −

× − − + −

≤ + + − 1
2 2 3 2) ( )T T T

K K KH U H H B U A U F−
∞+

 (27) 

 

It follows from (26) and (27) that 
 

 
2 1 2

1 1 1
2 1

3 2 2 2 2 3 2( ) ( ) ( ) 0

T T T T T T
F F F F F F K K

T T T T T
K K K K

A X A X A X B U B X A C C Q F RF E E

A U B F U H I H U H H B U A U F

γ ρ

ρ
∞ ∞ ∞ ∞ ∞ ∞

− −
∞ ∞ ∞ ∞ ∞ ∞

−
∞ ∞

− + + + + +

+ + − + <
 (28) 

 

Using the argument of completion of squares as in the proof of Theorem 3.1 in Furuta & 
Phoojaruenchanachai (1990), we get from (28) that 1

2 2 3
TF U B U A−

∞ = − , where X∞  is a 
symmetric non- negative-definite solution to the inequality 
 

2 1 1 2
1 1 1 1 1 3 2 2 2 3 0T T T T T T T

K KA X A X A X B U B X A C C Q A U B U B U A E Eγ ρ− − −
∞ ∞ ∞ ∞− + + + − + <  

 

or equivalently, X∞  is a symmetric non-negative-definite solution to the parameter-
dependent discrete time Riccati equation 
 

 2 1 1 2
1 1 1 1 1 3 2 2 2 3 0T T T T T T T

K KA X A X A X B U B X A C C Q A U B U B U A E Eδγ ρ− − −
∞ ∞ ∞ ∞− + + + − + =  (29) 

 

Also, we can rewrite that Riccati equation (29) can be rewritten as 

 1 2
1 1

ˆ ˆ ˆ ˆ ˆ( ) 0T T T T T T
K KA X A X A X B B X B R B X A E E C C Qδρ−

∞ ∞ ∞ ∞ ∞− − + + + + =  (30) 
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Moreover, this non-fragile discrete time state feedback mixed LQR/ H∞  controller is 

1
2 2 3

TF U B U A−
∞ = −  

and achieves 
2 0 0

ˆsup{ } T
w LJ x X x

+∈ ∞=  subject to zwT γ∞ < . 
Proof: Sufficiency: Suppose that for a given number ρ  and a sufficiently small constant 

0δ > , there exists a stabilizing solution 0X∞ ≥  to the parameter-dependent Riccati 
equation (21) such that 2

1 1 1 0TU I B X Bγ − ∞= − >  and 2
2 0T

K KI H U Hρ − > . This implies that the 
solution 0X∞ ≥  is such that 1ˆ ˆ ˆ ˆ ˆ( )T TA B B X B R B X A−

∞ ∞− +  is stable. Define respectively the 
state matrix and controlled output matrix of closed-loop system 

1
ˆ 2 2 2 3

1
ˆ 1 12 2 2 3

( ( ) )

( ( ) )

T
K KF

T
K KF

A A B U B U A H F k E

C C D U B U A H F k E
∞

∞

−

−

= + − +

= + − +
 

 

and let 1
2 2 2 3

T
FA A B U B U A
∞

−= −  and 1
2 2 3 ( )T

K KF U B U A H F k E−
∞ = − + , then it follows from the 

square completion that 

 

2 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

2 1
1 1 1 1 1 2 3 3 2 2

2 1 1
1 1 1 1 1 3 2 2 2 3

T T T T T
F F F F F F F F

T T T T T T T T

T T T T T T

A X A X A X B U B X A C C Q F RF

A X A X A X B U B X A C C Q F B U A A U B F F U F

A X A X A X B U B X A C C Q A U B U B U A N

γ

γ

γ

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

− −
∞ ∞ ∞ ∞ ∞ ∞

− −
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

− − −
∞ ∞ ∞ ∞

− + + + +

= − + + + + + +

= − + + + − + Δ

 (22) 

 

where, 2( ) ( )T T T
K K K KN E F k H U H F k EΔ = . 

Noting that 2
2 0T

K KI H U Hρ − > , we have 
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K K K K K K K KN E F k I H U H F k E E F k F k E E Eρ ρ ρΔ = − − + ≤  (23) 

Considering (22) and (23) to get 

 
2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1

2 1 2 1
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γ

γ ρ
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

− −
∞ ∞ ∞ ∞ ∞ ∞

− − −
∞ ∞ ∞ ∞

− + + + +

≤ − + + + + −
 (24) 
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Thus, it follows from (24) and (25) that there exists a non-negative-definite solution to the 
inequality 
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 0T T T T T
F F F F F F F FA X A X A X B U B X A C C Q F RFγ
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Note that 1 2 1
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admissible uncertainty, we get that 2 1
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T
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−
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T
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2 1

1 1 1

3 2 2 2 3 2 2

ˆ 0
ˆ ( ) ( ) ( )( ) ( ) ( )

T T T T T
F F F F F F

T T T T T

A X A X A X B U B X A C C Q F RF N

N A U B F U F k F k B U A U F F k U F k

γ
∞ ∞ ∞ ∞ ∞ ∞

− −
∞ ∞ ∞ ∞ ∞ ∞

∞ ∞

− + + + + + Δ <

Δ = + Δ + Δ + + Δ Δ
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Note that 2
2 0T

K KI H U Hρ − >  and 
 

 

2 2 1
3 2 2 2

2 1
2 3 2 3 2 2 2
2 2 1

2 2 2 3 2
2 2

3 2 2

ˆ ( ) ( ) ( ) ( )

  ( ) (( ) ( ) ( ))

  ( )(( ) ( ) ( ) )

( ) (

T T T T T T
K K K K K K
T T T T T T

K K K K
T T T T
K K K K K K

T T T
K K K

N E F k F k E A U B F U H I H U H H

B U A U F A U B F U H I H U H E F k

I H U H I H U H H B U A U F F k E

E E A U B F U H I

ρ ρ

ρ

ρ ρ

ρ ρ

−
∞

−
∞ ∞

−
∞

∞

Δ = + + −

× + − + − −

× − − + −

≤ + + − 1
2 2 3 2) ( )T T T

K K KH U H H B U A U F−
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It follows from (26) and (27) that 
 

 
2 1 2

1 1 1
2 1

3 2 2 2 2 3 2( ) ( ) ( ) 0

T T T T T T
F F F F F F K K

T T T T T
K K K K

A X A X A X B U B X A C C Q F RF E E

A U B F U H I H U H H B U A U F

γ ρ

ρ
∞ ∞ ∞ ∞ ∞ ∞

− −
∞ ∞ ∞ ∞ ∞ ∞

−
∞ ∞

− + + + + +

+ + − + <
 (28) 

 

Using the argument of completion of squares as in the proof of Theorem 3.1 in Furuta & 
Phoojaruenchanachai (1990), we get from (28) that 1

2 2 3
TF U B U A−

∞ = − , where X∞  is a 
symmetric non- negative-definite solution to the inequality 
 

2 1 1 2
1 1 1 1 1 3 2 2 2 3 0T T T T T T T

K KA X A X A X B U B X A C C Q A U B U B U A E Eγ ρ− − −
∞ ∞ ∞ ∞− + + + − + <  

 

or equivalently, X∞  is a symmetric non-negative-definite solution to the parameter-
dependent discrete time Riccati equation 
 

 2 1 1 2
1 1 1 1 1 3 2 2 2 3 0T T T T T T T

K KA X A X A X B U B X A C C Q A U B U B U A E Eδγ ρ− − −
∞ ∞ ∞ ∞− + + + − + =  (29) 

 

Also, we can rewrite that Riccati equation (29) can be rewritten as 

 1 2
1 1

ˆ ˆ ˆ ˆ ˆ( ) 0T T T T T T
K KA X A X A X B B X B R B X A E E C C Qδρ−

∞ ∞ ∞ ∞ ∞− − + + + + =  (30) 
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by using the similar standard matrix manipulations as in the proof of Theorem 3.1 in Souza 
& Xie (1992). Note that 1ˆ ˆ ˆ ˆ ˆ( )T TA B B X B R B X A−

∞ ∞− + =  2 1
1 1 1

T
F FA B U B X Aγ
∞ ∞

− −
∞+  and ( )F kΔ  is 

an admissible uncertainty, the assumption that 2 1
ˆ ˆ ˆ ˆ1

T
F F F FA B U B X Aγ
∞ ∞ ∞ ∞

− −
∞+  is stable implies 

that 1ˆ ˆ ˆ ˆ ˆ( )T TA B B X B R B X A−
∞ ∞− +  is stable Thus, we conclude that for a given number ρ  and 

a sufficiently small number δ >  0 , the parameter-dependent discrete time Riccati equation 
(30) has a stabilizing solution X∞  and 2

1 1 1 0TU I B X Bγ − ∞= − >  and 2
2 0T

K KI H U Hρ − > . 
Q. E. D. 

5. Numerical examples 
In this section, we present two examples to illustrate the design method given by Section 3 
and 4, respectively. 
Example 1 Consider the following discrete-time system in Peres and Geromel (1993) 

1 2

1 12

( 1) ( ) ( ) ( )
( ) ( ) ( )

x k Ax k B w k B u k
z k C x k D u k

+ = + +
= +

 

 

where, 

0.2113 0.0087 0.4524
0.0824 0.8096 0.8075
0.7599 0.8474 0.4832

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 2

0.6135 0.6538
0.2749 0.4899
0.8807 0.7741

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

1

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 12

0 0
0 0
0 0
1 0
0 1

D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and 1B I= . 

In this example, we will design the above system under the influence of state feedback of the 
form (3) by using the discrete-times state feedback mixed LQR/ H∞  control method 
displayed in Theorem 3.1. All results will be computed by using MATLAB. The above 
system is stabilizable and observable, and satisfies Assumption 3, and the eigenvalues of 
matrix A  are 1 1.6133p = , 2p  0.3827=  , 3 0.4919p = − ;thus it is open-loop unstable.  
 

Let 2.89γ = ,
1 0
0 1

R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,
1 0 0
0 1 0
0 0 1

Q
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, we solve the discrete-time Riccati equation (13) to get 

 

2.9683 1.1296 0.1359
1.1296 6.0983 2.4073 0
0.1359 2.4073 4.4882

X∞

⎡ ⎤
⎢ ⎥= >⎢ ⎥
⎢ ⎥⎣ ⎦

, 
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2
1 1 1

0.6446 0.1352 0.0163
0.1352 0.2698 0.2882 0
0.0163 0.2882 0.4626

TU I B X Bγ − ∞

− −⎡ ⎤
⎢ ⎥= − = − − >⎢ ⎥
⎢ ⎥− −⎣ ⎦

. 

 

Thus the discrete-time state feedback mixed LQR/ H∞  controller is 

0.3640 0.5138 0.3715
0.2363 0.7176 0.7217

K
− − −⎡ ⎤

= ⎢ ⎥− − −⎣ ⎦
. 

 

Example 2 Consider the following discrete-time system in Peres and Geromel (1993) 

1 2

1 12

( 1) ( ) ( ) ( )
( ) ( ) ( )

x k Ax k B w k B u k
z k C x k D u k

+ = + +
= +

 

 

under the influences of state feedback with controller unceratinty of the form (4), where, A , 
1B , 2B , 1C  and 12D  are the same as ones in Example 1; the controller uncertainty ( )F kΔ  

satisfies 

( ) ( )K KF k E F k EΔ = , ( ) ( )TF k F k I≤  
 

where, 
1 0 0
0 1 0
0 1 1

KE
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
0.0100 0 0

0 0.0100 0KH
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

 

In this example, we illustrate the proposed method by Theorem 4.1 by using MATLAB. As 
stated in example 1, the system is stabilizable and observable, and satisfies Assumption 3, 
and is open-loop unstable. 
 

Let 8.27γ = , 
1 0
0 1

R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
1 0 0
0 1 0
0 0 1

Q
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 3.7800ρ = , and 0.0010δ = , then we solve the 

parameter-dependent discrete-time Riccati equation (21) to get  

18.5238 3.8295 0.1664
3.8295 51.3212 23.3226 0
0.1664 23.3226 22.7354

X∞

⎡ ⎤
⎢ ⎥= >⎢ ⎥
⎢ ⎥⎣ ⎦

, 

2
1 1 1

0.7292 0.0560 0.0024
0.0560 0.2496 0.3410 0
0.0024 0.3410 0.6676

TU I B X Bγ ∞

− −⎡ ⎤
⎢ ⎥= − = − − >⎢ ⎥
⎢ ⎥− −⎣ ⎦

, 2
609.6441 723.0571
723.0571 863.5683

U
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

2
2

14.2274 0.0723 0
0.0723 14.2020 0 0

0 0 14.2884

T
K KI H U Hρ

−⎡ ⎤
⎢ ⎥− = − >⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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by using the similar standard matrix manipulations as in the proof of Theorem 3.1 in Souza 
& Xie (1992). Note that 1ˆ ˆ ˆ ˆ ˆ( )T TA B B X B R B X A−

∞ ∞− + =  2 1
1 1 1

T
F FA B U B X Aγ
∞ ∞

− −
∞+  and ( )F kΔ  is 

an admissible uncertainty, the assumption that 2 1
ˆ ˆ ˆ ˆ1

T
F F F FA B U B X Aγ
∞ ∞ ∞ ∞

− −
∞+  is stable implies 

that 1ˆ ˆ ˆ ˆ ˆ( )T TA B B X B R B X A−
∞ ∞− +  is stable Thus, we conclude that for a given number ρ  and 

a sufficiently small number δ >  0 , the parameter-dependent discrete time Riccati equation 
(30) has a stabilizing solution X∞  and 2

1 1 1 0TU I B X Bγ − ∞= − >  and 2
2 0T

K KI H U Hρ − > . 
Q. E. D. 
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and 4, respectively. 
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where, 
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In this example, we will design the above system under the influence of state feedback of the 
form (3) by using the discrete-times state feedback mixed LQR/ H∞  control method 
displayed in Theorem 3.1. All results will be computed by using MATLAB. The above 
system is stabilizable and observable, and satisfies Assumption 3, and the eigenvalues of 
matrix A  are 1 1.6133p = , 2p  0.3827=  , 3 0.4919p = − ;thus it is open-loop unstable.  
 

Let 2.89γ = ,
1 0
0 1

R
⎡ ⎤
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⎣ ⎦

,
1 0 0
0 1 0
0 0 1

Q
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, we solve the discrete-time Riccati equation (13) to get 

 

2.9683 1.1296 0.1359
1.1296 6.0983 2.4073 0
0.1359 2.4073 4.4882
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⎡ ⎤
⎢ ⎥= >⎢ ⎥
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, 
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2
1 1 1

0.6446 0.1352 0.0163
0.1352 0.2698 0.2882 0
0.0163 0.2882 0.4626

TU I B X Bγ − ∞

− −⎡ ⎤
⎢ ⎥= − = − − >⎢ ⎥
⎢ ⎥− −⎣ ⎦

. 

 

Thus the discrete-time state feedback mixed LQR/ H∞  controller is 

0.3640 0.5138 0.3715
0.2363 0.7176 0.7217

K
− − −⎡ ⎤

= ⎢ ⎥− − −⎣ ⎦
. 

 

Example 2 Consider the following discrete-time system in Peres and Geromel (1993) 

1 2

1 12

( 1) ( ) ( ) ( )
( ) ( ) ( )

x k Ax k B w k B u k
z k C x k D u k

+ = + +
= +

 

 

under the influences of state feedback with controller unceratinty of the form (4), where, A , 
1B , 2B , 1C  and 12D  are the same as ones in Example 1; the controller uncertainty ( )F kΔ  

satisfies 

( ) ( )K KF k E F k EΔ = , ( ) ( )TF k F k I≤  
 

where, 
1 0 0
0 1 0
0 1 1

KE
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
0.0100 0 0

0 0.0100 0KH
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

 

In this example, we illustrate the proposed method by Theorem 4.1 by using MATLAB. As 
stated in example 1, the system is stabilizable and observable, and satisfies Assumption 3, 
and is open-loop unstable. 
 

Let 8.27γ = , 
1 0
0 1

R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
1 0 0
0 1 0
0 0 1

Q
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 3.7800ρ = , and 0.0010δ = , then we solve the 

parameter-dependent discrete-time Riccati equation (21) to get  

18.5238 3.8295 0.1664
3.8295 51.3212 23.3226 0
0.1664 23.3226 22.7354

X∞

⎡ ⎤
⎢ ⎥= >⎢ ⎥
⎢ ⎥⎣ ⎦

, 

2
1 1 1

0.7292 0.0560 0.0024
0.0560 0.2496 0.3410 0
0.0024 0.3410 0.6676

TU I B X Bγ ∞

− −⎡ ⎤
⎢ ⎥= − = − − >⎢ ⎥
⎢ ⎥− −⎣ ⎦

, 2
609.6441 723.0571
723.0571 863.5683

U
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

2
2

14.2274 0.0723 0
0.0723 14.2020 0 0

0 0 14.2884

T
K KI H U Hρ

−⎡ ⎤
⎢ ⎥− = − >⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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Based on this, the non-fragile discrete-time state feedback mixed LQR/ H∞  controller is  

 
0.4453 0.1789 0.0682
0.1613 1.1458 1.0756

F∞
− − −⎡ ⎤

= ⎢ ⎥− − −⎣ ⎦
 

6. Conclusion 
In this chapter, we first study the discrete time state feedback mixed LQR/ H∞  control 
problem. In order to solve this problem, we present an extension of the discrete time 
bounded real lemma. In terms of the stabilizing solution to a discrete time Riccati equation, 
we derive the simple approach to discrete time state feedback mixed LQR/ H∞  control 
problem by combining the Lyapunov method for proving the discrete time optimal LQR 
control problem with the above extension of the discrete time bounded real lemma, the 
argument of completion of squares of Furuta & Phoojaruenchanachi (1990) and standard 
inverse matrix manipulation of Souza & Xie (1992).A related problem is the standard H∞  
control problem (Doyle et al., 1989a; Iglesias & Glover, 1991; Furuta & Phoojaruenchanachai, 
1990; Souza & Xie, 1992; Zhou et al. 1996), another related problem is the H∞  optimal 
control problem arisen from Basar & Bernhard (1991). The relations among the two related 
problem and mixed LQR/ H∞  control problem can be clearly explained by based on the 
discrete time reference system (9)(3). The standard H∞  control problem is to find an 
admissible controller K  such that the H∞ -norm of closed-loop transfer matrix from 
disturbance input w  to the controlled output z  is less than a given number 0γ >  while the 
H∞  optimal control roblem arisen from Basar & Bernhard (1991) is to find an admissible 
controller such that the H∞ -norm of closed-loop transfer matrix from disturbance input w  
to the controlled output 0z  is less than a given number 0γ >  for the discre time reference 
system (9)(3). Since the latter is equivalent to the problem that is to find an admissible 
controller K  such that 

2
ˆsup inf { }w L K J

+∈ , we may recognize that the mixed LQR/ H∞  control 
problem is a combination of the standard H∞  control problem and H∞  optimal control 
problem arisen from Basar & Bernhard (1991). The second problem considered by this 
chapter is the non-fragile discrete-time state feedback mixed LQR/ H∞  control problem 
with controller uncertainty. This problem is to extend the results of discrete-time state 
feedback mixed LQR/ H∞  control problem to the system (2)(4) with controller uncertainty. 
In terms of the stabilizing solution to a parameter-dependent discrete time Riccati equation, 
we give a design method of non-fragile discrete-time state feedback mixed LQR/ H∞  
controller, and derive necessary and sufficient conditions for the existence of this non- 
fragile controller. 
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1. Introduction
When we consider control problems of physical systems, we often see time-delay in the
process of control algorithms and the transmission of information. Time-delay often appear in
many practical systems and mathematical formulations such as electrical system, mechanical
system, biological system, and transportation system. Hence, a system with time-delay is a
natural representation for them, and its analysis and synthesis are of theoretical and practical
importance. In the past decades, research on continuous-time delay systems has been active.
Difficulty that arises in continuous time-delay system is that it is infinite dimensional and a
corresponding controller can be a memory feedback. This class of controllers may minimize
a certain performance index, but it is difficult to implement it to practical systems due to
a memory feedback. To overcome such a difficulty, a memoryless controller is used for
time-delay systems. In the last decade, sufficient stability conditions have been given via
linear matrix inequalities (LMIs), and stabilization methods by memoryless controllers have
been investigated by many researchers. Since Li and de Souza considered robust stability
and stabilization problems in (8), less conservative robust stability conditions for continuous
time-delay systems have been obtained ((7), (11)). Recently, H∞ disturbance attenuation
conditions have also been given ((10), (15), (16)).
On the other hand, research on discrete-time delay systems has not attracted as much attention
as that of continuous-time delay systems. In addition, most results have focused on state
feedback stabilization of discrete-time systems with time-varying delays. Only a few results
on observer design of discrete-time systems with time-varying delays have appeared in the
literature(for example, (9)). The results in (3), (12), (14), (18) considered discrete-time systems
with time-invariant delays. Gao and Chen (4), Hara and Yoneyama (5), (6) gave robust
stability conditions. Fridman and Shaked (1) solved a guaranteed cost control problem.
Fridman and Shaked (2), Yoneyama (17), Zhang and Han (19) considered the H∞ disturbance
attenuation. They have given sufficient conditions via LMIs for corresponding control
problems. Nonetheless, their conditions still show the conservatism. Hara and Yoneyama
(5) and Yoneyama (17) gave least conservative conditions but their conditions require many
LMI slack variables, which in turn require a large amount of computations. Furthermore,
to authors’ best knowledge, few results on robust observer design problem for uncertain
discrete-time systems with time-varying delays have given in the literature.
In this paper, we consider the stabilization for a nominal discrete-time system with
time-varying delay and robust stabilization for uncertain system counterpart. The system
under consideration has time-varying delays in state, control input and output measurement.
First, we obtain a stability condition for a nominal time-delay system. To this end, we define
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a Lyapunov function and use Leibniz-Newton formula and free weighting matrix method.
These methods are known to reduce the conservatism in our stability condition, which are
expressed as linear matrix inequality. Based on such a stability condition, a state feedback
design method is proposed. Then, we extend our stabilization result to robust stabilization for
uncertain discrete-time systems with time-varying delay. Next, we consider observer design
and robust observer design. Similar to a stability condition, we obtain a condition such that
the error system, which comes from the original system and its observer, is asymptotically
stable. Using a stability condition of the error system, we proposed an observer design
method. Furthermore, we give a robust observer design method for an uncertain time-delay
system. Finally, we give some numerical examples to illustrate our results and to compare
with existing results.

2. Time-delay systems
Consider the following discrete-time system with a time-varying delay and uncertainties in
the state and control input.

x(k + 1) = (A + ΔA)x(k) + (Ad + ΔAd)x(k − dk) + (B + ΔB)u(k)

+(Bd + ΔBd)u(k − dk) (1)

where x(k) ∈ �n is the state and u(k) ∈ �m is the control. A, Ad, B and Bd are system matrices
with appropriate dimensions. dk is a time-varying delay and satisfies 0 ≤ dm ≤ dk ≤ dM and
dk+1 ≤ dk where dm and dM are known constants. Uncertain matrices are of the form

[
ΔA ΔAd ΔB ΔBd

]
= HF(k)

[
E Ed E1 Eb

]
(2)

where F(k) ∈ �l×j is an unknown time-varying matrix satisfying FT(k)F(k) ≤ I and H, E, Ed,
E1 and Eb are constant matrices of appropriate dimensions.

Definition 2.1. The system (1) is said to be robustly stable if it is asymptotically stable for all
admissible uncertainties (2).

When we discuss a nominal system, we consider the following system.

x(k + 1) = Ax(k) + Adx(k − dk) + Bu(k) + Bdu(k − dk). (3)

Our problem is to find a control law which makes the system (1) or (3) robustly stable. Let us
now consider the following memoryless feedback:

u(k) = Kx(k) (4)

where K is a control gain to be determined. Applying the control (4) to the system (1), we have
the closed-loop system

x(k + 1) = ((A + ΔA) + (B + ΔB)K)x(k) + ((Ad + ΔAd) + (Bd + ΔBd)K)x(k − dk). (5)

For the nominal case, we have

x(k + 1) = (A + BK)x(k) + (Ad + BdK)x(k − dk). (6)

In the following section, we consider the robust stability of the closed-loop system (5) and the
stability of the closed-loop system (6).
The following lemma is useful to prove our results.
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Lemma 2.2. ((13)) Given matrices Q = QT, H, E and R = RT
> 0 with appropriate dimensions.

Q + HF(k)E + ET FT(k)HT
< 0

for all F(k) satisfying FT(k)F(k) ≤ R if and only if there exists a scalar ε > 0 such that

Q +
1

ε
HHT + εETRE < 0.

3. Stability analysis
This section analyzes the stability and robust stability of discrete-time delay systems.
Section 3.1 gives a stability condition for nominal systems and Section 3.2 extends the stability
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L =

⎡
⎢⎢⎢⎣

L1
L2
L3
L4
L5

⎤
⎥⎥⎥⎦ , N =

⎡
⎢⎢⎢⎣

N1
N2
N3
N4
N5

⎤
⎥⎥⎥⎦ , T =

⎡
⎢⎢⎢⎣

T1
T2
T3
T4
T5

⎤
⎥⎥⎥⎦

satisfying

Φ =

�
Φ1 + ΞL + ΞT

L + ΞN + ΞT
N + ΞT + ΞT

T

√
dMZ√

dMZT −S

�
< 0 (7)

where

Φ1 =

⎡
⎢⎢⎢⎣

P1 0 0 0 0
0 Φ22 0 0 0
0 0 −Q1 − M 0 0
0 0 0 Φ44 −P2
0 0 0 −P2 P2 − Q2

⎤
⎥⎥⎥⎦ ,

Φ22 = −P1 + Q1 + (dM − dm + 1)M,

Φ44 = P2 + Q2 + dMS,

Z =

⎡
⎢⎢⎢⎣

0
0
0

−P2
P2

⎤
⎥⎥⎥⎦+ N,

ΞL =
�
L −L 0 −L 0

�
,

ΞN =
�
0 N −N 0 0

�
,

ΞT =
�
T −T(A + BK) −T(Ad + BdK) 0 0

�
.
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Definition 2.1. The system (1) is said to be robustly stable if it is asymptotically stable for all
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When we discuss a nominal system, we consider the following system.

x(k + 1) = Ax(k) + Adx(k − dk) + Bu(k) + Bdu(k − dk). (3)

Our problem is to find a control law which makes the system (1) or (3) robustly stable. Let us
now consider the following memoryless feedback:

u(k) = Kx(k) (4)

where K is a control gain to be determined. Applying the control (4) to the system (1), we have
the closed-loop system

x(k + 1) = ((A + ΔA) + (B + ΔB)K)x(k) + ((Ad + ΔAd) + (Bd + ΔBd)K)x(k − dk). (5)

For the nominal case, we have

x(k + 1) = (A + BK)x(k) + (Ad + BdK)x(k − dk). (6)

In the following section, we consider the robust stability of the closed-loop system (5) and the
stability of the closed-loop system (6).
The following lemma is useful to prove our results.
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Q +
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Section 3.1 gives a stability condition for nominal systems and Section 3.2 extends the stability
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Theorem 3.1. Given integers dm and dM, and control gain K. Then, the time-delay system (6) is
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�
Φ1 + ΞL + ΞT

L + ΞN + ΞT
N + ΞT + ΞT

T

√
dMZ√

dMZT −S

�
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⎢⎢⎢⎣
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⎥⎥⎥⎦+ N,

ΞL =
�
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�
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�
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Proof: First, we note from Leibniz-Newton formula that

2ξT(k)L[x(k + 1)− x(k)− e(k)] = 0, (8)

2ξT(k)N[x(k)− x(k − dk)−
k−1

∑
i=k−dk

e(i)] = 0 (9)

where e(k) = x(k + 1)− x(k) and

ξT(k) = [xT(k + 1) xT(k) xT(k − dk) eT(k) eT(k − dk)].

It is also true that

2ξT(k)T[x(k + 1)− (A + BK)x(k)− (Ad + BdK)x(k − dk)] = 0. (10)

Now, we consider a Lyapunov function

V(k) = V1(k) + V2(k) + V3(k) + V4(k)

where

V1(k) = xT(k)P1x(k) +
k−1

∑
i=k−dk

eT(i)P2

k−1

∑
i=k−dk

e(i),

V2(k) =
k−1

∑
i=k−dk

xT(i)Q1x(i) +
k−1

∑
i=k−dk

eT(i)Q2e(i),

V3(k) =
−1

∑
i=−dk

k−1

∑
j=k+i

eT(j)Se(j),

V4(k) =
−dm

∑
j=−dM

k−1

∑
i=k+j

xT(i)Mx(i),

and P1, P2, Q1, Q2, S and M are positive definite matrices to be determined. Then, we calculate
the difference ΔV = V(k + 1)− V(k) and add the left-hand-side of equations (8)-(10).
Since ΔVi(k), i = 1, · · · , 4 are calculated as follows;

ΔV1(k) = xT(k + 1)P1x(k + 1) +
k

∑
i=k+1−dk+1

eT(i)P2

k

∑
i=k+1−dk+1

e(i)

−xT(k)P1x(k)−
k−1

∑
i=k−dk

eT(i)P2

k−1

∑
i=k−dk

e(i)

≤xT(k + 1)P1x(k + 1)− xT(k)P1x(k) + eT(k)P2e(k)

−2eT(k)P2e(k − dk) + 2eT(k)P2

k−1

∑
i=k−dk

e(i)

+eT(k − dk)P2e(k − dk)− 2eT(k − dk)P2

k−1

∑
i=k−dk

e(i),
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ΔV2(k) =
k

∑
i=k+1−dk+1

xT(i)Q1x(i) +
k

∑
i=k+1−dk+1

eT(i)Q2e(i)

−
k−1

∑
i=k−dk

xT(i)Q1x(i)−
k−1

∑
i=k−dk

eT(i)Q2e(i)

≤ xT(k)Q1x(k) + eT(k)Q2e(k)− xT(k − dk)Q1x(k − dk)
−eT(k − dk)Q2e(k − dk),

ΔV3(k) = dk+1eT(k)Se(k)−
k−1

∑
i=k−dk+1

eT(i)Se(i) · · · −
k−1

∑
i=k−dk

eT(i)Se(i)

≤ dMeT(k)Se(k)−
k−1

∑
i=k−dk

eT(i)Se(i),

ΔV4(k) = (dM − dm + 1)xT(k)Mx(k)−
k−dm

∑
i=k−dM+1

xT(i)Mx(i)

≤ (dM − dm + 1)xT(k)Mx(k)− xT(k − dk)Mx(k − dk),

we have

ΔV(k) = ΔV1(k) + ΔV2(k) + ΔV3(k) + ΔV4(k)

≤ ξT(k)[Φ1 + ΞL + ΞT
L + ΞN + ΞT

N + ΞT + ΞT
T ]ξ(k) +

k−1

∑
i=k−dk

ξT(k)ZS−1ZTξ(k)

−
k−1

∑
i=k−dk

(ξT(k)Z + eT(i)S)S−1(ZTξ(k) + Se(i))

≤ ξT(k)[Φ1 + ΞL + ΞT
L + ΞN + ΞT

N + ΞT + ΞT
T + dMZS−1ZT]ξ(k)

If (7) is satisfied, by Schur complement formula, we have Φ1 + ΞL + ΞT
L + ΞN + ΞT

N + ΞT +

ΞT
T + dMZS−1ZT

< 0. It follows that ΔV(k) < 0 and hence the proof is completed.

Remark 3.2. We employ
k−1

∑
i=k−dk

(�) in our Lyapunov function instead of
k−1

∑
i=k−dM

(�). This gives a less

conservative stability condition.

3.2 Robust stability for uncertain systems
By extending Theorem 3.1, we obtain a condition for robust stability of uncertain system (5).

Theorem 3.3. Given integers dm and dM, and control gain K. Then, the time-delay system (5) is
robustly stable if there exist matrices P1 > 0, P2 > 0, Q1 > 0, Q2 > 0, S > 0, M > 0,

L =

⎡
⎢⎢⎢⎢⎣

L1

L2

L3

L4

L5

⎤
⎥⎥⎥⎥⎦

, N =

⎡
⎢⎢⎢⎢⎣

N1

N2

N3

N4

N5

⎤
⎥⎥⎥⎥⎦

, T =

⎡
⎢⎢⎢⎢⎣

T1

T2

T3

T4

T5

⎤
⎥⎥⎥⎥⎦
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< 0. It follows that ΔV(k) < 0 and hence the proof is completed.

Remark 3.2. We employ
k−1
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(�) in our Lyapunov function instead of
k−1

∑
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(�). This gives a less

conservative stability condition.

3.2 Robust stability for uncertain systems
By extending Theorem 3.1, we obtain a condition for robust stability of uncertain system (5).

Theorem 3.3. Given integers dm and dM, and control gain K. Then, the time-delay system (5) is
robustly stable if there exist matrices P1 > 0, P2 > 0, Q1 > 0, Q2 > 0, S > 0, M > 0,

L =

⎡
⎢⎢⎢⎢⎣

L1

L2

L3

L4

L5

⎤
⎥⎥⎥⎥⎦

, N =

⎡
⎢⎢⎢⎢⎣

N1

N2

N3

N4

N5

⎤
⎥⎥⎥⎥⎦

, T =

⎡
⎢⎢⎢⎢⎣

T1

T2

T3

T4

T5

⎤
⎥⎥⎥⎥⎦
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and a scalar λ > 0 satisfying

Π =

�
Φ + λĒTĒ H̄T

H̄ −λI

�
< 0, (11)

where Φ is given in Theorem 3.1, and

H̄ =
�
−HTTT

1 −HTTT
2 −HTTT

3 −HTTT
4 −HTTT

5 0
�

,

and

Ē =
�

0 E + E1K Ed + EbK 0 0 0
�

.

Proof: Replacing A, Ad, B and Bd in (7) with A + HF(k)E, Ad + HF(k)Ed, B + HF(k)E1 and
B + HF(k)Eb, respectively, we obtain a robust stability condition for the system (5).

Φ + H̄T F(k)Ē + ĒT FT(k)H̄ < 0 (12)

By Lemma 2.2, a necessary and sufficient condition that guarantees (12) is that there exists a
scalar λ > 0 such that

Φ + λĒTĒ +
1

λ
H̄T H̄ < 0 (13)

Applying Schur complement formula, we can show that (13) is equivalent to (11).

4. State feedback sabilization

This section proposes a state feedback stabilization method for the uncertain discrete-time
delay system (1). First, stabilization of nominal system is considered in Section 4.1. Then,
robust stabilization is proposed in Section 4.2

4.1 Stabilization
First, we consider stabilization for the nominal system (3). Our problem is to find a
control gain K such that the closed-loop system (6) is asymptotically stable. Unfortunately,
Theorem 3.1 does not give LMI conditions to find K. Hence, we must look for another method.

Theorem 4.1. Given integers dm and dM, and scalars ρi, i = 1, · · · , 5. Then, the controller (4)
asymptotically stabilizes the time-delay system (3) if there exist matrices P̄1 > 0, P̄2 > 0, Q̄1 > 0,
Q̄2 > 0, S̄ > 0, M̄ > 0, G, Y

L̄ =

⎡
⎢⎢⎢⎢⎣

L̄1

L̄2

L̄3

L̄4

L̄5

⎤
⎥⎥⎥⎥⎦

, N̄ =

⎡
⎢⎢⎢⎢⎣

N̄1

N̄2

N̄3

N̄4

N̄5

⎤
⎥⎥⎥⎥⎦

,

satisfying

Ψ =

�
Ψ1 + ΘL + ΘT

L + ΘN + ΘT
N + ΘT + ΘT

T

√
dMZ̄√

dMZ̄T −S̄

�
< 0 (14)
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where

Ψ1 =

⎡
⎢⎢⎢⎢⎣

P̄1 0 0 0 0
0 Ψ22 0 0 0
0 0 −Q̄1 − M̄ 0 0
0 0 0 Ψ44 −P̄2

0 0 0 −P̄2 P̄2 − Q̄2

⎤
⎥⎥⎥⎥⎦

,

Ψ22 = −P̄1 + Q̄1 + (dM − dm + 1)M̄,

Ψ44 = P̄2 + Q̄2 + dMS̄,

Z̄ =

⎡
⎢⎢⎢⎢⎣

0
0
0

−P̄2

P̄2

⎤
⎥⎥⎥⎥⎦
+ N̄,

ΘL =
�
L̄ −L̄ 0 −L̄ 0

�
,

ΘN =
�
0 N̄ −N̄ 0 0

�
,

ΘT =

⎡
⎢⎢⎢⎢⎣

ρ1YT −ρ1(AYT + BG) −ρ1(AdYT + BdG) 0 0
ρ2YT −ρ2(AYT + BG) −ρ2(AdYT + BdG) 0 0

ρ3YT −ρ3(AYT + BG) −ρ3(AdYT + BdG) 0 0

ρ4YT −ρ4(AYT + BG) −ρ4(AdYT + BdG) 0 0

ρ5YT −ρ5(AYT + BG) −ρ5(AdYT + BdG) 0 0

⎤
⎥⎥⎥⎥⎦

.

In this case, a controller gain in the controller (4) is given by

K = GY−T (15)

Proof: Let Ti = ρiY
−1, i = 1, · · · , 5 where each ρi is given. We substitute them into (7). Then,

we calculate Ψ = ΣΦΣT with Σ = diag[Y Y Y Y Y]. Defining P̄i = YPiY
T, Q̄i = YQiY

T, i =
1, 2, S̄ = YSYT, M̄ = YMYT, L̄ = YLYT, N̄ = YNYT, we obtain Θ < 0 in (14) where we let
G = KYT. If the condition (14) hold, state feedback control gain matrix K is obviously given
by (15).

Remark 4.2. Should Y be singular, Let L̄1 = 0. In this case, it follows from (1, 1)-block of Ψ that
P̄1 + ρ1(Y + YT) < 0. Then, if (14) holds, Y must be nonsingular.

4.2 Robust stabilization
In a similar way to robust stability, we extend a stabilization result in the previous section to
robust stabilization for uncertain discrete-time delay system (1).

Theorem 4.3. Given integers dm and dM, and scalars ρi, i = 1, · · · , 5. Then, the controller (4)
robustly stabilizes the time-delay system (1) if there exist matrices P̄1 > 0, P̄2 > 0, Q̄1 > 0, Q̄2 > 0,
S̄ > 0, M̄ > 0, G, Y

L̄ =

⎡
⎢⎢⎢⎢⎣

L̄1

L̄2

L̄3

L̄4

L̄5

⎤
⎥⎥⎥⎥⎦

, N̄ =

⎡
⎢⎢⎢⎢⎣

N̄1

N̄2

N̄3

N̄4

N̄5

⎤
⎥⎥⎥⎥⎦

,
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and a scalar λ > 0 satisfying

Π =

�
Φ + λĒTĒ H̄T

H̄ −λI

�
< 0, (11)

where Φ is given in Theorem 3.1, and

H̄ =
�
−HTTT

1 −HTTT
2 −HTTT

3 −HTTT
4 −HTTT

5 0
�

,

and

Ē =
�

0 E + E1K Ed + EbK 0 0 0
�

.

Proof: Replacing A, Ad, B and Bd in (7) with A + HF(k)E, Ad + HF(k)Ed, B + HF(k)E1 and
B + HF(k)Eb, respectively, we obtain a robust stability condition for the system (5).

Φ + H̄T F(k)Ē + ĒT FT(k)H̄ < 0 (12)

By Lemma 2.2, a necessary and sufficient condition that guarantees (12) is that there exists a
scalar λ > 0 such that

Φ + λĒTĒ +
1

λ
H̄T H̄ < 0 (13)

Applying Schur complement formula, we can show that (13) is equivalent to (11).

4. State feedback sabilization
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Theorem 4.1. Given integers dm and dM, and scalars ρi, i = 1, · · · , 5. Then, the controller (4)
asymptotically stabilizes the time-delay system (3) if there exist matrices P̄1 > 0, P̄2 > 0, Q̄1 > 0,
Q̄2 > 0, S̄ > 0, M̄ > 0, G, Y

L̄ =

⎡
⎢⎢⎢⎢⎣

L̄1

L̄2

L̄3

L̄4

L̄5

⎤
⎥⎥⎥⎥⎦

, N̄ =

⎡
⎢⎢⎢⎢⎣

N̄1

N̄2

N̄3

N̄4

N̄5

⎤
⎥⎥⎥⎥⎦

,

satisfying

Ψ =

�
Ψ1 + ΘL + ΘT

L + ΘN + ΘT
N + ΘT + ΘT

T

√
dMZ̄√

dMZ̄T −S̄

�
< 0 (14)
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where

Ψ1 =

⎡
⎢⎢⎢⎢⎣

P̄1 0 0 0 0
0 Ψ22 0 0 0
0 0 −Q̄1 − M̄ 0 0
0 0 0 Ψ44 −P̄2

0 0 0 −P̄2 P̄2 − Q̄2

⎤
⎥⎥⎥⎥⎦

,

Ψ22 = −P̄1 + Q̄1 + (dM − dm + 1)M̄,

Ψ44 = P̄2 + Q̄2 + dMS̄,

Z̄ =

⎡
⎢⎢⎢⎢⎣

0
0
0

−P̄2

P̄2

⎤
⎥⎥⎥⎥⎦
+ N̄,

ΘL =
�
L̄ −L̄ 0 −L̄ 0

�
,

ΘN =
�
0 N̄ −N̄ 0 0

�
,

ΘT =

⎡
⎢⎢⎢⎢⎣

ρ1YT −ρ1(AYT + BG) −ρ1(AdYT + BdG) 0 0
ρ2YT −ρ2(AYT + BG) −ρ2(AdYT + BdG) 0 0

ρ3YT −ρ3(AYT + BG) −ρ3(AdYT + BdG) 0 0

ρ4YT −ρ4(AYT + BG) −ρ4(AdYT + BdG) 0 0

ρ5YT −ρ5(AYT + BG) −ρ5(AdYT + BdG) 0 0

⎤
⎥⎥⎥⎥⎦

.

In this case, a controller gain in the controller (4) is given by

K = GY−T (15)

Proof: Let Ti = ρiY
−1, i = 1, · · · , 5 where each ρi is given. We substitute them into (7). Then,

we calculate Ψ = ΣΦΣT with Σ = diag[Y Y Y Y Y]. Defining P̄i = YPiY
T, Q̄i = YQiY

T, i =
1, 2, S̄ = YSYT, M̄ = YMYT, L̄ = YLYT, N̄ = YNYT, we obtain Θ < 0 in (14) where we let
G = KYT. If the condition (14) hold, state feedback control gain matrix K is obviously given
by (15).

Remark 4.2. Should Y be singular, Let L̄1 = 0. In this case, it follows from (1, 1)-block of Ψ that
P̄1 + ρ1(Y + YT) < 0. Then, if (14) holds, Y must be nonsingular.

4.2 Robust stabilization
In a similar way to robust stability, we extend a stabilization result in the previous section to
robust stabilization for uncertain discrete-time delay system (1).

Theorem 4.3. Given integers dm and dM, and scalars ρi, i = 1, · · · , 5. Then, the controller (4)
robustly stabilizes the time-delay system (1) if there exist matrices P̄1 > 0, P̄2 > 0, Q̄1 > 0, Q̄2 > 0,
S̄ > 0, M̄ > 0, G, Y

L̄ =

⎡
⎢⎢⎢⎢⎣

L̄1

L̄2

L̄3

L̄4

L̄5

⎤
⎥⎥⎥⎥⎦

, N̄ =

⎡
⎢⎢⎢⎢⎣

N̄1

N̄2

N̄3

N̄4

N̄5

⎤
⎥⎥⎥⎥⎦

,
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and a scalar λ > 0 satisfying

Λ =

[
Ψ + λĤT Ĥ ÊT

Ê −λI

]
< 0, (16)

where

Ĥ =
[
−ρ1HT −ρ2HT −ρ3HT −ρ4HT −ρ5HT 0

]
,

and

Ê =
[

0 EYT + E1G EdYT + EbG 0 0 0
]

.

In this case, a controller gain in the controller (4) is given by (15).

Proof: Replacing A, Ad, B and Bd in (14) with A + HF(k)E, Ad + HF(k)Ed, B + HF(k)E1 and
B + HF(k)Eb, respectively, we obtain robust stability conditions for the system (1):

Ψ + H̄T F(k)Ē + ĒT FT(k)H̄ < 0 (17)

By Lemma 2.2, a necessary and sufficient condition that guarantees (17) is that there exists a
scalar λ > 0 such that

Ψ + λH̄T H̄ +
1

λ
ĒTĒ < 0 (18)

Applying Schur complement formula, we can show that (18) is equivalent to (16).

5. State estimation

All the information on the state variables of the system is not always available in a physical
situation. In this case, we need to estimate the values of the state variables from all the
available information on the output and input. In the following, we make analysis of the
existence of observers. Section 5.1 analyzes the observer of a nominal system, and Section 5.2
considers the robust observer analysis of an uncertain system.

5.1 Observer analysis
Using the results in the previous sections, we consider an observer design for the system (1),
which estimates the state variables of the system using measurement outputs.

x(k + 1) = (A + ΔA)x(k) + (Ad + ΔAd)x(k − dk), (19)

y(k) = (C + ΔC)x(k) + (Cd + ΔCd)x(k − dk) (20)

where uncertain matrices are of the form:
[

ΔA ΔAd

ΔC ΔCd

]
=

[
H
H2

]
F(k)

[
E Ed

]

where F(k) ∈ �l×j is an unknown time-varying matrix satisfying FT(k)F(k) ≤ I and H, H2, E
and Ed are constant matrices of appropriate dimensions.
We consider the following system to estimate the state variables:

x̂(k + 1) = Ax̂(k) + K̄(y(k)− Cx̂(k)) (21)
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where x̂ is the estimated state and K̄ is an observer gain to be determined. It follows from (19),
(20) and (21) that

xc(k + 1) = (Ã + H̃F(k)Ẽ)xc(k) + (Ãd + H̃F(k)Ẽd)xc(k − dk). (22)

where xT
c = [xT eT ]T, e(k) = x(k)− x̂(k) and

Ã =

�
A 0
0 A − K̄C

�
, Ãd =

�
Ad 0

Ad − K̄Cd 0

�
,

H̃ =

�
H

H − K̄H2

�
, Ẽ =

�
E 0

�
, Ẽd =

�
Ed 0

�
.

We shall find conditions for (22) to be robustly stable. In this case, the system (21) becomes an
observer for the system (19) and (20).
For nominal case, we have

xc(k + 1) = Ãxc(k) + Ãdxc(k − dk). (23)

We first consider the asymptotic stability of the system (23). The following theorem gives
conditions for the system (23) to be asymptotically stable.

Theorem 5.1. Given integers dm and dM, and observer gain K̄. Then, the system (23) is
asymptotically stable if there exist matrices 0 < P̃1 ∈ �2n×2n, < P̃2 ∈ �2n×2n, 0 < Q̃1 ∈ �2n×2n,
0 < Q̃2 ∈ �2n×2n, 0 < S̃ ∈ �2n×2n, 0 < M̃ ∈ �2n×2n,

L̃ =

⎡
⎢⎢⎢⎢⎣

L̃1

L̃2

L̃3

L̃4

L̃5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n, Ñ =

⎡
⎢⎢⎢⎢⎣

Ñ1

Ñ2

Ñ3

Ñ4

Ñ5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n, T̃ =

⎡
⎢⎢⎢⎢⎣

T̃1

T̃2

T̃3

T̃4

T̃5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n

satisfying

Φ̃ =

�
Φ̃1 + Ξ̃L + Ξ̃T

L + Ξ̃N + Ξ̃T
N + Ξ̃T + Ξ̃T

T

√
dMZ̃√

dMZ̃T −S̃

�
< 0 (24)

where

Φ̃1 =

⎡
⎢⎢⎢⎢⎣

P̃1 0 0 0 0
0 Φ̃22 0 0 0
0 0 −Q̃1 − M̃ 0 0
0 0 0 Φ̃44 −P̃2

0 0 0 −P̃2 P̃2 − Q̃2

⎤
⎥⎥⎥⎥⎦

,

Φ̃22 = −P̃1 + Q̃1 + (dM − dm + 1)M̃,

Φ̃44 = P̃2 + Q̃2 + dMS̃,

Z̃ =

⎡
⎢⎢⎢⎢⎣

0
0
0

−P̃2

P̃2

⎤
⎥⎥⎥⎥⎦
+ Ñ,

Ξ̃L =
�
L̃ −L̃ 0 −L̃ 0

�
,

Ξ̃N =
�
0 Ñ −Ñ 0 0

�
,

Ξ̃T =
�
T̃ −T̃Ã −T̃Ãd 0 0

�
.
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and a scalar λ > 0 satisfying

Λ =

[
Ψ + λĤT Ĥ ÊT

Ê −λI

]
< 0, (16)

where

Ĥ =
[
−ρ1HT −ρ2HT −ρ3HT −ρ4HT −ρ5HT 0

]
,

and

Ê =
[

0 EYT + E1G EdYT + EbG 0 0 0
]

.

In this case, a controller gain in the controller (4) is given by (15).

Proof: Replacing A, Ad, B and Bd in (14) with A + HF(k)E, Ad + HF(k)Ed, B + HF(k)E1 and
B + HF(k)Eb, respectively, we obtain robust stability conditions for the system (1):

Ψ + H̄T F(k)Ē + ĒT FT(k)H̄ < 0 (17)

By Lemma 2.2, a necessary and sufficient condition that guarantees (17) is that there exists a
scalar λ > 0 such that

Ψ + λH̄T H̄ +
1

λ
ĒTĒ < 0 (18)

Applying Schur complement formula, we can show that (18) is equivalent to (16).

5. State estimation

All the information on the state variables of the system is not always available in a physical
situation. In this case, we need to estimate the values of the state variables from all the
available information on the output and input. In the following, we make analysis of the
existence of observers. Section 5.1 analyzes the observer of a nominal system, and Section 5.2
considers the robust observer analysis of an uncertain system.

5.1 Observer analysis
Using the results in the previous sections, we consider an observer design for the system (1),
which estimates the state variables of the system using measurement outputs.

x(k + 1) = (A + ΔA)x(k) + (Ad + ΔAd)x(k − dk), (19)

y(k) = (C + ΔC)x(k) + (Cd + ΔCd)x(k − dk) (20)

where uncertain matrices are of the form:
[

ΔA ΔAd

ΔC ΔCd

]
=

[
H
H2

]
F(k)

[
E Ed

]

where F(k) ∈ �l×j is an unknown time-varying matrix satisfying FT(k)F(k) ≤ I and H, H2, E
and Ed are constant matrices of appropriate dimensions.
We consider the following system to estimate the state variables:

x̂(k + 1) = Ax̂(k) + K̄(y(k)− Cx̂(k)) (21)
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where x̂ is the estimated state and K̄ is an observer gain to be determined. It follows from (19),
(20) and (21) that

xc(k + 1) = (Ã + H̃F(k)Ẽ)xc(k) + (Ãd + H̃F(k)Ẽd)xc(k − dk). (22)

where xT
c = [xT eT ]T, e(k) = x(k)− x̂(k) and

Ã =

�
A 0
0 A − K̄C

�
, Ãd =

�
Ad 0

Ad − K̄Cd 0

�
,

H̃ =

�
H

H − K̄H2

�
, Ẽ =

�
E 0

�
, Ẽd =

�
Ed 0

�
.

We shall find conditions for (22) to be robustly stable. In this case, the system (21) becomes an
observer for the system (19) and (20).
For nominal case, we have

xc(k + 1) = Ãxc(k) + Ãdxc(k − dk). (23)

We first consider the asymptotic stability of the system (23). The following theorem gives
conditions for the system (23) to be asymptotically stable.

Theorem 5.1. Given integers dm and dM, and observer gain K̄. Then, the system (23) is
asymptotically stable if there exist matrices 0 < P̃1 ∈ �2n×2n, < P̃2 ∈ �2n×2n, 0 < Q̃1 ∈ �2n×2n,
0 < Q̃2 ∈ �2n×2n, 0 < S̃ ∈ �2n×2n, 0 < M̃ ∈ �2n×2n,

L̃ =

⎡
⎢⎢⎢⎢⎣

L̃1

L̃2

L̃3

L̃4

L̃5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n, Ñ =

⎡
⎢⎢⎢⎢⎣

Ñ1

Ñ2

Ñ3

Ñ4

Ñ5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n, T̃ =

⎡
⎢⎢⎢⎢⎣

T̃1

T̃2

T̃3

T̃4

T̃5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n

satisfying

Φ̃ =

�
Φ̃1 + Ξ̃L + Ξ̃T

L + Ξ̃N + Ξ̃T
N + Ξ̃T + Ξ̃T

T

√
dMZ̃√

dMZ̃T −S̃

�
< 0 (24)

where

Φ̃1 =

⎡
⎢⎢⎢⎢⎣

P̃1 0 0 0 0
0 Φ̃22 0 0 0
0 0 −Q̃1 − M̃ 0 0
0 0 0 Φ̃44 −P̃2

0 0 0 −P̃2 P̃2 − Q̃2

⎤
⎥⎥⎥⎥⎦

,

Φ̃22 = −P̃1 + Q̃1 + (dM − dm + 1)M̃,

Φ̃44 = P̃2 + Q̃2 + dMS̃,

Z̃ =

⎡
⎢⎢⎢⎢⎣

0
0
0

−P̃2

P̃2

⎤
⎥⎥⎥⎥⎦
+ Ñ,

Ξ̃L =
�
L̃ −L̃ 0 −L̃ 0

�
,

Ξ̃N =
�
0 Ñ −Ñ 0 0

�
,

Ξ̃T =
�
T̃ −T̃Ã −T̃Ãd 0 0

�
.
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Proof: We follow similar lines of proof of Theorem 3.1 for the stability of the system (23). Then,
the result is straightforward.

5.2 Robust observer analysis
Now, we extend the result for the uncertain system (23).

Theorem 5.2. Given integers dm and dM, and observer gain K̄. Then, the system (22) is robustly stable
if there exist matrices 0 < P̃1 ∈ �2n×2n, < P̃2 ∈ �2n×2n, 0 < Q̃1 ∈ �2n×2n, 0 < Q̃2 ∈ �2n×2n,
0 < S̃ ∈ �2n×2n, 0 < M̃ ∈ �2n×2n,

L̃ =

⎡
⎢⎢⎢⎢⎣

L̃1

L̃2

L̃3

L̃4

L̃5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n, Ñ =

⎡
⎢⎢⎢⎢⎣

Ñ1

Ñ2

Ñ3

Ñ4

Ñ5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n, T̃ =

⎡
⎢⎢⎢⎢⎣

T̃1

T̃2

T̃3

T̃4

T̃5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n

and a scalar λ > 0 satisfying

Π̃ =

�
Φ̃ + λÊTÊ ĤT

Ĥ −λI

�
< 0

where Φ̃ is given in Theorem 5.1, and

Ĥ =
�
−H̃TT̃T

1 −H̃TT̃T
2 −H̃TT̃T

3 −H̃TT̃T
4 −H̃TT̃T

5 0
�

,

Ê =
�

0 Ẽ Ẽd 0 0 0
�

.

Proof: Replacing Ã and Ãd in (24) with Ã + H̃F(k)Ẽ and Ãd + H̃F(k)Ẽd, respectively, and
following similar lines of proof of Theorem 3.3, we have the desired result.

6. Observer design

This section gives observer design methods for discrete-time delay systems. Section 6.1
provides an observer design method for a nominal delay system, and Section 6.2 proposes
for an uncertain delay system.

6.1 Nominal observer
Similar to Theorem 3.1, Theorem 5.1 does not give a design method of finding an observer
gain K̄. Hence, we obtain another theorem below.

Theorem 6.1. Given integers dm and dM, and scalars ρi and ρ̂i, i = 1, · · · , 5. Then, (21) becomes
an observer for the system (19) and (20) with ΔA = ΔAd = 0, ΔC = ΔCd = 0 if there exist matrices
0 < P̃1 ∈ �2n×2n, 0 < P̃2 ∈ �2n×2n, 0 < Q̃1 ∈ �2n×2n, 0 < Q̃2 ∈ �2n×2n, 0 < S̃ ∈ �2n×2n,
0 < M̃ ∈ �2n×2n, G̃ ∈ �n×n, Y ∈ �n×n

L̃ =

⎡
⎢⎢⎢⎢⎣

L̃1

L̃2

L̃3

L̃4

L̃5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n, Ñ =

⎡
⎢⎢⎢⎢⎣

Ñ1

Ñ2

Ñ3

Ñ4

Ñ5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n, T =

⎡
⎢⎢⎢⎢⎣

T1

T2

T3

T4

T5

⎤
⎥⎥⎥⎥⎦
∈ �5n×n, T̂ =

⎡
⎢⎢⎢⎢⎣

T̂1

T̂2

T̂3

T̂4

T̂5

⎤
⎥⎥⎥⎥⎦
∈ �5n×n
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satisfying

Ψ̃ =

�
Ψ̃1 + Θ̃L + Θ̃T

L + Θ̃N + Θ̃T
N + Θ̃T + Θ̃T

T

√
dMZ̃√

dMZ̃T −S̃

�
< 0 (25)

where

Ψ̃1 =

⎡
⎢⎢⎢⎢⎣

P̃1 0 0 0 0
0 Ψ̃22 0 0 0
0 0 −Q̃1 − M̃ 0 0
0 0 0 Ψ̃44 −P̃2

0 0 0 −P̃2 P̃2 − Q̃2

⎤
⎥⎥⎥⎥⎦

,

Ψ̃22 = −P̃1 + Q̃1 + (dM − dm + 1)M̃,
Ψ̃44 = P̃2 + Q̃2 + dMS̃,

Z̃ =

⎡
⎢⎢⎢⎢⎣

0
0
0

−P̃2

P̃2

⎤
⎥⎥⎥⎥⎦
+ Ñ,

Θ̃L =
�
L̃ −L̃ 0 −L̃ 0

�
,

Θ̃N =
�
0 Ñ −Ñ 0 0

�
,

Θ̃T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1 ρ1Y −T1A −ρ1(YA − G̃C) −T1Ad − ρ1(YAd − G̃Cd) 0 0 0 0 0
T̂1 ρ̂1Y −T̂1A −ρ̂1(YA − G̃C) −T̂1Ad − ρ̂1(YAd − G̃Cd) 0 0 0 0 0
T2 ρ2Y −T2A −ρ2(YA − G̃C) −T2Ad − ρ2(YAd − G̃Cd) 0 0 0 0 0
T̂2 ρ̂2Y −T̂2A −ρ̂2(YA − G̃C) −T̂2Ad − ρ̂2(YAd − G̃Cd) 0 0 0 0 0
T3 ρ3Y −T3A −ρ3(YA − G̃C) −T3Ad − ρ3(YAd − G̃Cd) 0 0 0 0 0
T̂3 ρ̂3Y −T̂3A −ρ̂3(YA − G̃C) −T̂3Ad − ρ̂3(YAd − G̃Cd) 0 0 0 0 0
T4 ρ4Y −T4A −ρ4(YA − G̃C) −T4Ad − ρ4(YAd − G̃Cd) 0 0 0 0 0
T̂4 ρ̂4Y −T̂4A −ρ̂4(YA − G̃C) −T̂4Ad − ρ̂4(YAd − G̃Cd) 0 0 0 0 0
T5 ρ5Y −T5A −ρ5(YA − G̃C) −T5Ad − ρ5(YAd − G̃Cd) 0 0 0 0 0
T̂5 ρ̂5Y −T̂5A −ρ̂5(YA − G̃C) −T̂5Ad − ρ̂5(YAd − G̃Cd) 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this case, an observer gain in the observer (21) is given by

K̄ = Y−1G̃. (26)

Proof: Proof is similar to that of Theorem 4.1. Let

Ti =

�
Ti ρiY
T̂i ρ̂iY

�
, i = 1, · · · , 5

where ρi and ρ̂i, i = 1, · · · , 5 are given. We substitute them into (24). Defining G̃ = YK̄, we
obtain Ψ̃ < 0 in (25). If the condition (25) hold, observer gain matrix K̄ is obviously given by
(26).

6.2 Robust observer
Extending Theorem 4.1, we have the following theorem, which proposes a robust observer
design for an uncertain delay system.
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Proof: We follow similar lines of proof of Theorem 3.1 for the stability of the system (23). Then,
the result is straightforward.

5.2 Robust observer analysis
Now, we extend the result for the uncertain system (23).

Theorem 5.2. Given integers dm and dM, and observer gain K̄. Then, the system (22) is robustly stable
if there exist matrices 0 < P̃1 ∈ �2n×2n, < P̃2 ∈ �2n×2n, 0 < Q̃1 ∈ �2n×2n, 0 < Q̃2 ∈ �2n×2n,
0 < S̃ ∈ �2n×2n, 0 < M̃ ∈ �2n×2n,

L̃ =

⎡
⎢⎢⎢⎢⎣

L̃1

L̃2

L̃3

L̃4

L̃5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n, Ñ =

⎡
⎢⎢⎢⎢⎣

Ñ1

Ñ2

Ñ3

Ñ4

Ñ5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n, T̃ =

⎡
⎢⎢⎢⎢⎣

T̃1

T̃2

T̃3

T̃4

T̃5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n

and a scalar λ > 0 satisfying

Π̃ =

�
Φ̃ + λÊTÊ ĤT

Ĥ −λI

�
< 0

where Φ̃ is given in Theorem 5.1, and

Ĥ =
�
−H̃TT̃T

1 −H̃TT̃T
2 −H̃TT̃T

3 −H̃TT̃T
4 −H̃TT̃T

5 0
�

,

Ê =
�

0 Ẽ Ẽd 0 0 0
�

.

Proof: Replacing Ã and Ãd in (24) with Ã + H̃F(k)Ẽ and Ãd + H̃F(k)Ẽd, respectively, and
following similar lines of proof of Theorem 3.3, we have the desired result.

6. Observer design

This section gives observer design methods for discrete-time delay systems. Section 6.1
provides an observer design method for a nominal delay system, and Section 6.2 proposes
for an uncertain delay system.
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gain K̄. Hence, we obtain another theorem below.

Theorem 6.1. Given integers dm and dM, and scalars ρi and ρ̂i, i = 1, · · · , 5. Then, (21) becomes
an observer for the system (19) and (20) with ΔA = ΔAd = 0, ΔC = ΔCd = 0 if there exist matrices
0 < P̃1 ∈ �2n×2n, 0 < P̃2 ∈ �2n×2n, 0 < Q̃1 ∈ �2n×2n, 0 < Q̃2 ∈ �2n×2n, 0 < S̃ ∈ �2n×2n,
0 < M̃ ∈ �2n×2n, G̃ ∈ �n×n, Y ∈ �n×n

L̃ =

⎡
⎢⎢⎢⎢⎣

L̃1

L̃2

L̃3

L̃4

L̃5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n, Ñ =

⎡
⎢⎢⎢⎢⎣

Ñ1

Ñ2

Ñ3

Ñ4

Ñ5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n, T =

⎡
⎢⎢⎢⎢⎣

T1

T2

T3

T4

T5

⎤
⎥⎥⎥⎥⎦
∈ �5n×n, T̂ =

⎡
⎢⎢⎢⎢⎣

T̂1

T̂2

T̂3

T̂4

T̂5

⎤
⎥⎥⎥⎥⎦
∈ �5n×n
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satisfying

Ψ̃ =

�
Ψ̃1 + Θ̃L + Θ̃T

L + Θ̃N + Θ̃T
N + Θ̃T + Θ̃T

T

√
dMZ̃√

dMZ̃T −S̃

�
< 0 (25)

where

Ψ̃1 =

⎡
⎢⎢⎢⎢⎣

P̃1 0 0 0 0
0 Ψ̃22 0 0 0
0 0 −Q̃1 − M̃ 0 0
0 0 0 Ψ̃44 −P̃2

0 0 0 −P̃2 P̃2 − Q̃2

⎤
⎥⎥⎥⎥⎦

,

Ψ̃22 = −P̃1 + Q̃1 + (dM − dm + 1)M̃,
Ψ̃44 = P̃2 + Q̃2 + dMS̃,

Z̃ =

⎡
⎢⎢⎢⎢⎣

0
0
0

−P̃2

P̃2

⎤
⎥⎥⎥⎥⎦
+ Ñ,

Θ̃L =
�
L̃ −L̃ 0 −L̃ 0

�
,

Θ̃N =
�
0 Ñ −Ñ 0 0

�
,

Θ̃T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1 ρ1Y −T1A −ρ1(YA − G̃C) −T1Ad − ρ1(YAd − G̃Cd) 0 0 0 0 0
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T̂3 ρ̂3Y −T̂3A −ρ̂3(YA − G̃C) −T̂3Ad − ρ̂3(YAd − G̃Cd) 0 0 0 0 0
T4 ρ4Y −T4A −ρ4(YA − G̃C) −T4Ad − ρ4(YAd − G̃Cd) 0 0 0 0 0
T̂4 ρ̂4Y −T̂4A −ρ̂4(YA − G̃C) −T̂4Ad − ρ̂4(YAd − G̃Cd) 0 0 0 0 0
T5 ρ5Y −T5A −ρ5(YA − G̃C) −T5Ad − ρ5(YAd − G̃Cd) 0 0 0 0 0
T̂5 ρ̂5Y −T̂5A −ρ̂5(YA − G̃C) −T̂5Ad − ρ̂5(YAd − G̃Cd) 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this case, an observer gain in the observer (21) is given by

K̄ = Y−1G̃. (26)

Proof: Proof is similar to that of Theorem 4.1. Let

Ti =

�
Ti ρiY
T̂i ρ̂iY

�
, i = 1, · · · , 5

where ρi and ρ̂i, i = 1, · · · , 5 are given. We substitute them into (24). Defining G̃ = YK̄, we
obtain Ψ̃ < 0 in (25). If the condition (25) hold, observer gain matrix K̄ is obviously given by
(26).

6.2 Robust observer
Extending Theorem 4.1, we have the following theorem, which proposes a robust observer
design for an uncertain delay system.
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Theorem 6.2. Given integers dm and dM, and scalars ρi, ρ̂i, i = 1, · · · , 5. Then, (21) becomes an
observer for the system (19) and (20) if there exist matrices 0 < P̃1 ∈ �2n×2n, 0 < P̃2 ∈ �2n×2n,
0 < Q̃1 ∈ �2n×2n, 0 < Q̃2 ∈ �2n×2n, 0 < S̃ ∈ �2n×2n, 0 < M̃ ∈ �2n×2n, G ∈ �n×n, Y ∈ �n×n

L̃ =

⎡
⎢⎢⎢⎢⎣

L̃1

L̃2

L̃3

L̃4

L̃5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n, Ñ =

⎡
⎢⎢⎢⎢⎣

Ñ1

Ñ2

Ñ3

Ñ4

Ñ5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n, T =

⎡
⎢⎢⎢⎢⎣

T1

T2

T3

T4

T5

⎤
⎥⎥⎥⎥⎦
∈ �5n×n, T̂ =

⎡
⎢⎢⎢⎢⎣

T̂1

T̂2

T̂3

T̂4

T̂5

⎤
⎥⎥⎥⎥⎦
∈ �5n×n,

and a scalar λ > 0 satisfying

Λ̃ =

�
Ψ̃ + λẼTẼ H̃T

H̃ −λI

�
< 0 (27)

where Ψ̃ is given in Theorem 6.1, and

H̃ = −
�
HTTT

1 + ρ1(YH − G̃H2)
T HTT̂T

1 + ρ̂1(YH − G̃H2)
T HTTT

2 + ρ2(YH − G̃H2)
T

HTT̂T
2 + ρ̂2(YH − G̃H2)

T HTTT
3 + ρ3(YH − G̃H2)

T HT T̂T
3 + ρ̂3(YH − G̃H2)

T

HTTT
4 + ρ4(YH − G̃H2)

T HTT̂T
4 + ρ̂4(YH − G̃H2)

T HT TT
5 + ρ5(YH − G̃H2)

T

HTT̂T
5 + ρ̂5(YH − G̃H2)

T 0 0
�

,
Ẽ =

�
0 0 E 0 Ed 0 0 0 0 0 0 0

�
.

In this case, an observer gain in the observer (21) is given by (26).

Proof: Replacing A and Ad in (27) with A + HF(k)E and Ad + HF(k)Ed, respectively, and
following similar lines of proof of Theorem 4.3, we have the desired result.

7. Examples

In this section, the following examples are provided to illustrate the proposed results. First
example shows stabilization and robust stabilization. Second one gives observer design and
robust observer design.

Example 7.1. Consider the following discrete-time delay system:

x(k + 1) =

�
1.1 + α 0

0 0.97

�
x(k) +

�
−0.1 0
−0.1 −0.1

�
x(k − dk)

+

�
0.1
0.5

�
u(k) +

�
0.2
0.3

�
u(k − dk)

where α satisfies |α| ≤ ᾱ for ᾱ is an upper bound of α(k). First, we consider the stabilization for a
nominal time-delay system with α(k) = 0 by Theorem 4.1. Table 1 shows control gains for different
time-invariant delay dk, while Table 2 gives control gains for different time-varying delay dk.
Next, we consider the robust stabilization for the uncertain time-delay system with α(k) �= 0. In this
case, system matrices can be represented in the form of (1) with matrices given by

A =

�
1.1 0
0 0.97

�
, Ad =

�
−0.1 0
−0.1 −0.1

�
, E =

�
1 0

�
, Ed = E1 =

�
0 0

�
,

B =

�
0.1
0.5

�
, Bd =

�
0.2
0.3

�
, H =

�
ᾱ
0

�
, F(k) =

α(k)

ᾱ
.
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dk ρ’s K
1 [0.1 0.1 − 0.1 0.5 0.1] [−1.1316 − 0.1360]
2 [0.1 0.1 − 0.1 0.5 0.1] [−0.9690 − 0.0976]
3 [0.1 0.1 − 0.1 0.5 0.1] [−0.7908 − 0.0545]
4 [0.09 0.05 − 0.1 0.55 0.1] [−0.5815 − 0.0306]

Table 1. The stabilization for time-invariant delay dk

dk ρ’s K

0 ≤ dk ≤ 1 [0.1 0.1 − 0.1 0.5 0.1] [−1.1209 − 0.1174]
0 ≤ dk ≤ 2 [0.1 0.1 − 0.1 0.5 0.1] [−0.9429 − 0.0839]
0 ≤ dk ≤ 3 [0.1 0.1 − 0.1 0.5 0.1] [−0.7950 − 0.0469]
0 ≤ dk ≤ 4 [0.09 0.05 − 0.1 0.55 0.1] [−0.5586 − 0.0253]

Table 2. The stabilization for time-varying delay dk

dk ᾱ ρ’s K
3 0.05 [0.1 0.1 − 0.1 0.5 0.1] [−0.8622 − 0.0059]
3 0.10 [0.1 0.1 − 0.1 0.5 0.1] [−0.6243 − 0.0000]
2 0.15 [0.12 0.12 − 0.1 0.5 0.05] [−1.2515 − 0.0115]

Table 3. The robust stabilization for time-invariant delay dk

dk ᾱ ρ’s K
0 ≤ dk ≤ 3 0.05 [0.1 0.1 − 0.1 0.5 0.1] [−0.8394 − 0.0047]
0 ≤ dk ≤ 3 0.10 [0.12 0.1 − 0.1 0.5 0.1] [−1.2539 − 0.0108]
0 ≤ dk ≤ 2 0.15 [0.12 0.12 − 0.1 0.5 0.05] [−1.1740 − 0.0015]

Table 4. The robust stabilization for time-varying delay dk

For time-invariant delay dk, Theorem 4.3 gives control gains for different ᾱ in Table 3. Table 4 provides
the result for time-varying delay dk.

Example 7.2. Consider the following discrete-time delay system:

x(k + 1) =

[
0.85 + 0.1α 0

0 0.97

]
x(k) +

[
−0.1 0
−0.1 −0.1

]
x(k − dk),

y(k) =
[

0.5 0.2
]

x(k) +
[

0.1 0.1
]

x(k − dk)

where α satisfies |α| ≤ ᾱ for ᾱ is an upper bound of α(k). We first consider the observer design for a
nominal time-delay system with α(k) = 0 by Theorem 6.1. Table 5 shows observer gains for different
time-invariant delay dk, while Table 6 gives observer gains for different time-varying delay dk. In the
following observer design, all ρ’s are set to be zero for simplicity.
Next, we consider the robust observer design for the uncertain time-delay system with α(k) �= 0. In
this case, system matrices can be represented in the form of (1) with matrices given by

A =

[
0.85 0

0 0.97

]
, Ad =

[
−0.1 0
−0.1 −0.1

]
, E =

[
ᾱ 0

]
, Ed = E1 =

[
0 0

]
,

C =
[

0.5 0.2
]

, Cd =
[

0.1 0.1
]

, H =

[
0.1
0

]
, F(k) =

α(k)

ᾱ
.
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Theorem 6.2. Given integers dm and dM, and scalars ρi, ρ̂i, i = 1, · · · , 5. Then, (21) becomes an
observer for the system (19) and (20) if there exist matrices 0 < P̃1 ∈ �2n×2n, 0 < P̃2 ∈ �2n×2n,
0 < Q̃1 ∈ �2n×2n, 0 < Q̃2 ∈ �2n×2n, 0 < S̃ ∈ �2n×2n, 0 < M̃ ∈ �2n×2n, G ∈ �n×n, Y ∈ �n×n

L̃ =

⎡
⎢⎢⎢⎢⎣

L̃1

L̃2

L̃3

L̃4

L̃5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n, Ñ =

⎡
⎢⎢⎢⎢⎣

Ñ1

Ñ2

Ñ3

Ñ4

Ñ5

⎤
⎥⎥⎥⎥⎦
∈ �10n×2n, T =

⎡
⎢⎢⎢⎢⎣

T1

T2

T3

T4

T5

⎤
⎥⎥⎥⎥⎦
∈ �5n×n, T̂ =

⎡
⎢⎢⎢⎢⎣

T̂1

T̂2

T̂3

T̂4

T̂5

⎤
⎥⎥⎥⎥⎦
∈ �5n×n,

and a scalar λ > 0 satisfying

Λ̃ =

�
Ψ̃ + λẼTẼ H̃T

H̃ −λI

�
< 0 (27)

where Ψ̃ is given in Theorem 6.1, and

H̃ = −
�
HTTT

1 + ρ1(YH − G̃H2)
T HTT̂T

1 + ρ̂1(YH − G̃H2)
T HTTT

2 + ρ2(YH − G̃H2)
T

HTT̂T
2 + ρ̂2(YH − G̃H2)

T HTTT
3 + ρ3(YH − G̃H2)

T HT T̂T
3 + ρ̂3(YH − G̃H2)

T

HTTT
4 + ρ4(YH − G̃H2)

T HTT̂T
4 + ρ̂4(YH − G̃H2)

T HT TT
5 + ρ5(YH − G̃H2)

T

HTT̂T
5 + ρ̂5(YH − G̃H2)

T 0 0
�

,
Ẽ =

�
0 0 E 0 Ed 0 0 0 0 0 0 0

�
.

In this case, an observer gain in the observer (21) is given by (26).

Proof: Replacing A and Ad in (27) with A + HF(k)E and Ad + HF(k)Ed, respectively, and
following similar lines of proof of Theorem 4.3, we have the desired result.

7. Examples

In this section, the following examples are provided to illustrate the proposed results. First
example shows stabilization and robust stabilization. Second one gives observer design and
robust observer design.

Example 7.1. Consider the following discrete-time delay system:

x(k + 1) =

�
1.1 + α 0

0 0.97

�
x(k) +

�
−0.1 0
−0.1 −0.1

�
x(k − dk)

+

�
0.1
0.5

�
u(k) +

�
0.2
0.3

�
u(k − dk)

where α satisfies |α| ≤ ᾱ for ᾱ is an upper bound of α(k). First, we consider the stabilization for a
nominal time-delay system with α(k) = 0 by Theorem 4.1. Table 1 shows control gains for different
time-invariant delay dk, while Table 2 gives control gains for different time-varying delay dk.
Next, we consider the robust stabilization for the uncertain time-delay system with α(k) �= 0. In this
case, system matrices can be represented in the form of (1) with matrices given by

A =

�
1.1 0
0 0.97

�
, Ad =

�
−0.1 0
−0.1 −0.1

�
, E =

�
1 0

�
, Ed = E1 =

�
0 0

�
,

B =
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0.1
0.5

�
, Bd =

�
0.2
0.3
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, H =

�
ᾱ
0

�
, F(k) =

α(k)

ᾱ
.
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dk ρ’s K
1 [0.1 0.1 − 0.1 0.5 0.1] [−1.1316 − 0.1360]
2 [0.1 0.1 − 0.1 0.5 0.1] [−0.9690 − 0.0976]
3 [0.1 0.1 − 0.1 0.5 0.1] [−0.7908 − 0.0545]
4 [0.09 0.05 − 0.1 0.55 0.1] [−0.5815 − 0.0306]

Table 1. The stabilization for time-invariant delay dk
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0 ≤ dk ≤ 1 [0.1 0.1 − 0.1 0.5 0.1] [−1.1209 − 0.1174]
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0 ≤ dk ≤ 4 [0.09 0.05 − 0.1 0.55 0.1] [−0.5586 − 0.0253]

Table 2. The stabilization for time-varying delay dk

dk ᾱ ρ’s K
3 0.05 [0.1 0.1 − 0.1 0.5 0.1] [−0.8622 − 0.0059]
3 0.10 [0.1 0.1 − 0.1 0.5 0.1] [−0.6243 − 0.0000]
2 0.15 [0.12 0.12 − 0.1 0.5 0.05] [−1.2515 − 0.0115]

Table 3. The robust stabilization for time-invariant delay dk

dk ᾱ ρ’s K
0 ≤ dk ≤ 3 0.05 [0.1 0.1 − 0.1 0.5 0.1] [−0.8394 − 0.0047]
0 ≤ dk ≤ 3 0.10 [0.12 0.1 − 0.1 0.5 0.1] [−1.2539 − 0.0108]
0 ≤ dk ≤ 2 0.15 [0.12 0.12 − 0.1 0.5 0.05] [−1.1740 − 0.0015]

Table 4. The robust stabilization for time-varying delay dk

For time-invariant delay dk, Theorem 4.3 gives control gains for different ᾱ in Table 3. Table 4 provides
the result for time-varying delay dk.

Example 7.2. Consider the following discrete-time delay system:

x(k + 1) =

[
0.85 + 0.1α 0

0 0.97

]
x(k) +

[
−0.1 0
−0.1 −0.1

]
x(k − dk),

y(k) =
[

0.5 0.2
]

x(k) +
[

0.1 0.1
]

x(k − dk)

where α satisfies |α| ≤ ᾱ for ᾱ is an upper bound of α(k). We first consider the observer design for a
nominal time-delay system with α(k) = 0 by Theorem 6.1. Table 5 shows observer gains for different
time-invariant delay dk, while Table 6 gives observer gains for different time-varying delay dk. In the
following observer design, all ρ’s are set to be zero for simplicity.
Next, we consider the robust observer design for the uncertain time-delay system with α(k) �= 0. In
this case, system matrices can be represented in the form of (1) with matrices given by

A =

[
0.85 0

0 0.97

]
, Ad =

[
−0.1 0
−0.1 −0.1

]
, E =

[
ᾱ 0

]
, Ed = E1 =

[
0 0

]
,

C =
[

0.5 0.2
]

, Cd =
[

0.1 0.1
]

, H =

[
0.1
0

]
, F(k) =

α(k)

ᾱ
.
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dk ρ̂’s K̄

1 [−22.6 2.5 − 2.1 − 1.9 − 1.9]

[
0.4835
0.3622

]

2 [−21.9 6.7 − 0.3 − 2.6 − 1.9]

[
0.5372
0.3348

]

3 [−23.4 8.6 0.2 − 1.9 − 1.9]

[
0.5174
0.3910

]

4 [−9.0 26.4 0.2 − 2.5 − 1.9]

[
−3.2281
0.0459

]

5 [−9.0 25.9 0.2 − 2.5 − 1.9]

[
−2.3508
−0.7232

]

Table 5. The observer design for time-invariant delay dk

dk ρ̂’s K̄

0 ≤ dk ≤ 1 [−20.2 6.5 − 2.1 − 2.5 − 1.9]

[
0.6295
0.3777

]

0 ≤ dk ≤ 2 [−21.9 6.7 − 0.3 − 2.6 − 1.9]

[
0.5817
0.3475

]

0 ≤ dk ≤ 3 [−22.0 8.6 0.2 − 1.9 − 1.9]

[
0.5490
0.3037

]

0 ≤ dk ≤ 4 [−22.0 8.6 0.2 − 2.5 − 1.9]

[
0.5157
0.2921

]

0 ≤ dk ≤ 5 [−22.5 8.6 0.2 − 1.9 − 3.1]

[
0.5170
0.2956

]

Table 6. The observer design for time-varying delay dk

dk ᾱ ρ̂’s K̄

1 0.5 [−22.6 2.5 − 2.1 − 1.9 − 1.9]

[
0.5047
0.3813

]

2 0.4 [−21.9 6.7 − 0.3 − 2.6 − 1.9]

[
0.5625
0.3633

]

3 0.3 [−23.4 8.6 0.2 − 1.9 − 1.9]

[
0.5264
0.3641

]

4 0.3 [−9.0 26.4 0.2 − 2.5 − 1.9]

[
−2.6343
−1.6768

]

5 0.2 [−9.0 25.9 0.2 − 2.5 − 1.9]

[
−2.5959
−1.5602

]

Table 7. The observer design for time-invariant delay dk

For time-invariant delay dk, Theorem 6.2 gives observer gains for different ᾱ in Table 7. Table 8 provides
observer gains for time-varying delay dk by the same theorem.

8. Conclusions

In this paper, we proposed stabilization and robust stabilization method for discrete-time
systems with time-varying delay. Our conditions were obtained by introducing new
Lyapunov function and using Leibniz-Newton formula and free weighting matrix method.
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dk ᾱ ρ̂’s K̄

0 ≤ dk ≤ 1 0.5 [−20.2 6.5 − 2.1 − 2.5 − 1.9]

[
0.6345
0.3520

]

0 ≤ dk ≤ 2 0.4 [−21.9 6.7 − 0.3 − 2.6 − 1.9]

[
0.5870
0.3153

]

0 ≤ dk ≤ 3 0.3 [−22.0 8.6 0.2 − 1.9 − 1.9]

[
0.5675
0.3003

]

0 ≤ dk ≤ 4 0.3 [−22.0 8.6 0.2 − 2.5 − 1.9]

[
0.5375
0.3444

]

0 ≤ dk ≤ 5 0.2 [−22.5 8.6 0.2 − 1.9 − 3.1]

[
0.5077
0.3425

]

Table 8. The observer design for time-varying delay dk

Similarly, we also gave observer design and robust observer design methods. Numerical
examples were given to illustrate our proposed design method.
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dk ᾱ ρ̂’s K̄

1 0.5 [−22.6 2.5 − 2.1 − 1.9 − 1.9]

[
0.5047
0.3813

]

2 0.4 [−21.9 6.7 − 0.3 − 2.6 − 1.9]

[
0.5625
0.3633

]

3 0.3 [−23.4 8.6 0.2 − 1.9 − 1.9]

[
0.5264
0.3641

]

4 0.3 [−9.0 26.4 0.2 − 2.5 − 1.9]

[
−2.6343
−1.6768

]

5 0.2 [−9.0 25.9 0.2 − 2.5 − 1.9]

[
−2.5959
−1.5602

]

Table 7. The observer design for time-invariant delay dk

For time-invariant delay dk, Theorem 6.2 gives observer gains for different ᾱ in Table 7. Table 8 provides
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1. Introduction 
In the last twenty some years, much attention has been paid to the problem of fault-tolerant 
control in satellite attitude control systems and many methods have been developed and 
proven to be capable of tolerating certain types of system faults (see e.g., [1~5] and the 
references therein). However, these solutions focused mainly on keeping stability of the faulty 
systems and in less consideration of other performance indices. Actually, the performance 
requirements of practical satellite control systems are usually multi-objective even in faulty 
cases and it is desirable for fault tolerant systems to keep the required performance indices in a 
satisfactory and admissible region rather than the optimization of single index [6~7]. 
As is well known, in many practical applications, it is desirable to construct systems to 
achieve better transient property, strong anti-disturbance ability and adequate level of cost 
function performance. To this end, optimal controllers have been designed by assigning pole 
in a desired region (see e.g., [8] and [9]), using H∞ norm-bound constraint on disturbance 
attenuation [10, 11] and the guaranteed cost control (see [12] and [13]), respectively. 
Unfortunately, few results have been considered such performance indices simultaneously. 
Meanwhile, once some components of satellite attitude control systems go wrong, it is 
difficult to confirm desired multiple performances by the existing fault-tolerant control. 
Thus, it is necessary to investigate the problem of fault-tolerant control with multiple 
performance constraints. 
Therefore, it is our motivation to investigate the quadratic D stabilizable satisfactory fault-
tolerant control problem with consistent indices constraints for a class of satellite attitude 
control uncertain discrete-time systems subject to actuator failures. In view of possible 
actuator failure as well as uncertainties which do not satisfy matching conditions existing in 
both the state and control input matrices, we first derive the existence conditions of 
satisfactory fault-tolerant state-feedback control law. Then by LMI technique, a convex 
optimization problem is formulated to find the corresponding controller. The state-feedback 
controller is designed to guarantee the closed-loop system satisfying the pre-specified 
quadratic D stabilizability index, H∞ norm-bound constraint on disturbance attenuation and 
having the quadratic cost performance simultaneously, for all admissible value-bounded 



[12] Palhares, R.M.; Campos, C.D.; Ekel, P. Ya.; Leles, M.C.R. & D’Angelo, M.F.S.V. (2005).
Delay-dependent robust H∞ control of uncertain linear systems with lumped delays,
IEE Proc. Control Theory Appl., Vol.152, 27-33

[13] Xie, L. (1996). Output Feedback H∞ Control of systems with parameter uncertainty,
International Journal of Control, Vol.63, 741-750.

[14] Xu, S.; Lam, J. & Zou, Y. (2005). Improved conditions for delay-dependent robust
stability and stabilization of uncertain discrete-time systems, Asian Journal of Control,
Vol.7, 344-348.

[15] Xu, S.; Lam, J. & Zou, Y. (2006). New results on delay-dependent robust H∞ control for
systems with time-varying delays, Automatica, Vol.42, 343-348.

[16] Ye, D. & Yang, G. H. (2008). Adaptive robust H∞ state feedback control for linear
uncertain systems with time-varying delay, International Journal of Adaptive Control and
Signal Processing, Vol.22, 845-858.

[17] Yoneyama, J. (2008). H∞ disturbance attenuation for discrete-time systems with time
varying delays, SICE Transactions, Vol.44, 285-287(in Japanese).

[18] Yoneyama, J. & Tsuchiya, T. (2008). New delay-dependent conditions on robust stability
and stabilisation for discrete-time systems with time-delay, International Journal of Systems
Science, Vol.39, 1033-1040.

[19] Zhang, X.-M. & Han, Q.-L. (2008). A new finite sum inequality approach to
delay-dependent H∞ control of discrete-time systems with time-varying delay,
International Journal of Robust and Nonlinear Control, Vol.18, 630-647.

194 Discrete Time Systems

12 

Quadratic D Stabilizable  
Satisfactory Fault-tolerant Control with  

Constraints of Consistent Indices for  
Satellite Attitude Control Systems 

Han Xiaodong1 and Zhang Dengfeng2 
1Institute of Telecommunication Satellite, CAST, Beijing 100094 

2Nanjing University of Science and Technology, Nanjing 210094, 
P.R. China 
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control in satellite attitude control systems and many methods have been developed and 
proven to be capable of tolerating certain types of system faults (see e.g., [1~5] and the 
references therein). However, these solutions focused mainly on keeping stability of the faulty 
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cases and it is desirable for fault tolerant systems to keep the required performance indices in a 
satisfactory and admissible region rather than the optimization of single index [6~7]. 
As is well known, in many practical applications, it is desirable to construct systems to 
achieve better transient property, strong anti-disturbance ability and adequate level of cost 
function performance. To this end, optimal controllers have been designed by assigning pole 
in a desired region (see e.g., [8] and [9]), using H∞ norm-bound constraint on disturbance 
attenuation [10, 11] and the guaranteed cost control (see [12] and [13]), respectively. 
Unfortunately, few results have been considered such performance indices simultaneously. 
Meanwhile, once some components of satellite attitude control systems go wrong, it is 
difficult to confirm desired multiple performances by the existing fault-tolerant control. 
Thus, it is necessary to investigate the problem of fault-tolerant control with multiple 
performance constraints. 
Therefore, it is our motivation to investigate the quadratic D stabilizable satisfactory fault-
tolerant control problem with consistent indices constraints for a class of satellite attitude 
control uncertain discrete-time systems subject to actuator failures. In view of possible 
actuator failure as well as uncertainties which do not satisfy matching conditions existing in 
both the state and control input matrices, we first derive the existence conditions of 
satisfactory fault-tolerant state-feedback control law. Then by LMI technique, a convex 
optimization problem is formulated to find the corresponding controller. The state-feedback 
controller is designed to guarantee the closed-loop system satisfying the pre-specified 
quadratic D stabilizability index, H∞ norm-bound constraint on disturbance attenuation and 
having the quadratic cost performance simultaneously, for all admissible value-bounded 
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uncertainties and possible actuator failures. Furthermore, the consistency of the 
performance indices mentioned earlier is discussed for fault-tolerant control. Finally, 
simulative example is provided to illustrate the validity of the proposed method and the 
necessity of such a satisfactory fault-tolerant control. 

2. Problem formulation 
The systems considered in this paper can be described as follows: 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 f

f

k k k k

k k k

+ = + Δ + + Δ +

= +

x A A x B B u Dω

z Cx Eu
 (1) 

where ( ) nk ∈ℜx  is the state vector, ( )f pk ∈ℜu  is the control input from the actuator that 
may be fault, ( ) kk ∈ℜz  is the controlled output, ( ) qk ∈ℜω  is the input disturbance and 

2|| ( )||k β≤ω , A , B , C  and D  are known real constant matrices with appropriate 
dimensions, ΔA  and ΔB  are unknown matrices representing parameter uncertainties in the 
state matrix and input matrix, respectively. 
In much literature, time-varying matrices of uncertain parameters are assumed to be of the 
form [ ] ( )[ ]a bkΔ Δ =A B HF E E , where H , aE  and bE  are known real constant matrices 
with appropriate dimensions, ( )kF  is an unknown real matrix satisfying 

*( ) : { ( ) | ( ) ( ) }i j Tk k k k∈Ω = ∈ℜ ≤F F F F I . However, the uncertainty is often value bounded 
which is more universal and need not satisfy the so-called matching conditions in practical 
engineering. Thus, ΔA  and ΔB  denote value bounded uncertainties in this paper, i.e., 
|| || aΔ ≤A , || || bΔ ≤B . 
Suppose the states are available for state-feedback. 

 ( ) ( )k k=u Kx  (2) 

where *p n∈ℜK  is the feedback gain matrix. For the control input, the following failure 
model in [18] is adopted for this study: 

 ( ) ( )f k k=u Mu  (3) 

 1 2, , , pdiag m m m⎡ ⎤= ⎣ ⎦M  (4) 

where M  denotes the actuator faults function matrix, 0 il i ium m m≤ ≤ ≤ , 1ilm < , 1ium ≥ , 
1,2, ,i p= . 

Remark 1: In the above fault matrix M , if 1im = , it corresponds to the normal case 
( ) ( )f k k=u u . If 0im = , outage of actuator control signal occurs. If 0 il i ium m m< < < , 1ilm < , 

1ium ≥  and 1im ≠ , the corresponding actuator would be in partial failure case. Hence, let 
( )f ku  denote the control input vector both in normal and actuator failures cases for fault-

tolerant control research in this paper. 
The decomposition of fault function M  is given below with a similar manner in [7], which 
will be used for our main results. Define 

0 01 02 0[ , , , ]pdiag m m m=M , 1 2[ , , , ]pdiag j j j=J , 1 2| | [| |,| |, ,| |]pdiag l l l=L , 
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where 0 ( ) / 2i il ium m m= + , ( ) /( )i iu il iu ilj m m m m= − + , 0 0( ) /i i i il m m m= − . So, we then have 

 ( )0= +         ≤ ≤M M I L L J I  (5) 

The faulty closed-loop system is given by 

 
( ) ( ) ( )
( ) ( )

1 C

C

k k k
k k

+ = +

=

x A x Dω
z C x

 (6) 

where C C C= + ΔA A A , C = +A A BMK , CΔ = Δ + ΔA A BMK , C = +C C EMK . 
The cost function associated with system (1) considered possible actuator faults (3) is 

 ( ) ( ) ( )( ) ( )
0

TT

k
J k x k

∞

=
= +∑ x Q MK R MK  (7) 

where 0T= >Q Q , 0T= >R R  are given weighting matrices.  
Definition 1: For system (1), if there exists state-feedback controller, such that the faulty 
closed-loop system (6) will meet the following indices constraints simultaneously, 
a. The closed-loop system is quadratic D stabilizable with constraint ( , )q rΦ , ( , )q rΦ  

denotes the disc with centre 0q j+  and the radius r , where r  and q  are known 
constants with | | 1q r+ < . 

b. The H∞ norm of the closed-loop transfer function is strictly less than a given positive 
scalar γ , 

c. The closed-loop value of the cost function (7) exists an upper bound satisfying J J∗≤ , 
then for all admissible uncertainties and possible faults, the given indices, quadratic D 
stabilizability index ( , )q rΦ , H∞ norm bound 0γ >  and cost function performance * 0J >  
are said to be consistent, state-feedback controller ( ) ( )k k=u Kx  is said to be satisfactory 
fault-tolerant controller. 
Now, the satisfactory fault-tolerant control problem considered in this paper is stated in the 
following. 
Problem: For the system (1) with actuator failure, given the quadratic D stabilizability index 

( , )q rΦ , H∞ norm bound 0γ >  and the cost function (7), determine a control law 
( ) ( )k k=u Kx  so that the closed-loop system satisfies criteria (a), (b) and (c) simultaneously. 

3. Main results 
Lemma 1: Consider the actuator fault model (3), for any matrix 0T= >R R  and scalar 0ε > , 
if 01 ε− − >R I  then  

 ( ) 11 1
0 0 0 0ε ε

−− −≤ − +MRM M R I M M JJM  (8) 

Lemma 2: Consider the system (1) subject to faults, given index ( , )q rΦ , if there exists gain 
matrix K  and symmetric positive matrix P  such that the following matrix inequality 
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uncertainties and possible actuator failures. Furthermore, the consistency of the 
performance indices mentioned earlier is discussed for fault-tolerant control. Finally, 
simulative example is provided to illustrate the validity of the proposed method and the 
necessity of such a satisfactory fault-tolerant control. 
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*( ) : { ( ) | ( ) ( ) }i j Tk k k k∈Ω = ∈ℜ ≤F F F F I . However, the uncertainty is often value bounded 
which is more universal and need not satisfy the so-called matching conditions in practical 
engineering. Thus, ΔA  and ΔB  denote value bounded uncertainties in this paper, i.e., 
|| || aΔ ≤A , || || bΔ ≤B . 
Suppose the states are available for state-feedback. 

 ( ) ( )k k=u Kx  (2) 

where *p n∈ℜK  is the feedback gain matrix. For the control input, the following failure 
model in [18] is adopted for this study: 

 ( ) ( )f k k=u Mu  (3) 

 1 2, , , pdiag m m m⎡ ⎤= ⎣ ⎦M  (4) 

where M  denotes the actuator faults function matrix, 0 il i ium m m≤ ≤ ≤ , 1ilm < , 1ium ≥ , 
1,2, ,i p= . 

Remark 1: In the above fault matrix M , if 1im = , it corresponds to the normal case 
( ) ( )f k k=u u . If 0im = , outage of actuator control signal occurs. If 0 il i ium m m< < < , 1ilm < , 

1ium ≥  and 1im ≠ , the corresponding actuator would be in partial failure case. Hence, let 
( )f ku  denote the control input vector both in normal and actuator failures cases for fault-

tolerant control research in this paper. 
The decomposition of fault function M  is given below with a similar manner in [7], which 
will be used for our main results. Define 

0 01 02 0[ , , , ]pdiag m m m=M , 1 2[ , , , ]pdiag j j j=J , 1 2| | [| |,| |, ,| |]pdiag l l l=L , 
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where 0 ( ) / 2i il ium m m= + , ( ) /( )i iu il iu ilj m m m m= − + , 0 0( ) /i i i il m m m= − . So, we then have 

 ( )0= +         ≤ ≤M M I L L J I  (5) 

The faulty closed-loop system is given by 

 
( ) ( ) ( )
( ) ( )

1 C

C

k k k
k k

+ = +

=

x A x Dω
z C x

 (6) 

where C C C= + ΔA A A , C = +A A BMK , CΔ = Δ + ΔA A BMK , C = +C C EMK . 
The cost function associated with system (1) considered possible actuator faults (3) is 

 ( ) ( ) ( )( ) ( )
0

TT

k
J k x k

∞

=
= +∑ x Q MK R MK  (7) 

where 0T= >Q Q , 0T= >R R  are given weighting matrices.  
Definition 1: For system (1), if there exists state-feedback controller, such that the faulty 
closed-loop system (6) will meet the following indices constraints simultaneously, 
a. The closed-loop system is quadratic D stabilizable with constraint ( , )q rΦ , ( , )q rΦ  

denotes the disc with centre 0q j+  and the radius r , where r  and q  are known 
constants with | | 1q r+ < . 

b. The H∞ norm of the closed-loop transfer function is strictly less than a given positive 
scalar γ , 

c. The closed-loop value of the cost function (7) exists an upper bound satisfying J J∗≤ , 
then for all admissible uncertainties and possible faults, the given indices, quadratic D 
stabilizability index ( , )q rΦ , H∞ norm bound 0γ >  and cost function performance * 0J >  
are said to be consistent, state-feedback controller ( ) ( )k k=u Kx  is said to be satisfactory 
fault-tolerant controller. 
Now, the satisfactory fault-tolerant control problem considered in this paper is stated in the 
following. 
Problem: For the system (1) with actuator failure, given the quadratic D stabilizability index 

( , )q rΦ , H∞ norm bound 0γ >  and the cost function (7), determine a control law 
( ) ( )k k=u Kx  so that the closed-loop system satisfies criteria (a), (b) and (c) simultaneously. 

3. Main results 
Lemma 1: Consider the actuator fault model (3), for any matrix 0T= >R R  and scalar 0ε > , 
if 01 ε− − >R I  then  

 ( ) 11 1
0 0 0 0ε ε

−− −≤ − +MRM M R I M M JJM  (8) 

Lemma 2: Consider the system (1) subject to faults, given index ( , )q rΦ , if there exists gain 
matrix K  and symmetric positive matrix P  such that the following matrix inequality 

 
( )

0
1

2

C
T

C

q

q r

−⎡ ⎤− −
⎢ ⎥ <
⎢ ⎥− −⎣ ⎦

P A I

A I P
 (9) 
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holds for all admissible uncertainties and possible faults, then the system (1) is quadratically 
D stabilizable. 
Remark 2: It can be easily shown that in the case when 0q = , 1r = , the definition of 
quadratic D stabilizability is reduced to quadratic stabilizability where no closed-loop pole 
constraints is considered. Therefore, Lemma 2 shows that if the uncertain system (1) is 
quadratic D stabilizable, then for some state feedback controllers both quadratic 
stabilizability and pole assignment constraints of the faulty closed-loop system are enforced 
simultaneously. 
Theorem 1: Consider the system (1), for the given index ( , )q rΦ , if there exists symmetric 
positive matrix X , matrix Y  and scalars 0( 1 ~ 3)i iε > =  such that the following linear 
matrix inequality 

 

0 0

0 0 0
0

11 3
2

1

2 3
1

3

*
* *
* * *

* * * *

T T

q

r

ε

ε
ε ε

ε −

+ −⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥− <
⎢ ⎥

− +⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

Σ AX BY X BJ
X X Y Y

I
I J

J

 (10) 

holds, where 11 1 2 3
Ta bε ε ε= − + + +Σ X I I BJB . Then for all admissible uncertainties and 

possible faults M , the faulty closed-loop system (6) with satisfactory fault-tolerant 
controller 1

0( ) ( )k k −= =u Kx M Y  1 ( )k−X x  is quadratically D stabilizable. 
Remark 3: Theorem 1 shows us LMI with X  and Y , which can be tested with convex 
optimization to decide whether it is solvable, and Matlab LMI Control Toolbox can be 
utilized to solve it. If LMI (13) holds, there must exist state-feedback controller assigning the 
closed-loop poles within ( , )q rΦ , namely, the constraint (a) is met. In this case the system (1) 
is said to be robust fault-tolerant state feedback assignable for actuator faults case. 
Lemma 3: Consider the system (1) in fault case and the cost function (7) as well as square 
integrable disturbance ( )kω , if there exists gain matrix K  and symmetric positive matrix P  
such that the following matrix inequality  

 ( ) 0
12T T T T T T

C C C C C Cγ
−

− + + + + − <A PA P C C Q K MRMK A PD I D PD D PA  (11) 

holds for all admissible uncertainties and possible faults M , then the faulty closed-loop 
system is asymptotically stable with an H∞ norm-bound γ , and the cost function (7) has an 
upper bound 

 2 2
0 0
TJ γ β< +x Px  (12) 

Remark 4: In some literature on the guaranteed cost control with regional pole constraint 
such as [12], the upper bound of cost function J is that 2(0) /J V r≤  2

0 0 /T r= x Px . For 
0 1r< < , it is certainly larger than the one in (12) when 0( )t =ω . So the result here provides 
an improved performance bound. 
Remark 5: Note this upper bound in (12) which depends on the initial condition 0x . To 
remove the dependence on the initial state, suppose 0x  is arbitrary but belongs to the set 

0 0{ : , 1}n TW = ∈ℜ = ≤x x Uv v v , where U  is a given matrix. The cost bound in (12) then 
leads to 
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( )2 2 2 2
0 0 max
T TJ γ β λ γ β< + ≤ +x Px U PU  

Theorem 2: Consider the system (1) and the cost function (7), for the given index ( , )q rΦ  
and H∞ norm-bound index γ , if there exists symmetric positive matrix X , matrix Y and 
scalars 0( 4 ~ 9)i iε > =  such that the following linear matrix inequality 

 

( )0

0 0
0

21
2

4 5 6

22

*

* *
* * *

T

T

Ta b

γ

ε ε ε

⎡ ⎤− +
⎢ ⎥
⎢ ⎥− <⎢ ⎥

− + + +⎢ ⎥
⎢ ⎥
⎣ ⎦

X AX BY Σ
I D

X I I BJB
Σ

 (13) 

holds, where ( )21 [ , , , , , , , , ]T T T T T T T= +Σ CX EY X X Y Y Y Y Y Y J , 1
22 7 4[ , , ,Tdiag ε ε−= − + − −Σ I EJE Q I  

1 1 1 1
5 8 6 7 8 9 9, , , , , ]ε ε ε ε ε ε ε− − − −− + − − − − −I J J J J I R I . Then for all admissible uncertainties and 

possible faults M , the faulty closed-loop system (6) with satisfactory fault-tolerant 
controller ( ) ( )k k= =u Kx  1 1

0 ( )k− −M YX x  is asymptotically stable with an H∞ norm-bound γ , 

and the corresponding closed-loop cost function (7) is with 1 2 2
max( )TJ λ γ β−≤ +U X U . 

According to Theorem 1 and 2, the consistency of the quadratic D stabilizability constraint, 
H∞ performance and cost function indices for fault-tolerant control is deduced as the 
following optimization problem. 
Theorem 3: Given quadratic D stabilizability index ( , )q rΦ , suppose the system (1) is robust 
fault-tolerant state feedback assignable for actuator faults case, then LMIs (10), (13) have a 
feasible solution. Thus, the following minimization problem is meaningful. 

 ( ) ( )min : , , , iγ γ ε  X Y  S.t. LMIs (10), (13) (14) 

Proof: Based on Theorem 1, if the system (1) is robust fault-tolerant state feedback 
assignable for actuator faults case, then inequality 

0T
C C − <A PA P  

has a feasible solution P , K . And existing 0λ > , 0δ > , the following inequality holds 

 0T T T
C C C Cλ δ⎡ ⎤− + + + + <⎣ ⎦A PA P C C Q K MRMK I  (15) 

Then existing a scalar 0γ , when 0γ γ> , it can be obtained that 

( ) 12
1 1 1

T T T
C Cγ δ

−
− <A P D I D P D D P A I  

where 1 λ=P P . Furthermore, it follows that 

( ) 0
12

1 1 1 1 1
T T T T T T
C C C C C Cγ

−
− + + + + − <A P A P C C Q K MRMK A P D I D P D D P A  

Using Schur complement and Theorem 2, it is easy to show that the above inequality is 
equivalent to linear matrix inequality (13), namely, 1P , K , γ  is a feasible solution of LMIs 
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( )2 2 2 2
0 0 max
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controller ( ) ( )k k= =u Kx  1 1

0 ( )k− −M YX x  is asymptotically stable with an H∞ norm-bound γ , 

and the corresponding closed-loop cost function (7) is with 1 2 2
max( )TJ λ γ β−≤ +U X U . 

According to Theorem 1 and 2, the consistency of the quadratic D stabilizability constraint, 
H∞ performance and cost function indices for fault-tolerant control is deduced as the 
following optimization problem. 
Theorem 3: Given quadratic D stabilizability index ( , )q rΦ , suppose the system (1) is robust 
fault-tolerant state feedback assignable for actuator faults case, then LMIs (10), (13) have a 
feasible solution. Thus, the following minimization problem is meaningful. 

 ( ) ( )min : , , , iγ γ ε  X Y  S.t. LMIs (10), (13) (14) 

Proof: Based on Theorem 1, if the system (1) is robust fault-tolerant state feedback 
assignable for actuator faults case, then inequality 

0T
C C − <A PA P  

has a feasible solution P , K . And existing 0λ > , 0δ > , the following inequality holds 
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C C C Cλ δ⎡ ⎤− + + + + <⎣ ⎦A PA P C C Q K MRMK I  (15) 

Then existing a scalar 0γ , when 0γ γ> , it can be obtained that 
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Using Schur complement and Theorem 2, it is easy to show that the above inequality is 
equivalent to linear matrix inequality (13), namely, 1P , K , γ  is a feasible solution of LMIs 
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(10), (13). So if the system (1) is robust fault-tolerant state feedback assignable for actuator 
faults case, the LMIs (10), (13) have a feasible solution and the minimization problem (14) is 
meaningful. The proof is completed. 
Suppose the above minimization problem has a solution LX , LY , iLε , Lγ , and then any 
index Lγ γ> , LMIs (10), (13) have a feasible solution. Thus, the following optimization 
problem is meaningful. 
Theorem 4: Consider the system (1) and the cost function (7), for the given quadratic D 
stabilizability index ( , )q rΦ  and H∞ norm-bound index Lγ γ> , if there exists symmetric 
positive matrix X , matrix Y  and scalars 0( 1 ~ 9)i iε > =  such that the following 
minimization 

 2 2min λ γ β   +  (16) 

S.t. (i)   (10), (13) 

                 (ii)  0
Tλ⎡ ⎤−

<⎢ ⎥
−⎢ ⎥⎣ ⎦

I U
U X

 

has a solution min min min min, , ,iε λX Y , then for all admissible uncertainties and possible faults 

M , 1 1
0 min min( ) ( ) ( )k k k− −= =u Kx M Y X x  is an optimal guaranteed cost satisfactory fault-tolerant 

controller, so that the faulty closed-loop system (6) is quadratically D stabilizable with an H∞ 
norm-bound γ , and the corresponding closed-loop cost function (7) satisfies 

2 2
minJ λ γ β≤ + . 

According to Theorem 1~4, the following satisfactory fault-tolerant controller design 
method is concluded for the actuator faults case. 
Theorem 5: Given consistent quadratic D stabilizability index ( , )q rΦ , H∞ norm index 

Lγ γ>  and cost function index * 2 2
minJ λ γ β> + , suppose that the system (1) is robust fault-

tolerant state feedback assignable for actuator faults case. If LMIs (10), (13) have a feasible 
solution X , Y , then for all admissible uncertainties and possible faults M , 

1 1
0( ) ( ) ( )k k k− −= =u Kx M YX x  is satisfactory fault-tolerant controller making the faulty closed-

loop system (6) satisfying the constraints (a), (b) and (c) simultaneously. 
In a similar manner to the Theorem 5, as for the system (1) with quadratic D stabilizability, 
H∞ norm and cost function requirements in normal case, i.e., =M I , we can get the 
satisfactory normal controller without fault tolerance. 

4. Simulative example 
Consider a satellite attitude control uncertain discrete-time system (1) with parameters as 
follows: 

[ ]2 2 1 1 0.1 1 0 1 0
,  ,  0.2 0.3 ,  ,  ,  ,  0.1,  0.2 .

2 4 0 1 0.5 0 1 0 1
a b

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = = = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
A B C D Q R  

Suppose the actuator failure parameters {0.4, 0.6}l diag=  M , {1.3, }u diag=  1.1M . Given the 
quadratic D stabilizability index (0.5,0.5)Φ , we can obtain state-feedback satisfactory fault-
tolerant controller (SFTC), such that the closed-loop systems will meet given indices 
constraints simultaneously based on Theorem 5.  
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SFTC
0.5935 3.0187
6.7827 5.6741

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

K  

In order to compare, we can obtain the state-feedback satisfactory normal controller (SNC) 
without fault-tolerance. 

SNC
0.4632 2.4951
5.4682 4.9128

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

K  

Through simulative calculation, the pole-distribution of the closed-loop system by 
satisfactory fault-tolerant controller and normal controller are illustrated in Figure 1, 2 and 3 
for normal case and the actuator faults case respectively. It can be concluded that the poles 
of closed-loop system driven by normal controller lie in the circular disk Φ(0.5,0.5) for 
normal case (see Fig. 1). However, in the actuator failure case, the closed-loop system with 
normal controller is unstable; some poles are out of the given circular disk (see Fig. 2). In the 
contrast, the performance by satisfactory fault-tolerant controller still satisfies the given pole 
index (see Fig. 3). Thus the poles of closed-loop systems lie in the given circular disk by the 
proposed method. 
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Fig. 1. Pole-distribution under satisfactory normal control without faults 

5. Conclusion 
Taking the guaranteed cost control in practical systems into account, the problem of 
satisfactory fault-tolerant controller design with quadratic D stabilizability and H∞ norm-
bound constraints is concerned by LMI approach for a class of satellite attitude systems 
subject to actuator failures. Attention has been paid to the design of state-feedback controller 
that guarantees, for all admissible value-bounded uncertainties existing in both the state and 
control input matrices as well as possible actuator failures, the closed-loop system to satisfy 
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normal case (see Fig. 1). However, in the actuator failure case, the closed-loop system with 
normal controller is unstable; some poles are out of the given circular disk (see Fig. 2). In the 
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Fig. 1. Pole-distribution under satisfactory normal control without faults 

5. Conclusion 
Taking the guaranteed cost control in practical systems into account, the problem of 
satisfactory fault-tolerant controller design with quadratic D stabilizability and H∞ norm-
bound constraints is concerned by LMI approach for a class of satellite attitude systems 
subject to actuator failures. Attention has been paid to the design of state-feedback controller 
that guarantees, for all admissible value-bounded uncertainties existing in both the state and 
control input matrices as well as possible actuator failures, the closed-loop system to satisfy 
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the pre-specified quadratic D stabilizability index, meanwhile the H∞ index and cost 
function are restricted within the chosen upper bounds. So, the resulting closed-loop system 
can provide satisfactory stability, transient property, H∞ performance and quadratic cost 
performance despite of possible actuator faults. The similar design method can be extended 
to sensor failures case. 
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1. Introduction

Nowadays nearly all the control algorithms are implemented digitally and consequently
discrete-time systems have been receiving ever increasing attention. However, as to the
development of nonlinear adaptive control methods, which are generally regarded as smart
ways to deal with system uncertainties, most researches are conducted for continuous-time
systems, such that it is very difficult or even impossible to directly apply many well
developed methods in discrete-time systems, due to the fundamental difference between
differential and difference equations for modeling continuous-time and discrete-time systems,
respectively. Even some concepts for discrete-time systems have very different meaning from
those for continuous-time systems, e.g., the “relative degrees” defined for continuous-time
and discrete-time systems have totally different physical explanations Cabrera & Narendra
(1999). Therefore, nonlinear adaptive control of discrete-time systems needs to be further
investigated.
On the other hand, the early studies on adaptive control were mainly concerning on the
parametric uncertainties, i.e., unknown system parameters, such that the designed control
laws have limited robustness properties, where minute disturbances and the presence of
nonparametric model uncertainties can lead to poor performance and even instability of
the closed-loop systems Egardt (1979); Tao (2003). Subsequently, robustness in adaptive
control has been the subject of much research attention for decades. However, due to
the difficulties associated with discrete-time uncertain nonlinear system model, there are
only limited researches on robust adaptive control to deal with nonparametric nonlinear
model uncertainties in discrete-time systems. For example, in Zhang et al. (2001), parameter
projection method was adopted to guarantee boundedness of parameter estimates in presence
of small nonparametric uncertainties under certain wild conditions. For another example,
the sliding mode method has been incorporated into discrete-time adaptive control Chen
(2006). However, in contrast to continuous-time systems for which a sliding mode controller
can be constructed to eliminate the effects of the general uncertain model nonlinearity, for
discrete-time systems, the uncertain nonlinearity is normally required to be of small growth
rate or globally bounded, but sliding mode control is yet not able to completely compensate
for the effects of nonlinear uncertainties in discrete-time. As a matter of fact, unlike in
continuous-time systems, it is much more difficulty in discrete-time systems to deal with
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nonlinear uncertainties. When the size of the uncertain nonlinearity is larger than a certain
level, even a simple first-order discrete-time system cannot be globally stabilized Xie & Guo
(2000). In an early work on discrete-time adaptive systems, Lee (1996) it is also pointed
out that when there is large parameter time-variation, it may be impossible to construct
a global stable control even for a first order system. Moreover, for discrete-time systems,
most existing robust approaches only guarantee the closed-loop stability in the presence of
the nonparametric model uncertainties, but are not able to improve control performance by
complete compensation for the effect of uncertainties.
Towards the goal of complete compensation for the effect of nonlinear model uncertainties
in discrete-time adaptive control, the methods using output information in previous steps
to compensate for uncertainty at current step have been investigated in Ma et al. (2007)
for first order system, and in Ge et al. (2009) for high order strict-feedback systems. We
will carry forward to study adaptive control with nonparametric uncertainty compensation
for NARMA system (nonlinear auto-regressive moving average), which comprises a general
nonlinear discrete-time model structure and is one of the most frequently employed form in
discrete-time modeling process.

2. Problem formulation

In this chapter, NARMA system to be studied is described by the following equation

y(k + n) =
n

∑
i=1

θT
i φi(y(k + n − i)) +

m

∑
j=1

gju(k − m + j) + ν(z(k − τ)) (1)

where y(k) and u(k) are output and input, respectively. Here

y(k) = [y(k), y(k − 1), . . . , y(k − n + 1)]T (2)

u(k) = [u(k − 1), u(k − 2), . . . , u(k − m + 1)]T (3)

and z(k) = [yT(k), uT(k − 1)]T. And for i = 1, 2, · · · , n, φi(·) : Rn → Rpi are known

vector-valued functions, θT
i = [θi,1, . . . , θi,pi

], and gj are unknown parameters. And the last
term ν(z(k − τ)) represents the nonlinear model uncertainties (which can be regarded as
unmodeled dynamics uncertainties) with unknown time delay τ satisfying 0 ≤ τmin ≤ τ ≤
τmax for known constants τmin and τmax. The control objective to make sure the boundedness
of all the closed-loop signals while to make the output y(k) asymptotically track a given
bounded reference y∗(k).
Time delay is an active topic of research because it is frequently encountered in engineering
systems to be controlled Kolmanovskii & Myshkis (1992). Of great concern is the effect
of time delay on stability and asymptotic performance. For continuous-time systems
with time delays, some of the useful tools in robust stability analysis have been well
developed based on the Lyapunov’s second method, the Lyapunov-Krasovskii theorem and
the Lyapunov-Razumikhin theorem. Following its success in stability analysis, the utility
of Lyapunov-Krasovskii functionals were subsequently explored in adaptive control designs
for continuous-time time delayed systems Ge et al. (2003; 2004); Ge & Tee (2007); Wu (2000);
Xia et al. (2009); Zhang & Ge (2007). However, in the discrete-time case there dos not exist
a counterpart of Lyapunov-Krasovskii functional. To resolve the difficulties associated with
unknown time delayed states and the nonparametric nonlinear uncertainties, an augmented
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states vector is introduced in this work such that the effect of time delays can be canceled at
the same time when the effects of nonlinear uncertainties are compensated.
In the NARMA system described in (1), we can see that there is a “relative degree” n which
can be regarded as response delay from input to output. Thus, the control input at the kth
step, u(k), will actually only determine the output at n-step ahead. The n-step ahead output
y(k + n) also depends on the following future outputs:

y(k + 1), y(k + 2), . . . , y(k + n − 2), y(k + n − 1) (4)

and ideally the controller should also incorporate the information of these states. However,
dependence on these future states will make the controller non-causal!
If system (1) is linear, e.g., there is no nonlinear functions φi, we could find a so called
Diophantine function by using which system (1) can be transformed into an n-step predictor
where y(k + n) only depends on outputs at or before the k-th step. Then, linear adaptive
control can be designed under certainty equivalence principal to emulate a deadbeat controller,
which forces the n-step ahead future output to acquire a desired reference value. However,
transformation of the nonlinear system (1) into an n-step predictor form would make the
known nonlinear functions and unknown parameters entangled together and thus not
identifiable. Thus, we propose future outputs prediction, based on which adaptive control can
be designed properly.
Throughout this chapter, the following notations are used.

• � · � denotes the Euclidean norm of vectors and induced norm of matrices.

• Z+
t represents the set of all integers which are not less than a given integer t.

• 0[q] stands for q-dimension zero vector.

• A := B means that A is defined as B.

• (ˆ) and (˜) denote the estimates of unknown parameters and estimate errors, respectively.

3. Assumptions and preliminaries

Some reasonable assumptions are made in this section on the system (1) to be studied. In
addition, some useful lemmas are introduced in this section to facilitate the later control
design.

Assumption 3.1. In system (1), the functional uncertainty ν(·), satisfies Lipschitz condition, i.e.,
�ν(ε1) − ν(ε2)� ≤ Lν�ε1 − ε2�, ∀ε1, ε2 ∈ Rn, where Lν < λ∗ with λ∗ being a small number
defined in (58). The system functions φi(·), i = 1, 2, . . . , n, are also Lipschitz functions with Lipschitz
coefficients Lj.

Remark 3.1. Any continuously derivable function is Lipschitz on a compact set, refer to Hirsch &
Smale (1974) and any function with bounded derivative is globally Lipschitz. As our objective is
to achieve global asymptotic stability, it is not stringent to assume that the nonlinearity is globally
Lipschitz.
In fact, Lipschitz condition is a common assumption for nonlinearity in the control community
Arcak et al. (2001); Nešić & Laila (July, 2002); Nešić & Teel (2006); Sokolov (2003). In addition, it
is usual in discrete-time control to assume that the uncertain nonlinearity is of small Lipschitz
coefficient Chen et al. (2001); Myszkorowski (1994); Zhang et al. (2001); Zhu & Guo (2004).
When the Lipschitz coefficient is large, discrete-time uncertain systems are not stabilizable as
indicated in Ma (2008); Xie & Guo (2000); Zhang & Guo (2002). Actually, if the discrete-time
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When the Lipschitz coefficient is large, discrete-time uncertain systems are not stabilizable as
indicated in Ma (2008); Xie & Guo (2000); Zhang & Guo (2002). Actually, if the discrete-time
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models are derived from continuous-time models, the growth rate of nonlinear uncertainty
can always be made sufficient small by choosing sufficient small sampling time.

Assumption 3.2. In system (1), the control gain coefficient gm of current instant control input u(k)
is bounded away from zero, i.e., there is a known constant g

m
> 0 such that |gm| > g

m
, and its sign is

known a priori. Thus, without loss of generality, we assume gm > 0.

Remark 3.2. It is called unknown control direction problem when the sign of the control gain is
unknown. The unknown control direction problem of nonlinear discrete-time system has been well
addressed in Ge et al. (2008); Yang et al. (2009) but it is out the scope of this chapter.

Definition 3.1. Chen & Narendra (2001) Let x1(k) and x2(k) be two discrete-time scalar or vector
signals, ∀k ∈ Z+

t , for any t.

• We denote x1(k) = O[x2(k)], if there exist positive constants m1, m2 and k0 such that �x1(k)� ≤
m1 maxk�≤k �x2(k

�)�+ m2, ∀k > k0.

• We denote x1(k) = o[x2(k)], if there exists a discrete-time function α(k) satisfying limk→∞ α(k) =
0 and a constant k0 such that �x1(k)� ≤ α(k)maxk�≤k �x2(k

�)�, ∀k > k0.

• We denote x1(k) ∼ x2(k) if they satisfy x1(k) = O[x2(k)] and x2(k) = O[x1(k)].

Assumption 3.3. The input and output of system (1) satisfy

u(k) = O[y(k + n)] (5)

Assumption 3.3 implies that the system (1) is bounded-output-bounded-input (BOBI) system
(or equivalently minimum phase for linear systems).
For convenience, in the followings we use O[1] and o[1] to denote bounded sequences and
sequences converging to zero, respectively. In addition, if sequence y(k) satisfies y(k) =
O[x(k)] or y(k) = o[x(k)], then we may directly use O[x(k)] or o[x(k)] to denote sequence
y(k) for convenience.
According to Definition 3.1, we have the following proposition.

Proposition 3.1. According to the definition on signal orders in Definition 3.1, we have following
properties:

(i) O[x1(k + τ)] + O[x1(k)] ∼ O[x1(k + τ)], ∀τ ≥ 0.

(ii) x1(k + τ) + o[x1(k)] ∼ x1(k + τ), ∀τ ≥ 0.

(iii) o[x1(k + τ)] + o[x1(k)] ∼ o[x1(k + τ)], ∀τ ≥ 0.

(iv) o[x1(k)] + o[x2(k)] ∼ o[|x1(k)|+ |x2(k)|].

(v) o[O[x1(k)]] ∼ o[x1(k)] + O[1].

(vi) If x1(k) ∼ x2(k) and limk→∞ �x2(k)� = 0, then limk→∞ �x1(k)� = 0.

(vii) If x1(k) = o[x1(k)] + o[1], then limk→∞ �x1(k)� = 0.

(viii) Let x2(k) = x1(k) + o[x1(k)]. If x2(k) = o[1], then limk→∞ �x1(k)� = 0.

Proof. See Appendix A.

Lemma 3.1. Goodwin et al. (1980) (Key Technical Lemma) For some given real scalar sequences s(k),
b1(k), b2(k) and vector sequence σ(k), if the following conditions hold:
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(i) limk→∞
s2(k)

b1(k)+b2(k)σT(k)σ(k)
= 0,

(ii) b1(k) = O[1] and b2(k) = O[1],

(iii) σ(k) = O[s(k)].

Then, we have
a) limk→∞ s(k) = 0, and b) σ(k) is bounded.

Lemma 3.2. Define

Z(k) = [z(k − τmax), . . . , z(k − τ), . . . , z(k − τmin)] (6)

and

lk = arg min
l≤k−n

�Z(k)− Z(l)� (7)

such that

Z(lk) = [z(lk − τmax), . . . , z(lk − τ), . . . , z(lk − τmin)] (8)

and

ΔZ(k) = Z(k)− Z(lk) (9)

Then, if �Z(k)� is bounded we have �ΔZ(k)� → 0 as well as �ν(z(k − τ))− ν(z(lk − τ))� → 0.
Proof. Given the definition of lk in (7), it has been proved in Ma (2006); Xie & Guo (2000) that
the boundedness of sequence Z(k) leads to �ΔZ(k)� → 0. As 0 ≤ �ν(z(k − τ)) − ν(z(lk −
τ))� ≤ �ΔZ(k)�, it is obvious that �ν(z(k − τ))− ν(z(lk − τ))� → 0 as k → ∞.

According to the definition of ΔZ(k) in (9) and Assumption 3.1, we see that

|ν(z(k − τ))− ν(z(lk − τ))| ≤ Lν�ΔZ(k))� (10)

The inequality above serves as a key to compensate for the nonparametric uncertainty, which
will be demonstrated later.

4. Future output prediction

In this section, an approach to predict the future outputs in (4) is developed to facilitate control
design in next section. To start with, let us define an auxiliary output as

ya(k + n − 1) =
n

∑
i=1

θT
i φi(y(k + n − i)) + ν(z(k − τ)) (11)

such that (1) can be rewritten as

y(k + n) = ya(k + n − 1) +
m

∑
j=1

gju(k − m + j) (12)

It is easy to show that

ya(k + n − 1) = ya(k + n − 1)− ya(lk + n − 1) + ya(lk + n − 1)

=
n

∑
i=1

θT
i [φi(y(k + n − i))− φi(y(lk + n − i))]−

m

∑
j=1

gju(lk − m + j)

+y(lk + n) + (ν(z(k − τ))− ν(z(lk − τ)) (13)
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For convenience, we introduce the following notations

Δφi(k + n − i) = φi(y(k + n − i))− φi(y(lk + n − i)) (14)

Δu(k − m + j) = u(k − m + j)− u(lk − m + j)

Δν(k − τ) = ν(z(k − τ))− ν(z(lk − τ)) (15)

for i = 1, 2, . . . , n and j = 1, 2, . . . , m.

Combining (12) and (13), we obtain

y(k + n) =
n

∑
i=1

θT
i Δφi(k + n − i) +

m

∑
j=1

gjΔu(k − m + j) + y(lk + n) + Δν(k − τ) (16)

Step 1:

Denote θ̂i(k) and ĝj(k) as the estimates of unknown parameters θi and gj at the kth step,
respectively. Then, according to (16), one-step ahead future output y(k + 1) can be predicted
at the kth step as

ŷ(k + 1|k) =
n

∑
i=1

θ̂T
i (k − n + 2)Δφi(k − i + 1) +

m

∑
j=1

ĝj(k − n + 2)Δu(k − m + j − n + 1)

+y(lk−n+1 + n) (17)

Now, based on ŷ(k + 1|k), we define

Δφ̂1(k + 1|k) = φ1(ŷ(k + 1|k))− φ1(y(lk−n+2 + n − 1)) (18)

which will be used in next step for prediction of two-step ahead output and where

ŷ(k + 1|k) = [ŷ(k + 1|k), y(k), . . . , y(k − n + 2)]T (19)

Step 2: By using the estimates θ̂i(k) and ĝj(k) and according to (16), the two-step ahead future
output y(k + 2) can be predicted at the kth step as

ŷ(k + 2|k) = θ̂T
1 (k − n + 3)Δφ̂1(k + 1|k) +

n

∑
i=2

θ̂T
i (k − n + 3)Δφi(k − i + 2)

+
m

∑
j=1

ĝj(k − n + 3)Δu(k − m + j − n + 2) + y(lk−n+2 + n) (20)

Then, by using ŷ(k + 1|k) and ŷ(k + 2|k), we define

Δφ̂1(k + 2|k) = φ1(ŷ(k + 2|k))− φ1(y(lk−n+3 + n − 1))

Δφ̂2(k + 1|k) = φ2(ŷ(k + 1|k))− φ2(y(lk−n+3 + n − 2)) (21)
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which will be used for prediction in next step and where

ŷ(k + 2|k) = [ŷ(k + 2|k), ŷ(k + 1|k), y(k), . . . , y(k − n + 3)]T (22)

Continuing the procedure above, we have three-step ahead future output prediction and so
on so forth until the (n − 1)-step ahead future output prediction as follows:
Step (n − 1): The (n − 1)-step ahead future output is predicted as

ŷ(k + n − 1|k) =
n−2

∑
i=1

θ̂T
i (k)Δφ̂i(k + n − 1 − i|k) +

n

∑
i=n−1

θ̂T
i (k)Δφi(k − (i − (n − 1)))

+
m

∑
j=1

ĝj(k)Δu(k − m + j − 1) + y(lk−1 + n) (23)

where

Δφ̂i(k + l|k) = φi(ŷ(k + l|k))− φi(y(lk−n+i+l + n − i)) (24)

for i = 1, 2, . . . , n − 2 and l = 1, 2, . . . , n − i − 1.
The prediction law of future outputs is summarized as follows:

ŷ(k + l|k) =
l−1

∑
i=1

θ̂T
i (k − n + l + 1)Δφ̂i(k + l − i|k) +

n

∑
i=l

θ̂T
i (k − n + l + 1)Δφi(k − (i − l))

+
m

∑
j=1

ĝj(k)Δu(k − m − n + l + j) + y(lk−n+l + n) (25)

for l = 1, 2, . . . , n − 1.

Remark 4.1. Note that θ̂i(k − n + l + 1) and ĝj(k − n + l + 1) instead of θ̂i(k) and gj(k) are used
in the prediction law of the l-step ahead future output. In this way, the parameter estimates appearing
in the prediction of ŷ(k + l|k) and ŷ(k + l|k + 1) are at the same time step, such that the analysis of
prediction error will be much simplified.

Remark 4.2. Similar to the prediction procedure proposed in Yang et al. (2009), the future output
prediction is defined in such a way that the j-step prediction is based on the previous step predictions.
The prediction method Yang et al. (2009) is further developed here for the compensation of the effect
of the nonlinear uncertainties ν(z(k − τ)). With the help of the introduction of previous instant lk

defined in (7), it can been seen that in the transformed system (16) that the output information at
previous instants is used to compensate for the effect of nonparametric uncertainties ν(z(k − τ)) at the
current instant according to (15).

The parameter estimates in output prediction are obtained from the following update laws

θ̂i(k + 1) = θ̂i(k − n + 2)−
ap(k)γpΔφi(k − i + 1)ỹ(k + 1|k)

Dp(k)

ĝj(k + 1) = ĝj(k − n + 2)−
ap(k)γpΔu(k − m + j − n + 1)ỹ(k + 1|k)

Dp(k)

i = 1, 2, . . . , n, j = 1, 2, . . . , m (26)
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with

ỹ(k + 1|k) = ŷ(k + 1|k)− y(k + 1)

Dp(k) = 1 +
n

∑
i=1

�Δφi(k − i + 1)�2 +
m

∑
j=1

Δu2(k − m + j − n + 1) (27)

ap(k) =

⎧⎪⎨
⎪⎩

1 − λ�ΔZ(k−n+1)�
|ỹ(k+1|k)|

,

if |ỹ(k + 1|k)| > λ�ΔZ(k − n + 1)�
0 otherwise

(28)

θ̂i(0) = 0[q], ĝj(0) = 0 (29)

where 0 < γp < 2 and λ can be chosen as a constant satisfying Lν ≤ λ < λ∗, with λ∗ defined
later in (58).

Remark 4.3. The dead zone indicator ap(k) is employed in the future output prediction above, which is
motivated by the work in Chen et al. (2001). In the parameter update law (38), the dead zone implies that
in the region |ỹ(k + 1|k)| ≤ λ�ΔZ(k − n + 1)�, the values of parameter estimates at the (k + 1)-th
step are same as those at the (k + n − 2)-th step. While the estimate values will be updated outside of
this region. The threshold of the dead zone will converge to zero because limk→∞ �ΔZ(k − n + 1)� =
0, which will be guaranteed by the adaptive control law designed in the next section. The similar dead
zone method will also be used in the parameter update laws of the adaptive controller in the next section.

With the future outputs predicted above, we can establish the following lemma for the
prediction errors.

Lemma 4.1. Define ỹ(k + l|k) = ŷ(k + l|k)− y(k + l) , then there exist constant cl such that

|ỹ(k + l|k)| = o[O[y(k + l)]] + λΔs(k, l), l = 1, 2, . . . , n − 1 (30)

where

Δs(k, l) = max
1≤k�≤l

{�ΔZ(k − n + k�)�} (31)

Proof. See Appendix B.

5. Adaptive control design

By introducing the following notations

θ̄ = [θT
1 , θT

2 , . . . , θT
n ]

T

φ̄(k + n − 1) = [Δφ1(y(k + n − 1)), Δφ2(y(k + n − 2)), . . . , Δφn(y(k))]
T

ḡ = [g1, g2, . . . , gm]
T

ū(k) = [Δu1(k − m + 1), Δu2(k − m + 2), . . . , Δum(k)]
T (32)

we could rewrite (16) in a compact form as follows:

y(k + n) = θ̄T φ̄(k + n − 1) + ḡTū(k) + y(lk + n) + Δν(k − τ) (33)
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Define ˆ̄θ(k) and ˆ̄g(k) as estimate of θ̄ and ḡ at the kth step, respectively, and then, the controller
will be designed such that

y∗(k + n) = ˆ̄θT(k) ˆ̄φ(k + n − 1) + ˆ̄g(k)Tū(k) + y(lk + n) (34)

Define the output tracking error as

e(k) = y(k)− y∗(k) (35)

A proper parameter estimate law will be constructed using the following dead zone indicator
which stops the update process when the tracking error is smaller than a specific value

ac(k) =

{
1 −

λ�ΔZ(k−n)�+|β(k−1)|
|e(k)|

, if |e(k)| > λ�ΔZ(k − n)�+ |β(k − 1)|

0 otherwise
(36)

where

β(k − 1) = ˆ̄θT(k − n)( ˆ̄φ(k − 1)− φ̄(k − 1)) (37)

and λ is same as that used in (28).
The parameter estimates in control law (34) are calculated by the following update laws:

ˆ̄θ(k) = ˆ̄θ(k − n) +
γcac(k)φ̄(k − 1)

Dc(k)
e(k)

ˆ̄g(k) = ˆ̄g(k − n) +
γcac(k)ū(k − n)

Dc(k)
e(k) (38)

with

Dc(k) = 1 + �φ̄(k − 1)�2 + �ū(k − n)�2 (39)

and 0 < γc < 2.

Remark 5.1. To explicitly calculate the control input from (34), one can see that the estimate of gm,
ĝm(k), which appears in the denominator, may lead to the so called “controller singularity” problem
when the estimate ĝm(k) falls into a small neighborhood of zero. To avoid the singularity problem, we
may take advantage of the a priori information of the lower bound of gm, i.e. g

m
, to revise the update

law of ĝm(k) in (38) as follows:

ˆ̄g�(k) = ˆ̄g(k − n) +
γcac(k)ū(k − n)

Dc(k)
e(k)

ˆ̄g(k) =

{
ˆ̄g�(k), if ĝ�m(k) > g

m
ˆ̄gr(k) otherwise

(40)

(41)

where

ˆ̄g�(k) = [ĝ�1(k), ĝ�2(k), . . . , ĝ�m(k)]

ˆ̄gr(k) = [ĝ�1(k), ĝ�2(k), . . . , g
m
]T (42)

In (40), one can see that in case where the estimate of control gain ĝm(k) falls below the known
lower bound, the update laws force it to be at least as large as the lower bound such that the potential
singularity problem will be solved.
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⎧⎪⎨
⎪⎩
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in the region |ỹ(k + 1|k)| ≤ λ�ΔZ(k − n + 1)�, the values of parameter estimates at the (k + 1)-th
step are same as those at the (k + n − 2)-th step. While the estimate values will be updated outside of
this region. The threshold of the dead zone will converge to zero because limk→∞ �ΔZ(k − n + 1)� =
0, which will be guaranteed by the adaptive control law designed in the next section. The similar dead
zone method will also be used in the parameter update laws of the adaptive controller in the next section.

With the future outputs predicted above, we can establish the following lemma for the
prediction errors.
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and 0 < γc < 2.

Remark 5.1. To explicitly calculate the control input from (34), one can see that the estimate of gm,
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when the estimate ĝm(k) falls into a small neighborhood of zero. To avoid the singularity problem, we
may take advantage of the a priori information of the lower bound of gm, i.e. g

m
, to revise the update

law of ĝm(k) in (38) as follows:

ˆ̄g�(k) = ˆ̄g(k − n) +
γcac(k)ū(k − n)
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6. Main results and closed-loop system analysis

The performance of the adaptive controller designed above is summarized in the following
theorem:

Theorem 6.1. Under adaptive control law (34) with parameter estimation law (38) and with
employment of predicted future outputs obtained in Section 4, all the closed-loop signals are guaranteed
to be bounded and, in addition, the asymptotic output tracking can be achieved:

lim
k→∞

|y(k)− y∗(k)| = 0 (43)

To prove the above theorem, we proceed from the expression of output tracking error.
Substitute control law (34) into the transformed system (33) and consider the definition of
output tracking error in (35), then we have

e(k) = − ˜̄θT(k − n)φ̄(k − 1)− ˜̄gT(k − n)ū(k − n)− β(k − 1) + Δν(k − n − τ) (44)

where ˜̄θ(k) = ˆ̄θ(k)− θ̄ and ˜̄g(k) = ˆ̄g(k)− ḡ Δν(k − n − τ) satisfies

�Δν(k − n − τ)� ≤ λ�ΔZ(k − n)� (45)

From the definition of dead zone indicator ac(k) in (36), we have

ac(k)[|e(k)|(λ�ΔZ(k − n)�+ |β(k − 1)|)− e2(k)] = −a2
c(k)e

2(k) (46)

Let us choose a positive definite Lyapunov function candidate as

Vc(k) =
k

∑
l=k−n+1

(� ˜̄θ(l)�2 + � ˜̄g(l)�2) (47)

and then by using (46) the first difference of the above Lyapunov function can be written as

ΔVc(k) = Vc(k)− Vc(k − 1)

≤ ˜̄θT(k) ˜̄θ(k)− ˜̄θT(k − n) ˜̄θ(k − n) + ˜̄g2(k)− ˜̄g2(k − n)

= [�φ̄(k − 1)�2 + �ū(k − n)�2]
a2

c (k)γ
2
c e2(k)

D2
c (k)

+[ ˜̄θT(k − n)φ̄(k − 1) + ˜̄gT(k − n)ū(k − n)]e(k)
2ac(k)γc

Dc(k)

≤
a2

c (k)γ
2
c e2(k)

Dc(k)
−

2ac(k)γce2(k)

Dc(k)

+
2ac(k)γc|e(k)|(λ�ΔZ(k − n)�+ |β(k − 1)|)

Dc(k)

≤ −
γc(2 − γc)a2

c (k)e
2(k)

Dc(k)
(48)

Noting that 0 < γc < 2, we have the boundedness of Vc(k) and consequently the boundedness

of ˆ̄θ(k) and ˆ̄g(k). Taking summation on both hand sides of (48), we obtain

∞

∑
k=0

γc(2 − γc)
a2

c (k)e
2(k)

Dc(k)
≤ Vc(0)− Vc(∞)
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which implies

lim
k→∞

a2
c (k)e

2(k)

Dc(k)
= 0 (49)

Now, we will show that equation (49) results in limk→∞ ac(k)e(k) = 0 using Lemma 3.1, the
main stability analysis tool in adaptive discrete-time control. In fact, from the definition of
dead zone ac(k) in (36), when |e(k)| > λ�ΔZ(k − n)�+ |β(k − 1)|, we have

ac(k)|e(k)| = |e(k)| − λ�ΔZ(k − n)� − |β(k − 1)| > 0

and when |e(k)| ≤ λ�Δz(k − n)�+ |β(k − 1)|, we have

ac(k)|e(k)| = 0 ≥ |e(k)| − λ�ΔZ(k − n)� − |β(k − 1)|

Thus, we always have

|e(k)| − λ�ΔZ(k − n)� − |β(k − 1)| ≤ ac(k)|e(k)| (50)

Considering the definition of β(k − 1) in (37) and the boundedness of ˆ̄θ(k), we obtain that
β(k − 1) = o[O[y(k)]].
Since y(k) ∼ e(k), we have β(k − 1) = o[O[e(k)]]. According to the Proposition 3.1, we have

|y(k)| ≤ C1 max
k�≤k

{|e(k�)|}+ C2

≤ C1 max
k�≤k

{|e(k�)| − λ�ΔZ(k� − n)� − |β(k� − 1)|

+λ�ΔZ(k� − n)�+ |β(k� − 1)|}+ C2

≤ C1 max
k�≤k

{ac(k
�)|e(k�)|}+ λC1 max

k�≤k
{�ΔZ(k� − n)�}+ C1 max

k�≤k
{|β(k� − 1)|}

+C2, ∀k ∈ Z+
−n (51)

According to Lemma 4.1 and Assumption 3.1, there exits a constant cβ such that

|β(k + n − 1)| ≤ o[O[y(k + n − 1)]] + λcβΔs(k, n − 1) (52)

Considering ΔZ(k) defined in (9) and Δs(k, m) defined in (31), Lemma (3.3), and noting the
fact lk ≤ k − n, there exist constants cz,1, cz,2, cs,1 and cs,2 such that

ΔZ(k − n) ≤ cz,1 max
k�≤k

{|y(k�)|}+ cz,2 (53)

Δs(k, n − 1) = max
1≤k�≤n−1

{�Z(k − n + k�)− Z(lk−n+k�)�}

≤ cs,1 max
k�≤k

{|y(k� + n − 1)|}+ cs,2 (54)

According to the definition of o[·] in Definition 3.1, and (52), (54), it is clear that ∀k ∈ Z+
−n

|β(k + n − 1)| ≤ o[O[y(k + n − 1)]] + λcβΔs(k, n − 1)

≤ (α(k)cβ,1 + λcβcs,1)max
k�≤k

{|y(k� + n − 1)|}+ α(k)cβ,2 + λcβcs,2 (55)
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where limk→∞ α(k) = 0, and cβ,1 and cβ,2 are positive constants. Since limk→∞ α(k) = 0, for
any given arbitrary small positive constant �1, there exists a constants k1 such that α(k) ≤ �1,
∀k > k1. Thus, it is clear that

|β(k + n − 1)| ≤ (�1cβ,1 + λcβcs,1)max
k�≤k

{|y(k� + n − 1)|}+ �1cβ,2 + λcβcs,2, ∀k > k1 (56)

From inequalities (51), (53), and (56), it is clear that there exist an arbitrary small positive
constant �2 and constants C3 and C4 such that

max
k�≤k

{|y(k�)|} ≤ C1 max
k�≤k

{ac(k
�)|e(k�)|}+ (λC3 + �2)max

k�≤k
{|y(k�)|}+ C4, k > k1 (57)

which implies the existence of a small positive constant

λ∗ =
1 − �2

C3
(58)

such that

max
k�≤k

{|y(k�)|} ≤
C1

1 − λC3 − �2
max
k�≤k

{ac(k
�)|e(k�)|}+

C4

1 − λC3 − �2
, k > k1 (59)

holds for all λ < λ∗, where C3 = (c̄ccz,1 + cβcs,1)C1, �2 = �1cβ,1C1 and C4 = C2 + �1cβ,2C1 +
λc̄ccz,2C1 + λcβcs,2C1. Note that inequality (59) implies y(k) = O[ac(k)e(k)]. From φ̄(y(k +
n − 1)) defined in (32) and Assumption 3.1, it can be seen that φ̄(y(k − 1)) = O[y(k − 1)].
According to the definition of Dc(k) in (39), y(k) ∼ e(k), lk−n ≤ k − 2n, the boundedness of
y∗(k) , and (53), we have

D
1
2
c (k) ≤ 1 + �φ̄(k − 1)�+ |ū(k − n)|

= O[y(k)] = O[ac(k)e(k)]

Then, applying Lemma 3.1 to (49) yields

lim
k→∞

ac(k)e(k) = 0 (60)

From (59) and (60), we can see that the boundedness of y(k) is guaranteed. It follows that
tracking error e(k) is bounded, and the boundedness of u(k) and z(k) in (75) can be obtained
from (5) in Lemma 3.3, and thus all the signals in the closed-loop system are bounded. Due to
the boundedness of z(k), by Lemma 3.2, we have

lim
k→∞

�ΔZ(k)� = 0 (61)

which further leads to

lim
k→∞

�Δs(k, n − 1)� = 0 (62)

Next, we will show that limk→∞ ac(k)e(k) = 0 implies limk→∞ e(k) = 0. In fact, considering
(52) and noting that y(k) ∼ e(k) ∼ e(k), it follows that

|β(k − 1)| ≤ o[O[e(k)]] + λcβΔs(k − n, n − 1) (63)
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which yields

|e(k)| − |β(k − 1)|+ λcβΔs(k − n, n − 1) ≥ |e(k)| − o[O[e(k)]]

≥ (1 − α(k)m1)|e(k)| − α(k)m2 (64)

according to Definition 3.1, where m1 and m2 are positive constants, and limk→∞ α(k) = 0.
Since limk→∞ α(k) = 0, there exists a constant k2 such that α(k) ≤ 1/m1, ∀k > k2. Therefore,
it can be seen from (64) that

|e(k)| − |β(k − 1)|+ λcβΔs(k − n, n − 1) + α(k)m2 ≥ (1 − α(k)m1)|e(k)| ≥ 0, ∀k > k2 (65)

From (50), it is clear that

|e(k)| − |β(k − 1)|+ λcβΔs(k − n, n − 1) + α(k)m2

≤ ac(k)|e(k)|+ λ�ΔZ(k − n)�+ λcβΔs(k − n, n − 1) + α(k)m2 (66)

which implies that limk→∞ e(k) = 0 according to (60)-(62), and (65), which further yields
limk→∞ e(k) = 0 because of e(k) ∼ e(k). This completes the proof.

Remark 6.1. The underlying reason that the asymptotic tracking performance is achieved lies in that
the uncertain nonlinear term ν(k− n− τ) in the closed-loop tracking error dynamics (44) will converge
to zero because limk→∞ �ΔZ(k)� = 0 as shown in (61).

7. Further discussion on output-feedback systems

In this section, we will make some discussions on the application of control design technique
developed before to nonlinear system in lower triangular form. The research interest of
lower triangular form systems lies in the fact that a large class of nonlinear systems can
be transformed into strict-feedback form or output-feedback form, where the unknown
parameters appear linearly in the system equations, via a global parameter-independent
diffeomorphism. In a seminal work Kanellakopoulos et al. (1991), it is proved
that a class of continuous nonlinear systems can be transformed to lower triangular
parameter-strict-feedback form via parameter-independent diffeomorphisms. A similar result
is obtained for a class of discrete-time systems Yeh & Kokotovic (1995), in which the geometric
conditions for the systems transformable to the form are given and then the discrete-time
backstepping design is proposed. More general strict-feedback system with unknown control
gains was first studied for continuous-time systems Ye & Jiang (1998), in which it is indicated
that a class of nonlinear triangular systems T1S proposed in Seto et al. (1994) is transformable
to this form. The discrete-time counterpart system was then studied in Ge et al. (2008), in
which discrete Nussbaum gain was exploited to solve the unknown control direction problem.
In addition to strict-feedback form systems, output-feedback systems as another kind of
lower-triangular form systems have also received much research attention. The discrete-time
output-feedback form systems have been studied in Zhao & Kanellakopoulos (2002), in
which a set of parameter estimation algorithm using orthogonal projection is proposed and
it guarantees the convergence of estimated parameters to their true values in finite steps. In
Yang et al. (2009), adaptive control solving the unknown control direction problem has been
developed for the discrete-time output-feedback form systems.
As mentioned in Section 1, NARMA model is one of the most popular representations of
nonlinear discrete-time systemsLeontaritis & Billings (1985). In the following, we are going to
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{|y(k�)|}+ C4, k > k1 (57)
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{ac(k
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C4

1 − λC3 − �2
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2
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show that the discrete-time output-feedback forms systems are transformable to the NARMA
systems in the form of (1) so that the control design in this chapter is also applicable to the
systems in the output-feedback form as below:

⎧
⎨
⎩

xi(k + 1) = θT
i φi(x1(k)) + gixi+1(k) + υi(x1(k)), i = 1, 2, . . . , n − 1

xn(k + 1) = θT
n φn(x1(k)) + gnu(k) + υn(x1(k))

y(k) = x1(k)
(67)

where xi(k) ∈ R, i = 1, 2, . . . , n are the system states, n ≥ 1 is system order; u(k) ∈ R,
y(k) ∈ R is the system input and output, respectively; θi are the vectors of unknown constant
parameters; gi ∈ R are unknown control gains and gi �= 0; φi(·), are known nonlinear vector
functions; and υi(·) are nonlinear uncertainties.
It is noted that the nonlinearities φi(·) as well as υi(·) depend only on the output y(k) = x1(k),
which is the only measured state. This justifies the name of “output-feedback” form.
According to Ge et al. (2009), for system (67) there exist prediction functions Fn−i(·) such that
y(k + n − i) = Fn−i(y(k), u(k − i)), i = 1, 2, . . . , n − 1, where

y(k)=[y(k), y(k − 1), . . . , y(k − n + 1)]T (68)

u(k − i)=[u(k − i), u(k − i − 1), . . . , u(k − n + 1)]T (69)

By moving the ith equation (n − i) step ahead, we can rewrite system (67) as follows

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x1(k + n) = θT
1 φ1(y(k + n − 1)) + g1x2(k + n − 1) + υ1(y(k + n − 1))

x2(k + n − 1) = θT
2 φ2(y(k + n − 2)) + g2x3(k + n − 2) + υ2(y(k + n − 2))

...

xn(k + 1) = θT
n φn(y(k)) + gnu(k) + υn(y(k))

(70)

Then, we submit the second equation to the first and obtain

x1(k + n) = θT
1 φ1(y(k + n − 1)) + g1θT

2 φ2(y(k + n − 2))

+g1g2x3(k + n − 2) + υ1(y(k + n − 1)) + g1υ2(Fn−2(y(k), u(k − 2)) (71)

Continuing the iterative substitution, we could finally obtain

y(k + n) =
n

∑
i=1

θT
f iφi(y(k + n − i)) + gu(k) + ν(z(k)) (72)

where

θ f1
= θ1, θ fi

= θi

i−1

∏
j=1

gj, i = 2, 3, . . . , n

g f1
= 1, g fi

=
i−1

∏
j=1

gj, i = 2, 3, . . . , n, g =
n

∏
j=1

gj (73)

and

ν(z(k)) =
n

∑
i=1

g fi
νi(z(k)), z(k) = [yT(k), uT(k − 1)]T (74)
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with

νi(z(k)) = υi(y(k + n − i)) = υi(Fn−i(y(k), u(k − i))), i = 1, 2, . . . , n − 1,

νn(z(k)) = υn(y(k)) (75)

with z(k) defined in the same manner as in (1). Now, it is obvious that the transformed
output-feedback form system (72) is a special case of the general NARMA model (1).

8. Study on periodic varying parameters

In this section we shall study the case where the parameters θi and gj, i = 1, 2, . . . , n, j =
1, 2, . . . , m in (1) are periodically time-varying. The lth element of θi(k) is periodic with known
period Ni,l and the period of gi(k) is Ngi, i.e. θi,l(k) = θi,l(k − Ni,l) and gj(k) = gj(k − Ngj) for
known positive constants Ni,l and Ngj, l = 1, 2, . . . , pi.
To deal with periodic varying parameters, periodic adaptive control (PAC) has been developed
in literature, which updates parameters every N steps, where N is a common period such
that every period Ni,l and Ngj can divide N with an integer quotient, respectively. However,
the use of the common period will make the periodic adaptation inefficient. If possible, the
periodic adaptation should be conducted according to individual periods. Therefore, we will
employ the lifting approach proposed in Xu & Huang (2009).
Firstly, we define the augmented parametric vector and corresponding vector-valued
nonlinearity function. As there are Ni,j different values of the jth element of θi at different
steps, denote an augmented vector combining them together by

θ̄i,l = [θi,j,1, θi,j,2, . . . , θi,j,Ni,l
]T (76)

with constant elements. We can construct an augmented vector including all pi periodic
parameters

Θi = [θ̄T
i,1, θ̄T

i,2, . . . , θ̄T
i,pi

]T = [θi,1,1, . . . , θi,1,Ni,1
, . . . , θi,pi,1, . . . , θi,pi,Ni,pi

]T (77)

with all elements being constant. Accordingly, we can define an augmented vector

Φi(y(k + n − 1)) = [φ̄i,1(y(k + n − 1)), . . . , φ̄i,pi
(y(k + n − 1))]T (78)

where φ̄i,l(y(k + n − 1)) = [0, . . . , 0, φi(y(k + n − i)), 0, . . . , 0]T ∈ RNi,l and the element φi(k)

appears in the qth position of φ̄i,l(y(k + n − 1)) only when k = sNi,l + q, for i = 1, 2, . . . , Ni,l . It

can be seen that n functions φi(k), rotate according to their own periodicity, Ni,l , respectively.
As a result, for each time instance k, we have

θT
i (k)φi(y(k + n − i)) = ΘT

i Φi(y(k + n − 1)) (79)

which converts periodic parameters into an augmented time invariant vector.
Analogously, we convert gi(k) into an augmented vector ḡi = [gi,1, gi,2, . . . , gi,Ngj

] and
meanwhile define a vector

ϕj(k) = [0, . . . , 0, 1, 0, . . . , 0]T ∈ RNgj (80)

where the element 1 appears in the qth position of ϕj(k) only when k = sNgj + q. Hence
for each time instance k, we have gj(k) = ḡj ϕj(k), i.e., gi(k) is converted into an augmented
time-invariant vector.
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Then, system (1) with periodic time-varying parameters θi(k) and gj(k) can be transformed
into

y(k + n) =
n

∑
i=1

ΘT
i Φi(y(k + n − i)) +

m

∑
j=1

ḡj ϕj(k)u(k − m + j) + ν(z(k − τ)) (81)

such that the method developed in Sections 4 and 5 is applicable to (81) for control design.

9. Conclusion

In this chapter, we have studied asymptotic tracking adaptive control of a general class of
NARMA systems with both parametric and nonparametric model uncertainties. The effects
of nonlinear nonparametric uncertainty, as well as of the unknown time delay, have been
compensated for by using information of previous inputs and outputs. As the NARMA
model involves future outputs, which bring difficulties into the control design, a future output
prediction method has been proposed in Section 4, which makes sure that the prediction error
grows with smaller order than the outputs.
Combining the uncertainty compensation technique, the prediction method and adaptive
control approach, a predictive adaptive control has been developed in Section 5 which
guarantees stability and leads to asymptotic tracking performance. The techniques developed
in this chapter provide a general control design framework for high order nonlinear
discrete-time systems in NARMA form. In Sections 7 and 8, we have shown that the proposed
control design method is also applicable to output-feedback systems and extendable to
systems with periodic varying parameters.
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11. Appendix A: Proof of Proposition 3.1

Only proofs of properties (ii) and (viii) are given below. Proofs of other properties are easy
and are thus omitted here.
(ii) From Definition 3.1, we can see that �o[x(k)]� ≤ α(k)maxk�≤k+τ �x(k�)�, ∀k > k0, τ ≥ 0,
where limk→∞ α(k) = 0. It implies that there exist constants k1 and ᾱ1 such that α(k) ≤ ᾱ1 < 1,
∀k > k1. Then, we have

�x(k + τ) + o[x(k)]� ≤ �x(k + τ)�+ �o[x(k)]� ≤ (1 + ᾱ1) max
k�≤k+τ

�x(k�)�, ∀k > k1

which leads to x(k + τ) + o[x(k)] = O[x(k + τ)]. On the other hand, we have

max
k1<k�≤k+τ

�x(k�)� ≤ � max
k1<k�≤k+τ

x(k�) + o[x(k)]�+ �o[x(k)]�

≤ � max
k1<k�≤k+τ

x(k�) + o[x(k)]�+ ᾱ1 max
k1<k�≤k+τ

{�x(k�)}

and

max
k1<k�≤k+τ

�x(k�)� ≤
1

1 − ᾱ1
� max

k1<k�≤k
x(k�) + o[x(k�)]�,∀k > k1
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which implies x(k + τ) = O[x(k) + o[x(k)]]. Then, it is obvious that x(k + τ) + o[x(k)] ∼ x(k).
(viii) First, let us suppose that x1(k) is unbounded and define ik = arg maxi≤k �x1(i)�. Then,
it is easy to see that ik → ∞ as k → ∞. Due to limk→∞ α(k) = 0, there exist a constant k2

such that α(ik) ≤ 1
2 and �o[x1(k)]� ≤ 1

2 maxk�≤k �x1(k
�)�, ∀k > k2. Considering x2(k) =

x1(k) + o[x1(k)], we have

�x2(ik)� = �x1(ik) + o[x1(ik)]� ≥ �x1(ik)� − �o[x1(ik)]� ≥
1

2
�x1(ik)�, ∀k > k2

which leads to �x1(ik)� ≤ 2�x2(ik)�, ∀k ≥ k2. Then, the unboundedness of x1(k) conflicts
with limk→∞ �x2(k)� = 0. Therefore, x1(k) must be bounded. Noting that α(k) → 0, we have

0 ≤ �x1(k)� ≤ �x1(k) + o[x1(k)]�+ �o[x1(k)]� ≤ �x2(k)�+ α(k)max
k�≤k

�x1(k
�)� → 0

which implies limk→∞ �x1(k)� = 0.

12. Appendix B: Proof of Lemma 4.1

It follows from (16) and (17) that

ỹ(k + 1|k) = ŷ(k + 1|k)− y(k + 1)

=
n

∑
i=1

θ̃T
i (k − n + 2)Δφi(k − i + 1) +

m

∑
i=1

g̃j(k − n + 2)Δu(k − m + j − n + 1)
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which results in
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n

∑
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θ̃T
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m

∑
j=1
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j

⎞
⎠ (84)

Using the parameter update law (26), the difference of Vp(k) is

ΔVp(k) = Vp(k + 1)− Vp(k)

=
n

∑
i=1

[θ̃2
i (k + 1)− θ̃2

i (k − n + 2)] +
m

∑
j=1

[g̃2
j (k + 1)− g̃2

j (k − n + 2)]

=
a2

p(k)γ
2
pỹ2(k + 1|k)[∑n

i=1 �Δφi(k − i + 1)�2 + ∑m
j=1 Δu2(k − m + j − n + 1)]

D2
p(k)

−
2ap(k)γ

Dp(k)
×

{
n

∑
i=1

θ̃T
i (k − n + 2)Δφi(k − i + 1) +

m

∑
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Then, system (1) with periodic time-varying parameters θi(k) and gj(k) can be transformed
into

y(k + n) =
n

∑
i=1

ΘT
i Φi(y(k + n − i)) +

m

∑
j=1

ḡj ϕj(k)u(k − m + j) + ν(z(k − τ)) (81)

such that the method developed in Sections 4 and 5 is applicable to (81) for control design.

9. Conclusion

In this chapter, we have studied asymptotic tracking adaptive control of a general class of
NARMA systems with both parametric and nonparametric model uncertainties. The effects
of nonlinear nonparametric uncertainty, as well as of the unknown time delay, have been
compensated for by using information of previous inputs and outputs. As the NARMA
model involves future outputs, which bring difficulties into the control design, a future output
prediction method has been proposed in Section 4, which makes sure that the prediction error
grows with smaller order than the outputs.
Combining the uncertainty compensation technique, the prediction method and adaptive
control approach, a predictive adaptive control has been developed in Section 5 which
guarantees stability and leads to asymptotic tracking performance. The techniques developed
in this chapter provide a general control design framework for high order nonlinear
discrete-time systems in NARMA form. In Sections 7 and 8, we have shown that the proposed
control design method is also applicable to output-feedback systems and extendable to
systems with periodic varying parameters.
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11. Appendix A: Proof of Proposition 3.1

Only proofs of properties (ii) and (viii) are given below. Proofs of other properties are easy
and are thus omitted here.
(ii) From Definition 3.1, we can see that �o[x(k)]� ≤ α(k)maxk�≤k+τ �x(k�)�, ∀k > k0, τ ≥ 0,
where limk→∞ α(k) = 0. It implies that there exist constants k1 and ᾱ1 such that α(k) ≤ ᾱ1 < 1,
∀k > k1. Then, we have

�x(k + τ) + o[x(k)]� ≤ �x(k + τ)�+ �o[x(k)]� ≤ (1 + ᾱ1) max
k�≤k+τ

�x(k�)�, ∀k > k1

which leads to x(k + τ) + o[x(k)] = O[x(k + τ)]. On the other hand, we have

max
k1<k�≤k+τ

�x(k�)� ≤ � max
k1<k�≤k+τ

x(k�) + o[x(k)]�+ �o[x(k)]�

≤ � max
k1<k�≤k+τ

x(k�) + o[x(k)]�+ ᾱ1 max
k1<k�≤k+τ

{�x(k�)}

and

max
k1<k�≤k+τ

�x(k�)� ≤
1

1 − ᾱ1
� max

k1<k�≤k
x(k�) + o[x(k�)]�,∀k > k1

222 Discrete Time Systems

which implies x(k + τ) = O[x(k) + o[x(k)]]. Then, it is obvious that x(k + τ) + o[x(k)] ∼ x(k).
(viii) First, let us suppose that x1(k) is unbounded and define ik = arg maxi≤k �x1(i)�. Then,
it is easy to see that ik → ∞ as k → ∞. Due to limk→∞ α(k) = 0, there exist a constant k2

such that α(ik) ≤ 1
2 and �o[x1(k)]� ≤ 1

2 maxk�≤k �x1(k
�)�, ∀k > k2. Considering x2(k) =

x1(k) + o[x1(k)], we have

�x2(ik)� = �x1(ik) + o[x1(ik)]� ≥ �x1(ik)� − �o[x1(ik)]� ≥
1

2
�x1(ik)�, ∀k > k2

which leads to �x1(ik)� ≤ 2�x2(ik)�, ∀k ≥ k2. Then, the unboundedness of x1(k) conflicts
with limk→∞ �x2(k)� = 0. Therefore, x1(k) must be bounded. Noting that α(k) → 0, we have

0 ≤ �x1(k)� ≤ �x1(k) + o[x1(k)]�+ �o[x1(k)]� ≤ �x2(k)�+ α(k)max
k�≤k

�x1(k
�)� → 0

which implies limk→∞ �x1(k)� = 0.
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D2
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According to the definition of Dp(k) in (27) and inequality (83), the difference of Vp(k) above
can be written as

ΔVp(k) ≤
a2

p(k)γ
2ỹ2(k + 1|k)

Dp(k)
−

2ap(k)γỹ2(k + 1|k)

Dp(k)

+
2ap(k)γpλ|ỹ(k + 1|k)|�ΔZ(k − n + 1)�

Dp(k)

=
a2

p(k)γ
2
pỹ2(k + 1|k)

Dp(k)
−

2a2
p(k)γỹ2(k + 1|k)

Dp(k)

= −
a2

p(k)γp(2 − γp)ỹ2(k + 1|k)

Dp(k)
(85)

where the following equation obtained from the definition of dead zone (28) is used:

− 2a2
p(k)γỹ2(k + 1|k) = −2ap(k)γỹ2(k + 1|k)

+2ap(k)γpλ|ỹ(k + 1|k)|�ΔZ(k − n + 1)� (86)

Noting that 0 < γp < 2, we can see from (85) that the difference of Lyapunov function
Vp(k), is non-positive and thus, the boundedness of Vp(k) is guaranteed. It further implies

the boundedness of θ̂i(k) and ĝj(k). Thus, there exist finite constants bθi
and bgj

such that

�θ̂i(k)� ≤ bθi
, ĝj(k) ≤ bgj

, ∀k ∈ Z+
−n (87)

Taking summation on both hand sides of (85), we obtain

∞

∑
k=0

a2
p(k)γ(2 − γ)ỹ2(k + 1|k)

Dp(k)
≤ Vp(0)− Vp(∞) (88)

Note that the left hand side of inequality (88) is the summation of a non-decreasing sequence
and thus the boundedness of Vp(k) implies

a2
p(k)ỹ

2(k + 1|k)

Dp(k)
:= α(k) → 0 (89)

Noting that lk−n+1 ≤ k − 2n + 1 by (7) and considering Assumption 3.1, (5) in Lemma 3.3, we
see that Dp(k) in (27) satisfies

D
1
2
p (k) = O[y(k + 1)] (90)

From (89) and (90), we have

ap(k)|ỹ(k + 1|k)| = α
1
2 (k)D

1
2
p (k) = o[D

1
2
p (k)] = o[O[y(k + 1)]] (91)

From the definition of dead zone in (28), when |ỹ(k + 1|k)| > λ�ΔZ(k − n + 1)�, we have

ap(k)|ỹ(k + 1|k)| = |ỹ(k + 1|k)| − λ�ΔZ(k − n + 1)� > 0
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while when |ỹ(k + 1|k)| ≤ λĉp(k − n + 2)�ΔZ(k − n + 1)�, we have

ap(k)|ỹ(k + 1|k)| = 0 ≥ |ỹ(k + 1|k)| − λ�ΔZ(k − n + 1)�.

In summary, the definition of dead zone in (28) guarantees the following inequality

|ỹ(k + 1|k)| ≤ ap(k)|ỹ(k + 1|k)|+ λĉp(k − n + 2)�ΔZ(k − n + 1)� (92)

which together with (91), boundedness of the parameter estimates, and the definition of
Δs(k, m) in (31) yields

|ỹ(k + 1|k)| ≤ o[O[y(k + 1)]] + λc1Δs(k, 1) (93)

with c1 = 1. Now, let us analyze the two-step prediction error:

ỹ(k + 2|k)=ŷ(k + 2|k)− y(k + 2)

=ỹ(k + 2|k + 1) + y̆(k + 2|k) (94)

where

ỹ(k + 2|k + 1) = ŷ(k + 2|k + 1)− y(k + 2)

y̆(k + 2|k) = ŷ(k + 2|k)− ŷ(k + 2|k + 1) (95)

From (93), it is easy to see that

|ỹ(k + 2|k + 1)| ≤ o[O[y(k + 2)]] + λc1Δs(k, 2) (96)

From (17), and (20), it is clear that y̆(k + 2|k) in (95) can be written as

y̆(k + 2|k) = ŷ(k + 2|k)− ŷ(k + 2|k + 1)

= θ̂T
1 (k − n + 3)[Δφ̂(k + 1|k)− Δφ(k + 1)] (97)

Using (93) and the Lipschitz condition of Δφi(·) (or equivalently φi(·)) with Lipschitz
coefficient Li, we have

�Δφ̂(k + 1|k)− Δφ(k + 1)� ≤ L1|ỹ(k + 1|k)| ≤ o[O[y(k + 1)]] + λc1L1Δs(k, 1) (98)

which yields

|y̆(k + 2|k)| ≤ o[O[y(k + 1)]] + λL1bθ1
Δs(k, 1) (99)

From (94), (96) and (99), it is clear that there exists a constant c2 such that

|ỹ(k + 2|k)| ≤ o[O[y(k + 2)]] + λc2Δs(k, 2) (100)

Continuing the analysis above, for l-step estimate error ỹ(k + l|k), we have

ỹ(k + l|k) = ŷ(k + l|k)− y(k + l)

= y̆(k + l|k) + ỹ(k + l|k + 1) (101)

where

ỹ(k + l|k + 1)=ŷ(k + l|k + 1)− y(k + l)

y̆(k + l|k)=ŷ(k + l|k)− ŷ(k + l|k + 1) (102)
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2ap(k)γpλ|ỹ(k + 1|k)|�ΔZ(k − n + 1)�

Dp(k)

=
a2

p(k)γ
2
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while when |ỹ(k + 1|k)| ≤ λĉp(k − n + 2)�ΔZ(k − n + 1)�, we have
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= θ̂T
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coefficient Li, we have
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which yields
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From (94), (96) and (99), it is clear that there exists a constant c2 such that

|ỹ(k + 2|k)| ≤ o[O[y(k + 2)]] + λc2Δs(k, 2) (100)

Continuing the analysis above, for l-step estimate error ỹ(k + l|k), we have

ỹ(k + l|k) = ŷ(k + l|k)− y(k + l)

= y̆(k + l|k) + ỹ(k + l|k + 1) (101)

where

ỹ(k + l|k + 1)=ŷ(k + l|k + 1)− y(k + l)

y̆(k + l|k)=ŷ(k + l|k)− ŷ(k + l|k + 1) (102)
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For (l − 1)-step estimate error ỹ(k + l − 1|k), it can be seen that there exist constants c̃l−1 and
c̆l−1 such that

|ỹ(k + l − 1|k)|≤o[O[y(k + l − 1)]] + λc̃l−1Δs(k, l − 1)

|y̆(k + l − 1|k)|≤o[O[y(k + l − 2)]] + λc̆l−1Δs(k, l − 2) (103)

From (25) and (102), it is clear that y̆(k + l|k) can be expressed as

y̆(k + l|k) =
l−1

∑
i=1

θ̂T
i (k − n + l + 1)[Δφ̂(k + l − i|k)− Δφ̂(k + l − i|k + 1)] (104)

From (102), we have

ŷ(k + l − i|k)− ŷ(k + l − i|k + 1) = y̆(k + l − i|k) (105)

According to the Lipschitz condition of φ(·) and (105), the following equality holds:

l−1

∑
i=1

�Δφ̂(k + l − i|k)− Δφ(k + l − i)� ≤ max{Lj}1≤j≤l−1

l−1

∑
i=1

|y̆(k + l − i|k)| (106)

From (93),(101)-(106), it follows that there exist constants cl such that

|ỹ(k + l|k)| ≤ o[O[y(k + l)]] + λclΔs(k, l)

which completes the proof.
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1. Introduction

In this chapter, we report some work on decentralized adaptive control of discrete-time
multi-agent systems. Multi-agent systems, one important class of models of the so-called
complex systems, have received great attention since 1980s in many areas such as physics,
biology, bionics, engineering, artificial intelligence, and so on. With the development of
technologies, more and more complex control systems demand new theories to deal with
challenging problems which do not exist in traditional single-plant control systems.
The new challenges may be classified but not necessarily restricted in the following aspects:

• The increasing number of connected plants (or subsystems) adds more complexity to the
control of whole system. Generally speaking, it is very difficult or even impossible to
control the whole system in the same way as controlling one single plant.

• The couplings between plants interfere the evolution of states and outputs of each plant.
That is to say, it is not possible to completely analyze each plant independently without
considering other related plants.

• The connected plants need to exchange information among one another, which may bring
extra communication constraints and costs. Generally speaking, the information exchange
only occurs among coupled plants, and each plant may only have local connections with
other plants.

• There may exist various uncertainties in the connected plants. The uncertainties may
include unknown parameters, unknown couplings, unmodeled dynamics, and so on.

To resolve the above issues, multi-agent system control has been investigated by many
researchers. Applications of multi-agent system control include scheduling of automated
highway systems, formation control of satellite clusters, and distributed optimization of
multiple mobile robotic systems, etc. Several examples can be found in Burns (2000); Swaroop
& Hedrick (1999).
Various control strategies developed for multi-agent systems can be roughly assorted into
two architectures: centralized and decentralized. In the decentralized control, local control
for each agent is designed only using locally available information so it requires less
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two architectures: centralized and decentralized. In the decentralized control, local control
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computational effort and is relatively more scalable with respect to the swarm size. In
recent years, especially since the so-called Vicsek model was reported in Vicsek et al. (1995),
decentralized control of multi-agent system has received much attention in the research
community (e.g. Jadbabaie et al. (2003a); Moreau (2005)). In the (discrete-time) Vicsek model,
there are n agents and all the agents move in the plane with the same speed but with different
headings, which are updated by averaging the heading angles of neighor agents. By exploring
matrix and graph properties, a theoretical explanation for the consensus behavior of the
Vicsek model has been provided in Jadbabaie et al. (2003a). In Tanner & Christodoulakis
(2005), a discrete-time multi-agent system model has been studied with fixed undirected
topology and all the agents are assumed to transmit their state information in turn. In
Xiao & Wang (2006), some sufficient conditions for the solvability of consensus problems
for discrete-time multi-agent systems with switching topology and time-varying delays have
been presented by using matrix theories. In Moreau (2005), a discrete-time network model
of agents interacting via time-dependent communication links has been investigated. The
result in Moreau (2005) has been extended to the case with time-varying delays by set-value
Lyapunov theory in Angeli & Bliman (2006). Despite the fact that many researchers have
focused on problems like consensus, synchronization, etc., we shall notice that the involved
underlying dynamics in most existing models are essentially evolving with time in an
invariant way determined by fixed parameters and system structure. This motivates us to
consider decentralized adaptive control problems which essentially involve distributed agents
with ability of adaptation and learning. Up to now, there are limited work on decentralized
adaptive control for discrete-time multi-agent systems.
The theoretical work in this chapter has the following motivations:

1. The research on the capability and limitation of the feedback mechanism (e.g. Ma (2008a;b);
Xie & Guo (2000)) in recent years focuses on investigating how to identify the maximum
capability of feedback mechanism in dealing with internal uncertainties of one single system.

2. The decades of studies on traditional adaptive control (e.g. Aström & Wittenmark (1989);
Chen & Guo (1991); Goodwin & Sin (1984); Ioannou & Sun (1996)) focus on investigating
how to identify the unknown parameters of a single plant, especially a linear system or
linear-in-parameter system.

3. The extensive studies on complex systems, especially the so-called complex adaptive systems
theory Holland (1996), mainly focus on agent-based modeling and simulations rather than
rigorous mathematical analysis.

Motivated by the above issues, to investigate how to deal with coupling uncertainties as well
as internal uncertainties, we try to consider decentralized adaptive control of multi-agent
systems, which exhibit complexity characteristics such as parametric internal uncertainties,
parametric coupling uncertainties, unmodeled dynamics, random noise, and communication
limits. To facilitate mathematical study on adaptive control problems of complex systems, the
following simple yet nontrivial theoretical framework is adopted in our theoretical study:

1. The whole system consists of many dynamical agents, and evolution of each agent can be
described by a state equation with optional output equation. Different agents may have
different structures or parameters.

2. The evolution of each agent may be interacted by other agents, which means that the
dynamic equations of agents are coupled in general. Such interactions among agents
are usually restricted in local range, and the extent or intensity of reaction can be
parameterized.
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3. There exist information limits for all of the agents: (a) Each agent does not have access
to internal structure or parameters of other agents while it may have complete or limited
knowledge to its own internal structure and values of internal parameters. (b) Each agent
does not know the intensity of influence from others. (c) However, each agent can observe
the states of neighbor agents besides its own state.

4. Under the information limits above, each agent may utilize all of the information in hand
to estimate the intensity of influence and to design local control so as to change the state of
itself, consequently to influence neighbor agents. In other words, each agent is selfish and
it aims to maximize its local benefits via minimizing the local tracking error.

Within the above framework, we are to explore the answers to the following basic problem: Is
it possible for all of the agents to achieve a global goal based on the local information and local control?
Here the global goal may refer to global stability, synchronization, consensus, or formation,
etc. We shall start from a general model of discrete-time multi-agent system and discuss
adaptive control design for several typical cases of this model. The ideas in this chapter can
be also applied in more general or complex models, which may be considered in our future
work and may involve more difficulties in the design and theoretical analysis of decentralized
adaptive controller.
The remainder of this chapter is organized as follows: first, problem formulation will be given
in Section 2 with the description of the general discrete-time multi-agent system model and
several cases of local tracking goals; then, for these various local tracking tasks, decentralized
adaptive control problem for a stochastic synchronization problem is discussed in Section 3
based on the recursive least-squares estimation algorithm; in Section 4, decentralized adaptive
control for a special deterministic tracking problem, whereas the system has uncertain
parameters, is given based on least-squares estimation algorithm; and Section 5 studies
decentralized adaptive control for the special case of a hidden leader tracking problem, based
on the normalized gradient estimation algorithm; finally, we give some concluding remarks
in the last section.

2. Problem formulation

In this section, we will first describe the network of dynamic systems and then formulate
the problems to be studied. We shall study a simple discrete-time dynamic network. In
this model, there are N subsystems (plants), and each subsystem represents evolution of one
agent. We denote the state of Agent i at time t by xi(t), and, for simplicity, we assume that
linear influences among agents exist in this model. For convenience, we define the concepts
of “neighbor” and “neighborhood” as follows: Agent j is a neighbor of Agent i if Agent j
has influence on Agent i. Let Ni denote the set of all neighbors of Agent i and Agent i
itself. Obviously neighborhood Ni of Agent i is a concept describing the communication limits
between Agent i and others.

2.1 System model
The general model of each agent has the following state equation (i = 1, 2, . . . , N) :

xi(t + 1) = fi(zi(t)) + ui(t) + γi x̄i(t) + wi(t + 1) (2.1)

with zi(t) = [xi(t), ui(t)]
T, xi(t) = [xi(t), xi(t − 1), . . . , xi(t − ni + 1)]T and ui(t) =

[ui(t), ui(t − 1), . . . , ui(t − mi + 1)]T, where fi(·) represents the internal structure of Agent
i, ui(t) is the local control of Agent i, wi(t) is the unobservable random noise sequence, and
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γi x̄i(t) reflects the influence of the other agents towards Agent i. Hereinafter, x̄i(t) is the
weighted average of states of agents in the neighborhood of Agent i, i.e.,

x̄i(t) = ∑
j∈Ni

gijxj(t) (2.2)

where the nonnegative constants {gij} satisfy ∑
j∈Ni

gij = 1 and γi denotes the intensity of

influence, which is unknown to Agent i. From graph theory, the network can be represented
by a directed graph with each node representing an agent and the neighborhood of Node i
consists of all the nodes that are connected to Node i with an edge directing to Node i. This
graph can be further represented by an adjacent matrix

G = (gij), gij = 0 if j �∈ Ni. (2.3)

Remark 2.1. Although model (2.1) is simple enough, it can capture all essential features that
we want, and the simple model can be viewed as a prototype or approximation of more
complex models. Model (2.1) highlights the difficulties in dealing with coupling uncertainties
as well as other uncertainties by feedback control.

2.2 Local tracking goals
Due to the limitation in the communication among the agents, generally speaking, agents can
only try to achieve local goals. We assume that the local tracking goal for Agent i is to follow a
reference signal xref

i , which can be a known sequence or a sequence relating to other agents as
discussed below:
Case I (deterministic tracking). In this case, xref

i (t) is a sequence of deterministic signals

(bounded or even unbounded) which satisfies |xref
i (t)| = O(tδ).

Case II (center-oriented tracking). In this case, xref
i (t) = x̄(t)

Δ
= 1

N ∑N
i=1 xi(t) is the center state

of all agents, i.e., average of states of all agents.
Case III (loose tracking). In this case, xref

i (t) = λx̄i(t), where constant |λ| < 1. This case means

that the tracking signal xref
i (t) is close to the (weighted) average of states of neighbor agents

of Agent i, and factor λ describes how close it is.
Case IV (tight tracking). In this case, xref

i (t) = x̄i(t). This case means that the tracking signal

xref
i (t) is exactly the (weighted) average of states of agents in the neighborhood of Agent i.

In the first two cases, all agents track a common signal sequence, and the only differences are
as follows: In Case I the common sequence has nothing with every agent’s state; however,
in Case II the common sequence is the center state of all of the agents. The first two cases
mean that a common “leader” of all of agents exists, who can communicate with and send
commands to all agents; however, the agents can only communicate with one another under
certain information limits. In Cases III and IV, no common “leader” exists and all agents attempt
to track the average state x̄i(t) of its neighbors, and the difference between them is just the
factor of tracking tightness.

2.3 Decentralized adaptive control problem
In the framework above, Agent i does not know the intensity of influence γi; however, it can
use the historical information

{xi(t), x̄i(t), ui(t − 1), xi(t − 1), x̄i(t − 1), ui(t − 2), . . . , xi(1), x̄i(1), ui(0)} (2.4)
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to estimate γi and can further try to design its local control ui(t) to achieve its local goal. Such a
problem is called a decentralized adaptive control problem since the agents must be smart enough
so as to design a stabilizing adaptive control law, rather than to simply follow a common rule
with fixed parameters such as the so-called consensus protocol, in a coupling network. Note that
in the above problem formulation, besides the uncertain parameters γi, other uncertainties
and constraints are also allowed to exist in the model, which may add the difficulty of
decentralized adaptive control problem. In this chapter, we will discuss several concrete
examples of designing decentralized adaptive control laws, in which coupling uncertainties,
external noise disturbance, internal parametric uncertainties, and even functional structure
uncertainties may exist and be dealt with by the decentralized adaptive controllers.

3. Decentralized synchronization with adaptive control

Synchronization is a simple global behavior of agents, and it means that all agents tend to
behave in the same way as time goes by. For example, two fine-tuned coupled oscillators
may gradually follow almost the same pace and pattern. As a kind of common and important
phenomenon in nature, synchronization has been extensively investigated or discussed in the
literature (e.g., Time et al. (2004); Wu & Chua (1995); Zhan et al. (2003)) due to its usefulness
(e.g. secure communication with chaos synchronization) or harm (e.g. passing a bridge
resonantly). Lots of existing work on synchronization are conducted on chaos (e.g.Gade &
Hu (2000)), coupled maps (e.g.Jalan & Amritkar (2003)), scale-free or small-world networks
(e.g.Barahona & Pecora (2002)), and complex dynamical networks (e.g.Li & Chen (2003)),
etc. In recent years, several synchronization-related topics (coordination, rendezvous, consensus,
formation, etc.) have also become active in the research community (e.g.Cao et al. (2008);
Jadbabaie et al. (2003b); Olfati-Saber et al. (2007)). As for adaptive synchronization, it has
received the attention of a few researchers in recent years (e.g.Yao et al. (2006); Zhou et al.
(2006)), and the existing work mainly focused on deterministic continuous-time systems,
especially chaotic systems, by constructing certain update laws to deal with parametric
uncertainties and applying classical Lyapunov stability theory to analyze corresponding
closed-loop systems.
In this section, we are to investigate a synchronization problem of a stochastic dynamic
network. Due to the presence of random noise and unknown parametric coupling,
unlike most existing work on synchronization, we need to introduce new concepts of
synchronization and the decentralized learning (estimation) algorithm for studying the
problem of decentralized adaptive synchronization.

3.1 System model
In this section, for simplicity, we assume that the internal function fi(·) is known to each
agent and the agents are in a common noisy environment, i.e. the random noise {w(t),Ft}
are commonly present for all agents. Hence, the dynamics of Agent i (i = 1, 2, . . . , N) has the
following state equation:

xi(t + 1) = fi(zi(t)) + ui(t) + γi x̄i(t) + w(t + 1). (3.1)

In this model, we emphasize that coupling uncertainty γi is the main source to prevent
the agents from achieving synchronization with ease. And the random noise makes that
traditional analysis techniques for investigating synchronization of deterministic systems
cannot be applied here because it is impossible to determine a fixed common orbit for
all agents to track asymptotically. These difficulties make the rather simple model here
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γi x̄i(t) reflects the influence of the other agents towards Agent i. Hereinafter, x̄i(t) is the
weighted average of states of agents in the neighborhood of Agent i, i.e.,

x̄i(t) = ∑
j∈Ni

gijxj(t) (2.2)

where the nonnegative constants {gij} satisfy ∑
j∈Ni

gij = 1 and γi denotes the intensity of
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certain information limits. In Cases III and IV, no common “leader” exists and all agents attempt
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problem of decentralized adaptive synchronization.

3.1 System model
In this section, for simplicity, we assume that the internal function fi(·) is known to each
agent and the agents are in a common noisy environment, i.e. the random noise {w(t),Ft}
are commonly present for all agents. Hence, the dynamics of Agent i (i = 1, 2, . . . , N) has the
following state equation:
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cannot be applied here because it is impossible to determine a fixed common orbit for
all agents to track asymptotically. These difficulties make the rather simple model here
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non-trivial for studying the synchronization property of the whole system, and we will find
that proper estimation algorithms, which can be somewhat regarded as learning algorithms
and make the agents smarter than those machinelike agents with fixed dynamics in previous
studies, is critical for each agent to deal with these uncertainties.

3.2 Local controller design
As the intensity of influence γi is unknown, Agent i is supposed to estimate it on-line via
commonly-used recursive least-squares (RLS) algorithm and design its local control based on
the intensity estimate γ̂i(t) via the certainty equivalence principle as follows:

ui(t) = − fi(zi(t))− γ̂i(t)x̄i(t) + xref
i (t) (3.2)

where γ̂i(t) is updated on-line by the following recursive LS algorithm

γ̂i(t + 1) = γ̂i(t) + σ̄i(t) p̄i(t)x̄i(t)[yi(t + 1)− γ̂i(t)x̄i(t)]
p̄i(t + 1) = p̄i(t)− σ̄i(t)[ p̄i(t)x̄i(t)]

2 (3.3)

with yi(t) = xi(t)− fi(zi(t − 1))− ui(t − 1) and

σ̄i(t)
Δ
=
[
1 + p̄i(t)x̄

2
i (t)

]−1
, p̄i(t)

Δ
=

[
t−1

∑
k=0

x̄2
i (k)

]−1

(3.4)

Let eij(t)
Δ
= xi(t) − xj(t), and suppose that xref

i (t) = x∗(t) for i = 1, 2, . . . , N in Case I. And
suppose also matrix G is an irreducible primitive matrix in Case IV, which means that all of
the agents should be connected and matrix G is cyclic (or periodic from the point of view of
Markov chain).
Then we can establish almost surely convergence of the decentralized LS estimator and the
global synchronization in Cases I—IV.

3.3 Assumptions
We need the following assumptions in our analysis:

Assumption 3.1. The noise sequence {w(t),Ft} is a martingale difference sequence (with {Ft} being
a sequence of nondecreasing σ-algebras) such that

sup
t

E
[
|w(t + 1)|β|Ft

]
< ∞ a.s. (3.5)

for a constant β > 2.

Assumption 3.2. Matrix G = (gij) is an irreducible primitive matrix.

3.4 Main result
Theorem 3.1. For system (3.1), suppose that Assumption 3.1 holds in Cases I—IV and Assumption
3.2 holds also in Case IV. Then the decentralized LS-based adaptive controller has the following
closed-loop properties:
(1) All of the agents can asymptotically correctly estimate the intensity of influence from others, i.e.,

lim
t→∞

γ̂i(t) = γi. (3.6)
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(2) The system can achieve synchronization in sense of mean, i.e.,

lim
T→∞

1

T

T

∑
t=1

|eij(t)| = 0, ∀i �= j. (3.7)

(3) The system can achieve synchronization in sense of mean squares, i.e.,

lim
T→∞

1

T

T

∑
t=1

|eij(t)|
2 = 0, ∀i �= j. (3.8)

3.5 Lemmas
Lemma 3.1. Suppose that Assumption 3.1 holds in Cases I, II, III, and IV. Then, in either case, for
i = 1, 2, . . . , N and m ≥ 1, 0 ≤ d < m, we have

t

∑
k=1

|γ̃i(mk − d)x̄i(mk − d)|2 = o(t) a.s.,

t

∑
k=1

|γ̃i(mk − d)x̄i(mk − d)| = o(t) a.s.

(3.9)

Proof. See Ma (2009).

Lemma 3.2. Consider the following iterative system:

Xt+1 = AtXt + Wt, (3.10)

where At → A as t → ∞ and {Wt} satisfies

t

∑
k=1

�Wk�
2 = o(t). (3.11)

If the spectral radius ρ(A) < 1, then

t

∑
k=1

�Xk� = o(t),
t

∑
k=1

�Xk�
2 = o(t). (3.12)

Proof. See Ma (2009).

Lemma 3.3. The estimation γ̂i(t) of γi converges to the true value γi almost surely with the
convergence rate

|γ̃i(t)| = O

(√
log r̄i(t)

r̄i(t)

)
. (3.13)

where ri(t) and r̄i(t) are defined as follows

ri(t)
Δ
= 1 + ∑t−1

k=0 x2
i (k)

r̄i(t)
Δ
= 1 + ∑t−1

k=0 x̄2
i (k)

(3.14)

Proof. This lemma is just the special one-dimensional case of (Guo, 1993, Theorem 6.3.1).
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3.6 Proof of theorem 3.1
Putting (3.2) into (3.1), we have

xi(t + 1) = −γ̂i(t)x̄i(t) + xref
i (t) + γi x̄i(t) + w(t + 1)

= xref
i (t) + γ̃i(t)x̄i(t) + w(t + 1).

(3.15)

Denote
X(t) = (x1(t), x2(t), . . . , xN(t))T,

Z(t) = (xref
1 (t), xref

2 (t), . . . , xref
N (t))T,

X̄(t) = (x̄1(t), x̄2(t), . . . , x̄N(t))T,

W(t + 1) = w(t + 1)1 = (w(t + 1), w(t + 1), . . . , w(t + 1))T ,
Γ̃(t) = diag(γ̃1(t), γ̃2(t), . . . , γ̃N(t)),

1 = [1, . . . , 1]T .

(3.16)

Then we get
X(t + 1) = Z(t) + Γ̃(t)X̄(t) + W(t + 1). (3.17)

According to (2.2), we have
X̄(t) = GX(t), (3.18)

where the matrix G = (gij). Furthermore, we have

X̄(t + 1) = GX(t + 1) = GZ(t) + GΓ̃(t)X̄(t) + W(t + 1). (3.19)

By Lemma 3.3, we have γ̃(t) → 0 as t → ∞. Thus, Γ̃(t) → 0.
By (3.15), we have

xi(t + 1)− xref
i (t)− w(t + 1) = γ̃i(t)x̄i(t). (3.20)

Let eij(t)
Δ
= xi(t)− xj(t), ηi(t) = γ̃i(t)x̄i(t). Then

eij(t + 1) = [ηi(t)− ηj(t)] + [xref
i (t)− xref

j (t)]. (3.21)

For convenience of later discussion, we introduce the following notations:

GT = (ζ1, ζ2, . . . , ζN),
E(t) = (e1N(t), e2N(t), . . . , eN−1,N(t), 0)T ,
η(t) = (η1(t), η2(t), . . . , ηN(t))T.

(3.22)

Case I. In this case, xref
i (t) = x∗(t), where x∗(t) is a bounded deterministic signal. Hence,

eij(t + 1) = ηi(t)− ηj(t). (3.23)

Consequently, by Lemma 3.1, we obtain that (i �= j)

t

∑
k=1

|eij(k + 1)|2 = O

(
t

∑
k=1

η2
i (t)

)
+ O

(
t

∑
k=1

η2
j (t)

)
= o(t), (3.24)

and similarly ∑t
k=1 |eij(k + 1)| = o(t) also holds.

Case II. In this case, xref
i (t) = x̄(t) = 1

N

N
∑

i=1
xi(t). The proof is similar to Case I.

Case III. Here xref
i (t) = λx̄i(t) = λζT

i X(t). Noting that ζT
i 1 = 1 for any i, we have
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ζT
i X(t)− ζT

j X(t) = ζT
i [X(t)− xN(t)1]− ζT

j [X(t)− xN(t)1] = ζT
i E(t)− ζT

j E(t), (3.25)

and, thus,
eij(t + 1) = [ηi(t)− ηj(t)] + λ[x̄i(t)− x̄j(t)]

= [ηi(t)− ηj(t)] + λ[ζT
i X(t)− ζT

j X(t)]

= [ηi(t)− ηj(t)] + λ[ζT
i E(t)− ζT

j E(t)].
(3.26)

Taking j = N and i = 1, 2, . . . , N, we can rewrite (3.26) into matrix form as

E(t + 1) = [η(t)− ηN(t)1] + λ[G − 1ζT
N ]E(t) = λHE(t) + ξ(t), (3.27)

where
H = G − GN = G − 1ζT

N , ξ(t) = η(t)− ηN(t). (3.28)

By Lemma 3.1, we have
t

∑
k=1

�η(k)�2 = o(t). (3.29)

Therefore,
t

∑
k=1

�ξ(k)�2 = o(t). (3.30)

Now we prove that ρ(H) ≤ 1. In fact, for any vector v such that vTv = 1, we have

|vT Hv| = |vTGv − vT GNv|
≤ max

(
λmax(G)�v�2 − λmin(GN)�v�2,

λmax(GN)�v�2 − λmin(G)�v�2
)

≤ max
(
�v�2, λmax(GN)�v�2

)
= 1

(3.31)

which implies that ρ(H) ≤ 1.
Finally, by (3.27), together with Lemma 3.2, we can immediately obtain

t

∑
k=1

�E(k)� = o(t),
t

∑
k=1

�E(k)�2 = o(t). (3.32)

Thus, for i = 1, 2, . . . , N − 1, as t → ∞, we have proved

1

t

t

∑
k=1

|eiN(k)| → 0,
1

t

t

∑
k=1

[eiN(k)]
2 → 0. (3.33)

Case IV. The proof is similar to that for Case III. We need only prove that the spectral radius
ρ(H) of H is less than 1, i.e., ρ(H) < 1; then we can apply Lemma 3.2 like in Case III.
Consider the following linear system:

z(t + 1) = Gz(t). (3.34)

Noting that G is a stochastic matrix, then, by Assumption 3.2 and knowledge of the Markov
chain, we have

lim
t→∞

Gt = 1πT, (3.35)
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3.6 Proof of theorem 3.1
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i (t) + γi x̄i(t) + w(t + 1)

= xref
i (t) + γ̃i(t)x̄i(t) + w(t + 1).

(3.15)

Denote
X(t) = (x1(t), x2(t), . . . , xN(t))T,

Z(t) = (xref
1 (t), xref

2 (t), . . . , xref
N (t))T,

X̄(t) = (x̄1(t), x̄2(t), . . . , x̄N(t))T,

W(t + 1) = w(t + 1)1 = (w(t + 1), w(t + 1), . . . , w(t + 1))T ,
Γ̃(t) = diag(γ̃1(t), γ̃2(t), . . . , γ̃N(t)),

1 = [1, . . . , 1]T .

(3.16)

Then we get
X(t + 1) = Z(t) + Γ̃(t)X̄(t) + W(t + 1). (3.17)

According to (2.2), we have
X̄(t) = GX(t), (3.18)

where the matrix G = (gij). Furthermore, we have

X̄(t + 1) = GX(t + 1) = GZ(t) + GΓ̃(t)X̄(t) + W(t + 1). (3.19)

By Lemma 3.3, we have γ̃(t) → 0 as t → ∞. Thus, Γ̃(t) → 0.
By (3.15), we have

xi(t + 1)− xref
i (t)− w(t + 1) = γ̃i(t)x̄i(t). (3.20)

Let eij(t)
Δ
= xi(t)− xj(t), ηi(t) = γ̃i(t)x̄i(t). Then

eij(t + 1) = [ηi(t)− ηj(t)] + [xref
i (t)− xref

j (t)]. (3.21)

For convenience of later discussion, we introduce the following notations:

GT = (ζ1, ζ2, . . . , ζN),
E(t) = (e1N(t), e2N(t), . . . , eN−1,N(t), 0)T ,
η(t) = (η1(t), η2(t), . . . , ηN(t))T.

(3.22)

Case I. In this case, xref
i (t) = x∗(t), where x∗(t) is a bounded deterministic signal. Hence,

eij(t + 1) = ηi(t)− ηj(t). (3.23)

Consequently, by Lemma 3.1, we obtain that (i �= j)

t

∑
k=1

|eij(k + 1)|2 = O

(
t

∑
k=1

η2
i (t)

)
+ O

(
t

∑
k=1

η2
j (t)

)
= o(t), (3.24)

and similarly ∑t
k=1 |eij(k + 1)| = o(t) also holds.

Case II. In this case, xref
i (t) = x̄(t) = 1

N

N
∑

i=1
xi(t). The proof is similar to Case I.

Case III. Here xref
i (t) = λx̄i(t) = λζT

i X(t). Noting that ζT
i 1 = 1 for any i, we have
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ζT
i X(t)− ζT

j X(t) = ζT
i [X(t)− xN(t)1]− ζT

j [X(t)− xN(t)1] = ζT
i E(t)− ζT

j E(t), (3.25)

and, thus,
eij(t + 1) = [ηi(t)− ηj(t)] + λ[x̄i(t)− x̄j(t)]

= [ηi(t)− ηj(t)] + λ[ζT
i X(t)− ζT

j X(t)]

= [ηi(t)− ηj(t)] + λ[ζT
i E(t)− ζT

j E(t)].
(3.26)

Taking j = N and i = 1, 2, . . . , N, we can rewrite (3.26) into matrix form as

E(t + 1) = [η(t)− ηN(t)1] + λ[G − 1ζT
N ]E(t) = λHE(t) + ξ(t), (3.27)

where
H = G − GN = G − 1ζT

N , ξ(t) = η(t)− ηN(t). (3.28)

By Lemma 3.1, we have
t

∑
k=1

�η(k)�2 = o(t). (3.29)

Therefore,
t

∑
k=1

�ξ(k)�2 = o(t). (3.30)

Now we prove that ρ(H) ≤ 1. In fact, for any vector v such that vTv = 1, we have

|vT Hv| = |vTGv − vT GNv|
≤ max

(
λmax(G)�v�2 − λmin(GN)�v�2,

λmax(GN)�v�2 − λmin(G)�v�2
)

≤ max
(
�v�2, λmax(GN)�v�2

)
= 1

(3.31)

which implies that ρ(H) ≤ 1.
Finally, by (3.27), together with Lemma 3.2, we can immediately obtain

t

∑
k=1

�E(k)� = o(t),
t

∑
k=1

�E(k)�2 = o(t). (3.32)

Thus, for i = 1, 2, . . . , N − 1, as t → ∞, we have proved

1

t

t

∑
k=1

|eiN(k)| → 0,
1

t

t

∑
k=1

[eiN(k)]
2 → 0. (3.33)

Case IV. The proof is similar to that for Case III. We need only prove that the spectral radius
ρ(H) of H is less than 1, i.e., ρ(H) < 1; then we can apply Lemma 3.2 like in Case III.
Consider the following linear system:

z(t + 1) = Gz(t). (3.34)

Noting that G is a stochastic matrix, then, by Assumption 3.2 and knowledge of the Markov
chain, we have

lim
t→∞

Gt = 1πT, (3.35)
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where π is the unique stationary probability distribution of the finite-state Markov chain with
transmission probability matrix G. Therefore,

z(t) = Gtz(0) → 1πTxref
0 = (πTxref

0 )1 (3.36)

which means that all elements of z(t) converge to a same constant πTxref
0 . Furthermore, let

z(t) = (xref
1 (t), xref

2 (t), . . . , xref
N (t))T and ν(t) = (ν1(t), ν2(t), . . . , νN−1(t), 0)T , where νi(t) =

xref
i (t)− xref

N (t) for i = 1, 2, . . . , N. Then we can see that

ν(t + 1) = (G − GN)ν(t) = Hν(t) (3.37)

and limt→∞ ν(t) = 0 for any initial values νi(0) ∈ R, i = 1, 2, . . . , N − 1. Obviously ν(t) =
Htν(0), and each entry in the Nth row of Ht is zero since each entry in the Nth row of H is
zero. Thus, denote

Ht Δ
=

[
H0(t) ∗

0 0

]
, (3.38)

where H0(t) is an (N − 1)× (N − 1) matrix. Then, for i = 1, 2, . . . , N − 1, taking ν(0) = ei,
respectively, by lim

t→∞
ν(t) = 0 we easily know that the ith column of H0(t) tends to zero vector

as t → ∞. Consequently, we have
lim
t→∞

H0(t) = 0, (3.39)

which implies that each eigenvalue of H0(t) tends to zero too. By (3.38), eigenvalues of Ht are
identical with those of H0(t) except for zero, and, thus, we obtain that

lim
t→∞

ρ
(

Ht
)
= 0 (3.40)

which implies that
ρ(H) < 1. (3.41)

This completes the proof of Theorem 3.1.

4. Decentralized tracking with adaptive control

Decentralized tracking problem is critical to understand the fundamental relationship
between (local) stability of individual agents and the global stability of the whole system,
and tracking problem is the basis for investigating more general or complex problems such as
formation control. In this section, besides the parametric coupling uncertainties and external
random noise, parametric internal uncertainties are also present for each agent, which require
each agent to do more estimation work so as to deal with all these uncertainties. If each agent
needs to deal with both parametric and non-parametric uncertainties, the agents should adopt
more complex and smart leaning algorithms, whose ideas may be partially borrowed from Ma
& Lum (2008); Ma et al. (2007a); Yang et al. (2009) and the references therein.

4.1 System model
In this section, we study the case where the internal dynamics function fi(·) is not completely
known but can be expressed into a linear combination with unknown coefficients, such that
(2.1) can be expressed as follows:

xi(t + 1) +
ni

∑
k=1

aikxi(t − k + 1) =
mi

∑
k=1

bikui(t − k + 1) + γi ∑
j∈Ni

gijxj(t) + wi(t + 1) (4.1)
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which can be rewritten into the well-known ARMAX model with additional coupling item

∑j∈Ni
ḡijxj(t) (letting ḡij

Δ
= γigij) as follows:

Ai(q
−1)xi(t + 1) = Bi(q

−1)ui(t) + wi(t + 1) + ∑
j∈Ni

ḡijxj(t) (4.2)

with Ai(q
−1) = 1 + ∑ni

j=1 aijq
−j, Bi(q

−1) = bi1 + ∑mi

j=2 bijq
−j+1 and back shifter q−1.

4.2 Local controller design
For Agent i, we can rewrite its dynamic model as the following regression model

xi(t + 1) = θT
i φi(t) + wi(t + 1) (4.3)

where θi holds all unknown parameters and φi(t) is the corresponding regressor vector.
Then, by the following LS algorithm

θ̂i(t + 1) = θ̂i(t) + σi(t)Pi(t)φi(t)[xi(t + 1)−φT
i (t)θ̂i(t)]

Pi(t + 1) = Pi(t)− σi(t)Pi(t)φi(t)φ
T
i (t)Pi(t)

σi(t) = [1 +φT
i (t)Pi(t)φi(t)]

−1
(4.4)

we can obtain the estimated values θ̂i(t) of θi at time t. For Agent i, to track a given local

reference signal x
re f
i (t) � x∗i (t), with the parameter estimate θ̂i(t) given by the above LS

algorithm, it can then design its adaptive control law ui(t) by the “certainty equivalence”
principle, that is to say, it can choose ui(t) such that

θ̂T
i (t)φi(t) = x∗i (t + 1) (4.5)

where x∗i (t) is the bounded desired reference signal of Agent i, i.e. Agent i is to track the
deterministic given signal x∗i (t).
Consequently we obtain

ui(t) =
1

b̂i1(t)
{x∗i (t + 1)

+[âi1(t)xi(t) + · · ·+ âi,pi
(t)xi(t − pi + 1)]

−[b̂i2(t)ui(t − 1) + · · ·+ b̂i,qi
(t)ui(t − qi + 1)]

− ˆ̄gT
i (t)X̄i(t)}

(4.6)

where ˆ̄gi(t) is a vector holding the estimates ˆ̄gij(t) of gij (j ∈ Ni) and X̄i(t) is a vector holding
the states xij(t) (j ∈ Ni).

In particular, when the high-frequency gain bi1 is known a priori, let θ̄i denote the parameter
vector θi without component bi1, φ̄i(t) denote the regression vector φi(t) without component
ui(t), and similarly we introduce notations āi(t), P̄i(t) corresponding to ai(t) and Pi(t),
respectively. Then, the estimate θ̄i(t) at time t of θ̄i can be updated by the following
algorithm:

θ̄i(t + 1) = θ̄i(t) + σ̄i(t)P̄i(t)φ̄i(t)
×[xi(t + 1)− bi1ui(t)− φ̄T

i (t)θ̄i(t)]
P̄i(t + 1) = P̄i(t)− σ̄i(t)P̄i(t)φ̄i(t)φ̄

T
i (t)P̄i(t)

σ̄i(t) = [1 + φ̄T
i (t)P̄i(t)φ̄i(t)]

−1

(4.7)
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where π is the unique stationary probability distribution of the finite-state Markov chain with
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t→∞
ν(t) = 0 we easily know that the ith column of H0(t) tends to zero vector

as t → ∞. Consequently, we have
lim
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H0(t) = 0, (3.39)

which implies that each eigenvalue of H0(t) tends to zero too. By (3.38), eigenvalues of Ht are
identical with those of H0(t) except for zero, and, thus, we obtain that

lim
t→∞

ρ
(

Ht
)
= 0 (3.40)

which implies that
ρ(H) < 1. (3.41)

This completes the proof of Theorem 3.1.

4. Decentralized tracking with adaptive control

Decentralized tracking problem is critical to understand the fundamental relationship
between (local) stability of individual agents and the global stability of the whole system,
and tracking problem is the basis for investigating more general or complex problems such as
formation control. In this section, besides the parametric coupling uncertainties and external
random noise, parametric internal uncertainties are also present for each agent, which require
each agent to do more estimation work so as to deal with all these uncertainties. If each agent
needs to deal with both parametric and non-parametric uncertainties, the agents should adopt
more complex and smart leaning algorithms, whose ideas may be partially borrowed from Ma
& Lum (2008); Ma et al. (2007a); Yang et al. (2009) and the references therein.

4.1 System model
In this section, we study the case where the internal dynamics function fi(·) is not completely
known but can be expressed into a linear combination with unknown coefficients, such that
(2.1) can be expressed as follows:

xi(t + 1) +
ni

∑
k=1

aikxi(t − k + 1) =
mi

∑
k=1

bikui(t − k + 1) + γi ∑
j∈Ni

gijxj(t) + wi(t + 1) (4.1)
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which can be rewritten into the well-known ARMAX model with additional coupling item

∑j∈Ni
ḡijxj(t) (letting ḡij

Δ
= γigij) as follows:

Ai(q
−1)xi(t + 1) = Bi(q

−1)ui(t) + wi(t + 1) + ∑
j∈Ni

ḡijxj(t) (4.2)

with Ai(q
−1) = 1 + ∑ni

j=1 aijq
−j, Bi(q

−1) = bi1 + ∑mi

j=2 bijq
−j+1 and back shifter q−1.

4.2 Local controller design
For Agent i, we can rewrite its dynamic model as the following regression model

xi(t + 1) = θT
i φi(t) + wi(t + 1) (4.3)

where θi holds all unknown parameters and φi(t) is the corresponding regressor vector.
Then, by the following LS algorithm

θ̂i(t + 1) = θ̂i(t) + σi(t)Pi(t)φi(t)[xi(t + 1)−φT
i (t)θ̂i(t)]

Pi(t + 1) = Pi(t)− σi(t)Pi(t)φi(t)φ
T
i (t)Pi(t)

σi(t) = [1 +φT
i (t)Pi(t)φi(t)]

−1
(4.4)

we can obtain the estimated values θ̂i(t) of θi at time t. For Agent i, to track a given local

reference signal x
re f
i (t) � x∗i (t), with the parameter estimate θ̂i(t) given by the above LS

algorithm, it can then design its adaptive control law ui(t) by the “certainty equivalence”
principle, that is to say, it can choose ui(t) such that

θ̂T
i (t)φi(t) = x∗i (t + 1) (4.5)

where x∗i (t) is the bounded desired reference signal of Agent i, i.e. Agent i is to track the
deterministic given signal x∗i (t).
Consequently we obtain

ui(t) =
1

b̂i1(t)
{x∗i (t + 1)

+[âi1(t)xi(t) + · · ·+ âi,pi
(t)xi(t − pi + 1)]

−[b̂i2(t)ui(t − 1) + · · ·+ b̂i,qi
(t)ui(t − qi + 1)]

− ˆ̄gT
i (t)X̄i(t)}

(4.6)

where ˆ̄gi(t) is a vector holding the estimates ˆ̄gij(t) of gij (j ∈ Ni) and X̄i(t) is a vector holding
the states xij(t) (j ∈ Ni).

In particular, when the high-frequency gain bi1 is known a priori, let θ̄i denote the parameter
vector θi without component bi1, φ̄i(t) denote the regression vector φi(t) without component
ui(t), and similarly we introduce notations āi(t), P̄i(t) corresponding to ai(t) and Pi(t),
respectively. Then, the estimate θ̄i(t) at time t of θ̄i can be updated by the following
algorithm:

θ̄i(t + 1) = θ̄i(t) + σ̄i(t)P̄i(t)φ̄i(t)
×[xi(t + 1)− bi1ui(t)− φ̄T

i (t)θ̄i(t)]
P̄i(t + 1) = P̄i(t)− σ̄i(t)P̄i(t)φ̄i(t)φ̄

T
i (t)P̄i(t)

σ̄i(t) = [1 + φ̄T
i (t)P̄i(t)φ̄i(t)]

−1
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When the high-frequency gain bi1 is unknown a priori, to avoid the so-called singularity
problem of b̂i1(t) being or approaching zero, we need to use the following modified b̂i1(t),

denoted by ˆ̂bi1(t), instead of original b̂i1(t):

ˆ̂bi1(t) =

⎧⎨
⎩

b̂i1(t) if |b̂i1(t)| ≥
1√

log ri(t)

b̂i1(t) +
sgn(b̂i1(t))√

log ri(t)
if |b̂i1(t)| <

1√
log ri(t)

(4.8)

and consequently the local controller of Agent i is given by

ui(t) =
1

ˆ̂bi1(t)
{x∗i (t + 1)

+[âi1(t)xi(t) + · · ·+ âi,pi
(t)xi(t − pi + 1)]

−[b̂i2(t)ui(t − 1) + · · ·+ b̂i,qi
(t)ui(t − qi + 1)]

− ˆ̄gT
i (t)X̄i(t)}.

(4.9)

4.3 Assumptions
Assumption 4.1. (noise condition) {wi(t),Ft} is a martingale difference sequence, with {Ft} being
a sequence of nondecreasing σ-algebras, such that

sup
t≥0

E[|wi(t + 1)|β |Ft] < ∞, a.s.

for some β > 2 and

lim
t→∞

1
t

t
∑

k=1
|wi(k)|

2 = Ri > 0, a.s.

Assumption 4.2. (minimum phase condition) Bi(z) �= 0, ∀z ∈ C : |z| ≤ 1.

Assumption 4.3. (reference signal) {x∗i (t)} is a bounded deterministic signal.

4.4 Main result
Theorem 4.1. Suppose that Assumptions 4.1—4.3 hold for system (4.1). Then the closed-loop system
is stable and optimal, that is to say, for i = 1, 2, . . . , N, we have

lim sup
t→∞

1
t

t
∑

k=1
[|xi(k)|

2 + |ui(k − 1)|2] < ∞, a.s.

and

lim
t→∞

1
t

t

∑
k=1

|xi(k)− x∗i (k)|
2 = Ri, a.s.

Although each agent only aims to track a local reference signal by local adaptive controller
based on recursive LS algorithm, the whole system achieves global stability. The optimality
can also be understood intuitively because in the presence of noise, even when all the
parameters are known, the limit of

Ji(t)
Δ
= lim

t→∞
1
t

t−1

∑
k=0

|xi(k + 1)− x∗i (k + 1)|2

cannot be smaller than Ri.
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4.5 Lemmas
Lemma 4.1. Under Assumption 4.1, we have |wi(t)| = O(di(t)), where {di(t)} is an increasing
sequence and can be taken as tδ (δ can be any positive number).

Proof. In fact, by using Markov inequality, we obtain that

∞
∑

t=1
P(|wi(t + 1)|2 ≥ t2δ|Ft) ≤

∞
∑

t=1

E[|wi(t+1)|β|Ft]
tβδ < ∞

holds almost surely. By applying the Borel-Cantelli-Levy lemma, immediately we have
|wi(t + 1)| = O(tδ), a.s.

Lemma 4.2. If ξ(t + 1) = B(z)u(t),∀t > 0, where polynomial (q ≥ 1)

B(z) = b1 + b2z + · · ·+ bqzq−1

satisfies
B(z) �= 0, ∀z : |z| ≤ 1, (4.10)

then there exists a constant λ ∈ (0, 1) such that

|u(t)|2 = O(
t+1
∑

k=0
λt+1−k|ξ(k)|2). (4.11)

Proof. See Ma et al. (2007b).

Lemma 4.3. Under Assumption 4.1, for i = 1, 2, . . . , N, the LS algorithm has the following properties
almost surely:
(a)

θ̃T
i (t + 1)P−1

i (t + 1)θ̃i(t + 1) = O(log ri(t))

(b)
t

∑
k=1

αi(k) = O(log ri(t))

where

δi(t)
Δ
= tr(Pi(t)− Pi(t + 1))

σi(k)
Δ
= [1 +φT

i (k)Pi(k)φi(k)]
−1

αi(k)
Δ
= σi(k)|θ̃

T
i (k)φt(k)|

2

ri(t)
Δ
= 1 +

t
∑

k=1
φT

i (k)φi(k)

(4.12)

Proof. This is a special case of (Guo, 1994, Lemma 2.5).

Lemma 4.4. Under Assumption 4.1, for i = 1, 2, . . . , N, we have

t
∑

k=1
|xi(k)|

2 → ∞, lim inf
t→∞

1
t

t
∑

k=1
|xi(k)|

2 ≥ Ri > 0, a.s. (4.13)

Proof. This lemma can be obtained by estimating lower bound of
t

∑
k=1

[xi(k + 1)]2 with the help

of Assumption 4.1 and the martingale estimation theorem. Similar proof can be found in Chen
& Guo (1991).
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When the high-frequency gain bi1 is unknown a priori, to avoid the so-called singularity
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and consequently the local controller of Agent i is given by
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1
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+[âi1(t)xi(t) + · · ·+ âi,pi
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a sequence of nondecreasing σ-algebras, such that

sup
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E[|wi(t + 1)|β |Ft] < ∞, a.s.

for some β > 2 and

lim
t→∞

1
t

t
∑

k=1
|wi(k)|

2 = Ri > 0, a.s.

Assumption 4.2. (minimum phase condition) Bi(z) �= 0, ∀z ∈ C : |z| ≤ 1.

Assumption 4.3. (reference signal) {x∗i (t)} is a bounded deterministic signal.

4.4 Main result
Theorem 4.1. Suppose that Assumptions 4.1—4.3 hold for system (4.1). Then the closed-loop system
is stable and optimal, that is to say, for i = 1, 2, . . . , N, we have

lim sup
t→∞

1
t

t
∑

k=1
[|xi(k)|

2 + |ui(k − 1)|2] < ∞, a.s.

and

lim
t→∞

1
t

t

∑
k=1

|xi(k)− x∗i (k)|
2 = Ri, a.s.

Although each agent only aims to track a local reference signal by local adaptive controller
based on recursive LS algorithm, the whole system achieves global stability. The optimality
can also be understood intuitively because in the presence of noise, even when all the
parameters are known, the limit of

Ji(t)
Δ
= lim

t→∞
1
t

t−1

∑
k=0

|xi(k + 1)− x∗i (k + 1)|2

cannot be smaller than Ri.
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4.5 Lemmas
Lemma 4.1. Under Assumption 4.1, we have |wi(t)| = O(di(t)), where {di(t)} is an increasing
sequence and can be taken as tδ (δ can be any positive number).

Proof. In fact, by using Markov inequality, we obtain that

∞
∑

t=1
P(|wi(t + 1)|2 ≥ t2δ|Ft) ≤

∞
∑

t=1

E[|wi(t+1)|β|Ft]
tβδ < ∞

holds almost surely. By applying the Borel-Cantelli-Levy lemma, immediately we have
|wi(t + 1)| = O(tδ), a.s.

Lemma 4.2. If ξ(t + 1) = B(z)u(t),∀t > 0, where polynomial (q ≥ 1)

B(z) = b1 + b2z + · · ·+ bqzq−1

satisfies
B(z) �= 0, ∀z : |z| ≤ 1, (4.10)

then there exists a constant λ ∈ (0, 1) such that

|u(t)|2 = O(
t+1
∑

k=0
λt+1−k|ξ(k)|2). (4.11)

Proof. See Ma et al. (2007b).

Lemma 4.3. Under Assumption 4.1, for i = 1, 2, . . . , N, the LS algorithm has the following properties
almost surely:
(a)

θ̃T
i (t + 1)P−1

i (t + 1)θ̃i(t + 1) = O(log ri(t))

(b)
t

∑
k=1

αi(k) = O(log ri(t))

where

δi(t)
Δ
= tr(Pi(t)− Pi(t + 1))

σi(k)
Δ
= [1 +φT

i (k)Pi(k)φi(k)]
−1

αi(k)
Δ
= σi(k)|θ̃

T
i (k)φt(k)|

2

ri(t)
Δ
= 1 +

t
∑

k=1
φT

i (k)φi(k)

(4.12)

Proof. This is a special case of (Guo, 1994, Lemma 2.5).

Lemma 4.4. Under Assumption 4.1, for i = 1, 2, . . . , N, we have

t
∑

k=1
|xi(k)|

2 → ∞, lim inf
t→∞

1
t

t
∑

k=1
|xi(k)|

2 ≥ Ri > 0, a.s. (4.13)

Proof. This lemma can be obtained by estimating lower bound of
t

∑
k=1

[xi(k + 1)]2 with the help

of Assumption 4.1 and the martingale estimation theorem. Similar proof can be found in Chen
& Guo (1991).
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4.6 Proof of Theorem 4.1
To prove Theorem 4.1, we shall apply the main idea, utilized in Chen & Guo (1991) and Guo
(1993), to estimate the bounds of signals by analyzing some linear inequalities. However, there
are some difficulties in analyzing the closed-loop system of decentralized adaptive control
law. Noting that each agent only uses local estimate algorithm and control law, but the agents
are coupled, therefore for a fixed Agent i, we cannot estimate the bounds of state xi(t) and
control ui(t) without knowing the corresponding bounds for its neighborhood agents. This is
the main difficulty of this problem. To resolve this problem, we first analyze every agent, and
then consider their relationship globally, finally the estimation of state bounds for each agent
can be obtained through both the local and global analysis.
In the following analysis, δi(t), σi(k), αi(k) and ri(t) are defined as in Eq. (4.12).
Step 1: In this step, we analyze dynamics of each agent. We consider Agent i for i =
1, 2, . . . , N. By putting the control law (4.9) into (4.3), noting that (4.5), we have

xi(t + 1) = θT
i φi(t) + wi(t + 1)

= x∗i (t + 1)− θ̂T
i (t)φi(t) + θT

i φi(t) + wi(t + 1)
= x∗i (t + 1) + θ̃T

i (t)φi(t) + wi(t + 1)

By Lemma 4.1, we have |wi(t)|
2 = O(di(t)). Noticing also

|θ̃i(t)φi(t)|
2 = αi(t)[1 +φT

i (t)Pi(t)φi(t)]
= αi(t)[1 +φT

i (t)Pi(t + 1)φi(t)]
+αi(t)φ

T
i (t)[Pi(t)− Pi(t + 1)]φi(t)

≤ αi(t)[2 + δi(t)�φi(t)�
2]

and the boundedness of x∗i (t + 1), we can obtain that

|xi(t + 1)|2 ≤ 2αi(t)δi(t)�φi(t)�
2 + O(di(t)) + O(log ri(t)). (4.14)

Now let us estimate �φi(t)�
2. By Lemma 4.2, there exists λi ∈ (0, 1) such that

|ui(t)|
2 = O(

t+1
∑

k=0
λt+1−k

i (|xi(k)|
2 + �X̄i(k)�

2 + |wi(k + 1)|2)).

It holds for all i = 1, 2, . . . , N, but we cannot estimate |ui(t)|
2 directly because it involves

{xj(k), j ∈ Ni} in X̄i(k).
Let

ρ = max(λ1, · · · , λN) ∈ (0, 1)
X(k) = [x1(k), · · · , xN(k)]T

d̄(k) = max(d1(k), · · · , dN(k)).

Obviously we have

|xi(k)|
2 = O(�X(k)�2), �X̄i(k)�

2 = O(�X(k)�2).

Now define

Lt
Δ
=

t

∑
k=0

ρt−k�X(k)�2.
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Then, for i = 1, 2, . . . , N, we have

|ui(t)|
2 = O(Lt+1) + O(

t+1
∑

k=0
ρt+1−kd̄(k))

= O(Lt+1) + O(d̄(t + 1)).

Since
φi(t) = [xi(t), · · · , xi(t − pi + 1), ui(t − 1), · · · , ui(t − qi + 1), X̄T

i (t)]
T

we can obtain that
�φi(t)�

2 = O(�X(t)�2) + O(Lt) + O(d̄(t))
+O(log ri(t) + di(t))

= O(Lt + log r̄(t) + d̄(t))

where

r̄(t)
Δ
=max(r1(t), r2(t), · · · , rN(t)).

Hence by (4.14), for Agent i, there exists Ci > 0 such that

|xi(t + 1)|2 ≤ Ciαi(t)δi(t)Lt

+O(αi(t)δi(t)[log r̄(t) + d̄(t)])
+O(di(t) + log ri(t)).

Then noticing
αi(t)δi(t) = O(log ri(t))

we obtain that

|xi(t + 1)|2 ≤ Ciαi(t)δi(t)Lt + O(log ri(t)[log r̄(t) + d̄(t)]). (4.15)

Step 2: Because (4.15) holds for i = 1, 2, . . . , N, we have

�X(t + 1)�2 =
N

∑
i=1

|xi(t + 1)|2

≤ [
N
∑

i=1
Ciαi(t)δi(t)]Lt

+O(Nd̄(t) log r̄(t)) + O(N log2 r̄(t)).

Thus by the definition of Lt, we have

Lt+1 = ρLt + �X(t + 1)�2

≤ [ρ + C
N

∑
i=1

αi(t)δi(t)]Lt

+O(Nd̄(t) log r̄(t)) +O(N log2 r̄(t))

where
C = max(C1, C2, · · · , CN).

Let η(t) =
N

∑
i=1

αi(t)δi(t), then

Lt+1 = O(Nd̄(t) log r(t) + N log2 r̄(t))

+O(N
t−1
∑

k=0

t
∏

l=k+1
[ρ + Cη(l)]

×[d̄(k) log r̄(k) + log2 r̄(k)]).

(4.16)
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Since
∞
∑

k=0
δi(k) =

∞
∑

k=0
[tr Pi(k)− tr Pi(k + 1)] ≤ tr Pi(0) < ∞,

we have δi(k) → 0 as k → ∞. By Lemma 4.3,

∞
∑

k=0
αi(k) = O(log ri(k)) = O(log r̄(k)).

Then, for i = 1, 2, . . . , N and arbitrary � > 0, there exists k0 > 0 such that

ρ−1C
t

∑
k=t0

αi(k)δi(k) ≤
1
N � log r̄(t)

for all t ≥ t0 ≥ k0. Therefore

ρ−1C
t

∑
k=t0

η(k) ≤ � log r̄(t).

Then, by the inequality 1 + x ≤ ex, ∀x ≥ 0 we have

t
∏

k=t0

[1 + ρ−1Cη(k)] ≤ exp{ρ−1C
t

∑
k=t0

η(k)}

≤ exp{� log r̄(t)} = r̄�(t).

Putting this into (4.16), we can obtain

Lt+1 = O(log ri(t)[log r̄(t) + d̄(t)]r̄�(t)).

Then, by the arbitrariness of �, we have

Lt+1 = O(d̄(t)r̄�(t)), ∀� > 0.

Consequently, for i = 1, 2, . . . , N, we obtain that

�X(t + 1)�2 ≤ Lt+1 = O(d̄(t)r̄�(t))

|ui(t)|
2 = O(Lt+1 + d̄(t + 1)) = O(d̄(t)r̄�(t))

�φi(t)�
2 = O(Lt + log r̄(t) + d̄(t)) = O(d̄(t)r̄�(t)).

(4.17)

Step 3: By Lemma 4.4, we have

lim inf
t→∞

ri(t)
t ≥ Ri > 0, a.s.

Thus t = O(ri(t)) = O(r̄(t)), together with d̄(t) = O(tδ), ∀δ ∈ ( 2
β , 1), then we conclude that

d̄(t) = O(r̄�(t)). Putting this into (4.17), and by the arbitrariness of �, we obtain that

�φi(t)�
2 = O(r̄δ(t)), ∀δ ∈ ( 2

β , 1).
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Therefore
t

∑
k=0

|θ̃T
i (k)φi(k)|

2

=
t

∑
k=0

αi(k)[1 +φT
i (k)Pi(k)φi(k)]

= O(log ri(t)) + O(
t

∑
k=0

αi(k)�φi(k)�
2)

= O(log r̄(t)) + O(r̄δ(t)
t

∑
k=0

αi(k))

= O(r̄δ(t) log r̄(t)), ∀δ ∈ ( 2
β , 1).

Then, by the arbitrariness of δ, we have

t
∑

k=0
|θ̃T

i (k)φi(k)|
2 = O(r̄δ(t)), ∀δ ∈ ( 2

β , 1). (4.18)

Since
xi(t + 1) = θ̃T

i (t)φi(t) + x∗i (t + 1) + wi(t + 1)

we have
t

∑
k=0

|xi(k + 1)|2 = O(r̄δ(t)) + O(t) + O(log r̄(t))

= O(r̄δ(t)) + O(t)
t

∑
k=0

|ui(k − 1)|2 = O(r̄δ(t)) + O(t)

From the above, we know that for i = 1, 2, . . . , N,

ri(t) = 1 +
t

∑
k=0

�φi(k)�
2 = O(r̄δ(t)) + O(t)

∀δ ∈ ( 2
β , 1).

Hence
r̄(t) = max{ri(t), 1 ≤ i ≤ N}

= O(r̄δ(t)) + O(t), ∀δ ∈ ( 2
β , 1).

Furthermore, we can obtain
r̄(t) = O(t)

which means that the closed-loop system is stable.
Step 4: Now we give the proof of the optimality.

t
∑

k=0
|xi(k + 1)− x∗i (k + 1)|2

=
t

∑
k=0

[wi(k + 1)]2 +
t

∑
k=0

[ψi(k)]
2 + 2

t
∑

k=0
ψi(k)wi(k + 1)

(4.19)

where

ψi(k)
Δ
= θ̃T

i (k)φi(k).
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By (4.18) and the martingale estimate theorem, we can obtain that the orders of last two items
in (4.19) are both O(r̄δ(t)), ∀δ ∈ ( 2

β , 1). Then we can obtain

lim
t→∞

1
t

t
∑

k=0
|xi(k + 1)− x∗i (k + 1)|2 = Ri, a.s.

Furthermore
t

∑
k=0

|xi(k)− x∗i (k)− wi(k)|
2 =

t
∑

k=0
�ψi(k)�

2

= O(r̄δ(t)) = o(t), a.s.

This completes the proof of the optimality of the decentralized adaptive controller.

5. Hidden leader following with adaptive control

In this section, we consider a hidden leader following problem, in which the leader agent
knows the target trajectory to follow but the leadership of itself is unknown to all the others,
and the leader can only affect its neighbors who can sense its outputs. In fact, this sort of
problems may be found in many real applications. For example, a capper in the casino lures
the players to follow his action but at the same time he has to keep not recognized. For another
example, the plainclothes policeman can handle the crowd guide work very well in a crowd
of people although he may only affect people around him. The objective of hidden leader
following problem for the multi-agent system is to make each agent eventually follow the
hidden leader such that the whole system is in order. It is obvious that the hidden leader
following problem is more complicated than the conventional leader following problem and
investigations of this problem are of significance in both theory and practice.

5.1 System model
For simplicity, we do not consider random noise in this section. The dynamics of the
multi-agent system under study is in the following manner:

Ai(q
−1)xi(t + 1) = Bi(q

−1)ui(t) + γi x̄i(t) (5.1)

with Ai(q
−1) = 1 + ∑ni

j=1 aijq
−j, Bi(q

−1) = bi1 + ∑mi

j=2 bijq
−j+1 and back shifter q−1, where

ui(t) and xi(t), i = 1, 2, . . . , N, are input and output of Agent i, respectively. Here x̄i(t) is the
average of the outputs from the neighbors of Agent i:

x̄i(t)
Δ
= 1

Ni
∑

j∈Ni

xj(t) (5.2)

where
Ni = {si,1, si,2, . . . , si,Ni

} (5.3)

denotes the indices of Agent i’s neighbors (excluding Agent i itself) and Ni is the number of
Agent i’s neighbors. In this model, we suppose that the parameters aij (j = 1, 2, . . . , mj), bij

(j = 1, 2, . . . , nj) and γi are all a priori unknown to Agent i.

Remark 5.1. From (5.1) we can find that there is no information to indicate which agent is the leader
in the system representation.
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5.2 Local Controller design
Dynamics equation (5.1) for Agent i can be rewritten into the following regression form

xi(t + 1) = θT
i φi(t)

where θi holds all unknown parameters and φi(t) is the corresponding regressor vector.
We assume that the bounded desired reference x∗(k) is only available to the hidden leader
and satisfies x∗(k + 1) − x∗(k) = o(1). Without loss of generality, we suppose that the first
agent is the hidden leader, so the control u1(t) for the first agent can be directly designed by

using the certainty equivalence principle to track xref
1 (k)

Δ
= x∗(k):

θ̂T
1 (t)φ1(t) = x∗(t + 1) (5.4)

which leads to

u1(t) =
1

b̂11(t)
{x∗(t + 1) + [â11(t)x1(t) + · · ·+ â1,n1

(t)x1(t − n1 + 1)]

−[b̂12(t)u1(t − 1) + · · ·+ b̂1,m1
(t)u1(t − m1 + 1)]

−γ̂1(t)x̄1(t)}.

(5.5)

As for the other agents, they are unaware of either the reference trajectory or the existence
of the leader and the outputs of their neighbors are the only external information available
for them, consequently, the jth (j = 2, 3, · · · , N) agent should design its control uj(t) to track

corresponding local center xref
j (t)

Δ
= x̄j(t) such that

θ̂T
j (t)φj(t) = x̄j(t) (5.6)

from which we can obtain the following local adaptive controller for Agent j:

uj(t) =
1

b̂j1(t)
{x̄j(t) + [âj1(t)xj(t) + · · ·+ âj,n1

(t)xj(t − nj + 1)]

−[b̂j2(t)uj(t − 1) + · · ·+ b̂j,mj
(t)uj(t − mj + 1)]

−γ̂j(t)x̄j(t)}.

(5.7)

Define

ỹ1(t) = x1(t)− x∗(t) (5.8)

and

ỹj(t) = xj(t)− x̄j(t − 1), j = 2, 3, · · · , N. (5.9)

The update law for the estimated parameters in the adaptive control laws (5.5) and (5.7) is
given below (j = 1, 2, . . . , N):

θ̂j(t) = θ̂j(t − 1) +
μj ỹj(t)φj(t−1)

Dj(t−1)

Dj(k) = 1 + �φj(k)�
2

(5.10)

where 0 < μj < 2 is a tunable parameter for tuning the convergence rate. Note that the above

update law may not guarantee that b̂j1(t) ≥ bj1, hence when the original b̂j1(t) given by (5.10),

denoted by b̂�j1(t) hereinafter, is smaller than bj1, we need to make minor modification to b̂j1(t)

as follows:

b̂j1(t) = bj1 if b̂�j1(t) < bj1. (5.11)

In other words, b̂j1(t) = max(b̂�j1(t), bj1) in all cases.
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lim
t→∞

1
t

t
∑

k=0
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t

∑
k=0
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2 =

t
∑

k=0
�ψi(k)�

2
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5.3 Assumptions
Assumption 5.1. The desired reference x∗(k) for the multi-agent system is a bounded sequence and
satisfies x∗(k + 1)− x∗(k) = o(1).

Assumption 5.2. The graph of the multi-agent system under study is strongly connected such that
its adjacent matrix GA is irreducible.

Assumption 5.3. Without loss of generality, it is assumed that the first agent is a hidden leader who
knows the desired reference x∗(k) while other agents are unaware of either the desired reference or which
agent is the leader.

Assumption 5.4. The sign of control gain bj1, 1 ≤ j ≤ n, is known and satisfies |bj1| ≥ bj1 > 0.
Without loss of generality, it is assumed that bj1 is positive.

5.4 Main result
Under the proposed decentralized adaptive control, the control performance for the
multi-agent system is summarized as the following theorem.

Theorem 5.1. Considering the closed-loop multi-agent system consisting of open loop system in (5.1)
under Assumptions 5.1-5.4, adaptive control inputs defined in (5.5) and (5.7), parameter estimates
update law in (5.10), the system can achieve synchronization and every agent can asymptotically track
the reference x∗(t), i.e.,

lim
t→∞

ej(t) = 0, j = 1, 2, . . . , N (5.12)

where ej(k) = xj(k)− x∗(k).

Corollary 5.1. Under conditions of Theorem 5.1, the system can achieve synchronization in sense of
mean and every agent can successfully track the reference x∗(t) in sense of mean, i.e.,

lim
t→∞

1
t

t
∑

k=1
|ej(k)| = 0, j = 1, 2, . . . , N (5.13)

5.5 Notations and lemmas
Define

X(k) = [x1(k), x2(k), . . . , xN(k)]T (5.14)

Ỹ(k) = [ỹ1(k), ỹ2(k), . . . , ỹn(k)]
T (5.15)

H = [1, 0, . . . , 0]T ∈ RN (5.16)

From (5.2) and (5.14), we have

[0, x̄2(k), . . . , x̄n(k)] = ΛGAX(k) (5.17)

where

Λ =

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0

0 1
N2

· · · 0
...

...
. . .

...

0 0 · · · 1
NN

⎤
⎥⎥⎥⎥⎦

. (5.18)
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and GA is an adjacent matrix of the multi-agent system (5.1), whose (i, j)th entry is 1 if j ∈
Ni or 0 if j �∈ Ni. Consequently, the closed-loop multi-agent system can be written in the
following compact form by using equality

X(k + 1) = ΛGAX(k) + Hx∗(k + 1) + Ỹ(k + 1) (5.19)

Definition 5.1. A sub-stochastic matrix is a square matrix each of whose rows consists of nonnegative
real numbers, with at least one row summing strictly less than 1 and other rows summing to 1.

Lemma 5.1. According to Assumption 5.2, the product matrix ΛGA is a substochastic matrix (refer
to Definition 5.1) such that ρ(ΛGA) < 1 (Dong et al. (2008)), where ρ(A) stands for the spectral
radius of a matrix A.

Definition 5.2. (Chen & Narendra, 2001) Let x1(k) and x2(k) be two discrete-time scalar or vector
signals, ∀k ∈ Z+

t , for any t.

• We denote x1(k) = O[x2(k)], if there exist positive constants m1, m2 and k0 such that �x1(k)� ≤
m1 maxk�≤k �x2(k

�)�+ m2, ∀k > k0.

• We denote x1(k) = o[x2(k)], if there exists a discrete-time function α(k) satisfying limk→∞ α(k) =
0 and a constant k0 such that �x1(k)� ≤ α(k)maxk�≤k �x2(k

�)�, ∀k > k0.

• We denote x1(k) ∼ x2(k) if they satisfy x1(k) = O[x2(k)] and x2(k) = O[x1(k)].

For convenience, in the followings we use O[1] and o[1] to denote bounded sequences and
sequences converging to zero, respectively. In addition, if sequence y(k) satisfies y(k) =
O[x(k)] or y(k) = o[x(k)], then we may directly use O[x(k)] or o[x(k)] to denote sequence
y(k) for convenience.
According to Definition 5.2, we have the following lemma

Lemma 5.2. According to the definition on signal orders in Definition 5.2, we have following
properties:

(i) O[x1(k + τ)] + O[x1(k)] ∼ O[x1(k + τ)], ∀τ ≥ 0.

(ii) x1(k + τ) + o[x1(k)] ∼ x1(k + τ), ∀τ ≥ 0.

(iii) o[x1(k + τ)] + o[x1(k)] ∼ o[x1(k + τ)], ∀τ ≥ 0.

(iv) o[x1(k)] + o[x2(k)] ∼ o[|x1(k)|+ |x2(k)|].

(v) o[O[x1(k)]] ∼ o[x1(k)] + O[1].

(vi) If x1(k) ∼ x2(k) and limk→∞ �x2(k)� = 0, then limk→∞ �x1(k)� = 0.

(vii) If x1(k) = o[x1(k)] + o[1], then limk→∞ �x1(k)� = 0.

(viii) Let x2(k) = x1(k) + o[x1(k)]. If x2(k) = o[1], then limk→∞ �x1(k)� = 0.

The following lemma is a special case of Lemma 4.4 in Ma (2009).

Lemma 5.3. Consider the following iterative system

X(k + 1) = A(k)X(k) + W(k) (5.20)

where �W(k)� = O[1], and A(k) → A as k → ∞. Assume that ρ(A) is the spectral radius of A, i.e.
ρ(A) = max{|λ(A)|} and ρ(A) < 1, then we can obtain

X(k + 1) = O[1]. (5.21)
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5.6 Proof of Theorem 5.1
In the following, the proof of mathematic rigor is presented in two steps. In the first step, we
prove that x̃j(k) → 0 for all j = 1, 2, . . . , N, which leads to x1(k) − x∗(k) → 0 such that the
hidden leader follows the reference trajectory. In the second step, we further prove that the
output of each agent can track the output of the hidden leader such that the control objective
is achieved.

Step 1: Denote θ̃j(k)
Δ
= θ̂j(k) − θj(k), especially b̃j1(k)

Δ
= b̂j1(k) − bj1. For convenience, let

b̃�j1
Δ
= b̂�j1 − bj1, where b̂�j1 denotes the original estimate of bj1 without further modification.

From the definitions of b̂�j1 and b̂j1, since b̂j1(t) = max(b̂�j1(t), bj1) and bj1 ≥ bj1, obviously we

have
b̃2

j1(k) ≤ b̃�2j1(k). (5.22)

Consider a Lyapunov candidate

Vj(k) = �θ̃j(k)�
2 (5.23)

and we are to show that Vj(k) is non-increasing for each j = 1, 2, . . . , N, i.e. Vj(k) ≤ Vj(k − 1).
Noticing the fact given in (5.22), we can see that the minor modification given in (5.11) will not
increase the value of Vj(k) when b̂�j1(k) < bj1, therefore, in the sequel, we need only consider

the original estimates without modification. Noting that

�θ̂j(k)− θ̂j(k − 1)� = �θ̃j(k)− θ̃j(k − 1)� (5.24)

the difference of Lyapunov function Vj(k) can be written as

ΔVj(k) = Vj(k)− Vj(k − 1)

= �θ̃j(k)�
2 − �θ̃j(k − 1)�2

= �θ̂j(k)− θ̂j(k − 1)�2 + 2θ̃τ
j (k − 1)[θ̂j(k)− θ̂j(k − 1)].

(5.25)

Then, according to the update law (5.10), the error dynamics (5.8) and (5.9), we have

�θ̂j(k)− θ̂j(k − 1)�2 + 2θ̃τ
j (k − 1)[θ̂j(k)− θ̂j(k − 1)]

≤
μ2

j ỹ2
j (k)

Dj(k − 1)
−

2μj ỹ
2
j (k)

Dj(k − 1)
= −

μj(2 − μj)ỹ
2
j (k)

Dj(k − 1)
.

Noting 0 < μj < 2, we see that ΔVj(k) is guaranteed to be non-positive such that the

boundedness of Vj(k) is obvious, and immediately the boundedness of θ̂j(k) and b̂j1(k) is
guaranteed. Taking summation on both sides of the above equation, we obtain

∞

∑
k=0

μj(2 − μj)
ỹ2

j (k)

Dj(k − 1)
≤ Vj(0) (5.26)

which implies

lim
k→∞

ỹ2
j (k)

Dj(k − 1)
= 0, or ỹj(k) = αj(k)D

1
2

j (k − 1) (5.27)
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with αj(k) ∈ L2[0, ∞).
Define

Ȳj(k) = [xj(k), YT
j (k)]

T (5.28)

where Yj(k) is a vector holding states, at time k, of the jth agent’s neighbors. By (5.5) and (5.7),
we have

uj(k) = O[Ȳj(k + 1)]

φj(k) = O[Ȳj(k)] (5.29)

then it is obvious that

D
1
2

j (k − 1) ≤ 1 + �φj(k − 1)�+ |uj(k − 1)|

= 1 + O[Ȳj(k)]. (5.30)

From (5.27) we obtain that

ỹj(k) = o[1] + o[Ȳj(k)], j = 1, 2, . . . , N (5.31)

Using o[X(k)] ∼ o[x1(k)] + o[x2(k)] + . . . + o[xn(k)], we may rewrite the above equation as

Ỹ(k) ∼ diag(o[1], . . . , o[1])(GA + I)X(k)

+[o[1], . . . , o[1]]T (5.32)

where I is the n × n identity matrix. Substituting the above equation into equation (5.19), we
obtain

X(k + 1) = (ΛGA + diag(o[1], . . . , o[1])(GA + I))X(k)

+[x∗(k + 1) + o[1], o[1], . . . , o[1]]T.

Since

(ΛGA + diag(o[1], . . . , o[1])(GA + I))Y(k) → ΛGA (5.33)

as k → ∞, noting ρ(ΛGA) < 1, according to Lemma 5.1 and

[x∗(k + 1) + o[1], o[1], . . . , o[1]]T = O[1] (5.34)

from Lemma 5.3, we have

X(k + 1) = O[1]. (5.35)

Then, together with equation (5.32), we have Ỹ(k) = [o[1], . . . , o[1]]T, which implies

ỹj(k) → 0 as k → ∞, j = 1, 2, . . . , N (5.36)

which leads to x1(k)− x∗(k) → 0.
Step 2: Next, we define a vector of the errors between each agent’s output and the hidden
leader’s output as follows

E(k) = X(k)− [1, 1, . . . , 1]Tx1(k) = [e11(k), e21(k), . . . , en1(k)]
T (5.37)

251Decentralized Adaptive Control of Discrete-Time Multi-Agent Systems



5.6 Proof of Theorem 5.1
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Step 1: Denote θ̃j(k)
Δ
= θ̂j(k) − θj(k), especially b̃j1(k)

Δ
= b̂j1(k) − bj1. For convenience, let

b̃�j1
Δ
= b̂�j1 − bj1, where b̂�j1 denotes the original estimate of bj1 without further modification.

From the definitions of b̂�j1 and b̂j1, since b̂j1(t) = max(b̂�j1(t), bj1) and bj1 ≥ bj1, obviously we

have
b̃2

j1(k) ≤ b̃�2j1(k). (5.22)

Consider a Lyapunov candidate

Vj(k) = �θ̃j(k)�
2 (5.23)
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ΔVj(k) = Vj(k)− Vj(k − 1)

= �θ̃j(k)�
2 − �θ̃j(k − 1)�2

= �θ̂j(k)− θ̂j(k − 1)�2 + 2θ̃τ
j (k − 1)[θ̂j(k)− θ̂j(k − 1)].

(5.25)

Then, according to the update law (5.10), the error dynamics (5.8) and (5.9), we have

�θ̂j(k)− θ̂j(k − 1)�2 + 2θ̃τ
j (k − 1)[θ̂j(k)− θ̂j(k − 1)]

≤
μ2

j ỹ2
j (k)

Dj(k − 1)
−

2μj ỹ
2
j (k)

Dj(k − 1)
= −

μj(2 − μj)ỹ
2
j (k)

Dj(k − 1)
.

Noting 0 < μj < 2, we see that ΔVj(k) is guaranteed to be non-positive such that the

boundedness of Vj(k) is obvious, and immediately the boundedness of θ̂j(k) and b̂j1(k) is
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∞

∑
k=0

μj(2 − μj)
ỹ2

j (k)

Dj(k − 1)
≤ Vj(0) (5.26)

which implies

lim
k→∞

ỹ2
j (k)

Dj(k − 1)
= 0, or ỹj(k) = αj(k)D

1
2

j (k − 1) (5.27)
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= 1 + O[Ȳj(k)]. (5.30)

From (5.27) we obtain that
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where ej1(k) satisfies

e11(k + 1) = x1(k + 1)− x1(k + 1) = 0,

ej1(k + 1) = xj(k + 1)− x1(k + 1) = x̄j(k + 1)− x1(k + 1) + x̃j(k + 1),

j = 2, 3, . . . , N. (5.38)

Noting that except the first row, the summations of the other rows in the sub-stochastic matrix
ΛGA are 1, we have

[0, 1, . . . , 1]T = ΛGA[0, 1, . . . , 1]T

such that equations in (5.38) can be written as

E(k + 1) = ΛGX(k)− ΛGA[0, 1, . . . , 1]Tx1(k + 1)
+diag(0, 1, . . . , 1)Ỹ(k).

(5.39)

According to Assumption 5.1, we obtain

E(k + 1) = ΛGA(X(k)− [0, 1, . . . , 1]T x1(k))
+[0, 1, . . . , 1]T(x1(k)− x1(k + 1))
+[o[1], . . . , o[1]]T

= ΛGE(k) + [o[1], . . . , o[1]]T.

(5.40)

Assume that ρ� is the spectral radius of ΛGA, then there exists a matrix norm, which is denoted
as � · �p, such that

�E(k + 1)�p ≤ ρ��E(k)�p + o[1] (5.41)

where ρ� < 1. Then, it is straightforward to show that

�E(k + 1)�p → 0 (5.42)

as k → ∞. This completes the proof.

6. Summary

The decentralized adaptive control problems have wide backgrounds and applications in
practice. Such problems are very challenging because various uncertainties, including
coupling uncertainties, parametric plant uncertainties, nonparametric modeling errors,
random noise, communication limits, time delay, and so on, may exist in multi-agent systems.
Especially, the decentralized adaptive control problems for the discrete-time multi-agent
systems may involve more technical difficulties due to the nature of discrete-time systems
and lack of mathematical tools for analyzing stability of discrete-time nonlinear systems.
In this chapter, within a unified framework of multi-agent decentralized adaptive control,
for a typical general model with coupling uncertainties and other uncertainties, we
have investigated several decentralized adaptive control problems, designed efficient local
adaptive controllers according to local goals of agents, and mathematically established the
global properties (synchronization, stability and optimality) of the whole system, which in
turn reveal the fundamental relationship between local agents and the global system.
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1. Introduction

New design tools and systematic design procedures has been developed in the past decade to
adaptive control for a set of general classes of nonlinear systems with uncertainties (Krstić et
al., 1995; Fradkov et al., 1999). In the absence of modeling uncertainties, adaptive controllers
can achieve in general global boundness, asymptotic tracking, passivity of the adaptation loop
and systematic improvement of transient performance. Also, other sources of uncertainty
like intrinsic disturbances acting on measures and exogenous perturbations are taking into
account in many approaches in order for the controllers to be more robust.
The development of adaptive guidance systems for unmanned vehicles is recently starting to
gain in interest in different application fields like autonomous vehicles in aerial, terrestrial as
well as in subaquatic environments (Antonelli, 2007; Sun & Cheah, 2003; Kahveci et al., 2008;
Bagnell et al., 2010). These complex dynamics involve a high degree of uncertainty (specially
in the case of underwater vehicles), namely located in the inertia, added mass, Coriolis and
centripetal forces, buoyancy and linear and nonlinear damping.
When applying digital technology, both in computing and communication, the
implementation of controllers in digital form is unavoidable. This fact is strengthened
by many applications where the sensorial components work inherently digitally at regular
periods of time. However, usual applications in path tracking of unmanned vehicles are
characterized by analog control approaches (Fossen, 1994; Inzartev, 2009).
The translation of existing analog-controller design approaches to the discrete-time domain
is commonly done by a simple digitalization of the controlling action, and in the case of
adaptive controllers, of the adaptive laws too (Cunha et al., 1995; Smallwood & Whitcomb,
2003). This way generally provides a good control system behavior. However the role
played by the sampling time in the stability and performance must be cautiously investigated.
Additionally, noisy measures and digitalization errors may not only affect the stability
properties significantly but also increase the complexity of the analysis even for the simplest
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1. Introduction

New design tools and systematic design procedures has been developed in the past decade to
adaptive control for a set of general classes of nonlinear systems with uncertainties (Krstić et
al., 1995; Fradkov et al., 1999). In the absence of modeling uncertainties, adaptive controllers
can achieve in general global boundness, asymptotic tracking, passivity of the adaptation loop
and systematic improvement of transient performance. Also, other sources of uncertainty
like intrinsic disturbances acting on measures and exogenous perturbations are taking into
account in many approaches in order for the controllers to be more robust.
The development of adaptive guidance systems for unmanned vehicles is recently starting to
gain in interest in different application fields like autonomous vehicles in aerial, terrestrial as
well as in subaquatic environments (Antonelli, 2007; Sun & Cheah, 2003; Kahveci et al., 2008;
Bagnell et al., 2010). These complex dynamics involve a high degree of uncertainty (specially
in the case of underwater vehicles), namely located in the inertia, added mass, Coriolis and
centripetal forces, buoyancy and linear and nonlinear damping.
When applying digital technology, both in computing and communication, the
implementation of controllers in digital form is unavoidable. This fact is strengthened
by many applications where the sensorial components work inherently digitally at regular
periods of time. However, usual applications in path tracking of unmanned vehicles are
characterized by analog control approaches (Fossen, 1994; Inzartev, 2009).
The translation of existing analog-controller design approaches to the discrete-time domain
is commonly done by a simple digitalization of the controlling action, and in the case of
adaptive controllers, of the adaptive laws too (Cunha et al., 1995; Smallwood & Whitcomb,
2003). This way generally provides a good control system behavior. However the role
played by the sampling time in the stability and performance must be cautiously investigated.
Additionally, noisy measures and digitalization errors may not only affect the stability
properties significantly but also increase the complexity of the analysis even for the simplest
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approaches based on Euler or Tustin discretization methods (Jordán & Bustamante, 2009a;
Jordán & Bustamante, 2009b; Jordán et al., 2010).
On the other side, controller designs being carried out directly in the discrete-time domain
seem to be a more promising alternative than the translation approaches. This is sustained on
the fact that model errors as well as perturbations are included in the design approach directly
to ensure stability and performance specifications.
This work is concerned about a novel design of discrete-time adaptive controllers for
path tracking of unmanned underwater vehicles subject to perturbations and measure
disturbances. The presented approach is completely developed in the discrete time domain.
Formal proofs are presented for stability and performance. Finally, a case study related to a
complex guidance system in 6 degrees of freedom (DOF´s) is worked through to illustrate the
features of the proposed approach.

2. Notation

Throughout the chapter, vectors are denoted in lower case and bold letters, scalars in lower
case letters, matrices in capital letters. A function dependence on a variable is denoted
with brackets as for instance F[x]. Also brackets are employed to enclose the elements of a
vector. Elements of a set are described as enclosed in braces. Parentheses are only used to
separate factors with terms of an expression. Subscripts are applied to reference elements in
sequences, in matrices or sample-time points. In time sequences, one will distinguish between
a prediction xn+1 at time tn from a sample x[tn] = xtn at sample time tn. Often we apply the
notation for a derivative of a scalar function with respect to a quadratic matrix, meaning a
new matrix with elements describing the derivative of the scalar function with respect to each
element of the original matrix. For instance: let the functional Q be depending on the elements

xij of the matrix X in the form Q = (MXv1 )
T
v2 , then it has a derivative ∂Q/∂X = M

T
v2 v

T

1
.

Finally we will also make reference to ∂Q/∂xj meaning a gradient vector of the functional Q
with respect to the vector xj, being this the column j of X.

3. Vehicle dynamics

3.1 Physical dynamics from ODEs
Many systems are described as the conjugation of two ODEs in generalized variables, namely
one for the kinematics and the other one for the inertia (see Fig. 1). The block structure
embraces a wide range of vehicle systems like mobile robots, unmanned aerial vehicles (UAV),
spacecraft and satellite systems, autonomous underwater vehicles (AUV) and remotely
operated vehicles (ROV), though with slight distinctive modifications in the structure among
them.
Let η= [x, y, z, ϕ, θ, ψ]

T
be the generalized position vector referred on a earth-fixed coordinate

system termed O′, with displacements x, y, z, and rotation angles ϕ, θ, ψ about these directions,
respectively. The motions associated to the elements of η are referred to as surge, sway, heave,
roll, pitch and yaw, respectively.

Additionally let v= [u, v, w, p, q, r]
T

be the generalized rate vector referred on a vehicle-fixed
coordinate system termed O, oriented according to their main axes with translation rates
u, v, w and angular rates p, q, r about these directions, respectively.
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The vehicle dynamics is described as (see Jordán & Bustamante, 2009c; cf. Fossen, 1994)

.
v=M

−1
(
−C[v]v−D[|v|]v−g[η] + τc+τ

)
(1)

.
η=J[η](v+vc). (2)

Here M, C and D are the inertia, the Coriolis-centripetal and the drag matrices, respectively
and J is the matrix expressing the transformation from the inertial frame to the vehicle-fixed
frame. Moreover, g is the restoration force due to buoyancy and weight, τ is the generalized
propulsion force (also the future control action of a controller), τc is a generalized perturbation
force (for instance due to wind as in case of UAVs, fluid flow in AUVs, or cable tugs in ROVs)
and vc is a velocity perturbation (for instance the fluid current in ROVs/AUVs or wind rate
in UAVs), all of them applied to O.
Also disturbances acting on the measures are indicated as δη and δv, while noisy measures
are referred to as ηδ and vδ, respectively.
Particularly, in fluid environment the mass is broken down into

M = Mb + Ma, (3)

with Mb body mass matrix, Ma the additive mass matrix related to the dragged fluid mass in
the surroundings of the moving vehicle.
For future developments in the controller design, it is convenient to factorize the system
matrices into constant and variable arrays as (Jordán & Bustamante, 2009c)

C[v] =
6

∑
i=1

Ci. × Cvi [v] (4)

D[|v|] = Dl +
6

∑
i=1

Dqi |vi| (5)

g[η] = B1 g1[η]+B2g2[η], (6)

with ".×" being an element-by-element array product. The matrices Ci, Dl , Dqi , B1 and B2 are
constant and supposed unknown, while Cvi , g1 and g2 are state-dependent and computable
arrays and vi is an element of v.
The generalized propulsion force τ applied on O is broken down into force components
provided by each thruster. These components termed fi are arranged in the vector f which
obeys the relation

f=BT
(

BBT
)−1

τ, (7)

with B a commonly rectangular matrix that expresses the transformation of τ into these thrust
components.
On the other hand, f is related to a strong nonlinear characteristic which is proper of each
thruster. Specially for underwater vehicles this is modelled by (cf. Fossen, 1994)

f=K1 (|n| .n)−K2 (|n| .va) , (8)

where K1 and K2 are constant matrices accounting for the influence of the thruster angular
velocity n and the state va related to every thruster force component in f.
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The thruster dynamics usually corresponds to a controlled system with input nref and output
n given generally by a linear dynamics indicated generically as some linear vector funcion k
in Laplace variable form

n=k[nref ,v], (9)

where nref is the reference angular velocity referred to as the real input of the vehicle
dynamics.
Usually in the literature it is assumed that the rapid thruster dynamics is parasitic in
comparison with the dominant vehicle dynamics. In the same way we will neglect this
parasitics and so the equality n=nref will be employed throughout the chapter.
Moreover, we will concentrate henceforth on disturbed measures ηδ and vδ, and not on
exogenous perturbations τc and vc, so we have set τc=vc=0 throughout the paper. Similarly,

v=
−
v and η=

−
η (see Fig. 1). For details of the influence of τc and vc on adaptive guidance

systems see (Jordán and Bustamante, 2008; Jordán and Bustamante 2007), respectively.

3.2 Sampled-data behavior
For the continuous-time dynamics there exists an associated exact sampled-data dynamics

described by the set of sequences {η[ti], v[ti]}=
{

ηti
,vti

}
for the states η[t] and v[t] at sample

times ti with a sampling rate h.
On the other side, we let the sampled measures for the kinematics and positioning state
vectors be disturbed. So this is characterized in discrete time through the noisy measurements

in the sequence set {ηδ[ti], vδ[ti]}=
{

ηδti
,vδti

}
as illustrated in Fig. 1.

UV ODE
(kinematic part)

 ττττn VUV ODE
(inertial part)

ηηηη

δδδδτ =ττττc

V

ηηηη

Adaptive
sampled-data

controller

εεεεηn
εεεενn

D/A
with sample 

holder

 ττττtn

ηηηηδ tn
A/D

Vc

~ηηηηtn

Vtn
~

δδδδV
Vδ

δδδδηηηη
    ηηηηδ

vδ tn

vrtn

ηηηηrtn

Fig. 1. Adaptive digital control system for underwater vehicles (UV) with noisy measures,
model errors and exogenous perturbations

3.3 Sampled-data model
Usually, sampled-data behavior can be modelled by n-steps-ahead predictors (Jordán &
Bustamante, 2009a). Accordingly, we attempt now to translate the continuous time dynamics
of the system into a discrete-time model. The ODEs in (1)-(2) can be described in a compact
form by

v̇ = M
−1

p[η,v]+M
−1

τ (10)

η̇ = q[η,v], (11)

258 Discrete Time Systems

with p and q being Lipschitz vector functions located at the right-hand memberships of (1)
and (2), respectively. Here no exogenous perturbation was considered as agreed above.
Let us contemplate an approximation of first order of an Adams-Bashforth approximator
(Jordán & Bustamante, 2009b). It is valid

vn+1 = vtn+hM−1 (pδtn
+τn

)
(12)

ηn+1 = ηtn
+hqtn , (13)

where ηn+1 and vn+1 are one-step-ahead predictions at the present time tn. Moreover, τn is the
discrete-time control action at tn, which is equal to the sample τ[tn] because of the employed
zero-order sample holder.
More precisely it is valid with (1)-(2)

ptn = −
6

∑
i=1

Ci. × Cvitn
vtn−Dlvtn− (14)

−
6

∑
i=1

Dqi |vitn
|vtn−B1 g1tn

−B2 g2tn

qtn = Jtn vtn (15)

where Cvitn
means Cvi [vtn ], g1tn

and g2tn
mean g1[ηtn

] and g2[ηtn
] respectively, J

−1

tn
means

J
−1
[ηtn

] and vitn
is an element of vtn . Similar expressions can be obtained for the other sampled

functions pti and qti in (18)-(19). Besides, the control action τ is retained one sampling period
h by a sample holder, so it is valid τn=τtn .
The accuracy of one-step-ahead predictions is defined by the local model errors as

εvn+1 = vtn+1−vn+1 (16)

εηn+1
= ηtn+1

−ηn+1, (17)

with εηn+1
, εvn+1 ∈ O[h] and O being the order function that expresses the order of magnitude

of the sampled-data model errors. It is noticing that local errors are by definition completely
lacking of the influence from sampled-data disturbances.
Since p and q are Lipschitz continuous in the attraction domains in v and η, then the samples,
predictions and local errors all yield bounded. So it is valid the property vn+1→vtn+1 and
ηn+1→ηtn+1

for h → 0.
Next, the disturbed dynamics subject to sampled-data noisy measures is dealt with in the
following.

3.4 1st-order predictor with disturbances
The one-step-ahead predictions with disturbances result from (18) and (19) as

vn+1 = vtn+δvtn+hM−1 (pδtn
+τn

)
(18)

ηn+1 = ηtn
+δηtn

+hqδtn
, (19)
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where vtn+δvtn=vδtn
and ηtn

+δηtn
=ηδtn

are samples of the measure disturbances (see Fig.

1), and pδtn
and qδtn

are perturbed functions defined as pδtn
=p

[
vtn+δvtn ,ηtn

+δηtn

]
and

qδtn
=q

[
vtn+δvtn ,ηtn

+δηtn

]
.

3.5 Disturbed local error
Assuming bounded noise vectors δvi and δηi, we can expand (18) and (19) in series of Taylor
about the values of undisturbed measures v[tn] and η[tn]. So it is accomplished

−
εvn+1 = εvn+1+Δδvtn+1−hM−1

(
∂p

T

δ

∂v
δvtn+

∂p
T

δ

∂η
[tn]δηtn

+

+
∂τ

T

n
∂v

δvtn+
∂τ

T

n
∂η

δηtn
+o[δv

2
]+o[δη

2
]

)
(20)

−
εηn+1

= εηn+1
+Δδηtn+1

−h

(
∂q

T

δ

∂v
[tn]δvtn+

+
∂q

T

δ

∂η
[tn]δηtn

+o[δv
2
]+o[δη

2
]

)
, (21)

where εvn+1 and εηn+1
are the model local errors and Δδvtn+1=δvtn+1−δvtn and Δδηtn+1

=
δηtn+1

−δηtn
. The functions o are truncating error vectors of the Taylor series expansions, all of

them belonging to O[h
2
]. Moreover, ∂p

T
δ

∂v , ∂p
T
δ

∂η , ∂q
T
δ

∂v and ∂q
T
δ

∂η are Jacobian matrices of the system
which act as variable gains that strengthen the sampled-data disturbances along the path.

It is worth noticing that the Jacobian matrices ∂τ
T

n
∂v and ∂τ

T

n
∂η in (20) will be obtained from the

feedback law τn[
−
ηtn

,
−
vtn ] of the adaptive control loop.

4. Sampled-data adaptive controller

The next step is devoted to the stability and performance study of a general class of adaptive
control systems whose state feedback law is constructed from noisy measures and model
errors.
A design of a general completely adaptive digital controller based on speed-gradient control
laws is presented in (Jordán & Bustamante, 2011). To this end let us suppose the control
goal lies on the path tracking of both geometric and kinematic reference as ηrtn

and vrtn
,

respectively.

4.1 Control action
Accordingly to the digital model translation, we try out the following definitions for the exact
path errors

�
ηtn

= ηtn
+δηtn

−ηrtn
(22)

�
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where Kp = K
T

p ≥ 0 is a design gain matrix affecting the geometric path error and J
−1

δtn
means

J
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[ηtn

+δηtn
]. Clearly, if
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≡0, then by (23) and (2), it yields vtn+δvtn−vrtn
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Then, replacing (18) and (19) in (22) for tn+1 one gets
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Similarly, with (18) and (19) in (23) for tn+1 one obtains
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We now define a cost functional of the path error energy as

Qtn =
�
η

T

tn

�
ηtn

+
�
v

T

tn

�
vtn , (26)

which is a positive definite and radially unbounded function in the error vector space. Then
we state

ΔQtn = Qtn+1 − Qtn= (27)

=
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�
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The ideal path tracking demands that

lim
tn→∞

ΔQtn = lim
tn→∞

(Qtn+1 − Qtn ) = 0. (28)

Bearing in mind the presence of disturbances and model uncertainties, the practical goal
would be at least achieved that {ΔQtn} remains bounded for tn → ∞.
In (Jordán & Bustamante, 2011) a flexible design of a completely adaptive digital controller
was proposed. Therein all unknown system matrices (Ci, Dqi , Dl , B1 and B2) that influence the
stability of the control loop are adapted in the feedback control law with the unique exception
of the inertia matrix M from which only a lower bound M is demanded. In that work a
guideline to obtained an adequate value of that bound is indicated.
Here we will transcribe those results and continue afterwards the analysis to the aimed goal.
First we can conveniently split the control thrust τn into two terms as

τn = τ1n + τ2n , (29)
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where the first one is

τ1n = −Kv
�
vtn−

1
h

M
(

J
−1

δtn
η̇rtn

+J
−1

δtn
Kp

�
ηtn

+ (30)

+J
−1

δtn+1
η̇rtn+1

−J
−1

δtn+1
Kp

�
ηtn+1

)
−rδtn

,

with Kv = K
T

v ≥ 0 being another design matrix like Kp, but affecting the kinematic errors
instead. The vector rδtn

is

rδtn
=

6

∑
i=1

Ui. × Cvitn
vδtn

+U7vδtn
+ (31)

+
6

∑
i=1

U7+i|vitn
|vδtn

+U14g1δtn
+U15 g2δtn

,

where the matrices Ui in rδtn
will account for every unknown system matrix in pδtn

in order
to build up the partial control action τ1n . Moreover, the Ui´s represent the matrices of the
adaptive sampled-data controller which will be designed later. Besides, it is noticing that rδtn
and pδtn

contain noisy measures.
The definition of the second component τ2n of τn is more cumbersome than the first
component τ1n .
Basically we attempt to modify ΔQtn farther to confer the quadratic form particular properties
of sign definiteness. To this end let us first put (30) into (27). Thus

ΔQtn = Qtn+1 − Qtn= (32)

=
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−1
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(
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+

+
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�
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η̇rtn+1

+J
−1

δtn+1
Kp

�
ηtn+1

)

+hM
−1 (

pδtn
−rδtn

)
+hM

−1
τ2n+δvtn+1−δvtn+εvn+1

)2

−�
v

2

tn
,

where the old definition of J
−1

δtn
= J

−1
[ηtn

+δηtn
] can be rewritten as

J
−1

δtn
= J

−1

tn
+ ΔJ

−1

tn
. (33)

Now defining an motion vector function (combination of acceleration and velocity) in the
form

stn=J
−1

δtn
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−1

δtn+1
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−J
−1

δtn
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�
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�
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the (32) turns into

ΔQtn = Qtn+1 − Qtn= (35)

=

((
I − hKp

)�
ηtn

− hJtn ΔJ
−1

tn
Kp

�
ηtn

+h
(

Jtn

�
vtn + η̇rtn

)
+Jtn δvtn+Jtn ΔJ

−1

tn
η̇rtn

+ηrtn
−ηrtn+1

+εηn+1
+δηtn+1

−δηtn

)2

−�
η

2

tn
+

+

((
I − hM

−1
Kv

)
�
vtn+

(
I − M

−1
M
)

stn−

+h
(

pδtn
−M

−1
rδtn

)
+hM

−1
τ2n + δvtn+1−δvtn+εvn+1

)2

−�
v

2

tn
.

From this expression one achieves

ΔQtn = a(M−1τ2n )
2+b

T
M

−1
τ2n+c + (36)
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where K
∗
v is an auxiliary matrix equal to K

∗
v = M

−1
Kv. The polynomial coefficients a, b and c

are

a = h
2
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∗
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and fΔQ1n
is a sign-undefined energy function of the model errors and measure disturbances

defined as

fΔQ1n
[εηn+1

,εvn+1 ,δηtn+1 ,δvtn+1 ] = (40)
(

εηn+1
+δηtn+1

−δηtn
−hJtn ΔJ

−1
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�
ηtn

+ Jtn δvtn+Jtn ΔJ
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)2
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)�
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�
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)
.

Clearly, there are many variables involved like the system matrices, model errors and measure
disturbances which are not known beforehand.
The idea now is to construct τ2n so that the sum a(M−1τ2n )

2+b
T
M

−1
τ2n+c in (36) be null. As

there are many variables in the sum which are unknown, we can construct an approximation
of it with measurable variables. So, it results

ā
(

M
−1

τ2n

)2
+b

T

nM
−1

τ2n+c̄n=0. (41)

Now, the polynomial coefficients ā bn and c̄n are explained below. Here, there appear three
error functions, namely fΔQ1n

, and the new functions fΔQ2n
and fUin

, all containing noisy and
unknown variables which are described in the sequel.
The polynomial coefficients result

ā = a=h
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with pδtn
being an estimation of pδtn

in (14) given by

pδtn
=M

vtn−vtn−1

h
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The second component τ2n of τn was contained in the condition (41) like a root pair that
enables ΔQtn be the expression (47). It is

τn2=M

⎛
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with 1 being a vector with ones.
With the choice of (41) and (46) in ΔQtn one gets finally
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The matrices U∗
i that appear in fUin

take particular constant values of the adaptive controller
matrices Ui´s. They take the values equal to the system matrices in (1)-(2) (Jordán and
Bustamante, 2008), namely

U
∗
i = Ci, with i = 1, ..., 6 (48)

U
∗
7 = Dl (49)
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∗
i = Dqi , with i = 8, ..., 13 (50)

U
∗
14 = B1 (51)

U
∗
15 = B2 . (52)

Moreover, the error functions fΔQ2n
and fUin

in (47) are respectively
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and fΔQ1n
is a sign-undefined energy function of the model errors and measure disturbances
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Now, the polynomial coefficients ā bn and c̄n are explained below. Here, there appear three
error functions, namely fΔQ1n

, and the new functions fΔQ2n
and fUin

, all containing noisy and
unknown variables which are described in the sequel.
The polynomial coefficients result
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with Δb= b −b from (38) and (43), and
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It is seeing from (40), (53) and (54), that the error functions go to lower bounds when Ui = U∗
i

(it is, when pδtn
=rδtn

), M
−1

M = I and δηtn+1=δvtn+1 =0. These bounds will ultimately depend
on the model errors εηn+1

and εvn+1 only.
It is noticing from (46) that the roots may be either real or complex. Clearly when the roots
are real, (41) is accomplished. If eventually complex roots appear, one can chose only the real

part of the resulting complex roots, namely τ2n = M−bn
2ā . The implications of that choice will

be analyzed later in the section dedicated to the stability study.
Finally, the control action to be applied to the vehicle system is τn = τ1n + τ2n with the two
components given in (30) and (46), respectively.

4.2 Adaptive laws
According to a speed-gradient law (Fradkov et al., 1999), the adaptation of the system
behavior occurs by the permanent actualization of the controller matrices Ui.
Let the following adaptive law be valid for i = 1, ..., 15

Uin+1

Δ
= Uin − Γi

∂ΔQtn

∂Ui
, (55)

with a gain matrix Γi = Γ
T

i ≥ 0 and ∂ΔQtn
∂Uin

being a gradient matrix for Uin .
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First we can define an expression for the gradient matrix upon ΔQtn in (47) but considering
that M is known. This expression is referred to the ideal gradient matrix

∂ΔQtn

∂Ui
= −2h

2
M

−T
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)(
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(
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.

Now, in order to be able to implement adaptive laws like (55) we have to replace the unknown
M in (56) by its lower bound M. In this way, we can generate implementable gradient matrices

which will be denote by ∂ΔQtn
∂Ui

and is

∂ΔQtn
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with the property
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=
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, (58)

where
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= δM−2 Ain + δM−1 Bin , (59)

and δM−2 =
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−T
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−1
)
≥ 0 and δM−1 =

(
M

−1 − M
−1
)
≥ 0. Here Ain and Bin are

sampled state functions obtained from (56) after extracting of the common factors δM−2 and
δM−1 , respectively.
It is worth noticing that ΔQtn and ΔQtn

, satisfy convexity properties in the space of elements
of the Ui’s.
Moreover, with (58) in mind we can conclude for any pair of values of Ui, say U

�
i of U

��
i , it is

valid

ΔQtn (U
�
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This feature will be useful in the next analysis.
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6
1

⎞
⎠+ h

2
M

−2
(pδtn

−rδtn
)

2
+

+
�

I−M
−1

M
�2

s
2

tn
+2h

�
M

−1
(pδtn

−rδtn
)
�T �

I−M
−1

M
�

stn+

+2
�
h
�

M
−1
(pδtn

−rδtn
)
�T

+s
T

tn

�
I−M

−1
M
�T�

(I−hM
−1

Kv)
�
vtn−

−h
2
M

−2
�

pδtn
−rδtn

�2

−2
�

h
�

M
−1

�
pδtn

−rδtn

��T�
(I−hM

−1
Kv)

�
vtn .

It is seeing from (40), (53) and (54), that the error functions go to lower bounds when Ui = U∗
i

(it is, when pδtn
=rδtn

), M
−1

M = I and δηtn+1=δvtn+1 =0. These bounds will ultimately depend
on the model errors εηn+1

and εvn+1 only.
It is noticing from (46) that the roots may be either real or complex. Clearly when the roots
are real, (41) is accomplished. If eventually complex roots appear, one can chose only the real

part of the resulting complex roots, namely τ2n = M−bn
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In summary, the practical laws which conform the digital adaptive controller are

Uin+1

Δ
= Uin − Γi

∂ΔQtn

∂Ui
. (62)

Finally, it is seen from (57) that also here the noisy measures ηδtn
and vδtn

will propagate into

the adaptive laws ∂ΔQtn
∂Ui

.

5. Stability analysis

In this section we prove stability, boundness of all control variables and convergence of the
tracking errors in the case of path following for the case of 6 DOF´s involving references
trajectories for position and kinematics.

5.1 Preliminaries
Let first the controller matrices Ui’s to take the values U

∗
i ’s in (48)-(52). So, using these constant

system matrices in (1),(4)-(6) and (14), a fixed controller can be designed.
For this particular controller we consider the resulting ΔQ
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Later, a norm of f ∗
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So, it is noticing that ΔQ
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and with the design matrices satisfying the conditions
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I > Kp ≥ 0 (67)
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which is equivalent to
2
h

M ≥ 2
h

M > Kv ≥ 0. (69)

The residual set B∗
0 depends not only on εηn+1

and εvn+1 and the measure noises δηtn and δvtn ,

but also on M
−1

M. In consequence, B∗
0 becomes the null point at the limit when h → 0, δηtn ,

δvtn → 0 and M = M.

5.2 Stability proof
The problem of stability of the adaptive control system is addressed in the sequel. Let a
Lyapunov function be
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adaptive controller matrix Ui and its corresponding one U
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and then by −Γi

(
∂ΔQtn

∂uj

)
in the right member according to (58) and (60)-(61).

So in the second and third inequality, the convexity property of ΔQtn in (60) was applied for
any pair
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.

This analysis has proved convergence of the error paths when real square roots exist from√
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nbn−4āc̄n of (46).
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In summary, the practical laws which conform the digital adaptive controller are
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Finally, it is seen from (57) that also here the noisy measures ηδtn
and vδtn

will propagate into

the adaptive laws ∂ΔQtn
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.

5. Stability analysis

In this section we prove stability, boundness of all control variables and convergence of the
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which is equivalent to
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M ≥ 2
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If on the contrary 4āc̄n > b
T

nbn occurs at some time tn, one chooses the real part of the complex
roots in (46). So a suboptimal control action is employed instead, In this case, it is valid
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This closes the stability and convergence proof.

5.3 Variable boundness
With respect to the boundness of the adaptive matrices Ui´s it is seen from (57) that the
gradients are bounded. Also the third term is more dominant than the remainder ones for h
small (h << 1), and so, the kinematic error

�
vtn influences the intensity and sign of ∂ΔQtn

/∂Ui
more significantly than the others. From (62) one concludes than the increasing of |Ui| may
not be avoided long term, however some robust modification techniques like a projection zone
can be employed to achieve boundness. This is not developed here. The author can consult
for instance (Ioannou and Sun, 1995).

5.4 Incidence of model errors and noisy measures
It is seen in (66) that the residual set B∗

0 is conformed by the perturbation error function f ∗
ΔQn

.
In this section some guidelines can be given for a proper selection of the design parameters in
order to diminish the incidence of model errors and noisy measures. This concerns the design
matrices Kp and Kv as well as operation parameters like the cruise vehicle velocity and the
control action self.
To this end, let the sign-undefined term f ∗
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be upper bounded by
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where f1 ,f2 and f3 are bounded vector functions
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and f4 is also a bounded scalar function which can be identified from (54) with pδtn
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where the norm
∣∣∣I − M

−1
M
∣∣∣ is implicitly contained herein.

Clearly, if h → 0, δηtn , δvtn → 0 and M = M, then f ∗
ΔQn

tends to zero conjointly.
At the first glance in (64) and (53), one notices that the inertia matrix M appears in f3 . So, it is
valid |f3 |

|stn |
≤

(
1 − λmin

[
M

−1
M
])

|| (79)

which does reveal that the influence of M on f3 is reduced whatever M be a good estimate of

M, it is when λmin

[
M

−1
M
]

be close to one. Besides, no dependence of the sampling time h
on f3 is observed any longer in the tightest bound in (79).
Since the body inertia matrix Mb is plausible to be good estimated, we can choose M = Mb.
So it is valid

|f3 |
|stn |

≤ 1 −
∣∣∣(Mb + Ma)

−1
∣∣∣ |Mb| . (80)

Particularly, AUVs are designed with hydrodynamically slender profiles, they have
commonly much more smaller values of Ma than in the case of ROVs. In this sense, it is
expected that the uncertainty Ma affect more the steady-state performance in ROVs than in
AUVs.
The same analysis can be carried out for f1 in (74). In particular, a choice of Kp in f1 that is as
close as possible to the value I/h (see (67)), will reduce partially |f1 |. Analogously, the same
result for Kp could be obtained from f2 .
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On the other side, one sees that small differences of
(

ηrtn
−ηrtn+1

)
or equivalently small values

of η̇rtn
have the influence of decreasing |f1 | as well. Since the quantity η̇rtn

−
ηrtn+1

−ηrtn
h assumes

small values for h small, then large cruise velocities do not affect the performance if the
sampling time is chosen relatively small.
Besides, the term hJtn

�
vtn in f1 leads to the same conclusion about the effect of h. However,

it is interesting to stress the fact that appears in vehicle rotations which may rise the norm
of Jtn [ϕ, θ, ψ] considerably when the pitch angle goes above about 30◦ (Jordán & Bustamante,
2011).
The scalar function f4, whose bound is implicitly included in (78) gets small when particularly
the vector b is small (this means also τn2 small), and the motion vector function stn is also
rather moderate.
Finally, there is the term 2hτ2n in (74) that also contributes to increase fΔQ2n

particularly when
saturation values of the thrusters are achieved. Since τ2n is fixed by the controller, the only
countermeasure to be applied lays in the fact that the controller always choose the lower τ2n

of the two possible roots in (46). So, the perturbation energy fΔQ2n
is reduced as far as possible

by the controller.
From (63) one can draw out that the choice Kv = 1

h Mb in the negative definite terms is much
more appropriate to increase the negativeness of ΔQ

∗
tn

. Equally the choice of Kp in the same
manner helps the trajectories to get the residual set more rapid.
Besides, the model errors and noisy measures (εvn+1+δvtn+1−δvtn+1 ) and(

εηn+1
+δηtn+1

−δvtn+1

)
enter linearly and quadratically in the energy equation (74). As

they are usually small, only the linear terms are magnified/attenuated by f1 , f2 , f3 and τ2n ,
while f4 impacts nonlinearly in τn2 and stn as seen in (54).

5.5 Instability for large sampling time
Broadly speaking, the influence of the analyzed parameters will play a role in the instability
when (on the chosen h is something large, even smaller than one, because the quadratic terms
rise significantly to turn to be dominant in the error function f ∗

ΔQn
.

The study of this phenomenon is rather complex but it generally involves the function ΔQ
∗
tn

in (63) and f ∗
ΔQn

in (64).
For instante, when
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>
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T

tn
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+
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hK

∗
v − 2I

)
�
vtn , (81)

the path trajectories may not be bounded into a residual set because the domain for the
initial conditions in this situation is partially repulsive. So, depending on the particular initial
conditions and for h >> 0 the adaptive control system may turn unstable.
In conclusion, when comparing two digital controllers, the sensitivity of the stability to h is
fundamental to draw out robust properties and finally to range them.

6. Adaptive control algorithm

The adaptive control algorithm can be summarized as follows.
Preliminaries:
1) Estimate a lower bound M , for instance M = Mb (Jordán & Bustamante, 2011),
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2) Select a sampling time h as smaller as possible
3) Choose design gain matrices Kp and Kv according to (68)-(69), and simultaneously in order
to reduce f ∗

ΔQn
and ΔQ

∗
tn

(see related commentary in previous section),
4) Define the adaptive gain matrices Γi (usually Γi = αi I with αi > 0),
5) Stipulate the desired sampled-data path references for the geometric and kinematic
trajectories in 6 DOF´s: ηrtn

and vrtn
, respectively (see related commentary in previous section).

Continuously at each sample point:
6) Calculate the control thrust τn with components τ1n in (30) and τ2n (46) (or (72)),
respectively,
7) Calculate the adaptive controller matrices (56) with the lower bound M instead of M.
Long-term tuning:
7) Redefine Kp, Kv and h in order to achieve optimal tracking performance.

7. Case study

7.1 Setup
With the end of illustrating the features of our control system approach, we simulate a
path-tracking problem in 6 DOF´s for an underwater vehicle in a planar motion with some
sporadic immersions to the floor.
A continuous-time model of a fully-maneuverable underwater vehicle is employed for the
numerical simulations. Details of this dynamics are given in (Jordán & Bustamante, 2009c).
The propulsion system is composed by 8 thrusters, distributed in 4 vertical and 4 horizontal.
The simulated reference path ηr and the navigation path η are reproduced together by means
of a visualization program (see a photogram in Fig. 2). The units for the path run away are in
meters.
Basically the vehicle turns around a planar path. At a certain coordinate A it leaves the plane
and submerses to the point A� for picking up a sample (of weight 10 (Kgf)) on the sea floor
and returns back to A with a typical maneuver (backward movement and rotation). Then it
continues on the planar trajectory till the coordinate B in where it submerses again to the point
B� in order to place an equipment on the floor (of weight 20 (Kgf)) before to retreat and turn
back to B and to complete finally the cycle. The vehicle weight is about 60 (kgf).
Additionally to the geometric path, the rate function vr(t) = J−1(ηr)

·
ηr(t) along it, is also

specified, with short periods of rest at points A� and B� before beginning and after ending the
maneuvers on the bottom.
At the start point of the mission (represented by O in Fig. 2), it is assumed for the adaptive
control there is no information available about the vehicle dynamics matrices. Moreover, the
maneuvers at stretches A-A� and B-B� imply considerable changes of moments acting on the
vehicle in both a positive and negative quantities.
The reference velocity is programmed to be constant equal to 0.25(m/s) for the advance and
as well as for the descent/ascent along the path. This rate will be referred to as the cruise
velocity.
By the simulations, the adaptive control algorithm summarized in the previous section, is
implemented. It is coupled with the ODE (1)-(2) for the vehicle dynamics, whose solution is
numerically calculated in continuous time using Runge-Kutta approximators (the so-called
ODE45). The computed control action is connected to a zero-order sample&hold previously
to excite the vehicle.
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6. Adaptive control algorithm

The adaptive control algorithm can be summarized as follows.
Preliminaries:
1) Estimate a lower bound M , for instance M = Mb (Jordán & Bustamante, 2011),
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2) Select a sampling time h as smaller as possible
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velocity.
By the simulations, the adaptive control algorithm summarized in the previous section, is
implemented. It is coupled with the ODE (1)-(2) for the vehicle dynamics, whose solution is
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Fig. 2. Path tracking with grab sampling at coordinate A�, and with placing of an equipment
on the seafloor at coordinate B�

7.2 Design parameters
The most important a-priori information for the adaptive controller design is the
ODE-structure in (1)-(2) but not its dynamics matrices, with the exception of the lower bound
for the inertia matrix M. This takes the form

M = Mb + Ma (82)

with the components: the body matrix Mb and the additive matrix Ma given by

Mb = Mbn + δ(t − tA� ) MbΔ+ − δ(t − tB� ) MbΔ− (83)

Ma = Man + δ(t − tA� ) MaΔ+ − δ(t − tB� ) MaΔ− , (84)

where Mbn and Man are nominal values of Mb and Ma at the start point O, and
MbΔ− , MbΔ+ ,MaΔ+ and MaΔ− are positive and negative variations at instants tA� and tB� on
the points A� and B� of Fig. 2. Here δ(t − ti) represents the Dirac function.
For our application Mbn is determinable beforehand experimentally and it is set as the lower
bound M for the control and adaptive laws. In the simulated scenario, MbΔ− is assumed
known because it is about of an equipment deposited on the seafloor. In the case of MbΔ+ ,
MaΔ+ and even MaΔ− , we depart from unknown values.
The property of Ma ≥ 0 is not affected by the sign of MaΔ+ and MaΔ− , which may be positive
and negative as well. For that reason, a valid lower bound is chosen as M = Mbn − MbΔ− .
Taking into account the simulation setup for the weight changes (the weight picked up from
the seafloor at tA� and the second weight deposited on the seafloor at tB� ), the lower bound for
M is

M = diag(60, 60, 60, 5, 10, 10), (85)

274 Discrete Time Systems

and the mass variations are

MbΔ+ = diag(10, 10, 10, 0.6250, 4.2250, 3.6) (86)

MbΔ− = diag(20, 20, 20, 1.25, 1.25, 0) (87)

MaΔ+ = diag(6.3, 15.4, 0.115, 0.115, 0.261, 0.276) (88)

MaΔ− = diag(12.6, 30.8, 0.23, 0.23, 0.521, 0.551). (89)

The design gain matrices for the controller are

Kp = diag (5, 5, 5, 5, 5, 5)
Kv = diag (300, 300, 300, 25, 50, 50)

(90)

and the adaptive gain matrices about
Γi = I. (91)

Finally we have proposed a sampling time h = 0.2(s).
All quantities are expressed in the SI Units.

7.3 Control performance
Here the acquired performance by the autonomously guided vehicle under the described
simulated setup will be evaluated. First, in Fig. 3, the path error evolution corresponding
to every mode with their respective rates is shown for the different transient phases, namely:
the controller autotuning at the initial phase (to the left), the sampling phase on the sea bottom
at A� (in the middle), and the release of an equipment on the floor at B� (to the right).
The largest path errors had occurred during the initial phase because the amount of
information for the control adaptation was null. Here, the longest transient took about 5(s)
which is considered outstanding in comparison to the commonly slow open loop behavior.
Later, after the mass changes, the path errors behaved much more moderate and were
insignificant in magnitude (only a few centimeters or a few hundredths of a radian according
to translation/rotation). Among them, the errors in the surge, sway and pitch modes (x, z and
θ) resulted more perturbed than the remainder ones because they were more excited from the
main motion provided by the stipulated mission. In all evolutions the adaptations occurred
quick and smoothly.
The same scenario of control performance can be observed in Fig. 4 from the side of the
velocity path errors for every mode of motion. Qualitatively, all kinematic path errors were
attenuated rapid and smoothly in the autotuning phase as well as during the mass-change
periods. The magnitude of these errors is also related to the rapid changes of the reference vref
in the programmed maneuvers.
In the Fig. 5, the time evolution of the actuator thrust for two arbitrarily selected thrusters
(one horizontal and one vertical) is shown. Analogously as previous results, the forces are
compared within the three periods of transients. One observes that the intervention of the
controller after a sudden change of mass occurred immediately. Also the transients of these
interventions up to the practical steady state were relatively short.
Fig. 6 illustrates the time evolution of some controller matrices Ui. To this end, we had chosen
the induced norm of U8 which is partially related to the adaptation of the linear damping.
One sees that the norm of U8 evolved with significative changes. In contrast to analog
adaptive controllers of the speed-gradient class, here the Ui’s do not tend asymptotically to
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Fig. 3. Position path errors during transients in three different periods (from left to right
column: autotuning, adaptation by weight pick up and adaptation by weight deposit)

constant matrices because of the difference between M
−1

and M
−1

in (58)-(59) (cf. Jordán &
Bustamante, 2009c).

8. Conclusions

In this paper a novel design of adaptive control systems was presented. This is based on
speed-gradient techniques which are widespread in the form of continuous-time designs
in the literature. Here, we had focused their counterparts namely sampled-data adaptive
controllers.
The work was framed into the path tracking control problem for the guidance of vehicles
in many degrees of freedom. Particularly, the most complex dynamics of this class
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column: autotuning, adaptation by weight pick up and adaptation by weight deposit)

corresponding to unmanned underwater vehicles was worked through in this work. Noisy
measures as well as model uncertainties were considered by the design and analysis.
Formal proofs for stability of the digital adaptive control system and convergence of the path
error trajectories were presented and an extensive analysis of the control performance was
given.
It was shown that it is possible to stabilize the control loop adaptively in the six degrees of
freedom without any a-priori knowledge of the vehicle system matrices with the exception of
a lower bound for the inertia matrix.
Providing the noisy measures remain bounded, the adaptive controller can reduce
asymptotically the path errors up to a residual set in the space state. The residual set contains
the null equilibrium point and its magnitude depends on the upper bounds of the measure
noises and on the sampling time. This signalizes the quality of the control performance.
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8. Conclusions
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speed-gradient techniques which are widespread in the form of continuous-time designs
in the literature. Here, we had focused their counterparts namely sampled-data adaptive
controllers.
The work was framed into the path tracking control problem for the guidance of vehicles
in many degrees of freedom. Particularly, the most complex dynamics of this class
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corresponding to unmanned underwater vehicles was worked through in this work. Noisy
measures as well as model uncertainties were considered by the design and analysis.
Formal proofs for stability of the digital adaptive control system and convergence of the path
error trajectories were presented and an extensive analysis of the control performance was
given.
It was shown that it is possible to stabilize the control loop adaptively in the six degrees of
freedom without any a-priori knowledge of the vehicle system matrices with the exception of
a lower bound for the inertia matrix.
Providing the noisy measures remain bounded, the adaptive controller can reduce
asymptotically the path errors up to a residual set in the space state. The residual set contains
the null equilibrium point and its magnitude depends on the upper bounds of the measure
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However, as generally occurs by digital controllers, it was observed that a large sampling
time is an instabilizing factor.
It was also indicated the plausibility of obtaining a lower bound of the inertia matrix by simply
calculating the inertia matrix of the body only.
We will emphasize that the design presented here was completely carried out in the discrete
time domain. Other usual alternative design is the direct translation of a homologous but
analog adaptive controller by digitalizing both the control and the adaptive laws. Recent
results like in (Jordán & Bustamante, 2011) have shown that this alternative may lead to
unstable behaviors if the sampling time is particularly not sufficiently small. This fact stands
out the usefulness of our design here.
Finally, a case study was presented for an underwater vehicle in simulated sampling mission.
The features of the implemented adaptive control system were highlighted by an all-round
very good quality in the control performance.
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[16] Krstić, M., Kanellakopoulus, I. & Kokotović, P.V. (1995). Nonlinear and adaptive control
design. New York: John Wiley and Sons.

[17] Smallwood, D.A. & Whitcomb, L.L. (2003). Adaptive Identification of Dynamically
Positioned Underwater Robotic Vehicles, IEEE Trans. on Control Syst. Technology, Vol.
11(4), 505-515.

279
A General Approach to Discrete-Time Adaptive Control Systems with Perturbed Measures for
Complex Dynamics - Case Study: Unmanned Underwater Vehicles



0 1 2 3 4 5 421 422 423 424 1029 1030 1031 1032

time (s) time (s) time (s)

f V
(N

)
f H

(N
)

tA’

tA’ tB’

tB’

-80
-40

0
40
80

-75
-40

0
40
75

Fig. 5. Evolution of the thrust for one horizontal and one vertical thruster of the propulsion
set

time (s)
0 200 400 600 800 1000 1200

0

1

2

3

4

5

6

U
8

Fig. 6. Evolution of adaptive controller matrices

However, as generally occurs by digital controllers, it was observed that a large sampling
time is an instabilizing factor.
It was also indicated the plausibility of obtaining a lower bound of the inertia matrix by simply
calculating the inertia matrix of the body only.
We will emphasize that the design presented here was completely carried out in the discrete
time domain. Other usual alternative design is the direct translation of a homologous but
analog adaptive controller by digitalizing both the control and the adaptive laws. Recent
results like in (Jordán & Bustamante, 2011) have shown that this alternative may lead to
unstable behaviors if the sampling time is particularly not sufficiently small. This fact stands
out the usefulness of our design here.
Finally, a case study was presented for an underwater vehicle in simulated sampling mission.
The features of the implemented adaptive control system were highlighted by an all-round
very good quality in the control performance.
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1. Introduction 
The control of discrete systems with time-varying delays has been researched extensively in 
the last few decades. Especially in recent years there are increasing interests in discrete-time 
systems with delays due to the emerging fields of networked control and network 
congestion control (Altman & Basar 1999; Sichitiu et al., 2003; Boukas & Liu 2001). Stability 
problem for linear discrete-time systems with time-delays has been studied in (Kim & Park 
1999; Song & Kim 1998; Mukaidani et al., 2005; Chang et al., 2004; Gao et al., 2004). These 
results are divided into delay-independent and delay-dependent conditions. The delay-
independent conditions are more restrictive than delay-dependent conditions. In general, 
for discrete-time systems with delays, one might tend to consider augmenting the system 
and convert a delay problem into a delay-free problem (Song & Kim 1998; Mukaidani et 
al.,2005). The guaranteed cost control problem for a class of uncertain linear discrete-time 
systems with both state and input delays has been considered in (Chen et al., 2004). 
Recently, in (Boukas, 2006) new LMI-based delay-dependent sufficient conditions for 
stability have been developed for linear discrete-time systems with time varying delay in the 
state. In these papers above the time-varying delay of discrete systems is assumed to be 
unique in state variables. 
On the other hand, in practice there always exist multiple time-varying delays in state 
variables, especially in network congestion control. Control problems of linear continuous-
time systems with multiple time-varying delays have been studied in (Xu 1997). Quadratic 
stabilization for a class of multi-time-delay discrete systems with norm-bounded 
uncertainties has been studied in (Shi et al., 2009). 
To the best of author’s knowledge, stabilization problem of linear discrete systems has not 
been fully investigated for the case of multiple time-varying delays in state, and this will be 
the subject of this paper. This paper address stabilization problem of linear discrete-time 
systems with multiple time-varying delays by a memoryless state feedback. First, stability 
analysis conditions of these systems are given in the form of linear matrix inequalities 
(LMIs) by a Lyapunov function approach. It provides an efficient numerical method to 
analyze stability conditions. Second, based on the LMIs formulation, sufficient conditions of 
stabilization problem are derived by a memoryless state feedback. Meanwhile, robust 
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stabilization problem is considered based on these formulations and they are numerically 
tractable.  

2. Problem statement 
Considering the dynamics of the discrete system with multiple time-varying time delays as 
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k k di k d k k k
i

x Ax A x Bu x k dφ+ −
=

⎡ ⎤= + + = ∈ −⎣ ⎦∑ … , (1) 

where n
kx ∈ℜ  is the state at instant k , the matrices ,n n n n

diA A× ×∈ℜ ∈ℜ  are constant 
matrices, kφ  represents the initial condition, and kid  are positive integers representing 
multiple time-varying delays of the system that satisfy the following: 

 , 1, ,i ki id d d i N≤ ≤ = � , (2) 

where id  and id  are known to be positive and finite integers, and we let  

max max( ), 1, ,id d i N= = … . 

The aim of this paper is to establish sufficient conditions that guarantee the stability of the 
class of system (1). Based on stability conditions, the stabilization problem of this system (1) 
will be handled, too. The control law is given with a memoryless state-feedback as: 

,k ku Kx= , 0, 1, ,k k ix k dφ= = − −… , 

where K is the control gain to be computed. 

3. Stability analysis 
In this section, LMIs-based conditions of delay-dependent stability analysis will be 
considered for discrete-time systems with multiple time-varying delays. The following 
result gives sufficient conditions to guarantee that the system (1) for 0, 0ku k= ≥  is stable. 
Theorem 1: For a given set of upper and lower bounds ,i id d for corresponding time-varying 
delays kid , if there exist symmetric and positive-definite matrices 1 ,n n n n
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Terms denoted by * are deduced by symmetry. Then the system (1) is stable. 
Proof: Consider the following change of variables: 
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candidate functional: 
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where 0iQ >  and 0iR > , and E  and P are, respectively, singular and nonsingular matrices 
with the following forms: 
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where 1P  is a symmetric and positive-definite matrix. 
The difference ( )kV xΔ  is given by 
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which has the following equivalent formulation using the fact that 
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This implies that the system is stable, and then the claim (3) can be established. □ 
Remark:  
As to robust stability analysis of discrete time systems with poytopic-type uncertainties, 
robust stability analysis can be considered by the formulation above. When system state 
matrices in (1) are assumed as  

1
[ ( ( )) ( ( ))] ( ) ,

L

di j j dij
j

A k A k k A Aλ λ
=

⎡ ⎤= ∂ ⎣ ⎦∑   
1

( ) 0, ( ) 1
L

j j
j

k k
=

∂ ≥ ∂ =∑ . 

Robust state feedback synthesis can be formulated as: 
For a given set of upper and lower bounds ,i id d for corresponding time-varying delays kid , 
if there exist symmetric and positive-definite matrices 1 ,n n n n

iP Q× ×∈ℜ ∈ℜ  and n n
iR ×∈ℜ , 

1, ,i N= …  and general matrices 2P  and 3P  such that the following LMIs hold: 

 

1 2 2
1 1

2 3 1 3 3

1 2 1 3 1

2 2 2 3 2

2 3

( )

0

0
0

0 0

N N
T T

i i i i j j
i i

T T
j

T T
d j d j

T T
d j d j

T T
dNj dNj N

Q d d R P A P P A

P P A P P P

A P A P Q

A P A P Q

A P A P Q

= =

⎡ ⎤
+ − + − − ∗ ∗ ∗ ∗⎢ ⎥

⎢ ⎥
⎢ ⎥− + + ∗ ∗ ∗⎢ ⎥
⎢ ⎥− − − <⎢ ⎥
⎢ ⎥− − − ∗⎢ ⎥
⎢ ⎥∗
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

∑ ∑ �

�

�

�
� � � �

�

 (11)   

i iQ R<  
1, ,j L= …  



 Discrete Time Systems 

 

286 

 

1

1
1

1

( )
11 0 00 0 00 0 0 0 22

0 0 0 0 0 0
0 0 0 0 0 0 0 00 0 0 0

0 0
0 0 0 0 0

0 0 0 0 0 0 0

k

T

d dNT T
Tk k
d

T
dN

V x

I AI
P IA I A A

x P P xA

A

Δ =

⎡ ⎤⎡ ⎤⎡ ⎤
⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥
⎢ ⎥⎢ ⎥− − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (7) 

The difference 2( )kV xΔ is given by 

1

2 2 1 2
1 1 1

( ) ( ) ( )
ki ki

N k N k
T T

k k k l i l l i l
i l k d i l k d

V x V x V x x Q x x Q x
−

+
= = + − = = −

Δ = − = −∑ ∑ ∑ ∑  

Note that  
1

1 1 1 1 1 1 1

i

ki ki i

k dN k N N k N
T T T T
l i l l i l l i l k i k

i l k d i l k d i l k d i
x Q x x Q x x Q x x Q x

− −

= = + − = = + − = = + − =
= + +∑ ∑ ∑ ∑ ∑ ∑ ∑  

1 1

1 1 1 1
ki ki

ki ki

N k N k N
T T T
l i l l i l k d i k d

i l k d i l k d i
x Q x x Q x x Q x

− −

− −
= = − = = + − =

= +∑ ∑ ∑ ∑ ∑  

Using this, 2( )kV xΔ can be rewritten as  

 
2

1 1 1 1
1 1

1 1 1 1

( )

.

i

ki ki
ki

i ki

k dN N N
T T T

k k i k k d i k d l i l
i i i l k d

N k N k
T T
l i l l i l

i l k d i l k d

V x x Q x x Q x x Q x

x Q x x Q x

−

− −
= = = = + −

− −

= = + − = = + −

Δ = − +

+ −

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 (8) 

For 3( ),kV xΔ  we have 

 

1 1 1

3
1 1 12 2

1 1 1

1 1
1 2

1

1 1
1 2

( )

[ ]

[ ]

i i

i i

i

i

i

i

d dN k N k
T T

k m i m m i m
i m k l i m k ll d l d

dN k k
T T T T
m i m k i k m i m k l i k l

i m k l m k ll d
dN

T T
k i k k l i k l

i l d

V x x R x x R x

x R x x R x x R x x R x

x R x x R x

− + − + −

= = + = = + −=− + =− +

− + − −

+ − + −
= = + = +=− +

− +

+ − + −
= =− +

Δ = −

= + − −

= −

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑
1 1
[( ) ].

i

i

k dN
T T

i i k i k l i l
i l k d

d d x R x x R x
−

= = + −

= − −∑ ∑

 (9) 

Note that i ki id d d≤ ≤  for all i , we get 
1 1

1 1 1 1i ki

N k N k
T T
l i l l i l

i l k d i l k d
x Q x x Q x

− −

= = + − = = + −
≤∑ ∑ ∑ ∑ , 

1 1 1 1

i i

ki i

k d k dN N
T T
l i l l i l

i l k d i l k d
x Q x x Q x

− −

= = + − = = + −

≤∑ ∑ ∑ ∑  

1 11 1

i i

i i

k d k dN N
T T
l i l l i l

i il k d l k d
x Q x x R x

− −

= == + − = + −

≤∑ ∑ ∑ ∑ , since i iQ R< . 

Stability Criterion and Stabilization of  
Linear Discrete-time System with Multiple Time Varying Delay   

 

287 

Finally, by using (7), (8) and (9) together with these inequalities, we obtain 

( )kV xΔ ≤� 11[ ] 0

k

k
T

k dk k k d k dN

k dN

x
y

xx y x x M

x

−− −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ <
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�
�

, 

where  

 

1 2 2
1 1

2 3 1 3 3

1 2 1 3 1

2 2 2 3 2

2 3

( ) * * * *

* * *

* *

0 *
0 *

0 0

N N
T T

i i i i
i i

T T

T T
d d
T T
d d

T T
dN dN N

Q d d R P A P P A

P P A P P P
M A P A P Q

A P A P Q

A P A P Q

= =

⎡ ⎤
+ − + − −⎢ ⎥

⎢ ⎥
⎢ ⎥− + +⎢ ⎥
⎢ ⎥= − − −
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

∑ ∑ �

�

�

�
� � � �

�

 (10) 

This implies that the system is stable, and then the claim (3) can be established. □ 
Remark:  
As to robust stability analysis of discrete time systems with poytopic-type uncertainties, 
robust stability analysis can be considered by the formulation above. When system state 
matrices in (1) are assumed as  

1
[ ( ( )) ( ( ))] ( ) ,

L

di j j dij
j

A k A k k A Aλ λ
=

⎡ ⎤= ∂ ⎣ ⎦∑   
1

( ) 0, ( ) 1
L

j j
j

k k
=

∂ ≥ ∂ =∑ . 

Robust state feedback synthesis can be formulated as: 
For a given set of upper and lower bounds ,i id d for corresponding time-varying delays kid , 
if there exist symmetric and positive-definite matrices 1 ,n n n n

iP Q× ×∈ℜ ∈ℜ  and n n
iR ×∈ℜ , 

1, ,i N= …  and general matrices 2P  and 3P  such that the following LMIs hold: 

 

1 2 2
1 1

2 3 1 3 3

1 2 1 3 1

2 2 2 3 2

2 3

( )

0

0
0

0 0

N N
T T

i i i i j j
i i

T T
j

T T
d j d j

T T
d j d j

T T
dNj dNj N

Q d d R P A P P A

P P A P P P

A P A P Q

A P A P Q

A P A P Q

= =

⎡ ⎤
+ − + − − ∗ ∗ ∗ ∗⎢ ⎥

⎢ ⎥
⎢ ⎥− + + ∗ ∗ ∗⎢ ⎥
⎢ ⎥− − − <⎢ ⎥
⎢ ⎥− − − ∗⎢ ⎥
⎢ ⎥∗
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

∑ ∑ �

�

�

�
� � � �

�

 (11)   

i iQ R<  
1, ,j L= …  



 Discrete Time Systems 

 

288 

Terms denoted by * are deduced by symmetry. Then the system with poytopic-type 
uncertainties is stable. 

4. Stabilizability 
The aim of this section is to design a memoryless state-feedback controller which stabilizes 
the system (1). When the memoryless state-feedback is substituted with plant dynamics (3), 
the dynamics of closed-loop system is obtained as  
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Note that stability analysis condition (3) is not convenient for us to design a memoryless 
state-feedback. By Schur Complememt lemma, equivalent conditions of (3) are given easily 
to solve such a memoryless state-feedback which guarantees the closed-loop system (12) is 
stable. Due to 
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If we denote by X  the inverse of P , we have 
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Pre- and post multiplying the above LMI, respectively, by TX  and X  and using these 
relations, we will get 
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Terms denoted by * are deduced by symmetry. Then the system with poytopic-type 
uncertainties is stable. 

4. Stabilizability 
The aim of this section is to design a memoryless state-feedback controller which stabilizes 
the system (1). When the memoryless state-feedback is substituted with plant dynamics (3), 
the dynamics of closed-loop system is obtained as  

 1
1

( ) ,
ki

N

k k di k d
i

x A BK x A x+ −
=

= + +∑ , 0, 1, ,k k ix k dφ= = − −… . (12) 

Note that stability analysis condition (3) is not convenient for us to design a memoryless 
state-feedback. By Schur Complememt lemma, equivalent conditions of (3) are given easily 
to solve such a memoryless state-feedback which guarantees the closed-loop system (12) is 
stable. Due to 

1

2

0 0
0 0

0
0 0

0 0 N

Q
Q

Q

−⎡ ⎤
⎢ ⎥−⎢ ⎥ <
⎢ ⎥
⎢ ⎥

−⎣ ⎦

�
�

� �
�

,  

The equivalent formulation of (3) could be obtained as  

1 2 2
1 1

2 3 1 3 3

1
1 2 1 31

2 1 2 2 2 2 2 2 1 3

3 1 3 2 3

2 1 3

( ) *

0 0
0 0

0 0
0 0

N N
T T

i i i i
i i

T T

T T
d d

T T T T T
d d dN d d

T T T
d d dN

T TN dN d

Q d d R P A P P A

P P A P P P

A P A PQ
P A P A P A Q A P A P
P A P A P A

Q A P A P

= =

−

⎡ ⎤
+ − − − −⎢ ⎥

⎢ ⎥
⎢ ⎥− + +⎣ ⎦

⎡ − −−⎡ ⎤
⎢⎢ ⎥⎡ ⎤− − − − − −⎢⎢ ⎥+ ⎢ ⎥ ⎢⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎢ ⎥

−⎣ ⎦ − −⎣

∑ ∑

�
� �

� � � ��
�

0

⎤
⎥
⎥
<⎥

⎢ ⎥
⎢ ⎥

⎦

 

If we denote by X  the inverse of P , we have 

1

2 3

0X
X

X X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1
1 1X P−= ,  

2 1 3 20 ,P X P X= +  1
3 3X P−= .  

1
1 1X P−=  

Pre- and post multiplying the above LMI, respectively, by TX  and X  and using these 
relations, we will get 

Stability Criterion and Stabilization of  
Linear Discrete-time System with Multiple Time Varying Delay   

 

289 

[ ]1 1 1 1 1 2
1 1 1 2 3

3
2 1 3 3

1
11

2 1

1 2

2 1

( ) *

00 0
0 0 0 0 0 0 0

0 0
0 0 0

N N
T T T

i i i i
i i T

T

T
d
T
d

d d dN
TN d

X Q X d d X R X X X
P X X

X
X AX X X

AQ
Q A

A A A
Q A

= =

−

⎡ ⎤
⎡ ⎤+ − −⎢ ⎥

+ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦− +⎣ ⎦
⎡ ⎤−−⎡ ⎤
⎢ ⎥⎢ ⎥−⎡ ⎤ −⎢ ⎥⎢ ⎥+ <⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥−⎣ ⎦ −⎣ ⎦

∑ ∑

 

Let 1
i iS Q−=  and 1

i iT R−= , we have 

1

1 2 3 3

2 3 1

1 1 1

2 2 2

1 1

1

1

1 1

1

0 0

0 0
0 0

0
0 0

0
0

0

0 0 0 0 0 0

T

T
d
T
d

T
N dN N

N

N

N N

X

AX BF X X X
X X X

S A S

S A S

S A S
X S

X S
T

d d

TX
d d

− ∗ ∗ ∗ ∗ ∗⎡ ⎤
⎢ ⎥
− − + +⎢ ⎥
⎢ ⎥− ∗
⎢ ⎥
⎢ ⎥− − ∗
⎢ ⎥

− − ∗ ∗⎢ ⎥
⎢ ⎥∗⎢ ⎥
⎢ ⎥− −⎢ ⎥

− ∗⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥− ∗⎢ ⎥−
⎢ ⎥
⎢ ⎥∗
⎢
⎢ −
⎢ −⎣ ⎦

0<

⎥
⎥
⎥

 

(13) 

 

1

1 2 3 3

2 3 1

1 1 1

2 2 2

1 1

1

1

1 1

1

0 0

0 0
0 0

0
0 0

0
0

0

0 0 0 0 0 0

T

T
d
T
d

T
N dN N

N

N

N N

X

AX BF X X X
X X X

S A S

S A S

S A S
X S

X S
T

d d

TX
d d

− ∗ ∗ ∗ ∗ ∗⎡ ⎤
⎢ ⎥
− − + +⎢ ⎥
⎢ ⎥− ∗
⎢ ⎥
⎢ ⎥− − ∗
⎢ ⎥

− − ∗ ∗⎢ ⎥
⎢ ⎥∗⎢ ⎥
⎢ ⎥− −⎢ ⎥

− ∗⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥− ∗⎢ ⎥−
⎢ ⎥
⎢ ⎥∗
⎢
⎢ −
⎢ −⎣ ⎦

0<

⎥
⎥
⎥

 

(14)

 



 Discrete Time Systems 

 

290 

Theorem 2: For a given set of upper and lower bounds ,i id d for corresponding time-varying 
delays kid , if there exist symmetric and positive-definite matrices 1

n nX ×∈ℜ , n n
iS ×∈ℜ and 

n n
iT ×∈ℜ , 1, ,i N= …  and general matrices 2X  and 3X such that LMIs below hold, the 

memoryless state-feedback gain is given by 1
1K FX−= . 

Proof: Now we consider substituting system matrices of (12) into LMIs conditions (13), the 
LMIs-based conditions of the memoryless state-feedback problem can be obtained directly 
as (14). □ 
Remark: 
When these time delays are constant, that is, i id d d= = , 1, ,i N= … , theorem 2 is reduced to 
the following condition 
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The condition above is delay-independent, which is more restrictive than delay-dependent 
conditions (14). 
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5. Numerical example 
To illustrate the usefulness of the previous theoretical results, let us give the following 
numerical examples. 
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Therefore, a memoryless state-feedback gain is given by 1
1 [2.0 3.0]K FX−= = . 

The closed-loop discrete-time system with multiple time-varying time delay is simulated in 
case of 1 21, 2d d= = , 1 21, 3d d= = , 1 22, 2d d= = , and 1 22, 3d d= = , respectively. And 
these results are illustrated in Figure 1, Figure 2, Figure 3 and Figure 4. These figures show 
that this system is stabilized by the state feedback. 
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Fig. 1. The behavior of the states in case of 1 21, 2d d= =  
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Fig. 2. The behavior of the states in case of 1 21, 3d d= =  
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Fig. 3. The behavior of the states in case of 1 22, 2d d= =          
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Fig. 4. The behavior of the states in case of 1 22, 3d d= =  

6. Conclusion 
Stability Criterion and Stabilization for linear discrete-time systems with multiple time-
varying delays have been considered. Main results have been given in terms of linear matrix 
inequalities formulation. It provided us an efficient numerical method to stabilize these 
systems. Based on these results, it can be also extended to the memory state feedback 
problem of these systems in the future research. 
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1. Introduction
This chapter is about techniques for robust stability analysis and robust stabilization of
discrete-time systems with delay in the state vector. The relevance of this study is mainly
due to the unavoidable presence of delays in dynamic systems. Even small time-delays can
reduce the performance of systems and, in some cases, lead them to instability. Examples of
such systems are robotics, networks, metal cutting, transmission lines, chemical and thermal
processes among others as can be found in the books from Gu et al. (2003), Richard (2003),
Niculescu (2001) and Kolmanovskii & Myshkis (1999).
Studies and techniques for dealing with such systems are not new. Since the beginning of
control theory, researchers has been concerned with this issue, either in the input-output
approach or in state-space approach. For the input-output approach, techniques such as Padé
approximation and the Smith predictor are widely used, mainly for process control. The use
of state space approach allows to treat both cases. For both approaches delays can be constant
or time-varying. Besides, both the delay and the systems can be precisely known or affected
by uncertainties.
In this chapter the class of uncertain discrete-time systems with state delay is studied. For
these systems, the techniques for analysis and design could be delay dependent or delay
independent, can lead with precisely known or uncertainty systems (in a polytopic or in a
norm-bonded representation, for instance), and can consider constant or time-varying delays.
For discrete-time systems with constant and known delay in the state it is always possible
to study an augmented delay-free system Kapila & Haddad (1998), Leite & Miranda (2008a).
However, this solution does not seem to be suitable to several cases such as time-varying delay
or uncertain systems.
For these systems, most of the applied techniques for robust stability analysis an robust control
design are based on Lyapunov-Krasovskii (L-K) approach, which can be used to obtain convex
formulation problems in terms of linear matrix inequalities (LMIs).
In the literature it is possible to find approaches based on LMIs for stability analysis, most of
them based on the quadratic stability (QS), i.e., with the matrices of the Lyapunov-Krasovskii
function being constant and independent of the uncertain parameters.
In the context of QS, non-convex formulations of delay-independent type have been proposed,
for example, in Shi et al. (2003) where the delay is considered time-invariant. In Fridman &
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1. Introduction
This chapter is about techniques for robust stability analysis and robust stabilization of
discrete-time systems with delay in the state vector. The relevance of this study is mainly
due to the unavoidable presence of delays in dynamic systems. Even small time-delays can
reduce the performance of systems and, in some cases, lead them to instability. Examples of
such systems are robotics, networks, metal cutting, transmission lines, chemical and thermal
processes among others as can be found in the books from Gu et al. (2003), Richard (2003),
Niculescu (2001) and Kolmanovskii & Myshkis (1999).
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Shaked (2005a) and Fridman & Shaked (2005b), delay dependent conditions, convex to the
analysis of stability and non-convex for the synthesis, are formulated using the approach of
descriptor systems. These works consider systems with both polytopic uncertainties — see
Fridman & Shaked (2005a) — and with norm-bounded uncertainties as done by Fridman &
Shaked (2005b).
Some other different aspects of discrete-time systems with delayed state have been studied.
Kandanvli & Kar (2009) present a proposal with LMI conditions for robust stability analysis of
discrete time delayed systems with saturation. In the work of Xu & Yu (2009), bi-dimensional
(2D) discrete-time systems with delayed state are investigated, and delay-independent
conditions for norm-bounded uncertainties and constant delay are given by means of
nonconvex formulations. In the paper from Ma et al. (2008), convex conditions have been
proposed for discrete-time singular systems with time-invariant delay. Discrete-time switched
systems with delayed state have been studied by Hetel et al. (2008) and Ibrir (2008). The
former establishes the equivalence between the approach used here (Lyapunov-Krasovskii
functions) and the one used, in general, for the stability of switched systems with time-varying
delay. The latter gives nonconvex conditions for switched systems where each operation mode
is subject to a norm-bounded uncertainty and constant delay.
The problem of robust filtering for discrete-time uncertain systems with delayed state is
considered in some papers. Delayed state systems with norm-bounded uncertainties are
studied by Yu & Gao (2001), Chen et al. (2004) and Xu et al. (2007) and with polytopic
uncertainties by Du et al. (2007). The results of Gao et al. (2004) were improved by Liu et al.
(2006), but the approach is based on QS and the design conditions are nonconvex depending
directly on the Lyapunov-Krasovskii matrices.
The problem of output feedback has attracted attention for discrete-time systems with delay in
the state and the works of Gao et al. (2004), He et al. (2008) and Liu et al. (2006) can be cited as
examples of on going research. In special, He et al. (2008) present results for precisely known
systems with time-varying delay including both static output feedback (SOF) and dynamic
output feedback (DOF). However, the conditions are presented as an interactive method that
relax some matrix inequalities.
The main objective of this chapter is to study the robust analysis and synthesis of discrete-time
systems with state delay. This chapter is organized as follows. In Section 2 some notations
and statements are presented, together the problems that are studied and solved in the next
sections. In sections 3 and 4 solutions are presented for, respectively, robust stability analysis
and robust design, based in a L-K function presented in section 2. In Section 5 some additional
results are given by the application of the techniques developed in previous sections are
presented, such as: extensions for switched systems, to treat actuator failure and to make
design with pole location. In the last section it is presented the final comments.

2. Preliminaries and problem statement

In this chapter the uncertain discrete time system with time-varying delay in the state vector
is given by

Ω(α) :

{
xk+1 = A(α)xk + Ad(α)xk−dk

+ B(α)uk + Bw(α)wk,
zk = C(α)xk + Cd(α)xk−dk

+ D(α)uk + Dw(α)wk,
(1)

where k is the k-th sample-time, matrices A(α), Ad(α), B(α), Bw, C(α), Cd(α), D(α) and Dw(α)
are time-invariant, uncertain and with adequate dimensions defined in function of the signals
xk = x(k) ∈ Rn, the state vector at sample-time k, uk = u(k) ∈ Rm, representing the control
vector with m control signals, wk = w(k) ∈ R�, the exogenous input vector with � input
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signals, and zk = z(k) ∈ Rp, the output vector with p weight output signals. These matrices
can be described by a polytope P with known vertices

P =

{
Ω(α) ∈ Rn+p×2n+m+� : Ω(α) =

N

∑
i=1

αiΩi, α ∈ Υ

}
, (2)

where

Υ =

{
α :

N

∑
i=1

αi = 1, αi ≥ 0, i ∈ I [1, N]

}
(3)

and

Ωi =

[
Ai Adi Bi Bwi

Ci Cdi Di Dwi

]
, i ∈ I [1, N]. (4)

The delay, denoted by dk, is supposed to be time-varying and given by:

dk ∈ I
[
d, d̄

]
, (d, d̄) ∈ N2

∗ (5)

with d, d̄ representing the minimum and maximum values of dk, respectively. Thus, any
system Ω(α) ∈ P can be written as a convex combination of the N vertices Ωi, i ∈ I [1, N], of
P .
The following control law is considered in this chapter:

uk = Kxk + Kdxk−dk
(6)

with [K|Kd] ∈ Rm×2n. By replacing (6) in (1)-(4), the resulting uncertain closed-loop system is
given by

Ω̃(α) :

{
xk+1 = Ã(α)xk + Ãd(α)xk−dk

+ Bw(α)wk

zk = C̃(α)xk + C̃d(α)xk−dk
+ Dw(α)wk

(7)

with Ω̃(α) ∈ P̃ ,

P̃ =

{
Ω̃(α) ∈ Rn+p×2n+� : Ω̃(α) =

N

∑
i=1

αiΩ̃i, α ∈ Υ

}
(8)

where

Ω̃i =

[
Ãi Ãdi Bwi

C̃i C̃di Dwi

]
, i ∈ I [1, N]. (9)

and matrices Ãi, Ãdi, C̃i e C̃di are defined by

Ãi = Ai + BiK, Ãdi = Adi + BiKd, (10)

C̃i = Ci + DiK, C̃di = Cdi + DiKd (11)

Note that, control law (6) requires that both xk and xk−dk
are available at each sample-time.

Eventually, this can be achieved in physical systems by employing, for instance, a
time-stamped in the measurements or in the estimated states Srinivasagupta et al. (2004). In
case of dk is not known, it is sufficient to assume Kd = 0.
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2.1 Stability conditions
Since the stability of system Ω̃(α) given in (7) plays a central rule in this work, it is addressed
in the sequence. Note that, without loss of generality, it is possible to consider the stability of
the system (7) with wk = 0, ∀ k ∈ N.
Consider the sequence composed by d̄ + 1 null vectors

φ̂d̄ = {0, . . . , 0}︸ ︷︷ ︸
(d̄+1) terms

In this chapter null initial conditions are always assumed, that is,

xk = φ0,k = φ̂d̄, k ∈ I [−d̄, 0] (12)

If φt,k = φ̂d̄, then an equilibrium solution for system (7) with wk = 0, ∀ k ∈ N, is achieved
because xk+1 = xk = 0, ∀k > t and α ∈ Ω̃.

Definition 1 (Uniform asymptotic stability). For a given α ∈ Υ, the trivial solution of (7) with
wk = 0, ∀ k ∈ N is said uniformly asymptotically stable if for any κ ∈ R+ such that for all initial

conditions xk ∈ φd̄
0,k ∈ Φκ

d̄
, k ∈ I [−d̄, 0], it is verified

lim
t→∞

φd̄
t,j,k = 0, ∀j ∈ I [1, d̄ + 1]

This allows the following definition:

Definition 2 (Robust stability). System (7) subject to (3), (5) and (8) is said robustly stable if its
respective trivial solution is uniformly asymptotically stable ∀ α ∈ Υ.

The main objective in this work is to formulate convex optimization problems, expressed as
LMIs, allowing an efficient numerical solution to a set of stability and performance problems.

2.2 Problems
Two sets of problems are investigated in this chapter. The first set concerns stability issues
related to uncertain discrete time with time varying delay in the state vector as presented in
the sequence.

Problem 1 (Robust stability analysis). Determine if system (7) subject to (3), (5) and (8) is robustly
stable.

Problem 2 (Robust control design). Determine a pair of static feedback gains, K and Kd, such that
(1)-(5) controlled by (6) is robustly stable.

The other set of problems is related to the performance of the class of systems considered in
this chapter. In this proposal, the H∞ index is used to quantify the performance of the system
as stated in the following problems:

Problem 3 (H∞ guaranteed cost). Given the uncertain system Ω̃(α) ∈ P̃ , determine an estimation
for γ > 0 such that for all wk ∈ �2 there exist zk ∈ �2 satisfying

�zk�2 < γ�wk�2 (13)

for all α ∈ Υ. In this case, γ is called an H∞ guaranteed cost for (7).
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Problem 4 (Robust H∞ control design). Given the uncertain system Ω(α) ∈ P̃ , (1), and a scalar
γ > 0, determine robust state feedback gains K and Kd, such that the uncertain closed-loop system
Ω̃(α) ∈ P̃ , (7), is robustly stable and, additionally, satisfies (13) for all wk and zk belonging to �2.

It is worth to say that, in cases where time-delay depends on a physical parameter (such as
velocity of a transport belt, the position of a steam valve, etc.) it may be possible to determine
the delay value at each sample-time. As a special case, consider the regenerative chatter in
metal cutting. In this process a cylindrical workpiece has an angular velocity while a machine
tool (lathe) translates along the axis of this workpiece. For details, see (Gu et al., 2003, pp. 2). In
this case the delay depends on the angular velocity and can be recovered at each sample-time
k. However, the study of a physical application is not the objective in this chapter.
The following parameter dependent L-K function is used in this paper to investigate problems
1-4:

V(α, k) =
3

∑
v=1

Vv(α, k) > 0 (14)

with

V1(α, k) = x�kP(α)xk , (15)

V2(α, k) =
k−1

∑
j=k−dk

x�jQ(α)xj , (16)

V3(α, k) =
1−d

∑
�=2−d̄

k−1

∑
j=k+�−1

x�jQ(α)xj, (17)

The dependency of matrices P(α) and Q(α) on the uncertain parameter α is a key issue on
reducing the conservatism of the resulting conditions. Here, a linear relation on α is assumed.
Thus, consider the following structure for these matrices:

P(α) =
N

∑
i=1

αiPi; Q(α) =
N

∑
i=1

αiQi (18)

with α ∈ Υ. Note that, more general structures such as P(α) and Q(α) depending
homogeneously on α — see Oliveira & Peres (2005) — may result in less conservative
conditions, but at the expense of a higher numerical complexity of the resulting conditions.
To be a L-K function, the candidate (14) must be positive definite and satisfy

ΔV(α, k) = V(α, k + 1)− V(α, k) < 0 (19)

for all
[

xT
k xT

k−dk

]T
�= 0 and α ∈ Υ.

The following result is used in this work to obtain less conservative results and to decouple
the matrices of the system from the L-K matrices P(α) and Q(α).

Lemma 1 (Finsler’s Lemma). Let ϕ ∈ Rn, M(α) = M(α)T ∈ Rn×n and G(α) ∈ Rm×n such
that rank(G(α)) < n. Then, the following statements are equivalents:

i) ϕTM(α)ϕ < 0, ∀ϕ : G(α)ϕ = 0, ϕ �= 0

ii) G(α)⊥
T
M(α)G(α)⊥ < 0,
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i) ϕTM(α)ϕ < 0, ∀ϕ : G(α)ϕ = 0, ϕ �= 0

ii) G(α)⊥
T
M(α)G(α)⊥ < 0,
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iii) ∃ μ(α) ∈ R+ : M(α)− μ(α)G(α)TG(α) < 0

iv) ∃ X (α) ∈ Rn×m : M(α) +X (α)G(α) + G(α)TX (α)T
< 0

In the case of parameter independent matrices, the proof of this theorem can be found in
de Oliveira & Skelton (2001). The proof for the case depending on α follows similar steps.

3. Robust stability analysis and H∞ guaranteed cost

In this section it is presented the conditions for stability analysis and calculation of H∞
guaranteed cost for system (7). The objective here is to present sufficient convex conditions
for solving problems 1 and 3.

3.1 Robust stability analysis
Theorem 1. If there exist symmetric matrices 0 < Pi ∈ Rn×n, 0 < Qi ∈ Rn×n, a matrix X ∈
R3n×n, dk ∈ I [d, d̄] with d̄ and d belonging to N∗, such that

Ψi = Qi +XBi + BT
i X

T
< 0; i = 1, . . . , N (20)

with

Qi =

⎡
⎣

Pi 0 0
� βQi − Pi 0
� � −Qi

⎤
⎦ (21)

β = d̄ − d + 1 (22)

and
Bi =

�
I −Ai −Adi

�
(23)

is verified ∀ α admissible, then system (7) subject to (5) is robustly stable. Besides, (14)-(17) is a
Lyapunov-Krasovskii function assuring the robust stability of the considered system.

Proof. The positivity of the function (14) is assured with the hypothesis of Pi = PT
i > 0,

Qi = QT
i > 0. For the equation (14) be a Lyapunov-Krasovskii function, besides its positivity,

it is necessary to verify (19) ∀ α ∈ Ω. From hereafter, the α dependency is omitted in the
expressions Vv(k), v = 1, . . . , 3, To calculate (19), consider

ΔV1(k) = xT
k+1P(α)xk+1 − xT

k P(α)xk (24)

ΔV2(k) = xT
k Q(α)xk − xT

k−d(k)Q(α)xk−d(k) +
k−1

∑
i=k+1−d(k+1)

xT
i Q(α)xi −

k−1

∑
i=k+1−d(k)

xT
i Q(α)xi

(25)
and

ΔV3(k) = (d̄ − d)xT
k Q(α)xk −

k−d

∑
i=k+1−d̄

xT
i Q(α)xi (26)

Observe that the third term in equation (25) can be rewritten as

Ξk ≡
k−1

∑
i=k+1−d(k+1)

xT
i Q(α)xi =

k−1

∑
i=k+1−d

xT
i Q(α)xi +

k−d

∑
i=k+1−d(k+1)

xT
i Q(α)xi

≤
k−1

∑
i=k+1−d(k)

xT
i Q(α)xi +

k−d

∑
i=k+1−d̄

xT
i Q(α)xi (27)
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Using (27) in (25), one gets

ΔV2(k) ≤ xT
k Q(α)xk − xT

k−d(k)Q(α)xk−d(k) +
k−d

∑
i=k+1−d̄

xT
i Q(α)xi (28)

So, considering (24), (26) and (28) the following upper bound for (19) can be obtained

ΔV(k) ≤ xT
k+1P(α)xk+1 + xT

k [βQ(α)− P(α)]xk − xT
k−d(k)Q(α)xk−d(k) < 0 (29)

Taking into account (7) and using Lemma 1 with

ϕ = ξk =
�

xT
k+1 xT

k xT
k−dk

�T
(30)

M(α) =

⎡
⎣

P(α) 0 0
� βQ(α)− P(α) 0
� � −Q(α)

⎤
⎦ (31)

G(α) =
�

I −A(α) −Ad(α)
�

(32)

then (29) is equivalent to

Ψ(α) = M(α) +X (α)G(α) + G(α)TX (α)T
< 0. (33)

which is assured whenever (20) is verified by taking X (α) = X ,

M(α) =
N

∑
i=1

αiQi; G(α) =
N

∑
i=1

αiBi, (34)

α ∈ Υ, Qi and Bi given in (21) and (23), respectively, completing the proof.

An important issue in Theorem 1 is that there is no product between the matrices of the system
and the matrices of the Lyapunov-Krasovskii proposed function, (14). This can be exploited
to reduce conservatism in both analysis and synthesis methods.

Example 1 (Stability Analysis). In this example the stability analysis condition given in Theorem 1
is used to investigate system (7), with Dw = 0, where

Ã1 =

�
0.6 0

0.35 0.7

�
and Ãd1 =

�
0.1 0
0.2 0.1

�
. (35)

This system has been investigated by Liu et al. (2006), Boukas (2006) and Leite & Miranda (2008a).
The objective here is to establish the larger delay interval such that this system remains stable. The
results are summarized in Table 1.
Although Theorem 1 and the condition from Liu et al. (2006) achieve the same upper bound for dk, the
L-K function employed by Liu et al. (2006) has 5 parts while Theorem 1 uses a function with only 3
parts, as given by (14)-(17).
Consider that (35) is affected by an uncertain parameter being described by a polytope (8) with Ã1 and
Ãd1 given by (35) and Ã2 = 1.1Ã1 and Ãd2 = 1.1Ãd1. In this case the conditions of Boukas (2006)
are no longer applicable and those from Liu et al. (2006) are not directly applied, because of type of
the system uncertainty. Using Theorem 1 it is possible to assure the robust stability of this system for
|dk+1 − dk| ≤ 3.
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Condition d d̄

Boukas (2006)[Theorem 3.1] 2 10

Liu et al. (2006) 2 13

Theorem 1 2 13

Table 1. Maximum delay intervals such that (7) with (35) is stable.

3.2 Estimation of H∞ guaranteed cost
Theorem 2 presented in the sequel states a convex condition for checking if a given γ is an H∞
guaranteed cost for system (7).

Theorem 2. If there exist symmetric matrices 0 < Pi ∈ Rn×n, 0 < Qi ∈ Rn×n, a matrix XH ∈
R3n+p+�×n+p, dk ∈ I [d, d̄] with d̄ and d belonging to N∗, and a scalar μ = γ2 ∈ R+, such that

ΨHi = QHi +XHBH i + BH
T
i XH

T
< 0, i = 1, . . . , N, (36)

with

QHi =

⎡
⎣
Qi 0

�

�
I� 0
� −μIp

�
⎤
⎦ (37)

where Qi is given by (21) and

BH i =

�
Bi 0 Bwi�

0 C̃i C̃di

�
−I Dwi

�
(38)

with Bi given by (23), then system (7) subject to (5) with null initial conditions, see (12), is robustly
stable with an H∞ guaranteed cost given by γ =

√
μ. Besides, (14)-(17) is a L-K function assuring

the robust stability of the considered system.

Proof. Following the proof given for Theorem 1, it is possible to conclude that the positivity of
(14) is assured with the hypothesis of P(α) = P(α)T

> 0, Q(α) = Q(α)T
> 0 and, by (29) that

ΔV(k) ≤ x�k+1P(α)xk+1 + x�k[βQ(α)− P(α)]xk − x�k−d(k)Q(α)xk−d(k) < 0 (39)

Consider system (7) as robustly stable with null initial conditions given by (12), assume μ = γ2

and signals wk and zk belonging to �2. In this case, it is possible to verify that V(α, 0) = 0 and
V(α, ∞) approaches zero, whenever wk goes to zero as k increases, or to a constant φ̃ < ∞,
whenever wk approaches φ < ∞ as k increases. Also, consider the H∞ performance index
given by

J(α, k) =
∞

∑
k=0

�
zT

k zk − μwT
k wk

�
(40)

Then, using (39), J(α, k) can be over bounded as

J(α, k) ≤
∞

∑
k=0

�
zT

k zk − μwT
k wk + ΔV(α, k)

�

≤
∞

∑
k=0

�
zT

k zk − μwT
k wk + x�k+1P(α)xk+1 + x�k[βQ(α)− P(α)]xk − x�k−d(k)Q(α)xk−d(k)

�
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which can be rewritten as

J(α, k) ≤
∞

∑
k=0

ζT
k QH(α)ζk (41)

with ζk =
�

ξT
k zT

k wT
k

�T
, ξk defined in (30), and QH(α) =

N

∑
i=1

αiQHi, α ∈ Υ. Then, applying

Lemma 1 to
ζT

k QH(α)ζk < 0 subject to (7), (42)

with M(α) = QH(α), ϕ = ζk,

G(α) = BH(α) =

�
B(α) 0 Bw(α)�

0 C̃(α) C̃d(α)
�
−I Dw(α)

�
, (43)

and α ∈ Υ, (42) is equivalent to

ΨH(α) = QH(α) +XH(α)BH(α) + BH(α)TXH(α)T
< 0. (44)

Once (36) is verified, (44) is assured with the special choice XH(α) = XH ∈ R3n+p+�×n+p —
i.e., eliminating the dependency on the uncertain parameter α — and noting that G(α) =

∑N
i=1 αiBH i, convexity is achieved, and (36) can be used to recover (44) by ΨH(α) =

∑N
i=1 αiΨHi, α ∈ Υ. Thus, this assures the negativity of J(α, k) for all wk ∈ �2 implying that (7)

is robustly stable with H∞ guaranteed cost given by γ =
√

μ.

In case of time-varying uncertainties, i.e. α = αk = α(k), the conditions formulated in both
Theorem 1 and Theorem 2 can be adapted to match the quadratic stability approach. In this
case, it is enough to use Pi = P, Qi = Q, i ∈ I [1, N]. This yields conditions similar to (20)
and (36), respectively, with constant L-K matrices. See Subsection (5.1) for a more detailed
discussion on this issue.
Note that, it is possible to use the conditions established by Theorem 2 to formulate the
following optimization problem that allows to minimize the value of μ = γ2:

EH∞ :

⎧
⎨
⎩

min
Pi > 0; Qi > 0;X

μ

such that (36) is feasible
(45)

4. Robust H∞ feedback design

The stability analysis conditions can be used to obtain convex synthesis counterpart
formulations for designing robust state feedback gains K and Kd, such that control law (6)
applied in (1) yields a robustly stable closed-loop system, and, therefore, provides a solution
to problems 2 and 4. In this section, such conditions for synthesis are presented for both robust
stabilization and robust H∞ control design.

4.1 Robust stabilization
The following Theorem provides some LMI conditions depending on the difference d̄ − d to
design robust state feedback gains K and Kd that assure the robust stability of the closed-loop
system.
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Theorem 3. If there exist symmetric matrices 0 < P̃i ∈ Rn×n, 0 < Q̃i ∈ Rn×n, i = 1, . . . , N,
matrices F ∈ Rn×n, W ∈ Rm×n and Wd ∈ Rm×n, dk ∈ I [d, d̄] with d̄ and d belonging to N∗, such
that

Ψ̃i =

⎡
⎣

P̃i +F +F T −(AiF + BiW) −(AdiF + BiWd)
� βQ̃i − P̃i 0

� � −Q̃i

⎤
⎦ < 0, i = 1, . . . , N (46)

are verified with β given by (22), then system (1)-(3) is robustly stabilizable with (6), where the robust
static feedback gains are given by

K = WF−1 and Kd = WdF
−1 (47)

yielding a convex solution to Problem 2.

Proof. Observe that, if (46) is feasible, then F is regular, once block (1, 1) of (46) assures P̃i +
F +F T

< 0, allowing to define

T = I3 ⊗F−T (48)

Then, by replacing W and Wd by KF and KdF , respectively obtained from (47), it is possible

to recover Ψi = T Ψ̃iT
T
< 0 with X =

�
F−T 0 0

�T
, Pi = F−TP̃iF

−1, Qi = F−TQ̃iF
−1 and

the closed-loop system matrices Ãi = (A+ BiK) and Ãdi = (Adi + BiKd) replacing Ai and Adi

in (20), which completes the proof.

Note that, conditions in Theorem 3 encompass quadratic stability approach, since it is always
possible to choose Pi = P and Qi = Q, i = 1, . . . , N. Also observe that, if dk is not available
at each sample-time, and therefore xk−dk

cannot be used in the feedback, then it is enough to
choose Wd = 0 leading to a control law given by uk = Kxk. Finally, note the convexity of the
conditions stated in Theorem 3. This is a relevant issue, once most of the results available in
the literature depend on a nonlinear algorithm to solve the stabilization problem.

Example 2 (Robust Stabilization). Consider the discrete-time system studied in Leite & Miranda
(2008a) with delayed state described by (1) with Dw = 0 and

A =

�
0 1
−2 −3

�
; Ad =

�
0.01 0.1

0 0.1

�
; B =

�
0
1

�
(49)

Suppose that this system is affected by uncertain parameters |ρ| ≤ 0.07, |θ| ≤ 0.1 and |η| ≤ 0.1, such
that

A(ρ) = (1 + ρ)A; Ad(θ) = (1 + θ)Ad; B(η) = (1 + η)B (50)

These parameters yield a polytope with 8 vertices determined by the combination of the extreme values
of ρ, θ and η. Also, suppose that delay is not available on line and it is bounded as 1 ≤ dk ≤ 10. By
applying the conditions presented in Theorem 3 with Wd = 0 — this is a necessary issue once the delay
value is not known at each sample-time — it is possible to get the robust stabilizing gain

K =
�

1.9670 2.7170
�

. (51)

The behavior of the states of the closed-loop response of this uncertain discrete-time system with
time-varying delay is shown in Figure 4. It has been simulated the time response of this system at
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Fig. 1. The behavior of the states x1(k) (top) and x2(k) (bottom), with dk ∈ I [1, 10] randomly
genereated and the robust state feedback gain (51).

each vertex of the polytope that defines the uncertain closed-loop system. The initial conditions have
been chosen as

φ0,k =

��
1
−1

�
, . . . ,

�
1
−1

��

� �� �
11 terms

,

and the value of the delay, dk, has been varied randomly. Please see Leite & Miranda (2008a) for details.
In Figure 4, it is illustrated the stability of the uncertain close-loop system, assured by the robust state
feedback gain (51).

4.2 Robust H∞ feedback design
An stabilization condition assuring the H∞ cost of the feedback system is stated in the sequel.

Theorem 4. If there exist symmetric matrices 0 < P̃i ∈ Rn×n, 0 < Q̃i ∈ Rn×n, matrices F ∈ Rn×n,
W ∈ Rm×n, Wd ∈ Rm×n, a scalar variable θ ∈]0, 1] and for a given μ = γ2 ∈ R+ such that

⎡
⎢⎢⎢⎢⎣

P̃i −F −F T AiF + BiW AdiF + BiWd 0 Bwi

� βQ̃i − P̃i 0 F TCT
i + WTDT

i 0

� � −Q̃i F TCT
di + WT

d DT
i 0

� � � −θ I Dwi

� � � � −μI

⎤
⎥⎥⎥⎥⎦
< 0, i = 1, . . . , N (52)

are feasible with β given by (22), then system (1)-(3) is robustly stabilizable with (6) assuring a
guaranteed H∞ cost given by γ to the closed-loop system by robust state feedback gains K and Kd

given by (47).

Proof. To demonstrate the sufficiency of (52), firstly note that, if it is verified, then the
regularity of F is assured due to its block (1, 1) that verifies P̃i − F − F T

< 0. Besides, there
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Theorem 3. If there exist symmetric matrices 0 < P̃i ∈ Rn×n, 0 < Q̃i ∈ Rn×n, i = 1, . . . , N,
matrices F ∈ Rn×n, W ∈ Rm×n and Wd ∈ Rm×n, dk ∈ I [d, d̄] with d̄ and d belonging to N∗, such
that

Ψ̃i =

⎡
⎣

P̃i +F +F T −(AiF + BiW) −(AdiF + BiWd)
� βQ̃i − P̃i 0

� � −Q̃i

⎤
⎦ < 0, i = 1, . . . , N (46)

are verified with β given by (22), then system (1)-(3) is robustly stabilizable with (6), where the robust
static feedback gains are given by

K = WF−1 and Kd = WdF
−1 (47)

yielding a convex solution to Problem 2.

Proof. Observe that, if (46) is feasible, then F is regular, once block (1, 1) of (46) assures P̃i +
F +F T

< 0, allowing to define

T = I3 ⊗F−T (48)

Then, by replacing W and Wd by KF and KdF , respectively obtained from (47), it is possible

to recover Ψi = T Ψ̃iT
T
< 0 with X =

�
F−T 0 0

�T
, Pi = F−TP̃iF

−1, Qi = F−TQ̃iF
−1 and

the closed-loop system matrices Ãi = (A+ BiK) and Ãdi = (Adi + BiKd) replacing Ai and Adi

in (20), which completes the proof.

Note that, conditions in Theorem 3 encompass quadratic stability approach, since it is always
possible to choose Pi = P and Qi = Q, i = 1, . . . , N. Also observe that, if dk is not available
at each sample-time, and therefore xk−dk

cannot be used in the feedback, then it is enough to
choose Wd = 0 leading to a control law given by uk = Kxk. Finally, note the convexity of the
conditions stated in Theorem 3. This is a relevant issue, once most of the results available in
the literature depend on a nonlinear algorithm to solve the stabilization problem.

Example 2 (Robust Stabilization). Consider the discrete-time system studied in Leite & Miranda
(2008a) with delayed state described by (1) with Dw = 0 and

A =

�
0 1
−2 −3

�
; Ad =

�
0.01 0.1

0 0.1

�
; B =

�
0
1

�
(49)

Suppose that this system is affected by uncertain parameters |ρ| ≤ 0.07, |θ| ≤ 0.1 and |η| ≤ 0.1, such
that

A(ρ) = (1 + ρ)A; Ad(θ) = (1 + θ)Ad; B(η) = (1 + η)B (50)

These parameters yield a polytope with 8 vertices determined by the combination of the extreme values
of ρ, θ and η. Also, suppose that delay is not available on line and it is bounded as 1 ≤ dk ≤ 10. By
applying the conditions presented in Theorem 3 with Wd = 0 — this is a necessary issue once the delay
value is not known at each sample-time — it is possible to get the robust stabilizing gain

K =
�

1.9670 2.7170
�

. (51)

The behavior of the states of the closed-loop response of this uncertain discrete-time system with
time-varying delay is shown in Figure 4. It has been simulated the time response of this system at
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Fig. 1. The behavior of the states x1(k) (top) and x2(k) (bottom), with dk ∈ I [1, 10] randomly
genereated and the robust state feedback gain (51).

each vertex of the polytope that defines the uncertain closed-loop system. The initial conditions have
been chosen as

φ0,k =

��
1
−1

�
, . . . ,

�
1
−1

��

� �� �
11 terms

,

and the value of the delay, dk, has been varied randomly. Please see Leite & Miranda (2008a) for details.
In Figure 4, it is illustrated the stability of the uncertain close-loop system, assured by the robust state
feedback gain (51).

4.2 Robust H∞ feedback design
An stabilization condition assuring the H∞ cost of the feedback system is stated in the sequel.

Theorem 4. If there exist symmetric matrices 0 < P̃i ∈ Rn×n, 0 < Q̃i ∈ Rn×n, matrices F ∈ Rn×n,
W ∈ Rm×n, Wd ∈ Rm×n, a scalar variable θ ∈]0, 1] and for a given μ = γ2 ∈ R+ such that

⎡
⎢⎢⎢⎢⎣

P̃i −F −F T AiF + BiW AdiF + BiWd 0 Bwi

� βQ̃i − P̃i 0 F TCT
i + WTDT

i 0

� � −Q̃i F TCT
di + WT

d DT
i 0

� � � −θ I Dwi

� � � � −μI

⎤
⎥⎥⎥⎥⎦
< 0, i = 1, . . . , N (52)

are feasible with β given by (22), then system (1)-(3) is robustly stabilizable with (6) assuring a
guaranteed H∞ cost given by γ to the closed-loop system by robust state feedback gains K and Kd

given by (47).

Proof. To demonstrate the sufficiency of (52), firstly note that, if it is verified, then the
regularity of F is assured due to its block (1, 1) that verifies P̃i − F − F T

< 0. Besides, there
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exist a real scalar κ ∈]0, 2[ such that for θ ∈]0, 1], κ(κ − 2) = −θ. Thus, replacing block (4, 4) of
(52) by κ(κ − 2)Ip, the optimization variables W and Wd by KF and KdF , respectively, using
the definitions given by (10)–(11) and pre- and post-multiplying the resulting LMI by TH (on
the left) and by T T

H (on the right), with

TH =

⎡
⎣
T 0

�

�
G 0
� I�

�
⎤
⎦
−1

(53)

with T given by (48) and G ∈ Rp×p, it is possible to obtain Ψ̃Hi < 0, with Ψ̃Hi given by

Ψ̃Hi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F−TP̃iF
−1 −F−T −F−1 F−T (Ai + BiK)� �� �

Ãi

F−T (Adi + BiKd� �� �
Ãdi

)

� βF−TQ̃iF
−1 −F−TP̃iF

−1 0

� � −F−TQ̃iF
−1

� � �

� � �

0 FBw

(CT
i + KTDT

i )� �� �
C̃i

GT 0

(CdT
i + KT

d DT
i )� �� �

C̃di

GT 0

G
�
κ2 − 2κ

�
GT GDw

� −μI�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(54)

Observe that, assuming G = −
1

κ
Ip, block (4, 4) of (54) can be rewritten as

G
�

κ2 − 2κ
�

GT =

�
−

1

κ
Ip

��
κ2 − 2κ

� �
−

1

κ
Ip

�

=

�
1 −

2

κ

�
Ip

= Ip −
1

κ
Ip −

1

κ
Ip

= Ip + G + GT (55)

assuring the feasibility of ΨHi < 0 given in (36) with Pi = F−TP̃iF
−1, Qi = F−TQ̃iF

−1,
i ∈ I [1, N], and

XH =

⎡
⎢⎢⎢⎢⎣

F−1 0
0 0
0 0
0 G
0 0

⎤
⎥⎥⎥⎥⎦

completing the proof.
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Theorem 4 provides a solution to Problem 4. This kind of solution can be efficiently achieved
by means of, for example, interior point algorithms. Note that all matrices of the system can
be affected by polytopic uncertainties which states a difference w.r.t. most of the proposals
found in the literature. Another remark concerns the technique used to obtain the synthesis
condition: differently from the usual approach for delay free systems, here it is not enough
to replace matrices in the analysis conditions with their respective closed-loop versions and
to make a linearizing change of variables. This makes clear that the H∞ control of systems
with delayed state is more complex than with delay free systems. Also, note that the design
of state feedback gains K and Kd can be done minimizing the guaranteed H∞ cost, γ =

√
μ,

of the uncertain closed-loop system. In this case, it is enough to solve the following convex
optimization problem:

SH∞ :

⎧⎪⎪⎨
⎪⎪⎩

min
P̃i > 0; Q̃i > 0; 0 < θ ≤ 1;

W; Wd; F

μ

such that (52) is feasible

(56)

Example 3 (H∞ Design). A physically motivated problem is considered in this example. It consists of
a fifth order state space model of an industrial electric heater investigated in Chu (1995). This furnace is
divided into five zones, each of them with a thermocouple and a electric heater as indicated in Figure 2.
The state variables are the temperatures in each zone (x1, . . . , x5), measured by thermocouples, and
the control inputs are the electrical power signals (u1, . . . , u5) applied to each electric heater. The

u1

x1

u2

x2

u3

x3

u4

x4

u5

x5

Fig. 2. Schematic diagram of the industrial electric heater.

temperature of each zone of the process must be regulated around its respective nominal operational
conditions (see Chu (1995) for details). The dynamics of this system is slow and can be subject to several
load disturbances. Also, a time-varying delay can be expected, since the velocity of the displacement of
the mass across the furnace may vary. A discrete-time with delayed state model for this system has been
obtained as given by (1) with dk = d = 15, where

A = A0 =

⎡
⎢⎢⎢⎢⎣

0.97421 0.15116 0.19667 −0.05870 0.07144
−0.01455 0.88914 0.26953 0.11866 −0.22047
0.06376 0.12056 1.00049 −0.03491 −0.02766
−0.05084 0.09254 0.28774 0.82569 0.02570
0.01723 0.01939 0.29285 0.03544 0.87111

⎤
⎥⎥⎥⎥⎦

(57)
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exist a real scalar κ ∈]0, 2[ such that for θ ∈]0, 1], κ(κ − 2) = −θ. Thus, replacing block (4, 4) of
(52) by κ(κ − 2)Ip, the optimization variables W and Wd by KF and KdF , respectively, using
the definitions given by (10)–(11) and pre- and post-multiplying the resulting LMI by TH (on
the left) and by T T

H (on the right), with

TH =

⎡
⎣
T 0

�

�
G 0
� I�

�
⎤
⎦
−1

(53)

with T given by (48) and G ∈ Rp×p, it is possible to obtain Ψ̃Hi < 0, with Ψ̃Hi given by

Ψ̃Hi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F−TP̃iF
−1 −F−T −F−1 F−T (Ai + BiK)� �� �

Ãi

F−T (Adi + BiKd� �� �
Ãdi

)

� βF−TQ̃iF
−1 −F−TP̃iF

−1 0

� � −F−TQ̃iF
−1

� � �

� � �

0 FBw

(CT
i + KTDT

i )� �� �
C̃i

GT 0

(CdT
i + KT

d DT
i )� �� �

C̃di

GT 0

G
�
κ2 − 2κ

�
GT GDw

� −μI�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(54)

Observe that, assuming G = −
1

κ
Ip, block (4, 4) of (54) can be rewritten as

G
�

κ2 − 2κ
�

GT =

�
−

1

κ
Ip

��
κ2 − 2κ

� �
−

1

κ
Ip

�

=

�
1 −

2

κ

�
Ip

= Ip −
1

κ
Ip −

1

κ
Ip

= Ip + G + GT (55)

assuring the feasibility of ΨHi < 0 given in (36) with Pi = F−TP̃iF
−1, Qi = F−TQ̃iF

−1,
i ∈ I [1, N], and

XH =

⎡
⎢⎢⎢⎢⎣

F−1 0
0 0
0 0
0 G
0 0

⎤
⎥⎥⎥⎥⎦

completing the proof.
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Theorem 4 provides a solution to Problem 4. This kind of solution can be efficiently achieved
by means of, for example, interior point algorithms. Note that all matrices of the system can
be affected by polytopic uncertainties which states a difference w.r.t. most of the proposals
found in the literature. Another remark concerns the technique used to obtain the synthesis
condition: differently from the usual approach for delay free systems, here it is not enough
to replace matrices in the analysis conditions with their respective closed-loop versions and
to make a linearizing change of variables. This makes clear that the H∞ control of systems
with delayed state is more complex than with delay free systems. Also, note that the design
of state feedback gains K and Kd can be done minimizing the guaranteed H∞ cost, γ =

√
μ,

of the uncertain closed-loop system. In this case, it is enough to solve the following convex
optimization problem:

SH∞ :

⎧⎪⎪⎨
⎪⎪⎩

min
P̃i > 0; Q̃i > 0; 0 < θ ≤ 1;

W; Wd; F

μ

such that (52) is feasible

(56)

Example 3 (H∞ Design). A physically motivated problem is considered in this example. It consists of
a fifth order state space model of an industrial electric heater investigated in Chu (1995). This furnace is
divided into five zones, each of them with a thermocouple and a electric heater as indicated in Figure 2.
The state variables are the temperatures in each zone (x1, . . . , x5), measured by thermocouples, and
the control inputs are the electrical power signals (u1, . . . , u5) applied to each electric heater. The
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Fig. 2. Schematic diagram of the industrial electric heater.

temperature of each zone of the process must be regulated around its respective nominal operational
conditions (see Chu (1995) for details). The dynamics of this system is slow and can be subject to several
load disturbances. Also, a time-varying delay can be expected, since the velocity of the displacement of
the mass across the furnace may vary. A discrete-time with delayed state model for this system has been
obtained as given by (1) with dk = d = 15, where

A = A0 =

⎡
⎢⎢⎢⎢⎣

0.97421 0.15116 0.19667 −0.05870 0.07144
−0.01455 0.88914 0.26953 0.11866 −0.22047
0.06376 0.12056 1.00049 −0.03491 −0.02766
−0.05084 0.09254 0.28774 0.82569 0.02570
0.01723 0.01939 0.29285 0.03544 0.87111

⎤
⎥⎥⎥⎥⎦

(57)
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Ad = Ad0 =

⎡
⎢⎢⎢⎢⎣

−0.01000 −0.08837 −0.06989 0.18874 0.20505
0.02363 0.03384 0.05282 −0.09906 −0.00191
−0.04468 −0.00798 0.05618 0.00157 0.03593
−0.04082 0.01153 −0.07116 0.16472 0.00083
−0.02537 0.03878 −0.04683 0.05665 −0.03130

⎤
⎥⎥⎥⎥⎦

, (58)

B = B0 =

⎡
⎢⎢⎢⎢⎣

0.53706 −0.11185 0.09978 0.04652 0.25867
−0.51718 0.73519 0.57518 0.40668 −0.12472
0.29469 0.31528 1.16420 −0.29922 0.23883
−0.20191 0.19739 0.41686 0.66551 0.11366
−0.11835 0.16287 0.20378 0.23261 0.36525

⎤
⎥⎥⎥⎥⎦

, (59)

and C = D = I5, Cd = 0, Dw = 0, Bw = 0.1I with A0, Ad0, and B0 being the nominal matrices of
this system. Note that, this nominal system has unstable modes. The design of a stabilizing state
feedback gain for this system has been considered in Chu (1995) by using optimal control theory,
designed by an augmented delay-free system with order equal to 85 and a time-invariant delay d = 15,
by means of a Riccati equation.
Here, robust H∞ state feedback gains are calculated to stabilize this system subject to uncertain
parameters given by |ρ| ≤ 0.4, |η| ≤ 0.4 and |σ| ≤ 0.08 that affect the matrices of the system as
follows:

A(ρ) = A(1 + ρ), Ad(θ) = Ad(1 + θ), B(σ) = B(1 + σ) (60)

This set of uncertainties defines a polytope with 8 vertices, obtained by combination of the upper and
lower bounds of uncertain parameters. Also, it is supposed in this example that the system has a
time-varying delay given by 10 ≤ dk ≤ 20.
In these conditions, an H∞ guaranteed cost γ = 6.37 can be obtained by applying Theorem 4 that
yields the robust state feedback gains presented in the sequel.

K =

⎡
⎢⎢⎢⎢⎣

−2.2587 −1.0130 −0.0558 0.4113 0.9312
−2.0369 −2.1037 0.0822 1.5032 0.0380
0.9410 0.5645 −0.7523 −0.8688 0.3801
−0.5796 −0.2559 0.0454 −1.0495 0.4072
−0.0801 0.4106 −0.4369 0.5415 −2.4452

⎤
⎥⎥⎥⎥⎦

(61)

Kd =

⎡
⎢⎢⎢⎢⎣

−0.0625 0.2592 0.0545 −0.2603 −0.5890
−0.1865 0.1056 −0.0508 0.1911 −0.4114
0.1108 −0.0460 −0.0483 −0.0612 0.1551
0.0309 0.0709 0.1404 −0.3511 −0.1736
0.0516 −0.1016 0.1324 −0.0870 0.1158

⎤
⎥⎥⎥⎥⎦

(62)

5. Extensions

In this section some extensions to the conditions presented in sections 3 and 4 are presented.

5.1 Quadratic stability approach
The quadratic stability approach is the source of many results of control theory presented in
the literature. In such approach, the Lyapunov matrices are taken constant and independent of
the uncertain parameter. As a consequence, their achieved results may be very conservative,
specially when applied to uncertain time-invariant systems. See, for instance, the works
of Leite & Peres (2003), de Oliveira et al. (2002) and Leite et al. (2004). Perhaps the main
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advantages of the quadratic stability approach are the simple formulation — with low
numerical complexity — and the possibility to deal with time-varying systems. In this case, all
equations given in Section 2 can be reformulated by using time-dependency on the uncertain
parameter, i.e., by using α = αk. In special, the uncertain open-loop system (1) can be
described by

Ωv(αk) :

�
xk+1 = A(αk)xk + Ad(αk)xk−dk

+ B(αk)uk + Bw(αk)wk,
zk = C(αk)xk + Cd(αk)xk−dk

+ D(αk)uk + Dw(αk)wk,
(63)

with αk ∈ Υv

Υv =

�
αk :

N

∑
i=1

αki = 1, αki ≥ 0, i ∈ I [1, N]

�
(64)

which allows to define the polytope P given in (2) with αk replacing α. Still considering control
law (6), the resulting closed-loop system is given by

Ω̃v(αk) :

�
xk+1 = Ã(αk)xk + Ãd(αk)xk−dk

+ Bw(αk)wk,
zk = C̃(αk)xk + C̃d(αk)xk−dk

+ Dw(αk)wk,
(65)

with Ω̃(αk) ∈ P̃ given in (8) with αk replacing α.
The convex conditions presented can be simplified to match with quadratic stability
formulation. This can be done in the analysis cases by imposing Pi = P > 0 and Qi = Q > 0
in (20) and (36) and, in the synthesis cases, by imposing P̃i = P̃ > 0, Q̃i = Q̃ > 0, i = 1, . . . , N.
This procedure allows to establish the following Corollary.

Corollary 1 (Quadratic stability). The following statements are equivalent and sufficient for the
quadratic stability of system Ω̃v(αk) given in (65):

i) There exist symmetric matrices 0 < P ∈ Rn×n, 0 < Q ∈ Rn×n, matrices F ∈ Rn×n, G ∈ Rn×n

and H ∈ Rn×n ∈ Rn×n, dk ∈ I [d, d̄] with d̄ and d belonging to N∗, such that

Ψqi =

⎡
⎣

P + FT + F GT − FAi HT − FAdi

� βQ − P − AT
i GT − GAi −AT

i HT − GT Adi

� � −(Q + HAdi + AT
diH

T)

⎤
⎦ < 0, (66)

is verified for i = 1, . . . , N.

ii) There exist symmetric matrices 0 < P ∈ Rn×n, 0 < Q ∈ Rn×n, dk ∈ I [d, d̄] with d̄ and d
belonging to N∗, such that

Φi =

�
AT

i PAi + βQ − P AT
i PAdi

� AT
diPAdi − Q

�
< 0 (67)

is verified for i = 1, . . . , N.

Proof. Condition (66) can be obtained from (20) by imposing Pi = P > 0 and Qi = Q > 0.
This leads to a Lyapunov-Krasovskii function given by

V(xk) = x�kPxk +
k−1

∑
j=k−d(k)

x�jQxj +
1−d

∑
�=2−d̄

k−1

∑
j=k+�−1

x�jQxj
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Ad = Ad0 =

⎡
⎢⎢⎢⎢⎣

−0.01000 −0.08837 −0.06989 0.18874 0.20505
0.02363 0.03384 0.05282 −0.09906 −0.00191
−0.04468 −0.00798 0.05618 0.00157 0.03593
−0.04082 0.01153 −0.07116 0.16472 0.00083
−0.02537 0.03878 −0.04683 0.05665 −0.03130

⎤
⎥⎥⎥⎥⎦

, (58)

B = B0 =

⎡
⎢⎢⎢⎢⎣

0.53706 −0.11185 0.09978 0.04652 0.25867
−0.51718 0.73519 0.57518 0.40668 −0.12472
0.29469 0.31528 1.16420 −0.29922 0.23883
−0.20191 0.19739 0.41686 0.66551 0.11366
−0.11835 0.16287 0.20378 0.23261 0.36525

⎤
⎥⎥⎥⎥⎦

, (59)

and C = D = I5, Cd = 0, Dw = 0, Bw = 0.1I with A0, Ad0, and B0 being the nominal matrices of
this system. Note that, this nominal system has unstable modes. The design of a stabilizing state
feedback gain for this system has been considered in Chu (1995) by using optimal control theory,
designed by an augmented delay-free system with order equal to 85 and a time-invariant delay d = 15,
by means of a Riccati equation.
Here, robust H∞ state feedback gains are calculated to stabilize this system subject to uncertain
parameters given by |ρ| ≤ 0.4, |η| ≤ 0.4 and |σ| ≤ 0.08 that affect the matrices of the system as
follows:

A(ρ) = A(1 + ρ), Ad(θ) = Ad(1 + θ), B(σ) = B(1 + σ) (60)

This set of uncertainties defines a polytope with 8 vertices, obtained by combination of the upper and
lower bounds of uncertain parameters. Also, it is supposed in this example that the system has a
time-varying delay given by 10 ≤ dk ≤ 20.
In these conditions, an H∞ guaranteed cost γ = 6.37 can be obtained by applying Theorem 4 that
yields the robust state feedback gains presented in the sequel.

K =

⎡
⎢⎢⎢⎢⎣

−2.2587 −1.0130 −0.0558 0.4113 0.9312
−2.0369 −2.1037 0.0822 1.5032 0.0380
0.9410 0.5645 −0.7523 −0.8688 0.3801
−0.5796 −0.2559 0.0454 −1.0495 0.4072
−0.0801 0.4106 −0.4369 0.5415 −2.4452

⎤
⎥⎥⎥⎥⎦

(61)

Kd =

⎡
⎢⎢⎢⎢⎣

−0.0625 0.2592 0.0545 −0.2603 −0.5890
−0.1865 0.1056 −0.0508 0.1911 −0.4114
0.1108 −0.0460 −0.0483 −0.0612 0.1551
0.0309 0.0709 0.1404 −0.3511 −0.1736
0.0516 −0.1016 0.1324 −0.0870 0.1158

⎤
⎥⎥⎥⎥⎦

(62)

5. Extensions

In this section some extensions to the conditions presented in sections 3 and 4 are presented.

5.1 Quadratic stability approach
The quadratic stability approach is the source of many results of control theory presented in
the literature. In such approach, the Lyapunov matrices are taken constant and independent of
the uncertain parameter. As a consequence, their achieved results may be very conservative,
specially when applied to uncertain time-invariant systems. See, for instance, the works
of Leite & Peres (2003), de Oliveira et al. (2002) and Leite et al. (2004). Perhaps the main

308 Discrete Time Systems

advantages of the quadratic stability approach are the simple formulation — with low
numerical complexity — and the possibility to deal with time-varying systems. In this case, all
equations given in Section 2 can be reformulated by using time-dependency on the uncertain
parameter, i.e., by using α = αk. In special, the uncertain open-loop system (1) can be
described by

Ωv(αk) :

�
xk+1 = A(αk)xk + Ad(αk)xk−dk

+ B(αk)uk + Bw(αk)wk,
zk = C(αk)xk + Cd(αk)xk−dk

+ D(αk)uk + Dw(αk)wk,
(63)

with αk ∈ Υv

Υv =

�
αk :

N

∑
i=1

αki = 1, αki ≥ 0, i ∈ I [1, N]

�
(64)

which allows to define the polytope P given in (2) with αk replacing α. Still considering control
law (6), the resulting closed-loop system is given by

Ω̃v(αk) :

�
xk+1 = Ã(αk)xk + Ãd(αk)xk−dk

+ Bw(αk)wk,
zk = C̃(αk)xk + C̃d(αk)xk−dk

+ Dw(αk)wk,
(65)

with Ω̃(αk) ∈ P̃ given in (8) with αk replacing α.
The convex conditions presented can be simplified to match with quadratic stability
formulation. This can be done in the analysis cases by imposing Pi = P > 0 and Qi = Q > 0
in (20) and (36) and, in the synthesis cases, by imposing P̃i = P̃ > 0, Q̃i = Q̃ > 0, i = 1, . . . , N.
This procedure allows to establish the following Corollary.

Corollary 1 (Quadratic stability). The following statements are equivalent and sufficient for the
quadratic stability of system Ω̃v(αk) given in (65):

i) There exist symmetric matrices 0 < P ∈ Rn×n, 0 < Q ∈ Rn×n, matrices F ∈ Rn×n, G ∈ Rn×n

and H ∈ Rn×n ∈ Rn×n, dk ∈ I [d, d̄] with d̄ and d belonging to N∗, such that

Ψqi =

⎡
⎣

P + FT + F GT − FAi HT − FAdi

� βQ − P − AT
i GT − GAi −AT

i HT − GT Adi

� � −(Q + HAdi + AT
diH

T)

⎤
⎦ < 0, (66)

is verified for i = 1, . . . , N.

ii) There exist symmetric matrices 0 < P ∈ Rn×n, 0 < Q ∈ Rn×n, dk ∈ I [d, d̄] with d̄ and d
belonging to N∗, such that

Φi =

�
AT

i PAi + βQ − P AT
i PAdi

� AT
diPAdi − Q

�
< 0 (67)

is verified for i = 1, . . . , N.

Proof. Condition (66) can be obtained from (20) by imposing Pi = P > 0 and Qi = Q > 0.
This leads to a Lyapunov-Krasovskii function given by

V(xk) = x�kPxk +
k−1

∑
j=k−d(k)

x�jQxj +
1−d

∑
�=2−d̄

k−1

∑
j=k+�−1

x�jQxj
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which is sufficient for the quadratic stability of Ω̃v(αk). This condition is not necessary for
the quadratic stability because this function is also not necessary, even for the stability of the
precisely known system. The equivalence between (66) and (67) can be stated as follows: i) ⇒
ii) if (66) is verified, then (67) can be recovered by Φi = T T

qi ΨqiTqi with

Tqi =

�
Ai Adi

I2n

�

i) ⇐ ii) On the other hand, if (67) is verified, then it is possible by its Schur’s complement to
obtain

Φi < 0 ⇔

⎡
⎣
−P PAi PAdi

� βQ − P 0
� � −Q

⎤
⎦ < 0, i = 1, . . . , N (68)

which assures the feasibility of (66) with F = −P, G = H = 0, completing the proof.

It is possible to obtain quadratic stability conditions corresponding to each of the formulations
presented by theorems 2, 3, 4 following similar steps of those taken to obtain Corollary 1.
However, due to the straight way to obtain such conditions, they are not shown here.
Nevertheless, quadratic stability based conditions may lead to results that are, in general,
more conservative than those achieved by similar formulations that employ parameter
dependent Lyapunov-Krasovskii functions.

5.2 Actuator failure
Partial or total actuator failures are important issues on real word systems and the
formulations presented in this chapter can also be used to investigate the robust stability as
well as to design robust state feedback control gains assuring stability and H∞ guaranteed
performance for the uncertain closed-loop system under such failures. The robustness against
actuator failures plays an important role in industry, representing not only an improvement
in the performance of the closed-loop system, but also a crucial security issue in many plants
Leite et al. (2009). In this case, the problem of actuator failures is cast as a special type of
uncertainty affecting the input matrix B, being modeled as Bρ(t), with ρ(t) ∈ I [0, 1]. If
ρ(t) = 1, then the actuator is perfectly working. On the other hand, when the value of ρ(t) is
reduced, it means that the actuator cannot delivery all energy required by the control law. The
limit is when ρ(t) = 0, meaning that the actuator is off. Once the actuator failure implies on
time-varying matrix B(α), i.e., B(αk), it is necessary to employ quadratic stability approach,
as described in subsection 5.1.

5.3 Switched systems with delayed state
Another class of time-varying systems is composed by the discrete-time switched systems
with delay in the state vector. In this case the system can be described by

xk+1 = A(αk)xk + Ad(αk)xk−dk
+ B(αk)u(αk) (69)

with adequate initial conditions and the uncertain parameter αk = α(k) is

αi(k) =

�
1, for i = σk

0, otherwise
(70)
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and σk is an arbitrary switching function defined as

σk : N → I [1, N] (71)

where N is the number of subsystems. The matrices [A(αk)|Ad(αk)|B(αk)] ∈ Rn×2n+m are
switched matrices depending on the switching function (71) and can be written as the vertices
of the polytope defined by the set of submodes of the system. Naturally, except the vertices,
no element of this polytope is reached by the system. Therefore, function σk can select one of
the subsystems [A|Ad|B]i, i = 1, . . . , N, at each instant k. Those definitions can be done with
all other matrices presented in (69) or (65).
It is usual to take the following hypothesis when dealing with switched delay systems:

Hypothesis 1. The switching function is not known a priori, but it is available at each sample-time,
k.

Hypothesis 2. All matrices of system (69) (or mutatis mutandis (65)) are switched simultaneously
by (71).

Hypothesis 3. Both state vectors, xk and xk−dk
, are available for feedback.

These hypotheses can be considered on both stabilization and H∞ control problems proposed
in sections 3 and 4. An important difference w.r.t. the main stabilization problems investigated
in this chapter is that, if σk is known, it is reasonable to use also a switched control law given
by

uk = K(αk)xk + Kd(αk)xk−dk
(72)

where the gains K(αk) and Kd(αk) are considered to stabilize the respective subsystem i, i =
1, . . . , N, and assure stable transitions σk → σk+1. Thus, the switched closed-loop system may
be stabilizable by a solution of this problem, being written as in (65) with

Ã(αk) ≡ A(αk) + B(αk)K(αk) Ãd(αk) ≡ Ad(αk) + B(αk)Kd(αk) (73)

The stability of the closed-loop system can be tested with the theorem presented in the sequel.

Theorem 5. If there exist symmetric matrices 0 < Pi ∈ Rn×n, 0 < Qi ∈ Rn×n, matrices Fi ∈ Rn×n,
Gi ∈ Rn×n and Hi ∈ Rn×n, i = 1, . . . , N, and a scalar β = d̄ − d + 1, with d and d̄ known, such
that ⎡

⎣
Pj + FT

i + Fi GT
i − FiAi HT

i − Fi Adi

� βQi − Pi − AT
i GT

i − Gi Ai −AT
i HT

i − Gi Adi

� � −(Q� + Hi Adi + AT
diH

T
i )

⎤
⎦ < 0, (74)

for (i, j, �) ∈ I [1, N]×I [1, N]×I [1, N], then the switched time-varying delay system (69)-(73) with
uk = 0 is stable for arbitrary switching function σk.

As it can be noted, a relevant issue of (74) is that the extra matrices are also dependent on the
switching function σk. This condition can be casted in a similar form of (20) as follows

Ψσi,j,� = Qi,j,�+XiBi + BT
i X

T
i < 0, (i, j, �) ∈ I [1, N]× I [1, N]× I [1, N] (75)

where

Qi,j,� =

⎡
⎣

Pj 0 0

� βQi − Pi 0
� � −Q�

⎤
⎦ .

The synthesis case, i.e. to solve the problem of designing Ki and Kdi, i = 1, . . . , N, such that
the (69)–(72) is robustly stable, is presented in the following theorem.
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ii) if (66) is verified, then (67) can be recovered by Φi = T T

qi ΨqiTqi with

Tqi =

�
Ai Adi

I2n

�

i) ⇐ ii) On the other hand, if (67) is verified, then it is possible by its Schur’s complement to
obtain

Φi < 0 ⇔

⎡
⎣
−P PAi PAdi

� βQ − P 0
� � −Q

⎤
⎦ < 0, i = 1, . . . , N (68)

which assures the feasibility of (66) with F = −P, G = H = 0, completing the proof.

It is possible to obtain quadratic stability conditions corresponding to each of the formulations
presented by theorems 2, 3, 4 following similar steps of those taken to obtain Corollary 1.
However, due to the straight way to obtain such conditions, they are not shown here.
Nevertheless, quadratic stability based conditions may lead to results that are, in general,
more conservative than those achieved by similar formulations that employ parameter
dependent Lyapunov-Krasovskii functions.

5.2 Actuator failure
Partial or total actuator failures are important issues on real word systems and the
formulations presented in this chapter can also be used to investigate the robust stability as
well as to design robust state feedback control gains assuring stability and H∞ guaranteed
performance for the uncertain closed-loop system under such failures. The robustness against
actuator failures plays an important role in industry, representing not only an improvement
in the performance of the closed-loop system, but also a crucial security issue in many plants
Leite et al. (2009). In this case, the problem of actuator failures is cast as a special type of
uncertainty affecting the input matrix B, being modeled as Bρ(t), with ρ(t) ∈ I [0, 1]. If
ρ(t) = 1, then the actuator is perfectly working. On the other hand, when the value of ρ(t) is
reduced, it means that the actuator cannot delivery all energy required by the control law. The
limit is when ρ(t) = 0, meaning that the actuator is off. Once the actuator failure implies on
time-varying matrix B(α), i.e., B(αk), it is necessary to employ quadratic stability approach,
as described in subsection 5.1.

5.3 Switched systems with delayed state
Another class of time-varying systems is composed by the discrete-time switched systems
with delay in the state vector. In this case the system can be described by

xk+1 = A(αk)xk + Ad(αk)xk−dk
+ B(αk)u(αk) (69)

with adequate initial conditions and the uncertain parameter αk = α(k) is

αi(k) =

�
1, for i = σk

0, otherwise
(70)
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and σk is an arbitrary switching function defined as

σk : N → I [1, N] (71)

where N is the number of subsystems. The matrices [A(αk)|Ad(αk)|B(αk)] ∈ Rn×2n+m are
switched matrices depending on the switching function (71) and can be written as the vertices
of the polytope defined by the set of submodes of the system. Naturally, except the vertices,
no element of this polytope is reached by the system. Therefore, function σk can select one of
the subsystems [A|Ad|B]i, i = 1, . . . , N, at each instant k. Those definitions can be done with
all other matrices presented in (69) or (65).
It is usual to take the following hypothesis when dealing with switched delay systems:

Hypothesis 1. The switching function is not known a priori, but it is available at each sample-time,
k.

Hypothesis 2. All matrices of system (69) (or mutatis mutandis (65)) are switched simultaneously
by (71).

Hypothesis 3. Both state vectors, xk and xk−dk
, are available for feedback.

These hypotheses can be considered on both stabilization and H∞ control problems proposed
in sections 3 and 4. An important difference w.r.t. the main stabilization problems investigated
in this chapter is that, if σk is known, it is reasonable to use also a switched control law given
by

uk = K(αk)xk + Kd(αk)xk−dk
(72)

where the gains K(αk) and Kd(αk) are considered to stabilize the respective subsystem i, i =
1, . . . , N, and assure stable transitions σk → σk+1. Thus, the switched closed-loop system may
be stabilizable by a solution of this problem, being written as in (65) with

Ã(αk) ≡ A(αk) + B(αk)K(αk) Ãd(αk) ≡ Ad(αk) + B(αk)Kd(αk) (73)

The stability of the closed-loop system can be tested with the theorem presented in the sequel.

Theorem 5. If there exist symmetric matrices 0 < Pi ∈ Rn×n, 0 < Qi ∈ Rn×n, matrices Fi ∈ Rn×n,
Gi ∈ Rn×n and Hi ∈ Rn×n, i = 1, . . . , N, and a scalar β = d̄ − d + 1, with d and d̄ known, such
that ⎡

⎣
Pj + FT

i + Fi GT
i − FiAi HT

i − Fi Adi

� βQi − Pi − AT
i GT

i − Gi Ai −AT
i HT

i − Gi Adi

� � −(Q� + Hi Adi + AT
diH

T
i )

⎤
⎦ < 0, (74)

for (i, j, �) ∈ I [1, N]×I [1, N]×I [1, N], then the switched time-varying delay system (69)-(73) with
uk = 0 is stable for arbitrary switching function σk.

As it can be noted, a relevant issue of (74) is that the extra matrices are also dependent on the
switching function σk. This condition can be casted in a similar form of (20) as follows

Ψσi,j,� = Qi,j,�+XiBi + BT
i X

T
i < 0, (i, j, �) ∈ I [1, N]× I [1, N]× I [1, N] (75)

where

Qi,j,� =

⎡
⎣

Pj 0 0

� βQi − Pi 0
� � −Q�

⎤
⎦ .

The synthesis case, i.e. to solve the problem of designing Ki and Kdi, i = 1, . . . , N, such that
the (69)–(72) is robustly stable, is presented in the following theorem.
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Theorem 6. If there exist symmetric matrices 0 < Pi ∈ Rn×n, 0 < Qi ∈ Rn×n, matrices Fi ∈ Rn×n,
Wi ∈ Rn×� and Wdi ∈ Rn×�, i = 1, . . . , N, and a scalar β = d̄ − d + 1, with d and d̄ known, such
that

Ψ̃i =

⎡
⎣

P̃j +Fi +F T
i −(AiFi + BiWi) −(AdiFi + BiWdi)

� βQ̃i − P̃i 0
� � −Q̃�

⎤
⎦ < 0, (76)

for (i, j, �) ∈ I [1, N]× I [1, N]× I [1, N], then the switched system with time-varying delay (69) is
robustly stabilizable by the control law (72) with

Ki = WiF
−1
i and Kdi = WdiF

−1
i (77)

The proof of theorems 5 and 6 can be found in Leite & Miranda (2008b) and are omitted here.
An important issue of Theorem 6 is the use of one matrix Xi for each submode. This is possible
because of the switched nature of the system that reaches only the vertices of the polytope.

Example 4. Consider the switched discrete-time system with time varying delay described by (69)
where where A(σk) = An + (−1)σk ρL� J, Ad(σk) = (0.225 + (−1)σk0.025)An and

B(σk) = [0 1.5 0 1.5]� + (−1)σk [0 0.5 0 0.5]�

with

An =

⎡
⎢⎢⎣

0.8 −0.25 0 1
1 0 0 0
0 0 0.2 0.03
0 0 1 0

⎤
⎥⎥⎦ (78)

L = [0, 0, 1, 0]�, J = [0.8, −0.5, 0, 1], σk ∈ {1, 2}, ρ = 0.35. This system with 2 submodes has been
investigated by Leite & Miranda (2008b). Note that, even for d = d̄ = 1, conditions from Theorem 5
fail to identify this system as a stable one. Observe that, once the delay is time-varying, conditions
presented in Montagner et al. (2005), Phat (2005) and Yu et al. (2007) cannot be applied. Supposing
d = 1, a search on d̄ has been done to find its maximum value such that the considered system is
stabilizable. Two alternatives are pursued: firstly, consider that only xk is available for feedback, i.e.,
Kd = 0. Conditions of Theorem 6 are feasible until d̄ = 15, for which value it is possible to determine
the following gains:

KTh 6,1 =
�

0.1215 0.0475 −1.6326 −0.4744
�

KTh 6,2 =
�
−0.1494 0.1551 −0.8168 −0.5002

�

Secondly, consider that both xk and xk−dk
are available for feedback. By using Theorem 6 it is possible

to stabilize the switched system for 1 ≤ dk ≤ 335. In this case, with d̄ = 335, conditions of Theorem 6
lead to

K1 =
�
−0.6129 0.3269 −1.2873 −1.1935

�
(79)

K2 =
�
−0.2199 0.1107 −0.6450 −0.4890

�
(80)

Kd1 =
�
−0.1291 0.0677 −0.3228 −0.2685

�
(81)

Kd2 =
�
−0.0518 0.0271 −0.1291 −0.1076

�
(82)

These gains are used in a numerical simulation where random signals for σk ∈ {1, 2} and for 1 ≤
d(k) ≤ 335 have been generated as indicated in Figure 3. The initial condition used in this simulation
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Fig. 3. The switched function, σ(k) and the varying delay, dk.

is

φ0,k =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
−1
1
−1

⎤
⎥⎥⎦ , . . . ,

⎡
⎢⎢⎣

1
−1
1
−1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

� �� �
336 terms

.

Thus, it is expected that the delayed state degenerate the overall system response, at least for the first
d̄ = 335 samples, since it is like an impulsive state action arrives at each sample instant for 0 ≤ k ≤
335. Note that, this initial condition is harder than the ones usually found in the literature. The state
behavior of the switched closed-loop system with time-varying delay is presented in Figure 4. Observe
that the initial value of the state are not presented due to the scale choice. As can be noted by the response
behavior presented in Figure 4, the states are almost at the equilibrium point after 400 samples. The
control signal is presented in Figure 5. In the top part of this figure, it is shown the control signal part
due to Kσk

x(k) and in the bottom the control signal due to Kdσk
x(k − dk). The actual control signal is,

thus, the addition of these two signals. If quadratic stability is used in the system of this example, the
results are more conservative as can be seen in Leite & Miranda (2008b).

5.4 Decentralized control
It is interesting to note that the synthesis conditions proposed in this chapter, i.e. theorems 3, 4,
6 as well as the convex optimization problem SH∞ , can be easily used to design decentralized
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Theorem 6. If there exist symmetric matrices 0 < Pi ∈ Rn×n, 0 < Qi ∈ Rn×n, matrices Fi ∈ Rn×n,
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⎡
⎣

P̃j +Fi +F T
i −(AiFi + BiWi) −(AdiFi + BiWdi)

� βQ̃i − P̃i 0
� � −Q̃�

⎤
⎦ < 0, (76)

for (i, j, �) ∈ I [1, N]× I [1, N]× I [1, N], then the switched system with time-varying delay (69) is
robustly stabilizable by the control law (72) with
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−1
i (77)
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An important issue of Theorem 6 is the use of one matrix Xi for each submode. This is possible
because of the switched nature of the system that reaches only the vertices of the polytope.
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⎤
⎥⎥⎦ (78)

L = [0, 0, 1, 0]�, J = [0.8, −0.5, 0, 1], σk ∈ {1, 2}, ρ = 0.35. This system with 2 submodes has been
investigated by Leite & Miranda (2008b). Note that, even for d = d̄ = 1, conditions from Theorem 5
fail to identify this system as a stable one. Observe that, once the delay is time-varying, conditions
presented in Montagner et al. (2005), Phat (2005) and Yu et al. (2007) cannot be applied. Supposing
d = 1, a search on d̄ has been done to find its maximum value such that the considered system is
stabilizable. Two alternatives are pursued: firstly, consider that only xk is available for feedback, i.e.,
Kd = 0. Conditions of Theorem 6 are feasible until d̄ = 15, for which value it is possible to determine
the following gains:

KTh 6,1 =
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0.1215 0.0475 −1.6326 −0.4744
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−0.1494 0.1551 −0.8168 −0.5002

�

Secondly, consider that both xk and xk−dk
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to stabilize the switched system for 1 ≤ dk ≤ 335. In this case, with d̄ = 335, conditions of Theorem 6
lead to

K1 =
�
−0.6129 0.3269 −1.2873 −1.1935

�
(79)

K2 =
�
−0.2199 0.1107 −0.6450 −0.4890

�
(80)

Kd1 =
�
−0.1291 0.0677 −0.3228 −0.2685

�
(81)

Kd2 =
�
−0.0518 0.0271 −0.1291 −0.1076

�
(82)

These gains are used in a numerical simulation where random signals for σk ∈ {1, 2} and for 1 ≤
d(k) ≤ 335 have been generated as indicated in Figure 3. The initial condition used in this simulation
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is

φ0,k =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
−1
1
−1

⎤
⎥⎥⎦ , . . . ,

⎡
⎢⎢⎣

1
−1
1
−1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

� �� �
336 terms

.

Thus, it is expected that the delayed state degenerate the overall system response, at least for the first
d̄ = 335 samples, since it is like an impulsive state action arrives at each sample instant for 0 ≤ k ≤
335. Note that, this initial condition is harder than the ones usually found in the literature. The state
behavior of the switched closed-loop system with time-varying delay is presented in Figure 4. Observe
that the initial value of the state are not presented due to the scale choice. As can be noted by the response
behavior presented in Figure 4, the states are almost at the equilibrium point after 400 samples. The
control signal is presented in Figure 5. In the top part of this figure, it is shown the control signal part
due to Kσk

x(k) and in the bottom the control signal due to Kdσk
x(k − dk). The actual control signal is,

thus, the addition of these two signals. If quadratic stability is used in the system of this example, the
results are more conservative as can be seen in Leite & Miranda (2008b).

5.4 Decentralized control
It is interesting to note that the synthesis conditions proposed in this chapter, i.e. theorems 3, 4,
6 as well as the convex optimization problem SH∞ , can be easily used to design decentralized
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Fig. 4. The behaviors of the states x1k to x4k, with 1 ≤ d(k) ≤ 335 (see Fig. 3).

control gains. This kind of control gain is usually employed when interconnected systems
must be controlled by means of local information only. In this case, decentralized control gains
K = KD and Kd = KdD can be obtained by imposing block-diagonal structure to matrices W,
Wd and F as follows

W = WD = block-diag{W1, . . . , W�},

Wd = WdD = block-diag{W1
d , . . . , W

�
d },

F = FD = block-diag{F 1, . . . ,F �}

where � denote the number of defined subsystems. In this case, it is possible to get robust

block-diagonal state feedback gains KD = WDF
−1
D and KdD = WdDF

−1
D . It is worth to

mention that the matrices of the Lyapunov-Krasovskii function, P̃(α) and Q̃(α), do not have
any restrictions in their structures, which may leads to less conservative designs.

5.5 Static output feedback
When only a linear combination of the states is available for feedback and the output signal is
given by yk = C̃xk, it may be necessary to use the static output feedback. See the survey made
by Syrmos et al. (1997) on this subject. In case of C̃ with full row rank, it is always possible
to find a regular matrix L such that C̃L−1 =

[
Ip 0

]
. Using such matrix L in a similarity

transformation applied to (1) it yields

x̂k+1 = Â(α)x̂k + Âd(α)x̂k−dk
+ B̂(α)uk, (83)
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where Â(α) = LÃ(α)L−1, Âd(α) = LÃd(α)L−1 and B̂(α) = LB̃(α), x̂k = Lxk and the output
signal is given by yk =

[
IP 0

]
x̂k. Thus, the objective here is to find robust static feedback

gains K ∈ Rp×� and Kd ∈ Rp×� such that (83) is robustly stabilizable by the control law

uk = Kyk +Kdyk−dk
(84)

These gains can be determined by using the conditions of theorems 3, 4, 6 with the following
structures

F =

[
F 11

o 0

F 21
o F 22

o

]
, W =

[
WK 0

]
, Wd =

[
WKd

0
]

with F 11
o ∈ Rp×p, F 21

o ∈ R(n−p)×p, F 22
o ∈ R(n−p)×(n−p), WK ∈ Rp×n, WKd

∈ Rp×n which
yields

K =
[
K 0

]
and Kd =

[
Kd 0

]

Note that, similarly to the decentralized case, no constraint is taken over the
Lyapunov-Krasovskii function matrices leading to less conservative conditions, in general.

5.6 Input delay
Another relevant issue in Control Theory is the study of stability and stabilization of input
delay systems, which is quite frequent in many real systems Yu & Gao (2001), Chen et al.
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control gains. This kind of control gain is usually employed when interconnected systems
must be controlled by means of local information only. In this case, decentralized control gains
K = KD and Kd = KdD can be obtained by imposing block-diagonal structure to matrices W,
Wd and F as follows

W = WD = block-diag{W1, . . . , W�},

Wd = WdD = block-diag{W1
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�
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where � denote the number of defined subsystems. In this case, it is possible to get robust

block-diagonal state feedback gains KD = WDF
−1
D and KdD = WdDF

−1
D . It is worth to

mention that the matrices of the Lyapunov-Krasovskii function, P̃(α) and Q̃(α), do not have
any restrictions in their structures, which may leads to less conservative designs.

5.5 Static output feedback
When only a linear combination of the states is available for feedback and the output signal is
given by yk = C̃xk, it may be necessary to use the static output feedback. See the survey made
by Syrmos et al. (1997) on this subject. In case of C̃ with full row rank, it is always possible
to find a regular matrix L such that C̃L−1 =

[
Ip 0

]
. Using such matrix L in a similarity

transformation applied to (1) it yields
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where Â(α) = LÃ(α)L−1, Âd(α) = LÃd(α)L−1 and B̂(α) = LB̃(α), x̂k = Lxk and the output
signal is given by yk =

[
IP 0

]
x̂k. Thus, the objective here is to find robust static feedback

gains K ∈ Rp×� and Kd ∈ Rp×� such that (83) is robustly stabilizable by the control law

uk = Kyk +Kdyk−dk
(84)

These gains can be determined by using the conditions of theorems 3, 4, 6 with the following
structures

F =

[
F 11

o 0

F 21
o F 22

o

]
, W =

[
WK 0

]
, Wd =

[
WKd

0
]

with F 11
o ∈ Rp×p, F 21

o ∈ R(n−p)×p, F 22
o ∈ R(n−p)×(n−p), WK ∈ Rp×n, WKd

∈ Rp×n which
yields

K =
[
K 0

]
and Kd =

[
Kd 0

]

Note that, similarly to the decentralized case, no constraint is taken over the
Lyapunov-Krasovskii function matrices leading to less conservative conditions, in general.

5.6 Input delay
Another relevant issue in Control Theory is the study of stability and stabilization of input
delay systems, which is quite frequent in many real systems Yu & Gao (2001), Chen et al.
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(2004). In this case, consider the controlled system given by

xk+1 = A(α)xk + B(α)uk−dk
(85)

with A(α) and B(α) belonging to polytope (2), Adi = 0 and α ∈ Υ. In Zhang et al. (2007) this
system is detailed investigated and the problem is converted into an optimization problem
in Krein space with an stochastic model associated. Here, the delayed input control signal is
considered as

uk−dk
= Kdxk−dk

(86)

The closed-loop-system is given by

xk+1 = Ã(α)xk + Ãd(α)xk−dk
(87)

with Ã(α) = A(α), Ãd(α) = B(α)Kd. Thus, with known Kd, closed-loop system (87) is
equivalent to (7) with null exogenous signal wk. This leads to simple analysis stability
conditions obtained from Theorem 1 replacing Ãi by Ai and Ãdi by BiKd, i = 1, . . . , N.
Besides, similar replacements can be used with conditions presented in theorems 2 and 5 and
in Corollary 1. The possibility to address both controller fragility and input delay is a side
result of this proposal. In the former it is required that no uncertainty affects the input matrix,
i.e., B(α) = B, ∀α ∈ Υ, while the latter can be used to investigate the bounds of stability
of a closed-loop system with a delay due to, for example, digital processing or information
propagation.
In case of the design of Kd it is possible to take similar steps with conditions of theorems 3, 4
and 6. In this case, it is sufficient to impose, Adi = 0, i = 1, . . . , N and W = 0 that yield K = 0.
Finally, observe that static delayed output feedback control can be additionally addressed here
by considering what is pointed out in Subsection 5.5.

5.7 Performance by delay-free model specication
Some well developed techniques related to model-following control (or internal model
control) can be applied in the context of delayed state systems. The major advantage of
such techniques for delayed systems concerns with the design with performance specification
based on zero-pole location. See, for example, the works of Mao & Chu (2009) and Silva
et al. (2009). Generally, the model-following control design is related to an input-output
closed-loop model, specified from its poles, zeros and static gain, from which the controller
is calculated. As the proposal presented in this chapter is based on state feedback control,
it does not match entirely with the requirements for following-model, because doing state
feedback only the poles can be redesigned, but not the zeros and the static gain. To develop a
complete following model approach an usual way is to deal with output feedback, that yields
a non-convex formulation. One way to match all the requirements of following model by
using state feedback and maintaining the convexity of the formulation, is to use the technique
presented by Coutinho et al. (2009) where the model to be matched is separated into two
parts: One of them is used to coupe the static gain and zeros of the closed loop system with
the prescribed model and the other part is matched by state feedback control. Consider the
block diagram presented in Figure 6. In this figure, Ω(α) is the system to controlled with
signal uk. This system is subject to input wk which is required to be reject at the output yk.
Please, see equation (1). Ωm stands for a specified delay-free model with realization given by[

Am Bm

Cm Dm

]
. The model receives the same exogenous input of the system to be controlled, wk,

and has an output signal ymk at the instant k.
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Fig. 6. Following model inspired problem.

The objective here is to design robust state feedback gains K and Kd to implement the control
law (6) such that the H∞ guaranteed cost between the input wk and the output ek = yk − ymk is
minimized. In other words, it is desired that the disturbance rejection of the uncertain system
with time-varying delay in the state have a behavior as close as possible to the behavior of
the specified delay-free model Ωm. The dashed line in Figure 6 identifies the enlarged system
required to have its H∞ guaranteed cost minimized.
Taking the closed-loop system (7) and the specified model of perturbation rejection given by

xmk+1 = Amxmk + Bmwk (88)

ymk = Cmxmk + Dmwk (89)

where xmk ∈ Rnm is the model state vector at the k-th sample-time, ymk ∈ Rp is the output
of the model at the same sample-time and wk ∈ R� is the same perturbation affecting the
controlled system, the difference ek = ymk − zk is obtained as

ek =
�

Cm −(C(α) + D(α)K) −(Cd(α) + D(α)Kd)
�
⎡
⎣

xmk

xk

xk−dk

⎤
⎦

+
�

Dm − Dw(α)
�

wk (90)

Thus, by using (1) with (88)-(89) and (90) it is possible to construct an augmented system
composed by the state of the system and those from model yielding the following system

Ω̂(α) :

�
x̂k+1 = Â(α)x̂k + Âd(α)x̂k−dk

+ B̂w(α)wk

ek = Ĉ(α)x̂k + Ĉd(α)x̂k−dk
+ D̂w(α)wk

(91)
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The objective here is to design robust state feedback gains K and Kd to implement the control
law (6) such that the H∞ guaranteed cost between the input wk and the output ek = yk − ymk is
minimized. In other words, it is desired that the disturbance rejection of the uncertain system
with time-varying delay in the state have a behavior as close as possible to the behavior of
the specified delay-free model Ωm. The dashed line in Figure 6 identifies the enlarged system
required to have its H∞ guaranteed cost minimized.
Taking the closed-loop system (7) and the specified model of perturbation rejection given by

xmk+1 = Amxmk + Bmwk (88)

ymk = Cmxmk + Dmwk (89)

where xmk ∈ Rnm is the model state vector at the k-th sample-time, ymk ∈ Rp is the output
of the model at the same sample-time and wk ∈ R� is the same perturbation affecting the
controlled system, the difference ek = ymk − zk is obtained as

ek =
�

Cm −(C(α) + D(α)K) −(Cd(α) + D(α)Kd)
�
⎡
⎣

xmk

xk

xk−dk

⎤
⎦

+
�

Dm − Dw(α)
�

wk (90)

Thus, by using (1) with (88)-(89) and (90) it is possible to construct an augmented system
composed by the state of the system and those from model yielding the following system

Ω̂(α) :

�
x̂k+1 = Â(α)x̂k + Âd(α)x̂k−dk
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with x̂k =
�

xT
mk xT

k

�T
∈ Rnm+n, Ω̂(α) ∈ P̂ ,

P̂ =

�
Ω̂(α) ∈ Rn+nm+p×2(n+nm)+� : Ω̂(α) =

N

∑
i=1

αiΩ̂i, α ∈ Υ

�
(92)

where

Ω̂i =

�
Âi Âdi B̂wi

Ĉi Ĉdi D̂wi

�

=

⎡
⎣

Am 0 0 0 Bm

0 Ai + BiK 0 Adi + BiKd Bwi

Cm − (Ci + DiK) 0 − (Cdi + DiKd) Dm − Dwi

⎤
⎦ , i ∈ I [1, N]. (93)

Therefore, matrices in (93) — Âi, Âdi, B̂wi, Ĉi, Ĉdi, D̂wi — can be used to replace their respective
in (38) and (23). As a consequence, LMI (36) becomes with 3(n + nm) + 2(p + �) rows. Since
the main interest in this section is to design K and Kd that minimize the H∞ guaranteed
cost between ek and wk, only the design condition is presented in the sequel. To achieve
such condition, similar steps of those taken in the proof of Theorem 4 are taken. The main
differences are related to i) the size and structure of the matrices and ii) the manipulations
done to keep the convexity of the formulation.

Theorem 7. If there exist symmetric matrices 0 < P̃i =

�
P̃11i P̃12i

� P̃22i

�
∈ Rn+nm×n+nm, 0 < Q̃i =

�
Q̃11i Q̃12i

� Q̃22i

�
∈ Rn+nm×n+nm , matrices F =

�
F11 F12

F22Λ F22

�
∈ Rn+nm×n+nm , Λ ∈ Rn×nm is a given

matrix, W ∈ Rp×n, Wd ∈ Rp×n, a scalar variable θ ∈]0, 1] and for a given μ = γ2 such that

Ψ̄i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P̃11i −F11 −F T
11 P̃12i −F12 − ΛTF T

22 AmF11 AmF12

� P̃22i −F22 −F T
22 (AiF22 + BiW)Λ AiF22 + BiW

� � βQ̃11i − P̃11i βQ̃12i − P̃12i

� � � βQ̃22i − P̃22i

� � � �

� � � �

� � � �

� � � �

0 0 0 Bm

(AdiF22 + BiWd)Λ AdiF22 + BiWd 0 Bwi

0 0 F T
11CT

m − ΛT(WTDT
i +F T

22CT
i ) 0

0 0 F T
12CT

m − (WTDT
i +F T

22CT
i ) 0

−Q̃11i −Q̃12i −ΛT(WT
d DT

i +F T
22CT

di) 0

� −Q̃22i −(WT
d DT

i +F T
22CT

di) 0
� � −θIp Dm − Dwi

� � � −μI�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

i = 1, . . . , N (94)

then system (1)–(5) is robustly stabilizable by (6) with

K = WF−1
22 and Kd = WdF

−1
22 (95)
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providing an H∞ guaranteed cost γ =
√

μ between the output ek, as defined by (93), and the input
signal wk.

Proof. The proof follows similar steps to those of the proof of the Theorem 4. Once (94) is

verified, then the regularity of F =

�
F11 F12

F22Λ F22

�
is assured by the block

P̃i −F −F T =

�
P̃11i −F11 −F T

11 P̃12i −F12 − ΛTF T
22

� P̃22i −F22 −F T
22

�
< 0.

Thus it is possible to define the congruence transformation TH given by (53) with

T = I3 ⊗F−T = I3 ⊗

�
F11 F12

F22Λ F22

�−T

to get Ψ̂i = THΨ̄iT
T
H . In block (7, 7) of Ψ̂i, it always exist a real scalar κ ∈]0, 2[ such that for

θ ∈]0, 1], κ(κ − 2) = −θ. Thus, replacing this block by κ(κ − 2)Ip, the optimization variables
W and Wd by KF22 and KdF22, respectively, and using the definitions given by (91)–(93) it
is possible to verify (36) by i) replacing matrices Ãi, Ãdi, C̃i, C̃di, Bwi and Dwi by Âi, Âdi, Ĉi,
Ĉdi, B̂wi and D̂wi, respectively, given in (93); ii) choosing G = 1

κ Ip that leads block (7, 7) to be
rewritten as in (55); iii) assuming

Pi =

�
F11 F12

F22Λ F22

�−T �
P̃11i P̃12i

� P̃22i

� �
F11 F12

F22Λ F22

�−1

Qi =

�
F11 F12

F22Λ F22

�−T �
Q̃11i Q̃12i

� Q̃22i

� �
F11 F12

F22Λ F22

�−1

and

XH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
F11 F12

F22Λ F22

�−1

0

0 0
0 0

0
1

κ
Ip

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

which completes the proof.

An important aspect of Theorem 7 is the choice of Λ ∈ Rn×nm in (94). This matrix plays
an important role in this optimization problem, once it is used to adjust the dimensions of
block (2, 1) of F that allows to use F22 to design both robust state feedback gains K and Kd.
This kind choice made a priori also appears in some results found on the literature of filtering
theory. Another possibility is to use an interactive algorithm to search for a better choice of Λ.
This can be done by taking the following steps:

1. Set max_iter←− maximum number of iterations; j ←− 0; � =precision;

2. Choose an initial value of Λj ←− Λ such that (94) is feasible.

(a) Set μj ←− μ; Δμ ←− μj; F22,j ←− F22; Wj ←− W; Wd,j ←− Wd.

3. While (Δμ > �)AND(j < max_iter)
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−1
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providing an H∞ guaranteed cost γ =
√

μ between the output ek, as defined by (93), and the input
signal wk.
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which completes the proof.

An important aspect of Theorem 7 is the choice of Λ ∈ Rn×nm in (94). This matrix plays
an important role in this optimization problem, once it is used to adjust the dimensions of
block (2, 1) of F that allows to use F22 to design both robust state feedback gains K and Kd.
This kind choice made a priori also appears in some results found on the literature of filtering
theory. Another possibility is to use an interactive algorithm to search for a better choice of Λ.
This can be done by taking the following steps:

1. Set max_iter←− maximum number of iterations; j ←− 0; � =precision;

2. Choose an initial value of Λj ←− Λ such that (94) is feasible.

(a) Set μj ←− μ; Δμ ←− μj; F22,j ←− F22; Wj ←− W; Wd,j ←− Wd.

3. While (Δμ > �)AND(j < max_iter)
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(a) Set j ←− j + 1;

(b) If j is odd

i. Solve (94) with F22 ←− F22,j; W ←− Wj; Wd ←− Wd,j.

ii. Set Λ ←− Λj;

Else

i. Solve (94) with Λ ←− Λj.

ii. Set F22,j ←− F22; Wj ←− W; Wd,j ←− Wd.

End_if

(c) Set μj ←− μ; Δμ ←− |(μj − μj−1)|;

End_while

4. Calculate K and Kd by means of (95);

5. Set μ� = μj

Once this is a non-convex algorithm — only steps 3.(b).i are convex — different initial guesses
for Λ may lead to different final values for the controllers K and Kd, as well as to the γ =

√
μ�

To overcome the main drawback of this proposal, two approaches can be stated. The first
follows the ideas of Coutinho et al. (2009) by designing an external loop to the closed-loop
system proposed in Figure 6. In this sense, it is possible to design a transfer function that can
adjust the gain and zeros of the controlled system. The second approach is based on the work
of Rodrigues et al. (2009) where a dynamic output feedback controller is proposed. However,
in this case the achieved conditions are non-convex and a relaxation algorithm is required.
In the example presented in the sequel, Theorem 7 with

Λ =

[
Inm

0n−nm×nm

]
(96)

Example 5. Consider the uncertain discrete-time system with time-varying delay dk ∈ I [2, 13] as
given in (1) with uncertain matrices belonging to polytope (2)-(3) with 2 vertices given by

A1 =

[
0.6 0

0.35 0.7

]
, Ad1 =

[
0.1 0
0.2 0.1

]
, A2 = 1.1A1, Ad2 = 1.1Ad1 (97)

Bw1 =

[
0
1

]
, B1 =

[
0
1

]
, Bw2 = 1.1Bw1, B2 = 1.1B1 (98)

C1 =
[

1 0
]

, Cd1 =
[

0 0.05
]

, C2 = 1.1C1, Cd2 = 1.1Cd1 (99)

Dw1 = 0.2, D1 = 0.1, Dw2 = 1.1Dw1 D2 = 1.1D1 (100)

It is desired to design robust state feedback gains for control law (6) such that the output of this
uncertain system approaches the behavior of delay-free model given by

Ωm = G(z) =
0.1847z − 0.01617

z + 0.3
=

[
−0.3 0.25

−0.2864 0.1847

]
(101)

Thus, it is desired to minimize the H∞ guaranteed cost between signals ek and wk identified in Figure 6.
The static gain of model (101) was adjusted to match the gain of the controlled system. This procedure
is similar to what has been proposed by Coutinho et al. (2009). The choice of the pole and the zero was
arbitrary. Obviously, different models result in different value of H∞ guaranteed cost.
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By applying Theorem 7 to this problem, with Λ given in (96), it has been found an H∞ guaranteed cost
γ = 0.2383 achieved with the robust state feedback gains:

K =
[

1.8043 −0.7138
]

and Kd =
[
−0.1546 −0.0422

]
(102)

In case of unknown dk, Theorem 7 is unfeasible for the considered variation delay interval, i.e., imposing
Kd = 0. On the other hand, if this interval is narrower, this system can be stabilized with an H∞
guaranteed cost using only the current state. So, reducing the value of d̄ from d̄ = 13, it has been found
that Theorem 7 is feasible for dk ∈ I [2, 10] with

K =
[
−2.7162 −0.6003

]
and Kd = 0 (103)

and γ = 0.3427. Just for a comparison, with this same delay interval, if K and Kd are designed, then
the H∞ guaranteed cost is reduced about 37.8% yielding an attenuation level given by γ = 0.2131.
Thus, it is clear that, whenever the information about the delay is used it is possible to reduce the
H∞ guaranteed cost. Some numerical simulations have been done considering gains (102), and a
disturbance input given by

wk =

{
0, if k = 0 or k ≥ 11
1, if 1 ≤ 10

(104)

Two conditions were considered: i) dk = 13, ∀k ≤ 0 and different values of α1 ∈ [0, 1]; and ii)
dk = d =∈ I [2, 13] with α1 = 1 (i.e., only for the first vertex). The output responses of the controlled
system have been performed with dk = 13, ∀k ≥ 0. This family of responses and that of the reference
model are shown at the top of Figure 7 with solid lines. A red dashed line is used to indicate the desired
model response. The absolute value of the error (|ek| = |yk − ymk|) is shown in solid lines at the
bottom of Figure 7 and the estimate H∞ guaranteed cost provide by Theorem 7 in dashed red line. The
respective control signals are shown in Figure 8.
The other set of time simulations has been performed using only vertex number 1 (α1 = 1). In this
numerical experiment, the perturbation (104) has been applied to system defined by vertex 1 and twelve
numerical simulations were performed, one for each constant delay value dk = d ∈ [2, 13]. The results
are shown in Figure 9: at the top, a red dashed line indicates the model response and at the bottom it is
shown the absolute value of the error (|ek| = |yk − ymk|) in solid lines and the estimate H∞ guaranteed
cost provide by Theorem 7 in dashed red line. This value is the same provide in Figure 7, once it is the
same design. The respective control signals performed in simulations shown in Figure 9 are shown in
Figure 10.
At last, the frequency response considering the input wk and the output ek is shown in Figure 11 with
a time-invariant delay. For each value of delay in the interval [2, 13] and α ∈ [0, 1], a frequency
sweep has been performed on both open loop and closed-loop systems. The gains used in the closed-loop
system are given in (102). It is interesting to note that, once it is desired that yk approaches ymk, i.e.,
ek approaches zero, the gain frequency response of the closed-loop should approaches zero. By Figure 11
the H∞ guaranteed cost of the closed-loop system with time invariant delay is about 0.1551, but this
value refers to the case of time-invariant delay only. The estimative provided by Theorem 7 is 0.2383
and considers a time varying delay.

6. Final remarks

In this chapter, some sufficient convex conditions for robust stability and stabilization
of discrete-time systems with delayed state were presented. The system considered is
uncertain with polytopic representation and the conditions were obtained by using parameter
dependent Lyapunov-Krasovskii functions. The Finsler’s Lemma was used to obtain LMIs
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(b) If j is odd
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Else
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End_while

4. Calculate K and Kd by means of (95);

5. Set μ� = μj

Once this is a non-convex algorithm — only steps 3.(b).i are convex — different initial guesses
for Λ may lead to different final values for the controllers K and Kd, as well as to the γ =

√
μ�

To overcome the main drawback of this proposal, two approaches can be stated. The first
follows the ideas of Coutinho et al. (2009) by designing an external loop to the closed-loop
system proposed in Figure 6. In this sense, it is possible to design a transfer function that can
adjust the gain and zeros of the controlled system. The second approach is based on the work
of Rodrigues et al. (2009) where a dynamic output feedback controller is proposed. However,
in this case the achieved conditions are non-convex and a relaxation algorithm is required.
In the example presented in the sequel, Theorem 7 with

Λ =
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]
(96)

Example 5. Consider the uncertain discrete-time system with time-varying delay dk ∈ I [2, 13] as
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, Bw2 = 1.1Bw1, B2 = 1.1B1 (98)

C1 =
[

1 0
]

, Cd1 =
[

0 0.05
]

, C2 = 1.1C1, Cd2 = 1.1Cd1 (99)

Dw1 = 0.2, D1 = 0.1, Dw2 = 1.1Dw1 D2 = 1.1D1 (100)

It is desired to design robust state feedback gains for control law (6) such that the output of this
uncertain system approaches the behavior of delay-free model given by

Ωm = G(z) =
0.1847z − 0.01617

z + 0.3
=

[
−0.3 0.25

−0.2864 0.1847

]
(101)

Thus, it is desired to minimize the H∞ guaranteed cost between signals ek and wk identified in Figure 6.
The static gain of model (101) was adjusted to match the gain of the controlled system. This procedure
is similar to what has been proposed by Coutinho et al. (2009). The choice of the pole and the zero was
arbitrary. Obviously, different models result in different value of H∞ guaranteed cost.
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By applying Theorem 7 to this problem, with Λ given in (96), it has been found an H∞ guaranteed cost
γ = 0.2383 achieved with the robust state feedback gains:

K =
[

1.8043 −0.7138
]

and Kd =
[
−0.1546 −0.0422

]
(102)

In case of unknown dk, Theorem 7 is unfeasible for the considered variation delay interval, i.e., imposing
Kd = 0. On the other hand, if this interval is narrower, this system can be stabilized with an H∞
guaranteed cost using only the current state. So, reducing the value of d̄ from d̄ = 13, it has been found
that Theorem 7 is feasible for dk ∈ I [2, 10] with

K =
[
−2.7162 −0.6003

]
and Kd = 0 (103)

and γ = 0.3427. Just for a comparison, with this same delay interval, if K and Kd are designed, then
the H∞ guaranteed cost is reduced about 37.8% yielding an attenuation level given by γ = 0.2131.
Thus, it is clear that, whenever the information about the delay is used it is possible to reduce the
H∞ guaranteed cost. Some numerical simulations have been done considering gains (102), and a
disturbance input given by

wk =

{
0, if k = 0 or k ≥ 11
1, if 1 ≤ 10

(104)

Two conditions were considered: i) dk = 13, ∀k ≤ 0 and different values of α1 ∈ [0, 1]; and ii)
dk = d =∈ I [2, 13] with α1 = 1 (i.e., only for the first vertex). The output responses of the controlled
system have been performed with dk = 13, ∀k ≥ 0. This family of responses and that of the reference
model are shown at the top of Figure 7 with solid lines. A red dashed line is used to indicate the desired
model response. The absolute value of the error (|ek| = |yk − ymk|) is shown in solid lines at the
bottom of Figure 7 and the estimate H∞ guaranteed cost provide by Theorem 7 in dashed red line. The
respective control signals are shown in Figure 8.
The other set of time simulations has been performed using only vertex number 1 (α1 = 1). In this
numerical experiment, the perturbation (104) has been applied to system defined by vertex 1 and twelve
numerical simulations were performed, one for each constant delay value dk = d ∈ [2, 13]. The results
are shown in Figure 9: at the top, a red dashed line indicates the model response and at the bottom it is
shown the absolute value of the error (|ek| = |yk − ymk|) in solid lines and the estimate H∞ guaranteed
cost provide by Theorem 7 in dashed red line. This value is the same provide in Figure 7, once it is the
same design. The respective control signals performed in simulations shown in Figure 9 are shown in
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At last, the frequency response considering the input wk and the output ek is shown in Figure 11 with
a time-invariant delay. For each value of delay in the interval [2, 13] and α ∈ [0, 1], a frequency
sweep has been performed on both open loop and closed-loop systems. The gains used in the closed-loop
system are given in (102). It is interesting to note that, once it is desired that yk approaches ymk, i.e.,
ek approaches zero, the gain frequency response of the closed-loop should approaches zero. By Figure 11
the H∞ guaranteed cost of the closed-loop system with time invariant delay is about 0.1551, but this
value refers to the case of time-invariant delay only. The estimative provided by Theorem 7 is 0.2383
and considers a time varying delay.

6. Final remarks

In this chapter, some sufficient convex conditions for robust stability and stabilization
of discrete-time systems with delayed state were presented. The system considered is
uncertain with polytopic representation and the conditions were obtained by using parameter
dependent Lyapunov-Krasovskii functions. The Finsler’s Lemma was used to obtain LMIs
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Fig. 7. Time behavior of yk and |ek| in blue solid lines and model response (top) and
estimated H∞ guaranteed cost (bottom) in red dashed lines, for dk = 13 and α ∈ [0, 1].
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Fig. 8. Control signals used in time simulations presented in Figure 7.

condition where the Lyapunov-Krasovskii variables are decoupled from the matrices of the
system. The fundamental problem of robust stability analysis and stabilization has been dealt.
The H∞ guaranteed cost has been used to improve the performance of the closed-loop system.
It is worth to say that even all matrices of the system are affected by polytopic uncertainties,
the proposed design conditions are convex, formulated in terms of LMIs.
It is shown how the results on robust stability analysis, synthesis and on H∞ guaranteed cost
estimation and design can be extended to match some special problems in control theory such
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Fig. 9. Time behavior of yk and |ek| in blue solid lines and model response (top) and estimated
H∞ guaranteed cost (bottom) in red dashed lines, for vertex 1 and delays from 2 to 13.
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Fig. 10. Control signals used in time simulations presented in Figure 9.

as decentralized control, switched systems, actuator failure, output feedback and following
model conditions.
It has been shown that the proposed convex conditions can be systematically obtained by
i) defining a suitable positive definite parameter dependent Lyapunov-Krasovskii function;
ii) calculating an over bound for ΔV(k) < 0 and iii) applying Finsler’s Lemma to get a set
of LMIs, formulated in a enlarged space, where cross products between the matrices of the
system and the matrices of the Lyapunov-Krasovskii function are avoided. In case of robust
design conditions, they are obtained from the respective analysis conditions by congruence
transformation and, in the H∞ guaranteed cost design, by replacing some matrix blocs by
their over bounds. Numerical examples are given to demonstrated some relevant aspects of
the proposed conditions.
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condition where the Lyapunov-Krasovskii variables are decoupled from the matrices of the
system. The fundamental problem of robust stability analysis and stabilization has been dealt.
The H∞ guaranteed cost has been used to improve the performance of the closed-loop system.
It is worth to say that even all matrices of the system are affected by polytopic uncertainties,
the proposed design conditions are convex, formulated in terms of LMIs.
It is shown how the results on robust stability analysis, synthesis and on H∞ guaranteed cost
estimation and design can be extended to match some special problems in control theory such
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as decentralized control, switched systems, actuator failure, output feedback and following
model conditions.
It has been shown that the proposed convex conditions can be systematically obtained by
i) defining a suitable positive definite parameter dependent Lyapunov-Krasovskii function;
ii) calculating an over bound for ΔV(k) < 0 and iii) applying Finsler’s Lemma to get a set
of LMIs, formulated in a enlarged space, where cross products between the matrices of the
system and the matrices of the Lyapunov-Krasovskii function are avoided. In case of robust
design conditions, they are obtained from the respective analysis conditions by congruence
transformation and, in the H∞ guaranteed cost design, by replacing some matrix blocs by
their over bounds. Numerical examples are given to demonstrated some relevant aspects of
the proposed conditions.
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Fig. 11. Gain frequency response between signals ek and wk for the open loop (top) and
closed-loop (bottom) cases for delays from 2 to 13 and a sweep on α ∈ [0, 1].

The approach used in this proposal can be used to deal with more complete
Lyapunov-Krasovskii functions, yielding less conservative conditions for both robust stability
analysis and design, including closed-loop performance specifications as presented in this
chapter.
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1. Introduction 
Uncertainties in a control system may be the results modeling errors, measurement errors, 
parameter variations and a linearization approximation. Most physical dynamical systems 
and industrial process can be described as discrete time uncertain subsystems. Similarly, the 
unavoidable computation delay may cause a delay time, which can be considered as time-
delay in the input part of the original systems. The stability of systems with parameter 
perturbations must be investigated. The problem of robust stability analysis of a nominally 
stable system subject to perturbations has attracted wide attention (Mori and Kokame, 1989). 
Stability analysis attempts to decide whether a system that is pushed slightly from a steady-
state will return to that steady state. The robust stability of linear continuous time-delay 
system has been examined (Su and Hwang, 1992; Liu, 2001). The stability analysis of an 
interval system is very valuable for the robustness analysis of nominally stable system 
subject to model perturbations. Therefore, there has been considerable interest in the 
stability analysis of interval systems (Jiang, 1987; Chou and Chen, 1990; Chen, 1992). 
Time-delay is often encountered in various engineering systems, such as the turboject 
engine, microwave oscillator, nuclear reactor, rolling mill, chemical process, manual control, 
and long transmission lines in pneumatic and hydraulic systems. It is frequently a source of 
the generation of oscillation and a source of instability in many control systems. Hence, 
stability testing for time-delay has received considerable attention (Mori, et al., 1982; Su, et 
al., 1988; Hmamed, 1991). The time-delay system has been investigated (Mahmoud, et al., 
2007; Hassan and Boukas, 2007). 
Grey system theory was initiated in the beginning of 1980s (Deng, 1982). Since then the 
research on theory development and applications is progressing. The state-of-the-art 
development of grey system theory and its application is addressed (Wevers, 2007). It aims 
to highlight and analysis the perspective both of grey system theory and of the grey system 
methods. Grey control problems for the discrete time are also discussed (Zhou and Deng, 
1986; Liu and Shyr, 2005). A sufficient condition for the stability of grey discrete time 
systems with time-delay is proposed in this article. The proposed stability criteria are simple 



Mao, W.-J. & Chu, J. (2009). D-stability and D-stabilization of linear discrete time-delay
systems with polytopic uncertainties, Automatica 45(3): 842–846.

Montagner, V. F., Leite, V. J. S., Tarbouriech, S. & Peres, P. L. D. (2005). Stability and
stabilizability of discrete-time switched linear systems with state delay, Proceedings
of the 2005 American Control Conference, Portland, OR.

Niculescu, S.-I. (2001). Delay Effects on Stability: A Robust Control Approach, Vol. 269 of Lecture
Notes in Control and Information Sciences, Springer-Verlag, London.

Oliveira, R. C. L. F. & Peres, P. L. D. (2005). Stability of polytopes of matrices via affine
parameter-dependent Lyapunov functions: Asymptotically exact LMI conditions,
Linear Algebra and Its Applications 405: 209–228.

Phat, V. N. (2005). Robust stability and stabilizability of uncertain linear hybrid systems with
state delays, IEEE Transactions on Circuits and Systems Part II: Analog and Digital Signal
Processing 52(2): 94–98.

Richard, J.-P. (2003). Time-delay systems: an overview of some recent advances and open
problems, Automatica 39(10): 1667–1694.

Rodrigues, L. A., Gonçalves, E. N., Leite, V. J. S. & Palhares, R. M. (2009). Robust
reference model control with LMI formulation, Proceedings of the IASTED International
Conference on Identification, Control and Applications, Honolulu, HW, USA.

Shi, P., Boukas, E. K., Shi, Y. & Agarwal, R. K. (2003). Optimal guaranteed cost control
of uncertain discrete time-delay systems, Journal of Computational and Applied
Mathematics 157(2): 435–451.

Silva, L. F. P., Leite, V. J. S., Miranda, M. F. & Nepomuceno, E. G. (2009). Robust D-stabilization
with minimization of the H∞ guaranteed cost for uncertain discrete-time systems
with multiple delays in the state, Proceedings of the 49th IEEE Conference on Decision
and Control, IEEE, Atlanta, GA, USA. CD ROM.

Srinivasagupta, D., Schättler, H. & Joseph, B. (2004). Time-stamped model predictive
previous control: an algorithm for previous control of processes with random delays,
Computers & Chemical Engineering 28(8): 1337–1346.

Syrmos, C. L., Abdallah, C. T., Dorato, P. & Grigoriadis, K. (1997). Static output feedback — a
survey, Automatica 33(2): 125–137.

Xu, J. & Yu, L. (2009). Delay-dependent guaranteed cost control for uncertain 2-D discrete
systems with state delay in the FM second model, Journal of The Franklin Institute
346(2): 159 – 174.
URL: http://www.sciencedirect.com/science/article/B6V04-4TM9NGD1/2/85
cff1b946 d134a052d36dbe498df5bd

Xu, S., Lam, J. & Mao, X. (2007). Delay-dependent H∞ control and filtering for uncertain
markovian jump systems with time-varying delays, IEEE Transactions on Circuits and
Systems Part I: Fundamamental Theory and Applications 54(9): 2070–2077.

Yu, J., Xie, G. & Wang, L. (2007). Robust stabilization of discrete-time switched uncertain
systems subject to actuator saturation, Proceedings of the 2007 American Control
Conference, New York, NY, USA, pp. 2109–2112.

Yu, L. & Gao, F. (2001). Optimal guaranteed cost control of discrete-time uncertain systems
with both state and input delays, Journal of The Franklin Institute 338(1): 101 – 110.
URL: http://www.sciencedirect.com/science/article/B6V04-4286KHS -9/2/8197c
8472fdf444d1396b19619d4dcaf

Zhang, H., Xie, L. & Duan, D. G. (2007). H∞ control of discrete-time systems with multiple
input delays, IEEE Transactions on Automatic Control 52(2): 271–283.

326 Discrete Time Systems

18 

Stability Analysis of Grey Discrete Time  
Time-Delay Systems: A Sufficient Condition 

Wen-Jye Shyr1 and Chao-Hsing Hsu2 
1Department of Industrial Education and Technology, 

National Changhua University of Education 
2Department of Computer and Communication Engineering 

Chienkuo Technology University 
Changhua 500, Taiwan, 

R.O.C. 

1. Introduction 
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Grey system theory was initiated in the beginning of 1980s (Deng, 1982). Since then the 
research on theory development and applications is progressing. The state-of-the-art 
development of grey system theory and its application is addressed (Wevers, 2007). It aims 
to highlight and analysis the perspective both of grey system theory and of the grey system 
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to be checked numerically and generalize the systems with uncertainties for the stability of 
grey discrete time systems with time-delay. Examples are given to compare the proposed 
method with reported (Zhou and Deng, 1989; Liu, 2001) in Section 4. 
The structure of this paper is as follows. In the next section, a problem formulation of grey 
discrete time system is briefly reviewed. In Section 3, the robust stability for grey discrete 
time systems with time-delay is derived based on the results given in Section 2. Three 
examples are given to illustrate the application of result in Section 4. Finally, Section 5 offers 
some conclusions.  

2. Problem formulation 
Considering the stability problem of a grey discrete time system is described using the 
following equation  

 ( 1) ( ) ( )x k A x k+ = ⊗  (1) 

where ( ) nx k R∈  represents the state, and ( )A ⊗  represents the state matrix of system (1). 
The stability of the system when the elements of ( )A ⊗  are not known exactly is of major 
interest. The uncertainty can arise from perturbations in the system parameters because of 
changes in operating conditions, aging or maintenance-induced errors.  
Let ij⊗ ( , 1,2,..., )i j n= of ( )A ⊗ cannot be exactly known, but ij⊗ are confined within the 
intervals ij ij ije f≤ ⊗ ≤ . These and ij ije f are known exactly, and ,ij ⎡ ⎤⊗ ∈ ⊗ ⊗⎣ ⎦ . They are called 
white numbers, while ij⊗  are called grey numbers. ( )A ⊗  has a grey matrix, and system (1) 
is a grey discrete time system.  
For convenience of descriptions, the following Definition and Lemmas are introduced. 
Definition 2.1 
From system (1), the system has 
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where E and F represent the minimal and maximal punctual matrices of ( )A ⊗ , respectively.  
Suppose that A represents the average white matrix of ( )A ⊗  as  
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and  

 [ ] [ ] ( )G gij n n ij ij n nA a a A A× ×= = ⊗ − = ⊗ −  (6) 

 [ ] [ ]ij n n ij ij n nM m f a F A× ×= = − = −  (7) 

where GA  represents a bias matrix between ( )A ⊗ and A; M represents the maximal bias 
matrix between F and A. Then we have 

 G m mA M≤  (8) 

where mM  represents the modulus matrix of M; [ ]r M  represents the spectral radius of 
matrix M; I represents the identity matrix, and ( )Mλ is the eigenvalue of matrix M. This 
assumption enables some conditions to be derived for the stability of the grey discrete 
system. Therefore, the following Lemmas are provided. 
Lemma 2.1 (Chen, 1984) 
The zero state of ( 1) ( )x k Ax k+ = is asymptotically stable if and only if  

det( ) 0, 1.zI A for z− > ≥   

Lemma 2.2 (Ortega and Rheinboldt, 1970)  
For any n n× matrices R, T and V, if mR V≤ , then 
a. [ ] [ ]mr R r R r V⎡ ⎤≤ ≤⎣ ⎦  

b. [ ] m mmr RT r R T r V T⎡ ⎤ ⎡ ⎤≤ ≤ ⎣ ⎦⎣ ⎦  

c. [ ] m m m mr R T r R T r R T r V T⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ ≤ + ≤ + ≤ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . 
Lemma 2.3 (Chou, 1991) 
If ( )G z is a pulse transfer function matrix, then 

0
( ) ( ) ( ( )), 1,m m

k
G z G K H G K for z

∞

=
≤ ≡ ≥∑  

where ( )G K is the pulse-response sequence matrix of the multivariable system ( )G z . 
Lemma 2.4 (Chen, 1989) 
For an n n× matrix R, if [ ] 1r R < , then det( ) 0I R± > .   
Theorem 2.1 
The grey discrete time systems (1) is asymptotically stable, if ( )A ⊗  is an asymptotically 
stable matrix, and if the following inequality is satisfied, 

 ( ( )) 1mr H G K M⎡ ⎤ <⎣ ⎦  (9) 

where ( ( ))H G K and mM  are defined in Lemma 2.3 and equation (8), and ( )G K is the pulse-
response sequence matrix of the system 
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to be checked numerically and generalize the systems with uncertainties for the stability of 
grey discrete time systems with time-delay. Examples are given to compare the proposed 
method with reported (Zhou and Deng, 1989; Liu, 2001) in Section 4. 
The structure of this paper is as follows. In the next section, a problem formulation of grey 
discrete time system is briefly reviewed. In Section 3, the robust stability for grey discrete 
time systems with time-delay is derived based on the results given in Section 2. Three 
examples are given to illustrate the application of result in Section 4. Finally, Section 5 offers 
some conclusions.  

2. Problem formulation 
Considering the stability problem of a grey discrete time system is described using the 
following equation  

 ( 1) ( ) ( )x k A x k+ = ⊗  (1) 

where ( ) nx k R∈  represents the state, and ( )A ⊗  represents the state matrix of system (1). 
The stability of the system when the elements of ( )A ⊗  are not known exactly is of major 
interest. The uncertainty can arise from perturbations in the system parameters because of 
changes in operating conditions, aging or maintenance-induced errors.  
Let ij⊗ ( , 1,2,..., )i j n= of ( )A ⊗ cannot be exactly known, but ij⊗ are confined within the 
intervals ij ij ije f≤ ⊗ ≤ . These and ij ije f are known exactly, and ,ij ⎡ ⎤⊗ ∈ ⊗ ⊗⎣ ⎦ . They are called 
white numbers, while ij⊗  are called grey numbers. ( )A ⊗  has a grey matrix, and system (1) 
is a grey discrete time system.  
For convenience of descriptions, the following Definition and Lemmas are introduced. 
Definition 2.1 
From system (1), the system has 
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×
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⎢ ⎥
⎣ ⎦

= =  (4) 

where E and F represent the minimal and maximal punctual matrices of ( )A ⊗ , respectively.  
Suppose that A represents the average white matrix of ( )A ⊗  as  
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 [ ]
2 2

ij ij
ij n n

n n

e f E FA a ×
×

+⎡ ⎤ +
= = =⎢ ⎥

⎣ ⎦
 (5) 

and  

 [ ] [ ] ( )G gij n n ij ij n nA a a A A× ×= = ⊗ − = ⊗ −  (6) 

 [ ] [ ]ij n n ij ij n nM m f a F A× ×= = − = −  (7) 

where GA  represents a bias matrix between ( )A ⊗ and A; M represents the maximal bias 
matrix between F and A. Then we have 

 G m mA M≤  (8) 

where mM  represents the modulus matrix of M; [ ]r M  represents the spectral radius of 
matrix M; I represents the identity matrix, and ( )Mλ is the eigenvalue of matrix M. This 
assumption enables some conditions to be derived for the stability of the grey discrete 
system. Therefore, the following Lemmas are provided. 
Lemma 2.1 (Chen, 1984) 
The zero state of ( 1) ( )x k Ax k+ = is asymptotically stable if and only if  

det( ) 0, 1.zI A for z− > ≥   

Lemma 2.2 (Ortega and Rheinboldt, 1970)  
For any n n× matrices R, T and V, if mR V≤ , then 
a. [ ] [ ]mr R r R r V⎡ ⎤≤ ≤⎣ ⎦  

b. [ ] m mmr RT r R T r V T⎡ ⎤ ⎡ ⎤≤ ≤ ⎣ ⎦⎣ ⎦  

c. [ ] m m m mr R T r R T r R T r V T⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ ≤ + ≤ + ≤ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . 
Lemma 2.3 (Chou, 1991) 
If ( )G z is a pulse transfer function matrix, then 

0
( ) ( ) ( ( )), 1,m m

k
G z G K H G K for z

∞

=
≤ ≡ ≥∑  

where ( )G K is the pulse-response sequence matrix of the multivariable system ( )G z . 
Lemma 2.4 (Chen, 1989) 
For an n n× matrix R, if [ ] 1r R < , then det( ) 0I R± > .   
Theorem 2.1 
The grey discrete time systems (1) is asymptotically stable, if ( )A ⊗  is an asymptotically 
stable matrix, and if the following inequality is satisfied, 

 ( ( )) 1mr H G K M⎡ ⎤ <⎣ ⎦  (9) 

where ( ( ))H G K and mM  are defined in Lemma 2.3 and equation (8), and ( )G K is the pulse-
response sequence matrix of the system 
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1( ) ( )G z zI A −= −  
Proof 
By the identity 

[ ] [ ] [ ]det det detRT R T= , 

for any two n n× matrices R and T, we have  

 1det[ ( )] det[ ( )] det[ ( ) ( )] det[ ]G GzI A zI A A I zI A A zI A−− ⊗ = − + = − − −  (10) 

Since A represents an asymptotically stable matrix, then applying Lemma 2.1 clearly shows 
that 

 det[ ] 0zI A− > , for 1z ≥  (11) 

If inequality (9) is satisfied, then Lemmas 2.2 and 2.3 give 
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≤

≤

< ≥

 (12) 

From equations (10)-(12) and Lemma 2.4, we have 

1

det[ ( )] det[ ( )]

det[ ( ) ( )] det[ ] 0,        1.
G

G

zI A zI A A

I zI A A zI A for z−

− ⊗ = − +

= − − − > ≥
 

Hence, the grey discrete time system (1) is asymptotically stable by Lemma 2.1. 

3. Grey discrete time systems with time-delay 
Considering the grey discrete time system with a time-delay as follows: 

 ( 1) ( ) ( ) ( ) ( 1)x k x k x kA B+ = ⊗ + ⊗ −I I  (13) 

where ( )  and ( )A B⊗ ⊗I I  denotes interval matrices with the properties as  

 ( ) [ ]  and  ( ) [ ]a b
ij n n ij n nA B× ×⊗ = ⊗ ⊗ = ⊗I I  (14) 

where 1 2 1 2  and a b
ij ij ij ij ij ija a b b≤ ⊗ ≤ ≤ ⊗ ≤ . 

Indicate 

 1 2 1 2
1 2 1 2[ ] ,  [ ] ,  [ ] ,  [ ]ij n n ij n n ij n n ij n na a b bA A B B× × × ×= = = = . (15) 

and let  

 
1 2[ ] ( )A [ ]

2 2
ij ij n n

ij n n
a a A Aa ×

×

+ +
= = = 1 2  (16a) 
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and 

 
1 2

1[ ] ( )B [ ]
2 2

ij ij n n
ij n n

b b B Bb ×
×

+ +
= = = 2  (16b) 

where A and B are the average matrices between 1A  and 2A , 1B  and 2B , respectively.     
Moreover, 

 [ ] [ ] ( )m a
m ij n n ij ij n n IA a a A A× ×Δ = = ⊗ − = ⊗ −  (17a) 

and 

 [ ] [ ] ( )m b
m ij n n ij ij n n IB b b B B× ×Δ = = ⊗ − = ⊗ −  (17b) 

where  and m mA BΔ Δ  are the bias matrices between IA  and A , and IB  and B , 
respectively. Additionally,    

 1 2
1 2[ ] [ ] Aij n n ij ij n nM m a a A× ×= = − = −  (18a) 

and 

 1 2[ ] [ ] Bij n n ij ij n nn b bN B× ×= = − = −21  (18b) 

where M1 and N1 are the maximal bias matrices between A2 and A, and B2 and B, 
respectively. Then we have 

 1m m mA MΔ ≤  and m mNB ≤Δ m 1 . (19) 

The following theorem ensures the stability of system (13) for all admissible matrices 
, ,mA A BΔ  and mBΔ  with constrained (19). 

Theorem 3.1 
The grey discrete time with a time-delay system (13) is asymptotically stable, if nominal 
system ( )IA ⊗  is an asymptotically stable matrix, and if the following inequality is satisfied, 

 1 1( ( ))( ) 1d m m mr H K BG M N⎡ ⎤+ + <⎣ ⎦  (20) 

where ( ( ))dH KG  are as defined in Lemma 2.3, and ( )d KG  represents the pulse-response 
sequence matrix of the system 

1( ) ( )d z zI AG −= −  
Proof 
By the identity 

[ ] [ ] [ ]det det detRT R T= , 

for any two n n×  matrices R and T, we have  

 
1 1

1 1

det[ ( ( ) ( ) )] det[ ( ( ) )]

det[ ( ) ( ( ) )] det[ ]

I I m m

m m

zI A B z zI A A B B z

I zI A A B B z zI A

− −

− −

− ⊗ + ⊗ = − + Δ + + Δ

= − − Δ + + Δ −
 (21) 
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that 
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Hence, the grey discrete time system (1) is asymptotically stable by Lemma 2.1. 

3. Grey discrete time systems with time-delay 
Considering the grey discrete time system with a time-delay as follows: 

 ( 1) ( ) ( ) ( ) ( 1)x k x k x kA B+ = ⊗ + ⊗ −I I  (13) 

where ( )  and ( )A B⊗ ⊗I I  denotes interval matrices with the properties as  

 ( ) [ ]  and  ( ) [ ]a b
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and 
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b b B Bb ×
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+ +
= = = 2  (16b) 

where A and B are the average matrices between 1A  and 2A , 1B  and 2B , respectively.     
Moreover, 

 [ ] [ ] ( )m a
m ij n n ij ij n n IA a a A A× ×Δ = = ⊗ − = ⊗ −  (17a) 

and 

 [ ] [ ] ( )m b
m ij n n ij ij n n IB b b B B× ×Δ = = ⊗ − = ⊗ −  (17b) 

where  and m mA BΔ Δ  are the bias matrices between IA  and A , and IB  and B , 
respectively. Additionally,    

 1 2
1 2[ ] [ ] Aij n n ij ij n nM m a a A× ×= = − = −  (18a) 

and 

 1 2[ ] [ ] Bij n n ij ij n nn b bN B× ×= = − = −21  (18b) 

where M1 and N1 are the maximal bias matrices between A2 and A, and B2 and B, 
respectively. Then we have 

 1m m mA MΔ ≤  and m mNB ≤Δ m 1 . (19) 

The following theorem ensures the stability of system (13) for all admissible matrices 
, ,mA A BΔ  and mBΔ  with constrained (19). 

Theorem 3.1 
The grey discrete time with a time-delay system (13) is asymptotically stable, if nominal 
system ( )IA ⊗  is an asymptotically stable matrix, and if the following inequality is satisfied, 

 1 1( ( ))( ) 1d m m mr H K BG M N⎡ ⎤+ + <⎣ ⎦  (20) 

where ( ( ))dH KG  are as defined in Lemma 2.3, and ( )d KG  represents the pulse-response 
sequence matrix of the system 

1( ) ( )d z zI AG −= −  
Proof 
By the identity 

[ ] [ ] [ ]det det detRT R T= , 

for any two n n×  matrices R and T, we have  
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Since A is an asymptotically stable matrix, then applying Lemma 2.1 clearly shows that 

 det[ ] 0zI A− > , for 1z ≥  (22) 

If inequality (20) is satisfied, then Lemmas 2.2 and 2.3 give 
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⎡ ⎤≤ Δ + + Δ⎢ ⎥⎣ ⎦
⎡ ⎤≤ Δ + + Δ⎢ ⎥⎣ ⎦
⎡ ⎤≤ Δ + + Δ⎢ ⎥⎣ ⎦
⎡ ⎤≤ Δ + + Δ
⎣ ⎦
⎡ ⎤≤ Δ + + Δ⎣ ⎦
⎡ ⎤≤ + +⎣ ⎦

< 1,     1for z ≥

 (23) 

Equations (21)-(23) and Lemma 2.4 give 

1 1

1 1

det[ ( ( ) ( ) )] det[ ( ( ) )] 

      det[ ( ) ( ( ) )]  det[ ] 0,     1

I I m m

m m

zI A B z zI A A B B z

I zI A A B B z zI A for z

− −

− −

− ⊗ + ⊗ = − + Δ + + Δ

= − − Δ + + Δ − > ≥
 

Therefore, by Lemma 2.1, the grey discrete time with a time-delay system (13) is 
asymptotically stable. 

4. llustrative examples 
Example 4.1 
Consider the stability of grey discrete time system (1) as follows: 

( 1) ( ) ( )x k A x k+ = ⊗ , 

where  

11 12

21 22
( )

a a

a aA
⎡ ⎤⊗ ⊗⊗ = ⎢ ⎥
⊗ ⊗⎣ ⎦

 

11 12 21 22with  -0.5 0.5,  0. 1 0.8,  -0.3 0.2, -0.4 0.5a a a a≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤⊗ ⊗ ⊗ ⊗ . 

From equations (2)-(5), the average matrices is  

0 0.45
A=

-0.05 0.05
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 
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and from equations (6)-(7), the maximal bias matrix M is 

0.5 0.35
M=

0.25 0.45
⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

By Lemma 2.3, we obtain 

1.0241 0.4826
H(G(K))=

0.0536 1.0725
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Then, the equation (9) is 

( ( )) 0.9843 1.mr H G K M⎡ ⎤ = <⎣ ⎦  

Therefore, the system (1) is asymptotically stable in terms of Theorem 2.1.   
Remark 1 
Zhou and Deng (1989) have illustrated that the grey discrete time system (1) is 
asymptotically stable if the following inequality holds: 

 ( ) 1kρ <  (24) 

By applying the condition (24) as given by Zhou and Deng, the sufficient condition can be 
obtained as ( ) 0.9899 1kρ = <  to guarantee that the system (1) is still stable.  
The proposed sufficient condition (9) of Theorem 2.1 is less conservative than the condition 
(24) proposed by Zhou and Deng. 
Example 4.2 
Considering the grey discrete time with a time-delay system (Shyr and Hsu, 2008) is 
described by (13) as follows: 

( 1) ( ) ( ) ( ) ( 1)x k x k x kA B+ = ⊗ + ⊗ −I I  

where 

 ( ) ( )11 12 11 12

21 22 21 22

,  ,
a a b b

I Ia a b b
A B

⎡ ⎤ ⎡ ⎤⊗ ⊗ ⊗ ⊗
⊗ = ⊗ =⎢ ⎥ ⎢ ⎥

⊗ ⊗ ⊗ ⊗⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (25) 

with 

11 12 21 22 -0.2 0.2,  -0. 2 0.1,  -0.1 0.1, 0.1 0.2  a a a a≤ ⊗ ≤ ≤ ⊗ ≤ ≤ ⊗ ≤ − ≤ ⊗ ≤  

and 

11 12 21 22 0.1 0.2,  0.1 0.2,0.1 0.15,  0.2 0.25.b b b b≤ ⊗ ≤ ≤ ⊗ ≤ ≤ ⊗ ≤ ≤ ⊗ ≤  

Equation (15) and (25) give  

1 2 1 2
-0.2 -0.2 0.2 0.1 0.1 0.1 0.2 0.2

= ,   = ,   = , =  -0.1 -0.1 0.1 0.2 0.1 0.2 0.15 0.25A A B B
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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Since A is an asymptotically stable matrix, then applying Lemma 2.1 clearly shows that 

 det[ ] 0zI A− > , for 1z ≥  (22) 

If inequality (20) is satisfied, then Lemmas 2.2 and 2.3 give 
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Equations (21)-(23) and Lemma 2.4 give 
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Therefore, by Lemma 2.1, the grey discrete time with a time-delay system (13) is 
asymptotically stable. 

4. llustrative examples 
Example 4.1 
Consider the stability of grey discrete time system (1) as follows: 

( 1) ( ) ( )x k A x k+ = ⊗ , 

where  
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a a
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and from equations (6)-(7), the maximal bias matrix M is 
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asymptotically stable if the following inequality holds: 
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By applying the condition (24) as given by Zhou and Deng, the sufficient condition can be 
obtained as ( ) 0.9899 1kρ = <  to guarantee that the system (1) is still stable.  
The proposed sufficient condition (9) of Theorem 2.1 is less conservative than the condition 
(24) proposed by Zhou and Deng. 
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and 
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Equation (15) and (25) give  

1 2 1 2
-0.2 -0.2 0.2 0.1 0.1 0.1 0.2 0.2

= ,   = ,   = , =  -0.1 -0.1 0.1 0.2 0.1 0.2 0.15 0.25A A B B
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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From equations (16), the average matrices are 

0 0.05 0.15 0.15
= ,      = ,

0 0.05 0.125 0.225
A B

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

and from equations (18), the maximal bias matrices 1M and 1N  are 

1 1
0.2 0.15 0.05 0.05  

= , = .
0.1 0.15  0.025 0.025M N
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

By Lemma 2.3, we obtain 

d
0.0526 0.0526

H( (K))=G 0 1.0526
⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

From Theorem 3.1, the system (13) is stable, because 

1( ( ))( ) 0.4462 1.d m m mr H G K M B N⎡ ⎤+ + = <⎣ ⎦1  

Example 4.3 
Considering the grey discrete time-delay systems (Zhou and Deng, 1989) is described by 
(13), where 

( ) ( )11 12 11 12

21 22 21 22

,  ,
a a b b

I Ia a b b
A B

⎡ ⎤ ⎡ ⎤⊗ ⊗ ⊗ ⊗
⊗ = ⊗ =⎢ ⎥ ⎢ ⎥

⊗ ⊗ ⊗ ⊗⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

11 12 21 22

11 12 21 22

with  -0.24 0.24,  0.12 0.24,  -0.12 0.12,  0.12 0.24  and

           0.12 0.24,  0.12 0.24,  0.12 0.18,  0.24 0.30.

a a a a

b b b b

≤ ⊗ ≤ ≤ ⊗ ≤ ≤ ⊗ ≤ ≤ ⊗ ≤

≤ ⊗ ≤ ≤ ⊗ ≤ ≤ ⊗ ≤ ≤ ⊗ ≤
 

Equation (15) and (25) give  

1 2 1 2
-0.24 0.12 0.24 0.24 0.12 0.12 0.24 0.24

= , = , = , =
-0.12 0.12 0.12 0.24 0.12 0.24 0.18 0.30A A B B
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

From (16)-(18), we obtain the matrices 

1
0 0.18 0.24 0.06 0.18 0.18 0.06 0.06

= ,    = ,  ,  =
0 0.18 0.12 0.06 0.15 0.27 0.03 0.03

A M B N
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1  

By Lemma 2.3, we obtain 

d
0.5459 0.3790

H( (K))=G 0.3659 0.4390
⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

From Theorem 3.1, the system (13) is stable, because 

1 1( ( ))( ) 0.8686 1d m m mr H G K M B N⎡ ⎤+ + = <⎣ ⎦  
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According to Theorem 3.1, we know that system (13) is asymptotically stable. 
Remark 2 
If the following condition holds (Liu, 2001) 

 ( ) ( )
1 1

min max ,  max 1
n n

ij ij ji jii ij j
e f e f

= =

⎧ ⎫⎪ ⎪+ + <⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑  (26) 

then system (13) is stable , 1,2,...,i j n= , where  

 2 2[ ],  ,   max{ , }         for a
ij ii ij ij ij ijE e e a e a i j= = = ⊗ ≠  

and 

2 2[ ],  ,   max{ , }         for a
ij ii ij ij ij ijF f f b f b i j= = = ⊗ ≠  

The foregoing criterion is applied in our example and we obtain 

( ) ( )
1 1

min max ,  max  1.02  1
n n

ij ij ji jii ij j
e f e f

= =

⎧ ⎫⎪ ⎪+ + = >⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑  

which cannot be satisfied in (26). 

5. Conclusions 
This paper proposes a sufficient condition for the stability analysis of grey discrete time 
systems with time-delay whose state matrices are interval matrices. A novel sufficient 
condition is obtained to ensure the stability of grey discrete time systems with time-delay. 
By mathematical analysis, the stability criterion of the proposed is less conservative than 
those of previous results. In Remark 1, by mathematical analysis, the presented criterion is 
less conservative than that proposed by Zhou and Deng (1989). In Remarks 2, by 
mathematical analysis, the presented criterion is to be less conservative than that proposed 
by Liu (2001). Therefore, the results of this paper indeed provide an additional choice for the 
stability examination of the grey discrete time time-delay systems. The proposed examples 
clearly demonstrate that the criteria presented in this paper for the stability of grey discrete 
time systems with time-delay are useful. 
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1. Introduction

This article is focused on analyzing stability and L2 gain properties for switched systems

composed of a family of linear discrete-time descriptor subsystems. Concerning descriptor

systems, they are also known as singular systems or implicit systems and have high abilities

in representing dynamical systems [1, 2]. Since they can preserve physical parameters in the

coefficient matrices, and describe the dynamic part, static part, and even improper part of

the system in the same form, descriptor systems are much superior to systems represented

by state space models. There have been many works on descriptor systems, which studied

feedback stabilization [1, 2], Lyapunov stability theory [2, 3], the matrix inequality approach

for stabilization, H2 and/or H∞ control [4–6].

On the other hand, there has been increasing interest recently in stability analysis and design

for switched systems; see the survey papers [7, 8], the recent books [9, 10] and the references

cited therein. One motivation for studying switched systems is that many practical systems

are inherently multi-modal in the sense that several dynamical subsystems are required

to describe their behavior which may depend on various environmental factors. Another

important motivation is that switching among a set of controllers for a specified system can be

regarded as a switched system, and that switching has been used in adaptive control to assure

stability in situations where stability can not be proved otherwise, or to improve transient

response of adaptive control systems. Also, the methods of intelligent control design are based

on the idea of switching among different controllers.

We observe from the above that switched descriptor systems belong to an important class of

systems that are interesting in both theoretic and practical sense. However, to the authors’

best knowledge, there has not been much works dealing with such systems. The difficulty

falls into two aspects. First, descriptor systems are not easy to tackle and there are not rich

results available up to now. Secondly, switching between several descriptor systems makes

the problem more complicated and even not easy to make clear the well-posedness of the

solutions in some cases.

Next, let us review the classification of problems in switched systems. It is commonly

recognized [9] that there are three basic problems in stability analysis and design of switched

systems: (i) find conditions for stability under arbitrary switching; (ii) identify the limited

but useful class of stabilizing switching laws; and (iii) construct a stabilizing switching law.
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cited therein. One motivation for studying switched systems is that many practical systems

are inherently multi-modal in the sense that several dynamical subsystems are required
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regarded as a switched system, and that switching has been used in adaptive control to assure

stability in situations where stability can not be proved otherwise, or to improve transient

response of adaptive control systems. Also, the methods of intelligent control design are based

on the idea of switching among different controllers.

We observe from the above that switched descriptor systems belong to an important class of

systems that are interesting in both theoretic and practical sense. However, to the authors’

best knowledge, there has not been much works dealing with such systems. The difficulty

falls into two aspects. First, descriptor systems are not easy to tackle and there are not rich

results available up to now. Secondly, switching between several descriptor systems makes

the problem more complicated and even not easy to make clear the well-posedness of the

solutions in some cases.

Next, let us review the classification of problems in switched systems. It is commonly

recognized [9] that there are three basic problems in stability analysis and design of switched

systems: (i) find conditions for stability under arbitrary switching; (ii) identify the limited

but useful class of stabilizing switching laws; and (iii) construct a stabilizing switching law.
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Specifically, Problem (i) deals with the case that all subsystems are stable. This problem

seems trivial, but it is important since we can find many examples where all subsystems are

stable but improper switchings can make the whole system unstable [11]. Furthermore, if

we know that a switched system is stable under arbitrary switching, then we can consider

higher control specifications for the system. There have been several works for Problem (i)

with state space systems. For example, Ref. [12] showed that when all subsystems are stable

and commutative pairwise, the switched linear system is stable under arbitrary switching.

Ref. [13] extended this result from the commutation condition to a Lie-algebraic condition.

Ref. [14, 15] and [16] extended the consideration to the case of L2 gain analysis and the case

where both continuous-time and discrete-time subsystems exist, respectively. In the previous

papers [17, 18], we extended the existing result of [12] to switched linear descriptor systems.

In that context, we showed that in the case where all descriptor subsystems are stable, if the

descriptor matrix and all subsystem matrices are commutative pairwise, then the switched

system is stable under impulse-free arbitrary switching. However, since the commutation

condition is quite restrictive in real systems, alternative conditions are desired for stability of

switched descriptor systems under impulse-free arbitrary switching.

In this article, we propose a unified approach for both stability and L2 gain analysis of

switched linear descriptor systems in discrete-time domain. Since the existing results for

stability of switched state space systems suggest that the common Lyapunov functions

condition should be less conservative than the commutation condition, we establish our

approach based on common quadratic Lyapunov functions incorporated with linear matrix

inequalities (LMIs). We show that if there is a common quadratic Lyapunov function for

stability of all descriptor subsystems, then the switched system is stable under impulse-free

arbitrary switching. This is a reasonable extension of the results in [17, 18], in the sense that if

all descriptor subsystems are stable, and furthermore the descriptor matrix and all subsystem

matrices are commutative pairwise, then there exists a common quadratic Lyapunov function

for all subsystems, and thus the switched system is stable under impulse-free arbitrary

switching. Furthermore, we show that if there is a common quadratic Lyapunov function

for stability and certain L2 gain of all descriptor subsystems, then the switched system is

stable and has the same L2 gain under impulse-free arbitrary switching. Since the results are

consistent with those for switched state space systems when the descriptor matrix shrinks to

an identity matrix, the results are natural but important extensions of the existing results.

The rest of this article is organized as follows. Section 2 gives some preliminaries

on discrete-time descriptor systems, and then Section 3 formulates the problem under

consideration. Section 4 states and proves the stability condition for the switched linear

discrete-time descriptor systems under impulse-free arbitrary switching. The condition

requires in fact a common quadratic Lyapunov function for stability of all the subsystems,

and includes the existing commutation condition [17, 18] as a special case. Section 5 extends

the results to L2 gain analysis of the switched system under impulse-free arbitrary switching,

and the condition to achieve the same stability and L2 gain properties requires a common

quadratic Lyapunov function for all the subsystems. Finally, Section 6 concludes the article.

2. Preliminaries

Let us first give some preliminaries on linear discrete-time descriptor systems. Consider the

descriptor system

338 Discrete Time Systems

{
Ex(k + 1) = Ax(k) + Bw(k)

z(k) = Cx(k) ,
(2.1)

where the nonnegative integer k denotes the discrete time, x(k) ∈ Rn is the descriptor

variable, w(k) ∈ Rp is the disturbance input, z(k) ∈ Rq is the controlled output, E ∈ Rn×n,

A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n are constant matrices. The matrix E may be singular and

we denote its rank by r = rank E ≤ n.

Definition 1: Consider the linear descriptor system (2.1) with w = 0. The system has a unique

solution for any initial condition and is called regular, if |zE − A| �≡ 0. The finite eigenvalues

of the matrix pair (E, A), that is, the solutions of |zE − A| = 0, and the corresponding

(generalized) eigenvectors define exponential modes of the system. If the finite eigenvalues lie

in the open unit disc of z, the solution decays exponentially. The infinite eigenvalues of (E, A)
with the eigenvectors satisfying the relations Ex1 = 0 determine static modes. The infinite

eigenvalues of (E, A) with generalized eigenvectors xk satisfying the relations Ex1 = 0 and

Exk = xk−1 (k ≥ 2) create impulsive modes. The system has no impulsive mode if and only if

rank E = deg |sE − A| (deg |zE − A|). The system is said to be stable if it is regular and has

only decaying exponential modes and static modes (without impulsive modes).

Lemma 1 (Weiertrass Form)[1, 2] If the descriptor system (2.1) is regular, then there exist two

nonsingular matrices M and N such that

MEN =

[
Id 0

0 J

]
, MAN =

[
Λ 0

0 In−d

]
(2.2)

where d = deg |zE − A|, J is composed of Jordan blocks for the finite eigenvalues. If the

system (2.1) is regular and there is no impulsive mode, then (2.2) holds with d = r and J = 0.

If the system (2.1) is stable, then (2.2) holds with d = r, J = 0 and furthermore Λ is Schur

stable.

Let the singular value decomposition (SVD) of E be

E = U

[
E11 0

0 0

]
VT , E11 = diag{σ1, · · · , σr} (2.3)

where σi’s are the singular values, U and V are orthonormal matrices (UTU = VTV = I).

With the definitions

x̄ = VTx
�
=

[
x̄1

x̄2

]
, UT AV =

[
A11 A12

A21 A22

]
, (2.4)

the difference equation in (2.1) (with w = 0) takes the form of

E11 x̄1(k + 1) = A11 x̄1(k) + A12x̄2(k)

0 = A21 x̄1(k) + A22x̄2(k) .
(2.5)

It is easy to obtain from the above that the descriptor system is regular and has not impulsive

modes if and only if A22 is nonsingular. Moreover, the system is stable if and only if A22 is

339Stability and L2 Gain Analysis of Switched Linear Discrete-Time Descriptor Systems



Specifically, Problem (i) deals with the case that all subsystems are stable. This problem

seems trivial, but it is important since we can find many examples where all subsystems are

stable but improper switchings can make the whole system unstable [11]. Furthermore, if

we know that a switched system is stable under arbitrary switching, then we can consider

higher control specifications for the system. There have been several works for Problem (i)

with state space systems. For example, Ref. [12] showed that when all subsystems are stable

and commutative pairwise, the switched linear system is stable under arbitrary switching.

Ref. [13] extended this result from the commutation condition to a Lie-algebraic condition.

Ref. [14, 15] and [16] extended the consideration to the case of L2 gain analysis and the case

where both continuous-time and discrete-time subsystems exist, respectively. In the previous

papers [17, 18], we extended the existing result of [12] to switched linear descriptor systems.

In that context, we showed that in the case where all descriptor subsystems are stable, if the

descriptor matrix and all subsystem matrices are commutative pairwise, then the switched

system is stable under impulse-free arbitrary switching. However, since the commutation

condition is quite restrictive in real systems, alternative conditions are desired for stability of

switched descriptor systems under impulse-free arbitrary switching.

In this article, we propose a unified approach for both stability and L2 gain analysis of

switched linear descriptor systems in discrete-time domain. Since the existing results for

stability of switched state space systems suggest that the common Lyapunov functions

condition should be less conservative than the commutation condition, we establish our

approach based on common quadratic Lyapunov functions incorporated with linear matrix

inequalities (LMIs). We show that if there is a common quadratic Lyapunov function for

stability of all descriptor subsystems, then the switched system is stable under impulse-free

arbitrary switching. This is a reasonable extension of the results in [17, 18], in the sense that if

all descriptor subsystems are stable, and furthermore the descriptor matrix and all subsystem

matrices are commutative pairwise, then there exists a common quadratic Lyapunov function

for all subsystems, and thus the switched system is stable under impulse-free arbitrary

switching. Furthermore, we show that if there is a common quadratic Lyapunov function

for stability and certain L2 gain of all descriptor subsystems, then the switched system is

stable and has the same L2 gain under impulse-free arbitrary switching. Since the results are

consistent with those for switched state space systems when the descriptor matrix shrinks to

an identity matrix, the results are natural but important extensions of the existing results.

The rest of this article is organized as follows. Section 2 gives some preliminaries

on discrete-time descriptor systems, and then Section 3 formulates the problem under

consideration. Section 4 states and proves the stability condition for the switched linear

discrete-time descriptor systems under impulse-free arbitrary switching. The condition

requires in fact a common quadratic Lyapunov function for stability of all the subsystems,

and includes the existing commutation condition [17, 18] as a special case. Section 5 extends

the results to L2 gain analysis of the switched system under impulse-free arbitrary switching,

and the condition to achieve the same stability and L2 gain properties requires a common

quadratic Lyapunov function for all the subsystems. Finally, Section 6 concludes the article.

2. Preliminaries

Let us first give some preliminaries on linear discrete-time descriptor systems. Consider the

descriptor system
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{
Ex(k + 1) = Ax(k) + Bw(k)

z(k) = Cx(k) ,
(2.1)

where the nonnegative integer k denotes the discrete time, x(k) ∈ Rn is the descriptor

variable, w(k) ∈ Rp is the disturbance input, z(k) ∈ Rq is the controlled output, E ∈ Rn×n,

A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n are constant matrices. The matrix E may be singular and

we denote its rank by r = rank E ≤ n.

Definition 1: Consider the linear descriptor system (2.1) with w = 0. The system has a unique

solution for any initial condition and is called regular, if |zE − A| �≡ 0. The finite eigenvalues

of the matrix pair (E, A), that is, the solutions of |zE − A| = 0, and the corresponding

(generalized) eigenvectors define exponential modes of the system. If the finite eigenvalues lie

in the open unit disc of z, the solution decays exponentially. The infinite eigenvalues of (E, A)
with the eigenvectors satisfying the relations Ex1 = 0 determine static modes. The infinite

eigenvalues of (E, A) with generalized eigenvectors xk satisfying the relations Ex1 = 0 and

Exk = xk−1 (k ≥ 2) create impulsive modes. The system has no impulsive mode if and only if

rank E = deg |sE − A| (deg |zE − A|). The system is said to be stable if it is regular and has

only decaying exponential modes and static modes (without impulsive modes).

Lemma 1 (Weiertrass Form)[1, 2] If the descriptor system (2.1) is regular, then there exist two

nonsingular matrices M and N such that

MEN =

[
Id 0

0 J

]
, MAN =

[
Λ 0

0 In−d

]
(2.2)

where d = deg |zE − A|, J is composed of Jordan blocks for the finite eigenvalues. If the

system (2.1) is regular and there is no impulsive mode, then (2.2) holds with d = r and J = 0.

If the system (2.1) is stable, then (2.2) holds with d = r, J = 0 and furthermore Λ is Schur

stable.

Let the singular value decomposition (SVD) of E be

E = U

[
E11 0

0 0

]
VT , E11 = diag{σ1, · · · , σr} (2.3)

where σi’s are the singular values, U and V are orthonormal matrices (UTU = VTV = I).

With the definitions

x̄ = VTx
�
=

[
x̄1

x̄2

]
, UT AV =

[
A11 A12

A21 A22

]
, (2.4)

the difference equation in (2.1) (with w = 0) takes the form of

E11 x̄1(k + 1) = A11 x̄1(k) + A12x̄2(k)

0 = A21 x̄1(k) + A22x̄2(k) .
(2.5)

It is easy to obtain from the above that the descriptor system is regular and has not impulsive

modes if and only if A22 is nonsingular. Moreover, the system is stable if and only if A22 is
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nonsingular and furthermore E−1
11

(
A11 − A12 A−1

22 A21

)
is Schur stable. This discussion will

be used again in the next sections.

Definition 2: Given a positive scalar γ, if the linear descriptor system (2.1) is stable and satisfies

k

∑
j=0

zT(j)z(j) ≤ φ(x(0)) + γ2
k

∑
j=0

wT(j)w(j) (2.6)

for any integer k > 0 and any l2-bounded disturbance input w, with some nonnegative definite

function φ(·), then the descriptor system is said to be stable and have L2 gain less than γ.

The above definition is a general one for nonlinear systems, and will be used later for switched

descriptor systems.

3. Problem formulation

In this article, we consider the switched system composed of N linear discrete-time descriptor

subsystems described by {
Ex(k + 1) = Aix(k) + Biw(k)

z(k) = Cix(k) ,
(3.1)

where the vectors x, w, z and the descriptor matrix E are the same as in (2.1), the index i

denotes the i-th subsystem and takes value in the discrete set I = {1, 2, · · · ,N}, and thus the

matrices Ai, Bi, Ci together with E represent the dynamics of the i-th subsystem.

For the above switched system, we consider the stability and L2 gain properties under the

assumption that all subsystems in (3.1) are stable and have L2 gain less than γ. As in the case

of stability analysis for switched linear systems in state space representation, such an analysis

problem is well posed (or practical) since a switched descriptor system can be unstable even if

all the descriptor subsystems are stable and there is no variable (state) jump at the switching

instants. Additionally, switchings between two subsystems can even result in impulse signals,

even if the subsystems do not have impulsive modes themselves. This happens when the

variable vector x(kr), where kr is a switching instant, does not satisfy the algebraic equation

required in the subsequent subsystem. In order to exclude this possibility, Ref. [19] proposed

an additional condition involving consistency projectors. Here, as in most of the literature,

we assume for simplicity that there is no impulse occurring with the variable (state) vector at

every switching instant, and call such kind of switching impulse-free.

Definition 3: Given a switching sequence, the switched system (3.1) with w = 0 is said to

be stable if starting from any initial value the system’s trajectories converge to the origin

exponentially, and the switched system is said to have L2 gain less than γ if the condition

(2.6) is satisfied for any integer k > 0.

In the end of this section, we state two analysis problems, which will be dealt with in Section

4 and 5, respectively.

Stability Analysis Problem: Assume that all the descriptor subsystems in (3.1) are stable.

Establish the condition under which the switched system is stable under impulse-free

arbitrary switching.

L2 Gain Analysis Problem: Assume that all the descriptor subsystems in (3.1) are stable and

have L2 gain less than γ. Establish the condition under which the switched system is also

stable and has L2 gain less than γ under impulse-free arbitrary switching.
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Remark 1: There is a tacit assumption in the switched system (3.1) that the descriptor matrix

E is the same in all the subsystems. Theoretically, this assumption is restrictive at present.

However, as also discussed in [17, 18], the above problem settings and the results later can

be applied to switching control problems for linear descriptor systems. This is the main

motivation that we consider the same descriptor matrix E in the switched system. For

example, if for a single descriptor system Ex(k+ 1) = Ax(k) + Bu(k) where u(k) is the control

input, we have designed two stabilizing descriptor variable feedbacks u = K1x, u = K2x, and

furthermore the switched system composed of the descriptor subsystems characterized by

(E, A + BK1) and (E, A + BK2) are stable (and have L2 gain less than γ) under impulse-free

arbitrary switching, then we can switch arbitrarily between the two controllers and thus can

consider higher control specifications. This kind of requirement is very important when we

want more flexibility for multiple control specifications in real applications.

4. Stability analysis

In this section, we first state and prove the common quadratic Lyapunov function (CQLF)

based stability condition for the switched descriptor system (3.1) (with w = 0), and then

discuss the relation with the existing commutation condition.

4.1 CQLF based stability condition
Theorem 1: The switched system (3.1) (with w = 0) is stable under impulse-free arbitrary

switching if there are nonsingular symmetric matrices Pi ∈ Rn×n satisfying for ∀i ∈ I that

ETPiE ≥ 0 (4.1)

AT
i Pi Ai − ETPiE < 0 (4.2)

and furthermore

ETPiE = ETPjE , ∀i, j ∈ I , i �= j. (4.3)

Proof: The necessary condition for stability under arbitrary switching is that each subsystem

should be stable. This is guaranteed by the two matrix inequalities (4.1) and (4.2) [20].

Since the rank of E is r, we first find nonsingular matrices M and N such that

MEN =

[
Ir 0

0 0

]
. (4.4)

Then, we obtain from (4.1) that

(NT ET MT)(M−TPiM
−1)(MEN) =

[
Pi

11 0

0 0

]
≥ 0 , (4.5)

where

M−TPiM
−1 �

=

[
Pi

11 Pi
12

(Pi
12)

T Pi
22

]
. (4.6)

Since Pi (and thus M−TPiM
−1) is symmetric and nonsingular, we obtain Pi

11 > 0.
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nonsingular and furthermore E−1
11

(
A11 − A12 A−1

22 A21

)
is Schur stable. This discussion will

be used again in the next sections.

Definition 2: Given a positive scalar γ, if the linear descriptor system (2.1) is stable and satisfies

k

∑
j=0

zT(j)z(j) ≤ φ(x(0)) + γ2
k

∑
j=0

wT(j)w(j) (2.6)

for any integer k > 0 and any l2-bounded disturbance input w, with some nonnegative definite

function φ(·), then the descriptor system is said to be stable and have L2 gain less than γ.

The above definition is a general one for nonlinear systems, and will be used later for switched

descriptor systems.

3. Problem formulation

In this article, we consider the switched system composed of N linear discrete-time descriptor

subsystems described by {
Ex(k + 1) = Aix(k) + Biw(k)

z(k) = Cix(k) ,
(3.1)

where the vectors x, w, z and the descriptor matrix E are the same as in (2.1), the index i

denotes the i-th subsystem and takes value in the discrete set I = {1, 2, · · · ,N}, and thus the

matrices Ai, Bi, Ci together with E represent the dynamics of the i-th subsystem.

For the above switched system, we consider the stability and L2 gain properties under the

assumption that all subsystems in (3.1) are stable and have L2 gain less than γ. As in the case

of stability analysis for switched linear systems in state space representation, such an analysis

problem is well posed (or practical) since a switched descriptor system can be unstable even if

all the descriptor subsystems are stable and there is no variable (state) jump at the switching

instants. Additionally, switchings between two subsystems can even result in impulse signals,

even if the subsystems do not have impulsive modes themselves. This happens when the

variable vector x(kr), where kr is a switching instant, does not satisfy the algebraic equation

required in the subsequent subsystem. In order to exclude this possibility, Ref. [19] proposed

an additional condition involving consistency projectors. Here, as in most of the literature,

we assume for simplicity that there is no impulse occurring with the variable (state) vector at

every switching instant, and call such kind of switching impulse-free.

Definition 3: Given a switching sequence, the switched system (3.1) with w = 0 is said to

be stable if starting from any initial value the system’s trajectories converge to the origin

exponentially, and the switched system is said to have L2 gain less than γ if the condition

(2.6) is satisfied for any integer k > 0.

In the end of this section, we state two analysis problems, which will be dealt with in Section

4 and 5, respectively.

Stability Analysis Problem: Assume that all the descriptor subsystems in (3.1) are stable.

Establish the condition under which the switched system is stable under impulse-free

arbitrary switching.

L2 Gain Analysis Problem: Assume that all the descriptor subsystems in (3.1) are stable and

have L2 gain less than γ. Establish the condition under which the switched system is also

stable and has L2 gain less than γ under impulse-free arbitrary switching.
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Remark 1: There is a tacit assumption in the switched system (3.1) that the descriptor matrix

E is the same in all the subsystems. Theoretically, this assumption is restrictive at present.

However, as also discussed in [17, 18], the above problem settings and the results later can

be applied to switching control problems for linear descriptor systems. This is the main

motivation that we consider the same descriptor matrix E in the switched system. For

example, if for a single descriptor system Ex(k+ 1) = Ax(k) + Bu(k) where u(k) is the control

input, we have designed two stabilizing descriptor variable feedbacks u = K1x, u = K2x, and

furthermore the switched system composed of the descriptor subsystems characterized by

(E, A + BK1) and (E, A + BK2) are stable (and have L2 gain less than γ) under impulse-free

arbitrary switching, then we can switch arbitrarily between the two controllers and thus can

consider higher control specifications. This kind of requirement is very important when we

want more flexibility for multiple control specifications in real applications.

4. Stability analysis

In this section, we first state and prove the common quadratic Lyapunov function (CQLF)

based stability condition for the switched descriptor system (3.1) (with w = 0), and then

discuss the relation with the existing commutation condition.

4.1 CQLF based stability condition
Theorem 1: The switched system (3.1) (with w = 0) is stable under impulse-free arbitrary

switching if there are nonsingular symmetric matrices Pi ∈ Rn×n satisfying for ∀i ∈ I that

ETPiE ≥ 0 (4.1)

AT
i Pi Ai − ETPiE < 0 (4.2)

and furthermore

ETPiE = ETPjE , ∀i, j ∈ I , i �= j. (4.3)

Proof: The necessary condition for stability under arbitrary switching is that each subsystem

should be stable. This is guaranteed by the two matrix inequalities (4.1) and (4.2) [20].

Since the rank of E is r, we first find nonsingular matrices M and N such that

MEN =

[
Ir 0

0 0

]
. (4.4)

Then, we obtain from (4.1) that

(NT ET MT)(M−TPiM
−1)(MEN) =

[
Pi

11 0

0 0

]
≥ 0 , (4.5)

where

M−TPiM
−1 �

=

[
Pi

11 Pi
12

(Pi
12)

T Pi
22

]
. (4.6)

Since Pi (and thus M−TPiM
−1) is symmetric and nonsingular, we obtain Pi

11 > 0.
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Again, we obtain from (4.3) that

(NTET MT)(M−TPi M
−1)(MEN) = (NTET MT)(M−TPjM

−1)(MEN) , (4.7)

and thus [
Pi

11 0

0 0

]
=

[
P

j
11 0

0 0

]
(4.8)

which leads to Pi
11 = P

j
11, ∀i, j ∈ I . From now on, we let Pi

11 = P11 for notation simplicity.

Next, let

MAiN =

[
Āi

11 Āi
12

Āi
21 Āi

22

]
(4.9)

and substitute it into the equivalent inequality of (4.2) as

(NT AT
i MT)(M−TPi M

−1)(MAiN)− (NT ET MT)(M−TPiM
−1)(MEN) < 0 (4.10)

to reach [
Λ11 Λ12

ΛT
12 Λ22

]
< 0 , (4.11)

where

Λ11 = (Āi
11)

TP11 Āi
11 − P11 + (Āi

21)
T(Pi

12)
T Āi

11 + (Āi
11)

TPi
12 Āi

21 + (Āi
21)

TPi
22 Āi

21

Λ12 = (Āi
11)

TP11 Āi
12 + (Āi

11)
TPi

12 Āi
22 + (Āi

21)
T(Pi

12)
T Āi

12 + (Āi
21)

TPi
22 Āi

22

Λ22 = (Āi
12)

TP11 Āi
12 + (Āi

22)
T(Pi

12)
T Āi

12 + (Āi
12)

TPi
12 Āi

22 + (Āi
22)

TPi
22 Āi

22 .

(4.12)

At this point, we declare Āi
22 is nonsingular from Λ22 < 0. Otherwise, there is a nonzero

vector v such that Āi
22v = 0. Then, vTΛ22v < 0. However, by simple calculation,

vTΛ22v = vT(Āi
12)

T P11Āi
12v ≥ 0 (4.13)

since P11 is positive definite. This results in a contradiction.

Multiplying the left side of (4.11) by the nonsingular matrix

[
I −(Āi

21)
T(Āi

22)
−T

0 I

]
and the

right side by its transpose, we obtain

[
(Ãi

11)
TP11 Ãi

11 − P11 ∗

(∗)T Λ22

]
< 0 , (4.14)

where Ãi
11 = Āi

11 − Āi
12(Āi

22)
−1 Āi

21.

With the same nonsingular transformation x̄(k) = N−1x(k) = [x̄T
1 (k) x̄T

2 (k)]
T, x̄1(k) ∈ Rr, all

the descriptor subsystems in (3.1) take the form of

x̄1(k + 1) = Āi
11x̄1(k) + Āi

12 x̄2(k)

0 = Āi
21x̄1(k) + Āi

22 x̄2(k) ,
(4.15)
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which is equivalent to

x̄1(k + 1) = Ãi
11 x̄1(k) (4.16)

with x̄2(k) = −(Āi
22)

−1 Āi
21 x̄1(k). It is seen from (4.14) that

(Ãi
11)

TP11 Ãi
11 − P11 < 0 , (4.17)

which means that all Ãi
11’s are Schur stable, and a common positive definite matrix P11 exists

for stability of all the subsystems in (4.16). Therefore, x̄1(k) converges to zero exponentially

under impulse-free arbitrary switching. The x̄2(k) part is dominated by x̄1(k) and thus also

converges to zero exponentially. This completes the proof.

Remark 2: When E = I and all the subsystems are Schur stable, the condition of Theorem

1 actually requires a common positive definite matrix P satisfying AT
i PAi − P < 0 for ∀i ∈

I , which is exactly the existing stability condition for switched linear systems composed of

x(k + 1) = Aix(k) under arbitrary switching [12]. Thus, Theorem 1 is an extension of the

existing result for switched linear state space subsystems in discrete-time domain.

Remark 3: It can be seen from the proof of Theorem 1 that x̄T
1 P11x̄1 is a common quadratic

Lyapunov function for all the subsystems (4.16). Since the exponential convergence of x̄1

results in that of x̄2, we can regard x̄T
1 P11 x̄1 as a common quadratic Lyapunov function for the

whole switched system. In fact, this is rationalized by the following equation.

xT ETPiEx = (N−1x)T(MEN)T(M−TPi M
−1)(MEN)(N−1x)

=

[
x̄1

x̄2

]T [
Ir 0

0 0

] [
P11 Pi

12

(Pi
12)

T Pi
22

] [
Ir 0

0 0

] [
x̄1

x̄2

]

= x̄T
1 P11x̄1 (4.18)

Therefore, although ETPiE is not positive definite and neither is V(x) = xT ETPiEx, we can

regard this V(x) as a common quadratic Lyapunov function for all the descriptor subsystems

in discrete-time domain.

Remark 4: The LMI conditions (4.1)-(4.3) include a nonstrict matrix inequality, which may not

be easy to solve using the existing LMI Control Toolbox in Matlab. As a matter of fact, the

proof of Theorem 1 suggested an alternative method for solving it in the framework of strict

LMIs: (a) decompose E as in (4.4) using nonsingular matrices M and N; (b) compute MAiN

for ∀i ∈ I as in (4.9); (c) solve the strict LMIs (4.11) for ∀i ∈ I simultaneously with respect to

P11 > 0, Pi
12 and Pi

22; (d) compute the original Pi with Pi = MT

[
P11 Pi

12

(Pi
12)

T Pi
22

]
M.

Although we assumed in the above that the descriptor matrix is the same for all the

subsystems (as mentioned in Remark 1), it can be seen from the proof of Theorem 1 that what

we really need is the equation (4.4). Therefore, Theorem 1 can be extended to the case where

the subsystem descriptor matrices are different as in the following corollary.

Corollary 1: Consider the switched system composed of N linear descriptor subsystems

Eix(k + 1) = Aix(k) , (4.19)
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Again, we obtain from (4.3) that

(NTET MT)(M−TPi M
−1)(MEN) = (NTET MT)(M−TPjM

−1)(MEN) , (4.7)

and thus [
Pi

11 0

0 0

]
=

[
P

j
11 0

0 0

]
(4.8)

which leads to Pi
11 = P

j
11, ∀i, j ∈ I . From now on, we let Pi

11 = P11 for notation simplicity.

Next, let

MAiN =

[
Āi

11 Āi
12

Āi
21 Āi

22

]
(4.9)

and substitute it into the equivalent inequality of (4.2) as

(NT AT
i MT)(M−TPi M

−1)(MAiN)− (NT ET MT)(M−TPiM
−1)(MEN) < 0 (4.10)

to reach [
Λ11 Λ12
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12 Λ22

]
< 0 , (4.11)

where

Λ11 = (Āi
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TP11 Āi
11 − P11 + (Āi

21)
T(Pi
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T Āi

11 + (Āi
11)

TPi
12 Āi

21 + (Āi
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TPi
22 Āi
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Λ12 = (Āi
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TP11 Āi
12 + (Āi

11)
TPi

12 Āi
22 + (Āi

21)
T(Pi
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T Āi

12 + (Āi
21)
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22 Āi

22

Λ22 = (Āi
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TP11 Āi
12 + (Āi

22)
T(Pi

12)
T Āi

12 + (Āi
12)

TPi
12 Āi

22 + (Āi
22)

TPi
22 Āi

22 .

(4.12)

At this point, we declare Āi
22 is nonsingular from Λ22 < 0. Otherwise, there is a nonzero

vector v such that Āi
22v = 0. Then, vTΛ22v < 0. However, by simple calculation,

vTΛ22v = vT(Āi
12)

T P11Āi
12v ≥ 0 (4.13)

since P11 is positive definite. This results in a contradiction.

Multiplying the left side of (4.11) by the nonsingular matrix

[
I −(Āi

21)
T(Āi

22)
−T

0 I

]
and the

right side by its transpose, we obtain

[
(Ãi

11)
TP11 Ãi

11 − P11 ∗

(∗)T Λ22

]
< 0 , (4.14)

where Ãi
11 = Āi

11 − Āi
12(Āi

22)
−1 Āi

21.

With the same nonsingular transformation x̄(k) = N−1x(k) = [x̄T
1 (k) x̄T

2 (k)]
T, x̄1(k) ∈ Rr, all

the descriptor subsystems in (3.1) take the form of

x̄1(k + 1) = Āi
11x̄1(k) + Āi

12 x̄2(k)

0 = Āi
21x̄1(k) + Āi

22 x̄2(k) ,
(4.15)
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which is equivalent to

x̄1(k + 1) = Ãi
11 x̄1(k) (4.16)

with x̄2(k) = −(Āi
22)

−1 Āi
21 x̄1(k). It is seen from (4.14) that

(Ãi
11)

TP11 Ãi
11 − P11 < 0 , (4.17)

which means that all Ãi
11’s are Schur stable, and a common positive definite matrix P11 exists

for stability of all the subsystems in (4.16). Therefore, x̄1(k) converges to zero exponentially

under impulse-free arbitrary switching. The x̄2(k) part is dominated by x̄1(k) and thus also

converges to zero exponentially. This completes the proof.

Remark 2: When E = I and all the subsystems are Schur stable, the condition of Theorem

1 actually requires a common positive definite matrix P satisfying AT
i PAi − P < 0 for ∀i ∈

I , which is exactly the existing stability condition for switched linear systems composed of

x(k + 1) = Aix(k) under arbitrary switching [12]. Thus, Theorem 1 is an extension of the

existing result for switched linear state space subsystems in discrete-time domain.

Remark 3: It can be seen from the proof of Theorem 1 that x̄T
1 P11x̄1 is a common quadratic

Lyapunov function for all the subsystems (4.16). Since the exponential convergence of x̄1

results in that of x̄2, we can regard x̄T
1 P11 x̄1 as a common quadratic Lyapunov function for the

whole switched system. In fact, this is rationalized by the following equation.

xT ETPiEx = (N−1x)T(MEN)T(M−TPi M
−1)(MEN)(N−1x)

=

[
x̄1

x̄2

]T [
Ir 0

0 0

] [
P11 Pi

12

(Pi
12)

T Pi
22

] [
Ir 0

0 0

] [
x̄1

x̄2

]

= x̄T
1 P11x̄1 (4.18)

Therefore, although ETPiE is not positive definite and neither is V(x) = xT ETPiEx, we can

regard this V(x) as a common quadratic Lyapunov function for all the descriptor subsystems

in discrete-time domain.

Remark 4: The LMI conditions (4.1)-(4.3) include a nonstrict matrix inequality, which may not

be easy to solve using the existing LMI Control Toolbox in Matlab. As a matter of fact, the

proof of Theorem 1 suggested an alternative method for solving it in the framework of strict

LMIs: (a) decompose E as in (4.4) using nonsingular matrices M and N; (b) compute MAiN

for ∀i ∈ I as in (4.9); (c) solve the strict LMIs (4.11) for ∀i ∈ I simultaneously with respect to

P11 > 0, Pi
12 and Pi

22; (d) compute the original Pi with Pi = MT

[
P11 Pi

12

(Pi
12)

T Pi
22

]
M.

Although we assumed in the above that the descriptor matrix is the same for all the

subsystems (as mentioned in Remark 1), it can be seen from the proof of Theorem 1 that what

we really need is the equation (4.4). Therefore, Theorem 1 can be extended to the case where

the subsystem descriptor matrices are different as in the following corollary.

Corollary 1: Consider the switched system composed of N linear descriptor subsystems

Eix(k + 1) = Aix(k) , (4.19)
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where Ei is the descriptor matrix of the ith subsystem and all the other notations are the same

as before. Assume that all the descriptor matrices have the same rank r and there are common

nonsingular matrices M and N such that

MEi N =

[
Ir 0

0 0

]
, ∀i ∈ I . (4.20)

Then, the switched system (4.19) is stable under impulse-free arbitrary switching if there are

symmetric nonsingular matrices Pi ∈ Rn×n (i = 1, · · · ,N ) satisfying for ∀i ∈ I

ET
i PiEi ≥ 0 , AT

i Pi Ai − ET
i PiEi < 0 (4.21)

and furthermore

ET
i PiEi = ET

j PjEj , ∀i, j ∈ I , i �= j . (4.22)

4.2 Relation with existing commutation condition
In this subsection, we consider the relation of Theorem 1 with the existing commutation

condition proposed in [17].

Lemma 2:([17]) If all the descriptor subsystems are stable, and furthermore the matrices E,

A1, · · · , AN are commutative pairwise, then the switched system is stable under impulse-free

arbitrary switching.

The above lemma establishes another sufficient condition for stability of switched linear

descriptor systems in the name of pairwise commutation. It is well known [12] that in the

case of switched linear systems composed of the state space subsystems

x(k + 1) = Aix(k) , i ∈ I , (4.23)

where all subsystems are Schur stable and the subsystem matrices commute pairwise (Ai Aj =
Aj Ai, ∀i, j ∈ I), there exists a common positive definite matrix P satisfying

AT
i PAi − P < 0 . (4.24)

One then tends to expect that if the commutation condition of Lemma 2 holds, then a common

quadratic Lyapunov function V(x) = xT ETPiEx should exist satisfying the condition of

Theorem 1. This is exactly established in the following theorem.

Theorem 2: If all the descriptor subsystems in (3.1) are stable, and furthermore the matrices

E, A1, · · · , AN are commutative pairwise, then there are nonsingular symmetric matrices Pi’s

(i = 1, · · · ,N ) satisfying (4.1)-(4.3), and thus the switched system is stable under impulse-free

arbitrary switching.

Proof: For notation simplicity, we only prove the case of N = 2. Since (E, A1) is stable,

according to Lemma 1, there exist two nonsingular matrices M, N such that

MEN =

[
Ir 0

0 0

]
, MA1N =

[
Λ1 0

0 In−r

]
(4.25)
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where Λ1 is a Schur stable matrix. Here, without causing confusion, we use the same notations

M, N as before. Defining

N−1M−1 =

[
W1 W2

W3 W4

]
(4.26)

and substituting it into the commutation condition EA1 = A1E with

(MEN)(N−1M−1)(MA1N) = (MA1N)(N−1M−1)(MEN) , (4.27)

we obtain
[

W1Λ1 W2

0 0

]
=

[
Λ1W1 0

W3 0

]
. (4.28)

Thus, W1Λ1 = Λ1W1, W2 = 0, W3 = 0.

Now, we use the same nonsingular matrices M, N for the transformation of A2 and write

MA2N =

[
Λ2 X1

X2 X

]
. (4.29)

According to another commutation condition EA2 = A2E,

[
W1Λ2 W1X1

0 0

]
=

[
Λ2W1 0

X2W1 0

]
(4.30)

holds, and thus W1Λ2 = Λ2W1, W1X1 = 0, X2W1 = 0. Since NM is nonsingular and W2 =
0, W3 = 0, W1 has to be nonsingular. We obtain then X1 = 0, X2 = 0. Furthermore, since

(E, A2) is stable, Λ2 is Schur stable and X has to be nonsingular.

The third commutation condition A1 A2 = A2 A1 results in

[
Λ1W1Λ2 0

0 W4X

]
=

[
Λ2W1Λ1 0

0 XW4

]
. (4.31)

We have Λ1W1Λ2 = Λ2W1Λ1. Combining with W1Λ1 = Λ1W1, W1Λ2 = Λ2W1, we obtain

that

W1Λ1Λ2 = Λ1W1Λ2 = Λ2W1Λ1 = W1Λ2Λ1 (4.32)

which implies Λ1 and Λ2 are commutative (Λ1Λ2 = Λ2Λ1) since W1 is nonsingular.

To summarize the above discussion, we get to

MA2N =

[
Λ2 0

0 X

]
, (4.33)

where Λ2 is Schur stable, X is nonsingular, and Λ1Λ2 = Λ2Λ1. According to the existing result

[12], there is a common positive definite matrix P11 satisfying ΛT
i P11Λi − P11 < 0, i = 1, 2.

Then, with the definition

P1 = P2 = MT

[
P11 0

0 −I

]
M , (4.34)
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where all subsystems are Schur stable and the subsystem matrices commute pairwise (Ai Aj =
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One then tends to expect that if the commutation condition of Lemma 2 holds, then a common

quadratic Lyapunov function V(x) = xT ETPiEx should exist satisfying the condition of

Theorem 1. This is exactly established in the following theorem.

Theorem 2: If all the descriptor subsystems in (3.1) are stable, and furthermore the matrices

E, A1, · · · , AN are commutative pairwise, then there are nonsingular symmetric matrices Pi’s

(i = 1, · · · ,N ) satisfying (4.1)-(4.3), and thus the switched system is stable under impulse-free

arbitrary switching.

Proof: For notation simplicity, we only prove the case of N = 2. Since (E, A1) is stable,

according to Lemma 1, there exist two nonsingular matrices M, N such that

MEN =

[
Ir 0

0 0

]
, MA1N =

[
Λ1 0

0 In−r

]
(4.25)
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where Λ1 is a Schur stable matrix. Here, without causing confusion, we use the same notations

M, N as before. Defining

N−1M−1 =

[
W1 W2

W3 W4

]
(4.26)

and substituting it into the commutation condition EA1 = A1E with

(MEN)(N−1M−1)(MA1N) = (MA1N)(N−1M−1)(MEN) , (4.27)

we obtain
[

W1Λ1 W2

0 0

]
=

[
Λ1W1 0

W3 0

]
. (4.28)

Thus, W1Λ1 = Λ1W1, W2 = 0, W3 = 0.

Now, we use the same nonsingular matrices M, N for the transformation of A2 and write

MA2N =

[
Λ2 X1

X2 X

]
. (4.29)

According to another commutation condition EA2 = A2E,

[
W1Λ2 W1X1

0 0

]
=

[
Λ2W1 0

X2W1 0

]
(4.30)

holds, and thus W1Λ2 = Λ2W1, W1X1 = 0, X2W1 = 0. Since NM is nonsingular and W2 =
0, W3 = 0, W1 has to be nonsingular. We obtain then X1 = 0, X2 = 0. Furthermore, since

(E, A2) is stable, Λ2 is Schur stable and X has to be nonsingular.

The third commutation condition A1 A2 = A2 A1 results in

[
Λ1W1Λ2 0

0 W4X

]
=

[
Λ2W1Λ1 0

0 XW4

]
. (4.31)

We have Λ1W1Λ2 = Λ2W1Λ1. Combining with W1Λ1 = Λ1W1, W1Λ2 = Λ2W1, we obtain

that

W1Λ1Λ2 = Λ1W1Λ2 = Λ2W1Λ1 = W1Λ2Λ1 (4.32)

which implies Λ1 and Λ2 are commutative (Λ1Λ2 = Λ2Λ1) since W1 is nonsingular.

To summarize the above discussion, we get to

MA2N =

[
Λ2 0

0 X

]
, (4.33)

where Λ2 is Schur stable, X is nonsingular, and Λ1Λ2 = Λ2Λ1. According to the existing result

[12], there is a common positive definite matrix P11 satisfying ΛT
i P11Λi − P11 < 0, i = 1, 2.

Then, with the definition

P1 = P2 = MT

[
P11 0

0 −I

]
M , (4.34)

345Stability and L2 Gain Analysis of Switched Linear Discrete-Time Descriptor Systems



it is easy to confirm that

(MEN)T(M−TPi M
−1)(MEN) =

[
P11 0

0 0

]
≥ 0 (4.35)

and
(MA1N)T(M−TP1M−1)(MA1N)− (MEN)T(M−TP1M−1)(MEN)

=

[
ΛT

1 P11Λ1 − P11 0

0 −I

]
< 0 ,

(MA2N)T(M−TP2M−1)(MA2N)− (MEN)T(M−TP2M−1)(MEN)

=

[
ΛT

2 P11Λ2 − P11 0

0 −XTX

]
< 0 .

(4.36)

Since P11 is common for i = 1, 2 and N is nonsingular, (4.35) and (4.36) imply that the matrices

in (4.34) satisfy the conditions (4.1)-(4.3).

It is observed from (4.34) that when the conditions of Theorem 2 hold, we can further choose

P1 = P2, which certainly satisfies (4.3). Since the actual Lyapunov function for the stable

descriptor system Ex[k + 1] = Aix[k] takes the form of V(x) = xTETPiEx (as mentioned

in Remark 3), the commutation condition is more conservative than the LMI condition in

Theorem 1. However, we state for integrity the above observation as a corollary of Theorem

2.

Corollary 2: If all the descriptor subsystems in (3.1) are stable, and furthermore the matrices

E, A1, · · · , AN are commutative pairwise, then there is a nonsingular symmetric matrix P

satisfying

ETPE ≥ 0 (4.37)

AT
i PAi − ETPE < 0 , (4.38)

and thus the switched system is stable under impulse-free arbitrary switching.

5. L2 gain analysis

In this section, we extend the discussion of stability to L2 gain analysis fro the switched linear

descriptor system under consideration.

Theorem 3: The switched system (3.1) is stable and the L2 gain is less than γ under impulse-free

arbitrary switching if there are nonsingular symmetric matrices Pi ∈ Rn×n satisfying for ∀i ∈
I that

ETPiE ≥ 0 (5.1)
[

AT
i Pi Ai − ETPiE + CT

i Ci AT
i PiBi

BT
i Pi Ai BT

i PiBi − γ2 I

]
< 0 (5.2)

together with (4.3).
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Proof: Since (5.1) is the same as (4.1) and (5.2) includes (4.2), we conclude from Theorem 1 that

the switched descriptor system is exponentially stable under impulse-free arbitrary switching.

What remains is to prove the L2 gain property.

Consider the Lyapunov function candidate V(x) = xT ETPiEx, which is always nonnegative

due to (5.1) and always continuous due to (4.3). Then, on any discrete-time interval where the

i-th subsystem is activated, the difference of V(x) along the system’s trajectories satisfies

V(x(k + 1))− V(x(k)) = xT(k + 1)ETPiEx(k + 1)− xT(k)ETPiEx(k)

= (Ex(k + 1))T Pi(Ex(k + 1))− xT(k)ETPT
i Ex(k)

= (Aix(k) + Biw(k))T Pi(Aix(k) + Biw(k))− xT(k)ETPT
i Ex(k)

=

[
x(k)

w(k)

]T [
AT

i Pi Ai − ETPiE AT
i PiBi

BT
i Pi Ai BT

i PiBi

] [
x(k)

w(k)

]

≤

[
x(k)

w(k)

]T [
−CT

i Ci 0

0 γ2 I

] [
x(k)

w(k)

]

= −zT(k)z(k) + γ2wT(k)w(k) , (5.3)

where the condition (5.2) was used in the inequality.

Now, for an impulse-free arbitrary piecewise constant switching signal and any given k > 0,

suppose k1 < k2 < · · · < kr (r ≥ 1) be the switching points of the switching signal on the

discrete-time interval [0, k). Then, according to (5.3), we obtain

V(x(k + 1))− V(x(k+r )) ≤
k

∑
j=kr

{
−zT(j)z(j) + γ2wT(j)w(j)

}

V(x(k−r ))− V(x(k+r−1)) ≤
kr−1

∑
j=kr−1

{
−zT(j)z(j) + γ2wT(j)w(j)

}

· · ·· · ·· · ·

V(x(k−2 ))− V(x(k+1 )) ≤
k2−1

∑
j=k1

{
−zT(j)z(j) + γ2wT(j)w(j)

}

V(x(k−1 ))− V(x(0)) ≤
k1−1

∑
j=0

{
−zT(j)z(j) + γ2wT(j)w(j)

}
,

(5.4)

where

V(x(k+j )) = lim
k→kj+0

V(x(k)) , V(x(k−j )) = lim
k→kj−0

V(x(k)) . (5.5)

However, due to the condition (4.3), we obtain V(x(k+j )) = V(x(k−j )) at all switching instants.

Therefore, summing up all the inequalities of (5.4) results in

V(x(k + 1))− V(x(0)) ≤
k

∑
j=0

{
−zT(j)z(j) + γ2wT(j)w(j)

}
. (5.6)
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descriptor system Ex[k + 1] = Aix[k] takes the form of V(x) = xTETPiEx (as mentioned

in Remark 3), the commutation condition is more conservative than the LMI condition in

Theorem 1. However, we state for integrity the above observation as a corollary of Theorem
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and thus the switched system is stable under impulse-free arbitrary switching.
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descriptor system under consideration.

Theorem 3: The switched system (3.1) is stable and the L2 gain is less than γ under impulse-free
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where

V(x(k+j )) = lim
k→kj+0

V(x(k)) , V(x(k−j )) = lim
k→kj−0

V(x(k)) . (5.5)
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Since V(x(k + 1)) ≥ 0, we obtain that

k

∑
j=0

zT(j)z(j) ≤ V(x(0)) + γ2
k

∑
j=0

wT(j)w(j) , (5.7)

which implies the L2 gain of the switched system is less than γ.

Remark 5: When E = I, the conditions (5.1)-(5.2) and (4.3) require a common positive definite

matrix P satisfying

[
AT

i Pi Ai − Pi + CT
i Ci AT

i PiBi

BT
i Pi Ai BT

i PiBi − γ2 I

]
< 0 (5.8)

for all ∀i ∈ I , which is the same as in [15]. Thus, Theorem 3 extended the L2 gain analysis

result from switched time space systems to switched descriptor systems in discrete-time

domain. In addition, it can be seen from the proof that V(x) = xT ETPiEx plays the important

role of a common quadratic Lyapunov function for stability and L2 gain γ of all the descriptor

subsystems.

6. Concluding remarks

We have established a unified approach to stabilility and L2 gain analysis for switched linear

discrete-time descriptor systems under impulse-free arbitrary switching. More precisely,

we have shown that if there is a common quadratic Lyapunov function for stability of

all subsystems, then the switched system is stable under impulse-free arbitrary switching.

Furthermore, we have extended the results to L2 gain analysis of the switched descriptor

systems, also in the name of common quadratic Lyapunov function approach. As also

mentioned in the remarks, the common quadratic Lyapunov functions proposed are not

positive definite with respect to all states, but they actually play the role of a Lyapunov

function as in classical Lyapunov stability theory. The approach in this article is unified in

the sense that it is valid for both continuous-time [21] and discrete-time systems, and it takes

almost the same form in both stability and L2 gain analysis.
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1. Introduction 
Switched systems are a class of hybrid systems consisting of several subsystems (modes of 
operation) and a switching rule indicating the active subsystem at each instant of time. In 
recent years, considerable efforts have been devoted to the study of switched system. The 
motivation of study comes from theoretical interest as well as practical applications. 
Switched systems have numerous applications in control of mechanical systems, the 
automotive industry, aircraft and air traffic control, switching power converters, and many 
other fields. The basic problems in stability and design of switched systems were given by 
(Liberzon & Morse, 1999). For recent progress and perspectives in the field of switched 
systems, see the survey papers (DeCarlo et al., 2000; Sun & Ge, 2005). 
The stability analysis and stabilization of switching systems have been studied by a number 
of researchers (Branicky, 1998; Zhai et al., 1998; Margaliot & Liberzon, 2006; Akar et al., 
2006). Feedback stabilization strategies for switched systems may be broadly classified into 
two categories in (DeCarlo et al., 2000). One problem is to design appropriate feedback 
control laws to make the closed-loop systems stable for any switching signal given in an 
admissible set. If the switching signal is a design variable, then the problem of stabilization 
is to design both switching rules and feedback control laws to stabilize the switched 
systems. For the first problem, there exist many results. In (Daafouz et al., 2002), the switched 
Lyapunov function method and LMI based conditions were developed for stability analysis 
and feedback control design of switched linear systems under arbitrary switching signal. 
There are some extensions of (Daafouz et al., 2002) for different control problem (Xie et al., 
2003; Ji et al., 2003). The pole assignment method was used to develop an observer-based 
controller to stabilizing the switched system with infinite switching times (Li et al., 2003). 
It is should be noted that there are relatively little study on the second problem, especially 
for uncertain switched systems. Ji had considered the robust H∞ control and quadratic 
stabilization of uncertain discrete-time switched linear systems via designing feedback 
control law and constructing switching rule based on common Lyapunov function approach 
(Ji et al., 2005). The similar results were given for the robust guaranteed cost control problem 
of uncertain discrete-time switched linear systems (Zhang & Duan, 2007). Based on multiple 
Lyapunov functions approach, the robust H∞ control problem of uncertain continuous-time 
switched linear systems via designing switching rule and state feedback was studied (Ji et 
al., 2004). Compared with the switching rule based on common Lyapunov function 
approach (Ji et al., 2005; Zhang & Duan, 2007), the one based on multiple Lyapunov 



[21] G. Zhai and X. Xu, “A unified approach to analysis of switched linear descriptor systems

under arbitrary switching," in Proceedings of the 48th IEEE Conference on Decision and

Control, Shanghai, China, pp. 3897-3902, 2009.

350 Discrete Time Systems

20 

Robust Stabilization for a Class of Uncertain 
Discrete-time Switched Linear Systems 

Songlin Chen, Yu Yao and Xiaoguan Di 
Harbin Institute of Technology 

P. R. China 

1. Introduction 
Switched systems are a class of hybrid systems consisting of several subsystems (modes of 
operation) and a switching rule indicating the active subsystem at each instant of time. In 
recent years, considerable efforts have been devoted to the study of switched system. The 
motivation of study comes from theoretical interest as well as practical applications. 
Switched systems have numerous applications in control of mechanical systems, the 
automotive industry, aircraft and air traffic control, switching power converters, and many 
other fields. The basic problems in stability and design of switched systems were given by 
(Liberzon & Morse, 1999). For recent progress and perspectives in the field of switched 
systems, see the survey papers (DeCarlo et al., 2000; Sun & Ge, 2005). 
The stability analysis and stabilization of switching systems have been studied by a number 
of researchers (Branicky, 1998; Zhai et al., 1998; Margaliot & Liberzon, 2006; Akar et al., 
2006). Feedback stabilization strategies for switched systems may be broadly classified into 
two categories in (DeCarlo et al., 2000). One problem is to design appropriate feedback 
control laws to make the closed-loop systems stable for any switching signal given in an 
admissible set. If the switching signal is a design variable, then the problem of stabilization 
is to design both switching rules and feedback control laws to stabilize the switched 
systems. For the first problem, there exist many results. In (Daafouz et al., 2002), the switched 
Lyapunov function method and LMI based conditions were developed for stability analysis 
and feedback control design of switched linear systems under arbitrary switching signal. 
There are some extensions of (Daafouz et al., 2002) for different control problem (Xie et al., 
2003; Ji et al., 2003). The pole assignment method was used to develop an observer-based 
controller to stabilizing the switched system with infinite switching times (Li et al., 2003). 
It is should be noted that there are relatively little study on the second problem, especially 
for uncertain switched systems. Ji had considered the robust H∞ control and quadratic 
stabilization of uncertain discrete-time switched linear systems via designing feedback 
control law and constructing switching rule based on common Lyapunov function approach 
(Ji et al., 2005). The similar results were given for the robust guaranteed cost control problem 
of uncertain discrete-time switched linear systems (Zhang & Duan, 2007). Based on multiple 
Lyapunov functions approach, the robust H∞ control problem of uncertain continuous-time 
switched linear systems via designing switching rule and state feedback was studied (Ji et 
al., 2004). Compared with the switching rule based on common Lyapunov function 
approach (Ji et al., 2005; Zhang & Duan, 2007), the one based on multiple Lyapunov 



 Discrete Time Systems 

 

352 

functions approach (Ji et al., 2004) is much simpler and more practical, but discrete-time case 
was not considered.  
Motivated by the study in (Ji et al., 2005; Zhang & Duan, 2007; Ji et al., 2004), based on the 
multiple Lyapunov functions approach, the robust control for a class of discrete-time 
switched systems with norm-bounded time-varying uncertainties in both the state matrices 
and input matrices is investigated. It is shown that a state-depended switching rule and 
switched state feedback controller can be designed to stabilize the uncertain switched linear 
systems if a matrix inequality based condition is feasible and this condition can be dealt 
with as linear matrix inequalities (LMIs) if the associated scalar parameters are selected in 
advance. Furthermore, the parameterized representation of state feedback controller and 
constructing method of switching rule are presented. All the results can be considered as 
extensions of the existing results for both switched and non-switched systems. 

2. Problem formulation 
Firstly, we consider a class of uncertain discrete-time switched linear systems described by 

 ( )( )

( ) ( ) ( ) ( )

( )

( 1) ( ) ( ) ( ) ( )

( ) ( )
kk

k k k k

BA

k

x k A A x k B B u k

y k C x k
σσ

σ σ σ σ

σ

+ = + Δ + + Δ⎧
⎪
⎨
⎪ =⎩

 (1) 

where ( ) nx k ∈R  is the state, ( ) mu k ∈R  is the control input, ( ) qy k ∈R  is the measurement 
output and ( ) {1,2, }kσ ∈Ξ = Ν  is a discrete switching signal to be designed. Moreover, 

( )k iσ =  means that the ith subsystem ( , , )i i iA B C  is activated at time k  (For notational 
simplicity, we may not explicitly mention the time-dependence of the switching signal 
below, that is, ( )kσ  will be denoted as σ  in some cases). Here iA , iB  and iC  are constant 
matrices of compatible dimensions which describe the nominal subsystems. The uncertain 
matrices iAΔ  and iBΔ  are time-varying and are assumed to be of the forms as follows. 

 ( )   ( )i ai ai ai i bi bi biA M F k N B M F k NΔ = Δ =  (2) 

where aiM , aiN , biM , biN  are given constant matrices of compatible dimensions which 
characterize the structures of the uncertainties, and the time-varying matrices ( )aiF k  and 

( )biF k  satisfy 

 T T T( ) ( ) , ( ) ( )   ai ai bi biF k F k I F k F k I i≤ ≤ ∀ ∈Ξ  (3) 

where I is an identity matrix. 
We assume that no subsystem can be stabilized individually (otherwise the switching 
problem will be trivial by always choosing the stabilized subsystem as the active 
subsystem). The problem being addressed can be formulated as follows: 
For the uncertain switched linear systems (1), we aim to design the switched state feedback 
controller 

 ( ) ( )u k K x kσ=  (4) 

and the state-depended switching rule ( ( ))x kσ  to guarantee the corresponding closed-loop 
switched system 

Robust Stabilization for a Class of Uncertain Discrete-time Switched Linear Systems   

 

353 

 ( 1) [ ( ) ] ( )x k A A B B K x kσ σ σ σ σ+ = + Δ + + Δ  (5) 

is asymptotically stable for all admissible uncertainties under the constructed switching 
rule. 

3. Main results 
In order to derive the main result, we give the two main lemmas as follows. 
Lemma 1: (Boyd, 1994) Given any constant ε  and any matrices ,M N  with compatible 
dimensions, then the matrix inequality 

1T T T T TMFN N F M MM N Nε ε −+ < +  

holds for the arbitrary norm-bounded time-varying uncertainty F  satisfying TF F I≤ . 
Lemma 2: (Boyd, 1994) (Schur complement lemma) Let , ,S P Q  be given matrices such that 

,T TQ Q P P= = , then 

10 0, 0.
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A sufficient condition for existence of such controller and switching rule is given by the 
following theorem. 
Theorem 1: The closed-loop system (5) is asymptotically stable when 0i iA BΔ = Δ =  if there 
exist symmetric positive definite matrices n n

iX ×∈R , matrices n n
iG ×∈R , m n

iY ×∈R , scalars 
0iε > ( )i∈Ξ  and scalars 0ijλ <  ( , , 1)iii j λ∈Ξ = −   such that 
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∑

i∀ ∈Ξ  (6) 

is satisfied (∗ denotes the corresponding transposed block matrix due to symmetry), then 
the state feedback gain matrices can be given by (4) with 

 1
i i iK Y G−=  (7) 

and the corresponding switching rule is given by 

 T 1( ( )) arg min{ ( ) ( )}ii
x k x k X x kσ −

∈Ξ
=  (8) 

Proof. Assume that there exist , , ,i i i iG X Y ε  and ijλ  such that inequality (6) is satisfied.  
By the symmetric positive definiteness of matrices iX , we get  

T 1( ) ( ) 0i i i i iG X X G X−− − ≥  
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x k x k X x kσ −

∈Ξ
=  (8) 

Proof. Assume that there exist , , ,i i i iG X Y ε  and ijλ  such that inequality (6) is satisfied.  
By the symmetric positive definiteness of matrices iX , we get  

T 1( ) ( ) 0i i i i iG X X G X−− − ≥  
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which is equal to 
 

T 1 T
i i i i i iG X G G G X− ≥ + −  

 

It follows from (6) and 0ijλ <  that 
 

 

T 1 * *

* 0
0

ij i i i
j

i i i i i

i i

G X G

A G B Y X

λ −

∈Ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥

+ − <⎢ ⎥
⎢ ⎥Γ Φ⎢ ⎥
⎣ ⎦

∑
 (9) 

 

where [ ]T, ,i i i iG G GΓ = , { }1 1 2 2 ( 1) 1 ( 1) 1diag 1/ ,1/ , ,1/ ,1/ , ,1/i i i i i i i i i iN NX X X X Xλ λ λ λ λ− − + +Φ =  

Pre- and post- multiplying both sides of inequality (9) by 1 Tdiag{ , , }iG I I−  and 1diag{ , , }iG I I− , 
we get 
 

 

1 * *

* 0
0

ij i
j

i i i i

i i

X

A B K X

λ −

∈Ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥

+ − <⎢ ⎥
⎢ ⎥Π Φ⎢ ⎥
⎣ ⎦

∑
 (10) 

 

where [ ]T, ,i I I IΠ = . 
By virtue of the properties of the Schur complement lemma, inequality (10) is equal to  
 

 
1 1 --1

,
( ) *

0
i ij i j

j j i

i i i i

X X X

A B K X

λ− −

∈Ξ ≠

⎡ ⎤− + −
⎢ ⎥ <⎢ ⎥

+ −⎢ ⎥⎣ ⎦

∑
 (11) 

 

Letting 1
i iP X−= and applying Schur complement lemma again yields 

 

 T

,
( ) ( ) ( ) 0i i i i i i i i ij i j

j j i
A B K P A B K P P Pλ

∈Ξ ≠
+ + − + − <∑  (12) 

 

Since 1( )i iP X i−= ∀ ∈Ε , the switching rule (8) can be rewritten as 
 

 T( ( )) arg min{ ( ) ( )}.ii
x k x k P x kσ

∈Ξ
=  (13) 

By (13), ( )k iσ = implies that  

 ( )( ) ( ) 0,       , .T
i jx k P P x k j j i− ≤ ∀ ∈Ξ ≠  (14) 

Multiply the above inequalities by negative scalars ijλ for each ,j j i∈Ξ ≠ and sum to get 

 T

,
( ) ( ) ( ) 0ij i j

j j i
x k P P x kλ

∈Ξ ≠

⎡ ⎤
− ≥⎢ ⎥

⎢ ⎥⎣ ⎦
∑  (15) 
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Associated with the switching rule (13), we take the multiple Lyapunov functions ( ( ))V x k  
as 

 ( ) ( )( ( )) ( ) ( )T
k kV x k x k P x kσ σ=  (16) 

then the difference of ( ( ))V x k  along the solution of the closed-loop switched system (5) is 

T T
( 1) ( )( ( 1)) ( ( )) ( 1) ( 1) ( ) ( )k kV V x k V x k x k P x k x k P x kσ σ+Δ = + − = + + −  

At non-switching instant, without loss of generality, letting ( 1) ( ) ( )k k i iσ σ+ = = ∈Ξ , and 
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 T T T T( 1) ( 1) ( ) ( ) ( 1) ( 1) ( ) ( ) 0j i i iV x k P x k x k P x k x k P x k x k Px kΔ = + + − ≤ + + − ≤  (18) 

It follows from (17) and (18) that 0VΔ <  holds. In virtue of multiple Lyapunov functions 
technique (Branicky, 1998), the closed-loop system (5) is asymptotically. This concludes the 
proof. 
Remark 1: If the scalars ijλ  are selected in advance, the matrices inequalities (19) can be 
converted into LMIs with respect to other unknown matrices variables, which can be 
checked with efficient and reliable numerical algorithms available. 
Theorem 2: The closed-loop system (5) is asymptotically stable for all admissible 
uncertainties if there exist symmetric positive definite matrices n n

iX ×∈R , matrices 
m n

iG ×∈R , m n
iY ×∈R , scalars 0iε > ( )i∈Ξ  and scalars 0ijλ < ( , , 1)iii j λ∈Ξ = −  such that 

 

T

1
1 1

1
2 2

1

( ) * * * * * *

* * * * *
0 * * * *
0 0 * * * 0
0 0 0 * *

0 0 0 0 *
*

0 0 0 0 0 0

ij i i i
j

i i i i i

ai i i

bi i i

i i

i i

i iN N

G G X

A G B Y
N G I
N Y I

G X

G X

G X

λ

ε
ε

λ

λ

λ

∈Ξ

−

−

−

⎡ ⎤+ −
⎢ ⎥
⎢ ⎥

+ Θ⎢ ⎥
⎢ ⎥−⎢ ⎥

−⎢ ⎥ <⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

i∀ ∈Ξ  (19) 

is satisfied, where 

T T[ ]i i i ai ai bi biX M M M MεΘ = − + + , 

then the state feedback gain matrices can be given by (4) with 

 1
i i iK Y G−=  (20) 
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−

−

−
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⎢ ⎥
⎢ ⎥
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⎢ ⎥−⎢ ⎥

−⎢ ⎥ <⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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and the corresponding switching rule is given by 

 T 1( ( )) arg min{ ( ) ( )}ii
x k x k X x kσ −

∈Ξ
=  (21) 

Proof. By theorem 1, the closed-loop system (5) is asymptotically stable for all admissible 
uncertainties if that there exist , ,i i iG X Y  and ijλ  such that  

 

T( ) * *

* 0
0

ij i i i
j

i i i i i

i i

G G X

A G B Y

λ
∈Ξ

⎡ ⎤+ −
⎢ ⎥
⎢ ⎥

+ Θ <⎢ ⎥
⎢ ⎥Γ Φ⎢ ⎥
⎢ ⎥⎣ ⎦

∑
 (22) 

where [ ]T, ,i i i iG G GΓ = , 

            { 1 1 2 2diag 1 / ,1 / , ,i i iX Xλ λΦ = ( 1) 1 ( 1) 11 / ,1 / ,i i i i i iX Xλ λ− − + + },1 / iN NXλ , 
which can be rewritten as 

T T T( ) ( ) 0i i i i i i iA M F k N N F k M+ + <  
where 

T( ) * *

* ,
0

ij i i i
j

i i i i i i

i i

G G X

A A G B Y

λ
∈Ξ

⎡ ⎤+ −
⎢ ⎥
⎢ ⎥

= + Θ⎢ ⎥
⎢ ⎥Γ Φ⎢ ⎥
⎣ ⎦

∑
 

0 0
,

0 0
i ai biM M M

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

( ) diag( ( ), ( )),i ai biF k F k F k=   0 0
0 0

ai i
i

bi i

N G
N

N K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

It follows from Lemma 1 and T T( ) ( )i iF t F t I≤  that  

 T T 0i i i i iA M M N N+ + <  (23) 

By virtue of the properties of the Schur complement lemma, inequality (19) can be rewritten 
as 

 

T( ) * * * *

* * *
00 * *

0 0 *
0 0 0

ij i i i
j

i i i i i

i i

ai i i

bi i i

G G X

A G B Y

N G I
N Y I

λ

ε
ε

∈Ξ

⎡ ⎤+ −
⎢ ⎥
⎢ ⎥

+ Θ⎢ ⎥
<⎢ ⎥Γ Φ⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

∑

 i∀ ∈Ξ  (24) 

It is obvious that inequality (24)is equal to inequality (19), which finished the proof. 
Let the scalars 0ijλ =  and i jX X X= = , it is easily to obtain the condition for robust stability 
of the closed-loop system (5) under arbitrary switching as follows. 
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Corollary 1: The closed-loop system (5) is asymptotically stable for all admissible 
uncertainties under arbitrary switching if there exist a symmetric positive definite matrix 

n n
iX ×∈R , matrices m n

iG ×∈R , m n
iY ×∈R , scalars 0iε >  and such that 

 

T * * *
* * 0

0 *
0 0

i i i

i i i i i

ai i i

bi i i

G G X
A G B Y

N G I
N Y I

ε
ε

⎡ ⎤− − +
⎢ ⎥

+ Θ⎢ ⎥ <⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

 i∀ ∈Ξ  (25) 

is satisfied, where T T[ ]i i i ai ai bi biX M M M MεΘ = − + + , then the state feedback gain matrices can 
be given by (4) with  

 1
i i iK Y G−=  (26) 

4. Example 
Consider the uncertain discrete-time switched linear system (1) with N =2. The system 
matrices are given by 

1 1 1
1.5 1.5 1 0.5

, , ,
0 1.2 0 0.2aA B M

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

    [ ] [ ]1 1 1
0.3

0.4 0.2 , , 0.2 ,
0.4a b bN M N
⎡ ⎤

= = =⎢ ⎥
⎣ ⎦

 

2 2 2
1.2 0 0 0.3

, , ,
0.6 1.2 1 0.4aA B M
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

    [ ] [ ]2 2 2
0.3

0.3 0.2 , , 0.1 .
0.3a b bN M N
⎡ ⎤

= = =⎢ ⎥
⎣ ⎦

 

Obviously, the two subsystems are unstable, and it is easy to verify that neither subsystem 
can be individually stabilized via state feedback for all admissible uncertainties. Thus it is 
necessary to design both switching rule and feedback control laws to stabilize the uncertain 
switched system. Letting 12 10λ = − and 21 10λ = − , the inequality (19) in Theorem 1 is 
converted into LMIs. Using the LMI control toolbox in MATLAB, we get 

1 2
41.3398 8.7000 38.1986 8.6432

,
8.7000 86.6915 8.6432 93.8897

X X
− −⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
 

1 1
41.3415 8.6656 51.2846

, ,
8.7540 86.4219 26.5670

T

G Y
− −⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
 

2 2
38.1665 8.6003 44.3564

, ,
8.6186 93.6219 54.4478

T

G Y
− −⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
 

1 156.6320, 24.3598ε ε= =  

With 1
i i iK Y G−= , the switched state feedback controllers are 

[ ] [ ]1 21.4841 1.1505 , 1.0527 0.4849 .K K= − − = −  
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It is obvious that neither of the designed controllers stabilizes the associated subsystem. 
Letting that the initial state is 0 [ 3,2]x = −  and the time-varying uncertain 

( ) ( ) ( )ia ibF k F k f k= = ( 1,2)i =  as shown in Figure 1 is random number between -1 and 1, the 
simulation results as shown in Figure 2, 3 and 4 are obtained, which show that the given 
uncertain switched system is stabilized under the switched state feedback controller 
together with the designed switching rule. 
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matrix inequality technique. By the introduction of additional matrices, a new condition 
expressed in terms of matrices inequalities for the existence of a state-based switching 
strategy and state feedback control law is derived. If some scalars parameters are selected in 
advance, the conditions can be dealt with as LMIs for which there exists efficient numerical 
software available. All the results can be easily extended to other control problems 
( 2 ,H H∞ control, etc.). 
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1. Introduction 
Multitone modulations are today frequently used modulation techniques that enable 
optimum utilization of the frequency band provided on non-ideal transmission carrier 
channel (Bingham, 2000). These modulations are used with especially in data transmission 
systems in access networks of telephone exchanges in ADSL (asymmetric Digital Subscriber 
Lines) and VDSL (Very high-speed Digital Subscriber Lines) transmission technologies, in 
systems enabling transmission over power lines - PLC (Power Line Communication), in 
systems for digital audio broadcasting (DAB) and digital video broadcasting (DVB) [10]. 
And, last but not least, they are also used in WLAN (Wireless Local Area Network) 
networks according to IEEE 802.11a, IEEE 802.11g, as well as in the new WiMAX technology 
according to IEEE 802.16. This modulation technique makes use of the fact that when the 
transmission band is divided into a sufficient number of parallel subchannels, it is possible 
to regard the transmission function on these subchannels as constant. The more subchannels 
are used, the more the transmission function approximates ideal characteristics (Bingham, 
2000). It subsequently makes equalization in the receiver easier. However, increasing the 
number of subchannels also increases the delay and complication of the whole system. The 
dataflow carried by individual subchannels need not be the same and the number of bytes 
carried by one symbol in every subchannel is set such that it maintains a constant error rate 
with flat power spectral density across the frequency band used. The mechanism of 
allocating bits to the carriers is referred to as bit loading algorithm. The resulting bit-load to 
the carriers thus corresponds to an optimum distribution of carried information in the 
provided band at a minimum necessary transmitting power.  
In all the above mentioned systems the known and well described modulation DMT 
(Discrete MultiTone) (Bingham, 2000) or OFDM (Orthogonal Frequency Division 
Multiplexing) is used. As can be seen, the above technologies use a wide spectrum of 
transmission media, from metallic twisted pair in systems ADSL and VDSL, through radio 
channel in WLAN and WiMAX to power lines in PLC systems.   
Using multitone modulation, in this case DMT and OFDM modulations, with adaptive bit 
loading across the frequency band efficient data transmission is enabled on higher 
frequencies than for which the transmission medium was primarily designed (xDSL, PLC) 
and it is impossible therefore to warrant here its transfer characteristics. In terrestrial 
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transmission the relatively long symbol duration allows effective suppression of the 
influence of multi-path signal propagation (DAB, DVB, WiMAX, WLAN).  
Unfortunately, DMT and OFDM modulation ability will fail to enable quite an effective 
utilization of transmission channels with specially formed spectral characteristic with sharp 
transients, which is a consequence of individual subchannel frequency characteristic in the 
form of sinc function. It is also the reason for the transmission rate loss on channels with the 
occurrence of narrow-band noise disturbance, both metallic and terrestrial. Moreover, multi-
path signal propagation suppression on terrestrial channels is achieved only when the delay 
time is shorter than symbol duration. For these reasons the available transmission rate is 
considerably limited in these technologies.  
Alternative modulation techniques are therefore ever more often sought that would remove 
the above described inadequacies. The first to be mentioned was the DWMT modulation 
(Discrete Wavelet MultiTone) (Sandberg & Tzanes, 1995). This technique using the FWT 
(Fast Wavelet Transform) transform instead of the FFT transform in DMT or OFDM enabled 
by changing the carrier shape and reducing the sinc function side lobes from - 13 dB to - 45 
dB a reduction of the influence of some of the above limitations. The main disadvantage of 
DWMT was the necessity to modulate carriers with the help of one-dimensional Pulse-
Amplitude Modulation (PAM) instead of two-dimensional QAM, as with the DMT or 
OFDM system, i.e. a complex number implementing the QAM modulator bank. Another 
drawback was the high computational complexity.  
Another modulation method, which is today often mentioned, is the filter bank modulation, 
referred to as FMT (Filtered MultiTone or Filter bank MultiTone) (Cherubini et al.2000). 
FMT modulation represents a modulation technique using filter banks to divide the 
frequency spectrum. The system input is complex symbols, obtained with the help of QAM 
modulation, similar to classical DMT. The number of bits allocated to individual carriers is 
also determined during the transmission initialization according to the levels of interference 
and attenuation for the given channel, the same as with DMT. By upsampling the input 
signals their spectra will be periodized; subsequent filtering will select the part which will 
be transmitted on the given carrier. The filters in individual branches are frequency-shifted 
versions of the filter in the first branch, the so-called prototype filter – the lowpass filter 
(Cherubini et al.2000). Thanks to the separation of individual subchannel spectra, the 
interchannel interferences, ICI, are, contrary to the DMT, severely suppressed, down to a 
level comparable with the other noise. On the other hand, the intersymbol interferences, ISI, 
occur on every subchannel, event if the transmission channel is ideal (Benvenuto et al., 
2002). Therefore, it is necessary to perform an equalization of not only the transmission 
channel but also the filters. This equalization may be realized completely in the frequency 
domain. FMT also facilitates the application of frequency division duplex, because there is 
no power emission from one channel into another. 

2. DMT and OFDM modulations 
A signal transmitted by DMT or OFDM modulator can be described as shown by equation: 
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In DMT modulation, N - 1 is the number of carriers and so 2N is the number of samples in 
one symbol, k is the ordinal number of symbol, i is the carrier index, and Xik is the QAM 
symbol of ith carrier of kth symbol. In OFDM modulation all 2N carriers are modulated 
independently, and so the output signal x(t) is complex. The symbols are shaped by 
a rectangular window h(n), therefore the spectrum of each carrier is a sinc(f) function. The 
individual carriers are centred at frequencies fi and mutually overlapped. The transmission 
through the ideal channel enables a perfect demodulation of the DMT or OFDM signal on 
the grounds of the orthogonality between the individual carriers, which is provided by the 
FFT transformation.   
However, the transmission through non-ideal channels, mentioned in the first section, leads 
to the loss of orthogonality and to the occurrence of Inter-Symbol (ISI) and Inter-Carrier 
Interferences (ICI). To suppress the effect of the non-ideal channel, time intervals of duration 
TCP (so-called cyclic prefixes) are inserted between individual blocks in the transmitted data 
flow in the transmitter. The cyclic prefix (CP) is generated by copying a certain number of 
samples from the end of next symbol. In the receiver the impulse response of the channel is 
reduced by digital filtering, called Time domain EQualizer (TEQ), so as not to exceed the 
length of this cyclic prefix. The cyclic prefix is then removed. This method of transmission 
channel equalisation in the DMT modulation is described in [6]. 
The spectrum of the carriers is a sinc(f) function and so the out-of-transmitted-band emission 
is much higher. There is a problem with the duplex transmission realisation by Frequency 
dividing multiplex (FDM) and with the transmission medium shared by another 
transmission technology. Figure 1 shows an example of ADSL technology. In ADSL2+ the 
frequency band from 7th to 31st carrier is used by the upstream channel and from 32nd to 
511th carriers by the downstream channel. The base band is used by the plain old telephone 
services (POTS). 
In ADSL, the problem with out-of-transmitted-band emission is solved by digital filtering of 
the signal transmitted using digital IIR filters. The out-of-transmitted-band emission is 
reduced (see Fig. 1.), but this filtering participates significantly in giving rise to ICI and ISI 
interferences. The carriers on the transmission band border are degraded in particular. 
Unfortunately, additional filtering increases the channel equalization complexity, because 
channel with transmit and receive filters creates a band-pass filter instead of low-pass filter. 
The difficulty is greater in upstream direction especially for narrow band reason. Therefore, 
a higher order of TEQ filter is used and the signal is sampled with two-times higher 
frequency compared to the sampling theorem. Also, when narrow-band interference 
appears in the transmission band, it is not only the carriers corresponding to this band that 
are disturbed but also a whole series of neighbouring carriers. 
The above disadvantages lead to a suboptimal utilization of the transmission band and to a 
reduced data rate. This is the main motivation for designing a new realisation of the MCM 
modulation scheme. Recently, a filter bank realisation of MCM has been the subject of 
discussion. This method is called Filtered MultiTone modulation (FMT). 
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Fig. 1. SNR comparison of upstream and part of downstream frequency bands of ADSL2+ 
technology with and without additional digital filtering. PSD= -40 dBm/Hz, AWGN=-110 
dBm/Hz and -40 dB hybrid suppression. 

3. Filtered multitone modulation 
This multicarrier modulation realization is sometimes called Filter bank Modulation 
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a critically sampled filter bank. The critically sampled filter bank, where the upsampling 
factor is equal to the size of filter bank 2N, can be realized efficiently with the help of the 
FFT algorithm, which will be described later. More concretely, the filter bank is non-critical, 
if the upsampling factor is higher than the size of filter bank (2N). 
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The output signal x(n) of the FMT transmitter given in Fig. 2 can be described using relation: 
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The polyphase FIR filters with the impulse response hi(n) are the frequency-shifted versions 
of low pass filter with impulse response h(n), called prototype filter: 
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In equation (3) h(n) is the impulse response of  the prototype FIR filter. The order of this 
filter is 2γΝ, where γ is the overlapping factor in the time domain. 
For a perfect demodulation of received signal after transmission through the ideal channel 
the prototype filter must be designed such that for the polyphase filters the condition hold, 
which is expressed by the equation: 
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for 0 ≤ i, i′ ≤ 2N – 1  and   k = …, –1, 0, 1, … 
In equation (4) δi is the Kronecker delta function. The equation defining the orthogonality 
between the polyphase filters is a more general form of the Nyquist criterion (Cherubini et 
al.2000). For example, condition (4) of perfect reconstruction is satisfied in the case of DMT 
modulation, given in equation (1), because the sinc spectrums of individual carriers have 
zero-values for the rest of corresponding carriers. The ideal frequency characteristic of the 
prototype filter to realize a non-overlapped FMT modulation system is given by the 
equation (5). 
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The prototype filter can be designed by the sampling the frequency characteristic (5) and 
applying the optimal window. Figure 3 shows the spectrum of an FMT modulation system 
for γ = 10. The prototype filter was designed with the help of the Blackmen window. 
Suitable windows enabling the design of orthogonal filter bank are e.g. the Blackman 
window, Blackmanharris window, Hamming window, Hann window, flattop window and 
Nuttall window. Further examples of the prototype filter design can be found in (Cherubini 
et al., 2000)  and (Berenguer & Wassel, 2002). 
The FMT realization of N – 1 carriers modulation system according to Fig. 4 needs 2N FIR 
filters with real coefficients of the order of 2γN. In (Berenguer & Wassel, 2002) a realization 
of FMT transmitter using the FFT algorithm is described. This realization is shown in Fig. 4. 
In comparison with DMT modulation, each output of IFFT is filtered additionally by an FIR 
filter hi(m) of the order of γ. The coefficient of the hi(m) filter can be determined from the 
prototype filter h(n) of the order of 2γN:  

 ( ) ( )2ih m h mN i= +  (6) 
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Fig. 3. FMT spectrum for γ = 10 and Blackman window. 
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The principle of FMT signal demodulation can be seen in fig 5. Since the individual carriers 
are completely separated, no ICI interference occurs. Equalization to minimize ISI 
interference can be performed in the frequency domain without the application of cyclic 
prefix (Benvenuto et al., 2002). Duplex transmission can be solved by both FDM and EC, 
without any further filtering, which is the case of DMT. If a part of the frequency band is 
shared (EC duplex method), the echo cancellation can be realized easily in the frequency 
domain. 

4. Overlapped FMT modulation 
The FMT modulation type mentioned in the previous section can be called non-overlapped 
FMT modulation. The individual carriers are completely separated and do not overlap each 
other. FMT realization of multicarrier modulation offers a lot of advantages, as mentioned in 
the preceding chapter. In particular, the frequency band provided is better utilized in the 
border parts of the spectrum designed for individual transmission directions, where in the 
case of DMT there are losses in the transmission rate. The out-of-transmission-band 
emission is eliminated almost completely. If we use the EC duplex method, the simpler 
suppression of echo signal enables sharing a higher frequency band. A disadvantage of FMT 
modulation is the increase in transmission delay, which increases with the filter order γ. The 
FMT transmission delay is minimally γ times higher than the transmission delay of a 
comparable DMT system and thus the filter order γ must be chosen as a compromise. The 
suboptimal utilization of provided frequency band in the area between individual carriers 
belongs to other disadvantages of non-overlapped FMT modulation. Individual carriers are 
completely separated, but a part of the frequency band between them is therefore not 
utilized optimally, as shown in Fig. 6. The requirement of closely shaped filters by reason of 
this unused part minimization just leads to the necessity of the high order of polyphase 
filters. 
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Fig. 3. FMT spectrum for γ = 10 and Blackman window. 
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The above advantages and disadvantages of the modulations presented in the previous 
section became the motivation for designing the half subchannel overlapped FMT 
modulation. An example of this overlapped FMT modulation is shown in Fig. 7. As the 
Figure shows, individual carriers overlap one half of each other. The side-lobe attenuation is 
smaller than 100 dB. For example, the necessary signal-to-noise ratio (SNR) for 15 bits per 
symbol QAM is approximately 55 dB. 
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Fig. 7. Overlapped FMT spectrum for γ = 6 and Nuttall window. 
The ratio between transmitted total power in overlapped and non-overlapped FMT 
modulations of equivalent peak power are shown in Table 1. Suboptimal utilization of the 
frequency band occurs for smaller filter orders. As has been mentioned, a higher order of 
filters increases the system delay. The whole system delay depends on the polyphase filter 
order, number of carriers and delay, which originates in equalizers.   
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[-] 
Pp/Pn 2 

[dB] 
 

window 3 

4 4.3 Hamming 
6 5.4 Blackmen 

8 3.5 / 6.0 Blackman /Nuttall 
10 2.5 / 4.3 Blackman /Nuttall 
12 1.7 / 3.1 Blackman /Nuttall 

14 1.0 / 2.4 Blackman /Nuttall 
16 1.0 / 1.8 Blackman /Nuttall 

1Polyphase filter order;  
2Ratio between power of overlapped and non-overlapped FMT modulation;   
3Used window; 

Table 1. Comparison of ratio between whole transmitted power of overlapped and non-
overlapped FMT modulation for the same peak power. 
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The designed filter has to meet the orthogonal condition, introduced by equation (4). An 
efficient realization of overlapped FMT modulation is the same as that of non overlapped 
FMT modulation introduced in Fig. 4. The difference is in the design of the filter coefficients 
only. Polyphase filters can be of a considerably lower order than filters in non-overlapped 
FMT modulation, because they need not be so closely shaped in the transient part. The 
shape of individual filters must be designed so as to obtain a flat power spectral density 
(PSD) in the frequency band utilized, because it enables an optimal utilization of the 
frequency band provided.  Figure 7 shows an example of such overlapped FMT modulation 
with γ  = 6.  The ideal frequency characteristic of overlapped FMT prototype filter can be 
defined with the help of two conditions:    
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In the design of polyphase filters of very low order it is necessary to chose a compromise 
between both conditions, i.e. between the ripple in the band used and the stopband 
attenuation. Examples of some design results for polyphase filter orders of 2, 4 and 6 are 
shown in (Silhavy, 2008). The filter design method based on the prototype filter was 
described in the previous chapter. 

5. Equalization in overlapped FMT modulation 
In overlapped FMT modulation as well as in non-overlapped FMT modulation the inter-
symbol interferences (ISI) occur even on an ideal channel, which is given by the FMT 
modulation system principle. Equalization for ISI interference elimination can be solved in 
the same manner as in non-overlapped FMT modulation with the help of DFE equalizers, in 
the frequency domain (see Fig. 5). 
If the prototype filter was designed to satisfy orthogonal condition (4), ICI interferences do 
not occur even in overlapped FMT modulation. More exactly, the ICI interference level is 
comparable with non-overlapped FMT modulation. This is demonstrated by the simulation 
results shown in Figures 8 and 9. 
In the Figures the 32-carrier system (Figure 8) and 256-carrier system (Figure 9) have been 
simulated, both with the order of polyphase filters γ equal to 8. The systems were simulated 
on an CSA-mid loop in the 1MHz frequency band. From a comparison of Figures 8a and 8b 
it can be seen that ICI interferences in overlapped and non-overlapped FMT modulations 
are comparable. In the case of a smaller order of polyphase filters γ the ICI interferences are 
lower even in overlapped FMT. Figure 9 shows the system with 256 carriers. It can be seen 
that the effect of channel and the ICI interferences are decreasing with growing number of 
subchannels. The level of ICI interferences is dependent on the order of polyphase filters γ, 
the type of window used and the number of carriers.  
As has been mentioned, the channel equalization whose purpose is to minimize ISI 
interference can be performed in the frequency domain. Each of the EQn equalizers (see 
Figure 5.) can be realized as a Decision Feedback Equalizer (DFE). The Decision Feedback 
Equalizer is shown in Fig. 10. The equalizer works with complex values (Sayed, 2003). 
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Fig. 7. Overlapped FMT spectrum for γ = 6 and Nuttall window. 
The ratio between transmitted total power in overlapped and non-overlapped FMT 
modulations of equivalent peak power are shown in Table 1. Suboptimal utilization of the 
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are comparable. In the case of a smaller order of polyphase filters γ the ICI interferences are 
lower even in overlapped FMT. Figure 9 shows the system with 256 carriers. It can be seen 
that the effect of channel and the ICI interferences are decreasing with growing number of 
subchannels. The level of ICI interferences is dependent on the order of polyphase filters γ, 
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                                            (a)                                                                             (b) 

Fig. 8. ICI suppression in overlapped FMT (a) and in non-overlapped FMT (b) modulation 
with N = 32, γ= 8 and Nuttal window.  

 

 
Fig. 9. ICI suppression in overlapped FMT modulation with N = 256, γ = 8 and Nuttal 
window. 
 

+FFw

FB1 w− 

KY  /
KX  KZ  

 
Fig. 10. Decision Feedback equalizer. 
The Decision Feedback Equalizer contains two digital FIR (Finite impulse response) filters 
and a decision circuit. The feedforward filter (FF) with the coefficients wFF and of the order 
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of M is to shorten the channel impulse response to the feedback filter (FB) length R. The 
feedforward filter is designed to set the first coefficient of the shortened impulse response of 
channel to unity. With the help of the feedback filter (FB) with the coefficients 1- wFB and 
order R we subtract the rest of the shortened channel impulse response. The whole DFE 
equalizer thus forms an infinite impulse response (IIR) filter. A linear equalizer, realized 
only by a feedforward filter, would not be sufficient to eliminate the ISI interference of the 
FMT system on the ideal channel.      
 

 
Fig. 11. Description of the sought MMSE minimization for the computation of FIR filters 
coefficients of equalizer 
The sought minimization of mean square error (MMSE) is described in Fig. 11. The 
transmission channel with the impulse response h includes the whole of a complex channel 
of the FMT modulation from XK to YK. The equalization result element r(k) is compared with  
the delayed transmitted element x(k). The delay Δ is also sought it optimizes the 
minimization and is equal to the delay inserted by the transmission channel and the 
feedforward filter. The minimization of the mean square error is described by equation (8). 
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On the assumption of correct estimate and thus the validity of  ( )ˆ( )x k Δ x k Δ− = −  we can 
simplify equation (8): 
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The MMSE can be sought: 

 2 H H H H
DFE-MMSE FB xx FB FB xyΔ FF FF yxΔ FB FF yy FF{ ( ) }m E e k= = − − +w R w w R w w R w w R w  (10) 

The sought minimization mDFE-MMSE under unity constraint on the first element of shortened 
response (Silhavy, 2007), introduced by equation (11), is shown by equation (12): 
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On the assumption of correct estimate and thus the validity of  ( )ˆ( )x k Δ x k Δ− = −  we can 
simplify equation (8): 
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The MMSE can be sought: 

 2 H H H H
DFE-MMSE FB xx FB FB xyΔ FF FF yxΔ FB FF yy FF{ ( ) }m E e k= = − − +w R w w R w w R w w R w  (10) 

The sought minimization mDFE-MMSE under unity constraint on the first element of shortened 
response (Silhavy, 2007), introduced by equation (11), is shown by equation (12): 
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where 
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and f0 is the column zero vector of the same length as  feedforward filter  R with element 
one in the first position: T

0 R-1[1   ]=f 0  
In this equation, Rxx is the autocorrelation matrix of the input signal of M x M size, RxyΔ and 
Ryx∆are the correlation matrices between the input and output signals of M x R and R x M 
sizes. These matrices are dependent on the parameter delay Δ, which defines the shift 
between the input and the output signals. For these matrices it holds that                .     
During the computation it is necessary to find the optimal delay Δopt, which can be 
determined based on computed minimization mDFE-MMSE. The optimal delay, however, must 
be set the same for the whole equalizer bank. During the heuristic optimal delay search for 
each equalizer the most frequent delay needs to be determined and this delay must be used 
for coefficient computation of each equalizer of demodulator. In opposite case, the 
individual symbols would be mutually shifted, which would cause demodulation 
difficulties. Ryy   is the autocorrelation matrix of the output signal of R x R size. This matrix 
includes the influence of the channel impulse response h and noise.  
The vectors of coefficients of equalizer for a given delay Δ can be computed as shown by the 
following  equations: 
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Alternatively, we can based the computation of the coefficients of individual DFE equalizer 
filters on channel impulse response h only, without including the input signal and noise n. 
This solution can be simply derived based on the previous solution after following 
derivation. The convolution matrix of a channel with impulse response h and length k is 
defined by the equation: 
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From this matrix we chose the shortened part in the terms of delay Δ with the help of vector G: 
 

 

( )diag 0,   ,  0,  1,   ,  1,  0,  ,  0=G … … …

  Δ         R 

k +M–1 samples 

 

(17)

 
 

The sought matrix RX|Y , introduced by equation (13), of the Zero-forcing solution is shown 
by equation (18): 

 ( ) 1
X|Y_ZeroForce

−
= − ⋅H H HR I GH H H H G  (18) 

The approach presented enables determining the individual equalizer filter coefficients from 
the channel impulse response h only. The matrix G determines the maximized area and thus 
the delay Δ between the input and the output signals. In some cassis the matrix RX|Y_ZeroForce 

is not invertible. This problem can be fixed by increasing the components in the main 
diagonal, as shows by the equation: 

 ( ){ }opt max diagk= + ⋅ ⋅A A A I  (19) 

where max{daig(A)} is the maximal element of the main diagonal of matrix A, and kopt is the 
optimization factor, which can be increased  in several steps (e.g. 10-10, 10-8, 10-6, ...). 
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Fig. 12. Achieved MSE in dependence on both filter order for overlapped FMT system with 
γ =10, Nuttalwin window and ANSI 7 channel. 
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Fig. 12. Achieved MSE in dependence on both filter order for overlapped FMT system with 
γ =10, Nuttalwin window and ANSI 7 channel. 
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For the purpose of analyses we choose an FMT system with N = 32 carriers, a sampling 
frequency of 2 MHz, the Nuttalwin window type and the polyphase filter order γ =10, 12 
and 14. Selected tested channels were the ideal channel and ANSI 7. The channels were 
modeled by an infinite impulse response (IIR) filter of the order of 60. In Figures 12, 13 and 
14 for the purpose of comparing whole FMT systems the MSE is computed as summation of 
MSE of all N carriers. Figure 12 shows the dependence of achieved MSE on the order of both 
filters for overlapped FMT system with γ =12, Nuttalwin window and ANSI 7 channel. The 
optimal combination of orders can be different for different FMT systems and channel types. 
From Figures 13 a) and 13 b) it can be seen that the transmit and receive filters are of 
primary influence on the appearance of ISI interference. The necessary equalizer filter order 
is a little higher than the polyphase filter order. 
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Fig. 13. Achieved MSE in dependence on filters order M=R for different FMT systems on 
ideal channel (a) and ANSI 7 channel (b). 
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6. Implementation of Filtered MultiTone in Matlab and on DSP 
This chapter is devoted to describtion of the implementation of FMT and DMT modulations. 
Theoretical properties of the FMT modulations with all advantages and disadvantages have 
been described in previous chapters. Implementation of FMT modulation in Matlab-
Simulink and on DSP is necessary for comparison of characteristics of this modulation with 
other ones in various communication systems. 
Design of proper prototype filter is the first step in implementation of FMT. Prototype filter 
design methods are mentioned in chapter 3. Prototype filters for the implementation have 
been designed by the windowing method, using the Blackman, Modified Blackman and 
Nutall windows. The polyphase filters for non-overlap FMT modulation were of the order  
γ =14 (Blackman window) and in half-overlap FMT modulation filters of the order γ =6 
(Modified Blackman window, subchannel crossing at -3dB) and γ =8 (Nuttall window, 
subchannel crossing at -6dB). 
As mentioned above, almost twice higher order of polyphase filters in the non-overlap FMT 
had to be used because of the need for a spectral separation of individual subchannels, i.e. 
the need for a sharp transition from pass-band to stop-band. Two variants of half-
overlapped FMT were used for comparison of spectral characteristics and power spectral 
density. 
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Fig. 14. Prototype filters used in implementation 

Furthermore, we proposed a suitable model of FMT Modulation in Matlab-Simulink. As a 
source of pseudorandom binary sequence the Bernoulli random binary generator was 
chosen. Binary data are transmitted to the bank of QAM modulators, number of bits per 
channel is determined by signal to noise ratio on carrier, for example by the help of a bit-
loading algorithm (Akujobi & Shen, 2008). After it the IFFT modulation is performed. In the 
model, we consider transmission over metallic lines and also comparison of the FMT with 
DMT modulation, so it is necessary to complement the modulation symbols to the number 
2N according to (1) before IFFT. Filtering of IFFT output by the filter bank is the final step on 
the transmitter side. The filter bank was built-up from polyphase components of prototype 
filter mentioned above. 
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the transmitter side. The filter bank was built-up from polyphase components of prototype 
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The procedure in the receiver is inverted. Firstly the received signal is filtered by receiver 
filter bank and after that, FFT is performed. In the next step the added symbols are removed 
i.e. the symbols 0 and N...2N. Through the characteristics of FMT modulation mentioned in 
chapter 5 is necessary to use equalization. DFE equalization with RLS adaptive algorithm is 
used in our model. Equalized symbols are then demodulated by a bank of QAM 
demodulators. 
 

 
Fig. 15. FMT system in Matlab-Simulink 

The resistance of narrowband noise on chosen carrier was tested on this model. This type of 
interference is very common in real conditions. Narrowband noise on 10th carrier was 
applied in our case. 
The evaluation was done by measuring the signal to noise ratio, SNR. For the half-overlap 
FMT modulation the measurements were performed only for variants with subchannel 
crossing at level -3dB. The results of the measurements are presented in Fig.17. It is obvious 
that the DMT modulation has the worst properties, where the narrowband interference on 
10th carrier degrades SNR on a large number of surrounding carriers. The opposite case is 
FMT modulation, in both variants the SNR is degraded only on the carrier with narrowband 
interference. For the half-overlap FMT modulation degradation on two nearby carriers was 
expected, but the measurement shows degradation only on 10th carrier. 
The model described above can be adjusted and implemented on DSP. The chosen 
development kit uses the TI C6713 floating-point digital signal processor. The model is 
divided into part of transmitter and part of receiver. The signal processing procedure is 
identical to the model. After generation of pseudorandom binary sequence, QAM 
modulation is performed. The number of bits transmitted on the sub-carrier is chosen before 
the actual implementation. After it the IFFT modulation is performed and each output is 
filtered by the transmitter filter bank. The last step is to adjust the amplitude of the 
transmitted signal to the range of DAC converter. In this way modified model was then 
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compiled and implemented on digital signal processor with the help of the Link for CCS 
toolbox. 
This way of generating code is fully functional and they allow measuring the proposed 
algorithm directly in the digital signal processor but they definitely cannot be considered 
optimized. It is convenient to use libraries that are optimized for a given processor and 
replace the standard Simulink blocks by optimized ones. It is also possible to replace the 
original number formats by formats corresponding to the processor. Also the filterbank can 
be designed in two ways. The first way is independent filtering in each branch of filterbank 
(Sysel, Krajsa 2010). 
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Fig. 16. Efficient filterbank implementation 

The second one is described on Fig. 16, where m
nh is n-th coefficient of m-th filter, i

mX is i-th 
IFFT symbol in m-th branch and i

mo is i-th output sample in m-th branch. We have three 
buffers, one (a) for prototype coefficients, one (b) for input symbols from IFFT, and the last 
one (c) for output frame. Buffer b is FIFO buffer, samples are written in frames of 2N 
samples. This way of filtering is more effective, because we need only one for cycle for 
computing one output frame.  
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compiled and implemented on digital signal processor with the help of the Link for CCS 
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In the term of testing and comparing the implementation on DSP is interesting for the 
possibility of power spectral density measurement and for its characteristics inside and 
outside of the transmission band of partial subchannels on real line. In Fig. 19 is measured 
PSD for the considered modulations.  
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Fig. 18. FMT transmitter adjusted for implementation 
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Fig. 19. Measured power spectral densit 

It is clear that the implementation results confirm the theoretical assumptions about the 
properties of implemented modulations, mainly about their spectral properties. For the half-
overlap FMT modulation the PSD measured was flat, as well as with DMT modulation, but 
the side lobes are suppressed by up to 50 dB. For the non-overlap FMT modulation perfectly 
separated subchannels and strongly repressed side lobes are again evident. 
In the implementation the computational complexity of individual modulation was also 
compared. The most common form of DMT modulation needs to implement only the 2N-
point FFT, while with FMT each FFT output must be filtered. This represents an increase in 
the required computational power and in the memory used. A comparison of DMT and 
FMT for different systems is shown in the table. It compares the number of MAC 
instructions needed for processing one frame of length 2N. 
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7. Conclusion 
Based on a comparison of DMT and non-overlapped FMT multicarrier modulations we 
introduced in this contribution the half-overlap subchannel FMT modulation. This 
modulation scheme enables using optimally the available frequency band, such as DMT 
modulation, because the resultant power spectral density of the signal is flat.  Also, the 
border frequency band is used optimally, the same as in non-overlapped FMT modulation. 
Compared to non-overlapped FMT modulation the subchannel width is double and the 
carriers cannot be too closely shaped. That enables using a smaller polyphase filter order 
and thus obtaining a smaller delay. In section 5 we demonstrated that if the prototype filter 
was designed to satisfy the orthogonal condition, even in overlapped FMT modulation the 
ICI interferences do not occur. Furthermore, a method for channel equalization with the 
help of DFE equalizer has been presented and the computation of individual filter 
coefficients has been derived. 
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1. Introduction

Discrete multitone (DMT) is a digital implementation of the multicarrier transmission
technique for digital subscriber line (DSL) standard (Golden et al., 2006; Starr et al., 1999).
An all-digital implementation of multicarrier modulation called DMT modulation has been
standardised for asymmetric digital subscriber line (ADSL), ADSL2, ADSL2+ and very high
bit rate DSL (VDSL) (ITU, 2001; 2002; 2003). ADSL modems rely on DMT modulation,
which divides a broadband channel into many narrowband subchannels and modulated
encoded signals onto the narrowband subchannels. The major impairments such as the
intersymbol interference (ISI), the intercarrier interference (ICI), the channel distortion, echo,
radio-frequency interference (RFI) and crosstalk from DSL systems are induced as a result
of large bandwidth utilisation over the telephone line. However, the improvement can be
achieved by the equalisation concepts. A time-domain equaliser (TEQ) has been suggested
for equalisation in DMT-based systems (Bladel & Moenclaey, 1995; Baldemair & Frenger, 2001;
Wang & Adali, 2000) and multicarrier systems (Lopez-Valcarce, 2004).
The so-called shortened impulse response (SIR) which is basically the convolutional result
of TEQ and channel impulse response (CIR) is preferably shortened as most as possible. By
employing a TEQ, the performance of a DMT system is less sensitive to the choice of length
of cyclic prefix. It is inserted between DMT symbols to provide subchannel independency
to eliminate intersymbol interference (ISI) and intercarrier interference (ICI). TEQs have been
introduced in DMT systems to alleviate the effect of ISI and ICI in case that the length of SIR
or shorter than the length of cyclic prefix (F-Boroujeny & Ding, 2001). The target impulse
response (TIR) is a design parameter characterising the derivation of the TEQ. By employing
a TEQ, the performance of a DMT system is less sensitive to the choice of length of the cyclic
prefix. In addition to TEQ, a frequency-domain equaliser (FEQ) is provided for each tone
separately to compensate for the amplitude and phase of distortion. An ultimate objective of
most TEQ designs is to minimise the mean square error (MSE) between output of TEQ and
TIR which implies that TEQ and TIR are optimised in the MSE sense (F-Boroujeny & Ding,
2001).
Existing TEQ algorithms are based upon mainly in the MMSE-based approach (Al-Dhahir
& Cioffi, 1996; Lee et al., 1995; Yap & McCanny, 2002; Ysebaert et al., 2003). These include
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the MMSE-TEQ design algorithm with the unit tap constraint (UTC) in (Lee et al., 1995) and
the unit energy constraint (UEC) in (Ysebaert et al., 2003). Only a few adaptive algorithms
for TEQ are proposed in the literature. In (Yap & McCanny, 2002), a combined structure
using the order statistic normalised averaged least mean fourth (OS-NALMF) algorithm for
TEQ and order statistic normalised averaged least mean square (OS-NALMS) for TIR is
presented. The advantage of a class of order statistic least mean square algorithms has been
presented in (Haweel & Clarkson, 1992) which are similar to the usual gradient-based least
mean square (LMS) algorithm with robust order statistic filtering operations applied to the
gradient estimate sequence.
The purpose of this chapter is therefore finding the adaptive low-complexity time-domain
equalisation algorithm for DMT-based systems which more robust as compared to existing
algorithms. The chapter is organised as follows. In Section 2 , we describe the overview of
system and data model. In Section 3 , the MMSE-based time-domain equalisation is reviewed.
In Section 4 , the derivation of normalised least mean square (NLMS) algorithm with the
constrained optimisation for TEQ and TIR are introduced. We derive firstly the stochastic
gradient-based TEQ and TIR design criteria based upon the well known low-complexity
NLMS algorithm with the method of Lagrange multiplier. It is simple and robust for ISI and
ICI. This leads into Section 5 , where the order statistic normalised averaged least mean square
(OS-NALMS) TEQ and TIR are presented. Consequently, the adaptive step-size order statistic
normalised averaged least mean square (AS-OSNALMS) algorithms for TEQ and TIR can be
introduced as the solution of MSE sense. This allows to track changing channel conditions and
be quite suitable and flexible for DMT-based systems. In Section 6 , the analysis of stability
of proposed algorithm for TEQ and TIR is shown. In Section 7 and Section 8 , the simulation
results and conclusion are presented.

2. System and data model

The basic structure of the DMT transceiver is illustrated in Fig. 1. The incoming bit stream
is likewise reshaped to a complex-valued transmitted symbol for mapping in quadrature
amplitude modulation (QAM). Then, the output of QAM bit stream is split into N parallel bit
streams that are instantaneously fed to the modulating inverse fast Fourier transform (IFFT).
After that, IFFT outputs are transformed into the serial symbols including the cyclic prefix
(CP) between symbols in order to prevent intersymbol interference (ISI) (Henkel et al., 2002)
and then fed to the channel. The transmission channel will be used throughout the chapter is
based on parameters in (ITU, 2001). The transmitted signal sent over the channel with impulse
response is generally corrupted by the additive white Gaussian noise (AWGN).
The received signal is also equalised by TEQ. The number of coefficients of TEQ is particularly
used to make the shortened-channel impulse response (SIR) length, which is the desired
length of the channel after equalisation. The frequency-domain equaliser (FEQ) is essentially
a one-tap equaliser that is the fast Fourier transform (FFT) of the composite channel of
the convolution between the coefficients of the channel (h) and the tap-weight vector (w)
of TEQ. The parallel of received symbols are eventually converted into serial bits in the
frequency-domain.
The data model is based on a finite impulse response (FIR) model of transmission channel
and will be used for equaliser in DMT-based systems. The basic data model is assumed that
the transmission channel, including the transmitter and receiver filter front end. This can
be represented with an FIR model h. The k-th received sample vector which is used for the
detection of the k-th transmitted symbol vector xk,N , is given by
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where

• The notation for the received sample vectors yk,l+Δ:N−l+Δ and the received samples yk,l+Δ
are introduced by

yk,l+Δ:N−l+Δ = [ yk,l+Δ · · · yk,N−l+Δ ]T, (2)

where l determines the first considered sample of the k-th received DMT-symbol and
depends on the number of equaliser taps L. The parameter Δ is a synchronisation delay.

• h̄ is the CIR vector h with coefficients in reverse order.

• I is an n × n identity matrix and ⊗ denotes the Kronecker product. The (N + ν)× N matrix
Pν, which adds the cyclic prefix of length ν , is introduced by

xk,−ν:N−1 =

�
0ν×(N−ν) |Iν

IN

�

� �� �
Pν

xk,0:N−1, (3)

where the sample vector xk,−ν:−1 is called a cyclic prefix (CP).

• FH
N = F∗

N is the N × N IDFT matrix.

• The N × 1 transmitted symbol vector xk,N is introduced by

xk,N = [ xk,0 · · · xk,N−1 ]T = [ x∗k,N−1 · · · x∗
k, N

2 +1
]T, (4)

• The vector ηk,l+Δ:N−1+Δ is a sample vector with additive channel noise, and its

autocorrelation matrix is denoted as Σ2
η = E{ηkη

T
k }.

• The matrices 0(1) and 0(2) in Eq.(1) are the zero matrices of size (N − l)× (N − L + 2ν +

Δ + l) and (N − l)× (N + ν − Δ), respectively.

• The transmitted symbol vector is denoted as xk−1:k+1,N , where xk−1,N and xk+1,N introduce
ISI. The xk,N is the symbol vector of interest.
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Fig. 2. Block diagram of MMSE-TEQ.

Some notation will be used throughout this chapter as follows: E{·}, (·)T, (·)H denote as
the expectation, transpose and Hermitian operators, respectively. The vectors are in bold
lowercase and matrices are in bold uppercase.

3. Minimum mean square error-based time-domain equalisation

The design of minimum mean square error time-domain equalisation (MMSE-TEQ) is based
on the block diagram in Figure 2. The transmitted symbol x is sent over the channel with the
impulse response h and corrupted by AWGN η. The convolution of the L-tap TEQ filter
w and the CIR h of Nh + 1 samples are sufficiently shortened so that overall of impulse
response has length ν + 1 that should make TEQ as a channel shortener c = h ∗ w, called
the shorten impulse response (SIR). Then the orthogonality between the tones are restored
and ISI vanishes (Melsa et al., 1996).
The result of time-domain error e between the TEQ output and the TIR output is then
minimised in the mean-square sense as

min
w,b

E{|e|2} = min
w,b

E{|yTw − xT
Δb|2} (5)

= min
w,b

wTΣ2
yw + bTΣ2

xb − 2bTΣxy(Δ)w, (6)

where Σ2
y = E{yyT} and Σ2

x = E{xxT} are autocorrelation matrices, and where Σxy(Δ) =

E{xΔyT} is a cross-correlation matrix.
To avoid the trivial all-zero solution w = 0, b = 0, a constraint on the TEQ or TIR is therefore
imposed.
Some constraints that are added on the TEQ and TIR (Ysebaert et al., 2003) as follows.

1. The unit-norm constraint (UNC) on the TIR
By solving Eq.(6) subject to

bT b = 1. (7)

The solution of b is the eigen-vector and w can be given as

w = (Σ2
y)

−1 ΣT
xy b. (8)

2. The unit-tap constraint (UTC) on the TEQ
A UTC on w can be calculated with the method of the linear equation

eT
j w = 1 or eT

j w = − 1 , (9)
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where ej is the canonical vector with element one in the j-th position. By determining
the dominant generalised eigen-vector, the vector w can be obtained as the closed-form
solution

w =
A−1 ej

eT
j A−1 ej

, (10)

where A = Σ2
y − ΣT

xy (Σ2
x)

−1 Σxy.

3. The unit-tap constraint (UTC) on the TIR
Similarly, a UTC on b can be described as

eT
j b = 1 or eT

j b = − 1 , (11)

After computing the solution for b as

b =
A−1 ej

eT
j A−1 ej

. (12)

The coefficients of TEQ w can be computed by Eq.(8).

4. The unit-energy constraint (UEC) on TEQ and TIR
Three UECs can be considered as

wT
Σ

2
yw = 1 or bT

Σ
2
xb = 1 or wT

Σ
2
yw = 1 & bT

Σ
2
xb = 1. (13)

It has been shown that each of all constraints results in Eq.(13), which can be incorporated
into the one-tap FEQs in frequency domain (Ysebaert et al., 2003).

Most TEQ designs are based on the block-based computation to find TIR (Al-Dhahir & Cioffi,
1996; F-Boroujeny & Ding, 2001; Lee et al., 1995), it will make high computational complexity
for implementation. However, this algorithm has much better performance and is used for
the reference for on-line technique.

4. The proposed normalised least mean square algorithm for TEQ and TIR

We study the use of the LMS algorithm by means of the simplicity of implementation
and robust performance. But the main limitation of the LMS algorithm is slow rate of
convergence (Diniz, 2008; Haykin, 2002). Most importantly, the normalised least mean square
(NLMS) algorithm exhibits a rate of convergence that is potentially faster than that of the
standard LMS algorithm. Following (Haykin, 2002), we derive the normalised LMS algorithm
for TEQ and TIR as follows.
Given the channel-filtered input vector y(n) and the delay input vector d(n), to determine the
tap-weight vector of TEQ w(n + 1) and the tap-weight vector of TIR b(n + 1). So, the change
δw(n + 1) and δb(n + 1) are defined as

δw(n + 1) = w(n + 1)− w(n) , (14)

δb(n + 1) = b(n + 1)− b(n) , (15)

and subject to the constraints

wH(n + 1) y(n) = g1(n) , (16)

bH(n + 1) d(n) = g2(n) , (17)
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Fig. 2. Block diagram of MMSE-TEQ.

Some notation will be used throughout this chapter as follows: E{·}, (·)T, (·)H denote as
the expectation, transpose and Hermitian operators, respectively. The vectors are in bold
lowercase and matrices are in bold uppercase.

3. Minimum mean square error-based time-domain equalisation

The design of minimum mean square error time-domain equalisation (MMSE-TEQ) is based
on the block diagram in Figure 2. The transmitted symbol x is sent over the channel with the
impulse response h and corrupted by AWGN η. The convolution of the L-tap TEQ filter
w and the CIR h of Nh + 1 samples are sufficiently shortened so that overall of impulse
response has length ν + 1 that should make TEQ as a channel shortener c = h ∗ w, called
the shorten impulse response (SIR). Then the orthogonality between the tones are restored
and ISI vanishes (Melsa et al., 1996).
The result of time-domain error e between the TEQ output and the TIR output is then
minimised in the mean-square sense as

min
w,b

E{|e|2} = min
w,b

E{|yTw − xT
Δb|2} (5)

= min
w,b

wTΣ2
yw + bTΣ2

xb − 2bTΣxy(Δ)w, (6)

where Σ2
y = E{yyT} and Σ2

x = E{xxT} are autocorrelation matrices, and where Σxy(Δ) =

E{xΔyT} is a cross-correlation matrix.
To avoid the trivial all-zero solution w = 0, b = 0, a constraint on the TEQ or TIR is therefore
imposed.
Some constraints that are added on the TEQ and TIR (Ysebaert et al., 2003) as follows.

1. The unit-norm constraint (UNC) on the TIR
By solving Eq.(6) subject to

bT b = 1. (7)

The solution of b is the eigen-vector and w can be given as

w = (Σ2
y)

−1 ΣT
xy b. (8)

2. The unit-tap constraint (UTC) on the TEQ
A UTC on w can be calculated with the method of the linear equation

eT
j w = 1 or eT

j w = − 1 , (9)
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where ej is the canonical vector with element one in the j-th position. By determining
the dominant generalised eigen-vector, the vector w can be obtained as the closed-form
solution

w =
A−1 ej

eT
j A−1 ej

, (10)

where A = Σ2
y − ΣT

xy (Σ2
x)

−1 Σxy.

3. The unit-tap constraint (UTC) on the TIR
Similarly, a UTC on b can be described as

eT
j b = 1 or eT

j b = − 1 , (11)

After computing the solution for b as

b =
A−1 ej

eT
j A−1 ej

. (12)

The coefficients of TEQ w can be computed by Eq.(8).

4. The unit-energy constraint (UEC) on TEQ and TIR
Three UECs can be considered as

wT
Σ

2
yw = 1 or bT

Σ
2
xb = 1 or wT

Σ
2
yw = 1 & bT

Σ
2
xb = 1. (13)

It has been shown that each of all constraints results in Eq.(13), which can be incorporated
into the one-tap FEQs in frequency domain (Ysebaert et al., 2003).

Most TEQ designs are based on the block-based computation to find TIR (Al-Dhahir & Cioffi,
1996; F-Boroujeny & Ding, 2001; Lee et al., 1995), it will make high computational complexity
for implementation. However, this algorithm has much better performance and is used for
the reference for on-line technique.

4. The proposed normalised least mean square algorithm for TEQ and TIR

We study the use of the LMS algorithm by means of the simplicity of implementation
and robust performance. But the main limitation of the LMS algorithm is slow rate of
convergence (Diniz, 2008; Haykin, 2002). Most importantly, the normalised least mean square
(NLMS) algorithm exhibits a rate of convergence that is potentially faster than that of the
standard LMS algorithm. Following (Haykin, 2002), we derive the normalised LMS algorithm
for TEQ and TIR as follows.
Given the channel-filtered input vector y(n) and the delay input vector d(n), to determine the
tap-weight vector of TEQ w(n + 1) and the tap-weight vector of TIR b(n + 1). So, the change
δw(n + 1) and δb(n + 1) are defined as

δw(n + 1) = w(n + 1)− w(n) , (14)

δb(n + 1) = b(n + 1)− b(n) , (15)

and subject to the constraints

wH(n + 1) y(n) = g1(n) , (16)

bH(n + 1) d(n) = g2(n) , (17)
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where e(n) is the estimation error

e(n) = wH(n + 1) y(n)− bH(n + 1) d(n) . (18)

The squared Euclidean norm of the change δw(n + 1) and δb(n + 1) may be expressed as

� δw(n + 1)� 2 =
M−1

∑
k=0

| wk(n + 1)− wk(n)|
2 , (19)

� δb(n + 1)� 2 =
M−1

∑
k=0

| bk(n + 1)− bk(n)|
2 . (20)

Given the tap-weight of TEQ wk(n) and TIR bk(n) for k = 0, 1, . . . , M − 1 in terms of their real
and imaginary parts by

wk(n) = ak(n) + j bk(n) , (21)

bk(n) = uk(n) + j vk(n) . (22)

The tap-input vectors y(n) and d(n) are defined in term of real and imaginary parts as

y(n) = y1(n) + j y2(n) , (23)

d(n) = d1(n) + j d2(n) . (24)

Let the constraints g1(n) and g2(n) be expressed in terms of their real and imaginary parts as

g1(n) = g1a(n) + j g1b(n) , (25)

g2(n) = g2a(n) + j g2b(n) . (26)

To rewrite the complex constraint of Eq.(16) as the pair of real constraints

g1(n) =
M−1

∑
k=0

[wk(n + 1)]H y(n)

=
M−1

∑
k=0

{
[ak(n + 1) + j bk(n + 1)]∗ [y1(n − k) + j y2(n − k)]

}

=
M−1

∑
k=0

{[ak(n + 1)y1(n − k) + bk(n + 1)y2(n − k)]

+ j [ak(n + 1)y2(n − k)− bk(n + 1)y1(n − k)]}

= g1a(n) + j g1b(n) .

(27)

Therefore,

g1a(n) =
M−1

∑
k=0

[ak(n + 1)y1(n − k) + bk(n + 1)y2(n − k)] , (28)

g1b(n) =
M−1

∑
k=0

[ak(n + 1)y2(n − k)− bk(n + 1)y1(n − k)] . (29)
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To formulate the complex constraint of Eq.(17) as the pair of real constraints.

g2(n) =
M−1

∑
k=0

[bk(n + 1)]H d(n)

=
M−1

∑
k=0

{
[uk(n + 1) + j vk(n + 1)]∗ [d1(n − k) + j d2(n − k)]

}

=
M−1

∑
k=0

{[uk(n + 1)d1(n − k) + vk(n + 1)d2(n − k)]

+ j [uk(n + 1)d2(n − k)− vk(n + 1)d1(n − k)]}

= g2a(n) + j g2b(n) .

(30)

Therefore,

g2a(n) =
M−1

∑
k=0

[uk(n + 1)d1(n − k) + vk(n + 1)d2(n − k)] , (31)

g2b(n) =
M−1

∑
k=0

[uk(n + 1)d2(n − k)− vk(n + 1)d1(n − k)] . (32)

4.1 The proposed normalised least mean square time-domain equalisation (NLMS-TEQ)
We define the real-valued cost function J1(n) for the constrained optimisation using Lagrange
multiplier.1 (Haykin, 2002)

J1(n) = � δw(n + 1)�2 + λ1 { [ak(n + 1)y1(n − k) + bk(n + 1)y2(n − k)] − g1a(n)}

+ λ2 { [ak(n + 1)y2(n − k)− bk(n + 1)y1(n − k)] − g1b(n)}

=
M−1

∑
k=0

{ [ak(n + 1)− ak(n)]
2 + [bk(n + 1)− bk(n)]

2}

+ λ1 {
M−1

∑
k=0

[ak(n + 1)y1(n − k) + bk(n + 1)y2(n − k)]− g1a(n)}

+ λ2 {
M−1

∑
k=0

[ak(n + 1)y2(n − k)− bk(n + 1)y1(n − k)]− g1b(n)} ,

(33)

where λ1 and λ2 are Lagrange multipliers. We find the optimum values of ak(n + 1) and
bk(n + 1) by differentiating the cost function J1(n) with respect to these parameters and set
the both results equal to zero. Hence,

∂J1(n)

∂ak(n + 1)
= 0 ,

1 The method of Lagrange multiplier is defined as a new real-valued Lagrange function h(w)

h(w) = f (w) + λ1Re [C(w)] + λ2 Im [C(w)]

where f (w) is the real function and C(w) is the complex constraint function. The parameters λ1 and λ2

are the Lagrange multipliers, where λ = λ1 + j λ2
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where e(n) is the estimation error

e(n) = wH(n + 1) y(n)− bH(n + 1) d(n) . (18)

The squared Euclidean norm of the change δw(n + 1) and δb(n + 1) may be expressed as

� δw(n + 1)� 2 =
M−1

∑
k=0

| wk(n + 1)− wk(n)|
2 , (19)

� δb(n + 1)� 2 =
M−1

∑
k=0

| bk(n + 1)− bk(n)|
2 . (20)

Given the tap-weight of TEQ wk(n) and TIR bk(n) for k = 0, 1, . . . , M − 1 in terms of their real
and imaginary parts by

wk(n) = ak(n) + j bk(n) , (21)

bk(n) = uk(n) + j vk(n) . (22)

The tap-input vectors y(n) and d(n) are defined in term of real and imaginary parts as

y(n) = y1(n) + j y2(n) , (23)

d(n) = d1(n) + j d2(n) . (24)

Let the constraints g1(n) and g2(n) be expressed in terms of their real and imaginary parts as

g1(n) = g1a(n) + j g1b(n) , (25)

g2(n) = g2a(n) + j g2b(n) . (26)

To rewrite the complex constraint of Eq.(16) as the pair of real constraints

g1(n) =
M−1

∑
k=0

[wk(n + 1)]H y(n)

=
M−1

∑
k=0

{
[ak(n + 1) + j bk(n + 1)]∗ [y1(n − k) + j y2(n − k)]

}

=
M−1

∑
k=0

{[ak(n + 1)y1(n − k) + bk(n + 1)y2(n − k)]

+ j [ak(n + 1)y2(n − k)− bk(n + 1)y1(n − k)]}

= g1a(n) + j g1b(n) .

(27)

Therefore,

g1a(n) =
M−1

∑
k=0

[ak(n + 1)y1(n − k) + bk(n + 1)y2(n − k)] , (28)

g1b(n) =
M−1

∑
k=0

[ak(n + 1)y2(n − k)− bk(n + 1)y1(n − k)] . (29)
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To formulate the complex constraint of Eq.(17) as the pair of real constraints.

g2(n) =
M−1

∑
k=0

[bk(n + 1)]H d(n)

=
M−1

∑
k=0

{
[uk(n + 1) + j vk(n + 1)]∗ [d1(n − k) + j d2(n − k)]

}

=
M−1

∑
k=0

{[uk(n + 1)d1(n − k) + vk(n + 1)d2(n − k)]

+ j [uk(n + 1)d2(n − k)− vk(n + 1)d1(n − k)]}

= g2a(n) + j g2b(n) .

(30)

Therefore,

g2a(n) =
M−1

∑
k=0

[uk(n + 1)d1(n − k) + vk(n + 1)d2(n − k)] , (31)

g2b(n) =
M−1

∑
k=0

[uk(n + 1)d2(n − k)− vk(n + 1)d1(n − k)] . (32)

4.1 The proposed normalised least mean square time-domain equalisation (NLMS-TEQ)
We define the real-valued cost function J1(n) for the constrained optimisation using Lagrange
multiplier.1 (Haykin, 2002)

J1(n) = � δw(n + 1)�2 + λ1 { [ak(n + 1)y1(n − k) + bk(n + 1)y2(n − k)] − g1a(n)}

+ λ2 { [ak(n + 1)y2(n − k)− bk(n + 1)y1(n − k)] − g1b(n)}

=
M−1

∑
k=0

{ [ak(n + 1)− ak(n)]
2 + [bk(n + 1)− bk(n)]

2}

+ λ1 {
M−1

∑
k=0

[ak(n + 1)y1(n − k) + bk(n + 1)y2(n − k)]− g1a(n)}

+ λ2 {
M−1

∑
k=0

[ak(n + 1)y2(n − k)− bk(n + 1)y1(n − k)]− g1b(n)} ,

(33)

where λ1 and λ2 are Lagrange multipliers. We find the optimum values of ak(n + 1) and
bk(n + 1) by differentiating the cost function J1(n) with respect to these parameters and set
the both results equal to zero. Hence,

∂J1(n)

∂ak(n + 1)
= 0 ,

1 The method of Lagrange multiplier is defined as a new real-valued Lagrange function h(w)

h(w) = f (w) + λ1Re [C(w)] + λ2 Im [C(w)]

where f (w) is the real function and C(w) is the complex constraint function. The parameters λ1 and λ2

are the Lagrange multipliers, where λ = λ1 + j λ2
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and
∂J1(n)

∂bk(n + 1)
= 0 .

The results are given by

2 [ak(n + 1)− ak(n)] + λ1y1(n − k) + λ2y2(n − k) = 0 , (34)

2 [bk(n + 1)− bk(n)] + λ1y2(n − k)− λ2y1(n − k) = 0 . (35)

From Eq.(21) and Eq.(23), we combine these two real results into a single complex one as

∂J1(n)

∂wk(n + 1)
=

∂J1(n)

∂ak(n + 1)
+ j

∂J1(n)

∂bk(n + 1)
= 0 . (36)

Therefore,

∂J1(n)

∂wk(n + 1)
= {2 [ak(n + 1)− ak(n)] + λ1y1(n − k) + λ2y2(n − k)}+

j {2 [bk(n + 1)− bk(n)] + λ1y2(n − k)− λ2y1(n − k)}

= 2 [ak(n + 1) + j bk(n + 1)]− 2 [ak(n) + j bk(n)] +

λ1 [y1(n − k) + j y2(n − k)]− j λ2 [y1(n − k) + j y2(n − k)]

= 2 [ak(n + 1) + j bk(n + 1)]− 2 [ak(n) + j bk(n)] +

(λ1 − j λ2) [y1(n − k) + j y2(n − k)]

= 0 .

(37)

Thus, we get

2 [wk(n + 1)− wk(n)] + λ∗
wy(n − k) = 0, f or k = 0, 1, . . . , M − 1 (38)

where λw is a complex Lagrange multiplier for TEQ as

λw = λ1 + j λ2 . (39)

In order to find the unknown λ∗
w, we multiply both sides of Eq.(38) by y∗(n − k) and then sum

over all integer values of k for 0 to M − 1. Thus, we have

2 [wk(n + 1)− wk(n)] y∗(n − k) = −λ∗
w y(n − k) y∗(n − k)

2
M−1

∑
k=0

[ wk(n + 1)y∗(n − k)− wk(n)y
∗(n − k) ] = −λ∗

w

M−1

∑
k=0

|y(n − k)|2

2
[
wT(n + 1) y∗(n)− wT(n) y∗(n)

]
= −λ∗

w�y(n)�2

Therefore, the complex conjugate Lagrange multiplier λ∗
w can be formulated as

λ∗
w =

−2

�y(n)�2

[
wT(n + 1) y∗(n)− wT(n) y∗(n)

]
, (40)
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where �y(n)�2 is the Euclidean norm of the tap-input vector y(n).
From the definition of the estimation error e(n) in Eq.(18), the conjugate of e(n) is written as

e∗(n) = wT(n + 1) y∗(n)− bT(n + 1) d∗(n) . (41)

The mean-square error | e(n)| 2 is minimised by the derivative of | e(n)| 2 with respect to w(n+
1) be equal to zero.

∂| e(n)| 2

∂w(n + 1)
=

[
wH(n + 1) y(n)− bH(n + 1) d(n)

]
y∗(n) = 0 . (42)

Hence, we have
wH(n + 1) y(n) = bH(n + 1) d(n) , (43)

and the conjugate of Eq.(43) may expressed as

wT(n + 1) y∗(n) = bT(n + 1) d∗(n) . (44)

To substitute Eq.(44) and Eq.(41) into Eq.(40) and then formulate λ∗
w as

λ∗
w =

2

�y(n)�2
e∗(n) . (45)

We rewrite Eq.(38) using Eq.(14) by writing,

2 δw(n + 1) = −λ∗
w y(n) (46)

The change δw(n + 1) is redefined by substituting Eq.(45) in Eq.(46). We thus have

δw(n + 1) =
−1

�y(n)�2
y(n) e∗(n) . (47)

To introduce a step-size for TEQ denoted by μw and then we may express the change δw(n +
1) as

δw(n + 1) =
−μw

�y(n)�2
y(n) e∗(n) . (48)

We rewrite the tap-weight vector of TEQ w(n + 1) as

w(n + 1) = w(n) + δw(n + 1) . (49)

Finally, we may obtain the tap-weight vector of TEQ w(n + 1) in the well-known NLMS
algorithm.

w(n + 1) = w(n)−
μw

�y(n)�2
y(n) e∗(n) . (50)

where e∗(n) is described in Eq.(41).
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and
∂J1(n)

∂bk(n + 1)
= 0 .

The results are given by

2 [ak(n + 1)− ak(n)] + λ1y1(n − k) + λ2y2(n − k) = 0 , (34)

2 [bk(n + 1)− bk(n)] + λ1y2(n − k)− λ2y1(n − k) = 0 . (35)

From Eq.(21) and Eq.(23), we combine these two real results into a single complex one as

∂J1(n)

∂wk(n + 1)
=

∂J1(n)

∂ak(n + 1)
+ j

∂J1(n)

∂bk(n + 1)
= 0 . (36)

Therefore,

∂J1(n)

∂wk(n + 1)
= {2 [ak(n + 1)− ak(n)] + λ1y1(n − k) + λ2y2(n − k)}+

j {2 [bk(n + 1)− bk(n)] + λ1y2(n − k)− λ2y1(n − k)}

= 2 [ak(n + 1) + j bk(n + 1)]− 2 [ak(n) + j bk(n)] +

λ1 [y1(n − k) + j y2(n − k)]− j λ2 [y1(n − k) + j y2(n − k)]

= 2 [ak(n + 1) + j bk(n + 1)]− 2 [ak(n) + j bk(n)] +

(λ1 − j λ2) [y1(n − k) + j y2(n − k)]

= 0 .

(37)

Thus, we get

2 [wk(n + 1)− wk(n)] + λ∗
wy(n − k) = 0, f or k = 0, 1, . . . , M − 1 (38)

where λw is a complex Lagrange multiplier for TEQ as

λw = λ1 + j λ2 . (39)

In order to find the unknown λ∗
w, we multiply both sides of Eq.(38) by y∗(n − k) and then sum

over all integer values of k for 0 to M − 1. Thus, we have

2 [wk(n + 1)− wk(n)] y∗(n − k) = −λ∗
w y(n − k) y∗(n − k)

2
M−1

∑
k=0

[ wk(n + 1)y∗(n − k)− wk(n)y
∗(n − k) ] = −λ∗

w

M−1

∑
k=0

|y(n − k)|2

2
[
wT(n + 1) y∗(n)− wT(n) y∗(n)

]
= −λ∗

w�y(n)�2

Therefore, the complex conjugate Lagrange multiplier λ∗
w can be formulated as

λ∗
w =

−2

�y(n)�2

[
wT(n + 1) y∗(n)− wT(n) y∗(n)

]
, (40)
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where �y(n)�2 is the Euclidean norm of the tap-input vector y(n).
From the definition of the estimation error e(n) in Eq.(18), the conjugate of e(n) is written as

e∗(n) = wT(n + 1) y∗(n)− bT(n + 1) d∗(n) . (41)

The mean-square error | e(n)| 2 is minimised by the derivative of | e(n)| 2 with respect to w(n+
1) be equal to zero.

∂| e(n)| 2

∂w(n + 1)
=

[
wH(n + 1) y(n)− bH(n + 1) d(n)

]
y∗(n) = 0 . (42)

Hence, we have
wH(n + 1) y(n) = bH(n + 1) d(n) , (43)
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wT(n + 1) y∗(n) = bT(n + 1) d∗(n) . (44)

To substitute Eq.(44) and Eq.(41) into Eq.(40) and then formulate λ∗
w as

λ∗
w =

2

�y(n)�2
e∗(n) . (45)

We rewrite Eq.(38) using Eq.(14) by writing,

2 δw(n + 1) = −λ∗
w y(n) (46)

The change δw(n + 1) is redefined by substituting Eq.(45) in Eq.(46). We thus have

δw(n + 1) =
−1

�y(n)�2
y(n) e∗(n) . (47)

To introduce a step-size for TEQ denoted by μw and then we may express the change δw(n +
1) as

δw(n + 1) =
−μw

�y(n)�2
y(n) e∗(n) . (48)

We rewrite the tap-weight vector of TEQ w(n + 1) as

w(n + 1) = w(n) + δw(n + 1) . (49)

Finally, we may obtain the tap-weight vector of TEQ w(n + 1) in the well-known NLMS
algorithm.

w(n + 1) = w(n)−
μw

�y(n)�2
y(n) e∗(n) . (50)

where e∗(n) is described in Eq.(41).
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4.2 The proposed normalised least mean square-target impulse response (NLMS-TIR)
We formulate the real-valued cost function J2(n) for the constrained optimisation problem
using Lagrange multiplier.

J2(n) = � δb(n + 1)�2 + λ3 { [uk(n + 1)d1(n − k) + vk(n + 1)d2(n − k)] − g2a(n)}

+ λ4 { [uk(n + 1)d2(n − k)− vk(n + 1)d1(n − k)] − g2b(n)}

=
M−1

∑
k=0

{ [uk(n + 1)− uk(n)]
2 + [vk(n + 1)− vk(n)]

2}

+ λ3 {
M−1

∑
k=0

[uk(n + 1)d1(n − k) + vk(n + 1)d2(n − k)]− g2a(n)}

+ λ4 {
M−1

∑
k=0

[uk(n + 1)d2(n − k)− vk(n + 1)d1(n − k)]− g2b(n)} ,

(51)

where λ3 and λ4 are Lagrange multipliers. We find the optimum values of uk(n + 1) and
vk(n + 1) by differentiating the cost function J2(n) with respect to these parameters and then
set the results equal to zero. Hence,

∂J2(n)

∂uk(n + 1)
= 0 ,

and
∂J2(n)

∂vk(n + 1)
= 0 .

The results are

2 [uk(n + 1)− uk(n)] + λ3d1(n − k) + λ4d2(n − k) = 0 , (52)

2 [vk(n + 1)− vk(n)] + λ3d2(n − k)− λ4d1(n − k) = 0 . (53)

From Eq.(22) and Eq.(24), we combine these two real results into a single complex one as

∂J2(n)

∂bk(n + 1)
=

∂J2(n)

∂uk(n + 1)
+ j

∂J2(n)

∂vk(n + 1)
= 0 . (54)

Therefore,

∂J2(n)

∂bk(n + 1)
= {2 [uk(n + 1)− uk(n)] + λ3d1(n − k) + λ4d2(n − k)}+

j {2 [vk(n + 1)− vk(n)] + λ3d2(n − k)− λ4d1(n − k)}

= 2 [uk(n + 1) + j vk(n + 1)]− 2 [uk(n) + j vk(n)] +

λ3 [d1(n − k) + j d2(n − k)]− j λ4 [d1(n − k) + j d2(n − k)]

= 2 [uk(n + 1) + j vk(n + 1)]− 2 [uk(n) + j vk(n)] +

(λ3 − j λ4) [d1(n − k) + j d2(n − k)]

= 0 .

(55)
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Thus, we have

2 [bk(n + 1)− bk(n)] + λ∗
bd(n − k) = 0, f or k = 0, 1, . . . , M − 1 (56)

where λb is a complex Lagrange multiplier for TIR

λb = λ3 + j λ4 (57)

To multiply both side of Eq.(56) by d∗(n − k) to find the unknown λ∗
b and then sum over all

possible integer values of k for 0 to M − 1. Thus, we get

2 [bk(n + 1)− bk(n)] d∗(n − k) = −λ∗
b d(n − k) d∗(n − k)

2
M−1

∑
k=0

[ bk(n + 1)d∗(n − k)− bk(n)d
∗(n − k) ] = −λ∗

b

M−1

∑
k=0

|d(n − k)|2

2
[
bT(n + 1) d∗(n)− bT(n) d∗(n)

]
= −λ∗

b�d(n)�2

Therefore,

λ∗
b =

−2

�d(n)�2

[
bT(n + 1) d∗(n)− bT(n) d∗(n)

]
. (58)

where �d(n)�2 is the Euclidean norm of the tap-input vector d(n).
To substitute Eq.(41) and Eq.(44) into Eq.(58) and then formulate λ∗

b as

λ∗
b =

2

�d(n)�2
e∗(n) . (59)

We rewrite Eq.(56) using Eq.(15) by

2 δb(n + 1) = λ∗
b d(n) (60)

To redefine the change δb(n + 1) by substituting Eq.(59) in Eq.(60). We thus get,

δb(n + 1) =
1

�d(n)|2
d(n) e∗(n) . (61)

To introduce a step-size for TIR μb and then we redefine the change δb(n + 1) simply as

δb(n + 1) =
μb

�d(n)�2
d(n) e∗(n) , (62)

where μb is the step-size for the NLMS-TIR.
We rewrite the tap-weight vector of TIR b(n + 1) as

b(n + 1) = b(n) + δb(n + 1) . (63)

Finally, we may formulate the tap-weight vector of TIR b(n + 1) in the normalised LMS
algorithm.

b(n + 1) = b(n) +
μb

�d(n)�2
d(n) e∗(n) , (64)

where e∗(n) is given in Eq.(41).
To comply with the Euclidean norm constraint, the tap-weight vector of TIR b(n + 1) is
normalised as

b(n + 1) =
b(n + 1)

�b(n + 1)�
. (65)

393
Adaptive Step-size Order Statistic LMS-based
Time-domain Equalisation in Discrete Multitone Systems



4.2 The proposed normalised least mean square-target impulse response (NLMS-TIR)
We formulate the real-valued cost function J2(n) for the constrained optimisation problem
using Lagrange multiplier.

J2(n) = � δb(n + 1)�2 + λ3 { [uk(n + 1)d1(n − k) + vk(n + 1)d2(n − k)] − g2a(n)}

+ λ4 { [uk(n + 1)d2(n − k)− vk(n + 1)d1(n − k)] − g2b(n)}

=
M−1

∑
k=0

{ [uk(n + 1)− uk(n)]
2 + [vk(n + 1)− vk(n)]

2}

+ λ3 {
M−1

∑
k=0

[uk(n + 1)d1(n − k) + vk(n + 1)d2(n − k)]− g2a(n)}

+ λ4 {
M−1

∑
k=0

[uk(n + 1)d2(n − k)− vk(n + 1)d1(n − k)]− g2b(n)} ,

(51)

where λ3 and λ4 are Lagrange multipliers. We find the optimum values of uk(n + 1) and
vk(n + 1) by differentiating the cost function J2(n) with respect to these parameters and then
set the results equal to zero. Hence,

∂J2(n)

∂uk(n + 1)
= 0 ,

and
∂J2(n)

∂vk(n + 1)
= 0 .

The results are

2 [uk(n + 1)− uk(n)] + λ3d1(n − k) + λ4d2(n − k) = 0 , (52)

2 [vk(n + 1)− vk(n)] + λ3d2(n − k)− λ4d1(n − k) = 0 . (53)

From Eq.(22) and Eq.(24), we combine these two real results into a single complex one as

∂J2(n)

∂bk(n + 1)
=

∂J2(n)

∂uk(n + 1)
+ j

∂J2(n)

∂vk(n + 1)
= 0 . (54)

Therefore,

∂J2(n)

∂bk(n + 1)
= {2 [uk(n + 1)− uk(n)] + λ3d1(n − k) + λ4d2(n − k)}+

j {2 [vk(n + 1)− vk(n)] + λ3d2(n − k)− λ4d1(n − k)}

= 2 [uk(n + 1) + j vk(n + 1)]− 2 [uk(n) + j vk(n)] +

λ3 [d1(n − k) + j d2(n − k)]− j λ4 [d1(n − k) + j d2(n − k)]

= 2 [uk(n + 1) + j vk(n + 1)]− 2 [uk(n) + j vk(n)] +

(λ3 − j λ4) [d1(n − k) + j d2(n − k)]

= 0 .

(55)

392 Discrete Time Systems

Thus, we have

2 [bk(n + 1)− bk(n)] + λ∗
bd(n − k) = 0, f or k = 0, 1, . . . , M − 1 (56)

where λb is a complex Lagrange multiplier for TIR

λb = λ3 + j λ4 (57)

To multiply both side of Eq.(56) by d∗(n − k) to find the unknown λ∗
b and then sum over all

possible integer values of k for 0 to M − 1. Thus, we get

2 [bk(n + 1)− bk(n)] d∗(n − k) = −λ∗
b d(n − k) d∗(n − k)

2
M−1

∑
k=0

[ bk(n + 1)d∗(n − k)− bk(n)d
∗(n − k) ] = −λ∗

b

M−1

∑
k=0

|d(n − k)|2

2
[
bT(n + 1) d∗(n)− bT(n) d∗(n)

]
= −λ∗

b�d(n)�2

Therefore,

λ∗
b =

−2

�d(n)�2

[
bT(n + 1) d∗(n)− bT(n) d∗(n)

]
. (58)

where �d(n)�2 is the Euclidean norm of the tap-input vector d(n).
To substitute Eq.(41) and Eq.(44) into Eq.(58) and then formulate λ∗

b as

λ∗
b =

2

�d(n)�2
e∗(n) . (59)

We rewrite Eq.(56) using Eq.(15) by

2 δb(n + 1) = λ∗
b d(n) (60)

To redefine the change δb(n + 1) by substituting Eq.(59) in Eq.(60). We thus get,

δb(n + 1) =
1

�d(n)|2
d(n) e∗(n) . (61)

To introduce a step-size for TIR μb and then we redefine the change δb(n + 1) simply as

δb(n + 1) =
μb

�d(n)�2
d(n) e∗(n) , (62)

where μb is the step-size for the NLMS-TIR.
We rewrite the tap-weight vector of TIR b(n + 1) as

b(n + 1) = b(n) + δb(n + 1) . (63)

Finally, we may formulate the tap-weight vector of TIR b(n + 1) in the normalised LMS
algorithm.

b(n + 1) = b(n) +
μb

�d(n)�2
d(n) e∗(n) , (64)

where e∗(n) is given in Eq.(41).
To comply with the Euclidean norm constraint, the tap-weight vector of TIR b(n + 1) is
normalised as

b(n + 1) =
b(n + 1)

�b(n + 1)�
. (65)

393
Adaptive Step-size Order Statistic LMS-based
Time-domain Equalisation in Discrete Multitone Systems



5. Adaptive step-size order statistic-normalised averaged least mean
square-based time-domain equalisation

Based on least mean square (LMS) algorithm, a class of adaptive algorihtms employing order
statistic filtering of the sampled gradient estimates has been presented in (Haweel & Clarkson,
1992), which can provide with the development of simple and robust adaptive filter across a
wide range of input environments. This section is therefore concerned with the development
of simple and robust adaptive time-domain equalisation by defining normalised least mean
square (NLMS) algorithm.
Following (Haweel & Clarkson, 1992), we present the NLMS algorithm which replaces linear
smoothing of gradient estimates by order statistic averaged LMS filter. A class of order statistic
normalised averaged LMS algorithm with the adaptive step-size scheme for the proposed
NLMS algorithm in Eq.(50) and Eq.(64) that are shown as (Sitjongsataporn & Yuvapoositanon,
2007).

ŵ(n + 1) = ŵ(n)−
μw(n)

�y(n)�2
Mw aw , (66)

b̂(n + 1) = b̂(n) +
μb(n)

�d(n)�2
Mb ab , (67)

with

Mw = T̃{ ẽ∗(n)y(n), ẽ∗(n − 1)y(n − 1), . . . , ẽ∗(n − Nw + 1)y(n − Nw + 1)} , (68)

Mb = T̃{ ẽ∗(n)d(n), ẽ∗(n − 1)d(n − 1), . . . , ẽ∗(n − Nb + 1)d(n − Nb + 1)} , (69)

ẽ(n) = ŵH(n)y(n)− b̂
H
(n)d(n) , (70)

and

aw = [aw(1), aw(2), . . . , aw(Nw)] , aw(i) = 1/Nw ; i = 1, 2, . . . , Nw. (71)

ab = [ab(1), ab(2), . . . , ab(Nb)] , ab(j) = 1/Nb ; j = 1, 2, . . . , Nb. (72)

where ẽ(n) is a priori estimation error and T̃{·} operation denotes as the algebraic ordering
transformation. The parameters aw and ab are the average of the gradient estimates of
weighting coefficients as described in (Chambers, 1993). The parameters μw(n) and μb(n)

are the step-size of ŵ(n) and b̂(n). The parameters Nw and Nb are the number of tap-weight
vectors for TEQ and TIR, respectively.

Following (Benveniste et al., 1990), we demonstate the derivation of adaptive step-size
algorithms of μw(n) and μb(n) based on the proposed NLMS algorithm in Eq.(50) and Eq.(64).
The cost function Jmin(n) may be expressed as

Jmin(n) = min
w,b

E{|e(n)|2} , (73)

e(n) = wH(n + 1) y(n)− bH(n + 1) d(n) . (74)

We then form the stochastic approximation equations for μw(n + 1) and μb(n + 1) as (Kushner
& Yang, 1995)

μw(n + 1) =μw(n) + αw
{
−∇Jmin(μw)} , (75)

μb(n + 1) =μb(n) + αb

{
−∇Jmin(μb)} , (76)
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Fig. 3. Block diagram of adaptive step-size order statistic normalised averaged least mean
square (AS-OSNALMS) TEQ and TIR.

where ∇Jmin(μw) and ∇Jmin(μb) denote as the value of the gradient vectors. The parameters
αw and αb are the adaptation constant of μw and μb, respectively.
By differentiating the cost function in Eq.(73) with respect to μw and μb, we get

∂Jmin

∂μw
= ∇Jmin(μw) = e(n) yT(n)Ψw , (77)

∂Jmin

∂μb
= ∇Jmin(μb) = −e(n) dT(n)Ψb , (78)

where Ψw = ∂w(n)
∂μw

and Ψb = ∂b(n)
∂μb

are the derivative of w(n + 1) in Eq.(50) with respect to

μw(n) and of b(n + 1) in Eq.(64) with respect to μb(n) (Moon & Stirling, 2000).
By substituting Eq.(77) and Eq.(78) in Eq.(75) and Eq.(76), we get the adaptive step-size μw(n)
and μb(n) as

μw(n + 1) =μw(n)− αw
{

e(n) yT(n)Ψw
}

, (79)

μb(n + 1) =μb(n) + αb

{
e(n) dT(n)Ψb

}
, (80)

where

Ψw(n + 1) =

[
I −

y(n)

�y(n)�2
μw(n) yT(n)

]
Ψw(n)−

y(n)

�y(n)�2
e∗(n) , (81)

Ψb(n + 1) =

[
I −

d(n)

�d(n)�2
μb(n) dT(n)

]
Ψb(n) +

d(n)

�d(n)�2
e∗(n) . (82)

Then, we apply the order statistic scheme in Eq.(81) and Eq.(82) as

Ψ̃w(n + 1) =

[
I −

y(n)

�y(n)�2
μw(n) yT(n)

]
Ψ̃w(n)−

Mw aw

�y(n)�2
, (83)

Ψ̃b(n + 1) =

[
I −

d(n)

�d(n)�2
μb(n) dT(n)

]
Ψ̃b(n) +

Mb ab

�d(n)�2
, (84)
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μw(n)

�y(n)�2
Mw aw , (66)

b̂(n + 1) = b̂(n) +
μb(n)

�d(n)�2
Mb ab , (67)

with
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are the step-size of ŵ(n) and b̂(n). The parameters Nw and Nb are the number of tap-weight
vectors for TEQ and TIR, respectively.

Following (Benveniste et al., 1990), we demonstate the derivation of adaptive step-size
algorithms of μw(n) and μb(n) based on the proposed NLMS algorithm in Eq.(50) and Eq.(64).
The cost function Jmin(n) may be expressed as

Jmin(n) = min
w,b

E{|e(n)|2} , (73)

e(n) = wH(n + 1) y(n)− bH(n + 1) d(n) . (74)

We then form the stochastic approximation equations for μw(n + 1) and μb(n + 1) as (Kushner
& Yang, 1995)

μw(n + 1) =μw(n) + αw
{
−∇Jmin(μw)} , (75)

μb(n + 1) =μb(n) + αb

{
−∇Jmin(μb)} , (76)

394 Discrete Time Systems

TEQ

w

AS-OSNALMS

b

AS-OSNALMS

w

AWGN + NEXT

y(n)

e(n)

TIR

b

CIR

h
x(n)

delay d(n)

_

Fig. 3. Block diagram of adaptive step-size order statistic normalised averaged least mean
square (AS-OSNALMS) TEQ and TIR.

where ∇Jmin(μw) and ∇Jmin(μb) denote as the value of the gradient vectors. The parameters
αw and αb are the adaptation constant of μw and μb, respectively.
By differentiating the cost function in Eq.(73) with respect to μw and μb, we get

∂Jmin

∂μw
= ∇Jmin(μw) = e(n) yT(n)Ψw , (77)

∂Jmin

∂μb
= ∇Jmin(μb) = −e(n) dT(n)Ψb , (78)

where Ψw = ∂w(n)
∂μw

and Ψb = ∂b(n)
∂μb

are the derivative of w(n + 1) in Eq.(50) with respect to

μw(n) and of b(n + 1) in Eq.(64) with respect to μb(n) (Moon & Stirling, 2000).
By substituting Eq.(77) and Eq.(78) in Eq.(75) and Eq.(76), we get the adaptive step-size μw(n)
and μb(n) as

μw(n + 1) =μw(n)− αw
{

e(n) yT(n)Ψw
}

, (79)

μb(n + 1) =μb(n) + αb

{
e(n) dT(n)Ψb

}
, (80)

where

Ψw(n + 1) =

[
I −

y(n)

�y(n)�2
μw(n) yT(n)

]
Ψw(n)−

y(n)

�y(n)�2
e∗(n) , (81)

Ψb(n + 1) =

[
I −

d(n)

�d(n)�2
μb(n) dT(n)

]
Ψb(n) +

d(n)

�d(n)�2
e∗(n) . (82)

Then, we apply the order statistic scheme in Eq.(81) and Eq.(82) as

Ψ̃w(n + 1) =

[
I −

y(n)

�y(n)�2
μw(n) yT(n)

]
Ψ̃w(n)−

Mw aw

�y(n)�2
, (83)

Ψ̃b(n + 1) =

[
I −

d(n)

�d(n)�2
μb(n) dT(n)

]
Ψ̃b(n) +

Mb ab

�d(n)�2
, (84)

395
Adaptive Step-size Order Statistic LMS-based
Time-domain Equalisation in Discrete Multitone Systems



where Mw, Mb, aw, ab and ẽ(n) are given in Eq.(68)-Eq.(72).

6. Stability analysis of the proposed AS-OSNALMS TEQ and TIR

In this section, the stability of the proposed AS-OSNALMS algorithm for TEQ and TIR are
based upon the NLMS algorithm as given in (Haykin, 2002). This also provides for the optimal
step-size parameters for TEQ and TIR.

According to the tap-weight estimate vector ŵ(n) and b̂(n) computed in Eq.(66) and Eq.(67),
the difference between the optimum tap-weight vector wopt and ŵ(n) is calculated by the
weight-error vector of TEQ as

Δ w(n) = wopt − ŵ(n) , (85)

and, in the similar fashion, the weight-error vector of TIR is given by

Δ b(n) = bopt − b̂(n) , (86)

By substituting Eq.(66) and Eq.(67) from wopt and bopt, we have

Δ w(n + 1) = Δ w(n) +
μw(n)

�y(n)�2
Mw aw , (87)

where Mw and aw are defined in Eq.(68) and Eq.(71).

Δ b(n + 1) = Δ b(n)−
μb(n)

�d(n)�2
Mb ab , (88)

where Mb and ab are given in Eq.(69) and Eq.(72).
The stability analysis of the proposed AS-OSNALMS TEQ and TIR are based on the mean
square deviation (MSD) as

Dw(n) = E{�Δw(n)�2} , (89)

Db(n) = E{�Δb(n)�2} , (90)

where Dw(n) and Db(n) denote as the MSD on TEQ and TIR.
By taking the squared Euclidean norms of both sides of Eq.(87) and Eq.(88), we get

�Δw(n + 1)�2 = �Δw(n)�2 + 2
μw(n)

�y(n)�2
ΔwH(n) · (Mw aw)

+
μ2

w(n)

�y(n)�2

(Mw aw)
H (Mw aw)

�y(n)�2
, (91)

�Δb(n + 1)�2 = �Δb(n)�2 − 2
μb(n)

�d(n)�2
ΔbH(n) · (Mb ab)

+
μ2

b(n)

�d(n)�2

(Mb ab)
H (Mb ab)

�d(n)�2
. (92)

Then taking expectations and rearranging terms with Eq.(89) and Eq.(90), the MSD of ŵ(n) is
defined by

Dw(n + 1) = Dw(n) + 2 μw(n) E{�(ΔwH(n) ξw(n))}

+ μ2
w(n) E{�(ξH

w (n) ξw(n))} , (93)
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where ξw(n) is given by

ξw(n) = E

{
Mw aw

�y(n)�2

}
, (94)

and �(·) denote as the real operator.

Thus, the MSD of b̂(n) can be computed as

Db(n + 1) = Db(n)− 2 μb(n) E

{
�

(
ΔbH(n) ξb(n)

)}

+ μ2
b(n) E

{
�

(
ξH

b (n) ξb(n)

)}
, (95)

where ξb(n) is calculated by

ξb(n) = E

{
Mb ab

�d(n)�2

}
. (96)

Following these approximations

lim
n→∞

Dw(n + 1) = lim
n→∞

Dw(n) , (97)

lim
n→∞

Db(n + 1) = lim
n→∞

Db(n) , (98)

are taken into Eq.(93) and Eq.(95). The normalised step-size parameters μw(n) and μb(n) are
bounded as

0 < μw(n) < 2

∣∣∣∣�
(

ΔwH(n) ξw(n)

ξH
w (n) ξw(n)

)∣∣∣∣ , (99)

0 < μb(n) < 2 �

(
ΔbH(n) ξb(n)

ξH
b (n) ξb(n)

)
. (100)

Therefore, the optimal step-size parameters μ
opt
w and μ

opt
b can be formulated by

μ
opt
w =

∣∣∣∣�
(

ΔwH(n) ξw(n)

ξH
w (n) ξw(n)

)∣∣∣∣ , (101)

μ
opt
b = �

(
ΔbH(n) ξb(n)

ξH
b (n) ξb(n)

)
. (102)

7. Simulation results

We implemented the ADSL transmission channel based on parameters as follows: the
sampling rate fs = 2.208 MHz, the size of FFT N = 512, and the input signal power of
-40dBm/Hz. The standard ADSL system parameters were shown in Table 1. The ADSL
downstream starting at active tones 38 up to tone 255 that comprises 512 coefficients of
channel impulse response. The signal to noise ratio gap of 9.8dB, the coding gain of 4.2dB
and the noise margin of 6dB were chosen for all active tones. The additive white Gaussian
noise (AWGN) with a power of −140dBm/Hz and near-end cross talk (NEXT) from 24
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defined by

Dw(n + 1) = Dw(n) + 2 μw(n) E{�(ΔwH(n) ξw(n))}

+ μ2
w(n) E{�(ξH

w (n) ξw(n))} , (93)

396 Discrete Time Systems

where ξw(n) is given by

ξw(n) = E

{
Mw aw

�y(n)�2

}
, (94)

and �(·) denote as the real operator.

Thus, the MSD of b̂(n) can be computed as

Db(n + 1) = Db(n)− 2 μb(n) E

{
�

(
ΔbH(n) ξb(n)

)}

+ μ2
b(n) E

{
�

(
ξH

b (n) ξb(n)

)}
, (95)

where ξb(n) is calculated by

ξb(n) = E

{
Mb ab

�d(n)�2

}
. (96)

Following these approximations

lim
n→∞

Dw(n + 1) = lim
n→∞

Dw(n) , (97)

lim
n→∞

Db(n + 1) = lim
n→∞

Db(n) , (98)

are taken into Eq.(93) and Eq.(95). The normalised step-size parameters μw(n) and μb(n) are
bounded as

0 < μw(n) < 2

∣∣∣∣�
(

ΔwH(n) ξw(n)

ξH
w (n) ξw(n)

)∣∣∣∣ , (99)

0 < μb(n) < 2 �

(
ΔbH(n) ξb(n)

ξH
b (n) ξb(n)

)
. (100)

Therefore, the optimal step-size parameters μ
opt
w and μ

opt
b can be formulated by

μ
opt
w =

∣∣∣∣�
(

ΔwH(n) ξw(n)

ξH
w (n) ξw(n)

)∣∣∣∣ , (101)

μ
opt
b = �

(
ΔbH(n) ξb(n)

ξH
b (n) ξb(n)

)
. (102)

7. Simulation results

We implemented the ADSL transmission channel based on parameters as follows: the
sampling rate fs = 2.208 MHz, the size of FFT N = 512, and the input signal power of
-40dBm/Hz. The standard ADSL system parameters were shown in Table 1. The ADSL
downstream starting at active tones 38 up to tone 255 that comprises 512 coefficients of
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Asymmetric Digital Subscriber Line (ADSL) Specifications

Taps of ŵ (Nw) 32 FFT size (N) 512

Taps of b̂ (Nb) 32 Cyclic prefix (ν) 32

Sampling rate ( fs) 2.208 MHz Signal to noise ratio gap 9.8 dB

Tone spacing 4.3125 KHz Noise margin 6 dB

TX-DMT block (M) 400 Coding gain 4.2 dB

TX sequence M×N Input power -40dBm/Hz

Input impedance 100 Ω AWGN power -140dBm/Hz

Table 1. The standard ADSL system for simulation.

ADSL disturbers were included over the entire test channel. The optimal synchronisation
delay (Δ) can be obtained from the proposed algorithm that was equal to 45. The ADSL
downstream simulations with the carrier serving area (CSA) loop no. 1 was the representative
of simulations with all 8 CSA loops as detailed in (Al-Dhahir & Cioffi, 1996). The CSA#1 loop
is a 7700 ft, 26 gauge loop with 26 gauge bridged tap of length of 600 ft at 5900 ft.

The initial parameters of the proposed AS-OSNALMS algorithm were ŵ(0) = b̂(0) =

Ψ̃w(0) = Ψ̃b(0) = [0.001 0 · · · 0]T and of NLMS algorithm were μw = 0.15, μb = 0.075. The
NLMS algorithm was calculated with the fixed step-size for TEQ and TIR with the method
as described in Section 4. Fig. 4 depicts the original simulated channel, SIR and TIR of the
proposed AS-OSNALMS algorithm which compared with SIR of MMSE-UEC. It is noted that
the comparable lengths of SIR and TIR of proposed algorithm are shorter than the original
channel. This explains the channel-shortening capability of the proposed algorithm. Fig. 5
illustrates the MSE curves of proposed AS-OSNALMS and NLMS algorithms. The MSE curve
of proposed algorithm is shown to converge to the MMSE. Fig. 6 and Fig. 7 show the mean
square deviation (MSD) on TEQ and TIR of proposed AS-OSNALMS and NLMS algorithms.
The trajectories of μw(n) and μb(n) at the different of initial step-size μw0 and μb0

are presented
with the fixed at the adaptation parameters αw and αb in Fig. 8 and Fig. 9 and with the
different αw and αb in Fig. 10 and Fig. 11. Comparing the proposed AS-OSNALMS algorithm
with the fixed at the adaptation parameters, it has been shown that the proposed algorithms
have faster initial convergence rate with the different setting of initial step-size and adaptation
parameters. Their are shown to converge to their own equilibria.

8. Conclusion

In this chapter, we present the proposed adaptive step-size order statistic LMS-based TEQ
and TIR for DMT-based systems. We introduce how to derive the updated tap-weight vector

ŵ(n) and b̂(n) as the solution of constrained optimisation to obtain a well-known NLMS
algorithm, which an averaged order statistic scheme is replaced linear smoothing of the
gradient estimation. We demonstrate the derivation of adaptive step-size mechanism for the
proposed order statistic normalised averaged least mean square algorithm. The proposed
algorithms for TEQ and TIR can adapt automatically the step-size parameters. The adaptation
of MSE, MSD of TEQ and MSD of TIR curves of the proposed algorithms are shown to
converge to the MMSE in the simulated channel. According to the simulation results, the
proposed algorithms provide a good approach and are appeared to be robust in AWGN and
NEXT channel as compared to the existing algorithm.
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μb = 0.075.

399
Adaptive Step-size Order Statistic LMS-based
Time-domain Equalisation in Discrete Multitone Systems



Asymmetric Digital Subscriber Line (ADSL) Specifications
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Sampling rate ( fs) 2.208 MHz Signal to noise ratio gap 9.8 dB

Tone spacing 4.3125 KHz Noise margin 6 dB

TX-DMT block (M) 400 Coding gain 4.2 dB

TX sequence M×N Input power -40dBm/Hz

Input impedance 100 Ω AWGN power -140dBm/Hz

Table 1. The standard ADSL system for simulation.

ADSL disturbers were included over the entire test channel. The optimal synchronisation
delay (Δ) can be obtained from the proposed algorithm that was equal to 45. The ADSL
downstream simulations with the carrier serving area (CSA) loop no. 1 was the representative
of simulations with all 8 CSA loops as detailed in (Al-Dhahir & Cioffi, 1996). The CSA#1 loop
is a 7700 ft, 26 gauge loop with 26 gauge bridged tap of length of 600 ft at 5900 ft.

The initial parameters of the proposed AS-OSNALMS algorithm were ŵ(0) = b̂(0) =

Ψ̃w(0) = Ψ̃b(0) = [0.001 0 · · · 0]T and of NLMS algorithm were μw = 0.15, μb = 0.075. The
NLMS algorithm was calculated with the fixed step-size for TEQ and TIR with the method
as described in Section 4. Fig. 4 depicts the original simulated channel, SIR and TIR of the
proposed AS-OSNALMS algorithm which compared with SIR of MMSE-UEC. It is noted that
the comparable lengths of SIR and TIR of proposed algorithm are shorter than the original
channel. This explains the channel-shortening capability of the proposed algorithm. Fig. 5
illustrates the MSE curves of proposed AS-OSNALMS and NLMS algorithms. The MSE curve
of proposed algorithm is shown to converge to the MMSE. Fig. 6 and Fig. 7 show the mean
square deviation (MSD) on TEQ and TIR of proposed AS-OSNALMS and NLMS algorithms.
The trajectories of μw(n) and μb(n) at the different of initial step-size μw0 and μb0

are presented
with the fixed at the adaptation parameters αw and αb in Fig. 8 and Fig. 9 and with the
different αw and αb in Fig. 10 and Fig. 11. Comparing the proposed AS-OSNALMS algorithm
with the fixed at the adaptation parameters, it has been shown that the proposed algorithms
have faster initial convergence rate with the different setting of initial step-size and adaptation
parameters. Their are shown to converge to their own equilibria.

8. Conclusion

In this chapter, we present the proposed adaptive step-size order statistic LMS-based TEQ
and TIR for DMT-based systems. We introduce how to derive the updated tap-weight vector

ŵ(n) and b̂(n) as the solution of constrained optimisation to obtain a well-known NLMS
algorithm, which an averaged order statistic scheme is replaced linear smoothing of the
gradient estimation. We demonstrate the derivation of adaptive step-size mechanism for the
proposed order statistic normalised averaged least mean square algorithm. The proposed
algorithms for TEQ and TIR can adapt automatically the step-size parameters. The adaptation
of MSE, MSD of TEQ and MSD of TIR curves of the proposed algorithms are shown to
converge to the MMSE in the simulated channel. According to the simulation results, the
proposed algorithms provide a good approach and are appeared to be robust in AWGN and
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1. Introduction

The modeling of oscillators and their dynamics has interested researchers in many fields such
as those in physics, chemistry, engineering, and biology. The Hodgkin-Huxley (Hodgkin
& Huxley, 1952) and Fitzhugh-Nagumo models (FitzHugh, 1961), which corresponds
to the Bonhöffer van der Pol (BvP) equation, are well-known models of biological
neurons. They have been described by differential equations, i.e., they are continuous-time
relaxation oscillators. Discrete-time oscillators, e.g., one consisting of a recurrent neural
network (Haschke & Steil, 2005) and another consisting of a spiking neuron model (Rulkov,
2002), have been proposed.
Synchronization observed in coupled oscillators has been established to be an important
topic (Pikovsky et al., 2003; Waller & Kapral, 1984). Research on coupled oscillators
has involved studies on pattern formation (Kapral, 1985; Oppo & Kapral, 1986), image
segmentation (Shareef et al., 1999; Terman & Wang, 1995; Wang & Terman, 1995; 1997),
and scene analysis (Wang, 2005). Of these, a locally excitatory globally inhibitory oscillator
network (LEGION) (Wang & Terman, 1995), which is a continuous-time dynamical system,
has been spotlighted as an ingenious image-segmentation system. A LEGION can segment
an image and exhibit segmented images in a time series, i.e., it can spatially and temporally
segment an image. We call such processing dynamic image segmentation. A LEGION consists
of relaxation oscillators arranged in a two-dimensional (2D) grid and an inhibitor globally
connected to all oscillators and it can segment images according to the synchronization of
locally coupled oscillators. Image segmentation is the task of segmenting a given image so
that homogeneous image blocks are disjoined; it is a fundamental technique in computer
vision, e.g., object recognition for a computer-aided diagnosis system (Doi, 2007) in medical
imaging. The problem with image segmentation is still serious, and various frameworks have
been proposed (Pal & Pal, 1993; Suri et al., 2005) to solve this.
We proposed a discrete-time oscillator model consisting of a neuron (Fujimoto et al., 2008),
which was modified from a chaotic neuron model (Aihara, 1990; Aihara et al., 1990),
coupled with an inhibitor. Despite discrete-time dynamics as well as the recurrent neural
network (Haschke & Steil, 2005), a neuron in our oscillator can generate a similar oscillatory
response formed by a periodic point to an oscillation as observed in a continuous-time
relaxation oscillator model, e.g., the BvP equation. This is a key attribute in our idea.
Moreover, we proposed a neuronal network system consisting of our neurons (discrete-time
oscillators) arranged in a 2D grid and an inhibitor globally coupled to all neurons. As well as
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a LEGION, our neuronal network system can work as a dynamic image-segmentation system
according to the oscillatory responses of neurons. Our system provides much faster dynamic
image segmentation than a LEGION on a digital computer because numerical integration is
not required (Fujimoto et al., 2008). Another advantage of our system is that it simplifies
the investigation of bifurcations of fixed points and periodic points due to the discrete-time
dynamical system. A fixed point and a periodic point correspond to non-oscillatory and
periodic oscillatory responses. Knowledge on the bifurcations of responses allows us to
directly design appropriate system parameters to dynamically segment images. The assigned
system parameters are made available by implementing our dynamic image-segmentation
system into hardware such as field-programmable gate array devices (Fujimoto et al., 2011b).
This article describes the derivation of a model reduced from our dynamic
image-segmentation system that can simplify bifurcation analysis. We also explain our
method of bifurcation analysis based on dynamical systems theory. Through analysis in
reduced models with two or three neurons using our method of analysis, we find parameter
regions where a fixed point or a periodic point exists. We also demonstrate that our
dynamic image-segmentation system, whose system parameters were appropriately assigned
according to the analyzed results, can work for images with two or three image regions.
To demonstrate that segmentation is not limited to three in the system, we also present a
successive algorithm for segmenting an image with an arbitrary number of image regions
using our dynamic image-segmentation system.

2. Discrete-time dynamic image-segmentation system

2.1 Single neuronal system
Figure 1(a) illustrates the architecture of a system consisting of a neuron (Fujimoto et al., 2008)
and an inhibitor. Here, let us call it a single neuronal system. Our neuron model modified from
a chaotic neuron model (Aihara, 1990; Aihara et al., 1990) has two internal state variables, x
and y; z corresponds to the internal state variable of an inhibitor, in which x, y, z ∈ R with R

denoting the set of real numbers. Let the sum of internal state values in a neuron, i.e. x + y,
be the activity level of a neuron. The dynamics of the single neuronal system is described by
difference equations:

x(t + 1) = k f x(t) + d + Wx · g(x(t) + y(t), θc)− Wz · g(z(t), θz) (1a)

y(t + 1) = kry(t)− α · g(x(t) + y(t), θc) + a (1b)

z(t + 1) = φ
{

g
(

g(x(t) + y(t), θ f ), θd

)
− z(t)

}
. (1c)

The t ∈ Z denotes the discrete time where Z expresses the set of integers. g(·, ·) is the output
function of a neuron or an inhibitor and is described as

g(u(t), θ) =
1

1 + exp(−(u(t)− θ)/ε)
. (2)

Note that g(·, θd) where g(x(t) + y(t), θ f ) is nested in Eq. (1c) is neither output function, but a
function to find the firing of a neuron that corresponds to a high level of activity. Therefore, an
inhibitor plays roles in detecting a fired neuron and suppressing the activity level of a neuron
at the next discrete time. The k f , kr, and φ are coefficients corresponding to the gradient of x,
y, and z. The d denotes an external direct-current (DC) input. The Wx and α are self-feedback
gains in a neuron, and Wz is the coupling coefficient from an inhibitor to a neuron. The a is a
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bias term in a neuron. The θc and θz are threshold parameters in output functions of a neuron
and an inhibitor, respectively. Also, θ f and θd are threshold parameters to define the firing of
a neuron and to detect a fired neuron, respectively. The ε is a parameter that determines the
gradient of the sigmoid function (2) at u(t) = θ.
When we set all the parameters to certain values, our neuron can generate a similar oscillatory
response formed by a periodic point to an oscillation as observed in a continuous-time
relaxation oscillator model. For instance, the time evolution of a generated response, in
which this is a waveform, is shown in Fig. 1(b) for initial values, (x(0), y(0), z(0)) =
(32.108,−31.626, 0.222), at k f = 0.5, d = 2, Wx = 15, θc = 0, Wz = 15, θz = 0.5, kr = 0.89,
α = 4, a = 0.5, φ = 0.8, θ f = 15, θd = 0, and ε = 0.1. To clarify the effect of the inhibitor,
we have shown the activity level of the neuron and the internal state of the inhibitor on the
vertical axis in this figure. The points marked with open circles “◦” indicate the values of
x + y and z at discrete time t. Although the response of a neuron or an inhibitor is formed
by a series of points because of its discrete-time dynamics, we drew lines between temporally
adjacent points as a visual aid. Therefore, our neuron coupled with an inhibitor is available as
a discrete-time oscillator.
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Fig. 1. Architecture of single neuronal system and generated oscillatory response

2.2 Neuronal network system
We have proposed a neuronal network system for dynamic image segmentation (Fujimoto
et al., 2008). Figure 2(a) outlines the architecture of our system for a 2D image with P
pixels. It is composed of our neurons that have as many pixels as in a given image and
an inhibitor that is called a global inhibitor because it is connected with all neurons. All
neurons are arranged in a 2D grid so that one corresponds to a pixel, and a neuron can have
excitatory connections to its neighboring neurons. Here, we assumed that a neuron could
connect to its four-neighboring ones. The formation of local connections between neighboring
neurons is determined according to the value of DC input to each neuron. Note that, we
can use our neuronal network system, in which neurons are arranged in a 3D grid so that
one neuron corresponds to a voxel, which means a volumetric picture element, as a dynamic
image-segmentation system for a 3D image.
The architecture for the ith neuron in a neuronal network system is illustrated in Fig. 2(b).
The open and closed circles at the ends of the arrows correspond to excitatory and inhibitory
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couplings. A neuron can receive external inputs from neighboring ones connected to it. An
external input from another neuron can induce in-phase synchronization in the responses
of connected neurons. Note that the number of external inputs in Fig. 2(b) indexed by g(xk +
yk, θc) is the same as that of the other neurons connected to the ith neuron; moreover, when the
DC-input value to the ith neuron is low, positive self-feedback vanishes and the neuron also
has no connection to the others. Wx/Mi and Wz in external inputs represent coupling weights;
the other Wx/Mi and α are feedback gains, where Mi denotes the number of connections to
the ith neuron and neighboring neurons. What Mi means will be explained later.
The dynamics of our neuronal network system is described as

xi(t + 1) = k f xi(t) + di + ∑
k∈Li

Wx

Mi
g(xk(t) + yk(t), θc)− Wz · g(z(t), θz) (3a)

yi(t + 1) = kryi(t)− α · g(xi(t) + yi(t), θc) + a (3b)

(i = 1, 2, . . . , P)

z(t + 1) = φ

{
g

(
P

∑
n=1

g(xn(t) + yn(t), θ f ), θd

)
− z(t)

}
. (3c)
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The g(·, ·) was already defined in Eq. (2). The third term on the right hand side of Eq. (3a)
denotes the ith neuron’s self-feedback and external inputs from neighboring neurons, in
which Li represents an index set for neurons connected to the ith one. Therefore, the maximum
number of elements in Li is five in the architecture in Fig. 2(a). The Mi expresses the number
of elements in Li. Note that, when the ith neuron has no connection to neighboring neurons
including itself, i.e., Mi = 0, we treat it as Wx/Mi = 0 because division by zero occurs.
As seen in Eq. (3c), the dynamics of a global inhibitor is improved from that in Eq. (1c) so
that it can detect one or more firing neurons; moreover, it suppresses the activity levels of all
neurons via negative couplings described at the fourth term in the right hand side of Eq. (3a).
Therefore, when we set all the parameter values in Eq. (3) to those described in Sec. 2.1, only
neurons with self-feedback can generate oscillatory responses.

2.3 Scheme of dynamic image segmentation
There is an image segmentation scheme using our neuronal network system in Fig. 3. For
simplicity, let us now consider a simple gray-level image with 3× 3 pixels. The image contains
two image regions consisting of the same gray-level pixels: the first is composed of the first
and fourth pixels, and the second is made up of only the ninth pixel.
Nine neurons are arranged in a 3 × 3 grid for the given image. The value of DC input, di, is
associated with the gray level of the ith pixels. A neuron with a high DC-input value forms
positive self-feedback and also connects to neighboring ones with similar DC-input values.
Therefore, the red and blue neurons in this schematic have positive self-feedback connections
and can generate oscillatory responses; the others corresponding to black pixels have no
self-feedback and do not fire. Direct connection is formed between the red neurons because
they correspond to pixels with the same gray levels, i.e., they have the same DC-input values.
As seen from the red waveforms in Fig. 3, direct connection induces in-phase synchronization
in the responses of coupled neurons. However, as seen from the red and blue waveforms,
the responses of uncoupled neurons corresponding to pixels in different image regions are
out of phase. This effect is produced by the global inhibitor that detects one or more firing
neurons and suppresses the activity levels of all neurons with its own kindling. By assigning
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associated with the gray level of the ith pixels. A neuron with a high DC-input value forms
positive self-feedback and also connects to neighboring ones with similar DC-input values.
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the ith pixel value in the output image at time t to a high value corresponding to the white
pixel only if xi(t) + yi(t) ≥ θ f , segmented images are output and are exhibited in a time
series. As a result, the given image is spatially and temporally segmented, i.e., dynamic image
segmentation is achieved.

3. Analysis for parameter design

3.1 Reduced model
Our neuronal network model has complex dynamics and a variety of nonlinear phenomena
such as synchronized neuron responses and bifurcations in these responses are therefore
expected to occur in our system. From the viewpoint of dynamical systems theory, detailed
analyses of the local and global bifurcations observed in our system would be interesting.
However, we have only concentrated on analysis to design appropriate parameter values for
dynamic image segmentation in this article, i.e., to find parameter regions where there are
stable non-oscillatory or periodic oscillatory responses.
First, we need to derive a reduced model to simplify bifurcation analysis. Let us consider
a dynamic image-segmentation system for a P-pixel image with Q image regions, where
generally Q � P. A reduced model consists of a global inhibitor and Q neurons without
direct coupling to the others as illustrated in Fig. 4. Here, we call it a Q-coupled system.
A neuron in a Q-coupled system stands for neurons corresponding to all pixels in the same
image region in our original neuronal system in Fig. 2(a). This reduced model is derived from
three assumptions (Fujimoto et al., 2009b) in our dynamic image segmentation system for an
image with Q image regions: 1) all pixel values in an identical image region are the same;
viz., all neurons corresponding to pixels in an image region have the same DC-input values
and are locally coupled with one another, 2) the responses of all neurons corresponding to
pixels in an identical image region are synchronized in phase; this arises naturally from the
first assumption, and 3) connections from the global inhibitor to the neurons are negligible
because neurons corresponding to pixels with low gray-levels do not fire.
A non-oscillatory response and a periodic oscillatory response correspond to a fixed point and
a periodic point. Therefore, knowing about their bifurcations in a Q-coupled system allows
us to directly design appropriate parameter values to dynamically segment any sized image
with Q image regions.

…

An input image with
    isolated image regions

N1 N2 NQ

Q
GI

(x1, y1) (x2, y2) (xQ, yQ)

Fig. 4. Architecture of Q-coupled system and its correspondence to image with Q image
regions
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Now, let x(t) = (x1(t), y1(t), . . . , xQ(t), yQ(t), z(t))� ∈ RV , where � denotes the transpose of
a vector. The dynamics of the Q-coupled system is described by a V-dimensional discrete-time
dynamical system where V = 2Q + 1 as

x(t + 1) = f (x(t)), (4)

or equivalently, an iterated map defined by

f : RV → RV ;x �→ f (x). (5)

The nonlinear function, f , describes the dynamics of the Q-coupled system given by

f

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1
y1
...

xQ
yQ
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k f x1 + d1 + Wx · g(x1 + y1, θc)− Wz · g(z, θz)
kry1 − α · g(x1 + y1, θc) + a

...
k f xQ + dQ + Wx · g(xQ + yQ, θc)− Wz · g(z, θz)
kryQ − α · g(xQ + yQ, θc) + a

φ

�
g

�
Q

∑
n=1

g(xn + yn, θ f ), θd

�
− z

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

where g(·, ·) was defined in Eq. (2).

3.2 Method of bifurcation analysis
A non-oscillatory response observed in the Q-coupled system corresponds to a fixed point of
f in Eq. (5), and a periodic oscillatory response is formed by a periodic point of f . Therefore,
we can find their local bifurcations for the change in a system parameter value using a method
of analysis based on qualitative bifurcation theory for discrete-time dynamical systems. The
results from analyzing bifurcation in a reduced model enabled us to design suitable parameter
values in our neuronal network system for dynamic image segmentation.
The following explains our method of analysis. Let us now consider a point, x∗, satisfying

x∗ − f (x∗) = 0. (7)

This is called a fixed point of f in Eq. (5) and corresponds to a non-oscillatory response
observed in the Q-coupled system. The characteristic equation of x∗ is defined as

det (μE − Df (x∗)) = 0, (8)

where E and Df (x∗) correspond to the V ×V identity matrix and the Jacobian matrix of f at
x = x∗. Moreover, the roots of Eq. (8), i.e., characteristic multipliers, are described as

{μ1, μ2, . . . , μV} =
�

μi ∈ C
�� det (μE − Df (x∗)) = 0

�
, (9)

where C denotes the set of complex numbers. When the values of all |μi|s are neither unity
nor zero, we say that x∗ is hyperbolic. Now, let us assume x∗ is a hyperbolic fixed point. Let
U be the intersection of RV and the direct sum of the generalized eigenspaces of Df (x∗) such
that |μi| > 1, ∀i; U is called the unstable subspace of RV . Moreover, let H = Df (x∗)|U . The
topological type of a hyperbolic fixed point is classified according to the value of dimU and
the sign of detH (Kawakami, 1984).
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A hyperbolic fixed point bifurcates when its stability is varied, or more correctly its topological
type is changed, according to variations in a system parameter value; change in a topological
type occurs when one or more characteristic multipliers are on the unit circle in the complex
plane. There are generally three types of co-dimension-one bifurcations, i.e., tangent
(saddle-node), period-doubling, and Neimark-Sacker bifurcations. D-type of branching
(pitchfork bifurcation) can also appear as a degenerate case of tangent bifurcation in only a
dynamical system that is symmetrical. Tangent bifurcation or D-type of branching appears if
μ = +1, period-doubling bifurcation occurs when μ = −1, and Neimark-Sacker bifurcation
is generated when μ = ejϕ, where j =

√−1 except for μ = ±1.
A bifurcation point of x∗ is computed by solving simultaneous equations consisting of Eqs. (7)
and (8) as the values of x∗ and a system parameter are unknown; we employed Newton’s
method for the numerical determination. The Jacobian matrix of the simultaneous equations
used in Newton’s method is derived from the first and second derivatives of f . Note that, in
Eq. (7), a fixed point, x∗, becomes an m-periodic point by replacing f with fm, which denotes
the m-times iteration of f , where m is a natural number such that m ≥ 2. We can define an
m-periodic point and its bifurcations according to fm; moreover, we can numerically compute
the bifurcation points of an m-periodic point as well as those of a fixed point.
As previously mentioned, we focused on bifurcation analysis to design suitable parameter
values for our dynamic image segmentation system. Therefore, we will next illustrate
parameter regions where there are stable fixed or stable periodic points in two-parameter
bifurcation diagrams.

3.3 Results of analysis
We will now illustrate parameter regions where there are stable fixed or periodic points with
our method of analyzing bifurcations. Knowing about the bifurcations allows us to directly
set system-parameter values that yield successful results for dynamic image segmentation.
We treated a single neuronal system and two- and three-coupled systems and set the system
parameter values in Eqs. (2) and (6) except for kr, φ, and dis to ε = 0.1, k f = 0.5, Wx = 15,
θc = 0, Wz = 15, θz = 0.5, α = 4, a = 0.5, θ f = 15, and θd = 0. In the bifurcation diagrams
that follow, we used symbols Gm

� , Im
� , NSm

� , and Dm
� to denote tangent, period-doubling,

and Neimark-Sacker bifurcations, and D-type of branching for an m-periodic point. The
subscript series number � was appended to distinguish bifurcation sets of the same type for
an m-periodic point. Note that these symbols indicate bifurcations of a fixed point if m = 1.

3.3.1 Single neuronal system
This is the reduced model of a dynamic image segmentation system for an image with only
one image region. Its architecture is outlined in Fig. 1(a). It may seem that the analysis of
bifurcations observed in this reduced model is meaningless for dynamic image segmentation.
However, the existence of a fixed point in this model leads to considerable knowledge to
devise an algorithm for dynamic image segmentation as will be explained later.
We set d = 2 and used kr and φ as unfixed parameters to analyze bifurcation. As shown in
Fig. 1(b), an oscillatory response was observed in this model with kr = 0.89 and φ = 0.8.
Moreover, we found a stable fixed point, x∗ = (32.244,−23.333, 0.22222), at kr = 0.85 and φ =
0.8. We investigated a parameter region where there was a stable fixed point and also found
the genesis of the oscillatory response (Fujimoto et al., 2009b).
Figure 5 shows a two-parameter bifurcation diagram on a fixed point in the (kr, φ)-plane. We
found three Neimark-Sacker bifurcation sets and located the shaded parameter region where
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there was a stable fixed point. When we gradually changed the value of kr under φ = 0.8 so
that the parameter point passed through the bifurcation line indexed by NS1

1 from the shaded
region to the non-shaded region, the stable fixed point destabilized on the Neimark-Sacker
bifurcation line. As a result, an oscillatory response was generated as seen in Fig. 6. In the
numerical simulation, we set kr = 0.88975 and φ = 0.8 that correspond to the parameter
point in the neighborhood at right of NS1

1 in Fig. 5; the initial values were set to x(0) =
(32.10,−31.58, 0.2222), which is in the vicinity of the destabilized fixed point. That is, this
figure gives the time evolution in the transient state that starts from the destabilized fixed
point to generate an oscillatory response. Although we observed an oscillatory response in
the other non-shaded region surrounded by NS1

2 and NS1
3, it is not suited to dynamic image

segmentation because of its small amplitude and short period.
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Fig. 6. Oscillatory response caused by Neimark-Sacker bifurcation of stable fixed point

3.3.2 Two-coupled system
This two-coupled system consists of a global inhibitor and two neurons without direct
coupling to other neuron. This was derived as a reduced model of our scheme to dynamically
segment an image with two image regions.
Here, the unfixed parameters were set to d1 = d2 = 2, which means that all pixel values in
the two image regions are the same. Therefore, this system is symmetrical for the exchange of
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one image region. Its architecture is outlined in Fig. 1(a). It may seem that the analysis of
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Fig. 1(b), an oscillatory response was observed in this model with kr = 0.89 and φ = 0.8.
Moreover, we found a stable fixed point, x∗ = (32.244,−23.333, 0.22222), at kr = 0.85 and φ =
0.8. We investigated a parameter region where there was a stable fixed point and also found
the genesis of the oscillatory response (Fujimoto et al., 2009b).
Figure 5 shows a two-parameter bifurcation diagram on a fixed point in the (kr, φ)-plane. We
found three Neimark-Sacker bifurcation sets and located the shaded parameter region where
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there was a stable fixed point. When we gradually changed the value of kr under φ = 0.8 so
that the parameter point passed through the bifurcation line indexed by NS1

1 from the shaded
region to the non-shaded region, the stable fixed point destabilized on the Neimark-Sacker
bifurcation line. As a result, an oscillatory response was generated as seen in Fig. 6. In the
numerical simulation, we set kr = 0.88975 and φ = 0.8 that correspond to the parameter
point in the neighborhood at right of NS1

1 in Fig. 5; the initial values were set to x(0) =
(32.10,−31.58, 0.2222), which is in the vicinity of the destabilized fixed point. That is, this
figure gives the time evolution in the transient state that starts from the destabilized fixed
point to generate an oscillatory response. Although we observed an oscillatory response in
the other non-shaded region surrounded by NS1

2 and NS1
3, it is not suited to dynamic image

segmentation because of its small amplitude and short period.
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Fig. 6. Oscillatory response caused by Neimark-Sacker bifurcation of stable fixed point

3.3.2 Two-coupled system
This two-coupled system consists of a global inhibitor and two neurons without direct
coupling to other neuron. This was derived as a reduced model of our scheme to dynamically
segment an image with two image regions.
Here, the unfixed parameters were set to d1 = d2 = 2, which means that all pixel values in
the two image regions are the same. Therefore, this system is symmetrical for the exchange of
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(x1, y1) and (x2, y2) from Eq. (6) at d1 = d2. The kr and φ were used as unfixed parameters in
the analysis of bifurcation that is discussed below.
First, we investigated the bifurcations of a fixed point in a symmetrical two-coupled
system (Fujimoto et al., 2009b) where we observed a stable fixed point, x∗ =
(32.244, 32.244,−23.333,−23.333, 0.222), at kr = 0.85 and φ = 0.8. The occurrence of a fixed
point is adverse for dynamic image segmentation because only black images are output; this
means dynamic image segmentation has failed. By analyzing bifurcation for the fixed point,
we obtained the two-parameter bifurcation diagram in Fig. 5, i.e., this is the same as that for
the results obtained for the fixed point in the single neuronal system.
We observed two types of oscillatory responses formed by periodic points at kr = 0.89 and
φ = 0.8. Figure 7 shows in-phase and out-of-phase oscillatory responses in which the blue
and red points correspond to the responses of the first and second neurons. To understand
their phases better, we also drew phase portraits.
Figure 8(a) illustrates bifurcation sets of several in-phase periodic points, and the line marked
NS1

1 at the bottom left corresponds to the Neimark-Sacker bifurcation set of the fixed point.
As seen in the figure, we found the tangent bifurcations of in-phase periodic points. There is
a stable in-phase m-periodic point in the shaded parameter region surrounded by Gm

1 and Gm
2

for m = 60, 61, . . . , 70. Therefore, in-phase periodic points could be observed in the shaded
parameter regions in the right parameter regions of NS1

1. Note that in-phase periodic points
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Fig. 7. Different types of oscillatory responses observed in symmetric two-coupled system at
kr = 0.89 and φ = 0.8

are inappropriate for dynamically segmenting an image with two image regions (Fujimoto
et al., 2009b).
Next, we investigated the bifurcations of out-of-phase periodic points on the
(kr, φ)-plane. (Musashi et al., 2009). As shown in Fig. 8(b), their tangent bifurcations
and D-type of branchings were found. For example, there are stable out-of-phase m-periodic
points in the shaded parameter region surrounded by Gm

� and Dm
1 for m = 30, 32, 34, 36 for

the observed periodic points. Note that the overlapping parameter region indicates that
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Fig. 8. Bifurcations of perodic points observed in symmetric two-coupled system
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Fig. 9. Out-of-phase oscillatory response observed in asymmetric two-coupled system at
kr = 0.85 and φ = 0.8

out-of-phase periodic points coexist. The whole parameter region where there are stable
out-of-phase periodic points is much wider than that of stable in-phase periodic points.
This is favorable for dynamic image segmentation, because an in-phase periodic point is
unsuitable and an out-of-phase periodic point is suitable.
We set d1 �= d2 in the two-coupled system, and therefore, the symmetry for the exchange of
(x1, y1) and (x2, y2) in Eq. (6) is lost. This asymmetric two-coupled system corresponds to a
situation where an input image contains two image regions of different colors. No symmetric
periodic points occur in this system; however, we could observe the asymmetric out-of-phase
periodic point shown in Fig. 9. Note that it is difficult to determine whether a periodic point is
symmetric only from waveforms and phase portraits; however, this is not important because
the feasibility of dynamic image segmentation is not dependent on whether there is symmetry
or not but on the number of phases in a periodic point.
Figure 10(a) shows bifurcation sets of out-of-phase periodic points observed at d1 = 2 and
d2 = 1.9. Different from the symmetric system, D-type of branching never appeared due to
the asymmetric system; instead, period-doubling bifurcations were found. Comparing the
extent of all the shaded parameter regions in Figs. 8(b) and 10(a), the asymmetric system is
as wide as the symmetric system. Moreover, we set d1 = 2 and φ = 0.8 and investigated
their bifurcations on the (kr, d2)-plane as seen in Fig. 10(b). This indicates that there were
stable out-of-phase periodic points even if the value of |d1 − d2| was large; in other words, the
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we obtained the two-parameter bifurcation diagram in Fig. 5, i.e., this is the same as that for
the results obtained for the fixed point in the single neuronal system.
We observed two types of oscillatory responses formed by periodic points at kr = 0.89 and
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and red points correspond to the responses of the first and second neurons. To understand
their phases better, we also drew phase portraits.
Figure 8(a) illustrates bifurcation sets of several in-phase periodic points, and the line marked
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are inappropriate for dynamically segmenting an image with two image regions (Fujimoto
et al., 2009b).
Next, we investigated the bifurcations of out-of-phase periodic points on the
(kr, φ)-plane. (Musashi et al., 2009). As shown in Fig. 8(b), their tangent bifurcations
and D-type of branchings were found. For example, there are stable out-of-phase m-periodic
points in the shaded parameter region surrounded by Gm
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the observed periodic points. Note that the overlapping parameter region indicates that
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out-of-phase periodic points coexist. The whole parameter region where there are stable
out-of-phase periodic points is much wider than that of stable in-phase periodic points.
This is favorable for dynamic image segmentation, because an in-phase periodic point is
unsuitable and an out-of-phase periodic point is suitable.
We set d1 �= d2 in the two-coupled system, and therefore, the symmetry for the exchange of
(x1, y1) and (x2, y2) in Eq. (6) is lost. This asymmetric two-coupled system corresponds to a
situation where an input image contains two image regions of different colors. No symmetric
periodic points occur in this system; however, we could observe the asymmetric out-of-phase
periodic point shown in Fig. 9. Note that it is difficult to determine whether a periodic point is
symmetric only from waveforms and phase portraits; however, this is not important because
the feasibility of dynamic image segmentation is not dependent on whether there is symmetry
or not but on the number of phases in a periodic point.
Figure 10(a) shows bifurcation sets of out-of-phase periodic points observed at d1 = 2 and
d2 = 1.9. Different from the symmetric system, D-type of branching never appeared due to
the asymmetric system; instead, period-doubling bifurcations were found. Comparing the
extent of all the shaded parameter regions in Figs. 8(b) and 10(a), the asymmetric system is
as wide as the symmetric system. Moreover, we set d1 = 2 and φ = 0.8 and investigated
their bifurcations on the (kr, d2)-plane as seen in Fig. 10(b). This indicates that there were
stable out-of-phase periodic points even if the value of |d1 − d2| was large; in other words, the
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difference between the gray levels of the pixels in the two image regions is large. This is also
favorable for a dynamic image segmentation system.
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Fig. 10. Bifurcations of out-of-phase perodic points observed in asymmetric two-coupled
system

3.3.3 Three-coupled system
This model is composed of a global inhibitor and three neurons without direct coupling to
the others and was derived as a reduced model of our dynamic segmentation of an image
containing three image regions. As well as the aforementioned reduced models, we drew
several two-parameter bifurcation diagrams to find the parameter regions such that a stable
fixed point or a stable m-periodic point existed.
When we set d1 = d2 = d3 = 2, the three-coupled system was symmetric for a
circular exchange of (xi, yi) for (xi+1, yi+1), i = 1, 2, 3 where the value of i + 1 returns
to 1 if i = 3. In this symmetric system, we found a stable fixed point, x∗ =
(32.244,−29.167, 32.244,−29.167, 32.244,−29.167, 0.222), at kr = 0.88 and φ = 0.8. In
the results we investigated, we found the bifurcation diagram on the fixed point on the
(kr, φ)-plane was the same as the one in Fig. 5. Moreover, as well as those in the symmetric
two-coupled system, we could observe in-phase oscillatory responses in only the right hand
side region of NS1

1. The waveform of an in-phase oscillatory response and its phase portraits
are shown in Fig. 11(a), where the blue, red, and green points correspond to the responses of
the first, second, and third neurons. The results suggest that the Neimark-Sacker bifurcation
set, NS1

1, causes in-phase oscillatory responses to generate and these are similar to those of the
symmetric two-coupled system (Fujimoto et al., 2009b; Musashi et al., 2009). Therefore, this
implies that the global bifurcation structure of a fixed point and the generation of in-phase
oscillatory responses are intrinsic properties of the symmetric Q-coupled system.
We also observed several oscillatory responses in certain parameter regions. Figures 11(b)
and 11(c) show a two-phase and a three-phase periodic points. For the following reasons, we
only focused on the bifurcations of three-phase periodic points that were appropriate for
dynamically segmenting an image with three image regions.
Figure 13 shows bifurcation sets of three-phase periodic points observed in the symmetric
system. Tangent, period-doubling, and Neimark-Sacker bifurcations were observed. The
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Fig. 11. Different types of oscillatory responses observed in symmetric three-coupled system
at d1 = d2 = d3 = 2, kr = 0.89, and φ = 0.8
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Fig. 12. Three-phase oscillatory response observed in asymmetric three-coupled system at
d1 = 2, d2 = 1.9, d3 = 1.8, kr = 0.89, and φ = 0.8

respective periodic points are symmetrical for the aforementioned circular exchange.
However, as seen in Fig. 13, we could find no D-type of branching in these investigations.
There is a stable three-phase periodic point in each shaded parameter region. Compared
with the extent of the entire shaded parameter region in Fig. 8(b), that of the three-phase
periodic points is small; however, it is sufficient to design the parameters of our dynamic
image segmentation system.
Next, we set d1 �= d2 �= d3, i.e., this model is asymmetric. Although this three-coupled
system loses symmetry, there is a three-phase periodic point in certain parameters as shown in
Fig. 12. We investigated the bifurcations of several three-phase periodic points observed in the
asymmetric system and drew two bifurcation diagrams. Figure 14(a) shows the bifurcation
sets of three-phase periodic points on the (kr, φ)-plane. Of course, we found no D-type of
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difference between the gray levels of the pixels in the two image regions is large. This is also
favorable for a dynamic image segmentation system.
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system

3.3.3 Three-coupled system
This model is composed of a global inhibitor and three neurons without direct coupling to
the others and was derived as a reduced model of our dynamic segmentation of an image
containing three image regions. As well as the aforementioned reduced models, we drew
several two-parameter bifurcation diagrams to find the parameter regions such that a stable
fixed point or a stable m-periodic point existed.
When we set d1 = d2 = d3 = 2, the three-coupled system was symmetric for a
circular exchange of (xi, yi) for (xi+1, yi+1), i = 1, 2, 3 where the value of i + 1 returns
to 1 if i = 3. In this symmetric system, we found a stable fixed point, x∗ =
(32.244,−29.167, 32.244,−29.167, 32.244,−29.167, 0.222), at kr = 0.88 and φ = 0.8. In
the results we investigated, we found the bifurcation diagram on the fixed point on the
(kr, φ)-plane was the same as the one in Fig. 5. Moreover, as well as those in the symmetric
two-coupled system, we could observe in-phase oscillatory responses in only the right hand
side region of NS1

1. The waveform of an in-phase oscillatory response and its phase portraits
are shown in Fig. 11(a), where the blue, red, and green points correspond to the responses of
the first, second, and third neurons. The results suggest that the Neimark-Sacker bifurcation
set, NS1

1, causes in-phase oscillatory responses to generate and these are similar to those of the
symmetric two-coupled system (Fujimoto et al., 2009b; Musashi et al., 2009). Therefore, this
implies that the global bifurcation structure of a fixed point and the generation of in-phase
oscillatory responses are intrinsic properties of the symmetric Q-coupled system.
We also observed several oscillatory responses in certain parameter regions. Figures 11(b)
and 11(c) show a two-phase and a three-phase periodic points. For the following reasons, we
only focused on the bifurcations of three-phase periodic points that were appropriate for
dynamically segmenting an image with three image regions.
Figure 13 shows bifurcation sets of three-phase periodic points observed in the symmetric
system. Tangent, period-doubling, and Neimark-Sacker bifurcations were observed. The
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Fig. 11. Different types of oscillatory responses observed in symmetric three-coupled system
at d1 = d2 = d3 = 2, kr = 0.89, and φ = 0.8
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respective periodic points are symmetrical for the aforementioned circular exchange.
However, as seen in Fig. 13, we could find no D-type of branching in these investigations.
There is a stable three-phase periodic point in each shaded parameter region. Compared
with the extent of the entire shaded parameter region in Fig. 8(b), that of the three-phase
periodic points is small; however, it is sufficient to design the parameters of our dynamic
image segmentation system.
Next, we set d1 �= d2 �= d3, i.e., this model is asymmetric. Although this three-coupled
system loses symmetry, there is a three-phase periodic point in certain parameters as shown in
Fig. 12. We investigated the bifurcations of several three-phase periodic points observed in the
asymmetric system and drew two bifurcation diagrams. Figure 14(a) shows the bifurcation
sets of three-phase periodic points on the (kr, φ)-plane. Of course, we found no D-type of
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Fig. 14. Bifurcations of three-phase periodic points observed in asymmetric three-coupled
system

branching because of the asymmetric system. There is a stable three-phase periodic point in
each parameter region shaded by a pattern. The shape and size of the whole shaded parameter
region where there are three-phase periodic points are similar to those in Fig. 13.
As seen in Fig. 14(b), we also computed the bifurcations of three-phase periodic points
observed at d1 = 2, d2 = 1.9, and φ = 0.8 on the (kr, d3)-plane. As we can see from the figure,
there are several stable three-phase periodic points even if the value of d3 is set as small as 1.5.
This suggests that our dynamic image-segmentation system can work for an image with three
regions having different gray levels.

4. Application to Dynamic Image Segmentation

We demonstrated successful results for dynamic image segmentation carried out by our
system with appropriate parameter values according to the results analyzed from the two- and

418 Discrete Time Systems

three-coupled systems. Our basic concept was that we assigned system parameters to certain
values such those in-phase oscillatory responses, which are unsuitable for dynamic image
segmentation. They do not appear but a multiphase periodic point with as many phases as
image regions does occur.

4.1 Image with two image regions
Let us consider a dynamic image segmentation problem for the 8-bit gray-level image with
256 × 256 pixels shown in Fig. 15(a). This is a slice from the X-ray CT images of the human
head from the Visible Human Dataset (Ackerman, 1991). Using a thresholding method, we
transformed the gray-level CT image into a binary image in preprocessing with ∀i, pi =
{0, 255}, where pi denotes the ith pixel value. Here, the black and white correspond to 0
and 255. The process image contains the two white image regions shown in Fig. 15(b). The
upper region corresponds to teeth and the mandible bone, and the lower regions indicate the
cervical spine.
We need a neuronal network system to segment the binary image consisting of 256 × 256
neurons and a global inhibitor. The DC-input value to the ith neuron, di, was set to 2.0 for
neurons corresponding to pixels in the two white image regions based on di = 2pi/255.
Therefore, we can design system-parameter values according to the analyzed results for the
symmetric two-coupled system in Figs. 5 and 8.
Based on the information in the bifurcation diagrams, we set the two unfixed parameters to
kr = 0.885 and φ = 0.8, which correspond to a parameter point in the left neighborhood of
NS1

1 in Fig. 5, so that no in-phase oscillatory responses appear from any initial values but a
fixed point or an out-of-phase 36-periodic point does occur. Note that, any of the out-of-phase
periodic points in Fig. 8(b) are available for dynamic image segmentation, and the period
of the periodic point used in dynamic image segmentation corresponds to the period each
segmented image appeared in output images that were exhibited in a time series.
The binarized image was input to our dynamic image segmentation system with 256 × 256
neurons and a global inhibitor. According to an out-of-phase 36-periodic point, our system
output images in the time series shown in Fig. 15(c), i.e., images were dynamically segmented
successfully. Note that the output images sequentially appeared from the top-left to the
bottom-right, and they also began to appear in each line from the left; moreover, output
images corresponding to state variables in the transient state were removed. We confirmed
from the series of output images that the period where each image region appeared was 36.

4.2 Image with three image regions
We considered the 8-bit gray-level image with 128× 128 pixels shown in Fig. 16(a). It has three
image regions: a ring shape, a rectangle, and a triangle. To simplify the problem, the color in
each image region was made into a monotone in which the pixel values were 255, 242, and 230
so that these values corresponded to d1 = 2, d2 = 1.9, and d3 = 1.8 according to di = 2pi/255.
To dynamically segment the target image, we needed a neuronal network system consisting
of 128 × 128 neurons and a global inhibitor. The DC-input value to the ith neuron, di, was
set to 2.0 for neurons corresponding to pixels in the ring shape, 1.9 for those in the rectangle,
and 1.8 for those in the triangle. The neuronal network system with 128 × 128 neurons could
be regarded as an asymmetric three-coupled system. Therefore, according to the analyzed
results in Fig. 14, e.g., we set the unfixed parameter values to kr = 0.875 and φ = 0.8 such that
a three-phase 25-periodic point occurred in the asymmetric three-coupled system.
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branching because of the asymmetric system. There is a stable three-phase periodic point in
each parameter region shaded by a pattern. The shape and size of the whole shaded parameter
region where there are three-phase periodic points are similar to those in Fig. 13.
As seen in Fig. 14(b), we also computed the bifurcations of three-phase periodic points
observed at d1 = 2, d2 = 1.9, and φ = 0.8 on the (kr, d3)-plane. As we can see from the figure,
there are several stable three-phase periodic points even if the value of d3 is set as small as 1.5.
This suggests that our dynamic image-segmentation system can work for an image with three
regions having different gray levels.

4. Application to Dynamic Image Segmentation

We demonstrated successful results for dynamic image segmentation carried out by our
system with appropriate parameter values according to the results analyzed from the two- and
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three-coupled systems. Our basic concept was that we assigned system parameters to certain
values such those in-phase oscillatory responses, which are unsuitable for dynamic image
segmentation. They do not appear but a multiphase periodic point with as many phases as
image regions does occur.

4.1 Image with two image regions
Let us consider a dynamic image segmentation problem for the 8-bit gray-level image with
256 × 256 pixels shown in Fig. 15(a). This is a slice from the X-ray CT images of the human
head from the Visible Human Dataset (Ackerman, 1991). Using a thresholding method, we
transformed the gray-level CT image into a binary image in preprocessing with ∀i, pi =
{0, 255}, where pi denotes the ith pixel value. Here, the black and white correspond to 0
and 255. The process image contains the two white image regions shown in Fig. 15(b). The
upper region corresponds to teeth and the mandible bone, and the lower regions indicate the
cervical spine.
We need a neuronal network system to segment the binary image consisting of 256 × 256
neurons and a global inhibitor. The DC-input value to the ith neuron, di, was set to 2.0 for
neurons corresponding to pixels in the two white image regions based on di = 2pi/255.
Therefore, we can design system-parameter values according to the analyzed results for the
symmetric two-coupled system in Figs. 5 and 8.
Based on the information in the bifurcation diagrams, we set the two unfixed parameters to
kr = 0.885 and φ = 0.8, which correspond to a parameter point in the left neighborhood of
NS1

1 in Fig. 5, so that no in-phase oscillatory responses appear from any initial values but a
fixed point or an out-of-phase 36-periodic point does occur. Note that, any of the out-of-phase
periodic points in Fig. 8(b) are available for dynamic image segmentation, and the period
of the periodic point used in dynamic image segmentation corresponds to the period each
segmented image appeared in output images that were exhibited in a time series.
The binarized image was input to our dynamic image segmentation system with 256 × 256
neurons and a global inhibitor. According to an out-of-phase 36-periodic point, our system
output images in the time series shown in Fig. 15(c), i.e., images were dynamically segmented
successfully. Note that the output images sequentially appeared from the top-left to the
bottom-right, and they also began to appear in each line from the left; moreover, output
images corresponding to state variables in the transient state were removed. We confirmed
from the series of output images that the period where each image region appeared was 36.

4.2 Image with three image regions
We considered the 8-bit gray-level image with 128× 128 pixels shown in Fig. 16(a). It has three
image regions: a ring shape, a rectangle, and a triangle. To simplify the problem, the color in
each image region was made into a monotone in which the pixel values were 255, 242, and 230
so that these values corresponded to d1 = 2, d2 = 1.9, and d3 = 1.8 according to di = 2pi/255.
To dynamically segment the target image, we needed a neuronal network system consisting
of 128 × 128 neurons and a global inhibitor. The DC-input value to the ith neuron, di, was
set to 2.0 for neurons corresponding to pixels in the ring shape, 1.9 for those in the rectangle,
and 1.8 for those in the triangle. The neuronal network system with 128 × 128 neurons could
be regarded as an asymmetric three-coupled system. Therefore, according to the analyzed
results in Fig. 14, e.g., we set the unfixed parameter values to kr = 0.875 and φ = 0.8 such that
a three-phase 25-periodic point occurred in the asymmetric three-coupled system.
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Fig. 15. Results of dynamic image segmentation based on out-of-phase oscillatory response

In trials for randomly given initial values, we achieved a successful result where three image
regions appeared separately, as shown in Fig. 16(b). In addition, because the output images
were generated according to a three-phase 25-periodic point observed in the asymmetric
three-coupled system, we confirmed that the period where each image region appeared was
25. Note that we removed output images corresponding to state variables in the transient
state. Our neuronal network system could work for a simple gray-level image with three
image regions.

4.3 Image with many image regions
To segment an image with an arbitrary number of image regions using our dynamic
image-segmentation system in one process, it is necessary for a multiphase periodic oscillatory
response with as many phases as image regions to appear. As far as our investigations
were concerned, however, it was difficult to generate a multiphase periodic point with many
phases. Therefore, we proposed an algorithm that successively and partially segments an
image.
Here, according to the previously mentioned results obtained from analysis, we considered
a successive algorithm that partially segmented many image regions using two- and
three-phase oscillatory responses. We let the gray-level image with five image regions in
Fig. 17(a) be the target that should be segmented. To simplify the segmentation problem, we
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(a) Target image

(b) Output images in time series

Fig. 16. Results of dynamic image segmentation based on three-phase oscillatory response

assumed that all pixels in an identical image region would have the same gray levels. Based
on the analyzed results for two- and three-coupled systems, we set the system parameters to
certain values such that no in-phase oscillatory responses occurred but a fixed point or a two-
or three-phase oscillatory responses appeared.
We could obtain the three segmented images in Figs. 17(b)–(d) in the first step from the input
image in Fig. 17(a) if a three-phase oscillatory response appeared. Note that the segmented
images were extracted from output images in a time series by removing duplicate images and
all black images.
Each segmented image in Figs. 17(b)–(d) became an input image for our system in the next
step. We obtained the two images in Figs. 17(e) and 17(f) in this step from the input image
in Fig. 17(b) using a two-phase oscillatory response; as well as this process, we also obtained
the two images in Figs. 17(g) and 17(h) from the input image in Fig. 17(c) according to the
two-phase response; whereas we obtained no output images from the input image in Fig. 17(d)
because the system to segment the image corresponded to a single neuronal system, and a
fixed point always appeared under the system-parameter values we assigned. Therefore, the
segmentation of the image in Fig. 17(d) was terminated in this step.
The four images with only one image region in Figs. 17(e)–(h) are input images in the third
step. As previously mentioned, we obtained no output images for an input image with only
one image region. Therefore, our successive algorithm was terminated at this point in time.
Thus, we could segment an image with an arbitrary number of image regions based on the
successive algorithm.
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three-coupled system, we confirmed that the period where each image region appeared was
25. Note that we removed output images corresponding to state variables in the transient
state. Our neuronal network system could work for a simple gray-level image with three
image regions.

4.3 Image with many image regions
To segment an image with an arbitrary number of image regions using our dynamic
image-segmentation system in one process, it is necessary for a multiphase periodic oscillatory
response with as many phases as image regions to appear. As far as our investigations
were concerned, however, it was difficult to generate a multiphase periodic point with many
phases. Therefore, we proposed an algorithm that successively and partially segments an
image.
Here, according to the previously mentioned results obtained from analysis, we considered
a successive algorithm that partially segmented many image regions using two- and
three-phase oscillatory responses. We let the gray-level image with five image regions in
Fig. 17(a) be the target that should be segmented. To simplify the segmentation problem, we

420 Discrete Time Systems

(a) Target image

(b) Output images in time series

Fig. 16. Results of dynamic image segmentation based on three-phase oscillatory response

assumed that all pixels in an identical image region would have the same gray levels. Based
on the analyzed results for two- and three-coupled systems, we set the system parameters to
certain values such that no in-phase oscillatory responses occurred but a fixed point or a two-
or three-phase oscillatory responses appeared.
We could obtain the three segmented images in Figs. 17(b)–(d) in the first step from the input
image in Fig. 17(a) if a three-phase oscillatory response appeared. Note that the segmented
images were extracted from output images in a time series by removing duplicate images and
all black images.
Each segmented image in Figs. 17(b)–(d) became an input image for our system in the next
step. We obtained the two images in Figs. 17(e) and 17(f) in this step from the input image
in Fig. 17(b) using a two-phase oscillatory response; as well as this process, we also obtained
the two images in Figs. 17(g) and 17(h) from the input image in Fig. 17(c) according to the
two-phase response; whereas we obtained no output images from the input image in Fig. 17(d)
because the system to segment the image corresponded to a single neuronal system, and a
fixed point always appeared under the system-parameter values we assigned. Therefore, the
segmentation of the image in Fig. 17(d) was terminated in this step.
The four images with only one image region in Figs. 17(e)–(h) are input images in the third
step. As previously mentioned, we obtained no output images for an input image with only
one image region. Therefore, our successive algorithm was terminated at this point in time.
Thus, we could segment an image with an arbitrary number of image regions based on the
successive algorithm.
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Fig. 17. Schematic diagram of successive algorithm using our dynamic image-segmentation
system

5. Concluding remarks

We introduced a discrete-time neuron model that could generate similar oscillatory responses
formed by periodic points to oscillations observed in a continuous-time relaxation oscillator
model. The scheme of dynamic image segmentation was illustrated using our neuronal
network system that consisted of our neurons arranged in a 2D grid and a global inhibitor.
Note that we suggested that a neuronal network system where neurons are arranged in a 3D
grid can be applied to segmenting a 3D image.
Images were dynamically segmented according to the responses of our system, and therefore,
knowing about the bifurcations of the responses allowed us to directly set system-parameter
values such that appropriate responses for dynamic image segmentation would appear. We
derived reduced models that simplified our analysis of bifurcations observed in our neuronal
network system and we found parameter regions where there was a non-oscillatory response
or a periodic oscillatory response in the reduced models. According to the analyzed results,
we set system parameters to appropriate values, and the designed system could work for two
sample images with two or three image regions. Moreover, to segment an image with many
image regions, we proposed a successive algorithm using our dynamic image-segmentation
system.
We encountered three main problems that should be solved to enable the practical use of our
dynamic image-segmentation system:

1. Development of a method that can form appropriate couplings between neurons for a
textured image and a gray-level image containing gradation.
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2. Development of a method that can give initial values to neurons and a global inhibitor so
that an appropriate response will always appear.

3. Development of a method or system that can provide fast processing using our system to
segment a large-scale image and a 3D image within practical time limits.

To solve the first problem, we proposed a dynamic image-segmentation system with a
method of posterization (Zhao et al., 2003) used as preprocessing (Fujimoto et al., 2009a;
2010). However, their method of posterization involves high computational cost and a
large memory, we are considering a neuronal network system with plastic couplings as
weight adaptation (Chen et al., 2000). We proposed a solution to the second problem with
a method that avoids the appearance of non-oscillatory responses (Fujimoto et al., 2011a).
However, toward an ultimate solution, we are investigating parameter regions such that no
inappropriate responses appear through bifurcation analysis. An implementation to execute
our dynamic image-segmentation system on a graphics processing unit is in progress as a
means of rapid processing.
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1. Introduction 
The problem of fault detection and diagnosis (FDD) in dynamic systems has received 
considerable attention in last decades due to the growing complexity of modern engineering 
systems and ever increasing demand for fault tolerance, cost efficiency, and reliability 
(Willsky, 1976; Basseville, 1988). Existing FDD approaches can be roughly divided into  
two major categories including model-based and knowledge-based approaches 
(Venkatasubramanian et al., 2003a; Venkatasubramanian et al., 2003b). Model-based 
approaches make use of the quantitative analytical model of a physical system. Knowledge-
based approaches do not need full analytical modeling and allow one to use qualitative 
models based on the available information and knowledge of a physical system. Whenever 
the mathematical models describing the system are available, analytical model-based 
methods are preferred because they are more amenable to performance analysis.  
Generally, there are two steps in the procedure of model-based FDD. First, on the basis of 
the available observations and a mathematical model of the system, the state variable x and 
test statistics are required to be obtained. Then, based on the generated test statistics, it is 
required to decide on the potential occurrence of a fault. For linear and Gaussian systems, 
the Kalman filter (KF) is known to be optimal and employed for state estimation. The 
innovations from the KF are used as the test statistics, based on which hypothesis tests can 
be carried out for fault detection (Belcastro & Weinstein, 2002). In reality, however, the 
models representing the evolution of the system and the noise in observations typically 
exhibit complex nonlinearity and non-Gaussian distributions, thus precluding analytical 
solution. One popular strategy for estimating the state of such a system as a set of 
observations becomes available online is to use sequential Monte-Carlo (SMC) methods, also 
known as particle filters (PFs) (Doucet et al., 2001). These methods allow for a complete 
representation of the posterior probability distribution function (PDF) of the states by 
particles (Guo & Wang, 2004; Li & Kadirkamanathan, 2001). 
The aforementioned FDD strategies are single-model-based. However, a single-model-based 
FDD approach is not adequate to handle complex failure scenarios. One way to treat this 
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problem is the interacting multiple model (IMM) filter (Zhang & Li, 1998). For the IMM 
approach, the single-model-based filters running in parallel interact each other in a highly 
cost-effective fashion and thus lead to significantly improved performance. The initial 
estimate at the beginning of each cycle for each filter is a mixture of all most recent estimates 
from the single-model-based filters. It is this mixing that enables the IMM to effectively take 
into account the history of the modes (and, therefore, to yield a more fast and accurate 
estimate for the changed system states) without the exponentially growing requirements in 
computation and storage as required by the optimal estimator. The probability of each mode 
is calculated, which indicates clearly the mode in effect and the mode transition at each time. 
This is directly useful for the detection and diagnosis of system failures. In view of these, 
there is a strong hope that it will be an effective approach to FDD and thus has been 
extensively studied during the last decade, see (Zhang & Jiang, 2001; Yen &Ho, 2003; 
Tudoroiu & Khorasani, 2005; Rapoport & Oshman, 2007), and reference therein. 
A shortcoming of the IMM approach lies in that the mode declaration of the IMM filter may 
not reflect a true faulty situation because the model probability of the nominal model tends 
to become dominant especially when 1) the states and control inputs converge to the steady 
state at a nominal trim flight, or 2) a fault tolerant controller works well after the first failure. 
Besides, the IMM filter with the constant transition probability matrix has a problem 
diagnosing the second failure. To cope with the abovementioned problems, a new FDD 
technique is proposed using IMM filter and fuzzy logic for sensor and actuator failures. In 
this study, fuzzy logic is used to determinate the transition probability among the models 
not only to enhance the FDD performance after the first failure but also to diagnose the 
second one as fast and accurately as possible. 
On the other hand, fuel cell technology offers high efficiency and low emissions, and holds 
great promise for future power generation systems. Recent developments in polymer 
electrolyte membrane (PEM) technology have dramatically increased the power density of 
fuel cells, and made them viable for vehicular and portable power applications, as well as 
for stationary power plants. A typical fuel cell power system consists of numerous 
interconnected components, as presented comprehensively in the books (Blomen & 
Mugerwa, 1993), (Larminie & Dicks, 2000), (Pukrushpan et al. 2004b), and more concisely in 
the survey paper (Carette et al. 2001) and (Kakac et al. 2007). Faults in the fuel cell systems 
can occur in sensors, actuators, and the other components of the system and may lead to 
failure of the whole system (Hernandez et al. 2010). They can be modeled by the abrupt 
changes of components of the system. Typical faults of main concern in the fuel cell systems 
are sensor or actuator failures, which will degrade or even disable the control performance. 
In the last a few years, a variety of FDD approaches have been developed for various 
failures (Riascos et al., 2007; Escobet et al., 2009; Gebregergis et al. 2010). However, only 
simple failure scenarios, such as failure in sensor or actuator, are concerned therein. 
Moreover, upon FDD problem for the PEM fuel cell systems, there is little result so far by 
IMM approach.  
In this chapter, a self-contained framework to utilize IMM approach for FDD of PEM fuel 
cell systems is presented. As mentioned above, the constant transition probability matrix 
based IMM approach has problem in diagnosing the second failure, even though a fault 
tolerant controller works well after the first failure. Therefore, in our study, fuzzy logic is 
introduced to update the transition probability among multiple models, which makes the 
proposed FDD approach smooth and the possibility of false fault detection reduced. In 
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addition to the “total” (or “hard”) actuator and/or sensor failures, “partial” (or “soft”) faults 
are also considered. Compared with the existing results on FDD for fuel cell systems, more 
complex failure situations, including the total/partial senor and actuator failures, are 
considered. Simulation results considering both single and simultaneous sensor and/or 
actuator faults are given to illustrate the effectiveness of the proposed approach. 

2. IMM for fault detection and diagnosis revisited 
In this section, the details on generating the fault dynamics process using jump Markov 
linear hybrid dynamic models is first described. Then, the IMM estimation approach is 
developed for FDD. 

2.1 Jump Markov hybrid systems 
A stochastic hybrid system can be described as one with both continuous-valued base state 
and discrete-valued Structural/parametric uncertainty. A typical example of such a system 
is one subject to failures since fault modes are structurally different from each other and 
from the normal (healthy) mode. An effective and natural estimation approach for such a 
system is the one based on IMMs, in which a bank of filters running in parallel at every time 
with jumps in mode modeled as transition between the assumed models. 
The IMM approach assumes that the state of the actual system at any time can be modeled 
accurately by the following jump Markov hybrid system: 

 ( 1) ( , ( 1)) ( ) ( , ( 1)) ( ) ( , ( 1)) ( , ( 1))ux k A k m k x k B k m k u k B k m k k m kω ω+ = + + + + + +  (1) 

0 0ˆ(0) ( , )x N x P∈  

 ( ) ( , ( )) ( ) ( , ( )) ( ) ( , ( )) ( , ( ))uz k C k m k x k D k m k u k D k m k k m kυ υ= + +  (2) 

with the system mode sequence assumed to be a first-order Markov chain with transition 
probabilities 

 { ( 1)| ( )} ( ), ,j i ij i jP m k m k k m m Sπ+ = ∀ ∈  (3) 

and  

 ( ) 1,0 ( ) 1, 1,...,ij ij
j

k k i sπ π= ≤ ≤ =∑  (4) 

where ( )x k  is the state vector, ( )z k  is the mode-dependent measurement vector, and ( )u k  is 
the control input vector; ( )kω  and ( )kυ  are mutually independent discrete-time process and 
measurement noises with mean ( )kω  and ( )kυ , and covariances ( )Q k  and ( )R k ; { }P ⋅  is the 
probability operator; ( )m k  is the discrete-value modal state (i.e., the index of the normal or 
fault mode in our FDD scenario) at time k , which denotes the mode in effect during the 
sampling period ending at kt ; ijπ  is the transition probability from mode im  to mode jm ; 
the event that jm  is in effect at time k  is denoted as ( ) : { ( ) }j jm k m k m= = . The mode set 

1 2{ , ,..., }sS m m m=  is the set of all possible system modes. 
The nonlinear system (1)-(2), known as a “jump linear system”, can be used to model 
situations where the system behavior pattern undergoes sudden changes, such as system 
failures in this chapter and target maneuvering in (Li & Bar-Shalom, 1993). The FDD 
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problem in terms of the hybrid system may be stated as that of determining the current 
model state. That is, determining whether the normal or a faulty mode is in effect based on 
analyzing the sequence of noisy measurements. 
How to design the set of models to represent the possible system modes is a key issue in the 
application of the IMM approach, which is problem dependent. As pointed in (Li, 1996), this 
design should be done such that the models (approximately) represent or cover all possible 
system modes at any time. This is the model set design problem, which will be discussed in 
the next subsection. 

2.2 Model set design for IMM based FDD 
In the IMM method, assume that a set of N models has been set up to approximate the 
hybrid system (1)-(2) by the following N pairs of equations: 

 ( 1) ( ) ( ) ( ) ( ) ( ) ( )j uj jx k A k x k B k u k B k kω ω+ = + +  (5) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )j uj jz k C k x k D k u k D k kυ υ= + +  (6) 

where N s≤  and subscript j denotes quantities pertaining to model jm ∈M  (M  is the set of 
all designed system models to represent the possible system modes in S . System matrices 

jA , ujB , jBω , jC , ujD , and jDυ  may be of different structures for different j . 
The model set design (i.e., the design of fault type, magnitude, and duration) is critical for 
IMM based FDD. Design of a good set of models requires a priori knowledge of the possible 
faults of the system. As pointed out in (Li & Bar-Shalom, 1996; Li, 2000), caution must be 
exercised in designing a model set. For example, there should be enough separation 
between models so that they are “identifiable” by the IMM estimator. This separation 
should exhibit itself well in the measurement residuals, especially between the filters based 
on the matched models and those on the mismatched ones. Otherwise, the IMM fault 
estimator will not be very selective in terms of correct FDD because it is the measurement 
residuals that have dominant effects on the model probability computation which in turn 
affect the correctness of FDD and the accuracy of overall state estimates. On the other hand, 
if the separation is too large, numerical problems may occur due to ill conditions in the set 
of model likelihood functions. A total actuator failures may be modeled by annihilating the 
appropriate column(s) of the control input matrix Bu and Du : 

 ( 1) ( ) ( ) [ ( ) ] ( ) ( ) ( )u Bjx k A k x k B k M u k B k kω ω+ = + + +  (7) 

 ( ) ( ) ( ) [ ( ) ] ( ) ( ) ( )u djz k C k x k D k M u k D k kυ υ= + + +  (8) 

That is, choose the matrix BjM  with all zero elements except that the jth column is taken to 
be the negative of the jth column of uB . 
Alternatively, the jth actuator failure may be modeled by an additional process noise term 

( )j kε : 

 ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )u jx k A k x k B k u k B k k kω ω ε+ = + + +  (9) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u jz k C k x k D k u k D k k kυ υ ε= + + +  (10) 
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For total sensor failures, a similar idea can be followed. The failures can be modeled by 
annihilating the appropriate row(s) of the measurement matrix C described as 

 ( ) [ ( ) ] ( ) ( ) ( ) ( ) ( )j uz k C k L x k D k u k D k kυ υ= + + +  (11) 

or by an additional sensor noise term ( )je k  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u jz k C k x k D k u k D k k e kυ υ= + + +  (12) 

Partial actuator (or sensor) failures are modeled by multiplying the appropriate column (or 
row) of Bu (or C) by a (scaling) factor of effectiveness. They can also be modeled by 
increasing the process noise covariance matrix Q or measurement noise covariance matrix R. 
Here we consider more complex failure situations, including total actuator and/or sensor 
failures, partial actuator and/or sensor failures, and simultaneous partial actuator and 
sensor failures. These situations require that the FDD algorithm be more responsive and 
robust. It is difficult for single-model-based approach to handle such complex failure 
scenarios. 

2.3 Procedures of IMM approach to FDD 
The following procedures should be performed in the application of the IMM estimation 
technique for fault detection and diagnosis: (i) filter reinitialization; (ii) model-conditional 
filtering; (iii) model probability updating; (iv) fault detection and diagnosis; (v) estimate 
fusion.  
The detailed steps for the IMM algorithm are described next (Zhang & Li, 1998; Mihaylova 
& Semerdjiev, 1999; Johnstone & Krishnamurthy, 2001). 
Step 1. Interaction and mixing of the estimates: filter reinitialization (interacting the 

estimates) obtained by mixing the estimates of all the filters from the previous time 
(this is accomplished under the assumption that a particular mode is in effect at the 
present time). 

1. Compute the predicted model probability from instant k to k+1: 

 
1

( 1| ) ( )
N

j ij i
i

k k kμ π μ
=

+ =∑  (13) 

2. Compute the mixing probability: 

 | ( ) ( ) ( 1| )i j ij i jk k k kμ π μ μ= +  (14) 

3. Compute the mixing estimates and covariance: 

 0
|

1
ˆ ˆ( | ) ( | ) ( )

N

j i i j
i

x k k x k k kμ
=

=∑  (15) 

 0 0 0
|

1
ˆ ˆ ˆ ˆ( | ) { ( | ) [ ( | ) ( | )][ ( | ) ( | )] } ( )

N
T

j i j i j i i j
i

P k k P k k x k k x k k x k k x k k kμ
=

= + − −∑  (16) 

where the superscript 0 denotes the initial value for the next step. 
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of model likelihood functions. A total actuator failures may be modeled by annihilating the 
appropriate column(s) of the control input matrix Bu and Du : 

 ( 1) ( ) ( ) [ ( ) ] ( ) ( ) ( )u Bjx k A k x k B k M u k B k kω ω+ = + + +  (7) 

 ( ) ( ) ( ) [ ( ) ] ( ) ( ) ( )u djz k C k x k D k M u k D k kυ υ= + + +  (8) 

That is, choose the matrix BjM  with all zero elements except that the jth column is taken to 
be the negative of the jth column of uB . 
Alternatively, the jth actuator failure may be modeled by an additional process noise term 

( )j kε : 

 ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )u jx k A k x k B k u k B k k kω ω ε+ = + + +  (9) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u jz k C k x k D k u k D k k kυ υ ε= + + +  (10) 
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For total sensor failures, a similar idea can be followed. The failures can be modeled by 
annihilating the appropriate row(s) of the measurement matrix C described as 

 ( ) [ ( ) ] ( ) ( ) ( ) ( ) ( )j uz k C k L x k D k u k D k kυ υ= + + +  (11) 

or by an additional sensor noise term ( )je k  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u jz k C k x k D k u k D k k e kυ υ= + + +  (12) 

Partial actuator (or sensor) failures are modeled by multiplying the appropriate column (or 
row) of Bu (or C) by a (scaling) factor of effectiveness. They can also be modeled by 
increasing the process noise covariance matrix Q or measurement noise covariance matrix R. 
Here we consider more complex failure situations, including total actuator and/or sensor 
failures, partial actuator and/or sensor failures, and simultaneous partial actuator and 
sensor failures. These situations require that the FDD algorithm be more responsive and 
robust. It is difficult for single-model-based approach to handle such complex failure 
scenarios. 

2.3 Procedures of IMM approach to FDD 
The following procedures should be performed in the application of the IMM estimation 
technique for fault detection and diagnosis: (i) filter reinitialization; (ii) model-conditional 
filtering; (iii) model probability updating; (iv) fault detection and diagnosis; (v) estimate 
fusion.  
The detailed steps for the IMM algorithm are described next (Zhang & Li, 1998; Mihaylova 
& Semerdjiev, 1999; Johnstone & Krishnamurthy, 2001). 
Step 1. Interaction and mixing of the estimates: filter reinitialization (interacting the 

estimates) obtained by mixing the estimates of all the filters from the previous time 
(this is accomplished under the assumption that a particular mode is in effect at the 
present time). 

1. Compute the predicted model probability from instant k to k+1: 

 
1

( 1| ) ( )
N

j ij i
i

k k kμ π μ
=

+ =∑  (13) 

2. Compute the mixing probability: 

 | ( ) ( ) ( 1| )i j ij i jk k k kμ π μ μ= +  (14) 

3. Compute the mixing estimates and covariance: 

 0
|

1
ˆ ˆ( | ) ( | ) ( )

N

j i i j
i

x k k x k k kμ
=

=∑  (15) 

 0 0 0
|

1
ˆ ˆ ˆ ˆ( | ) { ( | ) [ ( | ) ( | )][ ( | ) ( | )] } ( )

N
T

j i j i j i i j
i

P k k P k k x k k x k k x k k x k k kμ
=

= + − −∑  (16) 

where the superscript 0 denotes the initial value for the next step. 
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Step 2. Model-conditional filtering 
The filtering techniques such as (extended) Kalman filter, unscented Kalman filter, and 
particle filter can be applied for model-conditioning filtering. In this study, a linear Kalman 
filter is used as the individual filter of the IMM approach. 
Step 2.1: Prediction step 
1. Compute the predicted state and covariance from instant k to k+1: 

 0ˆ ˆ( 1| ) ( ) ( | ) ( ) ( ) ( ) ( )j j j uj jx k k A k x k k B k u k B k kω ω+ = + +  (17) 

 0( 1| ) ( ) ( | ) ( ) ( ) ( ) ( )T T
j j j j j j jP k k A k P k k A k B k Q k B kω ω+ = +  (18) 

2. Compute the measurement residual and covariance: 

 ˆ( 1) ( 1) ( 1| ) ( ) ( ) ( ) ( )j j j uj jr z k C k x k k D k u k D k kυ υ= + − + + − −  (19) 

 ( 1) ( 1| ) ( 1) ( ) ( ) ( )T T
j j j j j jS C k P k k C k D k R k D kυ υ= + + + +  (20) 

3. Compute the filter gain: 

 1( 1| ) ( 1)T
j j j jK P k k C k S−= + +  (21) 

Step 2.2:  Correction step 
Update the estimated state and covariance matrix: 

 ˆ ˆ( 1| 1) ( 1| )j j j jx k k x k k K r+ + = + +  (22) 

 ( 1| 1) ( 1| ) T
j j j j jP k k P k k K S K+ + = + −  (23) 

 

Step 3. Updating the model probability 
The model probability is an important parameter for the system fault detection and 
diagnosis. For this, a likelihood function should be defined in advance, and then the model 
probability be updated based on the likelihood function. 
1. Compute the likelihood function: 

 11 1( 1) exp
22

T
j j j j

j

L k r S r
Sπ

−⎡ ⎤+ = −⎢ ⎥⎣ ⎦
 (24) 

2. Update the model probability: 

 
1

( 1| ) ( 1)
( 1)

( 1| ) ( 1)
j j

j N
j jj

k k L k
k

k k L k

μ
μ

μ
=

+ +
+ =

+ +∑
 (25) 

Step 4. Fault detection and diagnosis 
1. Define the model probability vector 1 2( 1) [ ( 1), ( 1),..., ( 1)]Nk k k kμ μ μ μ+ = + + + . The 

maximum value of the model probability vector for FDD can be obtained as 
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 FDDmax max ( 1)kμ μ= +  (26) 

The index of the maximum value of the model probability vector component can be 
determined as 

 FDDmaxfind( ( 1))j kμ μ= == +  (27) 

2. Fault decision–FDD logic 
The mode probabilities provide an indication of mode in effect at the current sampling 
period. Hence, it is natural to be used as an indicator of a failure. According to the 
information provided by the model probability, both fault detection and diagnosis can be 
achieved. The fault decision can be determined by  

 FDDmax
1

: Delare fault corresponding to th mode
: No fault

T j

T

H j
H

μ
μ

μ

≥ ⇒⎧⎪
⎨
< ⇒⎪⎩

 (28) 

Or alternatively,   

 
'

FDDmax
'

1

: Delare fault corresponding to th mode
max ( 1) : No fault

T j

Ti j

H j
k H

μμ
μ μ

≠

⎧≥ ⇒⎪
⎨

+ < ⇒⎪⎩
 (29) 

Step 5. Estimate fusion and combination that yields the overall state estimate as the 
probabilistically weighted sum of the updated state estimates of all the filters. The 
probability of a mode in effect plays a key role in determining the weights 
associated with the fusion of state estimates and covariances. The estimates and 
covariance matrices can be obtained as: 

 
1

ˆ ˆ( 1| 1) ( 1| 1) ( 1)
N

j j
j

x k k x k k kμ
=

+ + = + + +∑  (30) 

1

( 1| 1)

ˆ ˆ ˆ ˆ[ ( | ) ( ( 1| 1) ( 1| 1))( ( 1| 1) ( 1| 1)) ] ( 1)
N

T
j j j j

j

P k k

P k k x k k x k k x k k x k k kμ
=

+ + =

= + + + − + + + + − + + +∑  (31) 

It will be seen from Section 4 that the transition probability plays an important role in the 
IMM approach to FDD. In this study, the transition probability is adapted online through 
the Takagi-Sugeno fuzzy logic (Takagi & Sugeno, 1985). The overall framework of the 
proposed fuzzy logic based IMM FDD algorithm is illustrated in Fig. 1. 
It is worth noting that decision rule (28) or (29) provides not only fault detection but also the 
information of the type (sensor or actuator), location (which sensor or actuator), size (total 
failure or partial fault with the fault magnitude) and fault occurrence time, that is, 
simultaneous detection and diagnosis. For partial faults, the magnitude (size) can be 
determined by the probabilistically weighted sum of the fault magnitudes of the 
corresponding partial fault models. Another advantage of the IMM approach is that FDD is 
integrated with state estimation. The overall estimate provides the best state estimation of 
the system subject to failures. Furthermore, unlike other observer-based or Kalman filter 
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 ( 1| 1) ( 1| ) T
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Step 3. Updating the model probability 
The model probability is an important parameter for the system fault detection and 
diagnosis. For this, a likelihood function should be defined in advance, and then the model 
probability be updated based on the likelihood function. 
1. Compute the likelihood function: 

 11 1( 1) exp
22

T
j j j j

j

L k r S r
Sπ

−⎡ ⎤+ = −⎢ ⎥⎣ ⎦
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( 1| ) ( 1)
( 1)

( 1| ) ( 1)
j j

j N
j jj

k k L k
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k k L k
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μ
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+ +
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+ +∑
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maximum value of the model probability vector for FDD can be obtained as 
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The index of the maximum value of the model probability vector component can be 
determined as 
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2. Fault decision–FDD logic 
The mode probabilities provide an indication of mode in effect at the current sampling 
period. Hence, it is natural to be used as an indicator of a failure. According to the 
information provided by the model probability, both fault detection and diagnosis can be 
achieved. The fault decision can be determined by  

 FDDmax
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: Delare fault corresponding to th mode
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Step 5. Estimate fusion and combination that yields the overall state estimate as the 
probabilistically weighted sum of the updated state estimates of all the filters. The 
probability of a mode in effect plays a key role in determining the weights 
associated with the fusion of state estimates and covariances. The estimates and 
covariance matrices can be obtained as: 

 
1

ˆ ˆ( 1| 1) ( 1| 1) ( 1)
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j j
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x k k x k k kμ
=

+ + = + + +∑  (30) 
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( 1| 1)
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j j j j
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It will be seen from Section 4 that the transition probability plays an important role in the 
IMM approach to FDD. In this study, the transition probability is adapted online through 
the Takagi-Sugeno fuzzy logic (Takagi & Sugeno, 1985). The overall framework of the 
proposed fuzzy logic based IMM FDD algorithm is illustrated in Fig. 1. 
It is worth noting that decision rule (28) or (29) provides not only fault detection but also the 
information of the type (sensor or actuator), location (which sensor or actuator), size (total 
failure or partial fault with the fault magnitude) and fault occurrence time, that is, 
simultaneous detection and diagnosis. For partial faults, the magnitude (size) can be 
determined by the probabilistically weighted sum of the fault magnitudes of the 
corresponding partial fault models. Another advantage of the IMM approach is that FDD is 
integrated with state estimation. The overall estimate provides the best state estimation of 
the system subject to failures. Furthermore, unlike other observer-based or Kalman filter 
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based approaches, there is no extra computation for the fault decision because the mode 
probabilities are necessary in the IMM algorithm. Furthermore, the overall estimate is 
generated by the probabilistically weighted sum of estimates from the single-model-based 
filters. Therefore, it is better and more robust than any single-model-based estimate. This 
state estimate does not depend upon the correctness of fault detection and in fact, the 
accurate state estimation can facilitate the correct FDD. The detection threshold μT is 
universal in the sense that it does not depend much on the particular problem at hand and a 
robust threshold can be determined easily. In other words, the FDD performance of the 
IMM approach varies little in most cases with respect to the choice of this threshold (Zhang 
& Li, 1998). On the other hand, the residual-based fault detection logic relies heavily on the 
threshold used, which is problem-relevant. Quite different detection thresholds have to be 
used for FDD problems of different systems and design of such a threshold is not trivial. 
Moreover, without comparing with the threshold, the value of the measurement residual 
itself does not provide directly meaningful detection and indication of the fault situations. 
 
 

 
 

Fig. 1. Block diagram of the proposed fuzzy logic based IMM FDD approach 

3. Update of transition probability by fuzzy logic 
As aforementioned, the transition probability plays an important role in interacting and 
mixing the information of each individual filter. However, an assumption that the transition 
probability is constant over the total period of FDD can lead to some problems. Even if the 
fault tolerant control treats the first failure successfully, the unchanged transition probability 
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can mislead the FDD to intermittently declare a false failure alarm. This is because the fact 
that the normal mode before the first failure occurrence is not the normal mode any longer. 
The declared fault mode should be changed to a new normal mode after the first failure. On 
that account, the fuzzy-tuning algorithm of the transition probability is proposed in this 
study. 
The transition probability from any particular failure mode to the normal  mode is generally 
set larger than others in order to prevent a false fault diagnosis. However, it may have a bad 
influence on performing correct fault diagnosis because the model probability of the healthy 
mode tends to increase again as the current failed system converges to the steady state by 
the fault tolerant control law even after a fault occurs. This problem can be overcome by 
adjusting the transition probability after the fault occurrence. For example, if the model 
probability of a certain failure mode remains larger than that of any other mode for an 
assigned time, the transition probability related to the corresponding failure mode should be 
increased. On the other hand, the transition probability related to the previous mode should 
be decreased to reflect the fact that the failed mode selected by the fault decision algorithm 
becomes currently dominant. In this work, the fuzzy-tuning algorithm is adopted to adjust 
the transition probabilities effectively. 
Now introduce a determination variable Ci which decides whether or not the transition 
probabilities should be adjusted. First, the initial value of each mode’s determination 
variable is set to zero. The increment of the determination variable can be obtained through 
the fuzzy logic with inputs composed of the model probabilities at every step. If the 
determination variable Ci of a certain mode exceeds a predefined threshold value CT, then 
the transition probabilities are adjusted, and the determination value of each mode is 
initialized. The overall process is illustrated in Fig. 2. 

3.1 Fuzzy input 
A fuzzy input for adjusting transition probabilities includes the model probabilities from the 
IMM filter. At each sampling time, the model probabilities of every individual filter are 
transmitted to the fuzzy system. In this work, the membership function is designed as in 
Fig. 3 for the fuzzy input variables “small,” “medium,” and “big” representing the relative 
size of the model probability. 

3.2 Fuzzy rule 
The T-S fuzzy model is used as the inference logic in this work. The T-S fuzzy rule can be 
represented as 

 If χ  is A and ξ  is B then Ζ = f( χ , ξ ) (32) 
 

where A and B are fuzzy sets, and Ζ = f( χ , ξ ) is a non-fuzzy function. The fuzzy rule of 
adjusting transition probabilities is defined using the T-S model as follows 
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based approaches, there is no extra computation for the fault decision because the mode 
probabilities are necessary in the IMM algorithm. Furthermore, the overall estimate is 
generated by the probabilistically weighted sum of estimates from the single-model-based 
filters. Therefore, it is better and more robust than any single-model-based estimate. This 
state estimate does not depend upon the correctness of fault detection and in fact, the 
accurate state estimation can facilitate the correct FDD. The detection threshold μT is 
universal in the sense that it does not depend much on the particular problem at hand and a 
robust threshold can be determined easily. In other words, the FDD performance of the 
IMM approach varies little in most cases with respect to the choice of this threshold (Zhang 
& Li, 1998). On the other hand, the residual-based fault detection logic relies heavily on the 
threshold used, which is problem-relevant. Quite different detection thresholds have to be 
used for FDD problems of different systems and design of such a threshold is not trivial. 
Moreover, without comparing with the threshold, the value of the measurement residual 
itself does not provide directly meaningful detection and indication of the fault situations. 
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can mislead the FDD to intermittently declare a false failure alarm. This is because the fact 
that the normal mode before the first failure occurrence is not the normal mode any longer. 
The declared fault mode should be changed to a new normal mode after the first failure. On 
that account, the fuzzy-tuning algorithm of the transition probability is proposed in this 
study. 
The transition probability from any particular failure mode to the normal  mode is generally 
set larger than others in order to prevent a false fault diagnosis. However, it may have a bad 
influence on performing correct fault diagnosis because the model probability of the healthy 
mode tends to increase again as the current failed system converges to the steady state by 
the fault tolerant control law even after a fault occurs. This problem can be overcome by 
adjusting the transition probability after the fault occurrence. For example, if the model 
probability of a certain failure mode remains larger than that of any other mode for an 
assigned time, the transition probability related to the corresponding failure mode should be 
increased. On the other hand, the transition probability related to the previous mode should 
be decreased to reflect the fact that the failed mode selected by the fault decision algorithm 
becomes currently dominant. In this work, the fuzzy-tuning algorithm is adopted to adjust 
the transition probabilities effectively. 
Now introduce a determination variable Ci which decides whether or not the transition 
probabilities should be adjusted. First, the initial value of each mode’s determination 
variable is set to zero. The increment of the determination variable can be obtained through 
the fuzzy logic with inputs composed of the model probabilities at every step. If the 
determination variable Ci of a certain mode exceeds a predefined threshold value CT, then 
the transition probabilities are adjusted, and the determination value of each mode is 
initialized. The overall process is illustrated in Fig. 2. 

3.1 Fuzzy input 
A fuzzy input for adjusting transition probabilities includes the model probabilities from the 
IMM filter. At each sampling time, the model probabilities of every individual filter are 
transmitted to the fuzzy system. In this work, the membership function is designed as in 
Fig. 3 for the fuzzy input variables “small,” “medium,” and “big” representing the relative 
size of the model probability. 

3.2 Fuzzy rule 
The T-S fuzzy model is used as the inference logic in this work. The T-S fuzzy rule can be 
represented as 

 If χ  is A and ξ  is B then Ζ = f( χ , ξ ) (32) 
 

where A and B are fuzzy sets, and Ζ = f( χ , ξ ) is a non-fuzzy function. The fuzzy rule of 
adjusting transition probabilities is defined using the T-S model as follows 
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Fig. 2. Flowchart of T-S fuzzy logic for adaptive model probability update 
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3.3 Fuzzy output 
The output of the fuzzy system using the T-S model can be obtained by the weighted 
average using a membership degree in a particular fuzzy set as follows: 

 ( )
s s m m b b
j j j j j j

j s m b
j j j

w C w C w C
C k

w w w

Δ + Δ + Δ
Δ =

+ +
 (34) 

where s
jw , m

jw , and b
jw  is the membership degree in the jth mode for group small, 

medium, and big, respectively. During the monitoring process, the determination variable 
of the jth mode is accumulated as 

 ( 1) ( ) ( 1)j j jC k C k C kΔ + = + Δ +  (35) 

The designed fuzzy output surface of the T-S fuzzy interference system is shown in Fig. 4. 
 

 
Fig. 4. Output surface of the fuzzy interference system 

Once the determination variable of a certain fault mode exceeds the threshold value TC , 
then all the elements of the transition probability matrix from the other modes to the 
corresponding fault mode are increased.  

3.4 Transition probability design 
The diagonal elements of the transition probability matrix can be designed as follows 
(Zhang & Li, 1998). 
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 (36) 

where T , jτ , and jl  are the sampling time, the expected sojourn time, and the predefined 
threshold of the transition probability, respectively. For example, the “normal-to-normal’’ 
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Once the determination variable of a certain fault mode exceeds the threshold value TC , 
then all the elements of the transition probability matrix from the other modes to the 
corresponding fault mode are increased.  

3.4 Transition probability design 
The diagonal elements of the transition probability matrix can be designed as follows 
(Zhang & Li, 1998). 

 max ,1jj j
j

Tlπ
τ

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

 (36) 

where T , jτ , and jl  are the sampling time, the expected sojourn time, and the predefined 
threshold of the transition probability, respectively. For example, the “normal-to-normal’’ 
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transition probability, 11π , can be obtained by 11 11 /Tπ τ= −  (here 1τ  denotes the mean 
time between failures) since T is much smaller than 1τ  in practice. The transition probability 
from the normal mode to a fault mode sums up to 111 π− . To which particular fault mode it 
jumps depends on the relative likelihood of the occurrence of the fault mode. While in 
reality mean sojourn time of total failures is the down time of the system, which is usually 
large and problem-dependent, to incorporate various fault modes into one sequence for a 
convenient comparison of different FDD approaches, the sojourn time of the total failures is 
assumed to be the same as that of the partial faults in this work. 
“Fault-to-fault’’ transitions are normally disallowed except in the case where there is sufficient 
prior knowledge to believe that partial faults can occur one after another. Hence, by using (36), 
the elements of the transition probability related to the current model can be defined by 

 1n
n
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1
n

n
pp
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−

 (37) 

 1f
f

Tp
τ

= − ,  1f fp p= −  (38) 

where np  and fp  are the diagonal elements of the normal and failure mode, respectively, 
and np  and fp  are off-diagonal elements to satisfy the constraint that all the row sum of the 
transition probability matrix should be equal to one. In addition, N is the total number of the 
assumed models, and nτ  and fτ  are the expected sojourn times of the normal and failure 
mode, respectively. 
After a failure declaration by the fuzzy decision logic, the transition probability from the 
other modes to the corresponding failure model (say the mth mode) should be increased, 
whereas the transition probabilities related to the nonfailed model should be relatively 
decreased. For this purpose, the transition probability matrix of each mode is set as 
follows. 
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4. PEM fuel cell description and modeling 
The fuel cell system studied in this work is shown in Fig. 5. It is assumed that the stack 
temperature is constant. This assumption is justified because the stack temperature changes 
relatively slowly, compared with the ~100 ms transient dynamics included in the model to 
be developed. Additionally, it is also assumed that the temperature and humidity of the 
inlet reactant flows are perfectly controlled, e.g., by well designed humidity and cooling 
subsystems. It is further assume that the cathode and anode volumes of the multiple fuel 
cells are lumped as a single stack cathode and anode volumes. The anode supply and return 
manifold volumes are small, which allows us to lump these volumes to one ‘‘anode’’ 
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volume. We denote all the variables associated with the lumped anode volume with a 
subscript (an). The cathode supply manifold (sm) lumps all the volumes associated with 
pipes and connection between the compressor and the stack cathode (ca) flow field.The 
cathode return manifold (rm) represents the lumped volume of pipes downstream of the 
stack cathode. In this study, an expander is not included; however, we will consider this 
part in future models for FDD. It is assumed that the properties of the flow exiting a volume 
are the same as those of the gas inside the volume. Subscripts (cp) and (cm) denote variables 
associated with the compressor and compressor motor, respectively. 
 
 

 
 

 

Fig. 5. Simplified fuel cell reactant supply system 

The rotational dynamics and a flow map are used to model the compressor. The law of 
conservation of mass is used to track the gas species in each volume. The principle of mass 
conservation is applied to calculate the properties of the combined gas in the supply and 
return manifolds. The law of conservation of energy is applied to the air in the supply 
manifold to account for the effect of temperature variations. Under the assumptions of a 
perfect humidifier and air cooler, and the use of proportional control of the hydrogen valve, 
the only inputs to the model are the stack current, Ist, and the compressor motor voltage, vcm. 
The parameters used in the model are given in Table 1 (Pukrushpan et al., 2004a). The model 
is developed primarily based on physics. However, several phenomena are described in 
empirical equations. The models for the fuel cell stack, compressor, manifolds, air cooler and 
humidifier are presented in state-space model as specified by (40)-(41) with the relating 
matrices given in Table 1. 
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from the normal mode to a fault mode sums up to 111 π− . To which particular fault mode it 
jumps depends on the relative likelihood of the occurrence of the fault mode. While in 
reality mean sojourn time of total failures is the down time of the system, which is usually 
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convenient comparison of different FDD approaches, the sojourn time of the total failures is 
assumed to be the same as that of the partial faults in this work. 
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where np  and fp  are the diagonal elements of the normal and failure mode, respectively, 
and np  and fp  are off-diagonal elements to satisfy the constraint that all the row sum of the 
transition probability matrix should be equal to one. In addition, N is the total number of the 
assumed models, and nτ  and fτ  are the expected sojourn times of the normal and failure 
mode, respectively. 
After a failure declaration by the fuzzy decision logic, the transition probability from the 
other modes to the corresponding failure model (say the mth mode) should be increased, 
whereas the transition probabilities related to the nonfailed model should be relatively 
decreased. For this purpose, the transition probability matrix of each mode is set as 
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4. PEM fuel cell description and modeling 
The fuel cell system studied in this work is shown in Fig. 5. It is assumed that the stack 
temperature is constant. This assumption is justified because the stack temperature changes 
relatively slowly, compared with the ~100 ms transient dynamics included in the model to 
be developed. Additionally, it is also assumed that the temperature and humidity of the 
inlet reactant flows are perfectly controlled, e.g., by well designed humidity and cooling 
subsystems. It is further assume that the cathode and anode volumes of the multiple fuel 
cells are lumped as a single stack cathode and anode volumes. The anode supply and return 
manifold volumes are small, which allows us to lump these volumes to one ‘‘anode’’ 
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volume. We denote all the variables associated with the lumped anode volume with a 
subscript (an). The cathode supply manifold (sm) lumps all the volumes associated with 
pipes and connection between the compressor and the stack cathode (ca) flow field.The 
cathode return manifold (rm) represents the lumped volume of pipes downstream of the 
stack cathode. In this study, an expander is not included; however, we will consider this 
part in future models for FDD. It is assumed that the properties of the flow exiting a volume 
are the same as those of the gas inside the volume. Subscripts (cp) and (cm) denote variables 
associated with the compressor and compressor motor, respectively. 
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The rotational dynamics and a flow map are used to model the compressor. The law of 
conservation of mass is used to track the gas species in each volume. The principle of mass 
conservation is applied to calculate the properties of the combined gas in the supply and 
return manifolds. The law of conservation of energy is applied to the air in the supply 
manifold to account for the effect of temperature variations. Under the assumptions of a 
perfect humidifier and air cooler, and the use of proportional control of the hydrogen valve, 
the only inputs to the model are the stack current, Ist, and the compressor motor voltage, vcm. 
The parameters used in the model are given in Table 1 (Pukrushpan et al., 2004a). The model 
is developed primarily based on physics. However, several phenomena are described in 
empirical equations. The models for the fuel cell stack, compressor, manifolds, air cooler and 
humidifier are presented in state-space model as specified by (40)-(41) with the relating 
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where [ , ]Tcm stu v I= , and [ , , ]Tcp sm stz W p v= , the stochastic noise or disturbance ω  models 
the uncertainties caused by the linearization and measurement noises, etc. Note that the 
nominal operating point is chosen to be Pnet=40 kW and λO2 =2, which correspond to 
nominal inputs of Ist=191 Amp and vcm=164 Volt. The state vector 

2 2 2 2 ,[ , , , , , , , , ]TO H N cp sm sm O w an rmx m m m p m m m pω= . In more details, the fuel cell system model 
developed above contains eight states. The compressor has one state: rotor speed. The 
supply manifold has two states: air mass and air pressure. The return manifold has one 
state: air pressure. The stack has four states: O2, and N2 masses in the cathode, and H2 and 
vapor masses in the anode. These states then determine the voltage output of the stack. 
 

Symbol  Variable  Value 
rm,dry Membrane dry density 0.002 kg/cm3 
Mm,dry Membrane dry equivalent weight 1.1 kg/mol 
tm Membrane thickness 0.01275 cm 
n  Number of cells in stack 381 
Afc Fuel cell active area 280 cm2 
dc Compressor diameter 0.2286 m 
Jcp Compressor and motor inertia 531025 kg.m2 
Van Anode volume 0.005 m3 
Vca Cathode volume 0.01 m3 
Vsm Supply manifold volume 0.02 m3 
Vrm Return manifold volume 0.005 m3 
CD,rm Return manifold throttle discharge coefficient 0.0124 
AT,rm Return manifold throttle area 0.002 m2 
ksm,out Supply manifold outlet orifice constant 0.362931025 kg/(s.Pa) 
kca,out Cathode outlet orifice constant 0.217731025 kg(s.Pa) 
kv Motor electric constant 0.0153 V/(rad/s) 
kt Motor torque constant 0.0153 N-m/A 
Rcm Compressor Motor circuit resistance 0.816 V 
hcm Compressor Motor efficiency 98% 

Table 1. Model parameters for vehicle-size fuel cell system 

Three measurements are investigated: compressor air flow rate, z1=Wcp , supply manifold 
pressure, z2=psm , and fuel cell stack voltage, z3=Vst . These signals are usually available 
because they are easy to measure and are useful for other purposes. For example, the 
compressor flow rate is typically measured for the internal feedback of the compressor. The 
stack voltage is monitored for diagnostics and fault detection purposes. Besides, the units of 
states and outputs are selected so that all variables have comparable magnitudes, and are as 
follows: mass in grams, pressure in bar, rotational speed in kRPM, mass flow rate in g/sec, 
power in kW, voltage in V, and current in A.  
In this study, the simultaneous actuator and sensor faults are considered. The fuel cell 
systems of interest considered here have two actuators and three sensors. Therefore, there 
are potentially only six modes, with the first mode being designated as the normal mode as 
(40)-(41) and the other five modes designated as the faulty modes associated with each of 
the faulty actuators or sensors.  
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Table 2. Parameters for the linear fuel cell model in (40)-(41) 
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Table 3. Parameters for the discretized model 

Actuator (or control surface) failures were modeled by multiplying the respective column of 
1uB  and 1 ,uD  by a factor between zero and one, where zero corresponds to a total (or 

complete) actuator failure or missing control surface and one to an unimpaired (normal) 
actuator/control surface. Likewise for sensor failures, where the role of 1uB  and 1uD  is 
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where [ , ]Tcm stu v I= , and [ , , ]Tcp sm stz W p v= , the stochastic noise or disturbance ω  models 
the uncertainties caused by the linearization and measurement noises, etc. Note that the 
nominal operating point is chosen to be Pnet=40 kW and λO2 =2, which correspond to 
nominal inputs of Ist=191 Amp and vcm=164 Volt. The state vector 

2 2 2 2 ,[ , , , , , , , , ]TO H N cp sm sm O w an rmx m m m p m m m pω= . In more details, the fuel cell system model 
developed above contains eight states. The compressor has one state: rotor speed. The 
supply manifold has two states: air mass and air pressure. The return manifold has one 
state: air pressure. The stack has four states: O2, and N2 masses in the cathode, and H2 and 
vapor masses in the anode. These states then determine the voltage output of the stack. 
 

Symbol  Variable  Value 
rm,dry Membrane dry density 0.002 kg/cm3 
Mm,dry Membrane dry equivalent weight 1.1 kg/mol 
tm Membrane thickness 0.01275 cm 
n  Number of cells in stack 381 
Afc Fuel cell active area 280 cm2 
dc Compressor diameter 0.2286 m 
Jcp Compressor and motor inertia 531025 kg.m2 
Van Anode volume 0.005 m3 
Vca Cathode volume 0.01 m3 
Vsm Supply manifold volume 0.02 m3 
Vrm Return manifold volume 0.005 m3 
CD,rm Return manifold throttle discharge coefficient 0.0124 
AT,rm Return manifold throttle area 0.002 m2 
ksm,out Supply manifold outlet orifice constant 0.362931025 kg/(s.Pa) 
kca,out Cathode outlet orifice constant 0.217731025 kg(s.Pa) 
kv Motor electric constant 0.0153 V/(rad/s) 
kt Motor torque constant 0.0153 N-m/A 
Rcm Compressor Motor circuit resistance 0.816 V 
hcm Compressor Motor efficiency 98% 

Table 1. Model parameters for vehicle-size fuel cell system 

Three measurements are investigated: compressor air flow rate, z1=Wcp , supply manifold 
pressure, z2=psm , and fuel cell stack voltage, z3=Vst . These signals are usually available 
because they are easy to measure and are useful for other purposes. For example, the 
compressor flow rate is typically measured for the internal feedback of the compressor. The 
stack voltage is monitored for diagnostics and fault detection purposes. Besides, the units of 
states and outputs are selected so that all variables have comparable magnitudes, and are as 
follows: mass in grams, pressure in bar, rotational speed in kRPM, mass flow rate in g/sec, 
power in kW, voltage in V, and current in A.  
In this study, the simultaneous actuator and sensor faults are considered. The fuel cell 
systems of interest considered here have two actuators and three sensors. Therefore, there 
are potentially only six modes, with the first mode being designated as the normal mode as 
(40)-(41) and the other five modes designated as the faulty modes associated with each of 
the faulty actuators or sensors.  
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Table 3. Parameters for the discretized model 

Actuator (or control surface) failures were modeled by multiplying the respective column of 
1uB  and 1 ,uD  by a factor between zero and one, where zero corresponds to a total (or 

complete) actuator failure or missing control surface and one to an unimpaired (normal) 
actuator/control surface. Likewise for sensor failures, where the role of 1uB  and 1uD  is 
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replaced with 1C . It was assumed that the damage does not affect the fuel cell system 
dynamic matrix 1A , implying that the dynamics of the system are not changed. 
Let sampling period 1T = s. Discretization of (40)-(41) yields the matrices for normal mode 

1
cA TA e= , 1 0

( )c
T A

u cB e d Bτ τ= ∫ , 1 0
( )c

T A
cB e d Bτ

ω ωτ= ∫ , 1 cC C= , 1 1,u uD D= , 1 1,D Dυ υ= , which 

are specified in Table 3. 
The fault modes in this work are more general and complex than those considered before, 
including total single sensor or actuator failures, partial single sensor or actuator failures, 
total and partial single sensor and/or actuator failures, and simultaneous sensor and 
actuator failures.  

5. Results and discussion 
Scenario 1: Single total/partial actuator faulty mode 

First, in order to compare the performance between the conventional IMM and the proposed 
fuzzy logic based IMM approach, consider the simplest situation in which only a single total 
(or partial) sensor or actuator is running failure. Specifically, only partial failure for the 
actuator according to the second control input, i.e. stack current, Ist, is considered. The 
failure occurs after the 50th sampling period with failure amplitude of 50%. Two models 
consisting the normal mode and second actuator failure with amplitude of 50% are used for 
the IMM filter. The fault decision criterion in (29) is used with the threshold ' 2.5Tμ = . The 
transition matrix for the conventional IMM and the initial for the proposed approach are set 
as follows 

0.99 0.01
0.1 0.9

    
       
⎡ ⎤

Π = ⎢ ⎥
⎣ ⎦

 

The results of the FDD based on our proposed approach are compared with that of the 
conventional IMM filter. Fig. 6 (a) and (b) represent the model probabilities of the 2 models 
and the mode index according to (29) for the conventional IMM, respectively. From Fig. 6, it 
is obvious that the model probability related to the failure model does not keep a dominant 
value for the conventional IMM approach. On that account, momentary false failure mode is 
declared after the failure although the approach works well before the first failure occurs, 
 

      
Fig. 6. The model probabilities and the mode index for the conventional IMM approach 
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just as shown in Fig. 6 (b). The performance of the proposed fuzzy logic based IMM 
approach is stable to hold a higher model probability than that of the conventional filter (cf. 
Fig. 7 (a)-(b)). This concludes that the improved IMM approach has better performance and, 
more importantly, reliability that the conventional IMM filter. 
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where 19 /20a = , 1 /220b = , 9 /10c = , and 1 /10d = . Two faulty sequences of events are 
considered. The first sequence is 1-2-3-4-6-12, for which the events occur at the beginning of 
the 1st, 51st, 101st, 141st, 201st, 251st sampling point, respectively. The second sequence is 1-3-
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5-7-8-9-10-11-12, for which the events occur at the beginning of the 1st, 41st, 71st, 111st, 141st, 
181st, 221st, 251st, 281st sampling point, respectively. Note that z1 corresponds to the normal 
mode. Then, for the first case the faults persist for the duration of 40, 40, 60, 50, and 50 
samples within each window. For the second case the faults persist for 30, 40, 30, 40, 40, 30, 
30, and 20 samples, respectively. For space reason, only the performance and capabilities of 
the proposed approach are shown. The results for the two cases are shown in Fig. 9 and Fig. 
10, respectively. A quick view on the results, we may find that there is generally only one 
step of delay in detecting the presence of the faults. However, a more insight on both figures 
may reveal that at the beginning of the mode 4, it always turns out to be declared as mode 
10, while taking mode 8 for mode 12, and vice versa. This may be attributed to the similarity 
between the mode 4 and 10, 8 and 12. However, the results settled down quickly, only 5-6 
samples on average. 
 

 
Fig. 9. The mode index in the 3rd scenario of sequence 1-2-3-4-6-12 
 

 
Fig. 10. The mode index in the 3rd scenario of sequence 1-3-5-7-8-9-10-11-12 
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6. Conclusion and future work 
A self-contained framework to utilize IMM approach for fault detection and diagnosis for 
PEM fuel cell systems has been presented in this study. To overcome the shortcoming of the 
conventional IMM approach with constant transition matrix, a Takagi-Sugeno fuzzy model 
has been introduced to update the transition probability among multiple models, which 
makes the proposed FDD approach smooth and the possibility of false fault detection 
reduced. Comparing with the existing results on FDD for fuel cell systems , “partial” (or 
“soft”) faults in addition to the “total” (or “hard”) actuator and/or sensor failures have also 
been considered in this work. Simulation results for three different scenarios considering 
both single and simultaneous sensor and/or actuator faults have been given to illustrate the 
effectiveness of the proposed approach. 
The scenarios considered correspond to representative symptoms in a PEM fuel cell system, 
and therefore the set of the considered models can’t possibly cover all fault situations that 
may occur. Note that in case the fuel cell system undergoes a fault that it has not seen 
before, there is a possibility that the system might become unstable as a result of the IMM 
algorithm decision. It is indeed very difficult to formally and analytically characterize this, 
but based on our extensive simulation results presented, all the faulty can be detected 
precisely and timely. 
It is worth mentioning that the main objective of this work was to develop and present 
simulation results for the applicability and the effectiveness of the fuzzy logic based IMM 
approach for fault diagnosis of a PEM fuel cell system. The proposed approach can be 
readily extended to IMM-based fault-tolerant control and provides extremely useful 
information for system compensation or fault-tolerant control subsequent to the detection of 
a failure. This work is under investigation and will be reported in the near future. 
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1. Introduction

1.1 Definitions and basic properties
Discrete event systems (DES) constitute a specific subclass of discrete time systems whose
dynamic behavior is governed by instantaneous changes of the system state that are triggered
by the occurrence of asynchronous events. In particular, the characteristic feature of discrete
event systems is that they are discrete in both their state space and in time. The modeling
formalism of discrete event systems is suitable to represent man-made systems such as
manufacturing systems, telecommunication systems, transportation systems and logistic
systems (Caillaud et al. (2002); Delgado-Eckert (2009c); Dicesare & Zhou (1993); Kumar &
Varaiya (1995)). Due to the steady increase in the complexity of such systems, analysis and
control synthesis problems for discrete event systems received great attention in the last two
decades leading to a broad variety of formal frameworks and solution methods (Baccelli et al.
(1992); Cassandras & Lafortune (2006); Germundsson (1995); Iordache & Antsaklis (2006);
Ramadge & Wonham (1989)).
The literature suggests different modeling techniques for DES such as automata (Hopcroft
& Ullman (1979)), petri-nets (Murata (1989)) or algebraic state space models (Delgado-Eckert
(2009b); Germundsson (1995); Plantin et al. (1995); Reger & Schmidt (2004)). Herein, we focus
on the latter modeling paradigm. In a fairly general setting, within this paradigm, the state
space model can be obtained from an unstructured automaton representation of a DES by
encoding the trajectories in the state space in an n-dimensional state vector x(k) ∈ Xn at each
time instant k, whose entries can assume a finite number of different values out of a non-empty
and finite set X. Then, the system dynamics follow

F(x(k + 1), x(k)) = 0, x(k) ∈ Xn

where F marks an implicit scalar transition function F : Xn × Xn → X, which relates x(k) at
instant k with the possibly multiple successor states x(k + 1) in the instant k + 1. Clearly, in
the case of multiple successor states the dynamics evolve in a non-deterministic manner.
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In addition, it is possible to include control in the model by means of an m-dimensional control
input u(k) ∈ Um at time instant k. This control input is contained in a so called control set (or
space) Um, where U is a finite set. The resulting system evolution is described by

F(x(k + 1), x(k), u(k)) = 0, x(k) ∈ Xn, u(k) ∈ Um

In many cases, this implicit representation can be solved for the successor state x(k + 1),
yielding the explicit form

x(k + 1) = f (x(k), u(k)) (1)

or
x(k + 1) = f (x(k)) (2)

when no controls are applied. As a consequence, the study of deterministic DES reduces to
the study of a mapping f : Xn → Xn, or f : Xn × Um → Xn if we consider control inputs,
where X and U are finite sets, X is assumed non-empty, and n, m ∈ N are natural numbers.
Such a mapping f : Xn → Xn is denoted as a time invariant discrete time finite dynamical system.
Due to the finiteness of X it is readily observed that the trajectory x, f (x), f ( f (x)), ... of any
point x ∈ Xn contains at most |Xn| = |X|n different points and therefore becomes either cyclic
or converges to a single point y ∈ Xn with the property f (y) = y (i.e., a fixed point of f ). The
phase space of f is the directed graph (Xn, E, π : E → Xn × Xn) with node set Xn, arrow set E
defined as E := {(x, y) ∈ Xn × Xn | f (x) = y} and vertex mapping

π : E → Xn × Xn

(x, y) �→ (x, y)

The phase space consists of closed paths of different lengths that range from 1 (i.e. loops
centered on fixed points) to |Xn| (the closed path comprises all possible states), and directed
trees that end each one at exactly one closed path. The nodes in the directed trees correspond
to transient states of the system. In particular, if f is bijective1, every point x ∈ Xn is contained
in a closed path and the phase space is the union of disjoint closed paths. Conversely, if every
point in the phase space is contained in a closed path, then f must be bijective. A closed path
of length s in the phase space of f is called a cycle of length s. We refer to the total number of
cycles and their lengths in the phase space of f as the cycle structure of f .
Given a discrete time finite dynamical system f : Xn → Xn, we can find in the phase space
the longest open path ending in a closed path. Let m ∈ N0 be the length of this path. It is easy
to see, that for any s ≥ m the (iterated) discrete time finite dynamical system f s : Xn → Xn

has the following properties

1. ∀ x ∈ Xn, f s(x) is a node contained in one closed path of the phase space.

2. If T is the least common multiple of all the lengths of closed paths displayed in the phase
space, then it holds

f s+λT = f s ∀ λ ∈ N and f s+i �= f s ∀ i ∈ {1, ..., T − 1}
We call T the period number of f . If T = 1, f is called a fixed point system.

In order to study the dynamics of such a dynamical system mathematically, it is beneficial to
add some mathematical structure to the set X so that one can make use of well established
mathematical techniques. One approach that opens up a large tool box of algebraic and graph
theoretical methods is to endow the set X with the algebraic structure of a finite field (Lidl &

1 Note that for any map from a finite set into itself, surjectivity is equivalent to injectivity.
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Niederreiter (1997)). While this step implies some limitations on the cardinality2 |X| of the set
X, at the same time, it enormously simplifies the study of systems f : Xn → Xn due to the
fact that every component function fi : Xn → X can be shown to be a polynomial function of
bounded degree in n variables (Lidl & Niederreiter (1997), Delgado-Eckert (2008)). In many
applications, the occurrence of events and the encoding of states and possible state transitions
are modeled over the Boolean finite field F2 containing only the elements 0 and 1.

1.2 Control theoretic problems – analysis and controller synthesis
Discrete event systems exhibit specific control theoretic properties and bring about different
control theoretic problems that aim at ensuring desired system properties. This section
reviews the relevant properties and formalizes their analysis and synthesis in terms of the
formal framework introduced in the previous section.

1.2.1 Discrete event systems analysis
A classical topic is the investigation of reachability properties of a DES. Basically, the analysis
of reachability seeks to determine if the dynamics of a DES permit trajectories between given
system states. Specifically, it is frequently required to verify if a DES is nonblocking, that is, if it
is always possible to reach certain pre-defined desirable system states. For example, regarding
manufacturing systems, such desirable states could represent the completion of a production
task. Formally, it is desired to find out if a set of goal states Xg ⊆ Xn can be reached from a
start state x̄ ∈ Xn.
In the case of autonomous DES without a control input as in (2), a DES with the dynamic
equations x(k + 1) = f (x(k)) is denoted as reachable if it holds for all x̄ ∈ X that the set Xg is
reached after applying the mapping f for a finite number of times:

∀x̄ ∈ Xn∃k ∈ N s.t. f k(x̄) ∈ Xg. (3)

Considering DES with a control input, reachability of a DES with respect to a goal set Xg holds
if there exists a control input sequence that leads to a trajectory from each start state x̄ ∈ Xn

to a state x(k) ∈ Xg, whereby x(k) is determined according to (1):

∀x̄ ∈ Xn∃k ∈ N and controls u(0), . . . , u(k − 1) ∈ Um s.t. x(k) ∈ Xg. (4)

Moreover, if reachability of a controlled DES holds with respect to all possible goal sets Xg ⊆
Xn, then the DES is simply denoted as reachable and if the number of steps required to reach
Xg is bounded by l ∈ N, then the DES is called l-reachable.
An important related subject is the stability of DES that addresses the question if the dynamic
system evolution will finally converge to a certain set of states ((Young & Garg, 1993)).
Stability is particularly interesting in the context of failure-tolerant DES, where it is desired to
finally ensure correct system behavior even after the occurrence of a failure. Formally, stability
requires that trajectories from any start state x̄ ∈ Xn finally lead to a goal set Xg without ever
leaving Xg again.
Regarding autonomous DES without control, this condition is written as

∀x̄ ∈ Xn∃l ∈ N s.t. ∀k ≥ l, f k(x̄) ∈ Xg. (5)

In addition, DES with control input require that

∀x̄ ∈ Xn∃k ∈ N and controls u(0), . . . , u(k − 1) ∈ Um s.t.∀l ≥ k x(l) ∈ Xg, (6)

2 A well-known result states that X can be endowed with the structure of a finite field if and only if there
is a prime number p ∈ N and a natural number m ∈ N such that |X| = pm.
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whereby k = 1 for all x̄ ∈ Xg.
It has to be noted that stability is a stronger condition than reachability both for autonomous
DES and for DES with control inputs, that is, stability directly implies reachability in both
cases.

In the previous section, it is discussed that the phase space of a DES consists of closed paths
– so-called cycles – and directed trees that lead to exactly one closed path. In this context, the
DES analysis is interested in inherent structural properties of autonomous DES. For instance,
it is sought to determine cyclic or fixed-point behavior along with system states that belong
to cycles or that lead to a fixed point ((Delgado-Eckert, 2009b; Plantin et al., 1995; Reger &
Schmidt, 2004)). In addition, it is desired to determine the depth of directed trees and the
states that belong to trees in the phase space of DES. A classical application, where cyclic
behavior is required, is the design of feedback shift registers that serve as counter circuits in
logical devices ((Gill, 1966; 1969)).

1.2.2 Controller synthesis for discrete event systems
Generally, the control synthesis for discrete event systems is concerned with the design of a
controller that influences the DES behavior in order to allow certain trajectories or to achieve
pre-specified structural properties under control. In the setting of DES, the control is applied
by disabling or enforcing the occurrence of system events that are encoded by the control
inputs of the DES description in (1). On the one hand, the control law can be realized as a
feedforward controller that supplies an appropriate control input sequence u(0), u(1), . . . , in
order to meet the specified DES behavior. Such feedforward control is for example required
for reaching a goal set Xg as in (4) and (6). On the other hand, the control law can be stated
in the form of a feedback controller that is realized as a function g : Xn → Um. This function
maps the current state x ∈ Xn to the current control input g(x) and is computed such that the
closed-loop system

h : Xn → Xn

x �→ f (x, g(x))

satisfies desired structural properties. In this context, the assignment of a pre-determined
cyclic behavior of a given DES are of particular interest for this chapter.

1.3 Applicability of existing methods
The control literature offers a great variety of approaches and tools for the system analysis
and the controller synthesis for continuous and discrete time dynamical systems that are
represented in the form

ẋ(t) = f (x(t), u(t)) or x(k + 1) = f (x(k), u(k)),

whereby usually x(t) ∈ Rn, u(t) ∈ Rm, and x(k) ∈ Rn, u(k) ∈ Rm, respectively.
Unfortunately, traditional approaches to analyzing continuous and discrete time dynamical
systems and to synthesizing controllers may fail when dealing with new modeling paradigms
such as the use of the finite field F2 for DES as proposed in Section 1.1. From a mathematical
point of view, one of the major difficulties is the fact that finite fields are not algebraically
closed. Also non-linearity in the functions involved places a major burden for the system
analysis and controller synthesis. In general, despite the simple polynomial shape of the
transition function f (see above), calculations may be computationally intractable. For
instance, determining the reachability set ((Le Borgne et al., 1991)) involves solving a certain
set of algebraic equations, which is known to be an NP-hard problem ((Smale, 1998)).

450 Discrete Time Systems

Consequently, one of the main challenges in the field of discrete event systems is the
development of appropriate mathematical techniques. To this end, researchers are confronted
with the problem of finding new mathematical indicators that characterize the dynamic
properties of a discrete system. Moreover, it is pertinent to establish to what extent such
indicators can be used to solve the analysis and control problems described in Section 1.2.
In addition, the development of efficient algorithms for the system analysis and controller
synthesis are of great interest.
To illustrate recent achievements, this chapter presents the control theoretic study of linear
modular systems in Section 2, on the one hand, and, on the other hand, of a class of nonlinear
control systems over the Boolean finite field F2, namely, Boolean monomial control systems in
Section 3, (first introduced by Delgado-Eckert (2009b)).

2. Analysis and control of linear modular systems3

2.1 State space decomposition
In this section, linear modular systems (LMS) over the finite field F2 shall be in the focus. Such
systems are given by a linear recurrence

x(k + 1) = A x(k), k ∈ N0 , (7)

where A ∈ F n×n
2 is the so-called system matrix. As usual in systems theory, it is our objective

to track back dynamic properties of the system to the properties of the respective system
matrix. To this end, we first recall some concepts from linear algebra that we need so as to
relate the cycle structure of the system to properties of the system matrix.

2.1.1 Invariant polynomials and elementary divisor polynomials
A polynomial matrix P(λ) is a matrix whose entries are polynomials in λ. Whenever
the inverse of a polynomial matrix again is a polynomial matrix then this matrix is called
unimodular. These matrices are just the matrices that show constant non-zero determinant. In
the following, F denotes a field.

Lemma 1. Let A ∈ F n×n be arbitrary. There exist unimodular polynomial matrices U(λ), V(λ) ∈
F[λ]n×n such that

U(λ)(λI − A)V(λ) = S(λ) (8)

with

S(λ) =

⎛
⎜⎜⎜⎝

c1(λ) 0 · · · 0

0 c2(λ)
...

...
. . . 0

0 · · · 0 cn(λ)

⎞
⎟⎟⎟⎠ , (9)

in which ci(λ) ∈ F[λ] are monic polynomials with the property ci+1 | ci, i = 1, . . . , n − 1.

Remark 2. The diagonal matrix S(λ) is the Smith canonical form of λI − A which, of course, exists
for any non-square polynomial matrix, not only in case of the characteristic matrix λI − A. However,
for λ not in the spectrum of A the rank of λI − A is always full and, thus, for any non-eigenvalue λ
we have ci(λ) �= 0.

Definition 3. Let A ∈ F n×n be arbitrary and S(λ) ∈ F[λ] n×n the Smith canonical form associated
to the characteristic matrix λI − A. The monic polynomials ci(λ), i = 1, . . . , n, generating S(λ) are
called invariant polynomials of A.

3 Some of the material presented in this section has been previously published in (Reger & Schmidt,
2004).
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ẋ(t) = f (x(t), u(t)) or x(k + 1) = f (x(k), u(k)),
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Consequently, one of the main challenges in the field of discrete event systems is the
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To illustrate recent achievements, this chapter presents the control theoretic study of linear
modular systems in Section 2, on the one hand, and, on the other hand, of a class of nonlinear
control systems over the Boolean finite field F2, namely, Boolean monomial control systems in
Section 3, (first introduced by Delgado-Eckert (2009b)).

2. Analysis and control of linear modular systems3

2.1 State space decomposition
In this section, linear modular systems (LMS) over the finite field F2 shall be in the focus. Such
systems are given by a linear recurrence

x(k + 1) = A x(k), k ∈ N0 , (7)

where A ∈ F n×n
2 is the so-called system matrix. As usual in systems theory, it is our objective

to track back dynamic properties of the system to the properties of the respective system
matrix. To this end, we first recall some concepts from linear algebra that we need so as to
relate the cycle structure of the system to properties of the system matrix.

2.1.1 Invariant polynomials and elementary divisor polynomials
A polynomial matrix P(λ) is a matrix whose entries are polynomials in λ. Whenever
the inverse of a polynomial matrix again is a polynomial matrix then this matrix is called
unimodular. These matrices are just the matrices that show constant non-zero determinant. In
the following, F denotes a field.

Lemma 1. Let A ∈ F n×n be arbitrary. There exist unimodular polynomial matrices U(λ), V(λ) ∈
F[λ]n×n such that

U(λ)(λI − A)V(λ) = S(λ) (8)

with

S(λ) =

⎛
⎜⎜⎜⎝

c1(λ) 0 · · · 0

0 c2(λ)
...

...
. . . 0

0 · · · 0 cn(λ)

⎞
⎟⎟⎟⎠ , (9)

in which ci(λ) ∈ F[λ] are monic polynomials with the property ci+1 | ci, i = 1, . . . , n − 1.

Remark 2. The diagonal matrix S(λ) is the Smith canonical form of λI − A which, of course, exists
for any non-square polynomial matrix, not only in case of the characteristic matrix λI − A. However,
for λ not in the spectrum of A the rank of λI − A is always full and, thus, for any non-eigenvalue λ
we have ci(λ) �= 0.

Definition 3. Let A ∈ F n×n be arbitrary and S(λ) ∈ F[λ] n×n the Smith canonical form associated
to the characteristic matrix λI − A. The monic polynomials ci(λ), i = 1, . . . , n, generating S(λ) are
called invariant polynomials of A.

3 Some of the material presented in this section has been previously published in (Reger & Schmidt,
2004).
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It is a well-known fact that two square matrices are similar if and only if they have the same
Smith canonical form ((Wolovich, 1974)). That is, these invariant polynomials capture the
coordinate independent properties of the system. Moreover, the product of all invariant
polynomials results in the characteristic polynomial cpA(λ) = det(λ I − A) = c1(λ) · · · cn(λ)
and the largest degree polynomial c1(λ) in S(λ) is the minimal polynomial mpA(λ) of A,
which is the polynomial of least degree such that mpA(A) = 0. The invariant polynomials
can be factored into irreducible factors.

Definition 4. A non-constant polynomial p ∈ F[λ] is called irreducible over the field F if whenever
p(λ) = g(λ)h(λ) in F[λ] then either g(λ) or h(λ) is a constant.

In view of irreducibility, Gauß’ fundamental theorem of algebra can be rephrased so as to
obtain the unique factorization theorem.

Theorem 5. Any polynomial p ∈ F[λ] can be written in the form

p = a p1
e1 · · · pk

ek (10)

with a ∈ F, e1, . . . , ek ∈ N, and polynomials p1, . . . , pk ∈ F[λ] irreducible over F. The factorization
is unique except for the ordering of the factors.

Definition 6. Let A ∈ F n×n be arbitrary and ci = pei,1
i,1 · · · p

ei,Ni
i,Ni

∈ F[λ], i = 1, . . . , n̄,
the corresponding n̄ non-unity invariant polynomials in unique factorization with Ni factors. The
N = ∑n̄

i=1 Ni monic factor polynomials p
ei,j

i,j , i = 1, . . . , n̄ and j = 1, . . . , Ni, are called elementary
divisor polynomials of A.

In order to precise our statements the following definition is in order:

Definition 7. Let pC = λd + ∑d−1
i=0 ai λi ∈ F[λ] be monic. Then the (d × d)-matrix

C =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1

−a0 −a1 −a2 · · · −ad−2 −ad−1

⎞
⎟⎟⎟⎟⎟⎠

(11)

is called the companion matrix associated to pC.

Based on Definition 7, it is now possible to define the rational canonical form of a given matrix.

Theorem 8. Let A ∈ F n×n be arbitrary and p
ei,j

i,j its N elementary divisor polynomials, as introduced
in Definition 6. There exists an invertible matrix T such that

Arat = T−1 A T = diag(C1, . . . , CN) (12)

where C1, . . . , CN are the companion matrices associated to the N elementary divisor polynomials of
A.

Remark 9. Except for the ordering of the companion matrices the matrix Arat is unique. Furthermore,
the number N is maximal in the sense that there is no other matrix similar to A that comprises more
than N companion matrices.
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2.1.2 Cycle structure
As pointed out in the introductory section, the phase space of any discrete system may be
decomposed into closed paths (cycles) and paths that terminate in some cycle. For ease of
notation, let NΣ denote the number of different-length cycles in a discrete system. Moreover,
let the expression ν[τ] denote ν cycles of length τ. For this notation it clearly holds νi[τ] +
νj[τ] = (νi + νj)[τ]. Then the formal sum (cycle sum)

Σ = ν1[τ1] + ν2[τ2] + . . . + νNΣ [τNΣ ] (13)

is used to represent the entire cycle structure of a discrete system that has a total of νi cycles
of length τi for i = 1, . . . , NΣ. The cycle structure is naturally linked to the notion of a periodic
state, which shall be introduced for the particular case of linear modular systems.

Definition 10. Let x ∈ F n
2 be a non-zero state of the LMS in (7). The period of x is the least natural

number t such that x = Atx. The period of the zero state x = 0 is t = 1.

Without loss of generality, let the LMS in (7) be given in the elementary divisor version of the
rational canonical form4 (see Theorem 8). Hence,

x(k + 1) = diag(C1, . . . , CN) x(k) . (14)

The representation reveals the decomposition of (7) into N decoupled underlying subsystems,
xi(k + 1) = Ci xi(k), associated to the companion matrices Ci with respect to each elementary
divisor polynomial of A. By combinatorial superposition of the periodic states of the
subsystems it is clear that the periods of the states in the composite system follow from the
least common multiple of the state periods in the subsystems. Therefore, for the examination
of the cycle structure, it is sufficient to consider the cycle structure of a system

x(k + 1) = C x(k) . (15)

In this representation, C ∈ F d×d
2 is a companion matrix whose polynomial pC ∈ F2[λ] is a

power of a monic polynomial that is irreducible over F2, whereby either pC(0) �= 0 or pC = λd

((Reger, 2004)). It is now possible to relate the cyclic properties of the matrix C to the cyclic
properties of the polynomial pC.

Theorem 11. Let a linear modular system x(k + 1) = C x(k) be given by a companion matrix
C ∈ F d×d

2 and its corresponding d-th degree polynomial pC = (pirr,C)
e, where pirr,C ∈ F2[λ] is

an irreducible polynomial over F2 of degree δ such that d = e δ. Then the following statements hold:

1. If pirr,C(0) �= 0, then the phase space of the system has the cycle sum

Σ = 1[1] +
2δ − 1

τ1
[τ1] + · · ·+ 22δ − 2δ

τj
[τj] + . . . +

2eδ − 2(e−1)δ

τe
[τe] . (16)

In the above equation, the periods τj, j = 1, . . . , e are computed as τj = 2lj τ, whereby τ represents
the period of the irreducible polynomial pirr,C which is defined as the least positive natural number
for which p(λ) divides λτ − 1. In addition, lj, j = 1, . . . , e, is the least integer such that 2lj ≥ j.

2. If pirr,C = λd, then the phase space forms a tree with d levels, whereby each level l = 1, . . . , d
comprises 2l−1 states, each non-zero state in level l − 1 is associated to 2 states in level l, and the
zero state has one state in level 1.

4 Otherwise, we may always transform x̄ = T x such that in new coordinates it will be.
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Proof. Part 1. is proved in [Theorem 4.5 in (Reger, 2004)] and part 2. is proved in [Theorem 4.9
in (Reger, 2004)].
Equipped with this basic result, it is now possible to describe the structure of the state space
of an LMS in rational canonical form (14). Without loss of generality, it is assumed that the
first c companion matrices are cyclic with the cycle sums Σ1, . . . , Σc, whereas the remaining
companion matrices are nilpotent.5 Using the multiplication of cycle terms as defined by

νi[τi]νj[τj] =
νiνjτiτj

lcm(τi, τj)
[lcm(τi, τj)] = νiνj gcd(τi, τj)[lcm(τi, τj)] ,

the cycle structure Σ of the overall LMS is given by the multiplication of the cycle sums of the
cyclic companion matrices

Σ = Σ1 Σ2 · · · Σc.

Finally, the nilpotent part of the overall LMS forms a tree with max{dc+1, . . . , dN} levels, that
is, the length of the longest open path of the LMS is lo = max{dc+1, . . . , dN}. For the detailed
structure of the resulting tree the reader is referred to Section 4.2.2.2 in (Reger, 2004).
The following example illustrates the cycle sum evaluation for an LMS with the system matrix
A ∈ F 5×5

2 and its corresponding Smith canonical form S(λ) ∈ F2[λ]
5×5 that is computed as

in [p. 268 ff. in (Booth, 1967)], [p. 222 ff. in (Gill, 1969)].

A =

⎛
⎜⎜⎜⎝

1 0 0 1 1
1 1 0 0 1
0 0 1 0 1
0 0 0 0 1
1 0 0 0 1

⎞
⎟⎟⎟⎠ , S(λ) =

⎛
⎜⎜⎜⎝

(λ2 + λ + 1)(λ + 1)2 0 0 0 0
0 λ + 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠

Here the only non-constant invariant polynomials of A are

c1(λ) = (λ2 + λ + 1)(λ + 1)2, c2(λ) = λ + 1

as indicated by the Smith canonical form. Thus, A has the elementary divisor polynomials

pC1 (λ) = λ2 + λ + 1, pC2 (λ) = (λ + 1)2, pC3 (λ) = λ + 1.

Since none of the elementary divisor polynomials is of the form λh for some integer h, the
system matrix A is cyclic. The corresponding base polynomial degrees are δ1 = 2, δ2 = 1 and
δ3 = 1, respectively. Consequently, the corresponding rational canonical form Arat = T A T−1

together with its transformation matrix T reads6

Arat = diag(C1, C2, C3) =

⎛
⎜⎜⎜⎝

0 1 0 0 0
1 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎠, T =

⎛
⎜⎜⎜⎝

1 0 0 1 1
0 0 0 1 1
1 0 1 0 1
0 0 1 1 1
0 1 1 0 1

⎞
⎟⎟⎟⎠, T−1 =

⎛
⎜⎜⎜⎝

1 1 0 0 0
1 1 1 0 1
0 1 0 1 0
1 1 1 1 0
1 0 1 1 0

⎞
⎟⎟⎟⎠ .

5 A matrix A is called nilpotent when there is a natural number n ∈ N such that An = 0.
6 A simple method for obtaining the transformation matrix T can be found in Appendix B of (Reger,

2004).
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In view of Theorem 11, the corresponding periods are

pirr,C1 (λ) = λ2 + λ + 1|λ3 + 1 =⇒ τ
(1)
1 =3

pirr,C2 (λ) = λ + 1 =⇒ τ
(2)
1 =1

(
pirr,C2 (λ)

)2
= (λ + 1)2 = λ2 + 1 =⇒ τ

(2)
2 =2

pirr,C3 (λ) = λ + 1 =⇒ τ
(3)
1 =1

Thus, the associated cycle sums are

Σ1 = 1[1] + [3], Σ2 = 2[1] + [2], Σ3 = 2[1].

The superposition of these cycle sums yields the cycle sum of the overall LMS

Σ = Σ1Σ2Σ3 =
(
1[1] + 1[3]

)(
2[1] + 1[2]

)(
2[1]

)
=

(
2[1] + 1[2] + 2[3] + 1[6]

)(
2[1]

)
=

= 4[1] + 2[2] + 4[3] + 2[6] .

Therefore, the LMS represented by the system matrix A comprises 4 cycles of length 1, 2 cycles
of length 2, 4 cycles of length 3 and 2 cycles of length 6.

2.2 Reachability and stability
In this section, the DES properties of reachability and stability as introduced in Section 1.2
are investigated. The DES analysis for both properties is first performed for systems with no
controls in Subsection 2.2.1. In this case, we can prove necessary and sufficient conditions for
reachability and stability for general (not necessarily linear) deterministic DES f : Xn → Xn,
without even requiring an algebraic structure imposed on the set X. However, to achieve
equivalent results in the case of DES with controls, we need to endow the set X with the
structure of a finite field and assume that the mapping f : Xn × Um → Xn is linear. This is
presented in Subsection 2.2.2.

2.2.1 Reachability and stability for discrete event systems with no controls
The reachability analysis for DES with no controls requires the verification of (3). As
mentioned in Section 1.1, any state x̄ ∈ X either belongs to a unique cycle or to a tree that
is rooted at a unique cycle. In the first case, it is necessary and sufficient for reachability from
x̄ that there is at least one state x̂ ∈ Xg that belongs to the same cycle. Denoting the cycle
length as τ, it follows that f k(x̄) = x̂ ∈ Xg for some 0 ≤ k < τ. In the latter case, it is sufficient
that at least one state x̂ ∈ Xg is located on the cycle with length τ where the tree is rooted.
With the length lo of the longest open path and the root xr of the tree, it holds that xr = f l(x̄)
with 0 < l ≤ lo and x̂ = f k(xr) for some 0 < k < τ. Hence, f l+k x̄ = x̂ ∈ Xg. Together, it
turns out that reachability for a DES without controls can be formulated as a necessary and
sufficient property of the goal state set Xg with respect to the map f .

Theorem 12. Let f : Xn → Xn be a mapping, let C f denote the set of all cycles of the DES and let
Xg ⊆ Xn be a goal state set. Then, reachability of Xg with respect to f is given if and only if for all
cycles c ∈ C f , there is a state x̂ ∈ Xg that belongs to c. Denoting lo as the longest open path and τ as
the length of the longest cycle of the DES, Xg is reachable from any x̄ ∈ Xn in at most lo + τ − 1 steps.

Algorithmically, the verification of reachability for a given DES without controls with the
mapping f and the goal state set Xg can be done based on the knowledge of the number ν of
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In view of Theorem 11, the corresponding periods are

pirr,C1 (λ) = λ2 + λ + 1|λ3 + 1 =⇒ τ
(1)
1 =3

pirr,C2 (λ) = λ + 1 =⇒ τ
(2)
1 =1

(
pirr,C2 (λ)

)2
= (λ + 1)2 = λ2 + 1 =⇒ τ

(2)
2 =2

pirr,C3 (λ) = λ + 1 =⇒ τ
(3)
1 =1

Thus, the associated cycle sums are
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Σ = Σ1Σ2Σ3 =
(
1[1] + 1[3]

)(
2[1] + 1[2]

)(
2[1]

)
=

(
2[1] + 1[2] + 2[3] + 1[6]

)(
2[1]

)
=

= 4[1] + 2[2] + 4[3] + 2[6] .
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of length 2, 4 cycles of length 3 and 2 cycles of length 6.

2.2 Reachability and stability
In this section, the DES properties of reachability and stability as introduced in Section 1.2
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controls in Subsection 2.2.1. In this case, we can prove necessary and sufficient conditions for
reachability and stability for general (not necessarily linear) deterministic DES f : Xn → Xn,
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that at least one state x̂ ∈ Xg is located on the cycle with length τ where the tree is rooted.
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Xg ⊆ Xn be a goal state set. Then, reachability of Xg with respect to f is given if and only if for all
cycles c ∈ C f , there is a state x̂ ∈ Xg that belongs to c. Denoting lo as the longest open path and τ as
the length of the longest cycle of the DES, Xg is reachable from any x̄ ∈ Xn in at most lo + τ − 1 steps.

Algorithmically, the verification of reachability for a given DES without controls with the
mapping f and the goal state set Xg can be done based on the knowledge of the number ν of
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cycles of the DES7. First, it has to be noted that the requirement |Xg| ≥ ν for the cardinality of
Xg is a necessary requirement. If this condition is fulfilled, the following procedure performs
the reachability verification.

Algorithm 13. Input: Mapping f , goal state set Xg, cycle count ν

1. Remove all states on trees from Xg

2. if ν = 1 and Xg �= ∅
return rechability verification successful

3. Pick x̂ ∈ Xg

Compute all states X̂g ⊆ Xg on the same cycle as x̂

Xg = Xg − X̂g

4. ν = ν − 1

5. if |Xg| ≥ ν

go to 2.
else

return reachability verification fails

That is, Algorithm 13 checks if the states in Xg cover each cycle of the DES. To this end, the
algorithm successively picks states from Xg and removes all states in the same cycle from Xg.
With the removal of each cycle, the variable ν that represents the number of cycles of the DES
that were not covered by states in Xg, yet, is decremented. Thereby, reachability is violated as
soon as there are more remaining cycles ν than remaining states in Xg.
Next, stability for DES with no controls as in (5) is considered. In view of the previous
discussion, stability requires that all states in all cycles of the DES belong to the goal set Xg.
In that case, it holds that whatever start state x̄ ∈ Xn is chosen, at most lo steps are required
to lead x̄ to a cycle that belongs to Xg. In contrast, it is clear that whenever there is a state
x ∈ Xn − Xg that belongs to a cycle of the DES, then the condition in (5) is violated for all
states in the same cycle. Hence, the formal stability result for DES with no controls is as
follows.

Theorem 14. Let f : Xn × Xn be a mapping and let Xg ⊆ Xn be a goal state set. Then, stability of
Xg with respect to f is given if and only if Xg contains all cyclic states of the DES with the mapping f .
Denoting lo as the longest open path of the DES, Xg is reached from any x̄ ∈ Xn in at most lo steps.

For the algorithmic verification of stability, a slight modification of Algorithm 13 can be used.
It is only required to additionally check if the set X̂g computed in step 3. contains all states of
the respective cycle. In the positive case, the algorithm can be continued as specified, whereas
the modified algorithm terminates with a violation of stability if X̂g does not contain all states
of a cycle.
In summary, both reachability and stability of DES with no controls with respect to a given
goal state set Xg can be formulated and algorithmically verified in terms of the cycle structure
of the DES. Moreover, it has to be noted that stability is more restrictive than reachability.
While reachability requires that at least one state in each cycle of the DES belongs to Xg,
stability necessitates that all cyclic states of the DES belong to Xg.

7 Note that ν can be computed for LMS according to Subsection 2.1.2.
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2.2.2 Reachability and stability under control
The results in this subsection are valid for arbitrary finite fields. However, we will state the
results with respect to the (for applications most relevant) Boolean finite field F2. Moreover,
the focus of this subsection is the specialization of (4) to the case of controlled LMS with the
following form

x(k + 1) = Ax(k) + Bu(k), k ∈ N0 (17)

with the matrices A ∈ Fn×n
2 and B ∈ Fn×m

2 :

∀x̄ ∈ Fn
2∃k ∈ N and controls u(0), . . . , u(k − 1) ∈ Um s.t. Akx̄ +

k−1

∑
j=0

Ak−1−jBu(j) ∈ Xg. (18)

In analogy to the classical reachability condition for linear discrete time systems that are
formulated over the field R ((Sontag, 1998)), the following definition is sufficient for (18).

Definition 15. The LMS in (17) is denoted as reachable if for any x̄, x̂ ∈ Fn
2 , there exists a k ∈ N and

controls u(0), u(1), . . . , u(k − 1) such that x(k) = x̂. If there is a smallest number l ∈ N such that
the above condition is fulfilled for any x̄, x̂ ∈ Fn

2 and k = l, then the LMS is l-reachable.

That is, if an LMS is reachable, then the condition in (18) is fulfilled for any given goal set
Xg. To this end, the notion of controllability that is established for linear discrete time systems
[Theorem 2 in (Sontag, 1998)] is formulated for LMS.

Theorem 16. The LMS in (17) is controllable if and only if the pair (A, B) is controllable, that is, the
matrix R with

R =
[
B AB A2B · · · An−1B

]
(19)

has full rank n. Moreover, the LMS is l-controllable if and only if Rl =
[
B AB · · · Al−1B

]
has full

rank n for an l ∈ {1, ..., n}.

Noting the equivalence of controllability and reachability for linear discrete time systems
as established in [Lemma 3.1.5 in (Sontag, 1998)], l-reachability for LMS can be verified by
evaluating the rank of the matrix Rl . In case an LMS is l-reachable, an important task is to
determine an appropriate control input that leads a given start state x̄ to the goal state set Xg.
That is, for some x̂ ∈ Xg the controls u(0), . . . , u(l − 1) ∈ Um have to be computed such that
x̂ = Al x̄ + ∑l−1

j=0 Al−1−jBu(j).

To this end, a particular matrix L ∈ Fn×n
2 is defined in analogy to [p. 81 in (Wolovich,

1974)]. Denoting the column vectors of the input matrix B as b1, . . . , bm (which, without loss
of generality, are linearly independent), that is, B =

[
b1 · · · bm

]
, L is constructed by choosing

n linearly independent columns from Rl with the following arrangement:

L =
[

b1 A b1 · · · Aμ1−1b1 b2 A b2 · · · Aμ2−1b2 · · · bm A bm · · · Aμm−1bm
]

. (20)

In this expression, the parameters μ1, . . . , μm that arise from the choice of the linearly
independent columns of Rl are the controllability indices of the LMS (A, B). Without loss of
generality it can be assumed that the controllability indices are ordered such that μ1 ≤ · · · ≤
μm, in which case they are unique for each LMS. The representation in (20) allows to directly
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compute an appropriate control sequence that leads x̄ to a state x̂ ∈ Xg. It is desired that

x̂ = Al x̄ +
l−1

∑
j=0

Al−1−j [b1 · · · bm
]

u(j)

= Al x̄ +
[
b1 · · · Al−1b1 · · · bm · · · Al−1bm

] [
u1(l − 1) · · · u1(0) · · · um(l − 1) · · · um(0)

]t

In the above equation, ui(j) denotes the i-th component of the input vector u(j) ∈ Um at step
j. Next, setting all ui(j) = 0 for i = 1, . . . , m and j ≤ l − 1 − μi, the above equation simplifies
to

x̂ = Al x̄+
[
b1· · ·Aμ1−1b1· · ·bm· · ·Aμm−1bm

] [
u1(l−1)· · ·u1(l−μ1)· · ·um(l−1)· · ·um(l−μm)

]t

= Al x̄+L
[
u1(l − 1) · · · u1(l − μ1) · · · um(l − 1) · · · um(l − μm)

]t

Since L is invertible, the remaining components of the control input evaluate as

[
u1(l − 1) · · · u1(l − μ1) · · · um(l − 1) · · · um(l − μm)

]t
= L−1(x̂ − Al x̄

)
.

Remark 17. At this point, it has to be noted that the presented procedure determines one of the possible
control input sequences that lead a given x̄ to x̂ ∈ Xg. In general, there are multiple different control
input sequences that solve this problem.

Considering stability, it is required to find a control input sequence that finally leads a given
start state to the goal state set Xg without leaving the goal state set again. For DES with no
controls that are described in Subsection 2.2.1, stability can only be achieved if all cyclic states
of an LMS are contained in Xg. In the case of LMS with control, this restrictive condition
can be relaxed. It is only necessary that the goal set contains at least one full cycle of the
corresponding system with no controls (for B = 0), that is, all states that form at least one
cycle of an LMS. If l-reachability of the LMS is given, then it is always possible to reach this
cycle after a bounded number of at most l steps.

Corollary 18. The LMS in (17) is stable if it is l-reachable for an l ∈ {1, ..., n} and Xg contains all
states of at least one cycle of the autonomous LMS with the system matrix A.

Next, it is considered that l-reachability is violated for any l in Corollary 18. In that case, the
linear systems theory suggests that the state space is separated into a controllable state space
and an uncontrollable state space, whereby there is a particular transformation to the state
y = T̃−1x that structurally separates both subspaces as follows from [p. 86 in ((Wolovich,
1974))].

y(k) = T̃AT̃−1y(k − 1) + T̃Bu(k − 1) =
[

yc(k)
yc̄(k)

]
=

[
Ãc Ãcc̄
0 Ãc̄

]
y(k − 1) +

[
B̃c
0

]
u(k − 1). (21)

This representation is denoted as the controller companion form with the controllable subsystem
(Ãc, B̃c), the uncontrollable autonomous subsystem with the matrix Ãc̄ and the coupling
matrix Ãcc̄.

Then, the following result is sufficient for the reachability of a goal state ŷ =

[
ŷc
ŷc̄

]
from a start

state ȳ =

[
ȳc
ȳc̄

]
, whereby ŷc, ȳc and ŷc̄, ȳc̄ denote the controllable and reachable part of the

respective state vectors in the transformed coordinates.
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Theorem 19. Assume that an uncontrollable LMS is given by its controller companion form in (21)

and assume that the pair (Ãc, B̃c) is l-controllable. Let ȳ =

[
ȳc
ȳc̄

]
be a start state and ŷ =

[
ŷc
ŷx̄

]
∈ Yg

be a goal state. Then, ŷ is reachable from ȳ in k steps if

• k ≥ l

• ŷc̄ = Ãk
c̄ ȳc̄

Theorem 19 constitutes the most general result in this subsection. In particular, Theorem 16 is
recovered if the uncontrollable subsystem of the LMS does not exist and k ≥ l.
Finally, the combination of the results in Theorem 19 and Corollary 18 allows to address the
issue of stability in the case of an uncontrollable LMS.

Corollary 20. Consider an LMS in its Kalman decomposition (21). The LMS is stable if it holds for
the uncontrollable subsystem that all states in cycles of Ãc̄ are present in the uncontrollable part ŷc̄ of
the goal states ŷ ∈ Yg, whereby each cycle in the uncontrollable subsystem has to correspond to at least
one cycle of the complete state y in Yg.

2.3 Cycle sum assignment
In regard of Section 2.1, imposing a desired cycle sum on an LMS requires to alter the system
matrix in such a way that it obtains desired invariant polynomials that generate the desired
cycle sum. Under certain conditions, this task can be achieved by means of linear state
feedback of the form u(k) = K x(k) with K ∈ Fm×n

2 .
Since the specification of a cycle sum via periodic polynomials will usually entail the need to
introduce more than one non-unity invariant polynomial, invariant polynomial assignment
generalizes the idea of pole placement that is wide-spread in the control community. The
question to be answered in this context is: what are necessary and sufficient conditions for
an LMS such that a set of invariant polynomials can be assigned by state feedback? The
answer to this question is given by the celebrated control structure theorem of Rosenbrock in
[Theorem 7.2.-4. in (Kailath, 1980)]. Note that, in this case, the closed-loop LMS assumes the
form x(k + 1) = (A + B K)x(k).

Theorem 21. Given is an n-dimensional and n-controllable LMS with m inputs. Assume that the
LMS has the controllability indices μ1 ≥ . . . ≥ μm. Let ci,K ∈ F2[λ] with ci+1,K |ci,K, i = 1, . . . , m −
1, and ∑m

i=1 deg(ci,K) = n be the desired non-unity monic invariant polynomials. Then there exists
a matrix K ∈ F m×n

2 such that A + B K has the desired invariant polynomials ci,K if and only if the
inequalities

k

∑
i=1

deg(ci,K) ≥
k

∑
i=1

μi, k = 1, 2, . . . , m (22)

are satisfied.

Remark 22. The sum of the invariant polynomial degrees and the n-controllability condition guarantee
that equality holds for k = m. However, the choice of formulation also includes the case of systems with
single input m. In this case, Rosenbrock’s theorem requires n-controllablity when a desired closed-loop
characteristic polynomial is to be assigned by state feedback. Furthermore, the theorem indicates that at
most m different invariant polynomials may be assigned in an LMS with m inputs.

Assigning invariant polynomials is equivalent to assigning the non-unity polynomials of the
Smith canonical form of the closed-loop characteristic matrix λI − (A + B K). It has to be
noted that although meeting the assumptions of the control structure theorem with the desired
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ŷc
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In regard of Section 2.1, imposing a desired cycle sum on an LMS requires to alter the system
matrix in such a way that it obtains desired invariant polynomials that generate the desired
cycle sum. Under certain conditions, this task can be achieved by means of linear state
feedback of the form u(k) = K x(k) with K ∈ Fm×n

2 .
Since the specification of a cycle sum via periodic polynomials will usually entail the need to
introduce more than one non-unity invariant polynomial, invariant polynomial assignment
generalizes the idea of pole placement that is wide-spread in the control community. The
question to be answered in this context is: what are necessary and sufficient conditions for
an LMS such that a set of invariant polynomials can be assigned by state feedback? The
answer to this question is given by the celebrated control structure theorem of Rosenbrock in
[Theorem 7.2.-4. in (Kailath, 1980)]. Note that, in this case, the closed-loop LMS assumes the
form x(k + 1) = (A + B K)x(k).

Theorem 21. Given is an n-dimensional and n-controllable LMS with m inputs. Assume that the
LMS has the controllability indices μ1 ≥ . . . ≥ μm. Let ci,K ∈ F2[λ] with ci+1,K |ci,K, i = 1, . . . , m −
1, and ∑m

i=1 deg(ci,K) = n be the desired non-unity monic invariant polynomials. Then there exists
a matrix K ∈ F m×n

2 such that A + B K has the desired invariant polynomials ci,K if and only if the
inequalities

k

∑
i=1

deg(ci,K) ≥
k

∑
i=1

μi, k = 1, 2, . . . , m (22)

are satisfied.

Remark 22. The sum of the invariant polynomial degrees and the n-controllability condition guarantee
that equality holds for k = m. However, the choice of formulation also includes the case of systems with
single input m. In this case, Rosenbrock’s theorem requires n-controllablity when a desired closed-loop
characteristic polynomial is to be assigned by state feedback. Furthermore, the theorem indicates that at
most m different invariant polynomials may be assigned in an LMS with m inputs.

Assigning invariant polynomials is equivalent to assigning the non-unity polynomials of the
Smith canonical form of the closed-loop characteristic matrix λI − (A + B K). It has to be
noted that although meeting the assumptions of the control structure theorem with the desired
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closed-loop Smith form, the extraction of the corresponding feedback matrix K is not a trivial
task. The reason for this is that, in general, the structure of the Smith form of λI − (A + B K)
does not necessarily agree with the controllability indices of the LMS, which are preserved
under linear state feedback. However, there is a useful reduction of the LMS representation
based on the closed loop characteristic matrix in the controller companion form as shown in
[Theorem 5.8 in (Reger, 2004)].

Theorem 23. Given is an n-dimensional n-controllable LMS in controller companion form (21) with
m inputs and controllability indices μ1, . . . , μm. Let DK̂ ∈ F2[λ]

m×m denote the polynomial matrix

DK̂(λ) := Λ(λ)− ÂK̂,nonzero P(λ) ,

where ÂK̂,nonzero ∈ Fm×n
2 contains the m non-zero rows of the controllable part of the closed-loop

system matrix Âc + B̂c K̂ in controller companion form, and P ∈ F2[λ]
n×m, Λ ∈ F2[λ]

m×m are

P(λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
λ 0 · · · 0
...

...
. . .

...
λμ1−1 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 λμ2−1 · · · 0
...

...
. . .

...
0 0 · · · 1
...

...
. . .

...
0 0 · · · λμm−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Λ(λ) =

⎛
⎜⎜⎝

λμ1 0 · · · 0
0 λμ2 · · · 0
...

...
. . .

...
0 0 · · · λμm

⎞
⎟⎟⎠ . (23)

Then the non-unity invariant polynomials of λI − (Âc + B̂cK̂), λI − (Ânonzero + K̂) and DK̂(λ)

coincide, whereby Ânonzero contains the nonzero rows of the controllable part Âc of the original system
matrix.

Theorem 23 points out a direct way of realizing the closed-loop LMS y(k + 1) = (Âc +
B̂cK̂)y(k) with desired invariant polynomials by means of specifying DK̂(λ). That is, if
an appropriate DK̂ can be found, then a linear state feedback matrix K̂ in the transformed
coordinates can be directly constructed. Simple manipulations first lead to

ÂK̂,nonzeroP(λ) = DK̂(λ)− Λ(λ) (24)

from which ÂK̂,nonzero can be determined by comparison of coefficients. Then, by Theorem
23, the feedback matrix

K̂ = Anonzero − ÂK̂,nonzero (25)

is obtained. Finally, the inverse coordinate transformation from the controller companion
form to the original coordinates yields

K = K̂T̃ . (26)

Hence, it remains to find an appropriate matrix DK̂ . To this end, the following definitions are
employed.
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Definition 24. Let M ∈ F2[λ]
n×m be arbitrary. The degree of the highest degree monomial in λ

within the i-th column of M(λ) is denoted as the i-th column degree of M and denoted by coli(M).

Definition 25. Let M ∈ F2[λ]
n×m be arbitrary. The highest column degree coefficient matrix

Γ(M) ∈ F n×m
2 is the matrix whose elements result from the coefficients of the highest monomial

degree in the respective elements of M(λ).

Then, the following procedure leads to an appropriate DK̂ . Starting with a desired cycle
sum for the closed-loop LMS, an appropriate set of invariant polynomials – as discussed
in Section 2.1 – has to be specified. Next, it has to be verified if the realizability condition
of Rosenbrock’s control structure theorem for the given choice of invariant polynomials is
fulfilled. If the polynomials are realizable then DK̂(λ) is chosen as the Smith canonical form
that corresponds to the specified closed-loop invariant polynomials. In case the column
degrees of DK̂(λ) coincide with the respective controllability indices of the underlying LMS,
that is, coli(DK̂) = μi for i = 1, . . . , m, it is possible to directly calculate the feedback matrix K̂
according to (26). Otherwise, it is required to modify the column degrees of DK̂(λ) by means
of unimodular left and right transformations while leaving the invariant polynomials of DK̂
untouched. This procedure is summarized in the following algorithm.

Algorithm 26. Input: Pair (Âc, B̂c) in controller companion form8 controllability indices μ1 ≥
· · · ≥ μm, polynomials ci,K ∈ F2[λ], i = 1, . . . , m with cj+1,K |cj,K, j = 1, . . . , m − 1 and
∑m

i=1 deg(ci,K) = n.

1. Verify Rosenbrock’s structure theorem
if the inequalities in Theorem 21 are fulfilled

go to step 2.
else

return “Rosenbrock’s structure theorem is violated.”

2. Define D�(λ) := diag(c1,K , . . . , cm,K)

3. Verify if the column degrees of D�(λ) and the controllability indices coincide
if coli(D�) = μi , i = 1, . . . , m

go to step 6.
else

Detect the first column of D�(λ) which differs from the ordered list of controllability indices,
starting with column 1. Denote this column colu(D�) (deg(colu(D�)) > μu)
Detect the first column of D�(λ) which differs from the controllability indices, starting with
column m. Denote this column cold(D�) (deg(cold(D�)) < μd)

4. Adapt the column degrees of D�(λ) by unimodular transformations
Multiply rowd(D�) by λ and add the result to rowu(D�) → new matrix D+(λ)
if deg(colu(D+)) = deg(colu(D�))− 1

D+(λ) → new matrix D++(λ) and go to step 5.
else

Define r := deg(colu(D�))− deg(cold(D�))− 1
Multiply cold(D+) by λr and subtract result from colu(D+) → new matrix D++(λ) .

8 If the LMS is not given in controller companion form, this form can be computed as in [p. 86 in
(Wolovich, 1974)].
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where ÂK̂,nonzero ∈ Fm×n
2 contains the m non-zero rows of the controllable part of the closed-loop

system matrix Âc + B̂c K̂ in controller companion form, and P ∈ F2[λ]
n×m, Λ ∈ F2[λ]

m×m are
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. . .
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. . .

...
0 λμ2−1 · · · 0
...

...
. . .

...
0 0 · · · 1
...

...
. . .

...
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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. . .
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⎞
⎟⎟⎠ . (23)

Then the non-unity invariant polynomials of λI − (Âc + B̂cK̂), λI − (Ânonzero + K̂) and DK̂(λ)

coincide, whereby Ânonzero contains the nonzero rows of the controllable part Âc of the original system
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Theorem 23 points out a direct way of realizing the closed-loop LMS y(k + 1) = (Âc +
B̂cK̂)y(k) with desired invariant polynomials by means of specifying DK̂(λ). That is, if
an appropriate DK̂ can be found, then a linear state feedback matrix K̂ in the transformed
coordinates can be directly constructed. Simple manipulations first lead to

ÂK̂,nonzeroP(λ) = DK̂(λ)− Λ(λ) (24)

from which ÂK̂,nonzero can be determined by comparison of coefficients. Then, by Theorem
23, the feedback matrix

K̂ = Anonzero − ÂK̂,nonzero (25)

is obtained. Finally, the inverse coordinate transformation from the controller companion
form to the original coordinates yields

K = K̂T̃ . (26)

Hence, it remains to find an appropriate matrix DK̂ . To this end, the following definitions are
employed.
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in Section 2.1 – has to be specified. Next, it has to be verified if the realizability condition
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that is, coli(DK̂) = μi for i = 1, . . . , m, it is possible to directly calculate the feedback matrix K̂
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∑m

i=1 deg(ci,K) = n.

1. Verify Rosenbrock’s structure theorem
if the inequalities in Theorem 21 are fulfilled
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else

return “Rosenbrock’s structure theorem is violated.”

2. Define D�(λ) := diag(c1,K , . . . , cm,K)

3. Verify if the column degrees of D�(λ) and the controllability indices coincide
if coli(D�) = μi , i = 1, . . . , m
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else

Detect the first column of D�(λ) which differs from the ordered list of controllability indices,
starting with column 1. Denote this column colu(D�) (deg(colu(D�)) > μu)
Detect the first column of D�(λ) which differs from the controllability indices, starting with
column m. Denote this column cold(D�) (deg(cold(D�)) < μd)

4. Adapt the column degrees of D�(λ) by unimodular transformations
Multiply rowd(D�) by λ and add the result to rowu(D�) → new matrix D+(λ)
if deg(colu(D+)) = deg(colu(D�))− 1

D+(λ) → new matrix D++(λ) and go to step 5.
else

Define r := deg(colu(D�))− deg(cold(D�))− 1
Multiply cold(D+) by λr and subtract result from colu(D+) → new matrix D++(λ) .

8 If the LMS is not given in controller companion form, this form can be computed as in [p. 86 in
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5. Set D�(λ) = (Γ(D++))−1D++(λ) and go to step 3.

6. DK̂(λ) := D�(λ) and return DK̂(λ)

It is important to note that the above algorithm is guaranteed to terminate with a suitable
matrix DK̂ if Rosenbrock’s structure theorem is fulfilled. For illustration, the feedback matrix
computation is applied to the following example that also appears in (Reger, 2004; Reger &
Schmidt, 2004). Given is an LMS over F2 of dimension n = 5 with m = 2 inputs in controller
companion form (that is, T̃ = I),

y(k + 1) = Âc y(k) + B̂c u(k), Âc =

⎛
⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
1 0 0 1 0

⎞
⎟⎟⎟⎠ , B̂c =

⎛
⎜⎜⎜⎝

0 0
1 0
0 0
0 0
0 1

⎞
⎟⎟⎟⎠

from which the matrix Ânonzero =

�
0 0 0 0 0
1 0 0 1 0

�
can be extracted.

As a control objective, we want to assign the invariant polynomials9 c1,K(a) = (a2 + a +

1)(a + 1)2 and c2,K(a) = a + 1, that is, according to the example in Subsection 2.1.2 this goal
is equivalent to specifing that the closed-loop LMS shall have 4 cycles of length 1, 2 cycles of
length 2, 4 cycles of length 3 and 2 cycles of length 6. An appropriate state feedback matrix K
is now determined by using (26) and Algorithm 26.

1.−→ 1
∑

i=1
deg(ci,K(λ)) = 4 ≥ 1

∑
i=1

ci = 3 and
2
∑

i=1
deg(ci,K(λ)) = 5 ≥ 2

∑
i=1

ci = 5
√

2.−→ D�(λ) =

�
(λ2 + λ + 1)(λ + 1)2 0

0 λ + 1

�
=

�
λ4 + λ3 + λ + 1 0

0 λ + 1

�

3., 4.−→ D+(λ) =

�
λ4 + λ3 + λ + 1 λ2 + λ

0 λ + 1

�
=⇒ D++(λ) =

�
λ + 1 λ2 + λ

λ3 + λ2 λ + 1

�

5.−→ Γ(D++) =

�
0 1
1 0

�
=⇒ D�(λ) = (Γ(D++))−1D++(λ) =

�
λ3 + λ2 λ + 1

λ + 1 λ2 + λ

�

3., 4., 6.−→ DK̂(λ) =

�
λ3 + λ2 λ + 1

λ + 1 λ2 + λ

�

With DK̂(λ) the feedback matrix K can be computed. First, employing equation (24) yields

ÂK̂,nonzero

⎛
⎜⎜⎜⎝

1 0
λ 0
λ2 0
0 1
0 λ

⎞
⎟⎟⎟⎠ =

�
λ3 0
0 λ2

�

� �� �
ΛΛΛ(λ)

+

�
λ3 + λ2 λ + 1

λ + 1 λ2 + λ

�

� �� �
DK̂(λ)

=

�
λ2 λ + 1

λ + 1 λ

�

9 Constructing the appropriate invariant polynomials based on the cycle structure desired is not always
solvable and, if solvable, not necessarily a straightforward task (Reger & Schmidt (2004)).
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and by comparison of coefficients results in ÂK̂,nonzero =

(
0 0 1 1 1
1 1 0 0 1

)
. This implies that

K = K̂T̃ = (ÂK̂,nonzero + Ânonzero) I =
(

0 0 1 1 1
0 1 0 1 1

)
.

3. Properties of Boolean monomial systems10

3.1 Dynamic properties, cycle structure and the loop number
The aim of this section is that the reader becomes acquainted with the main theorems
that characterize the dynamical properties of Boolean monomial dynamical systems without
deepening into the technicalities of their proofs. We briefly introduce terminology and
notation and present the main results. Proofs can be found in Delgado-Eckert (2008), and
partially in Delgado-Eckert (2009a) or Colón-Reyes et al. (2004).
Let G = (VG, EG, πG) be a directed graph (also known as digraph). Two vertices a, b ∈ VG are
called connected if there is a t ∈ N0 and (not necessarily different) vertices v1, ..., vt ∈ VG such
that

a → v1 → v2 → ... → vt → b,

where the arrows represent directed edges in the graph. In this situation we write a �s b,
where s is the number of directed edges involved in the sequence from a to b (in this case
s = t + 1). Two sequences a �s b of the same length are considered different if the directed
edges involved are different or the order at which they appear is different, even if the visited
vertices are the same. As a convention, a single vertex a ∈ VG is always connected to itself
a �0 a by an empty sequence of length 0. A sequence a �s b is called a path, if no vertex vi is
visited more than once. If a = b, but no other vertex is visited more than once, a �s b is called
a closed path.
Let q ∈ N be a natural number. We denote with Fq a finite field with q elements, i.e.

∣∣Fq
∣∣ = q.

As stated in the introduction, every function h : Fn
q → Fq can be written as a polynomial

function in n variables where the degree of each variable is less or equal to q − 1. Therefore we
introduce the exponents set (also referred to as exponents semiring, see below) Eq := {0, 1, ..., (q−
2), (q − 1)} and define monomial dynamical systems over a finite field as:

Definition 27. Let Fq be a finite field and n ∈ N a natural number. A map f : Fn
q → Fn

q is called an
n-dimensional monic monomial dynamical system over Fq if for every i ∈ {1, ..., n} there is a tuple
(Fi1, ..., Fin) ∈ En

q such that

fi(x) = xFi1
1 ...xFin

n ∀ x ∈ Fn
q

We will call a monic monomial dynamical system just monomial dynamical system. The matrix11

Fij ∈ M(n × n; Eq) is called the corresponding matrix of the system f .

Remark 28. As opposed to Colón-Reyes et al. (2004), we exclude in the definition of monomial
dynamical system the possibility that one of the functions fi is equal to the zero function. However, in
contrast to Colón-Reyes et al. (2006), we do allow the case fi ≡ 1 in our definition. This is not a loss of
generality because of the following: If we were studying a dynamical system f : Fn

q → Fn
q where one

of the functions, say fj, was equal to zero, then, for every initial state x ∈ Fn
q , after one iteration the

system would be in a state f (x) whose jth entry is zero. In all subsequent iterations the value of the jth

10 Some of the material presented in this section has been previously published in Delgado-Eckert (2009b).
11 M(n × n; Eq) is the set of n × n matrices with entries in the set Eq.
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5. Set D�(λ) = (Γ(D++))−1D++(λ) and go to step 3.

6. DK̂(λ) := D�(λ) and return DK̂(λ)

It is important to note that the above algorithm is guaranteed to terminate with a suitable
matrix DK̂ if Rosenbrock’s structure theorem is fulfilled. For illustration, the feedback matrix
computation is applied to the following example that also appears in (Reger, 2004; Reger &
Schmidt, 2004). Given is an LMS over F2 of dimension n = 5 with m = 2 inputs in controller
companion form (that is, T̃ = I),

y(k + 1) = Âc y(k) + B̂c u(k), Âc =

⎛
⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
1 0 0 1 0

⎞
⎟⎟⎟⎠ , B̂c =

⎛
⎜⎜⎜⎝

0 0
1 0
0 0
0 0
0 1

⎞
⎟⎟⎟⎠

from which the matrix Ânonzero =

�
0 0 0 0 0
1 0 0 1 0

�
can be extracted.

As a control objective, we want to assign the invariant polynomials9 c1,K(a) = (a2 + a +

1)(a + 1)2 and c2,K(a) = a + 1, that is, according to the example in Subsection 2.1.2 this goal
is equivalent to specifing that the closed-loop LMS shall have 4 cycles of length 1, 2 cycles of
length 2, 4 cycles of length 3 and 2 cycles of length 6. An appropriate state feedback matrix K
is now determined by using (26) and Algorithm 26.

1.−→ 1
∑

i=1
deg(ci,K(λ)) = 4 ≥ 1

∑
i=1

ci = 3 and
2
∑

i=1
deg(ci,K(λ)) = 5 ≥ 2

∑
i=1

ci = 5
√

2.−→ D�(λ) =

�
(λ2 + λ + 1)(λ + 1)2 0

0 λ + 1

�
=

�
λ4 + λ3 + λ + 1 0

0 λ + 1

�

3., 4.−→ D+(λ) =

�
λ4 + λ3 + λ + 1 λ2 + λ

0 λ + 1

�
=⇒ D++(λ) =

�
λ + 1 λ2 + λ

λ3 + λ2 λ + 1

�

5.−→ Γ(D++) =

�
0 1
1 0

�
=⇒ D�(λ) = (Γ(D++))−1D++(λ) =

�
λ3 + λ2 λ + 1

λ + 1 λ2 + λ

�

3., 4., 6.−→ DK̂(λ) =

�
λ3 + λ2 λ + 1

λ + 1 λ2 + λ

�

With DK̂(λ) the feedback matrix K can be computed. First, employing equation (24) yields

ÂK̂,nonzero

⎛
⎜⎜⎜⎝

1 0
λ 0
λ2 0
0 1
0 λ

⎞
⎟⎟⎟⎠ =

�
λ3 0
0 λ2

�

� �� �
ΛΛΛ(λ)

+

�
λ3 + λ2 λ + 1

λ + 1 λ2 + λ

�

� �� �
DK̂(λ)

=

�
λ2 λ + 1

λ + 1 λ

�

9 Constructing the appropriate invariant polynomials based on the cycle structure desired is not always
solvable and, if solvable, not necessarily a straightforward task (Reger & Schmidt (2004)).
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2), (q − 1)} and define monomial dynamical systems over a finite field as:

Definition 27. Let Fq be a finite field and n ∈ N a natural number. A map f : Fn
q → Fn

q is called an
n-dimensional monic monomial dynamical system over Fq if for every i ∈ {1, ..., n} there is a tuple
(Fi1, ..., Fin) ∈ En

q such that

fi(x) = xFi1
1 ...xFin

n ∀ x ∈ Fn
q

We will call a monic monomial dynamical system just monomial dynamical system. The matrix11

Fij ∈ M(n × n; Eq) is called the corresponding matrix of the system f .

Remark 28. As opposed to Colón-Reyes et al. (2004), we exclude in the definition of monomial
dynamical system the possibility that one of the functions fi is equal to the zero function. However, in
contrast to Colón-Reyes et al. (2006), we do allow the case fi ≡ 1 in our definition. This is not a loss of
generality because of the following: If we were studying a dynamical system f : Fn

q → Fn
q where one

of the functions, say fj, was equal to zero, then, for every initial state x ∈ Fn
q , after one iteration the

system would be in a state f (x) whose jth entry is zero. In all subsequent iterations the value of the jth

10 Some of the material presented in this section has been previously published in Delgado-Eckert (2009b).
11 M(n × n; Eq) is the set of n × n matrices with entries in the set Eq.
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entry would remain zero. As a consequence, the long term dynamics of the system are reflected in the
projection π ĵ : Fn

q → Fn−1
q

π ĵ(y) := (y1, ..., yj−1, yj+1, ..., yn)
t

and it is sufficient to study the system

�f : Fn−1
q → Fn−1

q

y �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(y1, ..., yj−1, 0, yj+1, ..., yn)
...

f j−1(y1, ..., yj−1, 0, yj+1, ..., yn)
f j+1(y1, ..., yj−1, 0, yj+1, ..., yn)

...
fn(y1, ..., yj−1, 0, yj+1, ..., yn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In general, this system �f could contain component functions equal to the zero function, since every
component fi that depends on the variable xj would become zero. As a consequence, the procedure
described above needs to be applied several times until the lower dimensional system obtained does not
contain component functions equal to zero. It is also possible that this repeated procedure yields the
one dimensional zero function. In this case, we can conclude that the original system f is a fixed point
system with (0, ..., 0) ∈ Fn

q as its unique fixed point. The details about this procedure are described
as the "preprocessing algorithm" in Appendix B of Delgado-Eckert (2008). This also explains why we
exclude in the definition of monomial feedback controller (see Definition 62 in Section 3.2 below) the
possibility that one of the functions fi is equal to the zero function.

When calculating the composition of two monomial dynamical systems f , g : Fn
q → Fn

q (i.e.
the system f ◦ g : Fn

q → Fn
q , x �→ f (g(x))), one needs to add and multiply exponents.

Similarly, when calculating the product f ∗ g, where ∗ is the component-wise multiplication
defined as

( f ∗ g)i(x) := fi(x)gi(x)

one needs to add exponents. However, after such operations, one may face the situation
where some of the exponents exceed the value q − 1 and need to be reduced according to the
well known rule aq = a ∀ a ∈ Fq. This process can be accomplished systematically if we look
at the power xp

i (where p > q) as a polynomial in the ring Fq[τ] and define the magnitude
redq(p) as the degree of the (unique) remainder of the polynomial division τp ÷ (τq − τ)

in the polynomial ring Fq[τ]. Then we can write xp
i = xredq(p)

i ∀ xi ∈ Fq, which is a direct
consequence of certain properties of the operator redq (see Lemma 39 in Delgado-Eckert
(2008)). In conclusion, the "exponents arithmetic" needed when calculating the composition of
dynamical systems f , g : Fn

q → Fn
q can be formalized based on the reduction operator redq(p).

Indeed, the set Eq = {0, 1, ..., (q − 1)} ⊂ Z together with the operations of addition a ⊕ b :=
redq(a + b) and multiplication a • b := redq(ab) is a commutative semiring with identity 1. We
call this commutative semiring the exponents semiring of the field Fq. Due to this property, the
set of all n-dimensional monomial dynamical systems over Fq, denoted with MFn

n (Fq), is a
monoid (MFn

n (Fq), ◦), where ◦ is the composition of such systems. Furthermore, this set is
also a monoid (MFn

n (Fq), ∗) where ∗ is the component-wise multiplication defined above. In
addition, as shown in Delgado-Eckert (2008), these two binary operations satisfy distributivity
properties, i.e. (MFn

n (Fq), ∗, ◦) is a semiring with identity element with respect to each binary

464 Discrete Time Systems

operation. Moreover, Delgado-Eckert (2008) proved that this semiring is isomorphic to the
semiring M(n × n; Eq) of matrices with entries in Eq. This result establishes on the one hand,
that the composition f ◦ g of two monomial dynamical systems f , g is completely captured
by the product F · G of their corresponding matrices. On the other hand, it also shows that
the component-wise multiplication f ∗ g is completely captured by the sum F + G of the
corresponding matrices. Clearly, these matrix operations are defined entry-wise in terms
of the operations ⊕ and •. The aforementioned isomorphism makes it possible for us to
operate with the corresponding matrices instead of the functions, which has computational
advantages. Roughly speaking, this result can be summarized as follows: There is a bijective
mapping

Ψ : (M(n × n; Eq),+, ·) → (MFn
n (Fq), ∗, ◦)

which defines a one-to-one correspondence between matrices and monomial dynamical
systems. The corresponding matrix defined above can therefore be calculated as Ψ−1( f ). This
result is proved in Corollary 58 of Delgado-Eckert (2008), which states:

Theorem 29. The semirings (M(n × n; Eq),+, ·) and (MFn
n (Fq), ∗, ◦) are isomorphic.

Another important aspect is summarized in the following remark

Remark 30. Let Fq be a finite field and n, m, r ∈ N natural numbers. Furthermore, let f ∈ MFm
n (Fq)

and g ∈ MFr
m(Fq) with

fi(x) = xFi1
1 ...xFin

n ∀ x ∈ Fn
q , i = 1, ..., m

gj(x) = x
Gj1
1 ...x

Gjm
m ∀ x ∈ Fm

q , j = 1, ..., r

where F ∈ M(m × n; Eq) and G ∈ M(r × m; Eq) are the corresponding matrices of f and g,
respectively. Then for their composition g ◦ f : Fn

q → Fr
q it holds

(g ◦ f )k(x) =
n

∏
j=1

xj
(G·F)kj ∀ x ∈ Fn

q , k ∈ {1, ..., r}

Proof. See Remark and Lemma 51 of Delgado-Eckert (2008).
The dependency graph of a monomial dynamical system (to be defined below) is an important
mathematical object that can reveal dynamic properties of the system. Therefore, we turn our
attention to some graph theoretic considerations:

Definition 31. Let M be a nonempty finite set. Furthermore, let n := |M| be the cardinality of M. An
enumeration of the elements of M is a bijective mapping a : M → {1, ..., n}. Given an enumeration a
of the set M we write M = {a1, ..., an}, where the unique element x ∈ M with the property a(x) = i ∈
{1, ..., n} is denoted as ai.

Definition 32. Let f ∈ MFn
n (Fq) be a monomial dynamical system and G = (VG, EG, πG) a digraph

with vertex set VG of cardinality |VG| = n. Furthermore, let F := Ψ−1( f ) be the corresponding matrix
of f . The digraph G is called dependency graph of f iff an enumeration a : M → {1, ..., n} of the
elements of VG exists such that ∀ i, j ∈ {1, ..., n} there are exactly Fij directed edges ai → aj in the set

EG, i.e.
∣∣∣π−1

G ((ai, aj))
∣∣∣ = Fij.

It is easy to show that if G and H are dependency graphs of f then G and H are isomorphic.
In this sense we speak of the dependency graph of f and denote it by Gf = (Vf , Ef , π f ).
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defined as
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where some of the exponents exceed the value q − 1 and need to be reduced according to the
well known rule aq = a ∀ a ∈ Fq. This process can be accomplished systematically if we look
at the power xp

i (where p > q) as a polynomial in the ring Fq[τ] and define the magnitude
redq(p) as the degree of the (unique) remainder of the polynomial division τp ÷ (τq − τ)

in the polynomial ring Fq[τ]. Then we can write xp
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i ∀ xi ∈ Fq, which is a direct
consequence of certain properties of the operator redq (see Lemma 39 in Delgado-Eckert
(2008)). In conclusion, the "exponents arithmetic" needed when calculating the composition of
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q can be formalized based on the reduction operator redq(p).

Indeed, the set Eq = {0, 1, ..., (q − 1)} ⊂ Z together with the operations of addition a ⊕ b :=
redq(a + b) and multiplication a • b := redq(ab) is a commutative semiring with identity 1. We
call this commutative semiring the exponents semiring of the field Fq. Due to this property, the
set of all n-dimensional monomial dynamical systems over Fq, denoted with MFn

n (Fq), is a
monoid (MFn

n (Fq), ◦), where ◦ is the composition of such systems. Furthermore, this set is
also a monoid (MFn

n (Fq), ∗) where ∗ is the component-wise multiplication defined above. In
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properties, i.e. (MFn
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operation. Moreover, Delgado-Eckert (2008) proved that this semiring is isomorphic to the
semiring M(n × n; Eq) of matrices with entries in Eq. This result establishes on the one hand,
that the composition f ◦ g of two monomial dynamical systems f , g is completely captured
by the product F · G of their corresponding matrices. On the other hand, it also shows that
the component-wise multiplication f ∗ g is completely captured by the sum F + G of the
corresponding matrices. Clearly, these matrix operations are defined entry-wise in terms
of the operations ⊕ and •. The aforementioned isomorphism makes it possible for us to
operate with the corresponding matrices instead of the functions, which has computational
advantages. Roughly speaking, this result can be summarized as follows: There is a bijective
mapping

Ψ : (M(n × n; Eq),+, ·) → (MFn
n (Fq), ∗, ◦)

which defines a one-to-one correspondence between matrices and monomial dynamical
systems. The corresponding matrix defined above can therefore be calculated as Ψ−1( f ). This
result is proved in Corollary 58 of Delgado-Eckert (2008), which states:

Theorem 29. The semirings (M(n × n; Eq),+, ·) and (MFn
n (Fq), ∗, ◦) are isomorphic.

Another important aspect is summarized in the following remark

Remark 30. Let Fq be a finite field and n, m, r ∈ N natural numbers. Furthermore, let f ∈ MFm
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and g ∈ MFr
m(Fq) with
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where F ∈ M(m × n; Eq) and G ∈ M(r × m; Eq) are the corresponding matrices of f and g,
respectively. Then for their composition g ◦ f : Fn

q → Fr
q it holds

(g ◦ f )k(x) =
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∏
j=1

xj
(G·F)kj ∀ x ∈ Fn

q , k ∈ {1, ..., r}

Proof. See Remark and Lemma 51 of Delgado-Eckert (2008).
The dependency graph of a monomial dynamical system (to be defined below) is an important
mathematical object that can reveal dynamic properties of the system. Therefore, we turn our
attention to some graph theoretic considerations:

Definition 31. Let M be a nonempty finite set. Furthermore, let n := |M| be the cardinality of M. An
enumeration of the elements of M is a bijective mapping a : M → {1, ..., n}. Given an enumeration a
of the set M we write M = {a1, ..., an}, where the unique element x ∈ M with the property a(x) = i ∈
{1, ..., n} is denoted as ai.

Definition 32. Let f ∈ MFn
n (Fq) be a monomial dynamical system and G = (VG, EG, πG) a digraph

with vertex set VG of cardinality |VG| = n. Furthermore, let F := Ψ−1( f ) be the corresponding matrix
of f . The digraph G is called dependency graph of f iff an enumeration a : M → {1, ..., n} of the
elements of VG exists such that ∀ i, j ∈ {1, ..., n} there are exactly Fij directed edges ai → aj in the set

EG, i.e.
∣∣∣π−1

G ((ai, aj))
∣∣∣ = Fij.

It is easy to show that if G and H are dependency graphs of f then G and H are isomorphic.
In this sense we speak of the dependency graph of f and denote it by Gf = (Vf , Ef , π f ).
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Definition 33. Let G = (VG, EG, πG) be a digraph. Two vertices a, b ∈ VG are called strongly
connected if there are natural numbers s, t ∈ N such that a �s b and b �t a. In this situation we
write a � b.

Theorem 34. Let G = (VG, EG, πG) be a digraph. � is an equivalence relation on VG called strong
equivalence. The equivalence class of any vertex a ∈ VG is called a strongly connected component
and denoted by ←→a ⊆ VG.

Proof. This a well known result. A proof can be found, for instance, in Delgado-Eckert (2008),
Theorem 68.

Definition 35. Let G = (VG, EG, πG) be a digraph and a ∈ VG one of its vertices. The strongly
connected component ←→a ⊆ VG is called trivial iff ←→a = {a} and there is no edge a → a in EG.

Definition 36. Let G = (VG, EG, πG) be a digraph with vertex set VG of cardinality |VG| = n
and VG = {a1, ..., an} an enumeration of the elements of VG. The matrix A ∈ M(n × n; N0) whose
entries are defined as

Aij := number of edges ai → aj contained in EG

for i, j = 1, ..., n is called adjacency matrix of G with the enumeration a.

Remark 37. Let f ∈ MFn
n (Fq) be a monomial dynamical system. Furthermore, let Gf = (Vf , Ef ,

π f ) be the dependency graph of f and Vf = {a1, ..., an} the associated enumeration of the elements of
Vf . Then, according to the definition of dependency graph, F := Ψ−1( f ) (the corresponding matrix of
f ) is precisely the adjacency matrix of Gf with the enumeration a.

The following parameter for digraphs was introduced into the study of Boolean monomial
dynamical systems by Colón-Reyes et al. (2004):

Definition 38. Let G = (VG, EG, πG) be a digraph and a ∈ VG one of its vertices. The number

LG(a) := min
a�u a
a�v a
u �=v

|u − v|

is called the loop number of a. If there is no sequence of positive length from a to a, then LG(a) is set to
zero.

Note that the loop number LG� (a) of the vertex a in a graph G� = (VG, E�
G, π�

G) may have a
different value.

Lemma 39. Let G = (VG, EG, πG) be a digraph and a ∈ VG one of its vertices. If ←→a is nontrivial
then for every b ∈ ←→a it holds LG(b) = LG(a). Therefore, we introduce the loop number of strongly
connected components as

LG(
←→a ) := LG(a)

Proof. See Lemma 4.2 in Colón-Reyes et al. (2004).
The loop number of a strongly connected graph is also known as the index of imprimitivity
(see, for instance, Pták & Sedlaček (1958)) or period (Denardo (1977)) and has been used in
the study of nonnegative matrices (see, for instance, Brualdi & Ryser (1991) and Lancaster
& Tismenetsky (1985)). This number quantizes the length of any closed sequence in a strongly
connected graph, as shown in the following theorem. It is also the biggest possible "quantum",
as proved in the subsequent corollary.
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Theorem 40. Let G = (VG, EG, πG) be a strongly connected digraph. Furthermore, let t :=
LG(VG) ≥ 0 be its loop number and a ∈ VG an arbitrary vertex. Then for any closed sequence
a �m a there is an α ∈ N0 such that m = αt.

Proof. This result was proved in Corollary 4.4 of Colón-Reyes et al. (2004). A similar proof
can be found in Delgado-Eckert (2009b), Theorem 2.19.

Corollary 41. Let G = (VG, EG, πG) be a strongly connected digraph such that VG is nontrivial and
VG = {a1, ..., an} an enumeration of the vertices. Furthermore, let l1, ..., lk ∈ {1, ..., n} be the different
lengths of non-empty closed paths actually contained in the graph G. That is, for every j ∈ {1, ..., k}
there is an aij ∈ VG such that a closed path aij �lj

aij exists in G, and the list l1, ..., lk captures all
different lengths of all occurring closed paths. Then the loop number LG(VG) satisfies

LG(VG) = gcd(l1, ..., lk)

Proof. This result was proved in Theorem 4.13 of Colón-Reyes et al. (2004). A slightly simpler
proof can be found in Delgado-Eckert (2009b), Corollary 2.20.
The next results show how the connectivity properties of the dependency graph and, in
particular, the loop number are related to the dynamical properties of a monomial dynamical
system.

Theorem 42. Let Fq be a finite field and f ∈ MFn
n (Fq) a monomial dynamical system. Then f is a

fixed point system with (1, ..., 1)t ∈ Fn
q as its only fixed point if and only if its dependency graph only

contains trivial strongly connected components.

Proof. See Theorem 3 in Delgado-Eckert (2009a).

Definition 43. A monomial dynamical system f ∈ MFn
n (Fq) whose dependency graph contains

nontrivial strongly connected components is called coupled monomial dynamical system.

Definition 44. Let m ∈ N be a natural number. We denote with D(m) := {d ∈ N : d divides m}
the set of all positive divisors of m.

Theorem 45. Let F2 be the finite field with two elements, f ∈ MFn
n (F2) a Boolean coupled monomial

dynamical system and Gf = (Vf , Ef , π f ) its dependency graph. Furthermore, let Gf be strongly
connected with loop number t := LGf (Vf ) > 1. Then the period number T (cf. Section 1.1) of f
satisfies

T = LGf (Vf )

Moreover, the phase space of f contains cycles of all lengths s ∈ D(T).

Proof. This result was proved by Colón-Reyes et al. (2004), see Corollary 4.12. An alternative
proof is presented in Delgado-Eckert (2008), Theorem 131.

Theorem 46. Let F2 be the finite field with two elements, f ∈ MFn
n (F2) a Boolean coupled monomial

dynamical system and Gf = (Vf , Ef , π f ) its dependency graph. Furthermore, let Gf be strongly
connected with loop number t := LGf (Vf ) > 1. In addition, let s ∈ N be a natural number and
denote by Zs the number of cycles of length s displayed by the phase space of f . Then it holds for any
d ∈ N

Zd =

⎧
⎪⎨
⎪⎩

2d −∑j∈D(d)\d
Zj

d if d ∈ D(t)

0 if d /∈ D(t)
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Proof. This result was proved by Colón-Reyes et al. (2004), see Corollary 4.12. An alternative
proof is presented in Delgado-Eckert (2008), Theorem 131.

Theorem 46. Let F2 be the finite field with two elements, f ∈ MFn
n (F2) a Boolean coupled monomial

dynamical system and Gf = (Vf , Ef , π f ) its dependency graph. Furthermore, let Gf be strongly
connected with loop number t := LGf (Vf ) > 1. In addition, let s ∈ N be a natural number and
denote by Zs the number of cycles of length s displayed by the phase space of f . Then it holds for any
d ∈ N

Zd =

⎧
⎪⎨
⎪⎩

2d −∑j∈D(d)\d
Zj

d if d ∈ D(t)

0 if d /∈ D(t)
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Proof. See Theorem 132 in Delgado-Eckert (2008).

Theorem 47. Let F2 be the finite field with two elements, f ∈ MFn
n (F2) a Boolean coupled monomial

dynamical system and Gf = (Vf , Ef , π f ) its dependency graph. f is a fixed point system if and only
if the loop number of each nontrivial strongly connected component of Gf is equal to 1.

Proof. This result was proved in Colón-Reyes et al. (2004), see Theorem 6.1. An alternative
proof is presented in Delgado-Eckert (2009a), Theorem 6.

Remark 48. As opposed to the previous two theorems, the latter theorem does not require that Gf
is strongly connected. This feature allows us to solve the stabilization problem (see Section 3.3) for a
broader class of monomial control systems (see Definition 54 in Section 3.2).

Lemma 49. Let G = (VG, EG, πG) be a strongly connected digraph such that VG is nontrivial.
Furthermore, let t := LG(VG) > 0 be its loop number. For any a, b ∈ VG the relation ≈ defined by

a ≈ b :⇔ ∃ a sequence a �αt b with α ∈ N0

is an equivalence relation called loop equivalence. The loop equivalence class of an arbitrary vertex
a ∈ VG is denoted by ã. Moreover, the partition of VG defined by the loop equivalence ≈ contains
exactly t loop equivalence classes.

Proof. See the proofs of Lemma 4.6 and Lemma 4.7 in Colón-Reyes et al. (2004).

Definition 50. Let G = (VG, EG, πG) be a digraph, a ∈ VG an arbitrary vertex and m ∈ N a
natural number. Then the set

Nm(a) := {b ∈ VG : ∃ a �m b}
is called the set of neighbors of order m.

Remark 51. From the definitions it is clear that

ã =
⋃

α∈N0

Nαt(a)

Theorem 52. Let G = (VG, EG, πG) be a strongly connected digraph such that VG is nontrivial.
Furthermore, let t := LG(VG) > 0 be its loop number and ã ⊆ VG an arbitrary loop equivalence class
of VG. Then for any b, b� ∈ ã the following holds

1. Nm(b) ∩ Nm� (b�) = ∅ for m, m� ∈ N such that 1 ≤ m, m� < t and m �= m�.
2. Nm(b) ∩ ã = ∅ for m ∈ N such that 1 ≤ m < t.

3. For every fixed m ∈ N such that 1 ≤ m ≤ t ∃ c ∈ VG :
⋃

b∈ã
Nm(b) = c̃.

Proof. See Theorem 111 in Delgado-Eckert (2008).

Remark 53. It is worth mentioning that since VG is strongly connected and nontrivial, Nm(b) �= ∅
∀ m ∈ N, b ∈ VG. Moreover, from (1) in the previous theorem it follows easily

(
⋃

b∈ã
Nm(b)

)
∩
(

⋃

b∈ã
Nm� (b)

)
= ∅ for m, m� ∈ N such that 1 ≤ m, m� < t and m �= m�
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Fig. 1. Strongly connected dependency graph Gf = (Vf , Ef , π f ) with loop number
LGf (Vf ) = 6 of a 24-dimensional Boolean monomial dynamical system f ∈ MF24

24 (F2).
Circles (blue) demarcate each of the six loop equivalence classes. Essentially, the dependency
graph is a closed path of length 6.

and because of (2) in the previous theorem clearly

ã =
⋃

b∈ã
Nt(b)

Given one loop equivalence class ã ⊆ VG, the set of all the t loop equivalence classes can be ordered in
the following manner

ãi := ã, ãi+1 =
⋃

b∈ãi

N1(b), ...ãi+j =
⋃

b∈ãi

Nj(b), ...ãi+t−1 =
⋃

b∈ãi

Nt−1(b)

For any c ∈ ⋃
b∈ãi

Nt−1(b) it must hold N1(c) ⊆ ãi (if N1(c)∩ ãj �= ∅ with j �= i, then ãi = ãj). Thus,

the graph G can be visualized as (see Fig. 1)

ãi ⇒ ãi+1 ⇒ · · · ⇒ ãi+j ⇒ ã(i+j+1) mod t ⇒ ... ⇒ ãi+t−1 ⇒ ã(i+t) mod t

Due to the fact ã =
⋃

b∈ã
Nt(b) ∀ a ∈ VG, we can conclude that the claims of the previous lemma still

hold if the sequence lengths m and m� are replaced by the more general lengths λt + m and λ�t + m�,
where λ, λ� ∈ N.

3.2 Boolean monomial control systems: Control theoretic questions studied
We start this section with the formal definition of a time invariant monomial control system
over a finite field. Using the results stated in the previous section, we provide a very compact
nomenclature for such systems. After further elucidations, and, in particular, after providing
the formal definition of a monomial feedback controller, we clearly state the main control
theoretic problem to be studied in Section 3.3 of this chapter.

Definition 54. Let Fq be a finite field, n ∈ N a natural number and m ∈ N0 a nonnegative integer.
A mapping g : Fn

q × Fm
q → Fn

q is called time invariant monomial control system over Fq if for
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Nm(b)

)
∩
(

⋃

b∈ã
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⋃

b∈ãi
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b∈ãi
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the formal definition of a monomial feedback controller, we clearly state the main control
theoretic problem to be studied in Section 3.3 of this chapter.
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every i ∈ {1, ..., n} there are two tuples (Ai1, ..., Ain) ∈ En
q and (Bi1, ..., Bim) ∈ Em

q such that

gi(x, u) = xAi1
1 ...xAin

n uBi1
1 ...uBim

m ∀ (x, u) ∈ Fn
q × Fm

q

Remark 55. In the case m = 0, we have Fm
q = F0

q = {()} (the set containing the empty tuple) and
thus Fn

q × Fm
q = Fn

q × F0
q = Fn

q × {()} = Fn
q . In other words, g is a monomial dynamical system

over Fq. From now on we will refer to a time invariant monomial control system over Fq as monomial
control system over Fq.

Definition 56. Let X be a nonempty finite set and n, l ∈ N natural numbers. The set of all functions
f : Xl → Xn is denoted with Fn

l (X).

Definition 57. Let Fq be a finite field and l, m, n ∈ N natural numbers. Furthermore, let Eq be the
exponents semiring of Fq and M(n × l; Eq) the set of n × l matrices with entries in Eq. Consider the
map

Γ : Fl
m(Fq)× M(n × l; Eq) → Fn

m(Fq)

( f , A) �→ ΓA( f )

where ΓA( f ) is defined for every x ∈ Fm
q and i ∈ {1, ..., n} by

ΓA( f )(x)i := f1(x)Ai1 ... fl(x)Ail

We denote the mapping ΓA( f ) ∈ Fn
m(Fq) simply A f .

Remark 58. Let l = m, id ∈ Fm
m (Fq) be the identity map (i.e. idi(x) = xi ∀ i ∈ {1, ..., m}) and

A ∈ M(n × m; Eq) Then the following relationship between the mapping Aid ∈ Fn
m(Fq) and any

f ∈ Fm
m (Fq) holds

Aid( f (x)) = A f (x) ∀ x ∈ Fm
q

Remark 59. Consider the case l = m = n. For every monomial dynamical system f ∈ MFn
n (Fq) ⊂

Fn
n (Fq) with corresponding matrix F := Ψ−1( f ) ∈ M(n × n; Eq) it holds Fid = f . On the other

hand, given a matrix F ∈ M(n × n; Eq) we have Ψ−1(Fid) = F. Moreover, the map Γ : Fn
n (Fq)×

M(n× n; Eq) → Fn
n (Fq) is an action of the multiplicative monoid M(n× n; Eq) on the set Fn

n (Fq). It
holds namely, that12 I f = f ∀ f ∈ Fn

n (Fq) (which is trivial) and (A · B) f = A(B f ) ∀ f ∈ Fn
n (Fq),

A, B ∈ M(n × n; Eq). To see this, consider

((A · B) f )i(x) = f1(x)(A·B)i1 ... fn(x)(A·B)in =
n

∏
j=1

f j(x)(Ai1•B1j⊕...⊕Ain•Bnj)

= (Aid ◦ Bid)i( f (x)) = (Aid)i(Bid( f (x)))
= (Aid)i( f B(x)) = (A(B f ))i(x)

where id ∈ Fn
n (Fq) is the identity map (i.e. idi(x) = xi ∀ i ∈ {1, ..., n}). (cf. with the proof of Theorem

29). As a consequence, MFn
n (Fq) is the orbit in Fn

n (Fq) of id under the monoid M(n × n; Eq). In
particular (see Theorem 29), we have

(F · G)id = F(Gid) = f ◦ g

12 I ∈ M(n × n; Eq) denotes the identity matrix.
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where g ∈ MFn
n (Fq) is another monomial dynamical system with corresponding matrix G :=

Ψ−1(g) ∈ M(n × n; Eq).

Lemma 60. Let Fq be a finite field, n ∈ N a natural number and m ∈ N0 a nonnegative integer.

Furthermore, let id ∈ F(n+m)
(n+m)

(Fq) be the identity map (i.e. idi(x) = xi ∀ i ∈ {1, ..., n + m}) and
g : Fn

q × Fm
q → Fn

q a monomial control system over Fq. Then there are matrices A ∈ M(n × n; Eq)

and B ∈ M(n × m; Eq) such that

((A|B)id)(x, u) = g(x, u) ∀ (x, u) ∈ Fn
q × Fm

q

where (A|B) ∈ M(n × (n + m); Eq) is the matrix that results by writing A and B side by side. In this
sense we denote g as the monomial control system (A, B) with n state variables and m control inputs.

Proof. This follows immediately from the previous definitions.

Remark 61. If the matrix B ∈ M(n × m; Eq) is equal to the zero matrix, then g is called a control
system with no controls. In contrast to linear control systems (see the previous sections and also
Sontag (1998)), when the input vector u ∈ Fm

q satisfies

u =�1 := (1, ..., 1)t ∈ Fm
q

then no control input is being applied on the system, i.e. the monomial dynamical system over Fq

σ : Fn
q → Fn

q

x �→ g(x,�1)

satisfies
σ(x) = ((A|0)id)(x, u) ∀ (x, u) ∈ Fn

q × Fm
q

where 0 ∈ M(n × m; Eq) stands for the zero matrix.

Definition 62. Let Fq be a finite field and n, m ∈ N natural numbers. A monomial feedback
controller is a mapping

f : Fn
q → Fm

q

such that for every i ∈ {1, ..., m} there is a tuple (Fi1, ..., Fin) ∈ En
q such that

fi(x) = xFi1
1 ...xFin

n ∀ x ∈ Fn
q

Remark 63. We exclude in the definition of monomial feedback controller the possibility that one of the
functions fi is equal to the zero function. The reason for this will become apparent in the next remark
(see below).

Now we are able to formulate the first control theoretic problem to be addressed in this section:

Problem 64. Let Fq be a finite field and n, m ∈ N natural numbers. Given a monomial control system
g : Fn

q × Fm
q → Fn

q with completely observable state, design a monomial state feedback controller
f : Fn

q → Fm
q such that the closed-loop system

h : Fn
q → Fn

q

x �→ g(x, f (x))
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has a desired period number and cycle structure of its phase space. What properties has g to fulfill for
this task to be accomplished?

Remark 65. Note that every component

hi : Fn
q → Fq, i = 1, ..., n

x �→ gi(x, f (x))

is a nonzero monic monomial function, i.e. the mapping h : Fn
q → Fn

q is a monomial dynamical system
over Fq. Remember that we excluded in the definition of monomial feedback controller the possibility
that one of the functions fi is equal to the zero function. Indeed, the only effect of a component fi ≡ 0
in the closed-loop system h would be to possibly generate a component hj ≡ 0. As explained in Remark
28 of Section 3.1, this component would not play a crucial role determining the long term dynamics of
h.
Due to the monomial structure of h, the results presented in Section 3.1 of this chapter can be used to
analyze the dynamical properties of h. Moreover, the following identity holds

h = (A + B · F)id

where F ∈ M(m × n; Eq) is the corresponding matrix of f (see Remark 30), (A, B) are the matrices in
Lemma 60 and id ∈ Fn

n (Fq). To see this, consider the mapping

μ : Fm
q → Fn

q

u �→ g(�1, u)

where�1 ∈ Fn
q . From the definition of g it follows that μ ∈ MFn

m(Fq). Now, since f ∈ MFm
n (Fq), by

Remark 30 we have for the composition μ ◦ f : Fn
q → Fn

q

μ ◦ f = (B · F)id

Now its easy to see
h = (A + B · F)id

The most significant results proved in Colón-Reyes et al. (2004), Delgado-Eckert (2008)
concern Boolean monomial dynamical systems with a strongly connected dependency graph.
Therefore, in the next section we will focus on the solution of Problem 64 for Boolean
monomial control systems g : Fn

2 × Fm
2 → Fn

2 with the property that the mapping

σ : Fn
2 → Fn

2

x �→ g(x,�1)

has a strongly connected dependency graph. Such systems are called strongly dependent
monomial control systems. If we drop this requirement, we would not be able to use Theorems
45 and 46 to analyze h regarding its cycle structure. However, if we are only interested in
forcing the period number of h to be equal to 1, we can still use Theorem 47 (see Remark 48).
This feature will be exploited in Section 3.3, when we study the stabilization problem.
Although the above representation

h = (A + B · F)id
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of the closed loop system displays a striking structural similarity with linear control
systems and linear feedback laws, our approach will completely differ from the well known
"Pole-Assignment" method.

3.3 State feedback controller design for Boolean monomial control systems
Our goal in this section is to illustrate how the loop number, a parameter that, as we
saw, characterizes the dynamic properties of Boolean monomial dynamical systems, can be
exploited for the synthesis of suitable feedback controllers. To this end, we will demonstrate
the basic ideas using a very simple subclass of systems that allow for a graphical elucidation
of the rationale behind our approach. The structural similarity demonstrated in Remark 53
then enables the extension of the results to more general cases. A rigorous implementation of
the ideas developed here can be found in Delgado-Eckert (2009b).
As explained in Remark 53, a Boolean monomial dynamical system with a strongly connected
non-trivial dependency graph can be visualized as a simple cycle of loop-equivalence classes
(see Fig. 1). In the simplest case, each loop-equivalence class only contains one node and
the dependency graph is a closed path. A first step towards solving Problem 64 for strongly
dependent Boolean monomial control systems g : Fn

2 × Fm
2 → Fn

2 would be to consider the
simpler subclass of problems in which the mapping

σ : Fn
2 → Fn

2

x �→ g(x,�1)

simply has a closed path of length n as its dependency graph (see Fig. 2 a for an example
in the case n = 6). By the definition of dependency graph and after choosing any monomial
feedback controller f : Fn

2 → Fm
2 , it becomes apparent that the dependency graph of the

closed-loop system

h f : Fn
2 → Fn

2

x �→ g(x, f (x))

arises from adding new edges to the dependency graph of σ. Since we assumed that the
dependency graph of σ is just a closed path, adding new edges to it can only generate new
closed paths of length in the range 1, . . . , n − 1. By Corollary 41, we immediately see that the
loop number of the modified dependency graph (i.e., the dependency graph of h f ) must be a
divisor of the original loop number. This result is telling us that no matter how complicated
we choose a monomial feedback controller f : Fn

2 → Fm
2 , the closed loop system h f will

have a dependency graph with a loop number L� which divides the loop number L of the
dependency graph of σ. This is all we can achieve in terms of loop number assignment. When a
system allows for assignment to all values out of the set D(L), we call it completely loop number
controllable. We just proved this limitation for systems in which σ has a simple closed path
as its dependency graph. However, due to the structural similarity between such systems
and strongly dependent systems (see Remark 53), this result remains valid in the general case
where σ has a strongly connected dependency graph.
Let us simplify the scenario a bit more and assume that the system g has only one control
variable u (i.e., g : Fn

2 × F2 → Fn
2 ) and that this variable appears in only one component

function, say gk. As before, assume σ has a simple closed path as its dependency graph. Under
these circumstances, we choose the following monomial feedback controllers: fi : Fn

2 → F2,
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has a desired period number and cycle structure of its phase space. What properties has g to fulfill for
this task to be accomplished?
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hi : Fn
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x �→ gi(x, f (x))
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q → Fn

q is a monomial dynamical system
over Fq. Remember that we excluded in the definition of monomial feedback controller the possibility
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h.
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n (Fq). To see this, consider the mapping

μ : Fm
q → Fn

q

u �→ g(�1, u)

where�1 ∈ Fn
q . From the definition of g it follows that μ ∈ MFn

m(Fq). Now, since f ∈ MFm
n (Fq), by

Remark 30 we have for the composition μ ◦ f : Fn
q → Fn

q

μ ◦ f = (B · F)id

Now its easy to see
h = (A + B · F)id

The most significant results proved in Colón-Reyes et al. (2004), Delgado-Eckert (2008)
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Therefore, in the next section we will focus on the solution of Problem 64 for Boolean
monomial control systems g : Fn

2 × Fm
2 → Fn

2 with the property that the mapping

σ : Fn
2 → Fn

2

x �→ g(x,�1)

has a strongly connected dependency graph. Such systems are called strongly dependent
monomial control systems. If we drop this requirement, we would not be able to use Theorems
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This feature will be exploited in Section 3.3, when we study the stabilization problem.
Although the above representation

h = (A + B · F)id
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fi(x) := xi, i = 1, ..., n. When we look at the closed-loop systems

h fi
: Fn

2 → Fn
2

x �→ g(x, fi(x))

and their dependency graphs, we realize that the dependency graph of h fi
corresponds to the

one of σ with one single additional edge. Depending on the value of i under consideration,
this additional edge adds a closed path of length l in the range l = 1, .., n− 1 to the dependency
graph of σ. In Figures 2 b-e, we see all the possibilities in the case of n = L = 6, except for
l = 1 (self-loop around the kth node).

L = 6 L = 2 L = 3

L = 1 L = 1 L = 1

a b c

d e f

Fig. 2. Loop number assignment through the choice of different feeback controllers.

We realize that with only one control variable appearing in only one of the components of
the system g, we can set the loop number of the closed-loop system h fi

to be equal to any
of the possible values (out of the set D(L)) by choosing among the feedback controllers fi,
i = 1, ..., n, defined above. This proves that the type of systems we are considering here are
indeed completely loop number controllable. Moreover, as illustrated in Figure 2 f, if the
control variable u would appear in another component function of g, we may loose the loop
number controllability. Again, due to the structural similarity (see Remark 53), this complete
loop number controllability statement is valid for strongly dependent systems.
In the light of Theorem 47 (see Remark 48), for the stabilization13 problem we can consider
arbitrary Boolean monomial control systems g : Fn

2 × Fm
2 → Fn

2 , maybe only requiring the
obvious condition that the mapping σ is not already a fixed point system. Moreover, the
statement of Theorem 47 is telling us that such a system will be stabilizable if and only if the
component functions gj depend in such a way on control variables ui, that every strongly
connected component of the dependency graph of σ can be forced into loop number one by
incorporating suitable additional edges. This corresponds to the choice of a suitable feedback
controller. The details and proof of this stabilizability statement as well as a brief description
of a stabilization procedure can be found in Delgado-Eckert (2009b).

13 Note that in contrast to the definition of stability introduced in Subsection 1.2.1, in this context we refer
to stabilizability as the property of a control system to become a fixed point system through the choice
of a suitable feedback controller.
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4. Conclusions

In this chapter we considered discrete event systems within the paradigm of algebraic state
space models. As we pointed out, traditional approaches to system analysis and controller
synthesis that were developed for continuous and discrete time dynamical systems may not
be suitable for the same or similar tasks in the case of discrete event systems. Thus, one of
the main challenges in the field of discrete event systems is the development of appropriate
mathematical techniques. Finding new mathematical indicators that characterize the dynamic
properties of a discrete event system represents a promising approach to the development of
new analysis and controller synthesis methods.
We have demonstrated how mathematical objects or magnitudes such as invariant
polynomials, elementary divisor polynomials, and the loop number can play the role of the
aforementioned indicators, characterizing the dynamic properties of certain classes of discrete
event systems. Moreover, we have shown how these objects or magnitudes can be used to
effectively address controller synthesis problems for linear modular systems over the finite
field F2 and for Boolean monomial systems.
We anticipate that the future development of the discrete event systems field will not only
comprise the derivation of new mathematical methods, but also will be concerned with the
development of efficient algorithms and their implementation.
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1. Introduction

The dynamical systems with discrete time and delay are obtained by the discretization of the
systems of differential equations with delay, or by modeling some processes in which the time
variable is n ∈ IN and the state variables at the moment n− m, where m ∈ IN, m ≥ 1, are taken
into consideration.
The processes from this chapter have as mathematical model a system of equations given by:

xn+1 = f (xn, xn−m, α), (1)

where xn = x(n) ∈ IRp, xn−m = x(n − m) ∈ IRp, α ∈ IR and f : IRp × IRp × IR → IRp is a
seamless function, n, m ∈ IN with m ≥ 1. The properties of function f ensure that there is
solution for system (1). The system of equations (1) is called system with discrete-time and delay.
The analysis of the processes described by system (1) follows these steps.

Step 1. Modeling the process.

Step 2. Determining the fixed points for (1).

Step 3. Analyzing a fixed point of (1) by studying the sign of the characteristic equation of the
linearized equation in the neighborhood of the fixed point.

Step 4. Determining the value α = α0 for which the characteristic equation has the roots
μ1(α0) = μ(α0), μ2(α0) = μ(α0) with their absolute value equal to 1, and the other roots with
their absolute value less than 1 and the following formulas:

d|μ(α)|

dα

∣∣∣
α=α0

�= 0, μ(α0)
k �= 1, k = 1, 2, 3, 4

hold.
Step 5. Determining the local center manifold Wc

loc(0):

y = zq + z q +
1

2
w20z2 + w11zz +

1

2
w02z2 + . . .

where z = x1 + ix2, with (x1, x2) ∈ V1 ⊂ IR2, 0 ∈ V1, q an eigenvector corresponding to
the eigenvalue μ(0) and w20, w11, w02 are vectors that can be determined by the invariance
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Romania

1. Introduction

The dynamical systems with discrete time and delay are obtained by the discretization of the
systems of differential equations with delay, or by modeling some processes in which the time
variable is n ∈ IN and the state variables at the moment n− m, where m ∈ IN, m ≥ 1, are taken
into consideration.
The processes from this chapter have as mathematical model a system of equations given by:

xn+1 = f (xn, xn−m, α), (1)

where xn = x(n) ∈ IRp, xn−m = x(n − m) ∈ IRp, α ∈ IR and f : IRp × IRp × IR → IRp is a
seamless function, n, m ∈ IN with m ≥ 1. The properties of function f ensure that there is
solution for system (1). The system of equations (1) is called system with discrete-time and delay.
The analysis of the processes described by system (1) follows these steps.

Step 1. Modeling the process.

Step 2. Determining the fixed points for (1).

Step 3. Analyzing a fixed point of (1) by studying the sign of the characteristic equation of the
linearized equation in the neighborhood of the fixed point.

Step 4. Determining the value α = α0 for which the characteristic equation has the roots
μ1(α0) = μ(α0), μ2(α0) = μ(α0) with their absolute value equal to 1, and the other roots with
their absolute value less than 1 and the following formulas:

d|μ(α)|

dα

∣∣∣
α=α0

�= 0, μ(α0)
k �= 1, k = 1, 2, 3, 4

hold.
Step 5. Determining the local center manifold Wc

loc(0):

y = zq + z q +
1

2
w20z2 + w11zz +

1

2
w02z2 + . . .

where z = x1 + ix2, with (x1, x2) ∈ V1 ⊂ IR2, 0 ∈ V1, q an eigenvector corresponding to
the eigenvalue μ(0) and w20, w11, w02 are vectors that can be determined by the invariance
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condition of the manifold Wc
loc(0) with respect to the transformation xn−m = x1,..., xn = xm,

xn+1 = xm+1. The restriction of system (1) to the manifold Wc
loc(0) is:

zn+1 = μ(α0)zn +
1

2
g20z2

n + g11znzn +
1

2
g02z2

n + g21z2
nzn/2, (2)

where g20, g11, g02, g21 are the coefficients obtained using the expansion in Taylor series
including third-order terms of function f .
System (2) is topologically equivalent with the prototype of the 2-dimensional discrete
dynamic system that characterizes the systems with a Neimark–Sacker bifurcation.

Step 6. Representing the orbits for system (1). The orbits of system (1) in the neighborhood of
the fixed point x∗ are given by:

xn = x∗ + znq + z̄nq̄ +
1

2
r20z2

n + r11znz̄n +
1

2
r02 z̄2

n (3)

where zn is a solution of (2) and r20, r11, r02 are determined with the help of w20, w11, w02.
The properties of orbit (3) are established using the Lyapunov coefficient l1(0). If l1(0) < 0
then orbit (3) is a stable invariant closed curve (supercritical) and if l1(0) > 0 then orbit (3) is
an unstable invariant closed curve (subcritical).
The perturbed stochastic system corresponding to (1) is given by:

xn+1 = f (xn, xn−m, α) + g(xn , xn−m)ξn, (4)

where xn = x0n, n ∈ I = {−m,−m + 1, ...,−1, 0} is the initial segment to be F0-measurable,
and ξn is a random variable with E(ξn) = 0, E(ξ2

n) = σ > 0 and α is a real parameter.
System (4) is called discrete-time stochastic system with delay.
For the stochastic discrete-time system with delay, the stability in mean and the stability in
square mean for the stationary state are done.
This chapter is organized as follows. In Section 2 the discrete-time deterministic and
stochastic dynamical systems are defined. In Section 3 the Neimark-Sacker bifurcation for
the deterministic and stochastic Internet control congestion with discrete-time and delay
is studied. Section 4 presents the deterministic and stochastic economic games with
discrete-time and delay. In Section 5, the deterministic and stochastic Kaldor model with
discrete-time is analyzed. Finally some conclusions and future prospects are provided.
For the models from the above sections we establish the existence of the Neimark-Sacker
bifurcation and the normal form. Then, the invariant curve is studied. We also associate
the perturbed stochastic system and we analyze the stability in square mean of the solutions
of the linearized system in the fixed point of the analyzed system.

2. Discrete-time dynamical systems

2.1 The denition of the discrete-time, deterministic and stochastic systems
We intuitively describe the dynamical system concept. We suppose that a physical or biologic
or economic system etc., can have different states represented by the elements of a set S. These
states depend on the parameter t called time. If the system is in the state s1 ∈ S, at the moment
t1 and passes to the moment t2 in the state s2 ∈ S, then we denote this transformation by:

Φt1,t2
(s1) = s2
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and Φt1,t2
: S → S is called evolution operator. In the deterministic evolutive processes the

evolution operator Φt1,t2
, satisfies the Chapman-Kolmogorov law:

Φt3,t2
◦ Φt2,t1

= Φt3,t1
, Φt,t = idS.

For a fixed state s0 ∈ S, application Φ : IR → S, defined by t → st = Φt(s0), determines a
curve in set S that represents the evolution of state s0 when time varies from −∞ to ∞.
An evolutive system in the general form is given by a subset of S × S that is the graphic of the
system:

Fi(t1, t2, s1, s2) = 0, i = 1..n

where Fi : IR2 × S → IR.
In what follows, the arithmetic space IRm is considered to be the states’space of a system, and
the function Φ is a Cr-class differentiable application.
An explicit differential dynamical system of Cr class, is the homomorphism of groups Φ :
(IR,+) → (Di f f r(IRm), ◦) so that the application IR × IRm → IRm defined by (t, x) → Φ(t)(x)
is a differentiable of Cr-class and for all x ∈ IRm fixed, the corresponding application
Φ(x) : IR → IRm is Cr+1-class.
A differentiable dynamical system on Rm describes the evolution in continuous time of a
process. Due to the fact that it is difficult to analyze the continuous evolution of the state
x0, the analysis is done at the regular periods of time, for example at t = −n, ...,−1, 0, 1, ..., n.
If we denote by Φ1 = f , we have:

Φ1(x0) = f (x0), Φ2(x0) = f (2)(x0), ..., Φn(x0) = f (n)(x0),

Φ−1(x0) = f (−1)(x0), ..., Φ−n(x0) = f (−n)(x0),

where f (2) = f ◦ f , ... , f (n) = f ◦ ... ◦ f , f −(n) = f (−1) ◦ ... ◦ f (−1).
Thus, Φ is determined by the diffeomorphism f = Φ1.
A Cr-class differential dynamical system with discrete time on IRm, is the homomorphism of
groups Φ : (Z,+) → (Di f f r(IRm), ◦).
The orbit through x0 ∈ IRm of a dynamical system with discrete-time is:

O f (x0) = {..., f−(n)(x0), ..., f (−1)(x0), x0, f (x0), ..., f (n)(x0), ..} = { f (n)(x0)}n∈Z.

Thus O f (x0) represents a sequences of images of the studied process at regular periods of
time.
For the study of a dynamical system with discrete time, the structure of the orbits’set is
analyzed. For a dynamical system with discrete time with the initial condition x0 ∈ IRm(m =
1, 2, 3) we can represent graphically the points of the form xn = f n(x0) for n iterations of the
thousandth or millionth order. Thus, a visual geometrical image of the orbits’set structure
is created, which suggests some properties regarding the particularities of the system. Then,
these properties have to be approved or disproved by theoretical or practical arguments.
An explicit dynamical system with discrete time has the form:

xn+1 = f (xn−p, xn), n ∈ IN, (5)

where f : IRm × IRm → IRm, xn ∈ IRm, p ∈ IN is fixed, and the initial conditions are x−p, x1−p,
..., x0 ∈ IRm.
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For system (5), we use the change of variables x1 = xn−p, x2 = xn−(p−1),..., xp = xn−1,

xp+1 = xn, and we associate the application

F : (x1, ..., xp+1) ∈ IRm × ...× IRm → IRm × ... × IRm

given by:

F :

⎛
⎜⎜⎜⎜⎝

x1

·
·

xp

xp+1

⎞
⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎝

x2

·
·

xp+1

f (x1, xp+1)

⎞
⎟⎟⎟⎟⎠

.

Let (Ω,F ) be a measurable space, where Ω is a set whose elements will be noted by ω and
F is a σ−algebra of subsets of Ω. We denote by B(IR) σ−algebra of Borelian subsets of IR. A
random variable is a measurable function X : Ω → IR with respect to the measurable spaces
(Ω,F ) and (IR,B(IR)) (Kloeden et al., 1995).
A probability measure P on the measurable space (Ω,F ) is a σ−additive function defined on
F with values in [0, 1] so that P(Ω) = 1. The triplet (Ω,F , P) is called a probability space.
An arbitrary family ξ(n, ω) = ξ(n)(ω) of random variables, defined on Ω with values in IR,
is called stochastic process. We denote ξ(n, ω) = ξ(n) for any n ∈ IN and ω ∈ Ω. The functions
X(·, ω) are called the trajectories of X(n). We use E(ξ(n)) for the mean value and E(ξ(n)2)
the square mean value of ξ(n) denoted by ξn.
The perturbed stochastic of system (5) is:

xn+1 = f (xn−p, xn) + g(xn)ξn, n ∈ IN

where g : IRn → IRn and ξn is a random variable which satisfies the conditions E(ξn) = 0 and
E(ξ2

n) = σ > 0.

2.2 Elements used for the study of the discrete-time dynamical systems
Consider the following discrete-time dynamical system defined on IRm:

xn+1 = f (xn), n ∈ IN (6)

where f : IRm → IRm is a Cr class function, called vector field.
Some information, regarding the behavior of (6) in the neighborhood of the fixed point, is
obtained studying the associated linear discrete-time dynamical system.
Let x0 ∈ IRm be a fixed point of (6). The system

un+1 = D f (x0)un, n ∈ IN

where

D f (x0) =

�
∂ f i

∂xj

�
(x0), i, j = 1..m

is called the linear discrete-time dynamical system associated to (6) and the fixed point x0 = f (x0).
If the characteristic polynomial of D f (x0) does not have roots with their absolute values equal
to 1, then x0 is called a hyperbolic fixed point.
We have the following classification of the hyperbolic fixed points:
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1. x0 is a stable point if all characteristic exponents of D f (x0) have their absolute values less
than 1.
2. x0 is an unstable point if all characteristic exponents of D f (x0) have their absolute values
greater than 1.
3. x0 is a saddle point if a part of the characteristic exponents of D f (x0) have their absolute
values less than 1 and the others have their absolute values greater than 1.
The orbit through x0 ∈ IRm of a discrete-time dynamical system generated by f : IRm → IRm is
stable if for any ε > 0 there exists δ(ε) so that for all x ∈ B(x0, δ(ε)), d( f n(x), f n(x0)) < ε, for
all n ∈ IN.
The orbit through x0 ∈ IRm is asymptotically stable if there exists δ > 0 so that for all x ∈
B(x0, δ), lim

n→∞
d( f n(x), f n(x0)) = 0.

If x0 is a fixed point of f, the orbit is formed by x0. In this case O(x0) is stable (asymptotically
stable) if d( f n(x), x0) < ε, for all n ∈ IN and lim

n→∞
f n(x) = x0.

Let (Ω,F , P) be a probability space. The perturbed stochastic system of (6) is the following
system:

xn+1 = f (xn) + g(xn)ξn

where ξn is a random variable that satisfies E(ξn) = 0, E(ξ2
n) = σ and g(x0) = 0 with x0 the

fixed point of the system (6).
The linearized of the discrete stochastic dynamical system associated to (6) and the fixed point
x0 is:

un+1 = Aun + ξnBun, n ∈ IN (7)

where

A =

(
∂ f i

∂xj

)
(x0), B =

(
∂gi

∂xj

)
(x0), i, j = 1..m.

We use E(un) = En, E(unuT
n ) = Vn, un = (u1

n, u2
n, ..., um

n )
T.

Proposition 2.1. (i) The mean values En satisfy the following system of equations:

En+1 = AEn, n ∈ IN (8)

(ii) The square mean values satisfy:

Vn+1 = AVn AT + σBVnBT, n ∈ IN (9)

Proof. (i) From (7) and E(ξn) = 0 we obtain (8).
(ii) Using (7) we have:

un+1uT
n+1 = AunuT

n AT + ξn(AunuT
n BT + BunuT

n AT) + ξ2
nBunuT

n BT. (10)

By (10) and E(ξn) = 0, E(ξ2
n) = σ we get (9).

Let Ā be the matrix of system (8), respectively (9). The characteristic polynomial is given by:

P2(λ) = det(λI − Ā).

For system (8), respectively (9), the analysis of the solutions can be done by studying the roots
of the equation P2(λ) = 0.
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2.3 Discrete-time dynamical systems with one parameter
Consider a discrete-time dynamical system depending on a real parameter α, defined by the
application:

x → f (x, α), x ∈ IRm, α ∈ IR (11)

where f : IRm × IR → IRm is a seamless function with respect to x and α. Let x0 ∈ IRm be a
fixed point of (11), for all α ∈ IR. The characteristic equation associated to the Jacobian matrix
of the application (11), evaluated in x0 is P(λ, α) = 0, where:

P(λ, α) = λm + c1(α)λ
m−1 + · · ·+ cm−1(α)λ + cm(α).

The roots of the characteristic equation depend on the parameter α.
The fixed point x0 is called stable for (11), if there exists α = α0 so that equation P(λ, α0) = 0
has all roots with their absolute values less than 1. The existence conditions of the value α0,
are obtained using Schur Theorem (Lorenz, 1993).
If m = 2, the necessary and sufficient conditions that all roots of the characteristic equation
λ2 + c1(α)λ + c2(α) = 0 have their absolute values less than 1 are:

|c2(α)| < 1, |c1(α)| < |c2(α) + 1|.

If m = 3, the necessary and sufficient conditions that all roots of the characteristic equation

λ3 + c1(α)λ
2 + c2(α)λ + c3(α) = 0

have their absolute values less than 1 are:

1 + c1(α) + c2(α) + c3(α) > 0, 1 − c1(α) + c2(α)− c3(α) > 0

1+c2(α)−c3(α)(c1(α)+c3(α))>0, 1−c2(α)+c3(α)(c1(α)−c3(α))>0, |c3(α)|<1.

The Neimark–Sacker (or Hopf) bifurcation is the value α = α0 for which the characteristic
equation P(λ, α0) = 0 has the roots μ1(α0) = μ(α0), μ2(α0) = μ(α0) in their absolute values
equal to 1, and the other roots have their absolute values less than 1 and:

a)
d|μ(α)|

dα

∣∣∣
α=α0

�= 0. b) μk(α0) �= 1, k = 1, 2, 3, 4

hold.
For the discrete-time dynamical system

x(n + 1) = f (x(n), α)

with f : IRm → IRm, the following statement is true:
Proposition 2.2. ((Kuznetsov, 1995), (Mircea et al., 2004)) Let α0 be a Neimark-Sacker bifurcation.
The restriction of (11) to two dimensional center manifold in the point (x0, α0) has the normal form:

η → ηeiθ0(1 +
1

2
d|η|2) +O(≡�)

where η ∈ C, d ∈ C. If c =Re d �= 0 there is a unique limit cycle in the neighborhood of x0. The
expression of d is:

d =
1

2
e−iθ0 < v∗, C(v, v, v̄) + 2B(v, (Im − A)−1B(v, v̄)) + B(v, (e2iθ0 Im − A)(−1)B(v, v)) > 0

482 Discrete Time Systems

where Av = eiθ0 v, ATv∗ = e−iθ0v∗ and < v∗, v >= 1; A =

(
∂ f

∂x

)

(x0,α0)
, B =

(
∂2 f

∂x2

)

(x0,α0)
and

C =

(
∂3 f

∂x3

)

(x0,α0)
.

The center manifold in x0 is a two dimensional submanifold in IRm, tangent in x0 to the vectorial space
of the eigenvectors v and v∗.
The following statements are true:
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∣∣∣
α=α0

> 0.
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2,

c3(α0)(c1(α0)c
�
3(α0) + c�1(α0)c3(α0)− c�2(α0)− 2c3(α0)c

�
3(α0))

1 + 2c2
3(α0)− c1(α0)c3(α0)

> 0,
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In what follows, we highlight the normal form for the Neimark–Sacker bifurcation.
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c1 : r�(0) �= 0, c2 : eikθ0 �= 1, k = 1, 2, 3, 4

then there is a coordinates’transformation and a parameter change so that the application (12) is
topologically equivalent in the neighborhood of the origin with the system:

(
y1

y2

)
→

(
cos θ(β) − sin θ(β)
sin θ(β) cos θ(β)

)[
(1 + β)

(
y1

y2

)
+

+ (y2
1 + y2

2)

(
a(β) −b(β)
b(β) a(β)

)(
y1

y2

)]
+O(�†��),

where θ(0) = θ0, a(0) = Re(e−iθ0 C1(0)), and

C1(0) =
g20(0)g11(0)(1 − 2μ0)

2(μ2
0 − μ0)

+
|g11(0)|

2

1 − μ0

+
|g02(0)|

2

2(μ2
0 − μ0)

+
g21(0)

2

μ0 = eiθ0 , g20, g11, g02, g21 are the coefficients obtained using the expansion in Taylor series including
third-order terms of function f .
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2.4 The Neimark-Sacker bifurcation for a class of discrete-time dynamical systems with
delay
A two dimensional discrete-time dynamical system with delay is defined by the equations

xn+1 = xn + f1(xn, yn, α)

yn+1 = yn + f2(xn−m, yn, α)
(13)

where α ∈ IR, f1, f2 : IR3 → IR are seamless functions, so that for any |α| small enough, the
system f1(x, y, α) = 0, f2(x, y, α) = 0, admits a solution (x, y)T ∈ IR2.
Using the translation xn → xn + x, yn → yn + y, and denoting the new variables with the
same notations xn, yn , system (13) becomes:

xn+1 = xn + f (xn, yn , α)

yn+1 = yn + g(xn−m, yn , α)
(14)

where:

f (xn, yn, α) = f1(xn + x, yn + y, α); g(xn−m, yn, α) = f2(xn−m + x, yn + y, α).

With the change of variables x1 = xn−m, x2 = xn−(m−1), . . . , xm = xn−1, xm+1 = xn , xm+2 =
yn , application (14) associated to the system is:

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

...

xm+1

xm+2

⎞
⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎝

x2

...

xm+1 + f (xm+1, xm+2, α)
xm+2 + g(x1, xm+2, α)

⎞
⎟⎟⎟⎠ . (15)

We use the notations:

a10 =
∂ f

∂xm+1
(0, 0, α), a01 =

∂ f

∂xm+2
(0, 0, α),

b10 =
∂g

∂x1
(0, 0, α), b01=

∂g

∂xm+2
(0, 0, α)

a20 =
∂2 f

∂xm+1∂xm+1
(0, 0, α), a11 =

∂2 f

∂xm+1∂xm+2
(0, 0, α),

a02 =
∂2 f

∂xm+2∂xm+2
(0, 0, α), a30 =

∂3 f

∂xm+1∂xm+1∂xm+1
(0, 0, α),

a21 =
∂3 f

∂xm+1∂xm+1∂xm+2
(0, 0, α), a12 =

∂3 f

∂xm+1∂xm+2∂xm+2
(0, 0, α),

a03 =
∂3 f

∂xm+2∂xm+2∂xm+2
(0, 0, α)

(16)
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b20 =
∂2g

∂x1∂x1
(0, 0, α), b11 =

∂2g

∂x1∂xm+2
(0, 0, α),

b02 =
∂2g

∂xm+2∂xm+2
(0, 0, α), b30 =

∂3g

∂x1∂x1∂x1
(0, 0, α),

b21 =
∂3g

∂x1∂x1∂xm+2
(0, 0, α), b12 =

∂3g

∂x1∂xm+2∂xm+2
(0, 0, α),

b03 =
∂3g

∂xm+2∂xm+2∂xm+2
(0, 0, α).

(17)

With (16) and (17) from (15) we have:

Proposition 2.4. ((Mircea et al., 2004)) (i) The Jacobian matrix associated to (15) in (0, 0)T is:

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 . . . 0 0
0 0 . . . 0 0
...

...
...

...
0 0 . . . 1 + a10 a01

b10 0 . . . 0 1 + b01

⎞
⎟⎟⎟⎟⎟⎠

. (18)

(ii) The characteristic equation of A is:

λm+2 − (2 + a10 + b01)λ
m+1 + (1 + a10)(1 + b01)λ − a01b10 = 0. (19)

(iii) If μ = μ(α) is an eigenvalue of (19), then the eigenvector q ∈ Cm+2, solution of the system
Aq = μq, has the components:

q1 = 1, qi = μi−1, i = 2, . . . , m + 1, qm+2 =
b10

μ − 1 − b01
. (20)

The eigenvector p ∈ Cm+2 defined by AT p = μp has the components

p1 =
(μ − 1 − a10)(μ − 1 − b01)

m(μ − 1 − a10)(μ − 1 − b01) + μ(2μ − 2 − a10 − b01)
, pi =

1

μi−1
p1, i = 2, . . . , m,

pm+1 =
1

μm−1(μ − 1 − a10)
p1, pm+2 =

μ

b10
p1.

(21)

The vectors q, p satisfy the condition:

< q, p >=
m+2

∑
i=1

qi pi = 1.

The proof is obtained by straight calculation from (15) and (18).

The following hypotheses are taken into account:

H1. The characteristic equation (19) has one pair of conjugate eigenvalues μ(α), μ(α) with
their absolute values equal to one, and the other eigenvalues have their absolute values less
than one.
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A =
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...
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...
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(ii) The characteristic equation of A is:

λm+2 − (2 + a10 + b01)λ
m+1 + (1 + a10)(1 + b01)λ − a01b10 = 0. (19)

(iii) If μ = μ(α) is an eigenvalue of (19), then the eigenvector q ∈ Cm+2, solution of the system
Aq = μq, has the components:
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μ − 1 − b01
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The eigenvector p ∈ Cm+2 defined by AT p = μp has the components

p1 =
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m(μ − 1 − a10)(μ − 1 − b01) + μ(2μ − 2 − a10 − b01)
, pi =

1

μi−1
p1, i = 2, . . . , m,

pm+1 =
1

μm−1(μ − 1 − a10)
p1, pm+2 =

μ

b10
p1.

(21)

The vectors q, p satisfy the condition:

< q, p >=
m+2

∑
i=1

qi pi = 1.

The proof is obtained by straight calculation from (15) and (18).

The following hypotheses are taken into account:
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H2. The eigenvalues μ(α), μ(α) intersect the unit circle for α = 0, and satisfy the transversality
condition

d

dα
|μ(α)|α=0 �= 0.

H3. If arg(μ(α)) = θ(α), and θ0 = θ(0), then eiθ0k �= 1, k = 1, 2, 3, 4.

From H2 we notice that for all |α| small enough, μ(α) is given by:

μ(α) = r(α)eiθ(α)

with r(0) = 1, θ(0) = θ0, r�(0) �= 0. Thus r(α) = 1 + β(α) where β(0) = 0 and β�(0) �= 0.
Taking β as a new parameter, we have:

μ(β) = (1 + β)eiθ(β) (22)

with θ(0) = θ0. From (22) for β < 0 small enough, the eigenvalues of the characteristic
equation (19) have their absolute values less than one, and for β > 0 small enough, the
characteristic equation has an eigenvalue with its absolute value greater than one. Using
the center manifold Theorem (Kuznetsov, 1995), application (15) has a family of invariant
manifolds of two dimension depending on the parameter β. The restriction of application (15)
to this manifold contains the essential properties of the dynamics for (13). The restriction of
application (15) is obtained using the expansion in Taylor series until the third order of the
right side of application (15).

2.5 The center manifold, the normal form
Consider the matrices:

A1 =

(
a20 a11

a11 a02

)
, C1 =

(
a30 a21

a21 a12

)
, D1 =

(
a21 a12

a12 a03

)

A2 =

(
b20 b11

b11 b02

)
, C2 =

(
b30 b21

b21 b12

)
, D2 =

(
b21 b12

b12 b03

)

with the coefficients given by (16) and (17).
Denoting by x = (x1, . . . , xm+2) ∈ IRm+2, application (15), is written as x → F(x), where
F(x)=(x2, . . . , xm, xm+1 + f (xm+1, xm+2, α), xm+2 + g(x1, xm+2, α)).

The following statements hold:
Proposition 2.5. (i) The expansion in Taylor series until the third order of function F(x) is:

F(x) = Ax +
1

2
B(x, x) +

1

6
C(x, x, x) +O(|§|�), (23)

where A is the matrix (18), and

B(x, x) = (0, . . . , 0, B1(x, x), B2(x, x))T ,

C(x, x, x) = (0, . . . , 0, C1(x, x, x), C2(x, x, x))T ,
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where:

B1(x, x) = (xm+1, xm+2)A1

(
xm+1

xm+2

)
, B2(x, x) = (x1, xm+2)A2

(
x1

xm+2

)
,

C1(x, x, x) = (xm+1, xm+2)(xm+1C1 + xm+2D1)

(
xm+1

xm+2

)
,

C2(x, x, x) = (x1, xm+2)(x1C2 + xm+2D2)

(
x1

xm+2

)
.

(24)

(ii) Any vector x ∈ IRm+2 admits the decomposition:

x = zq + z q + y, z ∈ C (25)

where zq + z q ∈ Tcenter, y ∈ Tstable; Tcenter is the vectorial space generated by the eigenvectors
corresponding to the eigenvalues of the characteristic equation (19) with their absolute values equal to
one and Tstable is the vectorial subspace generated by the eigenvectors corresponding to the eigenvalues
of the characteristic equation (19) with their absolute values less than 1. Moreover:

z =< p, x >, y = x− < p, x > q− < p, x > q. (26)

(iii) F(x) given by (23) has the decomposition:

F(x) = F1(z, z) + F2(y)

where

F1(z, z) = G1(z)q + G1(z1)q+ < p, N(zq + z q + y) > q+ < p, N(zq + z q + y) > q

G1(z) = μz+ < p, N(zq + z q + y) >

F2(y) = Ay + N(zq + z q + y)− < p, N(zq + z q + y) > q− < p, N(zq + z q + y) > q

(27)

and

N(zq + z q + y) =
1

2
B(zq + z q + y, zq + z q + y)+

+
1

6
C(zq + z q + y, zq + z q + y, zq + z q + y) + O(zq + zq + y)

(28)

(iv) The two-dimensional differential submanifold from IRm+2, given by x = zq + z q + V(z, z), z ∈

V0 ⊂ C, where V(z, z) = V(z, z), < p, V(z, z) >= 0,
∂V(z, z)

∂z
(0, 0) = 0, is tangent to the vectorial

space Tcenter in 0 ∈ C.

Proof. (i) Taking into account the expression of F(x) we obtain the expansion in Taylor series
until the third order (23).
(ii) Because IRm+2 = Tcenter ⊕ Tstable and < p, y >= 0, for any y ∈ Tstable, we obtain (25) and
(26).
(iii) Because F(x) ∈ IRm+2, with decomposition (25) and < p, q >= 1, < p, q >= 0, we have
(27).
(iv) Using the definition of the submanifold, this submanifold is tangent to Tcenter.
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H2. The eigenvalues μ(α), μ(α) intersect the unit circle for α = 0, and satisfy the transversality
condition

d

dα
|μ(α)|α=0 �= 0.

H3. If arg(μ(α)) = θ(α), and θ0 = θ(0), then eiθ0k �= 1, k = 1, 2, 3, 4.

From H2 we notice that for all |α| small enough, μ(α) is given by:

μ(α) = r(α)eiθ(α)

with r(0) = 1, θ(0) = θ0, r�(0) �= 0. Thus r(α) = 1 + β(α) where β(0) = 0 and β�(0) �= 0.
Taking β as a new parameter, we have:

μ(β) = (1 + β)eiθ(β) (22)

with θ(0) = θ0. From (22) for β < 0 small enough, the eigenvalues of the characteristic
equation (19) have their absolute values less than one, and for β > 0 small enough, the
characteristic equation has an eigenvalue with its absolute value greater than one. Using
the center manifold Theorem (Kuznetsov, 1995), application (15) has a family of invariant
manifolds of two dimension depending on the parameter β. The restriction of application (15)
to this manifold contains the essential properties of the dynamics for (13). The restriction of
application (15) is obtained using the expansion in Taylor series until the third order of the
right side of application (15).

2.5 The center manifold, the normal form
Consider the matrices:

A1 =

(
a20 a11

a11 a02

)
, C1 =

(
a30 a21

a21 a12

)
, D1 =

(
a21 a12

a12 a03

)

A2 =

(
b20 b11

b11 b02

)
, C2 =

(
b30 b21

b21 b12

)
, D2 =

(
b21 b12

b12 b03

)

with the coefficients given by (16) and (17).
Denoting by x = (x1, . . . , xm+2) ∈ IRm+2, application (15), is written as x → F(x), where
F(x)=(x2, . . . , xm, xm+1 + f (xm+1, xm+2, α), xm+2 + g(x1, xm+2, α)).

The following statements hold:
Proposition 2.5. (i) The expansion in Taylor series until the third order of function F(x) is:

F(x) = Ax +
1

2
B(x, x) +

1

6
C(x, x, x) +O(|§|�), (23)

where A is the matrix (18), and

B(x, x) = (0, . . . , 0, B1(x, x), B2(x, x))T ,

C(x, x, x) = (0, . . . , 0, C1(x, x, x), C2(x, x, x))T ,
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where:

B1(x, x) = (xm+1, xm+2)A1

(
xm+1

xm+2

)
, B2(x, x) = (x1, xm+2)A2

(
x1

xm+2

)
,

C1(x, x, x) = (xm+1, xm+2)(xm+1C1 + xm+2D1)

(
xm+1

xm+2

)
,

C2(x, x, x) = (x1, xm+2)(x1C2 + xm+2D2)

(
x1

xm+2

)
.

(24)

(ii) Any vector x ∈ IRm+2 admits the decomposition:

x = zq + z q + y, z ∈ C (25)

where zq + z q ∈ Tcenter, y ∈ Tstable; Tcenter is the vectorial space generated by the eigenvectors
corresponding to the eigenvalues of the characteristic equation (19) with their absolute values equal to
one and Tstable is the vectorial subspace generated by the eigenvectors corresponding to the eigenvalues
of the characteristic equation (19) with their absolute values less than 1. Moreover:

z =< p, x >, y = x− < p, x > q− < p, x > q. (26)

(iii) F(x) given by (23) has the decomposition:

F(x) = F1(z, z) + F2(y)

where

F1(z, z) = G1(z)q + G1(z1)q+ < p, N(zq + z q + y) > q+ < p, N(zq + z q + y) > q

G1(z) = μz+ < p, N(zq + z q + y) >

F2(y) = Ay + N(zq + z q + y)− < p, N(zq + z q + y) > q− < p, N(zq + z q + y) > q

(27)

and

N(zq + z q + y) =
1

2
B(zq + z q + y, zq + z q + y)+

+
1

6
C(zq + z q + y, zq + z q + y, zq + z q + y) + O(zq + zq + y)

(28)

(iv) The two-dimensional differential submanifold from IRm+2, given by x = zq + z q + V(z, z), z ∈

V0 ⊂ C, where V(z, z) = V(z, z), < p, V(z, z) >= 0,
∂V(z, z)

∂z
(0, 0) = 0, is tangent to the vectorial

space Tcenter in 0 ∈ C.

Proof. (i) Taking into account the expression of F(x) we obtain the expansion in Taylor series
until the third order (23).
(ii) Because IRm+2 = Tcenter ⊕ Tstable and < p, y >= 0, for any y ∈ Tstable, we obtain (25) and
(26).
(iii) Because F(x) ∈ IRm+2, with decomposition (25) and < p, q >= 1, < p, q >= 0, we have
(27).
(iv) Using the definition of the submanifold, this submanifold is tangent to Tcenter.
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The center manifold in (0, 0)T ∈ IR2 is a two dimensional submanifold from IRm+2 tangent to
Tcenter at 0 ∈ C and invariant with respect to the applications G1 and F2, given by (27). If
x = zq + z q + V(z, z), z ∈ V0 ⊂ C is the analytical expression of the tangent submanifold to
Tcenter, the invariant condition is written as:

V(G1(z), G1(z)) = F2(V(z, z)). (29)

From (27), (28) and (29) we find that x = zq + z q + V(z, z), z ∈ V0 is the center manifold if
and only if the relation:

V(μz+ < p, N(zq + z q + V(z, z) >, μz+ < p, N(zq + z q + V(z, z)) >) = AV(z, z)+

+N(zq + z q+V(z, z))−< p, N(zq+z q + V(z, z)) > q−< p, N(zq+z q+V(z, z)) > q
(30)

holds.
In what follows we consider the function V(z, z) of the form:

V(z, z) =
1

2
w20z2 + w11zz + w02z2 +O(|‡|�), ‡ ∈ V� ∈ IC. (31)

Proposition 2.6. (i) If V(z, z) is given by (31), and N(zq + z q + y), with y = V(z, z) is given by
(28), then:

G1(z) = μz +
1

2
g20z2 + g11zz + g02z2 +

1

2
g21z2z + . . . (32)

where:

g20 =< p, B(q, q) >, g11 =< p, B(q, q) >, g02 =< p, B(q, q) >

g21 =< p, B(q, w20) > +2 < p, B(q, w11) > + < p, C(q, q, q) > .
(33)

(ii) If V(z, z) is given by (31), relation (30) holds, if and only if w20, w11, w02 satisfy the relations:

(μ2 I − A)w20 = h20, (I − A)w11 = h11, (μ2 I − A)w02 = h02 (34)

where:

h20 = B(q, q)− < p, B(q, q) > q− < p, B(q, q) > q

h11 = B(q, q)− < p, B(q, q) > q− < p, B(q, q) > q

h02 = B(q, q)− < p, B(q, q) > q− < p, B(q, q) > q.

Proof. (i) Because B(x, x) is a bilinear form, C(x, x, x) is a trilinear form, and y = V(z, z), from
(28) and the expression of G1(z) given by (27), we obtain (32) and (33).
(ii) In (30), replacing V(z, z) with (32) and N(zq + z q + V(z, z)) given by (28), we find that
w20, w11, w02 satisfy the relations (31).
Let q ∈ IRm+2, p ∈ IRm+2 be the eigenvectors of the matrices A and AT corresponding to the
eigenvalues μ and μ given by (20) and (21) and:

a = B1(q, q), b = B2(q, q), a1 = B1(q, q), b1 = B2(q, q), C1 = C1(q, q, q), C2=C2(q, q, q),

r1
20 =B1(q, w20), r2

20=B2(q, w20), r1
11 = B1(q, w11), r2

11 = B2(q, w11),

(35)
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where B1, B2, C1, C2, are applications given by (24).

Proposition 2.7. (i) The coefficients g20, g11, g02 given by (33) have the expressions:

g20 = pm+1a + pm+2b, g11 = pm+1a1 + pm+2b1, g02 = pm+1a + pm+2b. (36)

(ii) The vectors h20, h11, h02 given by (34) have the expressions:

h20 = (0, . . . , 0, a, b)T − (pm+1a + pm+2b)q − (pm+1a + pm+2b)q

h11 = (0, . . . , 0, a, b)T − (pm+1a1 + pm+2b1)q − (pm+1a1 + pm+2b)q

h02 = h20.

(37)

(iii) The systems of linear equations (34) have the solutions:

w20 =

(
v1

20, μ2v1
20, . . . , μ2mv1

20,
a + (μ2 − a10)μ

2mv1
20

a01

)T

−
pm+1a + pm+2b

μ2 − μ
q −

pm+1a + pm+2

μ2 − μ
q

w11 =

(
v1

11, v1
11, . . . , v1

11,
a1 + (1 − a10)v

1
11

a01

)T

−
pm+1a1 + pm+2b1

1 − μ
q −

pm+1a1 + pm+2b1

1 − μ
q

w02 = w20, v1
20 =

aa01 − b(μ2 − b01)

(μ2 − a10)(μ2 − b01)μ2m − b10a01
, v1

11 =
b1a01 − a1(1 − b01)

(1 − a10)(1 − b01)− b10a01
.

(iv) The coefficient g21 given by (33) has the expression:

g21 = pm+1r1
20 + pm+2r2

20 + 2(pm+1r1
11 + pm+2r2

11) + pm+1C1 + pm+2C2. (38)

Proof. (i) The expressions from (36) are obtained from (33) using (35).
(ii) The expressions from (37) are obtained from (34) with the notations from (35).
(iii) Because μ2, μ2, 1 are not roots of the characteristic equation (19) then the linear systems
(34) are determined compatible systems. The relations (37) are obtained by simple calculation.
(iv) From (33) with (35) we obtain (38).

Consider the discrete-time dynamical system with delay given by (13), for which the roots of
the characteristic equation satisfy the hypotheses H1, H2, H3. The following statements hold:

Proposition 2.8. (i) The solution of the system (13) in the neighborhood of the fixed point (x, y) ∈ IR2,
is:

xn = x + qm+1zn + qm+1zn +
1

2
wm+1

20 z2
n + wm+1

11 znzn +
1

2
wm+1

02 z2
n

yn = y + qm+2zn + qm+2zn +
1

2
wm+2

20 z2
n + wm+2

11 znzn +
1

2
wm+2

02 z2
n

xn−m = un = x + q1zn + q1zn +
1

2
w1

20z2
n + w1

11znzn +
1

2
w1

02z2
n

(39)

where zn is a solution of the equation:

zn+1 = μzn +
1

2
g20z2

n + g11znzn +
1

2
g02z2

n +
1

2
g21z2

nzn (40)
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The center manifold in (0, 0)T ∈ IR2 is a two dimensional submanifold from IRm+2 tangent to
Tcenter at 0 ∈ C and invariant with respect to the applications G1 and F2, given by (27). If
x = zq + z q + V(z, z), z ∈ V0 ⊂ C is the analytical expression of the tangent submanifold to
Tcenter, the invariant condition is written as:

V(G1(z), G1(z)) = F2(V(z, z)). (29)

From (27), (28) and (29) we find that x = zq + z q + V(z, z), z ∈ V0 is the center manifold if
and only if the relation:

V(μz+ < p, N(zq + z q + V(z, z) >, μz+ < p, N(zq + z q + V(z, z)) >) = AV(z, z)+

+N(zq + z q+V(z, z))−< p, N(zq+z q + V(z, z)) > q−< p, N(zq+z q+V(z, z)) > q
(30)

holds.
In what follows we consider the function V(z, z) of the form:

V(z, z) =
1

2
w20z2 + w11zz + w02z2 +O(|‡|�), ‡ ∈ V� ∈ IC. (31)

Proposition 2.6. (i) If V(z, z) is given by (31), and N(zq + z q + y), with y = V(z, z) is given by
(28), then:

G1(z) = μz +
1

2
g20z2 + g11zz + g02z2 +

1

2
g21z2z + . . . (32)

where:

g20 =< p, B(q, q) >, g11 =< p, B(q, q) >, g02 =< p, B(q, q) >

g21 =< p, B(q, w20) > +2 < p, B(q, w11) > + < p, C(q, q, q) > .
(33)

(ii) If V(z, z) is given by (31), relation (30) holds, if and only if w20, w11, w02 satisfy the relations:

(μ2 I − A)w20 = h20, (I − A)w11 = h11, (μ2 I − A)w02 = h02 (34)

where:

h20 = B(q, q)− < p, B(q, q) > q− < p, B(q, q) > q

h11 = B(q, q)− < p, B(q, q) > q− < p, B(q, q) > q

h02 = B(q, q)− < p, B(q, q) > q− < p, B(q, q) > q.

Proof. (i) Because B(x, x) is a bilinear form, C(x, x, x) is a trilinear form, and y = V(z, z), from
(28) and the expression of G1(z) given by (27), we obtain (32) and (33).
(ii) In (30), replacing V(z, z) with (32) and N(zq + z q + V(z, z)) given by (28), we find that
w20, w11, w02 satisfy the relations (31).
Let q ∈ IRm+2, p ∈ IRm+2 be the eigenvectors of the matrices A and AT corresponding to the
eigenvalues μ and μ given by (20) and (21) and:

a = B1(q, q), b = B2(q, q), a1 = B1(q, q), b1 = B2(q, q), C1 = C1(q, q, q), C2=C2(q, q, q),

r1
20 =B1(q, w20), r2

20=B2(q, w20), r1
11 = B1(q, w11), r2

11 = B2(q, w11),

(35)
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where B1, B2, C1, C2, are applications given by (24).

Proposition 2.7. (i) The coefficients g20, g11, g02 given by (33) have the expressions:

g20 = pm+1a + pm+2b, g11 = pm+1a1 + pm+2b1, g02 = pm+1a + pm+2b. (36)

(ii) The vectors h20, h11, h02 given by (34) have the expressions:

h20 = (0, . . . , 0, a, b)T − (pm+1a + pm+2b)q − (pm+1a + pm+2b)q

h11 = (0, . . . , 0, a, b)T − (pm+1a1 + pm+2b1)q − (pm+1a1 + pm+2b)q

h02 = h20.

(37)

(iii) The systems of linear equations (34) have the solutions:

w20 =

(
v1

20, μ2v1
20, . . . , μ2mv1

20,
a + (μ2 − a10)μ

2mv1
20

a01

)T

−
pm+1a + pm+2b

μ2 − μ
q −

pm+1a + pm+2

μ2 − μ
q

w11 =

(
v1

11, v1
11, . . . , v1

11,
a1 + (1 − a10)v

1
11

a01

)T

−
pm+1a1 + pm+2b1

1 − μ
q −

pm+1a1 + pm+2b1

1 − μ
q

w02 = w20, v1
20 =

aa01 − b(μ2 − b01)

(μ2 − a10)(μ2 − b01)μ2m − b10a01
, v1

11 =
b1a01 − a1(1 − b01)

(1 − a10)(1 − b01)− b10a01
.

(iv) The coefficient g21 given by (33) has the expression:

g21 = pm+1r1
20 + pm+2r2

20 + 2(pm+1r1
11 + pm+2r2

11) + pm+1C1 + pm+2C2. (38)

Proof. (i) The expressions from (36) are obtained from (33) using (35).
(ii) The expressions from (37) are obtained from (34) with the notations from (35).
(iii) Because μ2, μ2, 1 are not roots of the characteristic equation (19) then the linear systems
(34) are determined compatible systems. The relations (37) are obtained by simple calculation.
(iv) From (33) with (35) we obtain (38).

Consider the discrete-time dynamical system with delay given by (13), for which the roots of
the characteristic equation satisfy the hypotheses H1, H2, H3. The following statements hold:

Proposition 2.8. (i) The solution of the system (13) in the neighborhood of the fixed point (x, y) ∈ IR2,
is:

xn = x + qm+1zn + qm+1zn +
1

2
wm+1

20 z2
n + wm+1

11 znzn +
1

2
wm+1

02 z2
n

yn = y + qm+2zn + qm+2zn +
1

2
wm+2

20 z2
n + wm+2

11 znzn +
1

2
wm+2

02 z2
n

xn−m = un = x + q1zn + q1zn +
1

2
w1

20z2
n + w1

11znzn +
1

2
w1

02z2
n

(39)

where zn is a solution of the equation:

zn+1 = μzn +
1

2
g20z2

n + g11znzn +
1

2
g02z2

n +
1

2
g21z2

nzn (40)
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and the coefficients from (40) are given by (36) and (38).

(ii) There is a complex change variable, so that equation (40) becomes:

wn+1 = μ(β)wn + C1(β)w2
nwn +O(|�\|

�) (41)

where:

C1(β) =
g20(β)g11(β)(μ(β)− 3 − 2μ(β))

2(μ(β)2 − μ(β))(μ(β)− 1)
+

|g11(β)|2

1 − μ(β)
+

|g02(β)|2

2(μ2(β)− μ(β))
+

g21(β)

2
.

(iii) Let l0 = Re(e−iθ0C1(0)), where θ0 = arg(μ(0)). If l0 < 0, in the neighborhood of the fixed point
(x, y) there is an invariant stable limit cycle.

Proof. (i) From Proposition 2.6, application (15) associated to (13) has the canonical form (40).
A solution of system (40) leads to (39).
(ii) In equation (40), making the following complex variable change

z = w +
g20

2(μ2 − μ)
w2 +

g11

|μ|2 − μ
ww +

g02

2(μ2 − μ)
w2+

+
g30

6(μ3 − μ)
w3 +

g12

2(μ|μ|2 − μ)
ww2 +

g03

6(μ3 − μ)
w3,

for β small enough, equation (41) is obtained. The coefficients g20, g11, g02 are given by (36)
and

g30 = pm+1C1(q, q, q) + pm+2C2(q, q, q),

g12 = pm+1C1(q, q, q) + pm+2C2(q, q, q)

g03 = pm+1C1(q, q, q) + pm+2C2(q, q, q).

(iii) The coefficient C1(β) is called resonant cubic coefficient, and the sign of the coefficient l0,
establishes the existence of a stable or unstable invariant limit cycle (attractive or repulsive)
(Kuznetsov, 1995).

3. Neimark-Sacker bifurcation in a discrete time dynamic system for Internet
congestion.

The model of an Internet network with one link and single source, which can be formulated
as:

ẋ(t) = k(w − a f (x(t − τ))) (42)

where: k > 0, x(t) is the sending rate of the source at the time t, τ is the sum of forward
and return delays, w is a target (set-point), and the congestion indication function f : IR+ →
IR+ is increasing, nonnegative, which characterizes the congestion. Also, we admit that f is
nonlinear and its third derivative exists and it is continuous.
The model obtained by discretizing system (42) is given by:

xn+1 = xn − ak f (xn−m) + kw (43)

for n, m ∈ IN, m > 0 and it represents the dynamical system with discrete-time for Internet
congestion with one link and a single source.
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Using the change of variables x1 = xn−m, . . . , xm = xn−1, xm+1 = xn, the application
associated to (43) is:

⎛
⎜⎜⎜⎝

x1

...
xm

xm+1

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

x2

...

xm+1

kw − ak f (x1) + xm+1

⎞
⎟⎟⎟⎠ . (44)

The fixed point of (44) is (x∗, . . . , x∗)T ∈ IRm+1, where x∗ satisfies relation w = a f (x∗). With
the translation x → x + x∗ , application (44) can be written as:

⎛
⎜⎜⎜⎝

x1

...
xm

xm+1

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

x2

...

xm+1

kw − akg(x1) + xm+1

⎞
⎟⎟⎟⎠ (45)

where g(x1) = f (x1 + x∗).
The following statements hold:

Proposition 3.1. ((Mircea et al., 2004)) (i) The Jacobian matrix of (45) in 0 ∈ IRm+1 is

A =

⎛
⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1

−akρ1 0 0 . . . 1

⎞
⎟⎟⎟⎟⎠

(46)

where ρ1 = g�(0).

(ii) The characteristic equation of A is:

λm+1 − λm + akρ1 = 0. (47)

(iii) If μ ∈ C is a root of (47), the eigenvector q ∈ IRm+1 that corresponds to the eigenvalue μ, of the
matrix A, has the components:

qi = μi−1, i = 1, . . . , m + 1

and the components of the eigenvector p ∈ IRm+1 corresponding to μ of the matrix AT are:

p1 = −
akρ1

μm+1 − makρ1
, pi =

1

μi−1
p1, i = 2, . . . , m − 1, pm =

μ2 − μ

pρ1
p1, pm+1 = −

μ

akρ1
p1.

The vectors p ∈ IRm+1, q ∈ IRm+1 satisfy the relation
m+1

∑
i=1

piqi = 1.

The following statements hold:
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and the coefficients from (40) are given by (36) and (38).

(ii) There is a complex change variable, so that equation (40) becomes:

wn+1 = μ(β)wn + C1(β)w2
nwn +O(|�\|

�) (41)

where:

C1(β) =
g20(β)g11(β)(μ(β)− 3 − 2μ(β))

2(μ(β)2 − μ(β))(μ(β)− 1)
+

|g11(β)|2

1 − μ(β)
+

|g02(β)|2

2(μ2(β)− μ(β))
+

g21(β)

2
.

(iii) Let l0 = Re(e−iθ0C1(0)), where θ0 = arg(μ(0)). If l0 < 0, in the neighborhood of the fixed point
(x, y) there is an invariant stable limit cycle.

Proof. (i) From Proposition 2.6, application (15) associated to (13) has the canonical form (40).
A solution of system (40) leads to (39).
(ii) In equation (40), making the following complex variable change

z = w +
g20

2(μ2 − μ)
w2 +

g11

|μ|2 − μ
ww +

g02

2(μ2 − μ)
w2+

+
g30

6(μ3 − μ)
w3 +

g12

2(μ|μ|2 − μ)
ww2 +

g03

6(μ3 − μ)
w3,

for β small enough, equation (41) is obtained. The coefficients g20, g11, g02 are given by (36)
and

g30 = pm+1C1(q, q, q) + pm+2C2(q, q, q),

g12 = pm+1C1(q, q, q) + pm+2C2(q, q, q)

g03 = pm+1C1(q, q, q) + pm+2C2(q, q, q).

(iii) The coefficient C1(β) is called resonant cubic coefficient, and the sign of the coefficient l0,
establishes the existence of a stable or unstable invariant limit cycle (attractive or repulsive)
(Kuznetsov, 1995).

3. Neimark-Sacker bifurcation in a discrete time dynamic system for Internet
congestion.

The model of an Internet network with one link and single source, which can be formulated
as:

ẋ(t) = k(w − a f (x(t − τ))) (42)

where: k > 0, x(t) is the sending rate of the source at the time t, τ is the sum of forward
and return delays, w is a target (set-point), and the congestion indication function f : IR+ →
IR+ is increasing, nonnegative, which characterizes the congestion. Also, we admit that f is
nonlinear and its third derivative exists and it is continuous.
The model obtained by discretizing system (42) is given by:

xn+1 = xn − ak f (xn−m) + kw (43)

for n, m ∈ IN, m > 0 and it represents the dynamical system with discrete-time for Internet
congestion with one link and a single source.
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Using the change of variables x1 = xn−m, . . . , xm = xn−1, xm+1 = xn, the application
associated to (43) is:

⎛
⎜⎜⎜⎝

x1

...
xm

xm+1

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

x2

...

xm+1

kw − ak f (x1) + xm+1

⎞
⎟⎟⎟⎠ . (44)

The fixed point of (44) is (x∗, . . . , x∗)T ∈ IRm+1, where x∗ satisfies relation w = a f (x∗). With
the translation x → x + x∗ , application (44) can be written as:

⎛
⎜⎜⎜⎝

x1

...
xm

xm+1

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

x2

...

xm+1

kw − akg(x1) + xm+1

⎞
⎟⎟⎟⎠ (45)

where g(x1) = f (x1 + x∗).
The following statements hold:

Proposition 3.1. ((Mircea et al., 2004)) (i) The Jacobian matrix of (45) in 0 ∈ IRm+1 is

A =

⎛
⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1

−akρ1 0 0 . . . 1

⎞
⎟⎟⎟⎟⎠

(46)

where ρ1 = g�(0).

(ii) The characteristic equation of A is:

λm+1 − λm + akρ1 = 0. (47)

(iii) If μ ∈ C is a root of (47), the eigenvector q ∈ IRm+1 that corresponds to the eigenvalue μ, of the
matrix A, has the components:

qi = μi−1, i = 1, . . . , m + 1

and the components of the eigenvector p ∈ IRm+1 corresponding to μ of the matrix AT are:

p1 = −
akρ1

μm+1 − makρ1
, pi =

1

μi−1
p1, i = 2, . . . , m − 1, pm =

μ2 − μ

pρ1
p1, pm+1 = −

μ

akρ1
p1.

The vectors p ∈ IRm+1, q ∈ IRm+1 satisfy the relation
m+1

∑
i=1

piqi = 1.

The following statements hold:

491Discrete Deterministic and Stochastic Dynamical Systems with Delay - Applications



Proposition 3.2. (i) If m = 2, equation (47) becomes:

λ3 − λ2 + akρ1 = 0. (48)

Equation (48) has two complex roots with their absolute values equal to 1 and one root with the absolute

value less than 1, if and only if k =

√
5 − 1

2aρ1
. For k = k0 =

√
5 − 1

2aρ1
, equation (48) has the roots:

λ1,2 = exp (±iθ(k0)i),

θ(a0) = arccos
1 +

√
5

4
. (49)

(ii) With respect to the change of parameter

k = k(β) = k0 + g(β)

where:

g(β) =

√
1 + 4(1 + β)6 − (1 + β)2 −

√
5 + 1

2k0ρ1

equation (49) becomes:
λ3 − λ2 + ak(β)ρ1 = 0. (50)

The roots of equation (50) are:

μ1,2(β) = (1 + β)exp (±iω(β)), λ(β) = −
ak(β)ρ1

(1 + β)2

where:

ω(β) = arccos
(1 + β)2 +

√
1 + 4(1 + β)6

4(1 + β)2
.

(iii) The eigenvector q ∈ IR3, associated to the μ = μ(β), for the matrix A has the components:

q1 = 1, q2 = μ, q3 = μ2

and the eigenvector p ∈ IR3 associated to the eigenvalue μ = μ(β) for the matrix AT has the
components:

p1 =
akρ1

2akρ1 − μ3
, p2 =

μ2

μ3 − 2akρ1
, p3 =

μ

μ3 − 2akρ1
.

(iv) a0 is a Neimark-Sacker bifurcation point.

Using Proposition 3.2, we obtain:

Proposition 3.3. The solution of equation (43) in the neighborhood of the fixed point x∗ ∈ IR is:

un = x∗ + zn + zn +
1

2
w1

20z2
n + w1

11znzn +
1

2
w1

02z2
n

xn = x∗ + q3zn + q3zn +
1

2
w3

20z2
n + w3

11znzn +
1

2
w3

02z2
n
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where:

w1
20 =

μ2(μ2 − 1)h1
20 − (μ2 − 1)h2

20 + h3
20

μ6 − μ4 + akρ1
, w2

20 = μ2w1
20 − h1

20, w3
20 = μ4w1

20 − μ2h1
20 − h2

20

w1
11 =

h3
11

akρ1
, w2

11 = w1
11 − h1

11, w3
11 = w1

11 − h1
11 − h2

11

h1
20 = 4akρ2(p3 + p3), h2

20 = akρ1(p3q2 + p3q2), h3
20 = 4akρ2(1 + p3q3 + p3q3)

h1
11 = h1

20, h2
11 = h2

20, h3
11 = h3

20

and zn ∈ C is a solution of equation:

zn+1 = μzn −
1

2
p3akρ2(z

2
n + 2znzn + z2

n) +
1

2
p3(−kaρ1w1

20 − kaρ1w1
11 + ρ3),

rho1 = f �(0), ρ2 = f ��(0), ρ3 = f ���(0).
Let

C1(β) = −
p3a2k2ρ2

2(μ − 3 − 2μ)

2(μ2 − μ)(μ − 1)
+

a2k2ρ2
2|p3|

2

1 − μ
+

ak|ρ2 p3|

2(μ2 − μ)
+ p3(−akρ1w1

20 − akρ1w1
11 + ρ3)

and
l(0) = Re(exp (−iθ(a0))C1(0)).

If l(0) < 0, the Neimark–Sacker bifurcation is supercritical (stable).

The model of an Internet network with r links and a single source, can be analyzed in a similar
way.
The perturbed stochastic equation of (43) is:

xn+1 = xn − αk f (xn−m) + kw + ξnb(xn − x∗) (51)

and x∗ satisfies the relation w = a f (x∗), where E(ξn) = 0, E(ξ2
n) = σ > 0.

We study the case m = 2. Using (46) the linearized equation of (51) has the matrices:

A1 =

⎛
⎝

0 1 0
0 0 1

−akρ1 0 1

⎞
⎠ , B =

⎛
⎝

0 0 0
0 0 0
0 0 b

⎞
⎠

Using Proposition 2.1, the characteristic polynomial of the linearized system of (51) is given
by:

P2(λ) = (λ3 − (1 + σb2)λ2 − a2k2ρ2
1)(λ

3 + akρ1λ + a2k2ρ2
1).

If the roots of P2(λ) have their absolute values less than 1, then the square mean values of the
solutions for the linearized system of (51) are asymptotically stable. The analysis of the roots
for the equation P2(λ) = 0 can be done for fixed values of the parameters.
The numerical simulation can be done for: w = 0.1, a = 8 and f (x) = x2/(20 − 3x).
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and
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The model of an Internet network with r links and a single source, can be analyzed in a similar
way.
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and x∗ satisfies the relation w = a f (x∗), where E(ξn) = 0, E(ξ2
n) = σ > 0.

We study the case m = 2. Using (46) the linearized equation of (51) has the matrices:
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by:

P2(λ) = (λ3 − (1 + σb2)λ2 − a2k2ρ2
1)(λ

3 + akρ1λ + a2k2ρ2
1).

If the roots of P2(λ) have their absolute values less than 1, then the square mean values of the
solutions for the linearized system of (51) are asymptotically stable. The analysis of the roots
for the equation P2(λ) = 0 can be done for fixed values of the parameters.
The numerical simulation can be done for: w = 0.1, a = 8 and f (x) = x2/(20 − 3x).

493Discrete Deterministic and Stochastic Dynamical Systems with Delay - Applications



4. A discrete economic game with delay

The economic game is described by a number of firms that enter the market with a
homogeneous consumption product at different moments n, where n ∈ IN. In what follows
we consider two firms F1, F2 and x, y the state variables of the model that represent the
firms’outputs. The price function of the product (the inverse demand function) is p : IR+ →
IR+, derivable function with lim

x→∞
p(x) = 0, lim

x→0+
p(x) = ∞ and p�(x) < 0. The cost functions

are Ci : IR+ → IR+, i = 1, 2, derivable functions with C�
i(x) �= 0, C��

i (x) ≥ 0. The profit

functions of the firms, πi : IR2
+ → IR+, i = 1, 2, are given by:

π1(x, y) = p(x + y)x − C1(x), π2(x, y) = p(x + y)y − C2(y).

The non-cooperative game F1, F2, denoted by Γ = (IR2
+, π1, π2) is called deterministic economic

game. The Nash solution of Γ is called the solution of the deterministic economic game.
From the definition of the Nash solution, we find that the solution of the deterministic
economic game is given by the quantities (x, y)T ∈ IR2

+ for which the profit of each firm is
maximum. Thus, the Nash solution is the solution of the following system:

�
π1x = p�(x + y)x + p(x + y)− C�

1(x) = 0

π2y = p�(x + y)y + p(x + y)− C�
2(y) = 0.

(52)

A solution (x, y)T ∈ IR2
+ of (52) is a (local) maximum for πi, i = 1, 2 if and only if:

p��(x + y)x + 2p�(x + y) < C��
1 (x), p��(x + y)y + 2p�(x + y) < C��

2 (y).

At each moment n, n ∈ IN the firms adjust their quantities xn, yn, proportionally to the

marginal profits
∂π1

∂x
,

∂π2

∂y
. The quantities from the n + 1 moment satisfy the relations:

xn+1 = xn + k(p�(xn + yn)xn + p(xn + yn)− C�
1(xn))

yn+1 = yn + α(p�(xn−m + yn)yn + p(xn−m + yn)− C�
2(yn))

(53)

where m ∈ IN, m ≥ 1.
System (53) is a discrete dynamic economic game with delay.
With respect to the change of variables x1 = xn−m, . . . , xm = xn−1, xm+1 = xn, xm+2 = yn the
application associated to (53) is:

⎛
⎜⎜⎜⎜⎜⎝

x1

...
xm

xm+1

xm+2

⎞
⎟⎟⎟⎟⎟⎠
→

⎛
⎜⎜⎜⎜⎜⎝

x2

...

xm+1

xm+1+k(p�(xm+1+xm+2)xm+1+p(xm+1+xm+2)−C�
1(x

m+1))
xm+2+α(p�(x1+xm+2)xm+2+p(x1+xm+2)−C�

2(x
m+2))

⎞
⎟⎟⎟⎟⎟⎠

. (54)

The fixed point of (54) is the point with the coordinates (x0, . . . , x0, y0) ∈ IRm+2 where (x0, y0)
is the solution of the following system:

p�(x + y)x + p(x + y)− C�
1(x) = 0, p�(x + y)y + p(x + y)− C�

2(y) = 0 (55)
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In what follows we use the notations:

ρi = p(i)(x + y), μi1 = C
(i)
1 (x), μi2 = C

(i)
2 (y), i = 1, 2, 3, 4 (56)

the derivatives of i = 1, 2, 3, 4 order of the functions p, C1, C2 in the point (x, y),

a10 = ρ2x + 2ρ1 − μ21, a01 = ρ2x + ρ1, a20 = ρ3x + 3ρ2 − μ31, a11 = ρ3x + 2ρ2,

a02 = ρ3x + ρ2, a30 = ρ4x + 4ρ3 − μ41, a21 = ρ4x + 3ρ3, a12 = ρ4x + 2ρ3, a03 = ρ4x + 2ρ3,

(57)

b10 = ρ2y + ρ1, b01 = ρ2y + 2ρ1 − μ22, b20 = ρ3y + ρ2, b11 = ρ3y + 2ρ2, b02 = ρ3y + 3ρ2 − μ32,

b30=ρ4y+2ρ3, b21=ρ4y+2ρ3, b12=ρ4y+3ρ3, b03=ρ4y+4ρ3−μ42, d1 = b01+k(a10b01−a01b10).

(58)

Proposition 4.1. ((Neamţu, 2010)) (i) The Jacobian matrix of the application (54) in (x0, . . . , x0, y0)
is:

A =

⎛
⎜⎜⎜⎜⎝

0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 . . . . . . 1 0
0 . . . . . . 1 + ka10 ka01

αb10 0 . . . 0 1 + αb01

⎞
⎟⎟⎟⎟⎠

. (59)

(ii) The characteristic equation of A given by (59) is:

λm+2 − aλm+1 + bλm − c = 0

where

a = 2 + ka10 + αb01, b = (1 + ka10)(1 + αb01), c = kαa01b10.

(iii) The eigenvector q ∈ IRm+2, which corresponds to the eigenvalue μ of the matrix A and satisfies
the system Aq = μq, has the components:

qi = μi−1, i = 1, . . . , m + 1, qm+2 =
αb10

μ − 1 − αb01
. (60)

The eigenvector p ∈ IRm+2, which corresponds to the eigenvalue μ of the matrix A and satisfies the
system AT p = μp, has the components:

p1 =
(μ − 1 − ka10)(μ − 1 − αb10)

m(μ − 1 − ka10)(μ − 1 − kb01) + μ(2μ − 2 − ka10 − αb01)

pi =
1

μi−1
, i = 2, . . . , m − 2, pm+1 =

1

μm−1(μ − 1 − ka10)
p1, pm+2 =

μ

αb10
p1.

(61)

The vectors q, p given by (60) and (61) satisfy the condition

< q, p >=
m+2

∑
i=1

qi pi = 1.
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The fixed point of (54) is the point with the coordinates (x0, . . . , x0, y0) ∈ IRm+2 where (x0, y0)
is the solution of the following system:

p�(x + y)x + p(x + y)− C�
1(x) = 0, p�(x + y)y + p(x + y)− C�

2(y) = 0 (55)
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In what follows we use the notations:

ρi = p(i)(x + y), μi1 = C
(i)
1 (x), μi2 = C

(i)
2 (y), i = 1, 2, 3, 4 (56)

the derivatives of i = 1, 2, 3, 4 order of the functions p, C1, C2 in the point (x, y),
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a02 = ρ3x + ρ2, a30 = ρ4x + 4ρ3 − μ41, a21 = ρ4x + 3ρ3, a12 = ρ4x + 2ρ3, a03 = ρ4x + 2ρ3,

(57)

b10 = ρ2y + ρ1, b01 = ρ2y + 2ρ1 − μ22, b20 = ρ3y + ρ2, b11 = ρ3y + 2ρ2, b02 = ρ3y + 3ρ2 − μ32,

b30=ρ4y+2ρ3, b21=ρ4y+2ρ3, b12=ρ4y+3ρ3, b03=ρ4y+4ρ3−μ42, d1 = b01+k(a10b01−a01b10).

(58)

Proposition 4.1. ((Neamţu, 2010)) (i) The Jacobian matrix of the application (54) in (x0, . . . , x0, y0)
is:

A =

⎛
⎜⎜⎜⎜⎝

0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 . . . . . . 1 0
0 . . . . . . 1 + ka10 ka01

αb10 0 . . . 0 1 + αb01

⎞
⎟⎟⎟⎟⎠

. (59)

(ii) The characteristic equation of A given by (59) is:

λm+2 − aλm+1 + bλm − c = 0

where

a = 2 + ka10 + αb01, b = (1 + ka10)(1 + αb01), c = kαa01b10.

(iii) The eigenvector q ∈ IRm+2, which corresponds to the eigenvalue μ of the matrix A and satisfies
the system Aq = μq, has the components:

qi = μi−1, i = 1, . . . , m + 1, qm+2 =
αb10

μ − 1 − αb01
. (60)

The eigenvector p ∈ IRm+2, which corresponds to the eigenvalue μ of the matrix A and satisfies the
system AT p = μp, has the components:

p1 =
(μ − 1 − ka10)(μ − 1 − αb10)

m(μ − 1 − ka10)(μ − 1 − kb01) + μ(2μ − 2 − ka10 − αb01)

pi =
1

μi−1
, i = 2, . . . , m − 2, pm+1 =

1

μm−1(μ − 1 − ka10)
p1, pm+2 =

μ

αb10
p1.

(61)

The vectors q, p given by (60) and (61) satisfy the condition

< q, p >=
m+2

∑
i=1

qi pi = 1.
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The proof follows by direct calculation.

If m = 1, the following statements hold:

Proposition 4.2. (i) If k �=
b01

a01b10
and

(k(a01b10 − b01a10)− b01)
2 + 4ka10a01b10(b01 − ka01k10) ≥ 0

and α0 is a solution of the equation:

ka01b10(b01 − ka01b10)α
2 + (k(a01b10 − b01a10)− b01)α − ka10 = 0

so that:
α0k|a01b10| < 1, |(b01 − ka01b10)α0 + λ + ka10| < 2,

then the equation:
λ3 − a0λ2 + b0λ − c0 = 0 (62)

has two roots with their absolute value equal to 1 and one root with its absolute value less than 1, where:

a0 = 2 + ka10 + α0b01, b0 = (1 + ka10)(1 + α0b01), c0 = ka01b10α0. (63)

(ii) If for |β| small enough, Δ1(β) ≥ 0, where

Δ1(β) = ((1 + β)2(b01c0 + ka01b10a0)− 2c0ka01b10 − (1 + β)4b01(1 + ka10))
2−

−4ka01b10(b01(1+β)2−ka01b10)((1+β)2a0c0−c2
0+(1+β)4(1+a0c0−c2

0)+(1+β)6),

and a0, b0, c0 given by (63), then there is g : IR → IR, with g(0) = 0, g�(0) �= 0 so that the variable
change:

α = α(β) = α0 + g(β)

transforms equation (62) in equation:

λ3 − a(β)λ2 + b(β)λ − c(β) = 0 (64)

Equation (64) admits the solutions:

μ1,2(β) = (1 + β)e±iθ(β), θ(β) = arccos
a(β)(1 + β)2 − c(β)

2(1 + β)3
, λ(β) =

c(β)

(1 + β)2
(65)

where:

g(β)=
2c0ka01b10+(1+β)4b01(1+ka10)−(1+β)2(b01c0+ka01b01a0)+

√
Δ1(β)

2ka01b10(b01|1+β|2−ka01b10)
,

a(β) = a0 + b01g(β), b(β) = b0 + b01(1 + ka10)g(β), c(β) = c0 + ka01b10g(β).

For m = 1, the model of a discrete economic game with delay (53) is written as:

xn+1 = xn + k(p�(xn + yn)xn + p(xn + yn)− C�
1(xn))

yn+1 = yn + α(p�(xn−1 + yn)yn + p(xn−1 + yn)− C�
2(yn)).

(66)
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We have:

Proposition 4.3. (i) The solution of (66) in the neighborhood of (x, x, y) ∈ IR3 is:

xn = x + q2zn + q2zn +
1

2
w2

20z2
n + w2

11znzn +
1

2
w2

02z2
n,

yn = y + q3zn + q3zn +
1

2
w3

20z2
n + w3

11znzn + w3
02z2

n,

un = xn−1 = x + q1zn + q1zn +
1

2
w1

20z2
n + w1

11znzn + w1
02z2

n,

(67)

where zn is a solution of the equation:

zn = μ(β)zn +
1

2
g20z2

n + g11znzn +
1

2
g02z2

n +
1

2
g21z2

nzn (68)

and the coefficients from (67) and (68) are given by (36) and (38) for m = 1, where
a10, a01, a20, a11, a02, a30, a21, a12, a03 are given by (57) and q ∈ IR3, p ∈ IR3 are given by (60), (61)
for m = 1.

(ii) If l0 = Re(e−iθ(0)C1(0)), where θ(β) is given by (65) and then if l0 < 0 in the neighborhood of
the fixed point (x, y) there is a stable limit cycle.
For m = 2, the results are obtained in a similar way to Proposition 2.3.

We will investigate an economic game where the price function is p(x) =
1

x
, x �= 0, and the cost

functions are Ci(x) = cix + bi, with ci > 0, i = 1, 2.

The following statements hold:

Proposition 4.4. (i) The fixed point of the application (54) is (x, . . . , x, y) ∈ IRm+2 where:

x =
c2

(c1 + c2)2
,

y =
c1

(c1 + c2)2
. (69)

(ii) The coefficients (56), (57) and (58) are:

ρ1 = −(c1 + c2)
2, ρ2 = 2(c1 + c2)

3, ρ3 = −6(c1 + c2)
4, ρ4 = 24(c1 + c2)

5,

a10 = −2c1(c1 + c2), a01 = c2
2 − c2

1, a11 = −2(c1 + c2)
3, a02 = 2(c1 + c2)

2(c1 − 2c2),

a20 = 6c1(c1 + c2)
2, a12 = 12(c1 + c2)

3(c2 − c1), a21 = 6(c1 + c2)
3(c2 − 3c1), a21 = a12,

a30 = −24c1(c1 + c2)
3, b10 = c2

1 − c2
2, b01 = −2c2(c1 + c2), b20 = 2(c1 + c2)

2(c2 − 2c1),

b11 = 2(c1 + c2)
2(2c2 − c1), b02 = 6c2(c1 + c2)

2, b30 = 12(c1 + c2)
3(c1 − c2), b21 = b30,

b12 = 6(c1 + c2)
3(c1 − 3c2), b03 = −24c2(c1 + c2)

3.

(iii) The solutions of system (66) in the neighborhood of the fixed point (x, x, y) ∈ IR3 is given by (67).
The coefficients from (67), (68) are:

g20 = p2a + p3b, g11 = p2a1 + p3b1, g02 = p2a + p3b,

g21 = p2r1
20 + p3r2

20 + 2(p2r1
11 + p3r2

11) + p2C1 + p2C2,
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a = (q2, q3)A1(q2, q3)
T ,

b = (q1, q3)A2(q1, q3)
T ,

a1 = (q2, q3)A1(q2, q3)
T ,

b1 = (q1, q3)A2(q1, q3)
T ,

C1 = (q2, q3)(q2A11 + q3A12)(q2, q3)
T, C2 = (q1, q3)(q1 A21 + q3 A22)(q1, q3)

T,

r1
20 = (q2, q3)A1(w

2
20, w3

20)
T, r2

20 = (q1, q3)A2(w
1
20, w3

20)
T ,

r1
11 = (q2, q3)A1(w

2
11, w3

11)
T, r2

11 = (q1, q3)A2(w
1
11, w3

11)
T ,

w1
20 = v20 −

p2a + p3b

μ2 − μ
−

p2a + p3b

μ2 − μ
,

w2
20 = μ2v20 −

p2a + p3b

μ2 − μ
q2 −

p2a + p3b

μ2 − μ
q2,

w3
20 =

a+(μ2−a10)μ
2v20

a01
−

p2a+p3b

μ2−μ
q3−

p2a+p3b

μ2−μ
q3,

w1
02 = w1

20, w2
02 = w2

20, w3
02 = w3

20

w1
11 = v11 −

p2a1 + p3b1

1 − μ
−

p2a1 + p3b1

1 − μ
,

w2
11 = v11 −

p2a1 + p3b1

1 − μ
q2 −

p2a1 + p3b1

1 − μ
q2,

w3
11 =

a1 + (1 − a10)v11

a01
−

p2a1 + p3b1

1 − μ
q3 −

p2a1 + p3b1

1 − μ
q3,

p1 =
(μ − 1 − ka10)(μ − 1 − αb10)

(μ − 1 − ka10)(μ − 1 − kb01) + μ(2μ − 2 − ka10 − αb01)

p2 =
p1

μ − 1 − ka10
, p3 =

μ

αb10
p1, q1 = 1, q2 = μ, q3 =

αb10

μ − 1 − αb01
.

(iv) The variations of the profits in the neighborhood of the fixed point (x, y)T ∈ IR2, are given by:

π1n = p(xn + yn)xn − c1xn − b1, π2n = p(xn + yn)yn − c2yn − b2.

The above model has a similar behavior as the economic models that describe the business cycles
(Kuznetsov, 1995), (Mircea et al., 2004).
The model can be analyzed in a similar way for the case m > 2.
For m = 1, the stochastic system associated to (53) is given by:

xn+1 = xn + k(p�(xn + yn)xn + p(xn + yn)− c�1(xn)) + ξnb22(xn − x̄)

yn+1 = yn + k(p�(xn−1 + yn)yn + p(xn−1 + yn)− c�2(yn)) + ξnb33(yn − ȳ)
(70)

where (x̄, ȳ) is the solution of (55).
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The linearized of (70) has the matrices:

A1 =

⎛
⎝

0 1 0
0 1 + ka10 ka01

αb10 0 1 + αb01

⎞
⎠ , B =

⎛
⎝

0 0 0
0 b22 0
0 0 b33

⎞
⎠ (71)

Using Proposition 2.1, the characteristic polynomial of (70) is given by:

P2(λ) = λ(λ2 − λ(a22a33 + σb22b33)− a23a33a31)(λ(λ − a2
22)(λ − a2

33 − σb2
33)− a2

23a2
31), (72)

where a22 = 1 + ka10, a23 = ka01, a31 = αb10, a33 = 1 + αb01.
The analysis of the roots for the equation P2(λ) = 0 is done for fixed values of the parameters.
The numerical simulation can be done for c1 = 0.1, c2 = 0.4, k = 0.04, σ = 0.4.

5. The discrete deterministic and stochastic Kaldor model

The discrete Kaldor model describes the business cycle for the state variables characterized by
the income (national income) Yn and the capital stock Kn, where n ∈ IN. For the description
of the model’s equations we use the investment function I : IR+ × IR+ → IR denoted by
I = I(Y, K) and the savings function S : IR+ × IR+ → IR, denoted by S = S(Y, K) both
considered as being differentiable functions (Dobrescu & Opriş, 2009), (Dobrescu & Opriş,
2009).
The discrete Kaldor model describes the income and capital stock variations using the
functions I and S and it is described by:

Yn+1 = Yn + s(I(Yn, Kn)− S(Yn, Kn))

Kn+1 = Kn + I(Yn, Kn)− qKn.
(73)

In (73), s > 0 is an adjustment parameter, which measures the reaction of the system to the
difference between investment and saving.
We admit Keynes’s hypothesis which states that the saving function is proportional to income,
meaning that

S(Y, K) = pY, (74)

where p ∈ (0, 1) is the propensity to save with the respect to the income.
The investment function I is defined by taking into account a certain normal level of income

u and a normal level of capital stock
pu

q
, where u ∈ IR, u > 0. The coefficient q ∈ (0, 1)

represents the capital depreciation.
In what follows we admit Rodano’s hypothesis and consider the form of the investment
function as follows:

I(Y, K) = pu + r

�
pu

q
− K

�
+ f (Y − u) (75)

where r > 0 and f : IR → IR is a differentiable function with f (0) = 0, f �(0) �= 0 and
f ���(0) �= 0.
System (73) with conditions (74) and (75) is written as:
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22)(λ − a2

33 − σb2
33)− a2

23a2
31), (72)

where a22 = 1 + ka10, a23 = ka01, a31 = αb10, a33 = 1 + αb01.
The analysis of the roots for the equation P2(λ) = 0 is done for fixed values of the parameters.
The numerical simulation can be done for c1 = 0.1, c2 = 0.4, k = 0.04, σ = 0.4.

5. The discrete deterministic and stochastic Kaldor model

The discrete Kaldor model describes the business cycle for the state variables characterized by
the income (national income) Yn and the capital stock Kn, where n ∈ IN. For the description
of the model’s equations we use the investment function I : IR+ × IR+ → IR denoted by
I = I(Y, K) and the savings function S : IR+ × IR+ → IR, denoted by S = S(Y, K) both
considered as being differentiable functions (Dobrescu & Opriş, 2009), (Dobrescu & Opriş,
2009).
The discrete Kaldor model describes the income and capital stock variations using the
functions I and S and it is described by:

Yn+1 = Yn + s(I(Yn, Kn)− S(Yn, Kn))

Kn+1 = Kn + I(Yn, Kn)− qKn.
(73)

In (73), s > 0 is an adjustment parameter, which measures the reaction of the system to the
difference between investment and saving.
We admit Keynes’s hypothesis which states that the saving function is proportional to income,
meaning that

S(Y, K) = pY, (74)

where p ∈ (0, 1) is the propensity to save with the respect to the income.
The investment function I is defined by taking into account a certain normal level of income

u and a normal level of capital stock
pu

q
, where u ∈ IR, u > 0. The coefficient q ∈ (0, 1)

represents the capital depreciation.
In what follows we admit Rodano’s hypothesis and consider the form of the investment
function as follows:

I(Y, K) = pu + r

�
pu

q
− K

�
+ f (Y − u) (75)

where r > 0 and f : IR → IR is a differentiable function with f (0) = 0, f �(0) �= 0 and
f ���(0) �= 0.
System (73) with conditions (74) and (75) is written as:
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Yn+1 = (1 − sp)Yn − rsKn + s f (Yn − u) + spu

�
1 +

r

q

�

Kn+1 = (1 − r − q)Kn + f (Yn − u) + pu

�
1 +

r

q

� (76)

with s > 0, q ∈ (0, 1), p ∈ (0, 1), r > 0, u > 0.
The application associated to system (76) is:

�
y
k

�
→

⎛
⎜⎜⎝

(1 − sp)y − rsk + s f (y − u) + spu

�
1 +

r

q

�

(1 − r − q)k + f (y − u) + pu

�
1 +

r

q

�

⎞
⎟⎟⎠ . (77)

The fixed points of the application (77) with respect to the model’s parameters s, q, p, r are the
solutions of the following system:

py + rk − f (y − u)− pu

�
1 +

r

q

�
= 0

(r + q)k − f (y − u)− pu

�
1 +

r

q

�
= 0

that is equivalent to:

qk − py = 0, p

�
1 +

r

q

�
(y − u) = f (y − u). (78)

Taking into account that f satisfies f (0) = 0, by analyzing (78) we have:

Proposition 5.1. (i) The point of the coordinates P

�
u,

pu

q

�
is the fixed point of the application (77).

(ii) If f (x) = arctan x, and p

�
1 +

r

q

�
≥ 1 then application (77) has an unique fixed point

given by P

�
u,

pu

q

�
.

(iii) If f (x) = arctan x and p

�
1 +

r

q

�
< 1 then the application (77) has the fixed points

P

�
u,

pu

q

�
, R

�
yr,

pyr

q

�
, Q

�
yq,

p

q
yq

�
, where yq = 2u − yr and yr is the solution of the

following equation:

arctan(y − u) = p

�
1 +

r

q

�
(y − u)

Let (y0, k0) be a fixed point of the application (77). We use the following notations: ρ1 =
f �(y0 − u), ρ2 = f ��(y0 − u), ρ3 = f ���(y0 − u) and

a10 = s(ρ1 − p), a01 = −rs, b10 = ρ1, b01 = −q − r.
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Proposition 5.2. (i) The Jacobian matrix of (77) in the fixed point (y0, k0) is:

A =

(
1 + a10 a01

b10 1 + b01

)
. (79)

(ii) The characteristic equation of A given by (79) is:

λ2 − aλ + b = 0 (80)

where a = 2 + a10 + b01, b = 1 + a10 + b01 − a01b10.

(iii) If q + r < 1, ρ1 < 1 +
r(q + r − 4)

(q + r − 2)2
and s = s0, where:

s0 =
q + r

(1 − q − r)(ρ1 − p) + r

then equation (80) has the roots with their absolute values equal to 1.

(iv) With respect to the change of variable:

s(β) =
(1 + β)2 − 1 + q + r

(1 − q − r)(ρ1 − p) + r

equation (80) becomes:

λ2 − a1(β)λ + b1(β) = 0 (81)

where

a1(β) = 2 +
(ρ1 − p)((1 + β)2 − 1 + ρ + r)

(1 − q − r)(ρ1 − p) + r
− q − r, b1(β) = (1 + β)2.

Equation (81) has the roots:

μ1,2(β) = (1 + β)e±iθ(β)

where

θ(β) = arccos
a1(β)

2(1 + β)
.

(v) The point s(0) = s0 is a Neimark-Sacker bifurcation point.

(vi) The eigenvector q ∈ IR2, which corresponds to the eigenvalue μ(β) = μ and is a solution
of Aq = μq, has the components

q1 = 1, q2 =
μ − 1 − a10

a01
. (82)

The eigenvector p ∈ IR2, which corresponds to the eigenvalue μ and is a solution of AT p = μp,
has the components:

p1 =
a01b10

a01b10 + (μ − 1 − a10)2
,

p2 =
a01(μ − 1 − a01)

a01b10 + (μ − 1 − a10)2
. (83)

The vectors q, p given by (82) and (83) satisfy the condition < q, p >= q1 p1 + q2p2 = 1.
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The proof follows by direct calculation using (77).
With respect to the translation y → y + y0, k → k + k0, the application (77) becomes:

�
y
k

�
→

�
(1 − sp)y − rsk + s f (y + y0 − u)− f (y0 − u)

−(r + q)k + f (y + y0 − u)− f (y0 − u)

�
. (84)

Expanding F from (84) in Taylor series around 0 = (0, 0)T and neglecting the terms higher
than the third order, we obtain:

F(y, k) =

⎛
⎜⎜⎝

(1 + a10)y + a01k +
1

2
sρ2y2 +

1

6
sρ3y3

b10y + b01k +
1

2
ρ2y2 +

1

6
ρ3y3

⎞
⎟⎟⎠ .

Proposition 5.3. (i) The canonical form of (84) is:

zn+1 = μ(β)zn +
1

2
(s(β)p1 + p2)ρ2(z

2
n + 2znzn + zn

2)+

+
1

6
(s(β)p1 + p2)ρ3(z

3
n + 3z2

nzn + 3znz2
n + z3

n).

(85)

(ii) The coefficient C1(β) associated to the canonical form (85) is:

C1(β) =

�
(p(β)p1 + p2)

2(μ − 3 + 2μ)

2(μ2 − μ)(μ − 1)
+

|s(β)p1 + p2|
2

1 − μ
+

+
|s(β)p1 + p2|

2

2(μ2 − μ)

�
ρ2

2 +
s(β)p1 + p2

2
ρ3

and l1(0) = Re(C1(0)e
iθ(0)). If l1(0) < 0 in the neighborhood of the fixed point (y0, k0) then

there is a stable limit cycle. If l1(0) > 0 there is an unstable limit cycle.

(iii) The solution of (76) in the neighborhood of the fixed point (y0, k0) is:

Yn = y0 + zn + zn, Kn = k0 + q2zn + q2zn

where zn is a solution of (85).

The stochastic system of (76) is given by (Mircea et al., 2010):

Yn+1 = (1 − sp)Yn − rsKn + s f (Yn − u) + spu

�
1 +

r

q

�
+ ξnb11(Yn − u)

Kn+1 = (1 − r − q)Kn + f (Yn − u) + pu

�
1 +

r

q

�
+ ξnb22(Kn −

pu

q
)

with E(ξn) = 0 and E(ξ2
n) = σ.

Using (79) and Proposition 5.2, the characteristic polynomial of the linearized system of (5) is
given by:
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P2(λ) = det

⎛
⎜⎜⎜⎜⎝

λ − (1 + a10)
2 − σb2

11 −a2
01 −2a01(1 + a10)

−b2
10 λ − (1 + b01)

2 − σb22 −2b10(1 + b01)
−b10(1 + a10) −a01(1 + b01) λ − (a01b10+

+(1 + a10)(1 + b01)+
+σb11b22)

⎞
⎟⎟⎟⎟⎠

(86)

The analysis of the roots for P2(λ) = 0 can be done for fixed values of the parameters.

6. Conclusions

The aim of this chapter is to briefly present some methods used for analyzing the models
described by deterministic and stochastic discrete-time equations with delay. These methods
are applied to models that describe: the Internet congestion control, economic games and the
Kaldor economic model, as well. The obtained results are presented in a form which admits
the numerical simulation.
The present chapter contains a part of the authors’ papers that have been published in journals
or proceedings, to which we have added the stochastic aspects.
The methods used in this chapter allow us to study other models described by systems of
equations with discrete time and delay and their associated stochastic models.
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Mircea, G.; Neamţu, M.; Opriş, D. (2004). Hopf bifurcation for dynamical systems with time delay
and applications, Mirton, ISBN, Timişoara, ISBN 973-661-379-8.
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1. Introduction

The most apparent look of a discrete-time dynamical system is that an orbit is composed
of a collection of points in phase space, in contrast to a trajectory curve for a
continuous-time system. A basic and prominent theoretical difference between discrete-time
and continuous-time dynamical systems is that chaos occurs in one-dimensional discrete-time
dynamical systems, but not for one-dimensional deterministic continuous-time dynamical
systems; the logistic map and logistic equation are the most well-known example illustrating
this difference. On the one hand, fundamental theories for discrete-time systems have
also been developed in a parallel manner as for continuous-time dynamical systems,
such as stable manifold theorem, center manifold theorem and global attractor theory
etc. On the other hand, analytical theory on chaotic dynamics has been developed more
thoroughly for discrete-time systems (maps) than for continuous-time systems. Li-Yorke’s
period-three-implies-chaos and Sarkovskii’s ordering on periodic orbits for one-dimensional
maps are ones of the most celebrated theorems on chaotic dynamics.
Regarding chaos theory for multidimensional maps, there are renowned Smale-Birkhoff
homoclinic theorem and Moser theorem for diffeomorphisms. In addition, Marotto extended
Li-Yorke’s theorem from one-dimension to multi-dimension through introducing the notion
of snapback repeller in 1978. This theory applies to maps which are not one-to-one (not
diffeomorphism). But the existence of a repeller is a basic prerequisite for the theory. There
have been extensive applications of this theorem to various applied problems. However,
due to a technical flaw, Marotto fixed the definition of snapback repeller in 2005. While
Marotto’s theorem is valid under the new definition, its condition becomes more difficult
to examine for practical applications. Accessible and computable criteria for applying this
theorem hence remain to be developed. In Section 4, we shall introduce our recent works and
related developments in the application of Marotto’s theorem, which also provide an effective
numerical computation method for justifying the condition of this theorem.
Multidimensional systems may also exhibit simple dynamics; for example, every orbit
converges to a fixed point, as time tends to infinity. Such a scenario is referred to as
convergence of dynamics or complete stability. Typical mathematical tools for justifying such
dynamics include Lyapunov method and LaSalle invariant principle, a discrete-time version.
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1. Introduction

The most apparent look of a discrete-time dynamical system is that an orbit is composed
of a collection of points in phase space, in contrast to a trajectory curve for a
continuous-time system. A basic and prominent theoretical difference between discrete-time
and continuous-time dynamical systems is that chaos occurs in one-dimensional discrete-time
dynamical systems, but not for one-dimensional deterministic continuous-time dynamical
systems; the logistic map and logistic equation are the most well-known example illustrating
this difference. On the one hand, fundamental theories for discrete-time systems have
also been developed in a parallel manner as for continuous-time dynamical systems,
such as stable manifold theorem, center manifold theorem and global attractor theory
etc. On the other hand, analytical theory on chaotic dynamics has been developed more
thoroughly for discrete-time systems (maps) than for continuous-time systems. Li-Yorke’s
period-three-implies-chaos and Sarkovskii’s ordering on periodic orbits for one-dimensional
maps are ones of the most celebrated theorems on chaotic dynamics.
Regarding chaos theory for multidimensional maps, there are renowned Smale-Birkhoff
homoclinic theorem and Moser theorem for diffeomorphisms. In addition, Marotto extended
Li-Yorke’s theorem from one-dimension to multi-dimension through introducing the notion
of snapback repeller in 1978. This theory applies to maps which are not one-to-one (not
diffeomorphism). But the existence of a repeller is a basic prerequisite for the theory. There
have been extensive applications of this theorem to various applied problems. However,
due to a technical flaw, Marotto fixed the definition of snapback repeller in 2005. While
Marotto’s theorem is valid under the new definition, its condition becomes more difficult
to examine for practical applications. Accessible and computable criteria for applying this
theorem hence remain to be developed. In Section 4, we shall introduce our recent works and
related developments in the application of Marotto’s theorem, which also provide an effective
numerical computation method for justifying the condition of this theorem.
Multidimensional systems may also exhibit simple dynamics; for example, every orbit
converges to a fixed point, as time tends to infinity. Such a scenario is referred to as
convergence of dynamics or complete stability. Typical mathematical tools for justifying such
dynamics include Lyapunov method and LaSalle invariant principle, a discrete-time version.
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However, it is not always possible to construct a Lyapunov function to apply this principle,
especially for multidimensional nonlinear systems. We shall illustrate other technique that
was recently formulated for certain systems in Section 3.
As neural network models are presented in both continuous-time and discrete-time forms,
and can exhibit both simple dynamics and complicated dynamics, we shall introduce some
representative neural network models in Section 2.

2. Neural network models

In the past few decades, neural networks have received considerable attention and were
successfully applied to many areas such as combinatorial optimization, signal processing
and pattern recognition (Arik, 2000, Chua 1998). Discrete-time neural networks have been
considered more important than their continuous-time counterparts in the implementations
(Liu, 2008). The research interests in discrete-time neural networks include chaotic behaviors
(Chen & Aihara, 1997; Chen & Shih, 2002), stability of fixed points (Forti & Tesi, 1995; Liang &
Cao, 2004; Mak et al., 2007), and their applications (Chen & Aihara, 1999; Chen & Shih, 2008).
We shall introduce some typical discrete-time neural networks in this section.
Cellular neural network (CNN) is a large aggregation of analogue circuits. It was first
proposed by Chua and Yang in 1988. The assembly consists of arrays of identical elementary
processing units called cells. The cells are only connected to their nearest neighbors. This
local connectivity makes CNNs very suitable for VLSI implementation. The equations for
two-dimension layout of CNNs are given by

C
dxij

dt
= − 1

R
xij(t) + ∑

(k,�)∈Nij

[aij,k�h(xk�(t)) + bij,k�uk�] + I, (1)

where uk�, xij, h(xij) are the controlling input, state and output voltage of the specified
CNN cell, respectively. CNNs are characterized by the bias I and the template set A and
B which consist of aij,k� and bij,k�, respectively. aij,k� represents the linear feedback, and bij,k�
the linear control. The standard output h is a piecewise-linear function defined by h(ξ) =
1
2 (|ξ + 1| − |ξ − 1|). C is the linear capacitor and R is the linear resistor. For completeness
of the model, boundary conditions need to be imposed for the cells on the boundary of the
assembly, cf. (Shih, 2000). The discrete-time cellular neural network (DT-CNN) counterpart
can be described by the following difference equation.

xij(t + 1) = μxij(t) + ∑
(k,�)∈Nij

[ãij,k�h(xk�(t)) + b̃ij,k�uk�] + zi, (2)

where t is an integer. System (2) can be derived from a delta operator based CNNs. If one
collects from a continuous-time signal x(t) a discrete-time sequence x[k] = x(kT), the delta
operator

δx[k] =
x[k + 1]− x[k]

T
is an approximation of the derivative of x(t). Indeed, limT→0 δx[k] = ẋ(t)|t=kT. In this case,
μ = 1 − T

τ , where T is the sampling period, and τ = RC. The parameters ãij,k�, b̃ij,k� in (2)
correspond to aij,k�, bij,k� in (1) under sampling, cf. (Hänggi et al., 1999). If (2) is considered in
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conjunction with (1), then T is required to satisfy τ ≥ T to avoid aliasing effects. Under this
situation, 0 ≤ μ ≤ 1. Thus CT-CNN is the limiting case of delta operator based CNNs with
T → 0. If the delta operator based CNNs is considered by itself, then there is no restriction
on T, and thus no restrictions on μ in (2). On the other hand, a sampled-data based CNN
has been introduced in (Harrer & Nossek, 1992). Such a network corresponds to the limiting
case of delta operator based CNNs as T → 1. For an account of unifying results on the
above-mentioned models, see (Hänggi et al., 1999) and the references therein. In addition,
Euler’s difference scheme for (1) takes the form

xij(t + 1) = (1 − Δt
RC

)xij(t) +
Δt
C

⎛
⎝ ∑

k∈Nij

aij,k�h(xk�(t)) + bij,k�uk� + I

⎞
⎠ . (3)

Note that CNN of any dimension can be reformulated into a one-dimensional setting, cf. (Shih
& Weng, 2002). We rewrite (2) into a one-dimensional form as

xi(t + 1) = μxi(t) +
n

∑
k=1

ωikh(xk(t)) + zi. (4)

The complete stability using LaSalle invariant principle has been studied in (Chen & Shih,
2004a). We shall review this result in Section 3.1.
Transiently chaotic neural network (TCNN) has been shown powerful in solving
combinatorial optimization problems (Peterson & Söderberg, 1993; Chen & Aihara, 1995, 1997,
1999). The system is represented by

xi(t + 1) = μxi(t) + wii(t)[yi(t)− a0i] + Σn
k �=iwikyk(t) + ai (5)

yi(t) = (1 + e
−xi(t)

ε )−1 (6)

wii(t + 1) = (1 − γ)wii(t), (7)

where i = 1, · · · , n, t ∈ N (positive integers), ε, γ are fixed numbers with ε > 0, 0 <
γ < 1. The main feature of TCNN contains chaotic dynamics temporarily generated for
global searching and self-organizing. As certain variables (corresponding to temperature
in the annealing process) decrease, the network gradually approaches a dynamical structure
which is similar to classical neural networks. The system then settles at stationary states and
provides a solution to the optimization problem. Equations (5)-(6) with constant self-feedback
connection weights, that is, wii(t) = wii = constant, has been studied in (Chen & Aihara,
1995, 1997); therein, it was shown that snapback repellers exist if |wii| are large enough. The
result hence implicates certain chaotic dynamics for the system. More complete analytical
arguments by applying Marotto’s theorem through the formulation of upper and lower
dynamics to conclude the chaotic dynamics have been performed in (Chen & Shih, 2002, 2008,
2009). As the system evolves, wii decreases, and the chaotic behavior vanishes. In (Chen &
Shih, 2004), they derived sufficient conditions under which evolutions for the system converge
to fixed points of the system. Moreover, attracting sets and uniqueness of fixed point for the
system were also addressed.
Time delays are unavoidable in a neural network because of the finite signals switching and
transmission speeds. The implementation of artificial neural networks incorporating delays
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[ãij,k�h(xk�(t)) + b̃ij,k�uk�] + zi, (2)

where t is an integer. System (2) can be derived from a delta operator based CNNs. If one
collects from a continuous-time signal x(t) a discrete-time sequence x[k] = x(kT), the delta
operator

δx[k] =
x[k + 1]− x[k]

T
is an approximation of the derivative of x(t). Indeed, limT→0 δx[k] = ẋ(t)|t=kT. In this case,
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has been an important focus in neural systems studies (Buric & Todorovic, 2003; Campbell,
2006; Roska & Chua, 1992; Wu, 2001). Time delays can cause oscillations or alter the stability
of a stationary solution of a system. For certain discrete-time neural networks with delays,
the stability of stationary solution has been intensively studied in (Chen et al., 2006; Wu et al.,
2009; Yua et al., 2010), and the convergence of dynamics has been analyzed in (Wang, 2008;
Yuan, 2009). Among these studies, a typically investigated model is the one of Hopfield-type:

ui(t + 1) = ai(t)ui(t) +
m

∑
j=1

bij(t)gj(uj(t − rij(t))) + Ji , i = 1, 2, · · · , m. (8)

Notably, system (8) represents an autonomous system if ai(t) ≡ ai, and bij(t) ≡ bij (Chen et
al., 2006), otherwise, a non-autonomous system (Yuan, 2009).
The class of Z-matrices consists of those matrices whose off-diagonal entries are less than
or equal to zero. A M-matrix is a Z-matrix satisfying that all eigenvalues have positive real
parts. For instance, one characterization of a nonsingular square matrix P to be a M-matrix is
that P has non-positive off-diagonal entries, positive diagonal entries, and non-negative row
sums. There exist several equivalent conditions for a Z-matrix P to be M-matrix, such as the
one where there exists a positive diagonal matrix D such that PD is a diagonally dominant
matrix, or all principal minors of P are positive (Plemmons, 1977). A common approach
to conclude the stability of an equilibrium for a discrete-time neural network is through
constructing Lyapunov-Krasovskii function/functional for the system. In (Chen, 2006), based
on M-matrix theory, they constructed a Lyapunov function to derive the delay-independent
and delay-dependent exponential stability results.
Synchronization is a common and elementary phenomenon in many biological and physical
systems. Although the real network architecture can be extremely complicated, rich
dynamics arising from the interaction of simple network motifs are believed to provide
similar sources of activities as in real-life systems. Coupled map networks introduced by
Kaneko (Kaneko, 1984) have become one of the standard models in synchronization studies.
Synchronization in diffusively coupled map networks without delays is well understood,
and the synchronizability of the network depends on the underlying network topology
and the dynamical behaviour of the individual units (Jost & Joy, 2001; Lu & Chen, 2004).
The synchronization in discrete-time networks with non-diffusively and delayed coupling is
investigated in a series of works of Bauer and coworkers (Bauer et al., 2009; Bauer et al., 2010).

3. Simple dynamics

Orbits of discrete-time dynamical system can jump around wildly. However, there are
situations that the dynamics are organized in a simple manner; for example, every solution
converges to a fixed point as time tends to infinity. Such a notion is referred to as
convergence of dynamics or complete stability. Moreover, the simplest situation is that all orbits
converge to a unique fixed point. We shall review some theories and results addressing
such simple dynamics. In Subsection 3.1, we introduce LaSalle invariant principle and
illustrate its application in discrete-time neural networks. In Subsection 3.2, we review the
component-competing technique and its application in concluding global consensus for a
discrete-time competing system.
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3.1 Lyapunov method and LaSalle invariant principle
Let us recall LaSalle invariant principle for difference equations. We consider the difference
equation

x(t + 1) = F(x(t)), (9)

where F : Rn −→ Rn is a continuous function. Let U be a subset of Rn. For a function
V : U −→ R, define V̇(x) = V(F(x))− V(x). V is said to be a Lyapunov function of (9) on U if
(i) V is continuous, and (ii) V̇(x) ≤ 0 for all x ∈ U. Set

S0 := {x ∈ U|V̇(x) = 0}.

LaSalle Invariant Principle (LaSalle, 1976). Let F be a continuous mapping on Rn, and let V
be a Lyapunov function for F on a set U ⊆ Rn. If orbit γ := {Fn(x)|n ∈ N} is contained in a
compact set in U, then its ω-limit set ω(γ) ⊂ S0

�
V−1(c) for some c = c(x).

This principle has been applied to the discrete-time cellular neural network (4) in (Chen &
Shih, 2004a), where the Lyapunov function is constructed as

V(x) = − 1
2

n

∑
i=1

n

∑
k=1

ωikh(xi)h(xk)−
n

∑
i=1

zih(xi) +
1
2
(1 − μ)

n

∑
i=1

h(xi)
2,

and h(ξ) = 1
2 (|ξ + 1| − |ξ − 1|) and x = (x1, · · · , xn) ∈ Rn. Let us quote the main results

therein.
Proposition (Chen & Shih, 2004a). Let W be a positive-definite symmetric matrix and 0 ≤ μ ≤
1. Then V is a Lyapunov function for (4) on Rn.
Consider the condition

(H)
1

1 − μ

⎡
⎣ωii − ∑

k,jk=“m”
|ωik|+ ∑

jk �=“m”, k �=i
δ(ji, jk)ωik + z(i)

⎤
⎦ > −1.

Theorem (Chen & Shih, 2004a). Let W be a positive-definite symmetric matrix. If 0 < μ < 1
and condition (H) holds, then the DT-CNN with regular parameters is completely stabile.

Next, let us outline LaSalle invariant principle for non-autonomous difference equations. In
addition to the classical result by LaSalle there is a modified version for the theorem reported
in (Chen & Shih, 2004b). The alternative conditions derived therein is considered more
applicable and has been applied to study the convergence of the TCNN.
Let N be the set of positive integers. For a given continuous function F : N × Rn −→ Rn, we
consider the non-autonomous difference equation

x(t + 1) = F(t, x(t)). (10)

A sequence of points {x(t)}∞
1 in Rn is a solution of (10) if x(t + 1) = F(t, x(t)), for all t ∈ N.

Let Ox = {x(t) | t ∈ N, x(1) = x}, be the orbit of x. We say that p is a ω-limit point of
Ox if there exists a sequence of positive integers {tk} with tk → ∞ as k → ∞, such that
p = limk→∞ x(tk). Denote by ω(x) the set of all ω-limit points of Ox.
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Let Ni represent the set of all positive integers larger than ni, for some positive integer ni. Let
G be any set in Rn and G be its closure. For a function V : N0 × G −→ R, define V̇(t, x) =
V(t + 1, F(t, x)) − V(t, x). If {x(t)} is a solution of (10), then V̇(t, x) = V(t + 1, x(t + 1)) −
V(t, x(t)). V is said to be a Lyapunov function for (10) if
(i) {V(t, ·) | t ∈ N0} is equi-continuous, and
(ii) for each p ∈ G, there exists a neighborhood U of p such that V(t, x) is bounded
below for x ∈ U ∩ G and t ∈ N1, n1 ≥ n0, and
(iii) there exists a continuous function Q0 : G → R such that V̇(t, x) ≤ −Q0(x) ≤ 0
for all x ∈ G and for all t ∈ N2, n2 ≥ n1,
or
(iii)� there exist a continuous function Q0 : G → R and an equi-continuous family of
functions Q : N2 × G → R such that limt→∞ |Q(t, x)− Q0(x)| = 0 for all x ∈ G and
V̇(t, x) ≤ −Q(t, x) ≤ 0 for all (t, x) ∈ N2 × G, n2 ≥ n1.
Define

S0 = {x ∈ G : Q0(x) = 0}.

Theorem (Chen & Shih, 2004a). Let V : N0 × G → R be a Lyapunov function for (10) and let
Ox be an orbit of (10) lying in G for all t ∈ N0. Then limt→∞ Q(t, x(t)) = 0, and ω(x) ⊂ S0.

This theorem with conditions (i), (ii), and (iii) has been given in (LaSalle, 1976). We quote
the proof for the second case reported in (Chen & Shih, 2004b). Let p ∈ ω(x). That is,
there exists a sequence {tk}∞

1 , tk → ∞ as k → ∞ and x(tk) → p as k → ∞. Since
V(tk, x(tk)) is non-increasing and bounded below, V(tk, x(tk)) approaches a real number as
k → ∞. Moreover, V(tk+1, x(tk+1)) − V(t1, x(t1)) ≤ − ∑tk+1−1

t=t1
Q(t, x(t)), by (iii)�. Thus,

∑∞
t=t1

Q(t, x(t)) < ∞. Hence, Q(t, x(t)) → 0 as t → ∞, since Q(t, x(t)) ≥ 0. Notably,
Q(tk, x(tk)) → Q0(x(tk)) as k → ∞. This can be justified by observing that

|Q(tk, x(tk))− Q0(x(tk))|
≤ |Q(tk, x(tk)) + Q(tk, p)− Q(tk, p) + Q0(p)− Q0(p)− Q0(x(tk))|.

In addition, |Q0(x(t))| ≤ |Q(t, x(t))| + |Q(t, x(t)) − Q0(x(t))|. It follows from (iii)� that
Q0(x(tk)) → 0 as k → ∞. Therefore, Q0(p) = 0, since Q0 is continuous. Thus, p ∈ S0.
If we further assume that V is bounded, then it is obvious that the proof can be much
simplified. In the investigations for the asymptotic behaviors of TCNN, condition (iii)� is
more achievable.
We are interested in knowing whether if an orbit of the system (10) approaches an equilibrium
state or fixed point as time tends to infinity. The structure of ω-limit sets for the orbits provides
an important information toward this investigation. In discrete-time dynamical systems, the
ω-limit set of an orbit is not necessarily connected. However, the following proposition has
been proved by Hale and Raugel in 1992.

Proposition (Hale & Raugel, 1992). Let T be a continuous map on a Banach space X. Suppose
that the ω-limit set ω(x) is contained in the set of fixed points of T, and the closure of the orbit
Ox is compact. Then ω(x) is connected.

This proposition can be extended to non-autonomous systems for which there exist limiting
maps. Namely,
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(A) There exists a continuous map F : Rn → Rn such that limt→∞ �F(t, x)− F(x)� = 0, for all
x ∈ Rn.

Theorem (Chen & Shih, 2004b). Assume that (10) satisfies (A), the orbit Ox is bounded,
and ω(x), the ω-limit set of x, is contained in the set of fixed points of F. Then ω(x) is
connected. Under this circumstances, if F has only finitely many fixed points, then the orbit
Ox approaches some single fixed point of F, as t tends to infinity.

Let us represent the TCNN system (5)-(7) by the following time-dependent map

F(t, x) = (F1(t, x), · · · , Fn(t, x))

where

Fi(t, x) = αxi + (1 − γ)tωii(0)(yi − a0i) +
n

∑
j �=i

ωijyj + ai,

where yi = hi(xi), i = 1, · · · , n and hi is defined in (6). The orbits of TCNN are then given
by the iterations x(t + 1) = F(t, x(t)) with components xi(t + 1) = Fi(t, x(t)). Note that
y = H(x) = (h1(x1), · · · , hn(xn)) is a diffeomorphism on Rn. Let W0 denote the n × n matrix
obtained from the connection matrix W with its diagonal entries being replaced by zeros.
Restated, W0 = W − diag[W]. For given 0 < γ < 1, choose 0 < b < 1 such that | 1−γ

b | < 1. We
consider the following time-dependent energy-like function:

V(t, x) = − 1
2

n

∑
i=1

n

∑
j �=i

wijhi(xi)hj(xj)−
n

∑
i=1

aihi(xi)

+(1 − α)
n

∑
i=1

∫ hi(xi)

0
h−1

i (η)dη + bt. (11)

Theorem (Chen & Shih, 2004b). Assume that W0 is a cycle-symmetric matrix, and either one
of the following condition holds,
(i) 0 ≤ α ≤ 1

3 and W0 + 4(1 − α)εI is positive definite;
(ii) 1

3 ≤ α ≤ 1 and W0 + 8αεI is positive definite;
(iii) α ≥ 1 and W0 + 8εI is positive definite.
Then there exists an n0 ∈ N so that V(t, x) defined by (11) is a Lyapunov function for the
TCNN (5)-(7) on N0 × Rn.

3.2 Global consensus through a competing-component approach
Grossberg (1978) considered a class of competitive systems of the form

ẋi = ai(x)[bi(xi)− C(x1, x2, · · · , xn)], i = 1, 2, · · · , n, (12)

where ai ≥ 0, ∂C/∂xi ≥ 0, x = (x1, x2, · · · , xn) ∈ Rn. In such a system, n is the number of
competing populations, ai(x) refers to competitive balance, bi(xi) represents interpopulation
signal functions, and C(x) stands for mean competition function, or adaptation level. System
(12) was proposed as a mathematical model for the resolution to a dilemma in science
for hundred of years: How do arbitrarily many individuals, populations, or states, each
obey unique and personal laws, succeed in harmoniously interacting with each other to

511Multidimensional Dynamics: From Simple to Complicated



Let Ni represent the set of all positive integers larger than ni, for some positive integer ni. Let
G be any set in Rn and G be its closure. For a function V : N0 × G −→ R, define V̇(t, x) =
V(t + 1, F(t, x)) − V(t, x). If {x(t)} is a solution of (10), then V̇(t, x) = V(t + 1, x(t + 1)) −
V(t, x(t)). V is said to be a Lyapunov function for (10) if
(i) {V(t, ·) | t ∈ N0} is equi-continuous, and
(ii) for each p ∈ G, there exists a neighborhood U of p such that V(t, x) is bounded
below for x ∈ U ∩ G and t ∈ N1, n1 ≥ n0, and
(iii) there exists a continuous function Q0 : G → R such that V̇(t, x) ≤ −Q0(x) ≤ 0
for all x ∈ G and for all t ∈ N2, n2 ≥ n1,
or
(iii)� there exist a continuous function Q0 : G → R and an equi-continuous family of
functions Q : N2 × G → R such that limt→∞ |Q(t, x)− Q0(x)| = 0 for all x ∈ G and
V̇(t, x) ≤ −Q(t, x) ≤ 0 for all (t, x) ∈ N2 × G, n2 ≥ n1.
Define

S0 = {x ∈ G : Q0(x) = 0}.

Theorem (Chen & Shih, 2004a). Let V : N0 × G → R be a Lyapunov function for (10) and let
Ox be an orbit of (10) lying in G for all t ∈ N0. Then limt→∞ Q(t, x(t)) = 0, and ω(x) ⊂ S0.

This theorem with conditions (i), (ii), and (iii) has been given in (LaSalle, 1976). We quote
the proof for the second case reported in (Chen & Shih, 2004b). Let p ∈ ω(x). That is,
there exists a sequence {tk}∞

1 , tk → ∞ as k → ∞ and x(tk) → p as k → ∞. Since
V(tk, x(tk)) is non-increasing and bounded below, V(tk, x(tk)) approaches a real number as
k → ∞. Moreover, V(tk+1, x(tk+1)) − V(t1, x(t1)) ≤ − ∑tk+1−1

t=t1
Q(t, x(t)), by (iii)�. Thus,

∑∞
t=t1

Q(t, x(t)) < ∞. Hence, Q(t, x(t)) → 0 as t → ∞, since Q(t, x(t)) ≥ 0. Notably,
Q(tk, x(tk)) → Q0(x(tk)) as k → ∞. This can be justified by observing that

|Q(tk, x(tk))− Q0(x(tk))|
≤ |Q(tk, x(tk)) + Q(tk, p)− Q(tk, p) + Q0(p)− Q0(p)− Q0(x(tk))|.

In addition, |Q0(x(t))| ≤ |Q(t, x(t))| + |Q(t, x(t)) − Q0(x(t))|. It follows from (iii)� that
Q0(x(tk)) → 0 as k → ∞. Therefore, Q0(p) = 0, since Q0 is continuous. Thus, p ∈ S0.
If we further assume that V is bounded, then it is obvious that the proof can be much
simplified. In the investigations for the asymptotic behaviors of TCNN, condition (iii)� is
more achievable.
We are interested in knowing whether if an orbit of the system (10) approaches an equilibrium
state or fixed point as time tends to infinity. The structure of ω-limit sets for the orbits provides
an important information toward this investigation. In discrete-time dynamical systems, the
ω-limit set of an orbit is not necessarily connected. However, the following proposition has
been proved by Hale and Raugel in 1992.

Proposition (Hale & Raugel, 1992). Let T be a continuous map on a Banach space X. Suppose
that the ω-limit set ω(x) is contained in the set of fixed points of T, and the closure of the orbit
Ox is compact. Then ω(x) is connected.

This proposition can be extended to non-autonomous systems for which there exist limiting
maps. Namely,

510 Discrete Time Systems

(A) There exists a continuous map F : Rn → Rn such that limt→∞ �F(t, x)− F(x)� = 0, for all
x ∈ Rn.

Theorem (Chen & Shih, 2004b). Assume that (10) satisfies (A), the orbit Ox is bounded,
and ω(x), the ω-limit set of x, is contained in the set of fixed points of F. Then ω(x) is
connected. Under this circumstances, if F has only finitely many fixed points, then the orbit
Ox approaches some single fixed point of F, as t tends to infinity.

Let us represent the TCNN system (5)-(7) by the following time-dependent map

F(t, x) = (F1(t, x), · · · , Fn(t, x))

where

Fi(t, x) = αxi + (1 − γ)tωii(0)(yi − a0i) +
n

∑
j �=i

ωijyj + ai,

where yi = hi(xi), i = 1, · · · , n and hi is defined in (6). The orbits of TCNN are then given
by the iterations x(t + 1) = F(t, x(t)) with components xi(t + 1) = Fi(t, x(t)). Note that
y = H(x) = (h1(x1), · · · , hn(xn)) is a diffeomorphism on Rn. Let W0 denote the n × n matrix
obtained from the connection matrix W with its diagonal entries being replaced by zeros.
Restated, W0 = W − diag[W]. For given 0 < γ < 1, choose 0 < b < 1 such that | 1−γ

b | < 1. We
consider the following time-dependent energy-like function:

V(t, x) = − 1
2

n

∑
i=1

n

∑
j �=i

wijhi(xi)hj(xj)−
n

∑
i=1

aihi(xi)

+(1 − α)
n

∑
i=1

∫ hi(xi)

0
h−1

i (η)dη + bt. (11)

Theorem (Chen & Shih, 2004b). Assume that W0 is a cycle-symmetric matrix, and either one
of the following condition holds,
(i) 0 ≤ α ≤ 1

3 and W0 + 4(1 − α)εI is positive definite;
(ii) 1

3 ≤ α ≤ 1 and W0 + 8αεI is positive definite;
(iii) α ≥ 1 and W0 + 8εI is positive definite.
Then there exists an n0 ∈ N so that V(t, x) defined by (11) is a Lyapunov function for the
TCNN (5)-(7) on N0 × Rn.

3.2 Global consensus through a competing-component approach
Grossberg (1978) considered a class of competitive systems of the form
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form some sort of stable society, or collective mode of behavior. Systems of the form (12)
include the generalized Volterra-Lotka systems and an inhibitory network (Hirsch, 1989). A
suitable Lyapunov function for system (12) is not known, hence the Lyapunov method and
LaSalle invariant principle are invalid. The work in (Grossberg, 1978) employed a skillful
competing-component analysis to prove that for system (12), any initial value x(0) ≥ 0 (i.e.
xi(0) ≥ 0, for any i) evolves to a limiting pattern x(∞) = (x1(∞), x2(∞), · · · , xn(∞)) with
0 ≤ xi(∞) := limt→∞ xi(t) < ∞, under some conditions on ai, bi, C.
System (12) can be approximated, via Euler’s difference scheme or delta-operator circuit
implementation (Harrer & Nossek,1992), by

xi((k + 1)δ) = xi(kδ) + δai(x(kδ))[bi(xi(kδ))− C(x(kδ))],

where one takes xi(kδ) as the k-th iteration of xi. In this subsection, let us review the
competing-component analysis for convergent dynamics reported in (Shih & Tseng, 2009).
Consider the following discrete-time model,

xi(k + 1) = xi(k) + βai(x(k))[bi(xi(k))− C(x(k))], (13)

where i = 1, 2, · · · , n, k ∈ N0 := {0}⋃
N. We first consider the theory for (13) with β = 1, i.e.

xi(k + 1) = xi(k) + ai(x(k))[bi(xi(k))− C(x(k))]. (14)

The results can then be extended to (13). First, let us introduce the following definition for the
convergent property of discrete-time systems.

Definition. A discrete-time competitive system x(k + 1) = F(x(k)) is said to achieve global
consensus (or global pattern formation, global convergence) if, given any initial value x(0) ∈ Rn,
the limit xi(∞) := limk→∞ xi(k) exists, for all i = 1, 2, · · · , n.

The following conditions are needed for the main results.
Condition (A1): Each ai(x) is continuous, and

0 < ai(x) ≤ 1, for all x ∈ Rn, i = 1, 2, · · · , n.

Condition (A2): C(x) is bounded and continuously differentiable with bounded derivatives;
namely, there exist constants M1, M2, rj such that for all x ∈ Rn,

M1 ≤ C(x) ≤ M2,

0 ≤ ∂C
∂xj

(x) ≤ rj, j = 1, 2, · · · , n.

Condition (A3): bi(ξ) is continuously differentiable, strictly decreasing and there exist di > 0,
li, ui ∈ R such that for all i = 1, 2, · · · n,

−di ≤ b�i(ξ) < 0, for all ξ ∈ R,

bi(ξ) > M2, for ξ ≤ li, and bi(ξ) < M1, for ξ ≥ ui.
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Condition (A4): For i = 1, 2, · · · , n,

0 < di ≤ 1 −
n

∑
j=1

rj < 1.

Theorem (Shih & Tseng, 2009). System (14) with ai, bi, and C satisfying conditions (A1)-(A4)
achieves global consensus.

The proof of this theorem consists of three lemmas which depict the properties for the
following terms:

gi(k) = bi(xi(k))− C(x(k)), Δgi(k) = gi(k + 1)− gi(k),

ĝ(k) = max{gi(k) : i = 1, 2, · · · , n}, ǧ(k) = min{gi(k) : i = 1, 2, · · · , n},

I(k) = min{i : gi(k) = ĝ(k)}, J(k) = min{i : gi(k) = ǧ(k)},

x̂(k) = xI(k)(k), x̌(k) = xJ(k)(k),

b̂(k) = bI(k)(x̂(k)), b̌(k) = bJ(k)(x̌(k)),

Δb̂(k) = b̂(k + 1)− b̂(k), Δb̌(k) = b̌(k + 1)− b̌(k),

Δbi(xi(k)) = bi(xi(k + 1))− bi(xi(k)).

Let us recall some of the key lemmas to get a flavor of this approach.

Lemma. Consider system (14) with ai, bi, and C satisfying conditions (A1)-(A4). Then
(i) for function ĝ, either case (ĝ-(i)) or case (ĝ-(ii)) holds, where
(ĝ-(i)): ĝ(k) < 0, for all k ∈ N0,
(ĝ-(ii)): ĝ(k) ≥ 0, for all k ≥ K1, for some K1 ∈ N0;
(ii) for function ǧ, either case (ǧ-(i)) or case (ǧ-(ii)) holds, where
(ǧ-(i)): ǧ(k) > 0, for all k ∈ N0,
(ǧ-(ii)): ǧ(k) ≤ 0, for all k ≥ K2, for some K2 ∈ N0.

Lemma. Consider system (14) with ai, bi, and C satisfying conditions (A1)-(A4). Then
limk→∞ b̂(k) = limk→∞ C(x(k)) = limk→∞ b̌(k).

4. Complicated dynamics

In this section, we summarize some analytic theories on chaotic dynamics for
multi-dimensional maps. There are several definitions for chaos. Let us introduce the
representative one by Devaney (1989):

Definition. Let (X, d) be a metric space. A map F : Ω ⊂ X → Ω is said to be chaotic on Ω if
(i) F is topologically transitive in Ω,
(ii) the periodic points of F in Ω are dense in Ω,
(iii) F has sensitive dependence on initial conditions in Ω.

It was shown in (Banks, et al., 1992) that condition (iii) holds under conditions (i) and (ii), if F
is continuous in Ω. Let us recall Li-Yorke’s theorem.
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Theorem (Li & Yorke, 1975). Let J be an interval and let f : J → J be continuous. Assume
there is a point a ∈ J for which the points b = f (a), c = f 2(a) and d = f 3(a), satisfy

d ≤ a < b < c ( or d ≥ a > b > c).

Then for every k = 1, 2, · · · , there is a periodic point in J having period k. Furthermore, there
is an uncountable set S ⊂ J (containing no periodic points), which satisfies:
(i) lim supn→∞ | f n(p) − f n(q)| > 0, and lim infn→∞ | f n(p) − f n(q)| = 0, for every p, q ∈ S
with p �= q; (ii) lim supn→∞ | f n(p)− f n(q)| > 0, for every p ∈ S and periodic point q ∈ J.
Indeed, if there is a periodic point of period 3, then the hypothesis of the theorem will be
satisfied. The notion of scrambled set can be generalized to metric space (X, d).

Definition. Let (X, d) be a metric space and F : X → X be a continuous map. A subset S of X
is called a scrambled set of F, if for any two different points x, y ∈ S,

lim inf
n→∞

d(Fn(x), Fn(y)) = 0, lim sup
n→∞

d(Fn(x), Fn(y)) > 0.

A map F is said to be chaotic in the sense of Li-Yorke if it has an uncountable scrambled set. It
was shown in (Huang & Ye, 2002) that for a compact matric space (X, d), if a map F is chaotic
in the sense of Devaney then F is also chaotic in the sense of Li-Yorke.
Let us consider a differentiable map

F : Rn → Rn; (15)

we denote xk = Fk(x0) for k ∈ N and x0 ∈ Rn, and by Br(x) and B∗
r (x) the closed balls in

Rn with center at x and radius r > 0 under Euclidean norm � · � and certain norm � · �∗,
respectively.

Definition. Suppose z is a hyperbolic fixed point of a diffeomorphism map F : Rn → Rn, and
some eigenvalues of DF(z) are greater than one in magnitude and the others smaller than one
in magnitude. If the stable manifold and the unstable manifold of F at z intersect transversally
at some point x0, the orbit {xk}∞

k=−∞ of F is called a transversal homoclinic orbit.
For a diffeomorphism F, Smale discovered an elegant and significant result:

Theorem (Smale, 1967). If the diffeomorphism map F has a transversal homoclinic orbit, then
there exists a Cantor set Λ ⊂ Rn on which Fm is topologically conjugate to a full shift of a
symbolic dynamical system with N symbols, for some positive integer m.

Remark. The above theorem can be generalized to maps which are not diffeomorphisms
under some extended definition of transversal homoclinic orbits, see Theorem 5.2 and Section
7 in (Hale & Lin, 1986) and Theorem 5.1 in (Steinlein & Walther, 1990).

4.1 On Marotto’s theorem
Analytical theory on chaotic dynamics for multi-dimensional systems is quite limited; yet
some important progresses have been made. In 1978, Marotto introduced the notion of
snapback repeller and extended Li-Yorke’s theorem to multi-dimensional maps. This result
plays an important role in the study of chaos for higher but finite-dimensional noninvertible
maps.
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The point z ∈ Rn is called an expanding fixed point of F in Br(z), if F is differentiable in Br(z),
F(z) = z and

|λ(x)| > 1, for all eigenvalues λ(x) of DF(x), for all x ∈ Br(z). (16)

If F is not a one-to-one function in Rn and z is an expanding fixed point of F in Br(z), then
there may exist a point x0 ∈ Br(z) with x0 �= z such that F�(x0) = z for some positive integer
�. The original definition of snapback repeller is as follows.

Definition (Marotto, 1978). Assume that z is an expanding fixed point of F in Br(z) for some
r > 0. Then z is said to be a snapback repeller of F if there exists a point x0 ∈ Br(z) with x0 �= z,
F�(x0) = z and det(DF�(x0)) �= 0 for some positive integer �; see Fig. 1.
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It is straightforward to see that a snapback repeller gives rise to an orbit {xk}∞
k=−∞ of F with

xk = z, for k ≥ �, and xk → z as k → −∞. Roughly speaking, the property of this orbit
is analogous to the one for homoclinic orbit. In addition, the map F is locally one-to-one at
each point xk, since x0 ∈ Br(z) and det(DF�(x0)) �= 0. This leads to the trivial transversality,
i.e., the unstable manifold Rn of full dimension intersects transversally the zero- dimensional
stable manifold of z. Therefore, snapback repeller may be regarded as a special case of a fixed
point with a transversal homoclinic orbit if the latter is generalized to mappings which are not
one-to-one.

Theorem (Marotto, 1978). If F possesses a snapback repeller, then F is chaotic in the following
sense: There exist (i) a positive integer N, such that F has a point of period p, for each integer
p ≥ N, (ii) a scrambled set of F, i.e., an uncountable set S containing no periodic points of F,
such that
(a) F(S) ⊂ S,
(b) lim supk→∞ �Fk(x)− Fk(y)� > 0, for all x, y ∈ S, with x �= y,
(c) lim supk→∞ �Fk(x)− Fk(y)� > 0, for all x ∈ S and periodic point y of F,
(iii) an uncountable subset S0 of S, such that lim infk→∞ �Fk(x)− Fk(y)� = 0, for every x, y ∈
S0.
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lim inf
n→∞
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n→∞

d(Fn(x), Fn(y)) > 0.
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Analytical theory on chaotic dynamics for multi-dimensional systems is quite limited; yet
some important progresses have been made. In 1978, Marotto introduced the notion of
snapback repeller and extended Li-Yorke’s theorem to multi-dimensional maps. This result
plays an important role in the study of chaos for higher but finite-dimensional noninvertible
maps.
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Remark. As the implication of this theorem yields the existence of uncountable scrambled set,
we may say that existence of snapback repeller implies chaos in the sense of Li-Yorke.
However, there is a technical flaw in the original derivation. Consider the following two
statements:
(A): All eigenvalues of the Jacobian DF(z) are greater than one in norm.
(B): There exist some s > 1 and r > 0 such that

�F(x)− F(y)� > s�x − y�, for all x, y ∈ Br(z). (17)

That (A) implies (B) may not be true for the Euclidean norm in multi-dimension. In addition,
if z is a fixed point and there exists a norm � · �∗, such that

|λ(x)| > 1, for all eigenvalues λ(x) of DF(x), for all x ∈ B∗
r (z),

then
�F(x)− F(y)�∗ > s · �x − y�∗, for all x, y ∈ B∗

r (z), (18)

still may not be satisfied. This is due to that the norm constructed for such a property depends
on the matrix DF(x) which varies at different points x, as the mean-value inequality is applied.
Several researchers have made efforts in modifying the definition of snapback repeller to
validate the theorem. In 2005, Marotto gave a revised definition of snapback repeller. Note
that a fixed point z of F is repelling if all eigenvalues of DF(z) exceed one in norm. For a
repelling fixed point z, if there exist a norm � · �∗ on Rn and s > 1 such that (18) holds, then
B∗

r (z) is called a repelling neighborhood of z. Note that if z is a repelling fixed point of F, then one
can find a norm � · �∗ and r > 0 so that B∗

r (z) is a repelling neighborhood of z, see (Robinson,
1999).

Definition (Marotto, 2005). Let z be a repelling fixed point of F. Suppose that there exist a
point x0 �= z in a repelling neighborhood of z and an integer � > 1, such that x� = z and
det(DF(xk)) �= 0 for 1 ≤ k ≤ �. Then z is called a snapback repeller of F.
The point x0 in the definition is called a snapback point of F. While Marotto’s theorem holds
under the modified definition, its application becomes more inaccessible; indeed, it is a
nontrivial task to confirm that some preimage of a repelling fixed point lies in the repelling
neighborhood of this fixed point. From practical view point, condition (16) which was
adopted in his original version, is obviously easier to examine than finding the repelling
neighborhood for a fixed point. In (Liao & Shih, 2011), two directions have been proposed
to confirm that a repelling fixed point is a snapback repeller for multi-dimensional maps.
The first one is to find the repelling neighborhood U of the repeller z which is based on a
computable norm. This is the key part in applying Marotto’s theorem for practical application,
as one can then attempt to find a snapback point x0 of z in U , i.e., F�(x0) = z, x0 ∈ U and
x0 �= z, for some � > 1. The second direction is applying a sequential graphic-iteration
scheme to construct the preimages {z−k}∞

k=1 of z, such that F(z−k) = z−k+1, k ≥ 2, F(z−1) =
z, limk→∞ F(z−k) = z. Such an orbit {z−k}∞

k=1 is a homoclinic orbit for the repeller z, in
the generalized sense, as mentioned above. The existence of such a homoclinic orbit leads
to the existence of a snapback point in the repelling neighborhood of repeller z. Therefore,
without finding the repelling region of the fixed point, Marotto’s theorem still holds by using
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the second method. More precisely, two methodologies were derived to establish the existence
of snapback repellers:
(i) estimate the radius of repelling neighborhood for a repelling fixed point, under Euclidean
norm,
(ii) construct the homoclinic orbit for a repelling fixed point by using a sequential
graphic-iteration scheme.
In some practical applications, one can combine (i) and (ii) to achieve the application
of Marotto’s theorem. These two methodologies can then be combined with numerical
computations and the technique of interval computing which provides rigorous computation
precision, to conclude chaotic dynamics for the systems, such as the transiently chaotic neural
network (TCNN) and the predator-prey system (Liao & Shih, 2011). Let us recall the results
therein.

Repelling neighborhood:
Proposition (Liao & Shih, 2011). Consider a continuously differentiable map F : Rn → Rn

with fixed point z. Let

s1 :=
√

minimal eigenvalue of (DF(z))TDF(z) ,

ηr := max
w∈Br(z)

�B(w, z)�2

= max
w∈Br(z)

√
maximal eigenvalue of (B(w, z))T B(w, z),

where B(w, z) := DF(w)− DF(z). If there exists a r > 0 such that

s1 − ηr > 1, (19)

then Br(z) is a repelling neighborhood for z, under the Euclidean norm.

There is a second approach which is based on the estimate of the first and second derivatives
of F. This estimate is advantageous for quadratic maps since their second derivatives are
constants. Let σi(x) and βij(x) be defined as

σi(x) :=
√

eigenvalues of (DF(x))T DF(x),

βij(x) := eigenvalues of Hessian matrix HFi (x) = [∂k∂l Fi(x)]k×l,

where i, j = 1, 2, · · · , n. Let αr and βr be defined as

αr := min
x∈Br(z)

min
1≤i≤n

{σi(x)} (20)

βr := max
1≤i≤n

max
x∈Br(z)

max
1≤j≤n

|βij(x)|. (21)

Proposition (Liao & Shih, 2011). Consider a C2 map F = (F1, · · · , Fn) : Rn → Rn with fixed
point z. Let αr and βr be defined in (20) and (21). If there exists r > 0, such that

αr − r
√

nβr > 1, (22)
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However, there is a technical flaw in the original derivation. Consider the following two
statements:
(A): All eigenvalues of the Jacobian DF(z) are greater than one in norm.
(B): There exist some s > 1 and r > 0 such that

�F(x)− F(y)� > s�x − y�, for all x, y ∈ Br(z). (17)

That (A) implies (B) may not be true for the Euclidean norm in multi-dimension. In addition,
if z is a fixed point and there exists a norm � · �∗, such that

|λ(x)| > 1, for all eigenvalues λ(x) of DF(x), for all x ∈ B∗
r (z),

then
�F(x)− F(y)�∗ > s · �x − y�∗, for all x, y ∈ B∗

r (z), (18)

still may not be satisfied. This is due to that the norm constructed for such a property depends
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neighborhood of this fixed point. From practical view point, condition (16) which was
adopted in his original version, is obviously easier to examine than finding the repelling
neighborhood for a fixed point. In (Liao & Shih, 2011), two directions have been proposed
to confirm that a repelling fixed point is a snapback repeller for multi-dimensional maps.
The first one is to find the repelling neighborhood U of the repeller z which is based on a
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the generalized sense, as mentioned above. The existence of such a homoclinic orbit leads
to the existence of a snapback point in the repelling neighborhood of repeller z. Therefore,
without finding the repelling region of the fixed point, Marotto’s theorem still holds by using
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the second method. More precisely, two methodologies were derived to establish the existence
of snapback repellers:
(i) estimate the radius of repelling neighborhood for a repelling fixed point, under Euclidean
norm,
(ii) construct the homoclinic orbit for a repelling fixed point by using a sequential
graphic-iteration scheme.
In some practical applications, one can combine (i) and (ii) to achieve the application
of Marotto’s theorem. These two methodologies can then be combined with numerical
computations and the technique of interval computing which provides rigorous computation
precision, to conclude chaotic dynamics for the systems, such as the transiently chaotic neural
network (TCNN) and the predator-prey system (Liao & Shih, 2011). Let us recall the results
therein.

Repelling neighborhood:
Proposition (Liao & Shih, 2011). Consider a continuously differentiable map F : Rn → Rn

with fixed point z. Let

s1 :=
√

minimal eigenvalue of (DF(z))TDF(z) ,

ηr := max
w∈Br(z)

�B(w, z)�2

= max
w∈Br(z)

√
maximal eigenvalue of (B(w, z))T B(w, z),

where B(w, z) := DF(w)− DF(z). If there exists a r > 0 such that

s1 − ηr > 1, (19)

then Br(z) is a repelling neighborhood for z, under the Euclidean norm.

There is a second approach which is based on the estimate of the first and second derivatives
of F. This estimate is advantageous for quadratic maps since their second derivatives are
constants. Let σi(x) and βij(x) be defined as

σi(x) :=
√

eigenvalues of (DF(x))T DF(x),

βij(x) := eigenvalues of Hessian matrix HFi (x) = [∂k∂l Fi(x)]k×l,

where i, j = 1, 2, · · · , n. Let αr and βr be defined as

αr := min
x∈Br(z)

min
1≤i≤n

{σi(x)} (20)

βr := max
1≤i≤n

max
x∈Br(z)

max
1≤j≤n

|βij(x)|. (21)

Proposition (Liao & Shih, 2011). Consider a C2 map F = (F1, · · · , Fn) : Rn → Rn with fixed
point z. Let αr and βr be defined in (20) and (21). If there exists r > 0, such that

αr − r
√

nβr > 1, (22)

517Multidimensional Dynamics: From Simple to Complicated



then Br(z) is a repelling neighborhood of z, under the Euclidean norm.
The conditions (19) and (22) are computable numerically and the value r can be found from
numerical computation. Furthermore, if there exists a snapback point x0 in Br(z), i.e., x0 ∈
Br(z), and F�(x0) = z for some integer � > 1, then z is a snapback repeller. Hence, the map F
is chaotic in the sense of Marotto.

Sequential graphic-iteration scheme:
We recall an approach which is developed to exploit the existence of snapback
repeller, without estimating the repelling neighborhood. In particular, it is a scheme
to construct homoclinic orbits for repelling fixed point x of F: {x−j : j ∈ N} with
F(x−1) = x, F(x−j) = x−j+1, for j ≥ 2, and limj→∞ F(x−j) = x.

Theorem (Liao & Shih, 2011). Assume that there exists a compact, connected, convex region
Ω = Πn

i=1Ωi ⊂ Rn, so that the C1 map F = (F1, F2, · · · , Fn) : Rn → Rn satisfies

| ∂Fi
∂xi

(x)| > 1 +
n

∑
j=1,j �=i

| ∂Fi
∂xj

(x)|, for all i = 1, · · · , n, x ∈ Ω,

and has a repelling fixed point x in Ω ⊂ Rn. For i = 1, · · · , n, set

f̂ i,(1)(ξ) := sup{Fi(x
�
1, · · · , x�i−1, ξ, x�i+1, · · · , x�n) : x�j ∈ Ωj, j ∈ {1, · · · , n}/{i}},

f̌ i,(1)(ξ) := inf{Fi(x
�
1, · · · , x�i−1, ξ, x�i+1, · · · , x�n) : x�j ∈ Ωj, j ∈ {1, · · · , n}/{i}},

for ξ ∈ R1. Also assume that f̂ i,(1) and f̌ i,(1) both have fixed points in Ωi, for all i = 1, · · · , n,
and

x−�+1 ∈ Rn \ Ω, x−� ∈ int(Ω)

hold, for some � ≥ 2. Then there exist a sequence of nested regions {Ω(k)}∞
k=1 with Ω(k+1) ⊆

Ω(k) ⊂ Ω, and preimages x−k−1 ∈ Ω(k) of x under F, k ∈ N. If furthermore, �Ωi,(k)� → 0, as
k → ∞, for all i = 1, · · · , n, then {x−k}∞

k=1 is a homoclinic orbit for x. Moreover, if

det (DF(x−k)) �= 0, for 1 ≤ k ≤ �− 1

holds, then x is a snapback repeller and F is chaotic in the sense of Marotto’s theorem.

Remark. (i) The existence of this homoclinic orbit guarantees the existence of the snapback
point without finding the repelling neighborhood. (ii) The conditions in the above theorem
are formulated for DF and the one-dimensional maps f̂ i,(1)(ξ) and f̌ i,(1)(ξ) (the upper and
lower maps), hence they are easy to examine in applications. For example, for TCNN map,
we can find explicit and computable conditions such that all conditions in the theorem are
satisfied.

4.2 Applications and extensions
We review some applications of snapback repeller and chaotic dynamics in (Marotto, 1979a,
1979b). Consider a two-dimensional mapping F : R2 → R2 of the form F(x, y) = ( f (x), x),
with f : R → R being differentiable.
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Lemma (Marotto, 1979a). (i) If f has a stable periodic point z of period p, then F(x, y) =
( f (x), x) has a stable periodic point (z, y0) of period p where y0 = f p−1(z). (ii) If f has a
snapback repeller, then F(x, y) = ( f (x), x) has a transversal homoclinic orbit.
Using these results, one can investigate the dynamics of the following difference equation:

xk+1 = f (xk, bxk−1), (23)

where b, xk ∈ R and f : R2 → R is differentiable. We rewrite (23) into the following
two-dimensional system:

xk+1 = f (xk, byk)

yk+1 = xk.
(24)

Moreover, when b = 0, (23) is the following scalar problem

xk+1 = f (xk, 0). (25)

It was shown that the dynamics of (23) or (24) are determined by those of (25), if b is close to
0:

Theorem (Marotto, 1979a). (i) If (25) has a stable periodic point x0 of period p, then there
exists ε > 0 such that (24) has a stable periodic point (x(b), y(b)) of period p for all |b| < ε. In
this case (x(b), y(b)) is a uniquely defined, continuous function of b with x(0) = x0. (ii) If (25)
has a snapback repeller, then (24) has a transversal homoclinic orbit for all |b| < ε, for some
ε > 0.

Next, let us consider another class of two-dimensional map G : R2 → R2 which is determined
by two scalar equations f (x) and g(y) where f , g : R → R are differentiable and G(x, y) is
defined by G(x, y) = ( f (x), g(y)).

Lemma (Marotto, 1979a). (i) If one of the mappings f and g has a snapback repeller and the
other has an unstable fixed point, then G(x, y) = ( f (x), g(y)) has a snapback repeller. (ii) If
one of the mappings f and g has a snapback repeller and the other has a stable fixed point,
then G(x, y) = ( f (x), g(y)) has a transversal homoclinic orbit.

Now, we consider the dynamics for systems of the form:

xk+1 = f (xk, byk)

yk+1 = g(cxk, yk),
(26)

where f , g : R2 → R are differentiable, and b, c ∈ R are close to 0. If b = c = 0, then (26) can
be simplified to the uncoupled system:

xk+1 = f (xk, 0) (27)

yk+1 = g(0, yk). (28)

Theorem (Marotto,1979a). (i) If one of the (27) and (28) has a snapback repeller and the other
has an unstable fixed point, then (26) has a snapback repeller for all |b|, |c| < ε, for some ε > 0.
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then Br(z) is a repelling neighborhood of z, under the Euclidean norm.
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(x)| > 1 +
n

∑
j=1,j �=i

| ∂Fi
∂xj

(x)|, for all i = 1, · · · , n, x ∈ Ω,

and has a repelling fixed point x in Ω ⊂ Rn. For i = 1, · · · , n, set

f̂ i,(1)(ξ) := sup{Fi(x
�
1, · · · , x�i−1, ξ, x�i+1, · · · , x�n) : x�j ∈ Ωj, j ∈ {1, · · · , n}/{i}},

f̌ i,(1)(ξ) := inf{Fi(x
�
1, · · · , x�i−1, ξ, x�i+1, · · · , x�n) : x�j ∈ Ωj, j ∈ {1, · · · , n}/{i}},

for ξ ∈ R1. Also assume that f̂ i,(1) and f̌ i,(1) both have fixed points in Ωi, for all i = 1, · · · , n,
and

x−�+1 ∈ Rn \ Ω, x−� ∈ int(Ω)

hold, for some � ≥ 2. Then there exist a sequence of nested regions {Ω(k)}∞
k=1 with Ω(k+1) ⊆

Ω(k) ⊂ Ω, and preimages x−k−1 ∈ Ω(k) of x under F, k ∈ N. If furthermore, �Ωi,(k)� → 0, as
k → ∞, for all i = 1, · · · , n, then {x−k}∞

k=1 is a homoclinic orbit for x. Moreover, if

det (DF(x−k)) �= 0, for 1 ≤ k ≤ �− 1

holds, then x is a snapback repeller and F is chaotic in the sense of Marotto’s theorem.

Remark. (i) The existence of this homoclinic orbit guarantees the existence of the snapback
point without finding the repelling neighborhood. (ii) The conditions in the above theorem
are formulated for DF and the one-dimensional maps f̂ i,(1)(ξ) and f̌ i,(1)(ξ) (the upper and
lower maps), hence they are easy to examine in applications. For example, for TCNN map,
we can find explicit and computable conditions such that all conditions in the theorem are
satisfied.

4.2 Applications and extensions
We review some applications of snapback repeller and chaotic dynamics in (Marotto, 1979a,
1979b). Consider a two-dimensional mapping F : R2 → R2 of the form F(x, y) = ( f (x), x),
with f : R → R being differentiable.
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Lemma (Marotto, 1979a). (i) If f has a stable periodic point z of period p, then F(x, y) =
( f (x), x) has a stable periodic point (z, y0) of period p where y0 = f p−1(z). (ii) If f has a
snapback repeller, then F(x, y) = ( f (x), x) has a transversal homoclinic orbit.
Using these results, one can investigate the dynamics of the following difference equation:

xk+1 = f (xk, bxk−1), (23)

where b, xk ∈ R and f : R2 → R is differentiable. We rewrite (23) into the following
two-dimensional system:

xk+1 = f (xk, byk)

yk+1 = xk.
(24)

Moreover, when b = 0, (23) is the following scalar problem

xk+1 = f (xk, 0). (25)

It was shown that the dynamics of (23) or (24) are determined by those of (25), if b is close to
0:

Theorem (Marotto, 1979a). (i) If (25) has a stable periodic point x0 of period p, then there
exists ε > 0 such that (24) has a stable periodic point (x(b), y(b)) of period p for all |b| < ε. In
this case (x(b), y(b)) is a uniquely defined, continuous function of b with x(0) = x0. (ii) If (25)
has a snapback repeller, then (24) has a transversal homoclinic orbit for all |b| < ε, for some
ε > 0.

Next, let us consider another class of two-dimensional map G : R2 → R2 which is determined
by two scalar equations f (x) and g(y) where f , g : R → R are differentiable and G(x, y) is
defined by G(x, y) = ( f (x), g(y)).

Lemma (Marotto, 1979a). (i) If one of the mappings f and g has a snapback repeller and the
other has an unstable fixed point, then G(x, y) = ( f (x), g(y)) has a snapback repeller. (ii) If
one of the mappings f and g has a snapback repeller and the other has a stable fixed point,
then G(x, y) = ( f (x), g(y)) has a transversal homoclinic orbit.

Now, we consider the dynamics for systems of the form:

xk+1 = f (xk, byk)

yk+1 = g(cxk, yk),
(26)

where f , g : R2 → R are differentiable, and b, c ∈ R are close to 0. If b = c = 0, then (26) can
be simplified to the uncoupled system:

xk+1 = f (xk, 0) (27)

yk+1 = g(0, yk). (28)

Theorem (Marotto,1979a). (i) If one of the (27) and (28) has a snapback repeller and the other
has an unstable fixed point, then (26) has a snapback repeller for all |b|, |c| < ε, for some ε > 0.
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(ii) If one of the (27) and (28) has a snapback repeller and the other has a stable fixed point,
then (26) has a transversal homoclinic orbit for all |b|, |c| < �, for some � > 0.

Remark. By examining the simplified systems, the above results exhibit the dynamics of
system (24) or (26) under some small perturbations of certain parameters. However, these
theorems do not provide any indication about the estimate of �.

Next, let us recall the Hénon map

xk+1 = yk + 1 − ax2
k

yk+1 = bxk,

which can be equivalently written as

uk+1 = bvk + 1 − au2
k =: f (uk, bvk)

vk+1 = uk,
(29)

where f (u, v) = v + 1 − au2. It was shown in (Marotto, 1979b) that uk+1 = f (uk, 0) has a
snapback repeller, when a > 1.55. Hence (29) has a transversal homolinic orbit for all a > 1.55
and |b| < �, for some � > 0.

In (Li, et al., 2008), they considered a one-parameter family of maps Hλ on Rn × Rm with
H0(x, y) = (F(x), G(x)) and continuous F : Rn → Rn and G : Rn → Rm or H0(x, y) =
(F(x), G(x, y)) with continuous maps F : Rn → Rn and G : Rn × Rm → Rm. They used
the covering relations method proposed by Zgliczyński in (Zgliczyński, 1996, 1997) to prove
that if n = 1 and F has a positive topological entropy, or if n > 1 and F has a snapback
repeller, then any small perturbation Hλ of H0 has a positive topological entropy. Without
using hyperbolicity, the covering relations method still provides a way to verify the existence
of periodic points, the symbolic dynamics and the positive topological entropy. Moreover,
they also applied this method to obtain a new proof for García’s result (García, 1986) that if a
map has a snapback repeller then it has a positive topological entropy. One can obtain similar
results by using this method with other structure, such as a hyperbolic horseshoe.
Since the definition of snapback repeller proposed by Marotto relies on the norm, the
following definition independent of norm was proposed.

Definition (Li, et al., 2008). Let F : Rn → Rn be a C1 function. A fixed point z for F is called a
snapback repeller if (i) all eigenvalues of the derivative DF(z) are greater than one in absolute
value and (ii) there exists a sequence {x−i}i∈N such that x−1 �= z, limi→∞ x−i = z, and for all
i ∈ N, F(x−i) = x−i+1, F(x−1) = z and det(DF(x−i)) �= 0.

Remark. Although the above definition is independent of norm on the phase space, it requires
the existence of the pre-images for the repeller. The sequential graphic-iteration scheme
outlined above provides a methodology for such a construction.

Note that item (i) implies that there exist a norm � · �∗ on Rn, r > 0 and s > 1, such that
�F(x) − F(y)�∗ > s�x − y�∗ for all x, y ∈ B∗

r (z). Hence F is one-to-one on B∗
r (z) and

F(B∗
r (z)) ⊃ B∗

r (z). Therefore, if there exists a point x0 ∈ B∗
r (z) such that F�(x0) = z and

det(DF�(x0)) �= 0 for some positive integer �, then item (ii) of the above definition is satisfied.
In addition, in (Li & Chen, 2003), they showed that this norm can be chosen to be the Euclidean
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norm on Rn, under the condition that all eigenvalues of (DF(z))TDF(z) are greater than one.
However, this condition is more restrictive, due to that a repelling fixed point has the potential
to be a snapback repeller, without satisfying this condition.

Theorem (Li, et al., 2008). Let Hλ be a one-parameter family of continuous maps on Rn × Rm

such that Hλ(x, y) is continuous as a function of λ ∈ Rl and (x, y) ∈ Rn × Rm. Assume
that H0(x, y) = (F(x), G(x)), where F : Rn → Rn is C1 and has a snapback repeller and
G : Rn → Rm. Then Hλ has a positive topological entropy for all λ sufficiently close to 0.

Theorem (Li, et al.,2008). Let Hλ be a one-parameter family of continuous maps on Rn × Rm

such that Hλ(z) is continuous as a function of λ ∈ Rl and (x, y) ∈ Rn × Rm. Assume that
H0(x, y) = (F(x), G(x, y)), where F : Rn → Rn is C1 and has a snapback repeller, G : Rn ×
Rm → Rm, and G(Rn × S) ⊂ int(S) for some compact set S ⊂ Rm homeomorphic to the
closed unit ball in Rm. Then Hλ has a positive topological entropy for all λ sufficiently close
to 0.

Moreover, it was shown in (Li & Lyu,2009) that if F has a snapback repeller and G is a small C1

perturbation of F, then G has a snapback repeller, positive topological entropy, as the implicit
function theorem is applied. Moreover, G is chaotic in the sense of Li-Yorke. More precisely,

Theorem (Li & Lyu, 2009). Let F be a C1 map on Rn with a snapback repeller. If G is a C1

map on Rn such that �F − G�+ �DF − DG�� is small enough, where � · �� is the operator
norm on the space of linear maps on Rn induced by the Euclidean norm � · �, then G has a
snapback repeller, exhibits Li-Yorke chaos, and has positive topological entropy.

Corollary (Li & Lyu, 2009). Let Fμ(x) be a one-parameter family of C1 maps with x ∈ Rn

and μ ∈ Rl . Assume that Fμ(x) is C1 as a function jointly of x and μ and that Fμ0 has a
snapback repeller. Then map Fμ has a snapback repeller, exhibits Li-Yorke chaos, and has
positive topological entropy, for all μ sufficiently close to μ0.
In (Shi & Chen, 2004, 2008), they generalized the definitions of expanding fixed point,
snapback repeller, homoclinic orbit, and heteroclinic orbit for a continuously differentiable
map from Rn to general metric spaces as follows. Herein, Bd

r (x) denotes the closed balls of
radius r centered at x ∈ X under metric d, i.e.

Bd
r (z) := {x ∈ Rn : d(x, z) ≤ r}.

In the following, we introduce the coupled-expanding map.
Definition (Shi & Chen, 2008). Let F : D ⊂ X → X be a map where (X, d) is a metric space. If
there exists � ≥ 2 subsets Vi , 1 ≤ i ≤ �, of D with Vi ∩ Vj = ∂DVi ∩ ∂DVj for each pair of (i, j),
1 ≤ i �= j ≤ �, such that

F(Vi) ⊃ ∪�
j=1Vj, 1 ≤ i ≤ �,

where ∂DVi is the relative boundary of Vi with respect to D, then F is said to be
coupled-expanding in Vi , 1 ≤ i ≤ �. Moreover, the map F is said to be strictly coupled-expanding
in Vi , 1 ≤ i ≤ �, if d(Vi, Vj) > 0, for all 1 ≤ i �= j ≤ �.

Definition (Shi & Chen, 2004). Let F : X → X be a map on metric space (X, d). (i) A point
z ∈ X is called an expanding fixed point (or a repeller) of F in Bd

r0
(z) for some constant r0 > 0, if

521Multidimensional Dynamics: From Simple to Complicated



(ii) If one of the (27) and (28) has a snapback repeller and the other has a stable fixed point,
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Remark. By examining the simplified systems, the above results exhibit the dynamics of
system (24) or (26) under some small perturbations of certain parameters. However, these
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Next, let us recall the Hénon map
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k
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which can be equivalently written as
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k =: f (uk, bvk)

vk+1 = uk,
(29)

where f (u, v) = v + 1 − au2. It was shown in (Marotto, 1979b) that uk+1 = f (uk, 0) has a
snapback repeller, when a > 1.55. Hence (29) has a transversal homolinic orbit for all a > 1.55
and |b| < �, for some � > 0.

In (Li, et al., 2008), they considered a one-parameter family of maps Hλ on Rn × Rm with
H0(x, y) = (F(x), G(x)) and continuous F : Rn → Rn and G : Rn → Rm or H0(x, y) =
(F(x), G(x, y)) with continuous maps F : Rn → Rn and G : Rn × Rm → Rm. They used
the covering relations method proposed by Zgliczyński in (Zgliczyński, 1996, 1997) to prove
that if n = 1 and F has a positive topological entropy, or if n > 1 and F has a snapback
repeller, then any small perturbation Hλ of H0 has a positive topological entropy. Without
using hyperbolicity, the covering relations method still provides a way to verify the existence
of periodic points, the symbolic dynamics and the positive topological entropy. Moreover,
they also applied this method to obtain a new proof for García’s result (García, 1986) that if a
map has a snapback repeller then it has a positive topological entropy. One can obtain similar
results by using this method with other structure, such as a hyperbolic horseshoe.
Since the definition of snapback repeller proposed by Marotto relies on the norm, the
following definition independent of norm was proposed.

Definition (Li, et al., 2008). Let F : Rn → Rn be a C1 function. A fixed point z for F is called a
snapback repeller if (i) all eigenvalues of the derivative DF(z) are greater than one in absolute
value and (ii) there exists a sequence {x−i}i∈N such that x−1 �= z, limi→∞ x−i = z, and for all
i ∈ N, F(x−i) = x−i+1, F(x−1) = z and det(DF(x−i)) �= 0.

Remark. Although the above definition is independent of norm on the phase space, it requires
the existence of the pre-images for the repeller. The sequential graphic-iteration scheme
outlined above provides a methodology for such a construction.

Note that item (i) implies that there exist a norm � · �∗ on Rn, r > 0 and s > 1, such that
�F(x) − F(y)�∗ > s�x − y�∗ for all x, y ∈ B∗

r (z). Hence F is one-to-one on B∗
r (z) and

F(B∗
r (z)) ⊃ B∗

r (z). Therefore, if there exists a point x0 ∈ B∗
r (z) such that F�(x0) = z and

det(DF�(x0)) �= 0 for some positive integer �, then item (ii) of the above definition is satisfied.
In addition, in (Li & Chen, 2003), they showed that this norm can be chosen to be the Euclidean
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norm on Rn, under the condition that all eigenvalues of (DF(z))TDF(z) are greater than one.
However, this condition is more restrictive, due to that a repelling fixed point has the potential
to be a snapback repeller, without satisfying this condition.

Theorem (Li, et al., 2008). Let Hλ be a one-parameter family of continuous maps on Rn × Rm

such that Hλ(x, y) is continuous as a function of λ ∈ Rl and (x, y) ∈ Rn × Rm. Assume
that H0(x, y) = (F(x), G(x)), where F : Rn → Rn is C1 and has a snapback repeller and
G : Rn → Rm. Then Hλ has a positive topological entropy for all λ sufficiently close to 0.
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such that Hλ(z) is continuous as a function of λ ∈ Rl and (x, y) ∈ Rn × Rm. Assume that
H0(x, y) = (F(x), G(x, y)), where F : Rn → Rn is C1 and has a snapback repeller, G : Rn ×
Rm → Rm, and G(Rn × S) ⊂ int(S) for some compact set S ⊂ Rm homeomorphic to the
closed unit ball in Rm. Then Hλ has a positive topological entropy for all λ sufficiently close
to 0.

Moreover, it was shown in (Li & Lyu,2009) that if F has a snapback repeller and G is a small C1

perturbation of F, then G has a snapback repeller, positive topological entropy, as the implicit
function theorem is applied. Moreover, G is chaotic in the sense of Li-Yorke. More precisely,

Theorem (Li & Lyu, 2009). Let F be a C1 map on Rn with a snapback repeller. If G is a C1

map on Rn such that �F − G�+ �DF − DG�� is small enough, where � · �� is the operator
norm on the space of linear maps on Rn induced by the Euclidean norm � · �, then G has a
snapback repeller, exhibits Li-Yorke chaos, and has positive topological entropy.

Corollary (Li & Lyu, 2009). Let Fμ(x) be a one-parameter family of C1 maps with x ∈ Rn

and μ ∈ Rl . Assume that Fμ(x) is C1 as a function jointly of x and μ and that Fμ0 has a
snapback repeller. Then map Fμ has a snapback repeller, exhibits Li-Yorke chaos, and has
positive topological entropy, for all μ sufficiently close to μ0.
In (Shi & Chen, 2004, 2008), they generalized the definitions of expanding fixed point,
snapback repeller, homoclinic orbit, and heteroclinic orbit for a continuously differentiable
map from Rn to general metric spaces as follows. Herein, Bd

r (x) denotes the closed balls of
radius r centered at x ∈ X under metric d, i.e.

Bd
r (z) := {x ∈ Rn : d(x, z) ≤ r}.

In the following, we introduce the coupled-expanding map.
Definition (Shi & Chen, 2008). Let F : D ⊂ X → X be a map where (X, d) is a metric space. If
there exists � ≥ 2 subsets Vi , 1 ≤ i ≤ �, of D with Vi ∩ Vj = ∂DVi ∩ ∂DVj for each pair of (i, j),
1 ≤ i �= j ≤ �, such that

F(Vi) ⊃ ∪�
j=1Vj, 1 ≤ i ≤ �,

where ∂DVi is the relative boundary of Vi with respect to D, then F is said to be
coupled-expanding in Vi , 1 ≤ i ≤ �. Moreover, the map F is said to be strictly coupled-expanding
in Vi , 1 ≤ i ≤ �, if d(Vi, Vj) > 0, for all 1 ≤ i �= j ≤ �.

Definition (Shi & Chen, 2004). Let F : X → X be a map on metric space (X, d). (i) A point
z ∈ X is called an expanding fixed point (or a repeller) of F in Bd

r0
(z) for some constant r0 > 0, if
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F(z) = z and
d(F(x), F(y)) ≥ λd(x, y), for all x, y ∈ Bd

r0
(z)

for some constant λ > 1. Moreover, z is called a regular expanding fixed point of F in Bd
r0
(z) if z

is an interior point of F(int(Bd
r0
(z))).

(ii) Let z be an expanding fixed point of F in Bd
r0
(z) for some r0 > 0. Then z is said to be a

snapback repeller of F if there exists a point x0 ∈ int(Bd
r0
(z)) with x0 �= z and F�(x0) = z for

some positive integer � ≥ 2. Moreover, z is said to be a nondegenerate snapback repeller of F if
there exist positive constants μ and δ0 such that int(Bd

δ0
(x0)) ⊂ int(Bd

r0
(z)) and

d(F�(x), F�(y)) ≥ μd(x, y), for all x, y ∈ Bd
δ0
(x0);

z is called a regular snapback repeller of F if F(int(Bd
r0
(z))) is open and there exists a positive

constant δ∗0 such that int(Bd
δ∗0
(x0)) ⊂ int(Bd

r0
(z)) and z is an interior point of F�(int(Bd

δ (x0)))

for any positive constant δ ≤ δ∗0 .
(iii) Assume that z ∈ X is a regular expanding fixed point of F. Let U be the maximal open
neighborhood of z in the sense that for any x ∈ U with x �= z, there exists k0 ≥ 1 with
Fk0(x) /∈ U, F−k(x) is uniquely defined in U for all k ≥ 1, and F−k(x) → z as k → ∞. U is
called the local unstable set of F at z and is denoted by Wu

loc(z).
(iv) Let z ∈ X be a regular expanding fixed point of F. A point x ∈ X is called homoclinic to z if
x ∈ Wu

loc(z), x �= z, and there exists an integer m ≥ 1 such that Fm(x) = z. A homoclinic orbit
to z, consisting of a homoclinic point x with Fm(x) = z, its backward orbit {F−j(x)}∞

j=1, and

its finite forward orbit {Fj(x)}m−1
j=1 , is called nondegenerate if for each point xj on the homoclinic

orbit there exist positive constants rj and μj such that

d(F(x), F(y)) ≥ μjd(x, y), for all x, y ∈ Bd
rj
(xj).

A homoclinic orbit is called regular if for each point xj on the orbit, there exists a positive
constant r̃j such that for any positive constant r ≤ r̃j, F(xj) is an interior point of
F(int(Bd

r (xj))). Otherwise, it is called singular. A point x is called heteroclinic to z, if x ∈ Wu
loc(z)

and there exists a m ≥ 1 such that Fm(x) lies on a different periodic orbit from z.
Notice that if a map F on Rn has a snapback repeller, and is continuously differentiable in
some neighborhood of xj = Fj(x0), for 0 ≤ j ≤ �− 1, then the snapback repeller is regular
and nondegenerate. For continuously differentiable finite-dimensional maps, the definition
of snapback repeller has been extended in (Shi & Chen, 2004, 2008) to the maps in the general
metric space, through introducing the two classifications: regular and singular, nondegenerate
and degenerate. It was proved that a map F is a strict coupled-expansion and chaotic in the
sense of both Devaney and Li-Yorke if F has a nondegenerate and regular snapback repeller
or a nondegenerate and regular homoclinic orbit to an expanding fixed point. Moreover, if F
is C1 in Rn and has a snapback repeller under Marotto’s definition, then the snapback repeller
is nondegenerate and regular. Therefore, F is chaotic in the sense of Marotto, Devaney, and
Li-Yorke. In addition, more general scenario for degenerate and regular snapback repeller,
was studied in (Shi & Yu, 2008).
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4.3 Some remarks
We summarize some results concerning the above-mentioned notions.
(i) For a compact metric space (X, d), chaos in the sense of Devaney implies chaos in the sense
of Li-Yorke.
(ii) If a map F has a snapback repeller z, then F is chaotic in the sense of Marotto and Li-Yorke.
(iii) If a map F : Λ → Λ is topologically conjugate to the symbolic dynamical system σ : Σ+

2 →
Σ+

2 , for some Cantor set Λ, then F is chaotic on Λ in the sense of Devaney and Li-Yorke.
(iv) For a complete metric space (X, d) and a map F : X → X, if F has a regular nondegenerate
snapback repeller z ∈ X, then there exists a Cantor set Λ so that Fm : Λ → Λ is topologically
conjugate to the symbolic dynamical system σ : Σ+

2 → Σ+
2 , for some integer m. Consequently,

Fm is chaotic on Λ in the sense of Devaney and Li-Yorke.
(v) For a complete metric space (X, d) and a C1 map F : X → X, if F has a Marotto’s snapback
repeller z, then z is also a regular nondegenerate snapback repeller. Hence, Fm is chaotic in
the sense of Devaney and Li-Yorke, for some integer m.
(vi) If a map F has a transversal homoclinic orbit, then there exists a Cantor set Λ so that
Fm : Λ → Λ is topologically conjugate to the symbolic dynamical system σ : Σ+

2 → Σ+
2 , for

some integer m. Consequently, Fm is chaotic on Λ in the sense of Devaney and Li-Yorke.
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there exist positive constants μ and δ0 such that int(Bd

δ0
(x0)) ⊂ int(Bd

r0
(z)) and

d(F�(x), F�(y)) ≥ μd(x, y), for all x, y ∈ Bd
δ0
(x0);

z is called a regular snapback repeller of F if F(int(Bd
r0
(z))) is open and there exists a positive

constant δ∗0 such that int(Bd
δ∗0
(x0)) ⊂ int(Bd

r0
(z)) and z is an interior point of F�(int(Bd

δ (x0)))

for any positive constant δ ≤ δ∗0 .
(iii) Assume that z ∈ X is a regular expanding fixed point of F. Let U be the maximal open
neighborhood of z in the sense that for any x ∈ U with x �= z, there exists k0 ≥ 1 with
Fk0(x) /∈ U, F−k(x) is uniquely defined in U for all k ≥ 1, and F−k(x) → z as k → ∞. U is
called the local unstable set of F at z and is denoted by Wu

loc(z).
(iv) Let z ∈ X be a regular expanding fixed point of F. A point x ∈ X is called homoclinic to z if
x ∈ Wu

loc(z), x �= z, and there exists an integer m ≥ 1 such that Fm(x) = z. A homoclinic orbit
to z, consisting of a homoclinic point x with Fm(x) = z, its backward orbit {F−j(x)}∞

j=1, and

its finite forward orbit {Fj(x)}m−1
j=1 , is called nondegenerate if for each point xj on the homoclinic

orbit there exist positive constants rj and μj such that

d(F(x), F(y)) ≥ μjd(x, y), for all x, y ∈ Bd
rj
(xj).

A homoclinic orbit is called regular if for each point xj on the orbit, there exists a positive
constant r̃j such that for any positive constant r ≤ r̃j, F(xj) is an interior point of
F(int(Bd

r (xj))). Otherwise, it is called singular. A point x is called heteroclinic to z, if x ∈ Wu
loc(z)

and there exists a m ≥ 1 such that Fm(x) lies on a different periodic orbit from z.
Notice that if a map F on Rn has a snapback repeller, and is continuously differentiable in
some neighborhood of xj = Fj(x0), for 0 ≤ j ≤ �− 1, then the snapback repeller is regular
and nondegenerate. For continuously differentiable finite-dimensional maps, the definition
of snapback repeller has been extended in (Shi & Chen, 2004, 2008) to the maps in the general
metric space, through introducing the two classifications: regular and singular, nondegenerate
and degenerate. It was proved that a map F is a strict coupled-expansion and chaotic in the
sense of both Devaney and Li-Yorke if F has a nondegenerate and regular snapback repeller
or a nondegenerate and regular homoclinic orbit to an expanding fixed point. Moreover, if F
is C1 in Rn and has a snapback repeller under Marotto’s definition, then the snapback repeller
is nondegenerate and regular. Therefore, F is chaotic in the sense of Marotto, Devaney, and
Li-Yorke. In addition, more general scenario for degenerate and regular snapback repeller,
was studied in (Shi & Yu, 2008).
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4.3 Some remarks
We summarize some results concerning the above-mentioned notions.
(i) For a compact metric space (X, d), chaos in the sense of Devaney implies chaos in the sense
of Li-Yorke.
(ii) If a map F has a snapback repeller z, then F is chaotic in the sense of Marotto and Li-Yorke.
(iii) If a map F : Λ → Λ is topologically conjugate to the symbolic dynamical system σ : Σ+

2 →
Σ+

2 , for some Cantor set Λ, then F is chaotic on Λ in the sense of Devaney and Li-Yorke.
(iv) For a complete metric space (X, d) and a map F : X → X, if F has a regular nondegenerate
snapback repeller z ∈ X, then there exists a Cantor set Λ so that Fm : Λ → Λ is topologically
conjugate to the symbolic dynamical system σ : Σ+

2 → Σ+
2 , for some integer m. Consequently,

Fm is chaotic on Λ in the sense of Devaney and Li-Yorke.
(v) For a complete metric space (X, d) and a C1 map F : X → X, if F has a Marotto’s snapback
repeller z, then z is also a regular nondegenerate snapback repeller. Hence, Fm is chaotic in
the sense of Devaney and Li-Yorke, for some integer m.
(vi) If a map F has a transversal homoclinic orbit, then there exists a Cantor set Λ so that
Fm : Λ → Λ is topologically conjugate to the symbolic dynamical system σ : Σ+

2 → Σ+
2 , for

some integer m. Consequently, Fm is chaotic on Λ in the sense of Devaney and Li-Yorke.
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