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Reliable H∞ Filtering for Discrete Time-Delay

Systems with Randomly Occurred Nonlinearities

via Delay-Partitioning Method
Yisha Liu, Zidong Wang and Wei Wang

Abstract

In this paper, the reliable H∞ filtering problem is investigated for a class of uncertain discrete time-delay systems

with randomly occurred nonlinearities (RONs) and sensor failures. RONs are introduced to model a class of sector-

like nonlinearities that occur in a probabilistic way according to a Bernoulli distributed white sequence with a known

conditional probability. The failures of sensors are quantified by a variable varying in a given interval. The time-varying

delay is unknown with given lower and upper bounds. The aim of the addressed reliable H∞ filtering problem is to

design a filter such that, for all possible sensor failures, RONs, time-delays as well as admissible parameter uncertainties,

the filtering error dynamics is asymptotically mean-square stable and also achieves a prescribed H∞ performance level.

Sufficient conditions for the existence of such a filter are obtained by using a new Lyapunov-Krasovskii functional

and delay-partitioning technique. The filter gains are characterized in terms of the solution to a set of linear matrix

inequalities (LMIs). A numerical example is given to demonstrate the effectiveness of the proposed design approach.
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I. Introduction

Filtering problem has been playing an important role in control engineering and signal processing that has

attracted constant research attention [2, 14]. The well-known Kalman filtering is the most representative one

among various filtering approaches. For Kalman filtering, the variance of the estimation error is minimized

under the assumption that the noise processes have exactly known statistical properties. However, it has been

recognized that the standard Kalman filtering algorithm might not guarantee satisfactory performance when

the statistical information of the noise is unknown [1]. To handle this problem, the H∞ filtering scheme has

been well developed whose main idea is to design an estimator for a given system to estimate a combination

of unknown states such that the L2 gain from the exogenous disturbance to the estimation error is less than

some prescribed level γ > 0. In the past years, various approaches, which include the linear matrix inequality

(LMI) approach [3,5,10,23,26,28,35] and Riccati equation approach [7,33], have been developed to deal with

the H∞ filtering problem.

In practice, nonlinearity is a main resource that contributes significantly to the system complexity [13,27].

As such, the H∞ filtering problem for nonlinear systems has been gaining increasing research attention and

a great deal of results have been available in the literature. For example, the H∞ filtering problem has

been investigated in [21, 23] where the nonlinearities are assumed to satisfy the sector-bounded conditions.
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With respect to general stochastic systems, the nonlinear H∞ filtering problem has also been paid great

efforts in [15, 16, 34]. It is worth mentioning that, however, a number of practical systems are influenced

by additive randomly occurred nonlinear disturbances that are caused by environmental circumstances. For

example, in a networked environment, such nonlinear disturbances may be subject to random abrupt changes,

which may result from abrupt phenomena such as random failures and repairs of the components, changes

in the interconnections of subsystems, sudden environment changes, modification of the operating point of

a linearized model of nonlinear systems, etc. As explained in [20], such nonlinear disturbances may occur

in a probabilistic way and are randomly changeable in terms of their types and/or intensity, which are then

named as randomly occurred nonlinearities (RONs). It should be pointed out that, up to now, the control

and filtering problems for discrete-time systems with RONs have not received adequate research attention yet

despite their engineering importance in networked control systems.

Due to the finite switching speed of the amplifiers, time-delays are frequently encountered in dynamical

systems. The existence of time-delays may deteriorate the system performance and even result in the instability

of the systems. As such, in the past few years, a great number of results have been reported for the systems

with various types of delays, such as constant time-delay [17,18,25,31], time-varying delay [6,24,35], distributed

delay [12,22,29], etc. Recently, the co-called delay partitioning technique has been widely used to address the

stability analysis problem of time-delay systems, which has proven to be very effective in reducing the possible

conservatism of the stability criteria. For example, in [9], a delay decomposition approach was proposed to

deal with the stability issue for linear neutral systems with time delays. In [36], the stability and stabilization

problem was investigated for delayed T-S fuzzy systems by using delay partitioning approach. On the other

hand, it is quite common in practice that the measurement output of a stochastic dynamic system contains

incomplete observations because of temporal sensor failures. Therefore, it is not surprising that the reliable

filtering problem in the presence of possible sensor failures has recently attracted much attention. In the past

few years, a number of results have been reported for linear or nonlinear systems, see, e.g., [8, 11, 19, 32, 37].

However, up to now, the H∞ reliable filtering problem for uncertain discrete-time systems with randomly

occurred nonlinearities and time-varying delays has not been fully investigated, which gives the motivation of

our present investigation.

In this paper, we consider the reliable H∞ filtering problem against sensor failures for a class of uncertain

discrete-time systems with norm-bounded uncertainties, time-varying delay and RONs. The main contribu-

tions are as follows. 1) First of all, the RONs model and the sensor failure model are introduced. RONs are

introduced to model a class of sector-like nonlinearities whose occurrence is governed by a Bernoulli distributed

white sequence with a known conditional probability. 2) The sensor failures are described by a variable taking

values in some interval, and such a description is more practical than the conventional outage case. 3) Next,

asymptotically mean-square stability conditions of the filtering error dynamics with a prescribed H∞ perfor-

mance level are obtained by using a novel Lyapunov-Krasovskii functional and delay-partitioning technique.

4) Then, we introduce a variable to realize the decoupling between the Lyapunov matrices and the filtering

error system matrices, which can reduce the conservativeness. Based on the decoupling idea, we design a

reliable H∞ filter whose gains can be obtained by solving a set of LMIs. Finally, a simulation example is

utilized to illustrate the effectiveness of the developed approach.

Notation The following notation will be used in this paper. Rn denotes the n dimensional Euclidean space.

The notation X ≥ Y (respectively, X > Y ), where X and Y are symmetric matrices, means that X − Y

is positive semi-definite (respectively, positive definite). E {x} stands for the expectation of the stochastic
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variable x. I and 0 represent the identity matrix and a zero matrix with appropriate dimension, respectively.

For a matrix R, RT represents its transpose and diag {R1, R2, ...} denotes a block diagonal matrix whose

diagonal blocks are given by R1, R2, .... In symmetric block matrices, the symbol ∗ is used as an ellipsis

for terms induced by symmetry. Matrices, if they are not explicitly stated, are assumed to have compatible

dimensions.

II. Problem Formulation

Consider the following discrete-time uncertain stochastic nonlinear system:

xk+1 = (A+∆A) xk + (Ad +∆Ad)xk−dk +Dwk + ξkEf (xk) ,

yk = C1xk +D1wk,

zk = Cxk,

xk = ϕk, k = −dM ,−dM + 1, . . . , 0, (1)

where xk ∈ R
n is the state; yk ∈ R

m is the measured output vector; zk ∈ R
r is the signal to be estimated;

wk ∈ R
q is the exogenous disturbance signal belonging to l2 [0,∞); dk denotes the time-varying delay with

lower and upper bounds dm ≤ dk ≤ dM . Note that the lower bound of delay dm can be always described

by dm = τm where τ and m are integers. ϕk is the initial state of the system. A, Ad, C, C1, D, D1 and

E are known real matrices with appropriate dimensions. ∆A and ∆Ad are unknown matrices representing

parameter uncertainties that are assumed to satisfy the following admissible condition:

[∆A ∆Ad] = MF [N Nd] , FF T ≤ I (2)

where M , N and Nd are known constant matrices with appropriate dimensions.

The nonlinear function f (x) satisfies the following sector-bounded condition:

[f (x)− T1x]
T [f (x)− T2x] ≤ 0, ∀x ∈ R

n (3)

where T1 and T2 are known real matrices of appropriate dimensions and T = T1 − T2 is a symmetric positive

definite matrix.

Remark 1: It is customary that the nonlinear function f (x) is said to belong to sectors [T2, T1]. The

description in (3) is quite general that includes the usual Lipschitz conditions as a special case, see [20] for the

discussion on the sector-like nonlinearities. Note that both the control analysis and model reduction problems

for systems with sector-like nonlinearities have been intensively studied, see e.g. [12, 21].

The stochastic variable ξk ∈ R, which accounts for the phenomena of randomly occurred nonlinearities

(RONs), is a Bernoulli distributed white sequence taking values of 1 and 0 with

Prob {ξk = 1} = ξ̄,

Prob {ξk = 0} = 1− ξ̄,
(4)

where ξ̄ ∈ [0 1] is a known constant.

When the sensors experience failures, we consider the following sensor failure model to describe the measured

signal sent from sensors:

yFk = Gyk (5)
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where the sensor fault matrix G is defined as follows:

0 ≤ G = diag{g
1
, . . . , g

p
} ≤ G = diag {g1, . . . , gp} ≤ Ḡ = diag {ḡ1, . . . , ḡp} ≤ I (6)

in which the variables gi (i = 1, . . . , p) quantify the failures of the sensors.

Let

G0 = diag {g01, . . . , g0p} :=
G+ Ḡ

2
= diag

{

g
1
+ ḡ1

2
, . . . ,

g
p
+ ḡp

2

}

, (7)

G̃ = diag {g̃1, . . . , g̃p} :=
Ḡ−G

2
= diag

{

ḡ1 − g
1

2
, . . . ,

ḡp − g
p

2

}

. (8)

We can rewrite G as follows:

G = G0 +∆ = G0 + diag {φ1, . . . , φp} , |φi| ≤ g̃i, (i = 1, . . . , p) . (9)

In this paper, we consider the following reliable filter:

x̂k+1 = Af x̂k +Bfy
F
k ,

ẑk = Cf x̂k (10)

where Af , Bf and Cf are parameters to be determined. By defining ηk =
[

xTk x̂Tk

]T

, we have the following

filtering error system:

ηk+1 = Ãηk + Ãdηk−dk + B̃wk + ξkẼf (Zηk) ,

ek = C̃ηk (11)

where ek = zk − ẑk is the estimated error, and

Ã =

[

A+∆A 0

BfGC1 Af

]

=

[

A 0

BfGC1 Af

]

+

[

M

0

]

F
[

N 0
]

= Ā+ M̄FN̄,

Ãd =

[

Ad +∆Ad 0

0 0

]

=

[

Ad 0

0 0

]

+

[

M

0

]

F
[

Nd 0
]

= Ād + M̄FN̄d,

B̃ =

[

D

BfGD1

]

, C̃ =
[

C −Cf

]

, Ẽ =

[

E

0

]

, Z =
[

I 0
]

.

In this paper, we aim to determine the parameters Af , Bf and Cf for the reliable filter (10) such that,

for all admissible sensor failures, randomly occurred nonlinearities (RONs), time-varying delay, parameter

uncertainties and exogenous disturbance, the filtering error system (11) satisfies the following requirements:

(a) The filtering error system (11) is asymptotically mean-square stable.

(b) Under the zero-initial condition, the estimated error ek satisfies

∞
∑

k=0

E

{

‖ek‖2
}

< γ2
∞
∑

k=0

E

{

‖wk‖2
}

(12)

for all nonzero wk, where γ > 0 is a prescribed scalar.
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III. Main Results

The following lemmas are needed in the proofs of our main results in this paper.

Lemma 1: Let J = JT , M and N be real matrices of appropriate dimensions with F satisfying FF T ≤ I,

then J +MFN +NTF TMT < 0 if and only if there exists a positive scalar ε such that

J + ε−1MMT + εNTN < 0. (13)

Lemma 2: [30] Let x ∈ R
n and y ∈ R

n. Then, for any scalar µ > 0, we have

xT y + yTx ≤ µxTx+ µ−1yTy. (14)

First of all, let us deal with both the stability analysis issue and the H∞ performance analysis issue in the

case that the parameter matrix describing the sensor failures is known. Sufficient conditions for the addressed

problem are represented via an LMI approach.

Theorem 1: Consider the filtering error system (11) with known sensor failure parameter matrix G and a

prescribed H∞ performance index γ > 0. If there exist matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0, S1 > 0,

S2 > 0, R1, R2, R3 and a scalar µ > 0 such that the following linear matrix inequalities hold,











































Ω ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ1R

T
1 −S1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

λ2R
T
2 0 −S2 ∗ ∗ ∗ ∗ ∗ ∗ ∗

PWP1
0 0 −P ∗ ∗ ∗ ∗ ∗ ∗

λ1S1Ξ 0 0 0 −S1 ∗ ∗ ∗ ∗ ∗
λ2S2Ξ 0 0 0 0 −S2 ∗ ∗ ∗ ∗
λ3PWP2

0 0 0 0 0 −P ∗ ∗ ∗
λ4S1WP2

0 0 0 0 0 0 −S1 ∗ ∗
λ5S2WP2

0 0 0 0 0 0 0 −S2 ∗
WP4

0 0 0 0 0 0 0 0 −I











































< 0, (15)











































Ω ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ1R

T
1 −S1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

λ2R
T
3 0 −S2 ∗ ∗ ∗ ∗ ∗ ∗ ∗

PWP1
0 0 −P ∗ ∗ ∗ ∗ ∗ ∗

λ1S1Ξ 0 0 0 −S1 ∗ ∗ ∗ ∗ ∗
λ2S2Ξ 0 0 0 0 −S2 ∗ ∗ ∗ ∗
λ3PWP2

0 0 0 0 0 −P ∗ ∗ ∗
λ4S1WP2

0 0 0 0 0 0 −S1 ∗ ∗
λ5S2WP2

0 0 0 0 0 0 0 −S2 ∗
WP4

0 0 0 0 0 0 0 0 −I











































< 0, (16)
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where

Ω = −W T
P3
PWP3

+W T
Q1

Q̄1WQ1
+W T

Q2
Q̄2WQ2

+W T
Q3

Q̄3WQ3
− µ

⌣

T − γ2W T
wWw

+R1WR1
+ (R1WR1

)T +R2WR2
+ (R2WR2

)T +R3WR3
+ (R3WR3

)T ,

λ1 =
√
τ , λ2 =

√

dM − τm, λ3 =
√

ξ̄
(

1− ξ̄
)

, λ4 =
√

τ ξ̄
(

1− ξ̄
)

,

λ5 =
√

ξ̄
(

1− ξ̄
)

(dM − τm), λ6 =
√

dM − τm+ 1,

Q̄1 =

[

Q1 0

0 −Q1

]

, Q̄2 =

[

Q2 0

0 −Q2

]

, Q̄3 =

[

Q3 0

0 −Q3

]

,

WP1
=

[

Ã 02n,2mn Ãd 02n ξ̄Ẽ B̃
]

, WP2
=

[

02n,2mn+6n Ẽ 02n,q

]

,

WP3
=

[

I2n 02n,2mn+5n+q

]

, WP4
=

[

C̃ 0nC ,2mn+5n+q

]

, Ξ = WP1
−WP3

,

WQ1
=

[

I2mn 02mn,7n+q

02mn,2n I2mn 02mn,5n+q

]

, WQ2
=

[

I2n 02n,2mn+5n+q

02n,2mn+4n I2n 02n,n+q

]

,

WQ3
=

[

λ6I2n 02n,2mn+5n+q

02n,2mn+2n I2n 02n,3n+q

]

,

WR1
=

[

I2n −I2n 02n,2mn+3n+q

]

, WR2
=

[

02n,2mn I2n −I2n 02n,3n+q

]

,

WR3
=

[

02n,2mn+2n I2n −I2n 02n,n+q

]

, Ww =
[

0q,2mn+7n Iq

]

,

⌣

T =













ZT T̃1Z ∗ ∗ ∗
02mn+4n,2n 02mn+4n ∗ ∗

T̃ T
2 Z 0n,2mn+4n In ∗

0q,2n 0q,2mn+4n 0q,n 0q













, T̃1 =
(

T T
1 T2 + T T

2 T1

)

/2, T̃2 = −
(

T T
1 + T T

2

)

/2,

in which nC is the number of row in matrix C, then the filtering error system (11) is asymptotically mean-

square stable with an H∞ disturbance attenuation level γ.

Proof: Let us first show that, under the zero-initial condition, the estimated error ek satisfies (12) for

all nonzero wk. Choose a new Lyapunov-Krasovskii functional candidate:

Vk = V1k + V2k + V3k + V4k (17)

where

V1k = ηTk Pηk,

V2k =

k−1
∑

i=k−τ

ΓT
i Q1Γi +

k−1
∑

i=k−dM

ηTi Q2ηi,

V3k =

−τm+1
∑

j=−dM+1

k−1
∑

i=k−1+j

ηTi Q3ηi,

V4k =

−1
∑

j=−τ

k−1
∑

i=k+j

δTi S1δi +

−τm−1
∑

j=−dM

k−1
∑

i=k+j

δTi S2δi
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with

δi = ηi+1 − ηi, Γi =













ηi

ηi−τ

...

ηi−(m−1)τ













.

Calculating the difference of Vk along the system (11) under the zero-initial condition, we have

E {∆Vk} = E {∆V1k}+ E {∆V2k}+ E {∆V3k}+ E {∆V4k} (18)

where

E {∆V1k} = E

{[

Ãηk + Ãdηk−dk + B̃wk + ξ̄Ẽf (Zηk)+
(

ξk − ξ̄
)

Ẽf (Zηk)
]T

P

×
[

Ãηk + Ãdηk−dk + B̃wk + ξ̄Ẽf (Zηk)+
(

ξk − ξ̄
)

Ẽf (Zηk)
]

− ηTk Pηk

}

= E

{

[

Ãηk + Ãdηk−dk + B̃wk + ξ̄Ẽf (Zηk)
]T

P
[

Ãηk + Ãdηk−dk + B̃wk + ξ̄Ẽf (Zηk)
]

+ξ̄
(

1− ξ̄
)

fT (Zηk) Ẽ
TPẼf (Zηk)− ηTk Pηk

}

= E
{

αT
k

(

W T
P1
PWP1

+ ξ̄
(

1− ξ̄
)

W T
P2
PWP2

−W T
P3
PWP3

)

αk

}

, (19)

E {∆V2k} = E
{

ΓT
kQ1Γk − ΓT

k−τQ1Γk−τ + ηTk Q2ηk − ηTk−dM
Q2ηk−dM

}

= E
{

αT
k

(

W T
Q1

Q̄1WQ1
+W T

Q2
Q̄2WQ2

)

αk

}

, (20)

E {∆V3k} = E







(dM − τm+ 1) ηTk Q3ηk −
k−τm
∑

i=k−dM

ηTi Q3ηi







≤ E
{

(dM − τm+ 1) ηTk Q3ηk − ηTk−dk
Q3ηk−dk

}

= E
{

αT
k

(

W T
Q3

Q̄3WQ3

)

αk

}

, (21)

E {∆V4k} = E







δTk (τS1 + (dM − τm)S2) δk −
k−1
∑

i=k−τ

δTi S1δi −
k−τm−1
∑

i=k−dk

δTi S2δi −
k−dk−1
∑

i=k−dM

δTi S2δi







= E

{[

Ãηk + Ãdηk−dk + B̃wk + ξ̄Ẽf (Zηk)− ηk

]T

(τS1 + (dM − τm)S2)

×
[

Ãηk + Ãdηk−dk + B̃wk + ξ̄Ẽf (Zηk)− ηk

]

+ξ̄
(

1− ξ̄
)

fT (Zηk) Ẽ
T (τS1 + (dM − τm)S2) Ẽf (Zηk)

−
k−1
∑

i=k−τ

δTi S1δi −
k−τm−1
∑

i=k−dk

δTi S2δi −
k−dk−1
∑

i=k−dM

δTi S2δi







= E
{

αT
k

(

τΞTS1Ξ + (dM − τm) ΞTS2Ξ + τ ξ̄
(

1− ξ̄
)

W T
P2
S1WP2

+ξ̄
(

1− ξ̄
)

(dM − τm) W T
P2
S2WP2

)

αk

−
k−1
∑

i=k−τ

δTi S1δi −
k−τm−1
∑

i=k−dk

δTi S2δi −
k−dk−1
∑

i=k−dM

δTi S2δi







, (22)
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with

αk =
[

ΓT
k ηTk−τm ηTk−dk

ηTk−dM
fT (Zηk) wT

k

]T

.

According to the definition of δi, for any matrices R1, R2 and R3, the following equations always hold

2αT
kR1

[

ηk − ηk−τ −
k−1
∑

i=k−τ

δi

]

= 0, (23)

2αT
kR2



ηk−τm − ηk−dk −
k−τm−1
∑

i=k−dk

δi



 = 0, (24)

2αT
kR3



ηk−dk − ηk−dM −
k−dk−1
∑

i=k−dM

δi



 = 0. (25)

On the other hand, note that (3) is equivalent to

[

x

f (x)

]T [

T̃1 T̃2

T̃ T
2 I

][

x

f (x)

]

≤ 0. (26)

which implies

−µαT
k

⌣

Tαk ≥ 0, (27)

where µ > 0.

To analyze the H∞ performance of the filtering error system (11), we introduce the following index:

J (e, w) =

∞
∑

k=0

E
{

eTk ek − γ2wT
k wk

}

=

∞
∑

k=0

E
{

eTk ek − γ2wT
k wk +∆Vk

}

+ E {V0} − E {V∞}

≤
∞
∑

k=0

E
{

eTk ek − γ2wT
k wk +∆Vk

}

. (28)
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From (19)-(25) and (27), we have

E
{

eTk ek − γ2wT
k wk +∆Vk

}

≤ E
{

αT
k {Ω+ W T

P1
PWP1

+ τΞTS1Ξ + (dM − τm) ΞTS2Ξ

+ξ̄
(

1− ξ̄
)

W T
P2
PWP2

+ τ ξ̄
(

1− ξ̄
)

W T
P2
S1WP2

+ ξ̄
(

1− ξ̄
)

(dM − τm)W T
P2
S2WP2

+W T
P4
WP4

+ τR1S
−1
1 RT

1 + (dk − τm)R2S
−1
2 RT

2 + (dM − dk)R3S
−1
2 RT

3

}

αk

}

−
k−1
∑

i=k−τ

(

S1δi +RT
1 αk

)T
S−1
1

(

S1δi +RT
1 αk

)

−
k−τm−1
∑

i=k−dk

(

S2δi +RT
2 αk

)T
S−1
2

(

S2δi +RT
2 αk

)

−
k−dk−1
∑

i=k−dM

(

S2δi +RT
3 αk

)T
S−1
2

(

S2δi +RT
3 αk

)

≤ E
{

αT
k {Ω+ W T

P1
PWP1

+ τΞTS1Ξ + (dM − τm) ΞTS2Ξ

+ξ̄
(

1− ξ̄
)

W T
P2
PWP2

+ τ ξ̄
(

1− ξ̄
)

W T
P2
S1WP2

+ ξ̄
(

1− ξ̄
)

(dM − τm)W T
P2
S2WP2

+W T
P4
WP4

+ τR1S
−1
1 RT

1 + (dk − τm)R2S
−1
2 RT

2 + (dM − dk)R3S
−1
2 RT

3

}

αk

}

= E
{

αT
k {Ω+ W T

P1
PWP1

+ τΞTS1Ξ + (dM − τm) ΞTS2Ξ + τR1S
−1
1 RT

1

+ξ̄
(

1− ξ̄
)

W T
P2
PWP2

+ τ ξ̄
(

1− ξ̄
)

W T
P2
S1WP2

+ ξ̄
(

1− ξ̄
)

(dM − τm)W T
P2
S2WP2

+W T
P4
WP4

+

(

dk − τm

dM − τm

)

(dM − τm)R2S
−1
2 RT

2 +

(

dM − dk
dM − τm

)

(dM − τm)R3S
−1
2 RT

3

}

αk

}

= E

{

αT
k

{(

dk − τm

dM − τm

)

(

Ω+W T
P1
PWP1

+ τΞTS1Ξ + (dM − τm) ΞTS2Ξ

+ξ̄
(

1− ξ̄
)

W T
P2
PWP2

+ τ ξ̄
(

1− ξ̄
)

W T
P2
S1WP2

+ ξ̄
(

1− ξ̄
)

(dM − τm)W T
P2
S2WP2

+W T
P4
WP4

+τR1S
−1
1 RT

1 + (dM − τm)R2S
−1
2 RT

2

)

+

(

dM − dk
dM − τm

)

(

Ω+W T
P1
PWP1

+ τΞTS1Ξ + (dM − τm) ΞTS2Ξ

+ξ̄
(

1− ξ̄
)

W T
P2
PWP2

+ τ ξ̄
(

1− ξ̄
)

W T
P2
S1WP2

+ ξ̄
(

1− ξ̄
)

(dM − τm)W T
P2
S2WP2

+W T
P4
WP4

+τR1S
−1
1 RT

1 + (dM − τm)R3S
−1
2 RT

3

)}

αk

}

. (29)

By Schur complement, it follows from (15) and (16) that E
{

eTk ek − γ2wT
k wk +∆Vk

}

< 0, which implies

that J (e, w) < 0. Therefore, the inequality (12) holds for all nonzero wk. Similar to the above deduction, we

can show that the forward difference of Vk with w = 0 satisfies ∆Vk < 0, which indicates the filtering error

system (11) is asymptotically mean-square stable. This completes the proof.

Remark 2: The delay partitioning technique has been widely used to deal with time-delay systems that has

shown the potential of reducing conservatism, see [36]. In Theorem 1, asymptotically mean-square stability

conditions of the filtering error system with a prescribed H∞ performance level have been obtained based

on the delay partitioning technique. The conditions can be checked by solving a set of LMIs. Note that the

dimensions of the LMIs depend on the partitioning number m.

Theorem 2: Consider the filtering error system (11) with known sensor failure parameter matrix G and a

prescribed H∞ performance index γ > 0. If there exist matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0, S1 > 0,
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S2 > 0, R1, R2, R3, H and a scalar µ > 0 such that the following linear matrix inequalities hold,










































Ω ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ1R

T
1 −S1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

λ2R
T
2 0 −S2 ∗ ∗ ∗ ∗ ∗ ∗ ∗

HTWP1
0 0 HP ∗ ∗ ∗ ∗ ∗ ∗

λ1H
TΞ 0 0 0 HS1

∗ ∗ ∗ ∗ ∗
λ2H

TΞ 0 0 0 0 HS2
∗ ∗ ∗ ∗

λ3H
TWP2

0 0 0 0 0 HP ∗ ∗ ∗
λ4H

TWP2
0 0 0 0 0 0 HS1

∗ ∗
λ5H

TWP2
0 0 0 0 0 0 0 HS2

∗
WP4

0 0 0 0 0 0 0 0 −I











































< 0, (30)











































Ω ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ1R

T
1 −S1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

λ2R
T
3 0 −S2 ∗ ∗ ∗ ∗ ∗ ∗ ∗

HTWP1
0 0 HP ∗ ∗ ∗ ∗ ∗ ∗

λ1H
TΞ 0 0 0 HS1

∗ ∗ ∗ ∗ ∗
λ2H

TΞ 0 0 0 0 HS2
∗ ∗ ∗ ∗

λ3H
TWP2

0 0 0 0 0 HP ∗ ∗ ∗
λ4H

TWP2
0 0 0 0 0 0 HS1

∗ ∗
λ5H

TWP2
0 0 0 0 0 0 0 HS2

∗
WP4

0 0 0 0 0 0 0 0 −I











































< 0, (31)

where

HP = P −H −HT , HS1
= S1 −H −HT , HS2

= S2 −H −HT ,

Ω, WP1
, WP2

, WP4
, Ξ, λ1, λ2, λ3, λ4 and λ5 are defined as in Theorem 1, then the filtering error system (11)

is asymptotically mean-square stable with an H∞ disturbance attenuation level γ.

Proof: Using the fact P − H − HT ≥ −HTP−1H = H̃P , S1 − H − HT ≥ −HTS−1
1 H = H̃S1

and

S2 −H −HT ≥ −HTS−1
2 H = H̃S2

, we can obtain that










































Ω ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ1R

T
1 −S1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

λ2R
T
2 0 −S2 ∗ ∗ ∗ ∗ ∗ ∗ ∗

HTWP1
0 0 H̃P ∗ ∗ ∗ ∗ ∗ ∗

λ1H
TΞ 0 0 0 H̃S1

∗ ∗ ∗ ∗ ∗
λ2H

TΞ 0 0 0 0 H̃S2
∗ ∗ ∗ ∗

λ3H
TWP2

0 0 0 0 0 H̃P ∗ ∗ ∗
λ4H

TWP2
0 0 0 0 0 0 H̃S1

∗ ∗
λ5H

TWP2
0 0 0 0 0 0 0 H̃S2

∗
WP4

0 0 0 0 0 0 0 0 −I











































< 0, (32)

Then, pre- and post-multiplying (32) by diag
{

I, I, I, PH−T , S1H
−T , S2H

−T , PH−T , S1H
−T , S2H

−T , I
}

and

its transpose lead to (15). Similar to the above deduction, from (31), we can obtain that (16) holds. Thus,

the proof is completed.
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Remark 3: In Theorem 2, by introducing a variable H, the coupling between the Lyapunov matrices and

the filtering error system matrices will be eliminated. Such a newly introduced variable H does not present

any structural constraint such as symmetry, which is supposed to lead to potentially less conservative results.

In the following theorem, the uncertainties satisfying (2) will be eliminated in order to facilitate the actual

filter design.

Theorem 3: Consider the filtering error system (11) with known sensor failure parameter matrix G and a

prescribed H∞ performance index γ > 0. If there exist matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0, S1 > 0,

S2 > 0, R1, R2, R3, H and scalars µ > 0, ε > 0 such that the following linear matrix inequalities hold,





















































Ω ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ1R

T
1 −S1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

λ2R
T
2 0 −S2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

HT W̃P1
0 0 HP ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

λ1H
T Ξ̃ 0 0 0 HS1

∗ ∗ ∗ ∗ ∗ ∗ ∗
λ2H

T Ξ̃ 0 0 0 0 HS2
∗ ∗ ∗ ∗ ∗ ∗

λ3H
TWP2

0 0 0 0 0 HP ∗ ∗ ∗ ∗ ∗
λ4H

TWP2
0 0 0 0 0 0 HS1

∗ ∗ ∗ ∗
λ5H

TWP2
0 0 0 0 0 0 0 HS2

∗ ∗ ∗
WP4

0 0 0 0 0 0 0 0 −I ∗ ∗
0 0 0 M̄TH λ1M̄

TH λ2M̄
TH 0 0 0 0 −εI ∗

εΠ 0 0 0 0 0 0 0 0 0 0 −εI





















































< 0, (33)





















































Ω ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ1R

T
1 −S1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

λ2R
T
3 0 −S2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

HT W̃P1
0 0 HP ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

λ1H
T Ξ̃ 0 0 0 HS1

∗ ∗ ∗ ∗ ∗ ∗ ∗
λ2H

T Ξ̃ 0 0 0 0 HS2
∗ ∗ ∗ ∗ ∗ ∗

λ3H
TWP2

0 0 0 0 0 HP ∗ ∗ ∗ ∗ ∗
λ4H

TWP2
0 0 0 0 0 0 HS1

∗ ∗ ∗ ∗
λ5H

TWP2
0 0 0 0 0 0 0 HS2

∗ ∗ ∗
WP4

0 0 0 0 0 0 0 0 −I ∗ ∗
0 0 0 M̄TH λ1M̄

TH λ2M̄
TH 0 0 0 0 −εI ∗

εΠ 0 0 0 0 0 0 0 0 0 0 −εI





















































< 0, (34)

where

W̃P1
=

[

Ā 02n,2mn Ād 02n ξ̄Ẽ B̃
]

, WP3
=

[

I2n 02n,2mn+5n+q

]

,

Π =
[

N̄ 0nN ,2mn N̄d 0nN ,3n+q

]

, Ξ̃ = W̃P1
−WP3

,

nN is the number of row in matrix N , Ω, WP2
, WP4

, λ1, λ2, λ3, λ4 and λ5 are defined as in Theorem 1,

and HP , HS1
and HS2

are defined as in Theorem 2, then the filtering error system (11) is asymptotically

mean-square stable with an H∞ disturbance attenuation level γ.
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Proof: According to Schur complement, it can be seen that (33) is equivalent to

Ψ1 + ε−1M̃M̃T + εÑT Ñ < 0, (35)

where

Ψ1 =











































Ω ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ1R

T
1 −S1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

λ2R
T
2 0 −S2 ∗ ∗ ∗ ∗ ∗ ∗ ∗

HT W̃P1
0 0 HP ∗ ∗ ∗ ∗ ∗ ∗

λ1H
T Ξ̃ 0 0 0 HS1

∗ ∗ ∗ ∗ ∗
λ2H

T Ξ̃ 0 0 0 0 HS2
∗ ∗ ∗ ∗

λ3H
TWP2

0 0 0 0 0 HP ∗ ∗ ∗
λ4H

TWP2
0 0 0 0 0 0 HS1

∗ ∗
λ5H

TWP2
0 0 0 0 0 0 0 HS2

∗
WP4

0 0 0 0 0 0 0 0 −I











































,

M̃ =
[

0nM ,2mn+11n+q M̄TH λ1M̄
TH λ2M̄

TH 0nM ,7n

]T

,

Ñ =
[

Π 0nN ,17n

]

,

in which nM is the number of column in matrix M .

By Lemma (1), we can obtain that

Ψ1 + M̃FÑ +
(

M̃FÑ
)T

< 0, (36)

which is equivalent to (30). Similar to the above deduction, from (34), we can obtain that (31) holds. There-

fore, the filtering error system (11) is asymptotically mean-square stable with an H∞ disturbance attenuation

level γ. This completes the proof.

Based on Theorem 3, we will solve the problem of reliable H∞ filter design.

Theorem 4: Consider the filtering error system (11) with known sensor failure parameter matrix G and a

prescribed H∞ performance index γ > 0. If there exist matrices P1 > 0, P2, P3 > 0, Q1 > 0, Q2 > 0, Q3 > 0,

S11 > 0, S12, S13 > 0, S21 > 0, S22, S23 > 0, R1, R2, R3, H1, H2, H3, Â, B̂, Ĉ and scalars µ > 0, ε > 0 such

that the following linear matrix inequalities hold,

Φ =





















































Φ1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ1R

T
1 −Φ8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

λ2R
T
2 0 −Φ9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Φ2 0 0 Φ10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ1Φ3 0 0 0 Φ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ2Φ3 0 0 0 0 Φ12 ∗ ∗ ∗ ∗ ∗ ∗
λ3Φ4 0 0 0 0 0 Φ10 ∗ ∗ ∗ ∗ ∗
λ4Φ4 0 0 0 0 0 0 Φ11 ∗ ∗ ∗ ∗
λ5Φ4 0 0 0 0 0 0 0 Φ12 ∗ ∗ ∗
Φ5 0 0 0 0 0 0 0 0 −I ∗ ∗
0 0 0 Φ7 λ1Φ7 λ2Φ7 0 0 0 0 −εI ∗

εΦ6 0 0 0 0 0 0 0 0 0 0 −εI





















































< 0, (37)
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Φ̃ =





















































Φ1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ1R

T
1 −Φ8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

λ2R
T
3 0 −Φ9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Φ2 0 0 Φ10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ1Φ3 0 0 0 Φ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ2Φ3 0 0 0 0 Φ12 ∗ ∗ ∗ ∗ ∗ ∗
λ3Φ4 0 0 0 0 0 Φ10 ∗ ∗ ∗ ∗ ∗
λ4Φ4 0 0 0 0 0 0 Φ11 ∗ ∗ ∗ ∗
λ5Φ4 0 0 0 0 0 0 0 Φ12 ∗ ∗ ∗
Φ5 0 0 0 0 0 0 0 0 −I ∗ ∗
0 0 0 Φ7 λ1Φ7 λ2Φ7 0 0 0 0 −εI ∗

εΦ6 0 0 0 0 0 0 0 0 0 0 −εI





















































< 0, (38)

where

Φ1 = −W T
P3
PWP3

+W T
Q1

Q̄1WQ1
+W T

Q2
Q̄2WQ2

+W T
Q3

Q̄3WQ3
− µ

⌣

T − γ2W T
wWw

+R1WR1
+ (R1WR1

)T +R2WR2
+ (R2WR2

)T +R3WR3
+ (R3WR3

)T ,

P =

[

P1 ∗
P2 P3

]

, Q̄1 =

[

Q1 0

0 −Q1

]

, Q̄2 =

[

Q2 0

0 −Q2

]

, Q̄3 =

[

Q3 0

0 −Q3

]

,

Φ2 =

[

HT
1 A+ B̂GC1 Â 0n,2mn HT

1 Ad 0n,3n ξ̄HT
1 E HT

1 D + B̂GD1

HT
3 A+ B̂GC1 Â 0n,2mn HT

3 Ad 0n,3n ξ̄HT
3 E HT

3 D + B̂GD1

]

,

Φ3 =

[

HT
1 A−HT

1 + B̂GC1 Â−HT
2 0n,2mn HT

1 Ad 0n,3n ξ̄HT
1 E HT

1 D + B̂GD1

HT
3 A−HT

3 + B̂GC1 Â−HT
2 0n,2mn HT

3 Ad 0n,3n ξ̄HT
3 E HT

3 D + B̂GD1

]

,

Φ4 =

[

0n,2mn+6n HT
1 E 0n,q

0n,2mn+6n HT
3 E 0n,q

]

, Φ5 =
[

C −Ĉ 0nC ,2mn+5n+q

]

,

Φ6 =
[

N 0nN ,2mn+n Nd 0nN ,4n+q

]

, Φ7 =
[

MTH1 MTH3

]

,

Φ8 =

[

S11 ∗
S12 S13

]

, Φ9 =

[

S21 ∗
S22 S23

]

, Φ10 =

[

P1 −H1 −HT
1 ∗

P2 −H2 −HT
3 P3 −H2 −HT

2

]

,

Φ11 =

[

S11 −H1 −HT
1 ∗

S12 −H2 −HT
3 S13 −H2 −HT

2

]

, Φ12 =

[

S21 −H1 −HT
1 ∗

S22 −H2 −HT
3 S23 −H2 −HT

2

]

,

and WP3
, WQ1

, WQ2
, WQ3

, WR1
, WR2

, WR3
, Ww,

⌣

T , λ1, λ2, λ3, λ4 and λ5 are defined as in Theorem 1, then

the filtering error system (11) is asymptotically mean-square stable with an H∞ disturbance attenuation level

γ. Moreover, the parameters of the desired filter are given as follows:

Af = H−T
2 Â, Bf = H−T

2 B̂, Cf = Ĉ. (39)

Proof: First, let us partition H as

H =

[

H1 H3

H2 H2

]

(40)
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where H2 is nonsingular without loss of generality. Furthermore, partition P , S1 and S2 as

P =

[

P1 ∗
P2 P3

]

, S1 =

[

S11 ∗
S12 S13

]

, S2 =

[

S21 ∗
S22 S23

]

. (41)

Then substituting (39)-(41) into (33) and (34), we can get (37) and (38) immediately. This completes the

proof.

In Theorems 1-4, with known sensor failure parameter and disturbance attenuation lever γ, we obtain the

asymptotic stability conditions of the filtering error system (11) and design an H∞ filter based on a linear

matrix inequality approach. In the following theorem, a design procedure for the desired filter parameters will

be provided in the case that the failure parameter matrix is unknown but satisfies the constraints (6)-(9).

Theorem 5: Consider the filtering error system (11) with a prescribed H∞ performance index γ > 0. If

there exist matrices P1 > 0, P2, P3 > 0, Q1 > 0, Q2 > 0, Q3 > 0, S11 > 0, S12, S13 > 0, S21 > 0, S22, S23 > 0,

R1, R2, R3, H1, H2, H3, Â, B̂, Ĉ and scalars µ > 0, ε > 0, σ > 0 such that the following linear matrix

inequalities hold,

Φ̂ =

[

Φ̂11 ∗
Φ̂21 Φ̂22

]

< 0, (42)

⌣

Φ =

[

⌣

Φ11 ∗
⌣

Φ21

⌣

Φ22

]

< 0, (43)

where

Φ̂11 =























Φ1 ∗ ∗ ∗ ∗ ∗
λ1R

T
1 −Φ8 ∗ ∗ ∗ ∗

λ2R
T
2 0 −Φ9 ∗ ∗ ∗

Φ̄2 0 0 Φ10 ∗ ∗
λ1Φ̄3 0 0 0 Φ11 ∗
λ2Φ̄3 0 0 0 0 Φ12























,

⌣

Φ11 =























Φ1 ∗ ∗ ∗ ∗ ∗
λ1R

T
1 −Φ8 ∗ ∗ ∗ ∗

λ2R
T
3 0 −Φ9 ∗ ∗ ∗

Φ̄2 0 0 Φ10 ∗ ∗
λ1Φ̄3 0 0 0 Φ11 ∗
λ2Φ̄3 0 0 0 0 Φ12























,

Φ̂21 =
⌣

Φ21 =

































λ3Φ4 0 0 0 0 0

λ4Φ4 0 0 0 0 0

λ5Φ4 0 0 0 0 0

Φ5 0 0 0 0 0

0 0 0 Φ7 λ1Φ7 λ2Φ7

εΦ6 0 0 0 0 0

0 0 0 Φ13 λ1Φ13 λ2Φ13

σΦ14 0 0 0 0 0

































,
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Φ̂22 =
⌣

Φ22 = diag{Φ10,Φ11,Φ12,−I,−εI,−εI,−σG̃−2,−σI},

Φ̄2 =

[

HT
1 A+ B̂G0C1 Â 0n,2mn HT

1 Ad 0n,3n ξ̄HT
1 E HT

1 D + B̂G0D1

HT
3 A+ B̂G0C1 Â 0n,2mn HT

3 Ad 0n,3n ξ̄HT
3 E HT

3 D + B̂G0D1

]

,

Φ̄3 =

[

HT
1 A−HT

1 + B̂G0C1 Â−HT
2 0n,2mn HT

1 Ad 0n,3n ξ̄HT
1 E HT

1 D + B̂G0D1

HT
3 A−HT

3 + B̂G0C1 Â−HT
2 0n,2mn HT

3 Ad 0n,3n ξ̄HT
3 E HT

3 D + B̂G0D1

]

,

Φ13 =
[

B̂T B̂T
]

, Φ14 =
[

C1 0nC1
,2mn+6n D1

]

,

nC1
is the number of row in matrix C1, Φ1, Φ4, Φ5, Φ6, Φ7, Φ8, Φ9, Φ10, Φ11 and Φ12 are defined as in

Theorem 4, and λ1, λ2, λ3, λ4 and λ5 are defined as in Theorem 1, then the filtering error system (11) is

asymptotically mean-square stable with an H∞ disturbance attenuation level γ. Moreover, the parameters of

the desired filter are given as follows:

Af = H−T
2 Â, Bf = H−T

2 B̂, Cf = Ĉ. (44)

Proof: From (9), we know that Φ in (37) can be rewritten as

Φ = Φ′ +W T∆V + V T∆W, (45)

where

Φ′ =





















































Φ1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ1R

T
1 −Φ8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

λ2R
T
2 0 −Φ9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Φ̄2 0 0 Φ10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ1Φ̄3 0 0 0 Φ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗
λ2Φ̄3 0 0 0 0 Φ12 ∗ ∗ ∗ ∗ ∗ ∗
λ3Φ4 0 0 0 0 0 Φ10 ∗ ∗ ∗ ∗ ∗
λ4Φ4 0 0 0 0 0 0 Φ11 ∗ ∗ ∗ ∗
λ5Φ4 0 0 0 0 0 0 0 Φ12 ∗ ∗ ∗
Φ5 0 0 0 0 0 0 0 0 −I ∗ ∗
0 0 0 Φ7 λ1Φ7 λ2Φ7 0 0 0 0 −εI ∗

εΦ6 0 0 0 0 0 0 0 0 0 0 −εI





















































,

W =
[

0 0 0 Φ13 λ1Φ13 λ2Φ13 0 0 0 0 0 0
]

,

V =
[

Φ14 0 0 0 0 0 0 0 0 0 0 0
]

.

From Lemma 2 and (9), we have

Φ ≤ Φ′ + σ−1W T G̃2W + σV TV = Θ. (46)

By Schur complement, (42) implies that Φ ≤ Θ < 0. Similarly, from (43), we can get that (38) holds. There-

fore, the filtering error system (11) is asymptotically mean-square stable with an H∞ disturbance attenuation

level γ. This completes the proof.

Remark 4: The robust H∞ filter design problem is solved in Theorems 5 for the addressed uncertain non-

linear stochastic time-delay systems. We derive an LMI-based sufficient condition for the existence of desired
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filters that ensure the mean-square asymptotic stability of the filtering error dynamics and reduce the effect

of the disturbance input on the estimated output to a prescribed level for all admissible uncertainties. The

delay-partitioning approach has been exploited to deal with time-delay systems that has shown the advantages

of reducing conservatism when thinning the delay fractions.

Remark 5: Our main results are based on the LMI conditions. The LMI Control Toolbox implements

state-of-the-art interior-point LMI solvers. While these solvers are significantly faster than classical convex

optimization algorithms, it should be kept in mind that the complexity of LMI computations remains higher

than that of solving, say, a Riccati equation. For instance, problems with a thousand design variables typically

take over an hour on today’s workstations. However, research on LMI optimization is a very active area in

the applied math, optimization and the operations research community, and substantial speed-ups can be

expected in the future.

IV. An Illustrative Example

In this section, we present an illustrative example to demonstrate the effectiveness of the proposed method.

Consider the system (1)-(4) with parameters as follows:

A =

[

0.3 0

0 0.6

]

, Ad =

[

0.1 0

0 0.2

]

, D =

[

0.5

0.5

]

, E =

[

0.1 0

0 0.1

]

,

C1 =
[

0.1 0.2
]

, D1 = 0.5, C =
[

0.1 −0.1
]

,

M =
[

1 1
]T

, N =
[

0.001 0.001
]

, Nd =
[

0.001 0.001
]

, ξ̄ = 0.8.

The nonlinear function f (xk) is chosen as

f (xk) =
1

2

[

0.3(x1k+x2k)
1+x2

1k
+x2

2k

+ 0.1x1k + 0.1x2k 0.3x1k + 0.3x2k
]T

which can be bounded by

T1 =

[

0.2 0.1

0 0.2

]

, T2 =

[

−0.1 0

−0.1 0.1

]

.

The time-varying delay dk satisfies 2 ≤ dk ≤ 4 and letm = 1. The sensor fault matrix G is assumed to satisfy

0.5 ≤ G ≤ 0.9. Then, we can obtain that G0 = 0.7 and G̃ = 0.2. Let F = sin (k) and wk = exp (−k/20)× nk

with nk being uniformly distributed over [−0.05, 0.05]. The H∞ performance level is taken as γ = 0.5.

Solving the LMIs (42) and (43) by using the Matlab LMI Toolbox, we can obtain the parameters of the

desired filter as follows:

Af =

[

0.2558 0.0619

−0.1240 0.5129

]

, Bf =

[

−0.4257

−1.7332

]

, Cf =
[

−0.0767 0.0883
]

.

The simulation results are shown in Figs. 1-2, where the trajectory and estimation of zk are given in

Fig. 1 and the estimated error ek is given in Fig. 2, which confirm that all the expected system performance

requirements are well achieved.

V. Conclusions

In this paper, the reliable H∞ filtering problem has been studied for a class of discrete-time systems

with sensor failures, randomly occurred nonlinearities, bounded state delay and norm-bounded parameter



SUBMITTED 17

0 10 20 30 40 50 60 70 80 90 100
−0.05

0

0.05

0.1

k

Fig. 1. zk (solid) and ẑk (dashed)
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Fig. 2. the estimated error ek

uncertainties. A new Lyapunov-Krasovskii functional and delay-partitioning technique have been used to

design a filter for all admissible uncertainties such that the filtering error system is asymptotically mean-

square stable and achieves a prescribed H∞ performance level. The filter gains have been characterized by

the solution of a set of LMIs. An illustrative example has been exploited to show the usefulness of the results

obtained. The future research topics would include the extension of the main results developed in this paper

to more general complex systems such as networked systems with random packet losses, general stochastic

systems, polynomial nonlinear systems and functional differential equations of the neutral type.
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