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Probability-Dependent Gain-Scheduled Filtering
for Stochastic Systems with Missing

Measurements
Guoliang Wei, Zidong Wang, Bo Shen and Maozhen Li

Abstract—This paper addresses the gain-scheduled filtering
problem for a class of discrete-time systems with missing mea-
surements, nonlinear disturbances and external stochastic noises.
The measurement missing phenomenon is assumed to occur in
a random way, and the missing probability is time-varying with
securable upper and low bounds that can be measured in real
time. The multiplicative noise is a state-dependent scalarGaus-
sian white noise sequence with known variance. The addressed
gain-scheduled filtering problem is concerned with the design of a
filter such that, for the admissible random measurement missing,
nonlinear parameters and external noise disturbances, theerror
dynamics is exponentially mean-square stable. The desiredfilter
is equipped with time-varying gains based primarily on the time-
varying missing probability and is therefore less conservative than
the traditional filter with fixed gains. It is shown that the fil ter
parameters can be derived in terms of the measurable probability
via the semi-definite programme method.

Index Terms—Filtering; missing measurements; gain schedul-
ing; time-varying Bernoulli distribution; probability-d ependent
Lyapunov functions

I. I NTRODUCTION

The general idea of filtering problems is to form a kind of
“best estimate” for the true value of some certain system based
on some potentially noisy observations [1]–[4], [8], [13]–[16].
Filtering problem serves as one of the fundamental problems
in the areas of control and signal processing. During the past
few decades, the filtering problem has attracted considerable
attention and some effective filtering strategies have been
exploited in the literature that include Kalman filtering scheme
[9] and H∞ filtering methods [10]. The developed filtering
approaches have been applied in a variety of systems such as
uncertain time-delay systems [10], stochastic systems [11] and
nonlinear systems [6], [11].
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Due to various reasons such as probabilistic network con-
gestion and intermittent mechanical failures, it has been well
recognized that the missing measurement phenomenon is
inevitable in many real-world systems connected via networks.
The filtering problem with missing measurements has recently
received renewed research interests due mainly to the pop-
ularity of networked control systems [7], [10]. As a simple
yet effective model, the Bernoulli distribution model has been
utilized in different systems to reflect the missing measure-
ments or packet dropouts, for example, nonlinear systems [12],
time-delay systems [10] and networked control systems [12],
etc. Unfortunately, in almost all existing literature concerning
Bernoulli distribution model, the missing probability hasbeen
implicitly assumed to be a fixed constant resulting in a time-
invariant filter structure. In reality, however, for dynamics
variation in the environment, the severity of the missing
measurement phenomenon might be changeable with time, and
therefore the missing probability is often time-varying.

For the filter design problems for time-varying systems, the
gain-scheduling approach has been found to be one of the
most effective ones, whose main idea is to design filter gains
as functions of the scheduling parameters which are supposed
to be available in real time. Gain-scheduled filtering problems
have been an attractive research focus in the past decade,
see e.g. [5]. Associated with the gain-scheduling technique is
the utilization of parameter-dependent Lyapunov functionwith
hope to reduce the possible conservatism [1]. Nevertheless,
there has been little research attention on the filtering problem
for discrete-time nonlinear stochastic systems withrandomly
missing phenomenon, especially when the time-varying nature
comes mainly from the missing probability. This is indeed
a challenging topic that deserves much research effort from
the community. It is, therefore, the purpose of this paper to
make one of the first few attempts to deal with the missing-
probability-dependent gain-scheduled filtering problems.

The main contributions of this paper are summarized as
follows: 1) a new filtering problem is addressed for a class
of discrete-time nonlinear stochastic systems with missing
measurements via a gain-scheduling approach; 2) a sequence
of stochastic variables satisfying Bernoulli distributions is
exploited to reflect the time-varying features of the missing
measurements in sensors; 3) a time-varying Lyapunov function
dependent on the missing probability is proposed and then ap-
plied to improve the performance of the gain-scheduled filters;
and 4) the filter parameters can be updated online according
to the missing probabilities estimated through statistical tests.
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II. PROBLEM FORMULATION

Consider the following class of discrete-time nonlinear
stochastic systems:

x(k + 1) = Ax(k) +Bf(z(k)) +Dx(k)ω(k) (1)

y0(k) = Cx(k) (2)

wherex(k) ∈ R
n is the state,y0(k) ∈ R

m is the ideal mea-
surement output (without data missing) andz(k) := Zx(k).
ω(k) is an one-dimensional Gaussian white noise sequence
satisfyingE{ω(k)} = 0 andE{ω2(k)} = σ2. A, B, C, D and
Z are constant matrices with appropriate dimensions.x(0) = ρ

is the initial state and the output matrixC is assumed to be
full of row rank.

The nonlinear vector-valued functionf(·) represents the
nonlinear disturbance satisfying the following sector-bounded
condition withf(0) = 0:

[f(z(k))− F1z(k)]
T [f(z(k))− F2z(k)] ≤ 0, (3)

whereF1 and F2 are constant real matrices of appropriate
dimensions andF = F2 −F1 is a symmetric positive definite
matrix. It is customary that such nonlinear functionf(·)
belongs to the sector[F1, F2] [6]. In this case, the nonlinear
function f(z(k)) can be decomposed into a linear part and a
nonlinear part as

f(z(k)) = F1z(k) + fs(z(k)), (4)

and it follows from (3) that

fT
s (z(k))(fs(z(k))− Fz(k)) ≤ 0. (5)

The measurement output with sensor data missing is de-
scribed by

y(k) = ξ(k)y0(k) = ξ(k)Cx(k), (6)

whereξ(k) ∈ R is a random white sequence characterizing the
probabilistic sensor data missing phenomenon, which obeys
the following time-varying Bernoulli distribution:

Prob{ξ(k) = 1} = E{ξ(k)} = p(k),

Prob{ξ(k) = 0} = 1− E{ξ(k)} = 1− p(k), (7)

where p(k) is a time-varying positive scalar sequence that
belongs to[p1 p2] ⊆ [0 1] with the constantp1 and p2
being the lower and upper bounds ofp(k). In this paper, we
assume thatξ(k), ω(k) andρ are uncorrelated. Furthermore,
the kind of measurements missing that obey the probability
distribution law (7) is said to be admissible.

Remark 1: In (6), a random white sequence satisfying the
time-varying Bernoulli distribution is introduced to reflect the
missing measurement phenomenon that has attracted consider-
able attention in the past few years, see e.g. [10]. However,the
missing probability in most relevant literature has alwaysbeen
assumed to be a constant. Such an assumption, unfortunately,
tends to be conservative in handling time-varying missing
measurements. In this paper, the missing probability is allowed
to be time-varying with known lower and upper bounds which
will then be used to schedule filter gains, thereby reducing the
possible conservatism.

In this paper, we aim to construct the following probability-
dependent gain-scheduled filter for (1) and (6):

xf (k + 1) = G(p(k))xf (k) +H(p(k))y(k), (8)

wherexf (k) ∈ R
n is the state estimate andp(k) is the time-

varying scheduling parameter taking value in[p1 p2]. G(p(k))
andH(p(k)) are the scheduled filter gains of the following
structure:

G(p(k)) = G0 + p(k)Gf , H(p(k)) = H0 + p(k)Hf (9)

whereG0, Gf , H0 andHf are the constant filter parameters to
be designed andp(k) is the time-varying missing probability
that can be estimated/measured via statistical tests in real time.

Remark 2:Different from the conventional filters, the above
gain-scheduled filter structure comprises two kinds of filter
gains: the constant (fixed) parametersG0, Gf , H0 andHf ,
and the time-varying parameterp(k). Here,p(k) takes value
in the interval [p1 p2] and can be measured in real time.
In certain applications such as the reliability analysis for
sensors, if the data missing probability for a particular sensor
is greater than0.5 through statistical tests, then such a sensor
would be replaced or at least repaired. In other words, the
upper bound for the data missing probability is0.5. In this
paper, the interval constraint[p1 p2] is added to reflect such
an engineering practice and also facilitate the later analysis.
Obviously, with this type of gain-scheduled filters, the con-
servatism can be reduced since more information about the
missing measurement phenomenon is utilized. Note that this
kind of gain-scheduling technique has been extensively applied
to deal with robust control and filtering problems for uncertain
systems with time-varying parameters, see e.g. [5].

Letting x̄(k) = [xT (k) xT
f (k)]

T , the error dynamics of the
filtering process is derived from (1), (6) and (8) as follows:

x̄(k + 1) =Ā(p(k))x̄(k) + B̄f(z(k)) + (ξ(k)− p(k))C̄(p(k))

×Nx̄(k) + D̄Nx̄(k)ω(k) (10)

where

Ā(p(k)) =

[

A 0
p(k)H(p(k))C G(p(k))

]

, D̄ =

[

D

0

]

,

C̄(p(k)) =

[

0
H(p(k))C

]

, B̄ =

[

B

0

]

, N = [I 0]. (11)

Definition 1: The filtering error system (10) is said to be
exponentially mean-square stableif, with ω(k) = 0, there
exist constantsα > 0 andτ ∈ (0, 1) such that

E{‖x̄(k)‖2} ≤ ατkE{‖x̄(0)‖2}, k ∈ I
+.

The purpose of this paper is to design a desired filter of the
form (8) for the discrete nonlinear stochastic system with time-
varying parameters in (1) and (6) such that, for all admissible
nonlinearities, missing measurements and stochastic distur-
bances, the augmented system (10) is exponentially mean-
square stable.
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III. M AIN RESULTS

In the following theorem, the parameter-dependent Lya-
punov function and the convex optimization are used to deal
with the stability analysis problem for the gain-scheduledfilter
design of the discrete-time stochastic nonlinear systems (1)
and (6) with missing measurements.

Theorem 1: Consider the augmented filtering error system
10) with given filter gains. If there exist positive-definite
matrix sequenceQ(p(k)) > 0 and matrixS such that the
following matrix inequalities












−Q(p(k)) ∗ ∗ ∗ ∗
FZN −2I ∗ ∗ ∗
Ω1(k) ST B̄ −Λ(k) ∗ ∗
Ω2(k) 0 0 −Θ(k)Λ(k) ∗

σ2ST D̄N 0 0 0 −σ2Λ(k)













< 0,

(12)
hold, whereΛ(k) = −Q(p(k + 1)) + S + ST and

Θ(k) = p(k)(1 − p(k)),Ω2(k) = Θ(k)ST C̄(p(k))N

Ω1(k) = ST [Ā(p(k)) + B̄F1ZN ], (13)

then (10) is exponentially mean-square stable.
Proof: Define the Lyapunov functionV (k) :=

x̄T (k)Q(p(k))x̄(k), whereQ(p(k)) is a time-varying positive
definite matrix sequence dependent on the missing probability
p(k). By noting E {ξ(k)− p(k)} = 0 andE {ω(k)} = 0, it
can be obtained from (10) that

E {∆V (k)}

=E
{

[Ā(p(k))x̄(k) + B̄f(z(k))]TQ(p(k + 1))[Ā(p(k))x̄(k)

+B̄f(z(k))] + p(k)(1 − p(k))x̄T (k)NT C̄T (p(k))

×Q(p(k + 1))C̄(p(k))Nx̄(k) + σ2x̄T (k)NT D̄T

×Q(p(k + 1))D̄Nx̄(k)− x̄T (k)Q(p(k))x̄(k)
}

. (14)

From (3) and (5), we can obtain

E {∆V (k)}

≤ E
{

[(Ā(p(k)) + B̄F1ZN)x̄(k) + B̄fs(z(k))]
T

×Q(p(k + 1))[(Ā(p(k)) + B̄F1ZN)x̄(k)

+B̄fs(z(k))] + p(k)(1− p(k))x̄T (k)NT C̄T (p(k))

×Q(p(k + 1))C̄(p(k))Nx̄(k) + σ2x̄T (k)NT D̄T

×Q(p(k + 1))D̄Nx̄(k)− x̄T (k)Q(p(k))x̄(k)

−2fT
s (z(k))[fs(z(k)) + FZNx̄(k)]

}

. (15)

From (14) and (15), it follows that

E {∆V (k)} ≤ E
{

x̃T (k)Πx̃(k)
}

, (16)

wherex̃(k) = [x̄T (k) fT
s (z(k))]T and

Π =

[

Π1 ∗
Π2 −2I + B̄TQ(p(k + 1))B̄

]

(17)

with

Π1 =(Ā(p(k)) + B̄F1ZN)TQ(p(k + 1))(Ā(p(k)) + B̄F1

× ZN) + σ2NT D̄TQ(p(k + 1))D̄N + p(k)(1− p(k))

×NT C̄T (p(k))Q(p(k + 1))C̄(p(k))N −Q(p(k))

Π2 =B̄TQ(p(k + 1))(Ā(p(k)) + B̄F1ZN) + FZN. (18)

In the following, we will conclude from (12) thatΠ < 0.
From the relation−Q(p(k + 1)) + S + ST > 0 in (12),
we can see thatS is nonsingular. Performing congruence
transformation diag{I, I, S−1, Θ−1S−1, σ−2S−1} to (12),
we have












−Q(p(k)) ∗ ∗ ∗ ∗
FZN −2I ∗ ∗ ∗
Ω̄1(k) B̄ −Λ̄(k) ∗ ∗

C̄(p(k))N 0 0 −Θ̄Λ̄(k) ∗
D̄N 0 0 0 −σ̄Λ̄(k)













< 0,

(19)
with Λ̄(k) = −S−TQ(p(k + 1))S−1 + S−1 + S−T , Ω̄1(k) =
Ā(p(k)) + B̄F1ZN , Θ̄ = Θ−1(k) and σ̄ = σ−2. Then, it
follows from inequalityS−TQ(p(k+1))S−1−S−1−S−T ≥
−Q−1(p(k + 1)) that












−Q(p(k)) ∗ ∗ ∗ ∗
FZN −2I ∗ ∗ ∗

Ω̄1(k) B̄ −Λ̃(k) ∗ ∗

C̄(p(k))N 0 0 −Θ̄Λ̃(k) ∗

D̄N 0 0 0 −σ̄Λ̃(k)













< 0, (20)

with Λ̃(k) = Q−1(p(k + 1)). To this end, by Schur Com-
plement Lemma, we can see thatΠ < 0. Subsequently, we
have

E {∆V (k)} < −λmin(Π)E|x̄(k)|
2. (21)

whereλmin(Π) is the minimum eigenvalue ofΠ and| · | is the
usual vector norm. Finally, we can confirm from Lemma 1 of
[10] that the augmented filtering systems (10) is exponentially
mean-square stable and the proof of this theorem is thus
complete.

Remark 3: In Theorem 1, to improve the performance of
the filter to be designed, a time-varying Lyapunov function
dependent on the missing probability has been proposed. Note
that, in the past few years, parameter-dependent Lyapunov
functions have been intensively employed for tackling uncer-
tain systems and time-varying parameter systems aiming to
reduce the conservatism, see e.g. [1].

Remark 4: In the controller and filter design, the product
terms between Lyapunov matrices and the system matrices
usually have to be decoupled to bypass the difficulty encoun-
tered in the design. In this case, it is often an effective strategy
to add slack variables, see e.g. [1], [5]. Along this line, in
Theorem 1, we have introduced a slack variableS to facilitate
the resulting filter design problem.

The following theorem focuses on the design of gain-
scheduled filter parametersG(p(k)) and H(p(k)) according
to the results in Theorem 1.

Theorem 2: Consider the discrete-time nonlinear stochastic
system (1). Assume that there exist positive-definite matrix se-
quenceQ̄(p(k)) > 0, matrix sequences̄H(p(k)) andḠ(p(k)),
nonsingular matricesS11, R2 and matrixR1 such that the
following parameter-dependent LMIs hold:












−Q̄(p(k)) ∗ ∗ ∗ ∗
FZN −2I ∗ ∗ ∗

Γ1(k) B̃ Γ2(k) ∗ ∗
Γ3(k) 0 0 Θ(k)Γ2(k) ∗
Γ4(k) 0 0 0 σ2Γ2(k)













< 0,
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where

Γ1(k) =

[

ST
11A+ p(k)H̄(p(k))C + ST

11BF1Z Ḡ(p(k))
RT

1 A+ p(k)H̄(p(k))C +RT
1 BF1Z Ḡ(p(k))

]

,

Γ2(k) =Q̄(p(k + 1))−∆,

Γ3(k) =Θ(k)

[

H̄(p(k))C
H̄(p(k))C

]

N, Γ4(k) = σ2

[

ST
11D

RT
1 D

]

N,

∆ =

[

S11 + ST
11 R1 +RT

2

R2 +RT
1 R2 +RT

2

]

, B̃ =

[

ST
11B

RT
1 B

]

. (22)

In this case, there exist nonsingular matricesS21 andS22 such
thatR2 = ST

21S
−T
22 S21, and then the gains of the desired filter

can be obtained as follows:

G(p(k)) = S−T
21 Ḡ(p(k))S−1

21 S22, H(p(k)) = S−T
21 H̄(p(k)).

Then, there exists a desired gain-scheduled filter in the form of
(8) such that the filtering error dynamics (10) is exponentially
mean-square stable.

Proof: Let the nonsingular matrix variableS in (12) be
partitioned asS = [Sij ]2×2 where S11, S21 and S22 are
nonsingular matrices. Introduce matrices

T =

[

I 0
0 S−1

22 S21

]

, Q̄(p(k)) = T TQ(p(k))T ,

R1 = S12S
−1
22 S21, R2 = ST

21S
−T
22 S21. (23)

By congruence transformation
diag{T −1, I, T −1, T −1, T −1}, we can see that (22) is
equivalent to (12), and it then follows from Theorem 1 that
(10) is exponentially mean-square stable.

Apparently, the number of LMIs in Theorem 2 is actually
infinite due to the time-varying parameterp(k) and, therefore,
it is nearly impossible to solve the LMIs directly. In the
following, we will convert the LMIs into finite ones.

Theorem 3: For system (1), assume that there exist positive
positive-definite matrices̄Q0 > 0 and Q̄p > 0, nonsingular
matricesS11, R2 and matricesR1, Ḡ0, Ḡf , H̄0 andH̄f such
that the following LMIs hold:

M
ijrl =













−Q̄i ∗ ∗ ∗ ∗
FBN −2I ∗ ∗ ∗

Γij
1 B̃ Γl

2 ∗ ∗

Γijr
3 0 0 Θ̄jrΓl

2 ∗
Γ4 0 0 0 σ2Γl

2













< 0, (24)

for i, j, r, l = 1, 2, whereΓ5 andB̃ have been defined in (22)

Γij
1 =

[

ST
11A+ pj(H̄0 + piH̄f )C + ST

11BF1Z Ḡi

RT
1 A+ pj(H̄0 + piH̄f )C +RT

1 BF1Z Ḡi

]

,

∆ =

[

S11 + ST
11 R1 +RT

2

R2 +RT
1 R2 +RT

2

]

,Γijr
3 = Θ̄jr

[

H̄iC

H̄iC

]

N,

Q̄i = Q̄0 − piQ̄p,Γ
l
2 = Q̄l −∆, Θ̄jr = pj(1− pr), ,

H̄i = H̄0 + piH̄f , Ḡ
i = Ḡ0 + piḠf . (25)

In this case, there exist nonsingular matricesS21 andS22 such
thatR2 = ST

21S
−T
22 S21, and therefore the constant filter gains

are obtained as follows:

G0 = S−T
21 Ḡ0S

−1

21 S22, Gf = S−T
21 ḠfS

−1

21 S22,

H0 = S−T
21 H̄0, Hf = S−T

21 H̄f . (26)

Then, a gain-scheduled filter can be obtained in the form of
(8) such that the filtering error dynamics (10) is exponentially
mean-square stable.

Proof: Firstly, choose the probability-dependent Lya-
punov matrices as

Q(p(k)) = Q0 + p(k)Qp (27)

whereQ0 > 0 andQp > 0. It is easily seen that̄Q(p(k)) =
Q̄0 + p(k)Q̄p with Q̄0 = T TQ0T and Q̄p = T TQpT .

Setting

α1(k) =
p2 − p(k)

p2 − p1
, α2(k) =

p(k)− p1

p2 − p1
, (28)

we have
{

α1(k) + α2(k) = 1, αi(k) ≥ 0 (i = 1, 2)
p(k) = α1(k)p1 + α2(k)p2.

(29)

Similarly, letting

β1(k) =
p2 − p(k + 1)

p2 − p1
, β2(k) =

p(k + 1)− p1

p2 − p1
, (30)

we have
{

β1(k) + β2(k) = 1, βl(k) ≥ 0 (l = 1, 2)
p(k + 1) = β1(k)p1 + β2(k)p2.

(31)

From the above transformations, it is easily derived that

Q̄(p(k)) =

2
∑

i=1

αi(k)Q̄
i, Q̄(p(k + 1)) =

2
∑

l=1

βl(k)Q̄
l,

Ḡ(p(k)) =

2
∑

i=1

αi(k)Ḡ
i, H̄(p(k)) =

2
∑

i=1

αi(k)H̄
i. (32)

Furthermore, it follows from (24) that

2
∑

i,j,r,l=1

αi(k)αj(k)αr(k)βl(k)M
ijrl < 0. (33)

Also, it follows from (29) and (31)-(33) that (22) holds. The
proof is now complete.

In Theorem 3, we convert infinite LMIs in Theorem 2 to
finite ones by turning the time-varying parameterp(k) into the
polytopic form. By such a transformation, the constant gains
of the desired gain-scheduled filter can be easily derived in
terms of the available LMI toolbox by using the computation-
ally appealing gain-scheduled filter design algorithm listed as
follows.

Algorithm 1: The gain-scheduled filter design algorithm.
Step 1: Given the initial values for the positive integerN ,

the initial stateρ, the constantsp1 andp2, the matricesA, B,
C, D, F1, F2 andZ, select appropriate initial state estimate
ρf and setk = 0.
Step 2: Solve the LMI in (24) to obtain the positive-definite

matrices Q̄0 and Q̄p, matricesR2, Ḡ0, Ḡf , H̄0 and H̄f .
Choose appropriate nonsingular matricesS21 andS22 to derive
the constant filter parametersG0, Gf , H0 andHf by (26).
Step 3: Based on the measured time-varying parameter

p(k), compute the filter gainsG(p(k)) and H(p(k)) by (9)
and the state estimatexf (k + 1) by (8). Then, setk = k + 1.
Step 4: If k < N , go to Step3, otherwise go to Step5.
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Fig. 1. Estimate errore1(k)

Step 5: Stop.
Remark 5:Our main results are based on the LMI condi-

tions. While the interior-point LMI solvers are significantly
faster than classical convex optimization algorithms, it should
be kept in mind that the complexity of LMI computations
remains higher than that of solving, say, a Riccati equation. For
instance, problems with a thousand design variables typically
take over an hour on today’s workstations. However, research
on LMI optimization is a very active area in the applied
math, optimization and the operations research community,
and substantial speed-ups can be expected in the future.

IV. A N ILLUSTRATIVE EXAMPLE

The system parameters of (1) and (6) are given as follows

A =

[

0.43 0
0.15 0.36

]

, B =

[

0.1 0.04
0 0.08

]

, p1 = 0.4, p2 = 0.8,

D =

[

0.3 0.03
0.05 0.38

]

, Z =

[

0.51 0
0 0.621

]

, C = [0.38 0.46],

F1 = diag{0.46 0.37}, F2 = diag{2.81 2.95}, σ2 = 1.

Assume that the measurable missing probability sequence
satisfiesp(k) = p1+(p2−p1)| sin(k)|. According to Theorem
3 and Algorithm 1, the constant filter parametersG0, Gf , H0

andHf can be obtained as follows:

G0 =

[

0.0242 −0.0007
0.0086 0.0140

]

, H0 =

[

−1.3778
−1.5091

]

,

Gf =

[

0.0030 0.0084
0.0070 0.0059

]

, Hf =

[

0.9806
1.0835

]

.

With the available missing probabilityp(k), the gain-
scheduled filter gainsG(p(k)) and H(p(k)) and the state
estimatexf (k) can be obtained. Figs. 1-2 show the estimate
errorse1(k) = x1(k) − xf1(k) ande2(k) = x2(k) − xf2(k),
respectively. The simulation results have illustrated ourtheo-
retical analysis.
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