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Abstract

For two-dimensional (2-D) systems, information propagates in two independent directions. 2-D systems are known to

have both system-theoretic and applications interest, and the so-called linear repetitive processes (LRPs) are a distinct

class of 2-D discrete linear systems. This paper is concerned with the problem of L2-L∞ (energy to peak) control for

uncertain differential LRPs, where the parameter uncertainties are assumed to be norm-bounded. For an unstable LRP,

our attention is focused on the design of an L2-L∞ static state feedback controller and an L2-L∞ dynamic output

feedback controller, both of which guarantee the corresponding closed-loop LRPs to be stable along the pass and have a

prescribed L2-L∞ performance. Sufficient conditions for the existence of such L2-L∞ controllers are proposed in terms

of linear matrix inequalities (LMIs). The desired L2-L∞ dynamic output feedback controller can be found by solving

a convex optimization problem. A numerical example is provided to demonstrate the effectiveness of the proposed

controller design procedures.
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I. Introduction

Many practical systems can be modeled as two-dimensional (2-D) systems, such as those in image data

processing and transmission, thermal processes, gas absorption and water stream heating [12]. Therefore, in

recent years much attention has been devoted to the analysis and synthesis problems for 2-D systems, and

many important results have been easily available in the literature. To mention a few, the stability problem of

2-D systems has been investigated in [1], the controller and filter design problems have been studied in [1,24],

and the model approximation problem for 2-D systems has been addressed in [5]. Linear repetitive processes

(LRPs), on the other hand, are a distinct class of 2-D linear systems with applications in areas ranging from

long-wall coal cutting through to iterative learning control schemes [17]. A special feature of LRPs is that

information propagation in one of the two distinct directions only occurs over a finite duration. The essentially

unique characteristic of a repetitive (or multipass) process is a series of sweeps, termed passes, through a set

of dynamics defined over a fixed finite duration known as the pass length. On each pass, an output, termed

the pass profile, is produced which acts as a forcing function on, and hence contributes to, the dynamics of

the next pass profile [17]. Recently, differential LRPs have received much attention and many valuable results

on designing the control law towards stability and performance purposes have been reported in the literature,

see for example [3, 15] and references therein. The guaranteed cost controller for its uncertain case has been

designed in [14] and, very recently, the H∞ control problem has been studied in [15].
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In designing controllers for LRPs, one could apply a linear combination of the current pass state vector

and the previous pass profile, based on the assumption that the process state is completely accessible to

feedback. such an assumption, however, is not always valid in practice since some state components cannot be

measured. There are two commonly used methods to deal with the controller design problem in the case that

the process state components are not accessible. One is to design a state observer in order to estimate the

immeasurable state components and then synthesize an observer-based controller, and the other is to design

a feedback controller by using the measurable output information. The latter is usually classified into static

or dynamic output feedback control [10]. Generally speaking, dynamic output feedback is more flexible than

static output feedback since additional dynamics of the controller is introduced. Although dynamic output

feedback involves more design parameters, for linear systems, the closed-loop system can usually be written as

in a more compact form where certain parameters can be embedded into augmented matrix variables. Such

a compact formulation, as shown in [15], can be conveniently converted into a convex optimization problem

using linear matrix inequalities (LMIs) that can be effectively solved with numerical optimization packages.

There are basically two complementary approaches to the design of LMI-based output feedback controllers,

that is, the well-known variable elimination procedure and the linearizing variables transform method. The

linearizing variables transform method introduces a general framework to formulate a synthesis problem as

a convex optimization one involving LMIs, where the main idea is to apply specific invertible transforms of

the controller parameters in order to achieve LMI conditions by means of a new set of variables. When the

resulted LMIs are solvable, the controller parameters can be computed by applying the inverse transforms.

This approach might lose computational effectiveness when the number of decision variables grows up. In

such a case, an elimination of some decision variables may still be required which, unfortunately, can only be

applied on specific structures of the underlying matrix inequalities. It should be noted that existing results on

designing an H∞ dynamic pass profile controller have only been based on the variables elimination method,

see e.g. [16]. Hence, there is a natural need to provide an alternative design method by using the linearizing

variables transform method, especially for systems of low dimensions.

On the other hand, over the past decades, a powerful robust control framework has been developed for ad-

dressing issues of stability and performance in the presence of uncertainties. Robust stability and performance

are achieved by minimizing an appropriate norm (such as ‖·‖L2-L2
(or ‖·‖∞), ‖·‖L2-L∞

and ‖·‖L∞-L∞

, which are

called energy to energy, energy to peak, and peak to peak, respectively) of a transfer function. Considerable

attention has been devoted to the optimal control problem, such as energy to energy (or H∞) control and

model reduction [4, 6, 25,26], H2 (and mixed H2/H∞) control and filtering [8, 9, 19,20,22,23], energy to peak

(or L2-L∞) control and filtering [7, 21]. In many practical cases, the L2-L∞ performance is more reasonable

to achieve in system design. Note that L2-L∞ control design has received considerable research attention

mainly because of its insensitivity to the exact knowledge of the statistics of the noise signals. Such a control

procedure ensures that the L2-L∞ gain from the noise input signals to the controlled output will be less than

a prescribed level, where the noise input is an arbitrary energy-bounded signal. Since LRPs have wide appli-

cations in areas ranging from long-wall coal cutting through to iterative learning control schemes, a controlled

LPR with guaranteed L2-L∞ performance would have more robustness against exogenous disturbances, and

is therefore more important in practical controller design especially presented with an uncertain environment.

Several methods have been proposed to solve the L2-L∞ control, see, for example, [13,21] and the references

therein. However, to date, little work has been reported on L2-L∞ controller design for differential LRPs,

despite the practical motivation as well as the great importance.

In this paper, we are interested in using the L2-L∞ norm as the optimization objective in the controller

synthesis that minimizes the worst case amplification from disturbance signal to controlled output signal,

where the disturbance signal size (norm) is taken to be energy value and the controlled output signal size is

taken to be peak value. Linear uncertain differential LRPs are considered, where the parameter uncertainties
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are assumed to be norm-bounded. For an unstable LRP, we aim to design an L2-L∞ static state feedback

controller and an L2-L∞ dynamic output feedback controller such that the corresponding closed-loop LRPs

are stable along the pass and a prescribed L2-L∞ performance is guaranteed. It is shown that the desired

L2-L∞ dynamic output feedback controller can be found by solving a convex optimization problem using

standard numerical software [2]. A numerical example is provided to demonstrate the effectiveness of the

proposed controller design procedures.

The rest of this paper is organized as follows. The L2-L∞ control problem for uncertain differential LRPs

is formulated in Section 2. Section 3 presents our main results. An illustrative example is provided in Section

4 and we conclude this paper in Section 5.

Notations. The notations used throughout the paper are standard. The superscript “T” stands for matrix

transposition; R
n denotes the n-dimensional Euclidean space, R

m×n is the set of all real matrices of dimension

m×n and the notation P > 0 means that P is real symmetric and positive definite; I and 0 represent identity

matrix and zero matrix; | · | refers to the Euclidean vector norm; and λmin(·), λmax(·) denote the minimum

and the maximum eigenvalues of a real symmetric matrix, respectively. In symmetric block matrices or long

matrix expressions, we use an asterisk ∗ to represent a term that is induced by symmetry, diag (. . .) stands for

a block-diagonal matrix and sym (A) denotes A + AT . Matrices, if their dimensions are not explicitly stated,

are assumed to be compatible for algebraic operations.

II. Process Description and Problem Formulation

The uncertain differential LRPs considered here are described in a state-space model of the following form

over 0 ≤ t ≤ α (where α is an integer denoting the pass length) and k ≥ 0:

Σ : ẋk+1(t) = (A + ∆A)xk+1(t) + (B0 + ∆B0) yk(t) + (B + ∆B)uk+1(t) + B1ωk+1(t)

yk+1(t) = (C + ∆C)xk+1(t) + (D0 + ∆D0) yk(t) + (D + ∆D)uk+1(t) + D1ωk+1(t) (1)

where, on pass k, xk(t) ∈ R
n is the state vector; yk(t) ∈ R

m is the pass profile vector; uk(t) ∈ R
q is the

control input; ωk(t) ∈ R
l is the disturbance input which belongs to L2 {[0,∞), [0,∞)} ; A, B0, B, B1, C, D0,

D and D1 are real constant matrices; ∆A, ∆B0, ∆B, ∆C, ∆D0 and ∆D are parameter uncertainties which

are norm-bounded and can be described by

[

∆A ∆B0 ∆B

∆C ∆D0 ∆D

]

=

[

M1

M2

]

∆(t)
[

N1 N2 N3

]

, (2)

where M1, M2, N1, N2 and N3 are real constant matrices, and ∆(t) is a real uncertain matrix function with

Lebesgue measurable elements satisfying ∆T (t)∆(t) ≤ I. To complete the process description, it is necessary

to specify the boundary conditions for the state initial vector on each pass and the initial pass profile (that

is, on pass 0):

xk+1(0) = dk+1, ∀k ≥ 0,

y0(t) = f(t), (3)

where dk+1 ∈ R
n is known constant entries and f(t) ∈ R

m is an vector whose entries are known functions of

t over [0, α].

Consider a static feedback controller with the following general structure:

Σ̂S : uk+1(t) =
[

K1 K2

]

[

xk+1(t)

yk(t)

]

(4)
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where K1 and K2 are appropriately dimensioned matrices to be designed. Then, the resulting closed-loop

process can be formulated as

Σ̃S : ẋk+1(t) =
(

Â + ∆Â
)

xk+1(t) +
(

B̂0 + ∆B̂0

)

yk(t) + B1ωk+1(t)

yk+1(t) =
(

Ĉ + ∆Ĉ
)

xk+1(t) +
(

D̂0 + ∆D̂0

)

yk(t) + D1ωk+1(t) (5)

where

Â , A + BK1, B̂0 , B0 + BK2, Ĉ , C + DK1, D̂0 , D0 + DK2,

∆Â , ∆A + ∆BK1, ∆B̂0 , ∆B0 + ∆BK2, ∆Ĉ , ∆C + ∆DK1, ∆D̂0 , ∆D0 + ∆DK2 (6)

with
[

∆Â ∆B̂0

∆Ĉ ∆D̂0

]

=

[

M1

M2

]

∆(t)
[

N1 + N3K1 N2 + N3K2

]

. (7)

The above addressed static feedback controller requires the current pass state xk+1(t) and the pass profile

yk(t) to be fully accessible, which is very restrictive in practical applications. In such a case, one option is to

assume the availability of a so-called measured output signal vector given by

zk+1(t) = Lxk+1(t) + F0yk(t) + F1ωk+1(t) (8)

where zk(t) ∈ R
r is the measured output, L, F0 and F1 are real constant matrices. The controlled output

signal is given by

vk+1(t) = Gxk+1(t) + H0yk(t) (9)

where vk(t) ∈ R
q, G and H0 are real constant matrices.

Here, we are also interested in designing a full-order dynamic output feedback controller of general structure

described by Σ̂D :

Σ̂D : ϕ̇k+1(t) = Acϕk+1(t) + B0cφk(t) + Bczk+1(t)

φk+1(t) = Ccϕk+1(t) + D0cφk(t) + Dczk+1(t)

uk+1(t) = Gcϕk+1(t) + H0cφk(t) + Hczk+1(t) (10)

where, on pass k, ϕk(t) ∈ R
n is the controller state vector, φk(t) ∈ R

m is the pass profile vector of con-

troller, and Ac, B0c, Bc, Cc, D0c, Dc, Gc, H0c and Hc are appropriately dimensioned constant matrices to be

determined.

Now, augmenting the model of Σ to include the state of controller Σ̂D, we obtain the following closed-loop

process Σ̃D:

Σ̃D : ξk+1(t) =
(

Ã + ∆Ã
)

ξk+1(t) +
(

B̃0 + ∆B̃0

)

ζk(t) +
(

B̃1 + ∆B̃1

)

ωk+1(t)

ζk+1(t) =
(

C̃ + ∆C̃
)

ξk+1(t) +
(

D̃0 + ∆D̃0

)

ζk(t) +
(

D̃1 + ∆D̃1

)

ωk+1(t)

vk+1(t) = G̃ξk+1(t) + H̃0ζk(t) (11)

where ξk+1(t) ,

[

xT
k+1(t) ϕT

k+1(t)
]T

, ζk(t) ,

[

yT
k (t) φT

k (t)
]T

and

[

∆Ã ∆B̃0 ∆B̃1

∆C̃ ∆D̃0 ∆D̃1

]

,

[

M̃1

M̃2

]

∆(t)
[

Ñ1 Ñ2 Ñ3

]

(12)
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with

Ã ,

[

A + BHcL BGc

BcL Ac

]

, B̃0 ,

[

B0 + BHcF0 BH0c

BcF0 B0c

]

, B̃1 ,

[

B1 + BHcF1

BcF1

]

,

C̃ ,

[

C + DHcL DGc

DcL Cc

]

, D̃0 ,

[

D0 + DHcF0 DH0c

DcF0 D0c

]

, D̃1 ,

[

D1 + DHcF1

DcF1

]

,

G̃ ,

[

G 0
]

, H̃0 ,

[

H0 0
]

, Ñ1 ,

[

N1 + N3HcL N3Gc

]

, Ñ3 , N3HcF1,

M̃1 ,

[

M1

0

]

, M̃2 ,

[

M2

0

]

, Ñ2 ,

[

N2 + N3HcF0 N3H0c

]

. (13)

Before formulating the problems of this section, we give the following definition.

Definition 1: The differential LRP in (1) is said to have an L2-L∞ performance, if it is robustly stable along

the pass and, under zero boundary conditions and for all nonzero ωk+1(t) ∈ L2 {[0,∞), [0,∞)}, the following

inequality

‖yk+1(t)‖∞,α < γ2,∞ ‖ωk+1(t)‖2,α (γ2,∞ > 0) (14)

holds, where γ2,∞ > 0 is a given real scalar and the corresponding norms are define by

‖fk(t)‖2,α ,

√

√

√

√

∞
∑

k=0

∫ α

0
fT

k (t)fk(t)dt, ‖fk(t)‖∞,α ,

√

sup
k≥0,t∈[0,α]

fT
k (t)fk(t)

The problems to be investigated in this paper can be formulated as:

• Static Feedback Control. Design a static feedback controller in (4) such that the closed-loop differential

LRP in (5) is robustly stable along the pass and has the specified L2-L∞ performance, that is, satisfies (14).

• Dynamic Output Feedback Control. Design a dynamic output feedback controller in (10) such that the

closed-loop differential LRP in (11) is robustly stable along the pass and has the specified L2-L∞ performance,

that is, satisfies

‖vk+1(t)‖∞,α < γ2,∞ ‖ωk+1(t)‖2,α (γ2,∞ > 0) (15)

We end this section by giving two lemmas which will be used in the sequel.

Lemma 1: [11] Let Σ1, Σ2 be real matrices of appropriate dimensions. Then, for any matrix ∆ satisfying

∆T ∆ ≤ I and a scalar ǫ > 0, the following inequality holds:

Σ1∆Σ2 + ΣT
2 ∆TΣT

1 ≤ ǫ−1Σ1Σ
T
1 + ǫΣT

2 Σ2 (16)

Lemma 2: [3] The nominal differential LRP (1) with uk+1(t) = 0 and ωk+1(t) = 0 is stable along the pass

if there exist matrices P1 > 0 and P2 > 0 such that the following LMI is feasible:







P1A + AT P1 P1B0 CT P2

∗ −P2 DT
0 P2

∗ ∗ −P2






< 0 (17)

III. Main results

A. Robust L2-L∞ performance analysis

In this subsection, we shall analyze the robust stability along the pass as well as the L2-L∞ performance

for the uncertain differential LRP in (1) with uk+1(t) = 0.

Theorem 1: For a given scalar γ2,∞ > 0, the uncertain differential LRP in (1) with uk+1(t) = 0 is robustly

stable along the pass and has an L2-L∞ performance level γ2,∞ (i.e., (14) is satisfied), if there exist matrices
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P1 > 0, P2 > 0 and scalars ǫ1 > 0, ǫ2 > 0 such that the following LMIs are feasible:















P1A + AT P1 + ǫ1N
T
1 N1 P1B0 + ǫ1N

T
1 N2 P1B1 CTP2 P1M1

∗ −P2 + ǫ1N
T
2 N2 0 DT

0 P2 0

∗ ∗ −I DT
1 P2 0

∗ ∗ ∗ −P2 P2M2

∗ ∗ ∗ ∗ −ǫ1I















< 0 (18)















−P1 + ǫ2N
T
1 N1 ǫ2N

T
1 N2 0 CT 0

∗ −P2 + ǫ2N
T
2 N2 0 DT

0 0

∗ ∗ −I DT
1 0

∗ ∗ ∗ −γ2
2,∞I M2

∗ ∗ ∗ ∗ −ǫ2I















< 0 (19)

Proof:

First, we establish the stability along the pass of the nominal process Σ in (1) with ωk+1(t) = 0. Choose

the following Lyapunov functional candidate:

V (k, t) , V1(t; k) + V2(k; t),

V1(t; k) , xT
k+1(t)P1xk+1(t),

V2(k; t) , yT
k (t)P2yk(t) (20)

where P1 > 0 and P2 > 0 are matrices to be found. Consider the increment ∆V (k, t) given by

∆V (k, t) ,
∂V1 (t ; k)

∂t
+ ∆V2 (k ; t) (21)

and define
∞

∑

k=0

∫ α

0
∆V (k, t)dt ,

∫ α

0

∂V1 (t ; k)

∂t
dt +

∞
∑

k=0

∆V2 (k ; t) (22)

Then, along the solution of the nominal process Σ, we have

∂V1(t; k)

∂t
= 2xT

k+1(t)P1ẋk+1(t) = 2xT
k+1(t)P1 [Axk+1(t) + B0yk(t)] (23)

∆V2(k; t) = yT
k+1(t)P2yk+1(t) − yT

k (t)P2yk(t)

= [Cxk+1(t) + D0yk(t)]
T P2 [Cxk+1(t) + D0yk(t)] − yT

k (t)P2yk(t) (24)

It follows that

∆V (k, t) = 2xT
k+1(t)P1 [Axk+1(t) + B0yk(t)] + [Cxk+1(t) + D0yk(t)]

T

×P2 [Cxk+1(t) + D0yk(t)] − yT
k (t)P2yk(t)

= ςT
k (t)

(

P̌1Ǎ + ǍT P̌1 + ČT P̌2Č − P̌2

)

ςk(t) , ςT
k (t)Ψςk(t), (25)

where Ψ , P̌1Ǎ + ǍT P̌1 + ČT P̌2Č − P̌2 and

ςk(t) ,

[

xk+1(t)

yk(t)

]

, Ǎ ,

[

A B0

0 0

]

, Č ,

[

0 0

C D0

]

, P̌1 ,

[

P1 0

0 0

]

, P̌2 ,

[

0 0

0 P2

]

.

Since LMI (18) implies Ψ < 0, for any ςk(t) 6= 0, we have ∆V (k, t) < 0 which indicates the stability along the

pass of the nominal process Σ in (1) with ωk+1(t) = 0.
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Next, in order to establish the L2-L∞ performance, we assume the zero boundary conditions, that is,

xk+1(0) = 0 (∀ k ≥ 0) and y0(t) = 0. Consider the following performance index:

I = V (k, t) −

k−1
∑

s=0

∫ t

0
ωT

s+1(β)ωs+1(β)dβ. (26)

According to the stability along the pass of the process and the zero boundary conditions, we have

I = V (k, t) − V1(0; k) − V2(0; t) −

k−1
∑

s=0

∫ t

0
ωT

s+1(β)ωs+1(β)dβ

=

∫ t

0

∂V1(β; k)

∂β
dβ +

k−1
∑

s=0

∆V2(s; t) −

k−1
∑

s=0

∫ t

0
ωT

s+1(β)ωs+1(β)dβ

=

k−1
∑

s=0

∫ t

0

[

∆V (s, β) − ωT
s+1(β)ωs+1(β)

]

dβ

,

k−1
∑

s=0

∫ t

0
ηT

s (β)Ωηs(β)dβ (27)

where

ηs(β) ,







xs+1(β)

ys(β)

ωs+1(β)






, Ω ,







P1A + AT P1 P1B0 P1B1

∗ −P2 0

∗ ∗ −I






+







CT

DT
0

DT
1






P2







CT

DT
0

DT
1







T

.

Notice that if










P1A + AT P1 P1B0 P1B1 CT P2

∗ −P2 0 DT
0 P2

∗ ∗ −I DT
1 P2

∗ ∗ ∗ −P2











< 0, (28)

we have Ω < 0 by Schur complement, and therefore for all ηk(p) 6= 0 we have I < 0, i.e.

xT
k+1(t)P1xk+1(t) + yT

k (t)P2yk(t) = V (k, t) <

k−1
∑

s=0

∫ t

0
ωT

s+1(β)ωs+1(β)dβ. (29)

On the other hand, LMI (19) implies











−P1 0 0 CT

∗ −P2 0 DT
0

∗ ∗ −I DT
1

∗ ∗ ∗ −γ2
2,∞I











< 0, (30)

that is,






CT

DT
0

DT
1







[

C D0 D1

]

< γ2
2,∞







P1 0 0

0 P2 0

0 0 I






. (31)
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Therefore, we can conclude from the nominal process (1) and (29)–(31) that, for any k > 0 and t ∈ [0, α] , the

following holds:

yT
k+1(t)yk+1(t) = [Cxk+1(t) + D0yk(t) + D1ωk+1(t)]

T [Cxk+1(t) + D0yk(t) + D1ωk+1(t)]

< γ2
2,∞

[

xT
k+1(t)P1xk+1(t) + yT

k (t)P2yk(t) + ωT
k+1(t)ωk+1(t)

]

< γ2
2,∞

[

k−1
∑

s=0

∫ t

0
ωT

s+1(β)ωs+1(β)dβ + ωT
k+1(t)ωk+1(t)

]

< γ2
2,∞

∞
∑

s=0

∫ α

0
ωT

s+1(β)ωs+1(β)dβ. (32)

Taking the supremum over k > 0 and t ∈ [0, α] yields ‖yk+1(t)‖∞,α < γ2,∞ ‖ωk+1(t)‖2,α.

Now, let us consider the parameter uncertainties. By replacing A, B0, C and D0 with (A + ∆A) , (B0 + ∆B0) ,

(C + ∆C) and (D0 + ∆D0) , respectively, we can see that the uncertain differential LRP in (1) with uk+1(t) = 0

is robustly stable along the pass and has an L2-L∞ performance, if there exist matrices P1 > 0, P2 > 0 satis-

fying











P1A + AT P1 P1B0 P1B1 CTP2

∗ −P2 0 DT
0 P2

∗ ∗ −I DT
1 P2

∗ ∗ ∗ −P2











+ sym























P1M1

0

0

P2M2











∆











NT
1

NT
2

0

0











T












< 0, (33)











−P1 0 0 CT

∗ −P2 0 DT
0

∗ ∗ −I DT
1

∗ ∗ ∗ −γ2
2,∞I











+ sym























0

0

0

M2











∆











NT
1

NT
2

0

0











T












< 0. (34)

Furthermore, by invoking Lemma 1 together with Schur complement, (33) and (34) hold if (18) and (19) hold,

and then the proof is completed.

B. Static L2-L∞ control

We are in a position to present a solution to the L2-L∞ static feedback control problem.

Theorem 2: Consider the uncertain differential LRP in (1), and let γ2,∞ > 0 be a prescribed scalar. There

exists a feedback controller of the form (4) such that the closed-loop LRP in (5) is robustly stable along the

pass and has an L2-L∞ performance level γ2,∞ (i.e., (14) is satisfied), if there exist matrices P1 > 0, P2 > 0,

X , Y and scalars λ1 > 0, λ2 > 0 such that the following LMIs are feasible:















Σ11 B0P2 + BY B1 Σ14 (N1P1 + N3X )T

∗ −P2 0 (D0P2 + DY)T (N2P2 + N3Y)T

∗ ∗ −I DT
1 0

∗ ∗ ∗ −P2 + λ1M2M
T
2 0

∗ ∗ ∗ ∗ −λ1I















< 0, (35)















−P1 0 0 (CP1 + DX )T (N1P1 + N3X )T

∗ −P2 0 (D0P2 + DY)T (N2P2 + N3Y)T

∗ ∗ −I DT
1 0

∗ ∗ ∗ −γ2
2,∞I + λ2M2M

T
2 0

∗ ∗ ∗ ∗ −λ2I















< 0, (36)
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where

Σ11 , sym (AP1 + BX ) + λ1M1M
T
1 , Σ14 , (CP1 + DX )T + λ1M1M

T
2 .

Moreover, if these conditions hold, the matrices K1 and K2 are given by XP−1
1 and YP−1

2 , respectively.

Proof: Substituting the controller (4) into (1), we obtain the closed-loop process as in (5). According

to the proof of Theorem 1, replacing A, B0, C, D0, ∆A, ∆B0, ∆C and ∆D0 with Â, B̂0, Ĉ, D̂0, ∆Â, ∆B̂0,

∆Ĉ and ∆D̂0 in (6)–(7), respectively, we can see that the closed-loop LRP in (5) is robustly stable along the

pass and has an L2-L∞ performance, if there exist matrices P1 > 0, P2 > 0 satisfying











P1 (A + BK1) + (A + BK1)
T P1 P1 (B0 + BK2) P1B1 (C + DK1)

T P2

∗ −P2 0 (D0 + DK2)
T P2

∗ ∗ −I DT
1 P2

∗ ∗ ∗ −P2











+sym























P1M1

0

0

P2M2











∆











(N1 + N3K1)
T

(N2 + N3K2)
T

0

0











T












< 0, (37)











−P1 0 0 (C + DK1)
T

∗ −P2 0 (D0 + DK2)
T

∗ ∗ −I DT
1

∗ ∗ ∗ −γ2
2,∞I











+ sym























0

0

0

M2











∆











(N1 + N3K1)
T

(N2 + N3K2)
T

0

0











T












< 0. (38)

Performing congruence transformations to (37) and (38) by diag
(

P−1
1 , P−1

2 , I, P−1
2

)

and diag
(

P−1
1 , P−1

2 ,

I, I), we have











(A + BK1) P−1
1 + P−1

1 (A + BK1)
T (B0 + BK2)P−1

2 B1 P−1
1 (C + DK1)

T

∗ −P−1
2 0 P−1

2 (D0 + DK2)
T

∗ ∗ −I DT
1

∗ ∗ ∗ −P−1
2











+sym























M1

0

0

M2











∆











P−1
1 (N1 + N3K1)

T

P−1
2 (N2 + N3K2)

T

0

0











T












< 0, (39)











−P−1
1 0 0 P−1

1 (C + DK1)
T

∗ −P−1
2 0 P−1

2 (D0 + DK2)
T

∗ ∗ −I DT
1

∗ ∗ ∗ −γ2
2,∞I











+ sym























0

0

0

M2











∆











P−1
1 (N1 + N3K1)

T

P−1
2 (N2 + N3K2)

T

0

0











T












< 0. (40)

Defining P1 = P−1
1 , P2 = P−1

2 , K1P1 = X , K2P2 = Y and invoking Lemma 1 together with Schur complement,

we know that (39) and (40) hold if (35) and (36) hold, and this concludes the proof.

C. Dynamic L2-L∞ output feedback control

In this subsection, we shall give the main results of L2-L∞ dynamic output feedback control of uncertain

differential linear repetitive processes. First, we state the following theorem without proof, since the proof

can be obtained along the same line of reasoning as in the derivation of Theorem 1.
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Theorem 3: For a given scalar γ2,∞ > 0, the closed-loop LRP Σ̃D in (11) is robustly stable along the pass

and has an L2-L∞ performance level γ2,∞ (i.e., (15) is satisfied), if there exist matrices P > 0 and Q > 0 and

scalars ǫ1 > 0, ǫ2 > 0 such that the following LMIs hold:















PÃ + ÃT P + ǫ1Ñ
T
1 Ñ1 PB̃0 + ǫ1Ñ

T
1 Ñ2 PB̃1 + ǫ1Ñ

T
1 Ñ3 C̃TQ PM̃1

∗ −Q + ǫ1Ñ
T
2 Ñ2 ǫ1Ñ

T
2 Ñ3 D̃T

0 Q 0

∗ ∗ −I + ǫ1Ñ
T
3 Ñ3 D̃T

1 Q 0

∗ ∗ ∗ −Q QM̃2

∗ ∗ ∗ ∗ −ǫ1I















< 0, (41)







−P 0 G̃T

∗ −Q H̃T
0

∗ ∗ −γ2
2,∞I






< 0, (42)

where Ã, B̃0, B̃1, C̃, D̃0, D̃1, G̃, H̃0, M̃1, M̃2, Ñ1, Ñ2 and Ñ3 are defined in (12)–(13).

Finally, let us present a solution to the L2-L∞ dynamic output feedback control problem.

Theorem 4: Consider the uncertain differential LRP Σ in (1) and let γ2,∞ > 0 be a prescribed scalar. There

exists a dynamic output feedback controller Σ̂D in the form of (10) such that the closed-loop LRP Σ̃D in (11)

is robustly stable along the pass and has an L2-L∞ performance level γ2,∞ (i.e., (15) is satisfied), if there exist

matrices P > 0, R > 0, Q > 0,S > 0, Ac, B0c, Bc, Cc, D0c, Dc, Gc, H0c, Hc and scalars λ1 > 0, λ2 > 0 such

that the following LMIs hold:

































Ψ̄11 Ψ12 Ψ13 B0c + λ2N
T
1 N2 Ψ15 Ψ16 Ψ17 Ψ18 PM1

∗ Ψ̄22 Ψ23 Ψ24 Ψ25 CT
c Ψ̄27 Ψ28 M1

∗ ∗ −Q −I 0 Ψ36 Ψ37 Ψ38 0

∗ ∗ ∗ −S + λ2N
T
2 N2 0 DT

0c Ψ47 Ψ48 0

∗ ∗ ∗ ∗ −I Ψ56 Ψ57 Ψ58 0

∗ ∗ ∗ ∗ ∗ −Q −I 0 QM2

∗ ∗ ∗ ∗ ∗ ∗ −S + λ1M2M
T
2 0 M2

∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ1I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ2I

































< 0, (43)















−P −I 0 0 GT

∗ −R 0 0 RGT

∗ ∗ −Q −I HT
0

∗ ∗ ∗ −S SHT
0

∗ ∗ ∗ ∗ −γ2
2,∞I















< 0, (44)

where Ψ̄11 , Ψ11 + λ2N
T
1 N1, Ψ̄22 , Ψ22 + λ1M1M

T
1 , Ψ̄27 , Ψ27 + λ1M1M

T
2 and

Ψ11 , sym (PA + BcL) , Ψ12 , Ac + (A + BHcL)T , Ψ13 , PB0 + BcF0,

Ψ22 , sym (AR + BGc) , Ψ23 , B0 + BHcF0, Ψ24 , B0S + BH0c,

Ψ15 , PB1 + BcF1, Ψ25 , B1 + BHcF1, Ψ16 , (QC + DcL)T ,

Ψ36 , (QD0 + DcF0)
T , Ψ56 , (QD1 + DcF1)

T , Ψ17 , (C + DHcL)T ,

Ψ27 , (CR + DGc)
T , Ψ37 , (D0 + DHcF0)

T , Ψ47 , (D0S + DH0c)
T ,

Ψ57 , (D1 + DHcF1)
T , Ψ18 , (N3HcL)T , Ψ28 , (N1R + N3Gc)

T ,

Ψ38 , (N3HcF0)
T , Ψ48 , (N2S + N3H0c)

T , Ψ58 , (N3HcF1)
T . (45)

Moreover, a desired L2-L∞ dynamic output feedback controller in (10) with parameters (Ac, B0c, Bc, Cc,D0c,
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Dc, Gc,H0c,Hc) can be found by solving the following equations:































































Hc , Hc

H0c , HcF0S + H0cS
T
12

Gc , HcLR + GcR
T
12

Dc , QDHc + Q12Dc

Bc , PBHc + P12Bc

D0c , Q (D0 + DHcF0)S + Q12DcF0S + QDH0cS
T
12 + Q12D0cS

T
12

Cc , Q (C + DHcL)R + Q12DcLR + QDGcR
T
12 + Q12CcR

T
12

B0c , P (B0 + BHcF0)S + P12BcF0S + PBH0cS
T
12 + P12B0cS

T
12

Ac , P (A + BHcL)R + P12BcLR + PBGcR
T
12 + P12AcR

T
12

(46)

Proof: First, we consider the nominal closed-loop LRP Σ̃D in (11). It follows from the proof of Theorem

3 that (11) is stable along the pass and satisfies (15), if there exist matrices P > 0 and Q > 0 such that (42)

and the following LMI holds:











PÃ + ÃT P PB̃0 PB̃1 C̃TQ

∗ −Q 0 D̃T
0 Q

∗ ∗ −I D̃T
1 Q

∗ ∗ ∗ −Q











< 0. (47)

It can also be seen from Theorem 3 that, since P > 0 and Q > 0, the matrices P and Q are nonsingular if

(41) holds. By denoting R = P−1 S = Q−1, we partition P, R, Q, S as follows:

P ,

[

P11 P12

P T
12 P22

]

, R = P−1 ,

[

R11 R12

RT
12 R22

]

, Q ,

[

Q11 Q12

QT
12 Q22

]

, S = Q−1 ,

[

S11 S12

ST
12 S22

]

. (48)

As we are considering a full-order controller, P12 and R12 are square. Without loss of generality, we suppose P12

and R12 are nonsingular [18] (if not, P12 and R12 may be perturbed by matrices ∆P12 and ∆R12, respectively,

with sufficiently small norms such that P12 +∆P12 and R12 +∆R12 are nonsingular and satisfying (43)), with

the same principle as above, we also assume that Q12 and Q12 are nonsingular without loss of generality, and

then we can define the following matrices which are also nonsingular:

ΓP ,

[

P11 I

P T
12 0

]

, ΓR ,

[

I R11

0 RT
12

]

, ΓQ ,

[

Q11 I

QT
12 0

]

, ΓS ,

[

I S11

0 ST
12

]

. (49)

Note that PΓR = ΓP , QΓS = ΓQ and

P11R11 + P12R
T
12 = I, Q11S11 + Q12S

T
12 = I. (50)

Performing congruence transformations to (47) and (42) by diag(ΓR, ΓS , I, ΓS) and diag(ΓR, ΓS , I) respec-

tively, we have











ΓT
P ÃΓR + ΓT

RÃT ΓP ΓT
P B̃0ΓS ΓT

P B̃1 ΓT
RC̃TΓQ

∗ −ΓT
SΓQ 0 ΓT

S D̃T
0 ΓQ

∗ ∗ −I D̃T
1 ΓQ

∗ ∗ ∗ −ΓT
SΓQ











< 0, (51)







−ΓT
P ΓR 0 ΓT

RG̃T

∗ −ΓT
QΓS ΓT

S H̃T
0

∗ ∗ −γ2
2,∞I






< 0. (52)
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Defining P , P11, R , R11, Q , Q11, S , S11 and the following matrices:































































Ac , P11 (A + BHcL)R11 + P12BcLR11 + P11BGcR
T
12 + P12AcR

T
12

B0c , P11 (B0 + BHcF0)S11 + P12BcF0S11 + P11BH0cS
T
12 + P12B0cS

T
12

Cc , Q11 (C + DHcL) R11 + Q12DcLR11 + Q11DGcR
T
12 + Q12CcR

T
12

D0c , Q11 (D0 + DHcF0) S11 + Q12DcF0S11 + Q11DH0cS
T
12 + Q12D0cS

T
12

Bc , P11BHc + P12Bc

Dc , Q11DHc + Q12Dc

Gc , HcLR11 + GcR
T
12

H0c , HcF0S11 + H0cS
T
12

Hc , Hc

(53)

and considering (12)–(13), we have the following expressions:

ΓT
P ÃΓR ,

[

PA + BcL Ac

A + BHcL AR + BGc

]

,

ΓT
P B̃0ΓS ,

[

PB0 + BcF0 B0c

B0 + BHcF0 B0S + BH0c

]

,

ΓT
QC̃ΓR ,

[

QC + DcL Cc

C + DHcL CR+ DGc

]

,

ΓT
QD̃0ΓS ,

[

QD0 + DcF0 D0c

D0 + DHcF0 D0S + DH0c

]

,

ΓT
P B̃1 ,

[

PB1 + BcF1

B1 + BHcF1

]

, ΓT
P M̃1 ,

[

PM1

M1

]

,

ΓT
QD̃1 ,

[

QD1 + DcF1

D1 + DHcF1

]

, ΓT
QM̃2 ,

[

QM2

M2

]

,

ΓT
P ΓR ,

[

P I

I R

]

, ΓT
QΓS ,

[

Q I

I S

]

,

G̃ΓR ,

[

G GR
]

, H̃0ΓS ,

[

H0 H0S
]

,

Ñ1ΓR ,

[

N1 + N3HcL N1R + N3Gc

]

,

Ñ2ΓS ,

[

N2 + N3HcF0 N2S + N3H0c

]

. (54)

Substituting (54) into (51) and (52), we obtain

























Ψ11 Ψ12 Ψ13 B0c Ψ15 Ψ16 Ψ17

∗ Ψ22 Ψ23 Ψ24 Ψ25 CT
c Ψ27

∗ ∗ −Q −I 0 Ψ36 Ψ37

∗ ∗ ∗ −S 0 DT
0c Ψ47

∗ ∗ ∗ ∗ −I Ψ56 Ψ57

∗ ∗ ∗ ∗ ∗ −Q −I

∗ ∗ ∗ ∗ ∗ ∗ −S

























< 0 (55)

and (44), respectively, where Ψ11,Ψ12,Ψ13, Ψ22,Ψ23, Ψ24, Ψ15, Ψ25,Ψ16,Ψ36,Ψ56,Ψ17,Ψ27,Ψ37,Ψ47 and Ψ57

are defined in (45). Now, consider the parameter uncertainties, that is, replace A, B0, C and D0 with
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(A + ∆A) , (B0 + ∆B0) , (C + ∆C) and (D0 + ∆D0) in (55), respectively. It can be seen that the new

inequality (55) holds if the following holds:

























Ψ11 Ψ12 Ψ13 B0c Ψ15 Ψ16 Ψ17

∗ Ψ22 Ψ23 Ψ24 Ψ25 CT
c Ψ27

∗ ∗ −Q −I 0 Ψ36 Ψ37

∗ ∗ ∗ −S 0 DT
0c Ψ47

∗ ∗ ∗ ∗ −I Ψ56 Ψ57

∗ ∗ ∗ ∗ ∗ −Q −I

∗ ∗ ∗ ∗ ∗ ∗ −S

























+ sym

















































0

M1

0

0

0

0

M2

























∆

























Ψ18

Ψ28

Ψ38

Ψ48

Ψ58

0

0

























T

+

























PM1

M1

0

0

0

QM2

M2

























∆

























NT
1

0

NT
2

0

0

0

0

























T 























< 0

(56)

where Ψ18,Ψ28,Ψ38,Ψ48 and Ψ58 are defined in (45). By invoking Lemma 1 together with Schur complement,

(56) holds if (43) holds.

On the other hand, substituting P , P11, R , R11, Q , Q11 and S , S11 into (53) supplies (46). Therefore,

we can conclude from Theorem 3 that the uncertain closed-loop LRP Σ̃D is robustly stable along the pass

with an L2-L∞ performance level γ2,∞. The proof is complete.

Remark 1: It should be pointed out that, in order to obtain the parameters of output feedback controller in

(46), matrices P12, R12, Q12 and S12, which should be available in advance, can be obtained by taking any full

rank factorization of P12R
T
12 = I −PR and Q12S

T
12 = I −QS, respectively (derived from P11R11 +P12R

T
12 = I

and Q11S11 + Q12S
T
12 = I, respectively).

Remark 2: Note that Theorem 4 provides a sufficient condition for the solvability of L2-L∞ dynamic output

feedback control problem for the differential LRP. Since the obtained condition is of the LMI form, a desired

controller can be determined by solving the following convex optimization problem:

min δ subject to (43)–(44) (where δ = γ2
2,∞) (57)

IV. An Illustrative Example

Consider the differential LRP Σ in (1) with α = 20, k ≥ 0, with system matrices given as follows:

A =







0.1 0.4 0.0

0.0 −0.9 0.1

0.8 0.0 −1.2






, B0 =







−0.5 −0.1

−0.1 −0.1

0.5 0.4






, B =







0.1

0.1

0.1






, B1 =







0.1

0.0

0.1







C =

[

0.4 0.2 0.3

0.5 0.4 0.6

]

, D0 =

[

0.6 0.3

0.2 0.5

]

, D =

[

0.4

0.5

]

, D1 =

[

0.1

0.2

]

L =

[

0.2 0.2 0.1

0.0 0.3 0.1

]

, F0 =

[

0.1 0.2

0.0 0.1

]

, F1 =

[

0.3

0.2

]

, H0 =

[

0.1 0.3

0.2 0.1

]

M1 =







0.2 0.1 0.1

0.1 0.2 0.0

0.0 0.1 0.1






, N1 =







0.1 0.2 0.0

0.1 0.0 0.1

0.2 0.0 0.1






, N2 =







0.1 0.0

0.1 0.1

0.0 0.2






, N3 =







0.1

0.1

0.2







M2 =

[

0.2 0.0 0.1

0.0 0.1 0.2

]

, G =

[

0.2 0.2 0.1

0.3 0.1 0.4

]

and ∆(t) = diag (sin t, cos t, sin t). According to Lemma 1, the unforced process Σ in (1) with above matrices

is unstable along the pass. Our attention is to design an L2-L∞ static feedback controller with the form of

(4) and an L2-L∞ dynamic output feedback controller with the form of (10), such that the corresponding

closed-loop LRPs are robustly stable along the pass and have an L2-L∞ performance level γ2,∞.
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First, we deal with the L2-L∞ static feedback control problem. Solving LMIs (35)–(36) in Theorem 2, we

obtain the achieved minimum γ
#
2,∞ = 0.2246 and λ1 = 0.2405, λ2 = 0.0066 and

P1 =







0.5403 −0.0468 0.2607

−0.0468 0.0744 −0.0080

0.2607 −0.0080 0.1945






, P2 =

[

0.0588 −0.0174

−0.0174 0.2203

]

X =
[

−0.7864 0.0023 −0.4634
]

, Y =
[

−0.0258 −0.1919
]

Thus, the parameter matrices in (4) are computed as

K1 = XP−1
1 =

[

−1.0013 −0.7137 −1.0696
]

K2 = YP−1
2 =

[

−0.7144 −0.9275
]

Next, we consider the L2-L∞ dynamic output feedback control problem. Solving the LMI conditions (43)–

(44) in Theorem 4 and choosing R12 = I and S12 = I, we obtain that the achieved minimum γ2,∞ is γ∗
2,∞ =

0.8353 and the associate parameters for the desired L2-L∞ dynamic output feedback controller are given by

Ac =







−9.5543 4.7168 −3.9763

−9.3027 1.5701 −5.4632

3.3674 −4.2751 −0.6981






, B0c =







−0.3270 −1.7050

0.2366 −1.1796

0.6321 1.9241







Bc =







19.8034 −33.6044

23.3787 −31.3793

−2.2520 13.8605






, Cc =

[

−1.3702 0.1725 −0.7217

−0.0190 −0.1200 −0.0062

]

D0c =

[

0.0988 −0.3295

−0.0478 0.0839

]

, Dc =

[

2.3986 −3.5164

−0.1259 0.3775

]

Gc =
[

1.9111 −1.6333 0.9006
]

, H0c =
[

0.0952 −0.2815
]

Hc =
[

−11.2830 15.5137
]

To show the state responses of the open-loop and closed-loop processes, suppose that the boundary condi-

tions are given as

xk+1(0) = 0.2, 0 ≤ k ≤ 20

y0(t) = 0.2, 0 ≤ t ≤ 20

Figure 1 shows the state response of the first state component of the open-loop process from which we can see

that it is not stable along the pass. Figure 2 gives the corresponding result for the closed-loop process (use

the static L2-L∞ control).

V. Concluding Remarks

This paper has investigated the robust L2-L∞ control problem for uncertain differential LRPs, which are

a distinct class of two-dimensional (2-D) linear systems. Both the L2-L∞ static feedback controller and the

L2-L∞ dynamic output feedback controller have been designed with the solvability conditions proposed in

terms of LMI respectively. The designed L2-L∞ dynamic output feedback controller can be found by solving a

convex optimization problem. A numerical example has been provided to demonstrate the effectiveness of the

proposed design method. Note that the LMI formulation in this paper is mainly based on a fixed Lyapunov

functional. To further reduce the possible conservatism, one of our future research topics would be the

investigation on linear repetitive processes with polytopic parameter uncertainties by exploiting parameter-

dependent Lyapunov functionals.
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Fig. 1. State response of the first state component of the open-loop process
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Fig. 2. State response of the first state component of the closed-loop process
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