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This paper investigates the problem of robust L2 − L∞ filtering for a class of dynamical systems with nonhomogeneous
Markov jump process. The time-varying transition probabilities which evolve as a nonhomogeneous jump process are
described by a polytope, and parameter-dependent and mode-dependent Lyapunov function is constructed for such system,
and then a robust L2 − L∞ filter is designed which guarantees that the resulting error dynamic system is robustly stochastically
stable and satisfies a prescribed L2 − L∞ performance index. A numerical example is given to illustrate the effectiveness of
the developed techniques.
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1. Introduction

Some sudden environmental changes, system noises and
failures of subsystems often lead to the complexity in many
practical engineering systems. This also brings some dif-
ficulties to analysis and control, and many researchers are
seeking highly effective methods for such systems. As well
known, it is a turning point that Krasovskii and Lidskii pro-
posed a class of Markov jump systems (MJSs) (Krasovskii
and Lidskii 1961) to appropriate many practical systems
which may experience abrupt variation in their structure or
parameters, since this kind of system is presented by a fam-
ily of linear systems that evolve as a Markov jump chain
or Markov jump process. This evolution brings the fruit-
ful results for the control and synthesis of Markov jump
systems (for example, Chen, Xu, and Guan 2003; Boukas
2005; Hu, Shi, and Frank 2006; Shi, Xia, Liu, and D. Rees
2006; Yin, Shi, Liu, and Song 2012). Markov jump process
(chain) can be roughly divided into two types: homogeneous
jump process (chain) and nonhomogeneous jump process
(chain). The former is irrelevant to the constant transition
probabilities while the latter includes time-varying transi-
tion probabilities. To date, under the assumption that jump
chain or jump process of systems is a homogeneous one,
many results have been proposed for time-continuous or
time-discrete Markov jump systems (for example, Xiong,
Lam, Gao, and Ho 2005; Zhang, Boukas, and Shi 2009).
However, this assumption is not realistic in many situations;
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many complex systems are not only subject to Markov jump
process but also with time-varying transition probabilities.

One typical example is networked systems; it is pop-
ularly known that packet dropouts and network delays in
such systems can be modelled by Markov processes, and
networked systems is considered as a Markov jump system
(Krtolica et al. 1994; Seiler and Sengupta 2005), but, it
should be noticed that such delay and packet dropouts are
different in different period Internet traffic report (2008),
so transition rates vary through a whole working region and
they are uncertain; this will lead to the time-varying tran-
sition probabilities. Another example is helicopter system
(Narendra and Tripathi 1973); airspeed variation in such
system matrices is modelled as homogeneous Markov chain
ideally, but probabilities of the transition of these multiple
airspeeds cannot be fixed when weather changes. There are
also some similar phenomenon in practice. In such situa-
tions, it is reasonable to model this system by Markov jump
system with nonhomogeneous process (Aberkane 2011),
that is, the transition probabilities are time variant. One
feasible assumption is to use a polytope set to describe
this characteristics of uncertainties caused by time-varying
transition probabilities. The main reason is that although
the transition probability of the Markov process is not ex-
actly known, but one can evaluate some values in some
working points, so we can model these time-varying transi-
tion probabilities by a polytope which belongs to a convex
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set. Hence, it is our intention in this paper to tackle such an
important yet challenging problem.

On the other hand, filtering appears very useful in vari-
ous practical systems such as chemical processes and com-
munication systems (Yin, Shi, and Liu 2011). Under the
assumption that transition probabilities are time invari-
ant, many results on filtering and estimation have been
reported for stochastic systems, such as Kalman filtering
(Shi, Boukas, and Agarwal 1999), robust filtering (Wang,
Lam, and Liu 2004), H∞ filtering (Wu, Shi, Gao, and Wang
2008; Dong, Wang, Ho, H. Gao 2011; Liu, Gu, and Hu
2011) and L2 − L∞ filtering (Ahn and Song 2011; Zong,
Hou, and Li 2011; Yin, Liu, and Shi 2012). In this paper,
the robust L2 − L∞ filtering problem is solved for a class
of nonhomogeneous Markov jump systems, and compared
with the H∞ filtering, the L2 − L∞ performance index
among unknown noise disturbances and filtering error is
required in L2 − L∞ filtering problem, and the unknown
noises are both assumed to be energy bounded in such two
techniques.

The paper is organised as follows: Problem statement
and preliminaries of this paper are given in Section 2. In
Section 3, stochastic stability analysis of the resulting error
dynamic system is given. In Section 4, L2 − L∞ perfor-
mance for the the resulting error dynamic system is anal-
ysed, and robust L2 − L∞ filter is designed in Section 5 such
that error dynamic system is stochastically stable and satis-
fies a prescribed L2 − L∞ performance index. A numerical
example is given to illustrate the effectiveness of our ap-
proach in Section 6. Finally, some concluding remarks are
given in Section 7.

In the sequel, the notation R
n stands for an n-

dimensional Euclidean space; the transpose of a matrix A is
denoted by AT; E{·} denotes the mathematical statistical ex-
pectation; Ln

2[0,∞) stands for the space of n-dimensional
square integrable functions over [0, ∞); a positive-definite
matrix is denoted by P > 0; I is the unit matrix with ap-
propriate dimension, and ∗ means the symmetric term in a
symmetric matrix.

2. Problem statement and preliminaries

Consider a probability space (M, F, P), where M, F and
P represent, respectively, the sample space, the algebra of
events and the probability measure defined on F. The un-
certain discrete Markov jump systems (MJSs) with nonho-
mogeneous process are given below:

⎧⎪⎪⎨
⎪⎪⎩

xk+1 = A(rk)xk + B(rk)wk + g(xk, rk)

yk = C(rk)xk + D(rk)wk

zk = L(rk)xk,

(2.1)

where {rk, k ≥ 0} is the concerned discrete Markov stochas-
tic process, which takes values in a finite state set � = {1,

2, 3, . . . , N}; r0 represents the initial mode, and the time-
varying transition probability matrix is defined as �(k) =
{π ij(k)}, i, j ∈ � and π ij(k) = P(rk + 1 = j|rk = i) is the tran-
sition probability from mode i at time k to mode j at time
k + 1, such that π ij(k) ≥ 0 and

∑N
j=1 πij (k) = 1. A(rk),

B(rk), C(rk), D(rk) and L(rk) are mode-dependent constant
matrices with appropriate dimensions at the working instant
k; g(·) is time-dependent and norm-bounded uncertainties;
xk ∈ R

n is the state vector of the system; yk ∈ R
p is the

output vector of the system; zk ∈ R
p is the controlled out-

put vector of the system; wk ∈ L
q
2[0,∞] is the external

disturbance vector of the system.

Assumption 2.1: The norm-bounded uncertainty g(·) in
system (2.1) is assumed to satisfy

g(xk, rk) = �A(rk)xk

and

�A(rk) = M(rk) · ϒ(rk) · N (rk),

where M(rk) and N(rk) are constant matrices with appropri-
ate dimensions, ϒ(rk) is an unknown matrix with Lebesgue
measurable elements satisfying ϒT(rk)ϒ(rk) ≤ 1.

Thus, system (2.1) can be written as:

⎧⎪⎪⎨
⎪⎪⎩

xk+1 = (A(rk) + �A(rk))xk + B(rk)wk

yk = C(rk)xk + D(rk)wk

zk = L(rk)xk

(2.2)

In this paper, we consider a class of Markov jump systems
with nonhomogeneous process, where the time-varying
transition probability matrix is described as a polytope,
such that for given matrices �s, s = 1, . . . , w, w repre-
sents the number of selected vertices, then the time-varying
transition matrix �(k) of the Markov jump system is given
below:

�(k) =
w∑

s=1

αs(k)�s,

where

0 ≤ αs(k) ≤ 1,

w∑
s=1

αs(k) = 1.

Note that the time-varying transition probability matrix of
system (2.1) belongs to a polytope which is described by
several vertices.

For simplicity, when rk = i, i ∈ �, the matrices A(rk),
�A(rk), B(rk), C(rk), D(rk) and L(rk) in system (2.2) are,
respectively, denoted as A(i), �A(i), B(i), C(i), D(i) and L(i).
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To estimate the signal zk in system (2.2), a general filter
is constructed as follows:{

x̂k+1 = Af (i)x̂k + Bf (i)yk

ẑk = Lf (i)x̂k,
(2.3)

where x̂k is the filter state vector, yk is the input of the filter,
ẑk is the controlled output of the filter, Af(i), Bf(i), Lf(i)
are filter gains to be determined; augmenting system (2.2)
and the filter (2.3), we obtain the following error dynamical
system:

{
x̄k+1 = Ā(i)x̄k + B̄(i)wk

z̄k = L̄(i)x̄k,
(2.4)

where z̄k = zk − ẑk , ek = xk − x̂k , x̄k =
[
xk

ek

]
, Ā(i) =[

A(i) + �A(i 0)

A(i) + �A(i) − Af (i) − Bf (i)C(i) Af (i)

]
, B̄(i) =

[
B(i)

B(i) − Bf (i)D(i)

]
, L̄(i) = [

L(i) − Lf (i) Lf (i)
]
.

Before proceed, some definitions and lemmas for sys-
tem (2.4) are given below:

Definition 2.1: For any initial mode r0, and a given initial
state x̄0, system (2.4) (with wk = 0) is said to be robustly
stochastically stable if the following condition holds:

lim
m→∞ E

{
m∑

k=0
x̄T

k x̄k|x̄0, r0

}
< ∞ (2.5)

Lemma 2.1: (Wang, Xie, and de Souza 1992) Let Q, W, S
and V as real matrices with appropriate dimensions, and S
is assumed to satisfy STS ≤ I, then for a positive scalar α

> 0, it holds

Q + WSV + V TSTWT ≤ Q + α−1WWT + αV TV

Definition 2.2: For a given constant γ > 0, system (2.4) is
said to be robustly stochastically stable and satisfies a L2 −
L∞ performance index γ , if it is stochastically stable and
the following condition holds:

E‖z̄k‖2
∞ ≤ γ 2E‖wk‖2

2 (2.6)

where E‖z̄k‖2
∞ = E

{
sup
k>0

[z̄T
k z̄k]

}
, E‖wk‖2

2 =

E

{ ∞∑
k=0

wT
k wk

}

The purpose of the paper is: design a mode-dependent
and parameter-dependent filter (2.3) for system (2.1), such
that the resulting filtering error system (2.4) is robustly

stochastically stable and satisfies a prescribed L2 − L∞
performance index.

3. Stochastic stability

Let us first discuss the stochastic stability of the filtering
error system (2.4), in which the transition probability is a
time-varying matrix.

Lemma 3.1: For a given initial condition x̄0, the filtering
error system (2.4) (with wk = 0) is robustly stochastically
stable, if there exists a set of positive definite symmetric
matrices P̄s(i) and P̄q(j ) such that

�sq(i) = −
w∑

s=1

αs(k)P̄s(i) +
⎛
⎝ N∑

j=1

w∑
s=1

w∑
q=1

αs(k)βq(k)πs
ij

⎞
⎠

×ĀT(i)P̄q(j )Ā(i) < 0 ∀i, j ∈ � (3.1)

where

0 ≤ αs(k) ≤ 1,

w∑
s=1

αs(k) = 1

0 ≤ βq(k) ≤ 1,

w∑
q=1

βq(k) = 1.

Proof. State equations of system (2.4) (with wk = 0) can
be written as:

x̄k+1 = Ā(i)x̄k. (3.2)

A parameter-dependent and mode-dependent Lyapunov
function is given below:

V (x̄k, i) =
w∑

s=1

αs(k)x̄T
k P̄s(i)x̄k (i ∈ �), (3.3)

where

0 ≤ αs(k) ≤ 1,

w∑
s=1

αs(k) = 1, P̄s(i) > 0.

Then, we have


V (x̄k, i) = E{V (x̄k+1, i)} − V (x̄k, i)

=
N∑

j=1

w∑
s=1

w∑
s=1

αs(k)αs(k + 1)πs
ij x̄

T
k

× [ĀT(i)P̄s(j )Ā(i)]x̄k −
w∑

s=1

αs(k)x̄T
k P̄s(i)x̄k.
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Denote

w∑
s=1

αs(k + 1)P̄s(j ) =
w∑

q=1

βq(k)P̄q(j ).

Then, we have


V (x̄k, i) =
N∑

j=1

w∑
s=1

w∑
q=1

αs(k)βq(k)πs
ij x̄

T
k

× [ĀT(i)(P̄q(j ))Ā(i)]x̄k −
w∑

s=1

αs(k)x̄T
k P̄s(i)x̄k

= x̄T
k �sq(i)x̄k.

For system (3.2), condition (3.1) implies that


V (x̄k, i) < 0 (i ∈ �).

Let

η = min
k

{λmin(−�sq(i))} ∀i ∈ �,

where λmin(− �sq(i)) is the minimal eigenvalue of −�sq(i).
Then,


V (x̄k, i) ≤ −ηx̄T
k x̄k.

Thus,

E

{
T∑

k=0

V (x̄k, i)} = E{V (x̄T +1, i)

}
− V (x̄0, i)

≤ −ηE

{
T∑

k=0
‖x̄k‖2

}

and it shows that

E

{
T∑

k=0
‖x̄k‖2

}
≤ 1

η
{V (x̄0, i) − E{V (x̄T +1, i)}}

≤ 1
η
V (x̄0, i),

which, in turn, implies that

lim
T →∞

E

{
T∑

k=0

‖x̄k‖2

}
≤ 1

η
V (x̄0, i).

Thus, by Definition 2.1, system (2.4) (with wk = 0) is
robustly stochastically stable, which concludes the proof.

�

Remark 3.1: One can also design a mode-independent
filter for system (2.2) by denoting Af(i), Bf(i) and Lf(i) as
Af, Bf and Lf, respectively, however, this filter will bring in
some conservativeness.

Next, we analyse the L2 − L∞ performance for the
filtering error system (2.4).

4. L2 − L∞ Performance analysis

In order to minimise the influences of the disturbances, L2 −
L∞ performance index is analysed for system (2.4) subject
to all admissible disturbances, and then, system (2.4) is
stochastically stable and has a prescribed L2 − L∞ index γ .

Theorem 4.1: Let γ > 0 be a given constant for system
(2.4) (with wk �= 0), suppose that there exists a set of positive
definite symmetric matrices P̄s(i) and P̄q(j ) such that


1sq(i) =

⎡
⎢⎢⎣

−P̃sq (j ) P̃sq(j )Ā(i) P̃sq(j )B̄(i)

∗ −P̃s(i) 0

∗ ∗ −I

⎤
⎥⎥⎦ < 0,

(4.1)


2s(i) =
[−P̃s(i) L̄T(i)

∗ −γ 2I

]
< 0 ∀i, j ∈ �, (4.2)

where

P̃sq(j ) =
N∑

j=1

w∑
s=1

w∑
q=1

αs(k)βq(k)πs
ij P̄q(j )

P̃s(i) =
w∑

s=1

αs(k)P̄s(i).

Then, system (2.4) is robustly stochastically stable and sat-
isfies a prescribed L2 − L∞ performance index γ .

Proof. Consider the Lyapunov function (3.3) for system
(2.4), then, we have


V (x̄k, i) = E{V (x̄k+1, i)} − V (x̄k, i)

= (Ā(i)x̄k + B̄(i)wk)TP̃sq (j )(Ā(i)x̄k + B̄(i)wk)

−x̄T
k P̃s(i)x̄k

= x̄T
k [ĀT(i)P̃sq(j )Ā(i) − P̃s(i)]x̄k + 2x̄T

k ĀT(i)

×P̃sq(j )B̄(i)wk + wT
k B̄T(i)P̃sq(j )B̄(i)wk.

Consider the following cost function for system (2.4):

J (T ) = E {V (x̄k, i)} − E

{
T∑

k=0

wT
k wk

}
. (4.3)

Under zero initial condition, index J(T) can be written
as

J (T ) ≤ E

{
T∑

k=0

[−wT
k wk + 
V (x̄k, i)]

}
. (4.4)
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Then,

J (T ) ≤ E

{
T∑

k=0

[−wT
k wk + 
V (x̄k, i)]

}

= E

{
T∑

k=0

[− wT
k wk + x̄T

k [ĀT(i)P̃sq(j )Ā(i) − P̃s(i)]

× x̄k + 2x̄T
k ĀT(i)P̃sq (j )B̄(i)wk

]}

+ E

{
T∑

k=0

wT
k B̄T(i)P̃sq (j )B̄(i)wk

}
.

Recalling Schur complement, it shows that

J (T ) ≤ x̃T
k 
1sq (i)x̃k,

where

x̃k = [
x̄T

k wT
k

]
.

Under the assumption that wk = 0, 
1(i) < 0 implies
inequality (3.1). Following a similar line in the proof of
Lemma 3.1, system (2.4) is robustly stochastically stable.
Thus, by condition (4.1), we have

E
{
x̄T

k P̃s(i)x̄k

} ≤ E {V (x̄k, i)} < E

{
T∑

k=0

wT
k wk

}
.

On the other hand, condition (4.2) shows that

E
{
z̄T
k z̄k

}
< γ 2E

{
x̄T

k P̃s(i)x̄k

}
< γ 2E

{
T∑

k=0

wT
k wk

}
,

for T → ∞, 
2s(i) < 0 results in

E‖z̄k‖2
∞ ≤ γ 2E‖wk‖2

2. (4.5)

By Definition 2.2, it shows that the system (2.4) is
stochastically stable and satisfies a prescribed L2 − L∞
performance, which concludes the proof. �

Remark 4.1: By setting
∑w

s=1 αs(k)P̄s(i) = P̄ (i), the re-
sults obtained in this paper can also be applied to general
Markov jump systems with homogeneous process.

Note that we analysed the L2 − L∞ performance for the
error dynamic system (2.4) in Theorem 4.1. Based on such
result, we will design the mode-dependent parameters of
the filter in the following section.

5. Robust L2 − L∞ filter design

Sufficient conditions for the existence of an admissible
mode-dependent L2 − L∞ filter in the form of (2.3) for
the system (2.1) are presented in the following theorems.

Theorem 5.1: Consider system (2.4) and let γ > 0 be
a given constant. Suppose that there exists a set of pos-
itive definite symmetric matrices P̄s(i), P̄q(j ) and mode-
dependent matrices X(i) such that

�1sq (i)

=

⎡
⎢⎢⎣

−X(i) − XT(i) + P̂sq (j ) X(i)Ā(i) X(i)B̄(i)

−∗ P̄s(i 0)

∗ −∗ I

⎤
⎥⎥⎦

< 0, (5.1)

�2s(i) =
[−P̄s(i) L̄T(i)

−∗ γ 2I

]
< 0 ∀i ∈ �, (5.2)

where

P̂q (j ) =
N∑

j=1

πs
ij P̄q(j ).

Then, system (2.4) is robustly stochastically stable and sat-
isfies a prescribed L2 − L∞ performance index γ .

Proof: In order to make sure that system (2.4) is stochas-
tically stable and satisfies a prescribed L2 − L∞ perfor-
mance index, all the vertices of the polytope are required
to satisfy the stability requirements shown in Theorem 4.1;
thus, we have

�3sq(i) =

⎡
⎢⎢⎣

−P̌sq (j ) P̌sq(j )Ā(i) P̌sq(j )B̄(i)

−∗ P̄s(i 0)

−∗∗ I

⎤
⎥⎥⎦ < 0,

(5.3)

�2s(i) =
[−P̄s(i) L̄T(i)

−∗ γ 2I

]
< 0 ∀i ∈ �, (5.4)

where

P̌sq(j ) =
N∑

j=1

w∑
q=1

βq(k)πs
ij P̄q(j ).

Then, by �3sq(i) < 0, we have

�4sq (i) =

⎡
⎢⎢⎣

−P̂sq (j ) P̂sq(j )Ā(i) P̂sq (j )B̄(i)

−∗ P̄s(i 0)

−∗∗ I

⎤
⎥⎥⎦ < 0

∀i ∈ �. (5.5)
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In order to avoid the cross coupling of matrix prod-
uct terms in condition (5.5) caused by mode varia-
tion, a slack matrix X(i) is considered here, and then,
after standard matrix manipulation, condition (5.1) is
obtained.

Therefore, the system (2.4) is robustly stochas-
tically stable and satisfies a prescribed L2 − L∞
performance index. This concludes the proof of
Theorem 5.1.

Next, by Theorem 5.1, we will design the robust L2 −
L∞ filter for system (2.4), to ensure that the resulting error
dynamic system (2.4) is robustly stochastically stable and
has a prescribed L2 − L∞ performance index.

Theorem 5.2: Consider system (2.4) and let γ > 0 be a
given constant. Suppose that there exist matrices P1s(i) >

0, P2s(i) > 0 and mode-dependent matrices P3s(i), R(i),
Y(i), Z(i), AF(i), BF(i) and LF(i), and mode-dependent num-
bers α(i) such that the following conditions have feasible
solutions

�1sq(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 a4 AF (i) a6 R(i)M(i) + Y (i)M(i)

∗ a3 a5 AF (i) a7 Z(i)M(i) + Y (i)M(i)

∗ ∗ −P1s(i) + α(i)NT(i)N (i) −P2s(i) 0 0

∗ ∗ ∗ −P3s(i) 0 0

∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ −α(i)I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (5.6)

�2s(i) =

⎡
⎢⎢⎣

−P1s(i) −P2s(i) LT(i) − LT
F (i)

∗ −P3s(i) LT
F (i)

∗ ∗ −γ 2I

⎤
⎥⎥⎦ < 0

∀i ∈ �, (5.7)

where a1 = −R(i) − RT(i) + P1q(j), a2 = −Y(i) − ZT(i)
+ P2q(j), a3 = −Y(i) − YT(i) + P3q(j),a4 = R(i)A(i) +
Y(i)A(i) − AF(i) − BF(i)C(i), a5 = Z(i)A(i) + Y(i)A(i) −
AF(i) − BF(i)C(i),a6 = R(i)B(i) + Y(i)B(i) − BF(i)D(i),
a7 = Z(i)B(i) + Y(i)B(i) − BF(i)D(i); then, one can get a
mode-dependent filter in the form of (2.3):

{
x̂k+1 = Af (i)x̂k + Bf (i)yk

ẑk = Lf (i)x̂k

such that the resulting filtering error system (2.4) is stochas-
tically stable and satisfies a prescribed L2 − L∞ perfor-
mance index γ . Moreover, the gain matrices of the filter are
given by

Af (i) = Y−1(i)AF (i), Bf (i) = Y−1(i)BF (i),

Lf (i) = LF (i).

Proof:Consider the filtering error system (2.4) and denote

P̄s(i) =
[
P1s(i) P2s(i)

∗ P3s(i)

]
, X(i) =

[
R(i) Y (i)

Z(i) Y (i)

]
,

then, by Theorem 5.1, �1sq(i) < 0 implies

�3sq(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 a8 AF (i) a6

∗ a3 a9 AF (i) a7

∗ ∗ −P1s(i) −P2s(i) 0

∗ ∗ ∗ −P3s(i) 0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(5.8)

where

a8 = R(i)(A(i) + 
A(i)) + Y (i)(A(i) + 
A(i)) − AF (i)

−BF (i)C(i)

a9 = Z(i)(A(i) + 
A(i)) + Y (i)(A(i) + 
A(i)) − AF (i)

−BF (i)C(i).

By �3sq(i) < 0, we have

�4sq(i) + T1(i)ϒ(i)T2(i) + T T
2 (i)ϒT(i)T T

1 (i) < 0,

where

�4sq(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 a4 AF (i) a6

∗ a3 a5 AF (i) a7

∗ ∗ −P1s(i) −P2s(i) 0

∗ ∗ ∗ −P3s(i) 0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.9)

T T
1 (i) = [

MT(i)RT(i) + MT(i)Y T(i) MT(i)ZT(i)

+MT(i)Y T(i) 0 0 0
]

T T
2 (i) = [ 0 0 N (i) 0 0 ].
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Denote

Y (i)Af (i) = AF (i) Y, (i)Bf (i) = BF (i).

By Lemma 2.1 and recalling Schur complement, �3sq(i) <

0 holds if �1sq(i) < 0.
On the other hand, denote Lf(i) = LF(i), then, �2s(i) < 0
implies �2s(i) < 0.
Therefore, if conditions (5.6) and (5.7) hold, the filtering
error system (2.4) is stochastically stable and satisfies a
prescribed L2 − L∞ performance index γ . Moreover, the
parameters of the admissible filter are given by

Af (i) = Y−1(i)AF (i), Bf (i) = Y−1(i)BF (i),

Lf (i) = LF (i).

This completes the proof.

Remark 5.1: Note that in order to get the optimal L2 −
L∞ performance index γ for system (2.4), we set γ 2 = ε,
then, Theorem 5.2 can be cast as an optimisation problem
as follows

min ε

s.t. LMIs (5.10) (5.11)

�1sq(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 a4 AF (i) a6 R(i)M(i) + Y (i)M(i)

∗ a3 a5 AF (i) a7 Z(i)M(i) + Y (i)M(i)

−∗∗ P1s(i) + α(i)NT(i)N (i) −P2s(i 00)

−∗∗∗ P3s(i) 00

−∗∗∗∗ I 0

−∗∗∗∗∗ α(i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< (5.10)0

�5s(i) =

⎡
⎢⎢⎣

−P1s(i) −P2s(i) LT(i) − LT
F (i)

−∗ P3s(i) LT
F (i)

−∗∗ εI

⎤
⎥⎥⎦ < 0

∀i ∈ �. (5.11)

Remark 5.2: By solving (5.10) and (5.11), one can obtain
a filter corresponding to the optimal L2 − L∞ performance
index, we can also obtain the optimal mode-independent
filter with more conservativeness.

6. Simulation results

Consider nonhomogeneous discrete-time MJSs, which are
aggregated into two modes, where

A(1) =
[

0.45 −0.35

0. 015 .5

]
, A(2) =

[
0.26 −0.31

0.13 0.12

]

B(1) =
[

0.1
0.1

]
, B(2) =

[
0.1
0.1

]

C(1) = [
0.5 0.4

]
, C(2) = [

0.3 0.1
]

D(1) = [
0.9

]
, D(2) = [−0.6

]

L(1) = [
0.8 −0.2

]
, L(2) = [

0.1 0.5
]

M(1) =
[

0.1
0.1

]
, M(2) =

[
0.1
0.1

]

N (1) = [
0.1 0.1

]
, N (2) = [

0.1 0.1
]
.

The vertices of the time-varying transition probability ma-
trix are given by

�1 =
[

0.2 0.8

0.35 0.65

]
, �2 =

[
0.55 0.45

0.48 0.52

]

�3 =
[

0.6 0.4

0.3 0.7

]
, �4 =

[
0.4 0.6

0.9 0.1

]
.

Our purpose is to design robust L2 − L∞ filter for the
system (2.1) such that the resulting filtering error system
(2.4) is robustly stochastically stable with an L2 − L∞
performance index.

Applying the obtained parameters to filter (2.3), set
γ 2 = 0.5, initial condition of system (2.1) as x0 =
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[−0.5 0.4
]T

, initial condition of filter as
[
0 0

]T
and

noise signal as wk = 0.5exp′′(−0.1k)sin′′(0.01πk), then,
one can get the state trajectories of system (2.1), jumping
modes and filtering error response of the resulting filtering
error system (2.4) are shown in Figures 1–3. It shows that
the designed filter is feasible and effective.

Figure 1. Trajectories of system states.

Figure 2. Jumping modes.

Figure 3. Filtering error response.

Remark 6.1: It can be seen from Figures 1–3 that the
resulting error dynamical system is stochastically stable,
and our objective of L2 − L∞ filtering is well achieved. In
reality, the vertices of these transition probabilities can be
obtained by evaluate their values in some working points.

Remark 6.2: In L2 − L∞ filtering, we pay attention on
the maximal value of the controlled output but not its en-
ergy level, which concerned in H∞ filtering problem. In our
future work, the results developed here will be extended
to switching systems (Xu and Sun 2013; Li, Zhao, and
Dimirovskicd 2013), and the relating switching technique
can be found in Sun, Liu, Wang, and Rees (2012), Sun, Zhao,
and Hill (2006).

7. Conclusions

In this paper, the issue on robust L2 − L∞ filtering for a
class of uncertain discrete-time Markov jump systems with
nonhomogeneous process is addressed, and the transition
probabilities is expressed as a polytope, in which vertices
are given a priori, the filter designed ensures that the result-
ing error dynamic system is robustly stochastically stable
and satisfies a prescribed L2 − L∞ performance index.
The simulation result shows the potential of the proposed
techniques.
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