756 research outputs found

    Reliability Evaluation of Common-Cause Failures and Other Interdependencies in Large Reconfigurable Networks

    Get PDF
    This work covers the impact of Interdependencies and CCFs in large repairable networks with possibility of "re-configuration" after a fault and the consequent disconnection of the faulted equipment. Typical networks with these characteristics are the Utilities, e.g. Power Transmission and Distribution Systems, Telecommunication Systems, Gas and Water Utilities, Wi Fi networks. The main issues of the research are: (a) Identification of the specific interdependencies and CCFs in large repairable networks, and (b)Evaluation of their impact on the reliability parameters (load nodes availability, etc.). The research has identified (1) the system and equipment failure modes that are relevant to interdependencies and CCF, and their subsequent effects, and (2) The hidden interdependencies and CCFs relevant to control, supervision and protection systems, and to the automatic change-over systems, that have no impact in normal operation, but that can cause relevant out-of-service when the above automatic systems are called to operate under and after fault conditions. Additionally methods were introduced to include interdependencies and CCFs in the reliability and availability models. The results of the research include a new generalized approach to model the repairable networks for reliability analysis, including Interdependencies/CCFs as a main contributor. The method covers Generalized models for Nodes, Branches and Load nodes; Interdependencies and CCFs on Networks / Components; System Interdependencies/CCFs; Functional Interdependencies/CCFs; Simultaneous and non-simultaneous Interdependencies/CCFs. As an example detailed Interdependency/CCFs analysis and generalized model of an important network structure (a "RING" with load nodes) has been analyzed in detail

    On Dependable Wireless Communications through Multi-Connectivity

    Get PDF
    The realization of wireless ultra-reliable low-latency communications (URLLC) is one of the key challenges of the fifth generation (5G) of mobile communications systems and beyond. Ensuring ultra-high reliability together with a latency in the (sub-)millisecond range is expected to enable self-driving cars, wireless factory automation, and the Tactile Internet. In wireless communications, reliability is usually only considered as percentage of successful packet delivery, aiming for 1 − 10⁻⁔ up to 1 − 10⁻âč in URLLC

    Security Evaluation of Substation Network Architectures

    Get PDF
    In recent years, security of industrial control systems has been the main research focus due to the potential cyber-attacks that can impact the physical operations. As a result of these risks, there has been an urgent need to establish a stronger security protection against these threats. Conventional firewalls with stateful rules can be implemented in the critical cyberinfrastructure environment which might require constant updates. Despite the ongoing effort to maintain the rules, the protection mechanism does not restrict malicious data flows and it poses the greater risk of potential intrusion occurrence. The contributions of this thesis are motivated by the aforementioned issues which include a systematic investigation of attack-related scenarios within a substation network in a reliable sense. The proposed work is two-fold: (i) system architecture evaluation and (ii) construction of attack tree for a substation network. Cyber-system reliability remains one of the important factors in determining the system bottleneck for investment planning and maintenance. It determines the longevity of the system operational period with or without any disruption. First, a complete enumeration of existing implementation is exhaustively identified with existing communication architectures (bidirectional) and new ones with strictly unidirectional. A detailed modeling of the extended 10 system architectures has been evaluated. Next, attack tree modeling for potential substation threats is formulated. This quantifies the potential risks for possible attack scenarios within a network or from the external networks. The analytical models proposed in this thesis can serve as a fundamental development that can be further researched

    Distributed Storage in Mobile Wireless Networks with Device-to-Device Communication

    Get PDF
    We consider the use of distributed storage (DS) to reduce the communication cost of content delivery in wireless networks. Content is stored (cached) in a number of mobile devices using an erasure correcting code. Users retrieve content from other devices using device-to-device communication or from the base station (BS), at the expense of higher communication cost. We address the repair problem when a device storing data leaves the cell. We introduce a repair scheduling where repair is performed periodically and derive analytical expressions for the overall communication cost of content download and data repair as a function of the repair interval. The derived expressions are then used to evaluate the communication cost entailed by DS using several erasure correcting codes. Our results show that DS can reduce the communication cost with respect to the case where content is downloaded only from the BS, provided that repairs are performed frequently enough. If devices storing content arrive to the cell, the communication cost using DS is further reduced and, for large enough arrival rate, it is always beneficial. Interestingly, we show that MDS codes, which do not perform well for classical DS, can yield a low overall communication cost in wireless DS.Comment: After final editing for publication in TCO

    Warranty Data Analysis: A Review

    Get PDF
    Warranty claims and supplementary data contain useful information about product quality and reliability. Analysing such data can therefore be of benefit to manufacturers in identifying early warnings of abnormalities in their products, providing useful information about failure modes to aid design modification, estimating product reliability for deciding on warranty policy and forecasting future warranty claims needed for preparing fiscal plans. In the last two decades, considerable research has been conducted in warranty data analysis (WDA) from several different perspectives. This article attempts to summarise and review the research and developments in WDA with emphasis on models, methods and applications. It concludes with a brief discussion on current practices and possible future trends in WDA

    Design and Implementation of a True Decentralized Autonomous Control Architecture for Microgrids

    Get PDF
    Microgrids can serve as an integral part of the future power distribution systems. Most microgrids are currently managed by centralized controllers. There are two major concerns associated with the centralized controllers. One is that the single controller can become performance and reliability bottleneck for the entire system and its failure can bring the entire system down. The second concern is the communication delays that can degrade the system performance. As a solution, a true decentralized control architecture for microgrids is developed and presented. Distributing the control functions to local agents decreases the possibility of network congestion, and leads to the mitigation of long distance transmission of critical commands. Decentralization will also enhance the reliability of the system since the single point of failure is eliminated. In the proposed architecture, primary and secondary microgrid controls layers are combined into one physical layer. Tertiary control is performed by the controller located at the grid point of connection. Each decentralized controller is responsible of multicasting its status and local measurements, creating a general awareness of the microgrid status among all decentralized controllers. The proof-of concept implementation provides a practical evidence of the successful mitigation of the drawback of control command transmission over the network. A Failure Management Unit comprises failure detection mechanisms and a recovery algorithm is proposed and applied to a microgrid case study. Coordination between controllers during the recovery period requires low-bandwidth communications, which has no significant overhead on the communication infrastructure. The proof-of-concept of the true decentralization of microgrid control architecture is implemented using Hardware-in-the-Loop platform. The test results show a robust detection and recovery outcome during a system failure. System test results show the robustness of the proposed architecture for microgrid energy management and control scenarios

    Two-layer Locally Repairable Codes for Distributed Storage Systems

    Full text link
    In this paper, we propose locally repairable codes (LRCs) with optimal minimum distance for distributed storage systems (DSS). A two-layer encoding structure is employed to ensure data reconstruction and the designated repair locality. The data is first encoded in the first layer by any existing maximum distance separable (MDS) codes, and then the encoded symbols are divided into non-overlapping groups and encoded by an MDS array code in the second layer. The encoding in the second layer provides enough redundancy for local repair, while the overall code performs recovery of the data based on redundancy from both layers. Our codes can be constructed over a finite field with size growing linearly with the total number of nodes in the DSS, and facilitate efficient degraded reads.Comment: This paper has been withdrawn by the author due to inaccuracy of Claim
    • 

    corecore