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ABSTRACT 

DESIGN AND IMPLEMENTATION OF A TRUE DECENTRALIZED 

AUTONOMOUS CONTROL ARCHITECTURE FOR MICROGRIDS 

 
by 

 

 Abedalsalam Bani-Ahmed 

 

The University of Wisconsin-Milwaukee, 2017 

Under the Supervision of Professor Adel Nasiri 

 

Microgrids can serve as an integral part of the future power distribution systems. Most 

microgrids are currently managed by centralized controllers. There are two major concerns 

associated with the centralized controllers. One is that the single controller can become 

performance and reliability bottleneck for the entire system and its failure can bring the entire 

system down. The second concern is the communication delays that can degrade the system 

performance. As a solution, a true decentralized control architecture for microgrids is developed 

and presented. Distributing the control functions to local agents decreases the possibility of 

network congestion, and leads to the mitigation of long distance transmission of critical 

commands. Decentralization will also enhance the reliability of the system since the single point 

of failure is eliminated. In the proposed architecture, primary and secondary microgrid controls 

layers are combined into one physical layer. Tertiary control is performed by the controller located 

at the grid point of connection. Each decentralized controller is responsible of multicasting its 

status and local measurements, creating a general awareness of the microgrid status among all 

decentralized controllers. The proof-of concept implementation provides a practical evidence of 

the successful mitigation of the drawback of control command transmission over the network. A 

Failure Management Unit comprises failure detection mechanisms and a recovery algorithm is 



 iii 

proposed and applied to a microgrid case study. Coordination between controllers during the 

recovery period requires low-bandwidth communications, which has no significant overhead on 

the communication infrastructure. The proof-of-concept of the true decentralization of microgrid 

control architecture is implemented using Hardware-in-the-Loop platform. The test results show a 

robust detection and recovery outcome during a system failure. System test results show the 

robustness of the proposed architecture for microgrid energy management and control scenarios. 
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Chapter 1 Introduction 

1.1  Background 

The usage of the term “grid” is growing immensely feeding from the multi-disciplinary pool 

of research and future visions of the electrical grid forming what is now referred to as “Smart 

Grid”. The basic concept of Smart Grid is to add monitoring communication to current partially 

traditional grid. It also adds control in a manner that moves this traditional grid into a two-way 

power and information flow era. This will allow consumers to take the role of a producer of power, 

which will now have multiple economic and environmental projections on the future of power 

industry. 

A perspective view to the Smart Grid shows one entity consisting of multiple domains [1] [2]. 

These domains can be viewed as a chain of domains for power service. Starting from the generation 

and ending with the customer. However, these domains are coupled with the help functional 

support systems that involve many aspects of data management and communications, insuring 

system resiliency and efficiency and subsequently economic and environmental projections. 

National Institute of Standards and Technology (NIST) defines the smart grid domains. 

National Institute of Standards and Technology defines the SG domains as shown in Figure 

1-1 [1]. Electricity generation is the process of creating electricity from other forms of energy, 

which may include a wide variety of sources, using chemical combustion, nuclear fission, flowing 

water, wind, solar radiation, and geothermal heat. These resources may be directly integrated into 

the distribution system, or share a local bus forming a microgrid. Transmission systems connect 

the Bulk Generation systems to the Distribution system carrying electricity over long distances. 
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These systems are normally designed to operate at very high voltage levels to minimize the 

electricity losses. 

 
Figure 1-1 Smart Grid Domains 

The Distribution system consists of the electrical network carrying the flow of electricity from 

bulk transmission system to the customers.  The Distribution system can also provide the network 

connection for Distributed Generation, Distributed Energy Resources and storage systems to 

supply electricity to customers.  

Smart grid customers have been broken into three different types of residential, commercial, 

and industrial. Customers may also generate, store, and manage the use of energy. A Service 

Provider is the organizations providing services to electrical customers and to utilities. Service 

Providers perform services to support the business processes of power system producers, 

distributors, and customers. These business processes range from traditional utility services, such 

as billing and customer account management, to enhanced customer services, such as management 

of energy use and home energy generation 
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In the deregulated energy industry, there are two markets; Energy market and Transmission 

market. The Energy market provides a competitive marketplace for energy and other energy 

products (e.g. ancillary services), whereas the Transmission market provides a competitive 

marketplace for transmission rights to carry electricity from one place to another. Power system 

operations involve the management of electricity flow ensuring that the electricity is delivered in 

a reliable, safe and economic manner. Power system operations can be divided into bulk 

Transmission Operation, Distribution Operation and Field Devices Operations. 

Foundational Support Systems include the non-energy industry process which supports energy 

industry processes. Examples of these processes include information technology (IT), cyber and 

physical security, architecture solutions for IT support systems, cost benefits analysis and other 

supporting processes which need to be executed to support energy industry processes. Each of the 

aforementioned domains feature its own subdomains.  

1.2 Microgrid Definition 

A microgrid is a localized grouping of electricity sources and loads that normally operates 

connected to and synchronous with the traditional centralized grid (macrogrid), but can disconnect 

and function autonomously as physical and/or economic conditions dictate. [1]. United States 

Department of Energy Microgrid Exchange Group defines a microgrid as a group of 

interconnected loads and distributed energy resources within clearly defined electrical boundaries 

that acts as a single controllable entity with respect to the grid. A microgrid can connect and 

disconnect from the grid to enable it to operate in both grid-connected or island-mode [1].  

As the electricity grid continues to modernize, Distributed Energy Resources (DERs) such as 

storage and advanced renewable technologies can help facilitate the transition to smarter grid 
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islanding capabilities [2]. Microgrids also support management of critical and non-critical loads to 

available generation. Other microgrid requirements involve secure operations, deploying secure 

communications network that guarantee distributed and resilient supervisory control architecture. 

Typical microgrid requirements involves grid connection capabilities, and optimization for 

economic operation. Support integration of renewables with high penetration and energy 

harvesting. Microgrid also supports market participation of smaller power sources that can be 

aggregated to provide power necessary to meet regular demand called Distributed Energy 

Resources (DER) [3].  

 
Figure 1-2 Layered view of the power grid map showing a microgrid. 

Figure 1-2 shows one possible type of microgrids on the power grid map. The distribution 

network in power grids supports residential and industrial areas providing utility services where 

microgrids are deployed in order to support local power demand and respond to ancillary services 

requests. A detailed look at a microgrid structure is shown in Figure 1-3 Microgrid Cyber-Physical 

System, power components and controls., DERs in microgrids may involve backup generators 

(NG), Energy Storage (ES), renewable (i.e. Photovoltaic, Wind), and any other type of DERs 
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where the integration into a microgrid is possible. A layer of communication infrastructure is 

essential to ensure a continuous monitoring and control to the microgrid operation, and achieve 

higher avaiablility of the microgrid system. 

RenwewablesRenewables 

Utility Grid

Backup 

Generators Energy 

Storage EV Charging

HIGH SPEED COMMUNICATION NETWORK

Operator 

HMI 

Client

Logging 

Server
PCC

MG Decentralized Controller

 

Figure 1-3 Microgrid Cyber-Physical System, power components and controls. 

1.3 Microgrid Control overview 

Microgrid control methods can be classified into many categories, depending on the 

availability of master controllers, slave controllers, communications, load sharing strategy. 

Centralized and distributed (decentralized) control methods differ in many aspects. Generally, if 

the DGs can generate its own commands locally, is considered distributed control [9]. 

The distributed control is a variant on the master/slave control. A central control block controls 

the reference voltage and influences the output current of the units. The voltage magnitude, 

frequency and power sharing are centrally controlled. In distributed control, only low bandwidth 

communication is required, opposed to in the master/slave control scheme. voltage regulation and 

fundamental power sharing are controlled centrally and requires high bandwidth due to the high 

amount of traffic required. The distributed control method is distributed in the sense that the critical 
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control components are dealt with by local controllers. Figure 1-3 shows an example of a microgrid 

decentralized control system. 

Centralized methods of operation are more susceptible to single point failures. Reliability is 

essential since microgrid concept is defined as solution for distribution system reliability 

improvement, therefore, Emerging smart grid concept compels microgrids to adopt decentralized 

methods due to the highly dynamic behavior of the microgrids. Two research areas are pursued in 

decentralized control architecture for microgrids: 1) The distributed control algorithm, including 

the control hierarchy. 2) Data exchange for decentralized control systems [9] [10]. Some efforts 

targeted the primary control layer, as it relates to the autonomous operation at the device level [8]. 

Local frequency control [16] and voltage regulation [17] at the primary control level are the major 

drives for decentralized controls of microgrids. Other controlled variables include active and 

reactive power are managed by the Energy Management System (EMS) at the secondary and 

tertiary control levels [18]. The variation of decentralized primary control techniques for different 

microgrid components as grid-forming and grid-feeding sources relies on the behavior of the 

component and the controllability of microgrid variable at the source terminal. As microgrid 

topologies vary, the control methods consider inverter-based power sources only [20], or a 

combination of AC and DC sources [13] [21]. Methods have been proposed enabling real-time 

management of microgrids involving energy storage units over a decentralized secondary control. 

1.4 Problem Statement 

The concept of microgrid is experiencing a significant growth to provide reliable and efficient 

power and integrate renewable and distributed energy resources. Emerging smart grid concept 

compels microgrids to adopt decentralized control methods. Centralized methods of operation are 
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more susceptible to failure due to single point of failure held by the central controller. Despite the 

vast literature on distributed microgrid control that handles specific issues in microgrid operation; 

many assumptions are made which makes the practical side accuracy less probable to achieve due 

to the unforeseen system integration issues [24]. In any control system, delays in communications 

are unpredictable, uncertainty of data exchange delays, which leads to inaccurate modeling. This 

makes the communication delays a challenge against system stability, even if the theoretical side 

resulted with an acceptable system behavior. In microgrids, specifically, the challenge of a control 

layer is more significant, since the main objective of a microgrid is to maintain the stability of a 

local bus system, and in case of a grid-tied microgrid, support the grid system through ancillary 

services 

As a solution, true decentralized control architecture for microgrids is proposed in this 

dissertation. Decentralizing the control operation to local agents decreases the possibility of 

network congestion to occur, and avoiding long distance transmission for control commands. 

Decentralization enhances the reliability of the system since the single point of failure is being 

replaced with a distributed architecture. The proof-of-concept of true decentralization of microgrid 

control architecture is implemented using Hardware-in-The-Loop platform, developed using real 

physical communication links and network components, and applying the concept of 

decentralization dynamically over a network of real-time controllers. The proposed system ensures 

reliable data exchange between controllers and microgrid components. The control concept is truly 

distributed and does not require a master or central controller. Load and generation forecasting can 

be integrated as well as energy storage operation, improving unit commitment and performance. 
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Chapter 2 Review of Microgrid Controls 

2.1 Microgrid Control Hierarchy  

Microgrid control hierarchy [9] identifies three levels of controls; where each level satisfies 

certain requirements and roles in maintaining power reliability, quality, and economical 

constraints. Details of each layer are as follows: 

2.1.1 Primary Control  

Device level control entails interacting with the local DER itself to perform certain functions 

including: physical isolation, on/off, fault clearing (device switching), fault sensing, fault controls, 

re-synchronization (device protection). For inverter: power conversion, power control, voltage and 

frequency regulation, primary frequency control (inverter droops, governor droops), island 

detection, re-synchronization). Most device level controls are performed through tightly-coupled 

communication media, guaranteeing command delivery and signal delay mitigation.  

At this control layer (Figure 2-1), each inverter will have an external power loop based on 

droop control or any predesigned control mechanism [40]. The purpose is to improve the system 

performance and stability through sharing active and reactive power among DG units and 

regulating both the frequency and the magnitude of the output voltage. In droop control, voltage 

and frequency stability are achieved by drooping the voltage and frequency according to active 

and reactive power requirement for this control level. For resistive microgrid P/V droop is 

generally preferred [5], [16].  
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Figure 2-1 Microgrid primary control 

The various types of droop controllers depending upon the nature of microgrid system, the 

following are droop equations:  

𝑓 = 𝑓0 − 𝑚(𝑃 − 𝑃0) (2-1) 

𝑉 = 𝑉0 − 𝑛(𝑄 − 𝑄0) (2-2) 

where m is the frequency droop coefficient; n is the voltage droop coefficient; f0 is the nominal 

frequency; V0 is the nominal phase voltage amplitude. 

Needless to communicate, conventional droop control makes a satisfactory choice for wide 

area microgrids. The droop control method changes P as a function of the grid frequency, and is 

based on the inertia of the synchronous machines. As the inverter-based microgrids generally lack 

this inertia, the P/f droop method in microgrids is based on the line characteristics. Power flow 

equations in this case are: 
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𝑃 ≈
𝑉1

𝑅2 + 𝑋2
[𝑅(𝑉1 − 𝑉2 cos 𝛿) + 𝑋 𝑉2  sin 𝛿] (2-3) 

𝑄 ≈
𝑉1

𝑅2 + 𝑋2
[−𝑅𝑉2 sin 𝛿 + 𝑋(𝑉1 − 𝑉2 cos 𝛿)] (2-4) 

Where P, Q are the output active and reactive power, respectively.  V1 and δ are the source 

voltage and phase angle, to a voltage V2 with zero reference phase angle. Through line impedance 

Z=R+jX. 

With the resistive nature of low-voltage microgrids, line resistance cannot be ignored, which 

leads to a concern when implementing droop control. In this case, the power flow equations are 

𝑃 ≈
𝑉1[𝑉1 − 𝑉2]

𝑅
 (2-5) 

𝑄 ≈
𝑉1[−𝑉2𝛿]

𝑅
 (2-6) 

Measuring active power is relatively easier than measuring instantaneous frequency. 

Therefore, a droop with frequency as a function of active power is used. Droop control method is 

not suitable when the microgrid has nonlinear loads due to the harmonic current [20]. Moreover, 

all the resources in the microgrid contribute power to the load and operate autonomously. 

With a wide variation of droop control schemes [82]. Voltage droop control is a variation of 

P/f droop control. As shown if Figure 2-2, the droop controller consists of a combination of 

terminal voltage Vg and the DC-link voltage Vdc (Vg /Vdc inverter-based DER), and P/Vg droop 

controller. Changes in the dc-link voltages indicate a difference between the ac-side power injected 

into the microgrid and the input power from the dc-side of the inverter. 
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Figure 2-2 VBD control. (a) Control strategy. (b)–(d) Constant power bands of dispatchable versus less 

dispatchable DG units: (b) a fully controllable unit, (c) a less controllable unit, (d) a renewable energy source 

(without storage or controllable consumption) [82] 

In virtual Droop Control (VDC) [23], a virtual frequency and voltage are created to regulate 

the active and reactive power output of the sources. The active power output of the energy storage 

inverter determines the virtual frequency from virtual droop curve. The droop curve is defined 

between energy storage active power output and virtual frequency. The virtual frequency will 

determine the active power commands for natural gas generators from a droop relationship, 

defined between the virtual frequency and active power command of each source. The same 
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concept applies to system voltage. A virtual voltage is determined according to reactive power 

output of the energy storage inverter. The virtual voltage will determine the reactive power 

command for natural gas generators from a droop relationship, defined between the virtual voltage 

of the system and reactive power command of each source. It should be noted that since energy 

storage inverter is placed in a voltage mode, it supplies the difference between load active and 

reactive power and other sources in the microgrid. It behaves as a slack bus in a power system 

concept. Power commands of backup generators are updated only when load variation is greater 

than defined value. Load variation less than defined value is taken care of by the energy storage 

inverter [5].  

2.1.2 Secondary Control  

To achieve the main goal of controllability of the microgrid, A secondary layer of control is 

used to solve the shortcomings of the primary control. The conventional approach for secondary 

controllers is to use a microgrid central controller (MGC), which includes slow control loops and 

low-bandwidth communication systems, and sends the control output information to each DG unit. 

This centralized control concept was used in large utility power systems for years to control the 

frequency of a large-area electrical network and has been applied to microgrids in the last years 

for voltage and frequency restoration. Primary control level is responsible of frequency regulation. 

During transient operation, deviation of voltage and frequency may occur due to the load power 

demand fluctuations or intermittency of renewable DGs. In microgrid systems, an advantage of 

energy storage is enabling the microgrid to compensate for frequency and voltage deviations in a 

fast manner. The role of secondary control comes at a slower response to frequency fluctuations 

in comparison the primary control. 
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Other objectives regarding voltage control and power quality, such as voltage unbalance and 

harmonic compensation using the secondary controller, have been proposed recently [79]. The 

active power sharing has been improved by computing and setting the phase angle of the DGs 

instead of its frequency in the conventional frequency droop control and by using communication 

[80]. A method for increasing the accuracy of the reactive power-sharing scheme has been 

presented in [81], which introduces an integral control of the measured load bus voltage, combined 

with a reference that is drooped against the local reactive power output.  
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Figure 2-3 Microgrid Secondary Control. 

Figure 2-3 shows the function of the secondary control that works collaboratively to achieve 

optimization, protection, power calculations (with predefined system constraints), and failure 

management (see Chapter 5). Recently, efforts referred to the secondary control as the Energy 

Management System (EMS), where it continuously monitors the microgrid parameters, going into 

through data verification, and interacting with the Failure Management Unit. EMS dispatches 
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microgrid components such as energy storage or backup generators for active and reactive power 

and commands the primary level. 

The secondary layer represents the Distributed Energy Resource Management Systems 

(DERMS) [1]. From the utility perspective, DERs can be in a form of a microgrid (sharing the 

same bus), or distributed over multiple different feeders in the Distribution System. The following 

sections explains the operations of this layer, and how they relate the concept of DERMS as a part 

of microgrid controllers. 

2.1.3 Tertiary Control  

Generally, the tertiary control level manages the bidirectional power flow between the 

microgrid and the grid at the point of common coupling (PCC). As in Figure 2-4,  this control level 

also ensures optimal economical dispatch of the Microgrid through data analytics, machine 

learning, optimization, and forecasting techniques [41]. This layer can coordinate the power flow 

within the microgrid, by using an optimal power flow solver. The optimization process includes 

power flow optimization, where active and reactive power are determined as an optimal power 

flow; and energy optimization, where a day ahead of energy supply can be optimized according to 

generation/load forecast, as well as weather forecast which affect the output power of the 

renewable resources. 
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Figure 2-4 Microgrid Tertiary Control. 

2.2 Microgrid Distributed Control 

The vision of next generation smart grid suggests a decentralized manner of control and 

management of system components. In microgrid, the number of Distributed generation (DG) units 

pose a significant problem to a central control architecture as it increases the computational burden 

due to the multitude of the controllable resources, communication a tremendous needs due to the 

geographical span, frequent reengineering of the central controller that has a negative effect on the 

scalability and plug-and-play capability. Other drives of the decentralization of microgrid controls 

is the reliability and security vulnerability of the central controller as a common point of failure. 
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Many efforts have investigated the decentralized architecture for microgrid controls. Although 

the main concept among all previous efforts is the same, the difference in the terminology is 

present due to the lack of standardization of the concept, and the variation in control techniques 

for the three levels of controls in microgrids. Terminologies include decentralized control, 

distributed control [30], Multi-Agent Systems [27]. This section provides an overview on recent 

efforts that propose a decentralized control system, or target one or more features of 

decentralization. 

As the computer sciences and electrical engineering converges at the control level. The concept 

of decentralized controls has been introduced as Multi-Agents Systems (MAS). MASs have been 

widely studied in the field of computer science [33]. Recently, MAS based system caught the 

attention of energy researchers, specifically for energy systems and microgrids as a solution for 

distributed control and energy management [37,33]. A multi-agent system for optimizing the 

hybrid renewable energy system was presented in [37]. Meanwhile in [18], a distributed 

management solution based on MAS was proposed to provide an improved system reliability than 

conventional centralized energy management systems. In [33], a MAS based hierarchical 

decentralized coordinated control was presented to solve the energy management issue of a 

distributed generation system (DG) by ensuring energy supply with high security. A MAS and 

fuzzy cognitive map were used in [32] for a decentralized energy management system of an 

autonomous generation microgrid. In [34], a decentralized MAS was used for demand side 

integration that could reduce the energy cost, and improve energy efficiency while increase 

security and quality of supply. Furthermore, MAS has also been used for reactive power 

management in distribution networks with renewable energy sources to enhance the dynamic 

voltage stability 
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Due to a higher complexity in management under a decentralized architecture, and the 

requirement of certain level of intelligence, efforts have introduced artificial intelligence methods 

to ensure a virtually centralized control for microgrids [31] [32]. Other efforts defined the basic 

requirement of agents such as control agents, management agents, and ancillary agents for optimal 

energy exchange between the production units of the microgrid and the local loads, as well as the 

main grid [26]. In [25], a decentralized architecture of multi-agent system for the microgrid with 

power electronic interfaces. Three step communication algorithms enable the system work with 

least communication data, only real and reactive power mismatch data for neighbor to neighbor 

communication. 

In [27], optimal dispatch of DGs and distributed feeder within a distribution system were 

investigated based on a distributed MAS [27], DC microgrids and a decentralized control 

algorithm for inverter-based microgrid were proposed in [29]. Most efforts validate the 

decentralized control operation and its claimed optimality using simulations, while other efforts 

have a higher accuracy requirements, and used a Hardware-In-the Loop testbed [30]. In [30] a 

comprehensive study of distributed cooperative control framework for synchronized Reconnection 

of a multi-bus microgrid have been conducted. In this framework, DGs work collaboratively in a 

distributed manner using minimum and sparse communication. Plug and play Multi agents 

systems. In [26], the proposed method relies only on local measurements and actions without the 

use of additional communication channels. The proposed strategy considers proper dynamic 

behavior and reliable operation modes for the islanded power system. 

This section reviewed the main efforts in decentralization of microgrid controls. More efforts 

are mentioned across this dissertation according to the architecture feature being discussed.  
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Chapter 3 Communications in Microgrids 

In a Microgrid, there are no specific configurations or certain protocols that can be used; this 

decision is based on the availability of the communications options and the cost of implementing 

them. However, other considerations are involved in the decision, such as the harshness of the 

environment where the Microgrid is located and the communication method characteristics, data 

traffic, cost, degree of availability, and number of DERs in the network. Communication 

configurations can be divided into three categories: Tightly coupled, loosely coupled, and 

broadcast/multicast communications. 

Tightly coupled communications require the highest possible availability for the network, since 

the distributed resources in loosely-coupled and broadcast are able to manage their operation 

independently, which may imply that the Microgrid control system is fully or semi-autonomous, 

thus, reasonable availability is acceptable in these two cases. On the other hand, Local Area 

Network (LAN) configuration works for either case [5], but can be expanded to Wide Area 

Network (WAN) in the case of broadcast/Multicast, which brings up the quality of service 

requirement to ensure communications to all DERs.  

  Integration of communications is required for implementing reliable, safe, secure, 

sustainable, and cost-effective microgrid control architecture. This can be achieved by utilization 

of the Internet communications protocol suit. The most widely used and most widely available 

protocol suite is TCP/IP protocol suit. A protocol suit consists of a layered architecture where each 

layer depicts some functionality which can be carried out by one or more protocols. Each layer 

usually has more than one protocol options to carry out the responsibility to which the layer 

adheres. TCP/IP is normally considered to be a four-layer system: Application, Transport, Internet, 
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and Link Layer (Figure 3-1). Enhanced Performance Architecture (EPA) is used occasionally since 

it does not require all seven layers of OSI model for interfacing the architecture of a control system 

and message exchange between Microgrid components [18].  

 

Figure 3-1 The open system interconnection (OSI) model showing the TCP/IP layers, and the enhanced 

performance architecture (EPA) model. 

Microgrid control systems employ several protocols to enable communication between the 

different types of power and cyber actors. Figure 3-2 shows a generic schematic of a Microgrid 

communications system. Intelligent Electronic Devices (IEDs) receive data from sensors and issue 

control commands to power components such as DERs, Energy Storage, and loads. As an example, 

Microgrid controller communicates with IEDs and other components using the standard IEC 

61850 [42] over Ethernet (TCP/IP), the interconnection network basically ensures reliable and 

secure communication between components by employing the internet communication protocol 

suit, and may contain routing and switching at certain points.  The architecture also suggests the 

presence of Human Machine Interface Client (HMI) for monitoring and controlling purposes, in 

addition to data Logging Server in order to record system profiles and certain events during any 

mode of operation. Moreover, Intelligent Electronic Devices (IEDs) has the capability to receive 
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power data from the DERs and send them to the Microgrid controller as a feedback loop for the 

control system. Based on the data, control signals and reference values of voltage, frequency, 

active and reactive power are issued by the Microgrid controller to the IEDs where they issue the 

appropriate control signals to their allocated DERs or controllable loads. 

 
Figure 3-2 Generic microgrid components with communication requirements. 

3.1 Communication Protocols and Standards 

3.1.1 Internet Protocol Suit 

The purpose of each layer as follows: The application layer has different protocols that govern 

process-to-process communication, enabling applications on the same or different hosts for data 

sharing. Such protocols can be Network Timing Protocol (NTP) [43], Secure Shell (SSH), XML-

RPC, Hypertext Transfer Protocol HTTP, Modbus, Control Access Network (CANbus), and 

DNP3 (Distributed Network Protocol) [44] which are usually used between component in process 

automation systems. The Transport layer serves the purpose of host-to-host communications on 

either the same network or on networks separated by routers. Protocols that lie into this layer are 

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). The sole purpose of 
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these protocols is to create a basic data channel that can be used by an application for data exchange 

related to a specific task. Employment of either TCP or UDP within a microgrid control system 

network will be based primarily on the importance of speed versus reliability and the necessity for 

error detection.  

A closer look to the interconnection network, all components communicate with each other 

independently using unicast or multicast techniques through wired or wireless physical links. This 

capability is provided by the Internet Layer using the Internet Protocol (IPv4, IPv6). This Layer 

also provides authentication and encryption in a communication session through Internet Protocol 

Security (IPsec). The Link Layer is a combination of Datalink Layer and Physical Layer (as in OSI 

model); protocols of these two layers support local network communication without intervening 

routers (i.e. through Switches), and taking advantage of Ethernet networks primarily, but may 

include some serial communications. 

3.1.2 Modbus 

Modbus is considered one of the legacy protocols in power systems; it was developed for 

process control systems. As mentioned before, it lies on the application layer of OSI model. 

Basically, it is used for client/server communications, which is the case of a Microgrid 

communication system where the main controller or the HMI can act as a server and other DERs 

as clients. Message types in Modbus are generally queries and responses, sometimes are 

broadcasting some control signals to all DERs at once. For Modbus over TCP/IP, Excerptions are 

reported to the server by clients. All microgrid components communicate with each other 

independently using unicast or multicast techniques through wired or wireless physical links. This 

capability is provided Modbus can be transmitted over different physical links such as RS-232, 
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RS485, and Ethernet (TCP/IP) using intermediate converters. Figure 3-3 shows haw a Modbus 

frame can be encapsulated in a TCP packet. 

 

Figure 3-3 Modbus Frame encapsulation in TCP/IP Packet. 

3.1.3 Distributed Network Protocol (DNP3) 

DNP3 now the dominant Master/Slave protocol in electrical utility Supervisory Control and 

Data Acquisition (SCADA) systems [15], and is gaining popularity in other industries, including 

Oil & Gas, Water, and Waste Water. Its specification supports multiple methods of reading inputs 

individually or as a group, multiple types of data can be encapsulated in a single message to 

improve efficiency. Time stamps and data quality information can also be included. Unlike 

Modbus, DNP3 user slave devices can send updates as values change, without having to wait for 

a poll from the Master.  

Table 1 shows a brief comparison between Modbus and DNP3 protocols. Both protocols are 

open domain and available to public, they also has active user groups that drives the adoption of 

these technologies in distributed automation systems. They also support multiple data types with 

the dominancy of DNP3 in the variety of data types and supporting other services such as timing 

and file transfer.  
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Table 3-1 Comparison between Modbus and DNP3 Protocols. 

Feature Modbus DNP3 

Open Domain Y Y 

Active User Grouup Y Y 

Multiple Data Types Y Y 

Standarized data formats N Y 

Time-Stamping N Y 

Data quality indication N Y 

Reporting by exception Y (TCP) Y 

3.1.4 IEC 61850 

IEC 61850 [12] is a standard defines data models and exchange of data and events between 

power systems substations; it can be mapped to number of protocols such as Manufacturer 

Message Specification (MMS), Generic Object-Oriented Substation Events (GOOSE), and 

Sampled Measured Values (SMV). However, IEC 61850 was not designed for former serial 

communication protocols, its functionality is introduced to run over Ethernet networks, reflecting 

a positive impact on the cost of design and operation of power systems laying over the application 

layer and above. Leveraging the services of this standard is proposed to achieve reliability and 

security. Some of the services in this standard are: Retrieving the self-description of a device, fast 

and reliable host-to-host exchange of status information, reporting any set of data or sequence of 

events, data logging, retrieving samples values from sensors, time synchronization, and file 

transfer for online configuration of components. Table 3-2 shows the structure of the IEC 61850 

standard. 

Table 3-2 Structure of IEC 61850 Standard 

Part 

# 
Title 

1 Introduction and Overview 

2 Glossary of terms 

3 General Requirements 

4 System and Project Management 

5 Device Models 

6 
Configuration Description Language for Communication in Electrical 

Substations Related to IEDs 
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7 
Basic Communication Structure for Substation and 

Feeder Equipment 

7.1 

7.2 

 

7.3 

7.4 

Principles and Models 

Abstract Communication Service Interface 

(ACSI) 

Common Data Classes (CDC) 

Compatible logical node classes and data classes 

8 Specific Communication Service Mapping (SCSM) 

8.1 
Mappings to MMS(ISO/IEC 9506 – Part 1 and 

Part 2) and to ISO/IEC 8802-3 

9 Specific Communication Service Mapping (SCSM) 

9.1 
Sampled Values over Serial Unidirectional Multidrop Point-to-Point 

Link 

9.2 Sampled Values over ISO/IEC 8802-3 

10 Conformance Testing 

Communication protocols define how data bits are transmitted on the wires or the transmission 

media. However, they do not define the data organization in an IED or any device with 

communication capability. As for Microgrid components, each DER has unique functionality. 

Some data attributes may not be present in certain DERs but are available in others, even different 

manufacturers of IEDs has different naming criteria to the data. Therefore, IEC 61850 data naming 

are based on power systems context, which guarantees interoperability between multi-vendor 

devices in the same communication system. Moreover, the abstraction of the data objects is 

presented in part 7.4 (Table 2), these data objects are referred to as Logical Nodes (LN). One or 

multiple logical nodes form a logical device. A logical node consists group of data elements that 

are related to certain functionality of the device, each data element has a unique name that is 

defined by the standard. 

The services of the IEC 61850 form a functional Microgrid communications system. The 

capability of transmission over Ethernet and the mapping of other protocols into the standard 

simplifies the design of the communication system, and minimizes the cost of integrating multi-

vendor devices. In addition to that, leveraging the Object-Oriented representation of the data from 
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multiple devices eliminates the dependency of the communication protocols that is used in 

different DERs in a Microgrid, not to mention the circuit breakers, transformers, voltage sensors 

and current sensors. 

3.2 Communication Architectures 

A generic power system control architecture consists of three major layers. As shown in Figure 

3-4, the first layer (bottom) is the power equipment layer, which contains the distributed energy 

sources, relays and breakers. The second layer is the communication layer, which contains the 

cyber-physical network backbone and the communication protocols and standards. The third layer 

is the control layer.  

 
Figure 3-4 Generic Power System Control Process. 

Data traffic starts from the power system layer, where the components transmit their status 

data and measurements through the communication layer. Status data can be breaker status, device 

warnings and flags, measurements of voltage, active and reactive power, and frequency of each 

power component. The control layer receives data from the communication layer, validates the 

received information and synchronizes clocks. Ensuring that the data received is the most recent 
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measurements, considering possible delays or dropped data packets within the communication 

layer. Unit commitment and control algorithm process the inputs and sends back commands 

through the communication layer, which is responsible of routing the commands to the designated 

power component.   

3.3 Impact of Communication latencies and failures 

3.3.1 Communication Delays 

Communications play an essential role power system, through which control, monitoring and 

operation are performed at high reliability. One can find communication gear in virtually all stages 

of electric power systems, starting with power generation, up to transmission, down to distribution. 

In the conventional power system, the communication system was mostly seen in the transmission 

network, where it served as the backbone for real-time monitoring, centralized control and 

protection. Recently, with the introduction of smart grid technology, communication systems are 

being deployed in distribution networks, where they are needed by the distributed intelligence 

platforms [45]. 

Latency can be defined as the total time it takes a signal to travel from one point to another, 

generally from a transmitter through a network to a receiver. In a distributed control system, 

latency is seen as the amount of time it takes a message to be passed from the sending source and 

received at the receiving sink.   
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Figure 3-5 Buffering impact on sampling time. 

 

3.3.2 Sources of Communication delays 

When investigating trade-offs in communication architectures, it is important to recognize that 

the time per communication operation breaks down into portions that involve different machine 

resources: the processor, the network interface, and the actual network. A worst case of 

communication delay of switched ethernet with one switch in the network can be calculated using 

the timing diagram in Figure 3-6. Assuming no buffering for the data transmitted the minimum 

communication delay (DCmin) can be defined as follows 

𝐷𝐶𝑚𝑖𝑛 = 𝐷𝑆 + 2(𝐷𝐹 + 𝐷𝑃) + 𝐷𝐷 (3-1) 

Where DS is the processing delay for transmission at the source; DD is the processing delay for 

reception at the destination; DF is the frame transmission delay, which is defined as the number of 

bits in the frame divided by the data rate; and DP is the propagation delay as the electrical signal 

is propagated from the source to the switching hub, which is proportional to the length of the cable 

connecting the station and switching hub. Taking an example of a 20-m cable, the propagation 

delay is about 0.1 μs at the propagation speed of 2.0×108 m/s. In (3-1), we simply use twice the 

propagation delay from a station to the hub assuming that the cable lengths are identical for all the 

stations [47]. 
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Figure 3-6 Communication delay of switched Ethernet with one switching hub [47]. 

The complexity of the backbone network plays a significant role on the communication delays. 

The transmission rate, however, takes the complexity of determining the delays of a 

communication system to a higher level, due to other concerns such as network congestion, and 

frame dropping. Other issues may emerge involve data consistency and coherency.  

3.3.3 Communication delay impact on Microgrid operations. 

 

3.3.3.1 Cyber physical model for microgrids 

The frequency should remain nearly constant for a satisfactory microgrid operation. The 

frequency control and power generation is commonly referred to load frequency control (LFC), 

which is a major function of automatic generation control (AGC) systems [46]. In a microgrid 

system, a control area (group of generators and loads) should to be used, where all the generators 

respond to load variations settings. This section proposes a study demonstration to illustrate the 

delay within a microgrid system, and its impact on the frequency deviation.  
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Figure 3-7 Sample cyber-physical model for a microgrid. 

Figure 3-7 shows basic components of the cyber-physical model for a microgrid. The basic 

elements are two distributed synchronous generators, PV and wind generators based on inverters, 

and energy storage. The central controller provides a monitoring and control mechanism to the 

architecture. A simplified dynamic model is shown in Figure 3-7, two distributed generators (diesel 

generator), and one distributed PV generator, and one wind generator, in addition to the energy 

storage unit. The small power generation network supplies the local demand. Assume that the 

small power generation network is not connected to the wide power grid, and it always operates 

independently as an islanded power system. Another assumption is that each DER has its own 

local controller. coordinating with a central controller.  

Based on [46] The generator cyber-physical module is shown in Figure 3-8. In this module, 

we identify one cyber output (Δ𝑓) corresponding to the frequency deviation of the system, one 

cyber input (𝑈𝑔), and a physical output (𝑃𝑠). 𝑈𝑔 input corresponds to the microgrid controller 

signal control, defined as a cyber input and the sensing frequency deviation Δ𝑓 is as a cyber output. 

Also, we identify a physical output (𝑃𝑔), that corresponds to output power of diesel generator. 

Following the methodology proposed in [48], each cyber and physical module must have a 
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dynamic model associated. This model only considers the low-frequency domain to control. The 

dynamics for the diesel generator and energy storage are represented by a transfer function as 

follows: 

For Natural Gas Generator 1: 

𝐺𝑔1(𝑠) =
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(3-3) 

Similarly, for Natural Gas Generator 2 
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(3-5) 

For Energy storage: 

𝐸𝑆(𝑠)
𝑃𝐸𝑆(𝑠)

𝑈𝑔_𝐸𝑆(𝑠)
=

1

𝑠𝑇𝐸𝑆 + 1
 

(3-6) 

�̇�𝐸𝑆 =
𝑈𝐼_𝐸𝑆

𝑇𝐸𝑆
+

𝐾𝑃_𝐸𝑆∆𝑓

𝑇𝐸𝑆
−

𝑃𝐸𝑆

𝑇𝐸𝑆
 

(3-7) 
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Where 𝑇𝑔1, 𝑇𝑔2 is the time constants of the corresponding diesel generators. 𝑇ES is the time 

constant for energy storage.  

We assume that variation in load demand and power supplied by the PV and wind generators 

are compensated by the generator power. Load demand varies between 0 p.u and 1 p.u. The load 

demand model includes the load demand, PV generation, and wind generation, as negative loads. 

∆𝑃𝑠 = 𝑃𝐺1 + 𝑃𝐺2 + 𝑃𝐸𝑆−𝑃𝐷𝑒𝑚𝑎𝑛𝑑 (3-8) 

𝑃𝐷𝑒𝑚𝑎𝑛𝑑 = 𝑃𝐿 − 𝑃𝑤𝑖𝑛𝑑 − 𝑃𝑆𝑜𝑙𝑎𝑟 (3-9) 

 A simple PI control strategy [49] is used to control the frequency error, where the control 

output is defined as 

𝑈𝑔(𝑠) = −(𝑈𝐼(𝑠) + 𝑈𝑃(𝑠)) (3-10) 

𝑈𝐼(𝑠) =
𝐾𝐼

𝑠
∆𝑓 

�̇�𝐼 = 𝐾𝐼∆𝑓 

(3-11) 

Load Demand

Wind Generator

PV Generator

-

PPV

Pw

PL

+

Pdemand

Generators

Gg1(s), Gg2(s)

Energy Storage

 ES(s)

Pg1(s)

Pg2(s)

PES(s)

Frequency 

Deviation 

Δf(s)/ΔPs(s)

ΔPs

+

+
-

UES(s)

Controller

Ug1(s)

Ug2(s)

Δf

 
Figure 3-8 Cyber-physical module for a Microgrid. The dotted line corresponds to a cyber signal, while the 

solid line corresponds to a physical signal 
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Figure 3-9 Simulink Model of the cyber-physical microgrid system. 

 

In low voltage microgrids, it is possible to assume that there exists a relation between active 

power generated and bus frequency variation [49]. For this reason, dynamic behavior in frequency 

in a low voltage MG is represented as  

∆𝑓(𝑠)

∆𝑃𝑆(𝑠)
=

1

𝑠𝑀 + 𝐷
 (3-12) 

where Δ𝑃s corresponds to power imbalance between power demanded 𝑃𝑠 and power generated 

𝑃𝑔, 𝐷 is the load damping constant and 𝑀 is the inertia constant. 

 

3.3.3.2 Microgrid cyber-physical State-Space model 

In order to analyze the general system performance, a state space representation model of 

closed-loop DG based on the CPS for the Microgrid system in Figure 3-8 is following. For 

simplicity, assume that ∆𝑃𝑠 = 0 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

𝑦(𝑡) = 𝐶𝑥(𝑡) 

(3-13) 

Where: 

𝑥(𝑡) = [∆𝑓 𝑃𝐺1 𝑃𝐺2 𝑃𝐸𝑆 𝑈𝐼1 𝑈𝐼2 𝑈𝐼_𝐸𝑆] 

𝑃𝐷𝑒𝑚𝑎𝑛𝑑 
𝑈𝐼 + 𝑈𝑃 𝑃𝐺1 

∆𝑓 

∆𝑓 

∆𝑓 

∆𝑓 

𝑃𝐺2 

𝑃𝐸𝑆 

∆𝑃𝑠 
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�̇�(𝑡) = [∆�̇� �̇�𝐺1 �̇�𝐺2 �̇�𝐸𝑆 �̇�𝐼1 �̇�𝐼2 �̇�𝐼_𝐸𝑆] 

A state representation of the form �̇� = 𝐴𝑥 is performed, without time delay and where the state 

vector is defined 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 −

𝐷

𝑀

1

𝑀

1

𝑀

1

𝑀
0 0 0

𝐾𝑃1

𝑇𝐺1
−

1

𝑇𝐺1
0 0

1

𝑇𝐺1
0 0

𝐾𝑃2

𝑇𝐺2
0 −

1

𝑇𝐺2
0 0

1

𝑇𝐺2
0

𝐾𝑃_𝐸𝑆

𝑇𝐸𝑆
0 0 −

1

𝑇𝐸𝑆
0 0

1

𝑇𝐸𝑆

𝐾𝐼 0 0 0 0 0 0
𝐾𝐼 0 0 0 0 0 0

𝐾𝐼_𝐸𝑆 0 0 0 0 0 0 ]
 
 
 
 
 
 
 
 
 
 
 

 (3-14) 

𝐵 = [1 0 0 0 0 0 0]𝑇 

𝐶 = [1 0 0 0 0 0 0] 

We obtain a microgrid state-spate model with delay using the parameters in Table 3-3. 

Table 3-3 Simulation parameters of a microgrid system. 

Parameter Value 
Inertia Constant M 0.008 puMWs/Hz 

Damping Constant D 0.15 puMWs/Hz 
Generator Time Constant TG1,2 5 s 

Battery time constant TES 0.1 s 
Ki, Kp 3.4, 5 

Ki_ES, Kp_ES 0.5, 1.3 

The eigenvalues of this matrix A based on the given parameters are ʎ1,2 = -13.9864 ± 63.0068i, 

ʎ3,4 = -0.4886 ± 0.4466i, ʎ5 = -0.2. Which implies that the system without time-delay in the 

microgrid control output is stable, as illustrated in Figure 3-10 .  
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Figure 3-10 Root locus diagram of the microgrid transfer function. 

 

3.3.3.3 Delay injection Simulation results 

In order to illustrate the impact of communication delays on the microgrid operation in Figure 

3-7, an equivalent Simulink model of the microgrid were implemented. The delay free operation 

of the microgrid is shown in Figure 3-11, The response of the power generation is fast enough 

where the frequency deviation of the bus remains within ± 0.1. In Figures (3-12 to 3-17), the 

frequency deviation with an injection of 50 ms and 10 ms respectively. We can see that the 

response of the energy storage is affected the most since the time constant of the ES is relatively 

smaller than the rest of the system.  
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Figure 3-11 Simulation results without delay injection. 

From Figure 3-11, we can see that the frequency deviation Δf close to zero when no delays 

have been injected into the cyber layer. While Figure 3-12 and Figure 3-13 show a comparison of 

the frequency deviation when a 50 ms and 10 ms, respectively,  are injected into three different 

locations: i) at the energy storage controller output. ii) at the generators controller output. iii) at 

the feedback loop. It can be easily determined that the frequency response of the system becomes 

unstable when the energy storage control signal is impacted by the delay. While the generators 

signals does not have the same impact due to the inertia of the source and the slower nature of 

response from the generators. 
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Figure 3-12 System response when 50 ms delay is injected at Feedback, Generators, and ES separately. 

 
Figure 3-13 System response when 10 ms delay is injected at Feedback, Generators, and ES separately 

 

Figure 3-14 to Figure 3-15 show the impact of the previously injected delays on the system 

response. We can observe the same impact on the active power which leads the to frequency 

deviation instability, according to the Equation 3-12. 
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Figure 3-14 Active power curves for all components with 50 ms delay injection at the Feedback loop. 

 
Figure 3-15 Active power curves for all components with 10 ms delay injection at the Energy storage 

controller output. 

 



 39 

 
Figure 3-16 Active power curves for all components with 50 ms delay injection at the Generators controller 

output. 
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Chapter 4 Concept of True Decentralized Microgrid Control 

4.1 Distributed Systems 

As the distributed energy sources are dispersed over a relatively wide area, interconnection 

between to each other becomes a challenge in terms of cost and optimality. A true decentralized 

microgrid control architecture has the following properties: 

Decentralized: given in the concept, a decentralized architecture suggests having multiple local 

controllers in order to achieve seamless transients during the operation and acts as if the system 

has one central controller. 

Resource sharing: every controller shares the status of its own DER with other controllers in 

real-time. This requires naming scheme that guarantees unique identification of each controller 

and its local DER. 

Concurrency: Each controller must have an up-to-date status of the whole system, especially 

for the inputs to the microgrid control algorithm running in each controller. This is a key 

requirement to protect the integrity of the system from being violated, otherwise, inconsistent 

algorithm outputs and control commands may arise, which can lead to disturbance in the microgrid 

operation. 

Scalability: The architecture allows the microgrid to be scaled up or down in terms of the 

number of power components without affecting the operation or re-engineering the control 

algorithm. 
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Fault-tolerance: The system must maintain available and operating at the minimum level of 

reliability. This also include the recovery process in case of faults and possible redundancy that 

may boost the reliability of the microgrid. 

 
Figure 4-1 Generic microgrid centralized control architecture model. 

 

Figure 4-2 Generic microgrid decentralized control architecture model. 

 

 Figure 4-2 represents the proposed decentralized architecture. As illustrated, the decentralized 

architecture differs from the architecture in Figure 1-1 by the elimination of the centralized 

controller, and replacement of local controller with a higher capability decentralized microgrid 

controller (DMGC), these capabilities are discussed in the controller model. 
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4.2 Proposed Microgrid Control Architecture. 

Microgrid control hierarchy [18] identifies three levels of controls; where each level satisfies 

certain requirements and roles in maintaining power reliability, quality, and economical 

constraints. Details of each layer are as follows: 

4.2.1 Primary Control (Device Level) 

Device level control entails interacting with the local DER itself to perform certain functions 

including: physical isolation, on/off, fault clearing (device switching), fault sensing, fault controls, 

re-synchronization (device protection). For inverter: power conversion, power control, voltage and 

frequency regulation, primary frequency control (inverter droops, governor droops), island 

detection, re-synchronization). Most device level controls are performed through tightly-coupled 

communication media, guaranteeing command delivery and signal delay mitigation. 

The proposed system uses Virtual Droop Control [23] which is based on natural droop control 

[11]. In natural droop, voltage and frequency stability are achieved by drooping the voltage and 

frequency according to active and reactive power requirement for this control level. For resistive 

microgrid P/V droop is generally preferred [9], [20]. The various types of droop controllers 

depending upon the nature of microgrid system, the following are droop equations:  

𝑓 = 𝑓∗ − 𝑚(𝑃 − 𝑃𝑚𝑎𝑥) (4-1) 

𝑉 = 𝑉∗ − 𝑛(𝑄 − 𝑄𝑚𝑎𝑥) (4-2) 
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Figure 4-3 The proposed Decentralized Microgrid Control Architecture (Microgrid Control Hierarchy 

Implementation). 
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where m is the frequency droop coefficient; n is the voltage droop coefficient; 𝑓∗ is the nominal 

frequency; 𝑉∗ is the nominal phase voltage amplitude. Natural droop method is not suitable when 

the microgrid has nonlinear loads due to the harmonic current. Moreover, all the resources in the 

microgrid contribute power to the load and operate autonomously 

In virtual Droop Control (VDC), a virtual frequency and voltage are created to regulate the 

active and reactive power output of the sources. The active power output of the energy storage 

inverter determines the virtual frequency from virtual droop curve. The droop curve is defined 

between energy storage active power output and virtual frequency. The virtual frequency will 

determine the active power commands for natural gas generators from a droop relationship, 

defined between the virtual frequency and active power command of each source. The same 

concept applies to system voltage. A virtual voltage is determined according to reactive power 

output of the energy storage inverter. The virtual voltage will determine the reactive power 

command for natural gas generators from a droop relationship, defined between the virtual voltage 

of the system and reactive power command of each source. It should be noted that since energy 

storage inverter is placed in a voltage mode, it supplies the difference between load active and 

reactive power and other sources in the microgrid. It behaves as a slack bus in a power system 

concept. Power commands of backup generators are updated only when load variation is greater 

than defined value. Load variation less than defined value is taken care of by the energy storage 

inverter [23].  

For the Energy Storage, the virtual frequency and virtual voltage are calculated based on the 

defined curves using the following equations. 

𝑃𝐸𝑆𝑚𝑎𝑥 < 𝑃𝐸𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 < 𝑃𝐸𝑆|𝑓𝑟𝑎𝑡𝑒𝑑
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𝑓𝑣𝑖𝑟𝑡𝑢𝑎𝑙 = 𝐾𝑝𝑓(𝑃𝐸𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑃𝐸𝑆|𝑓𝑟𝑎𝑡𝑒𝑑
) + 𝑓𝑚𝑎𝑥 

𝐾𝑝𝑓 = (
𝑓𝑟𝑎𝑡𝑒𝑑 − 𝑓𝑚𝑎𝑥

𝑃𝐸𝑆𝑚𝑎𝑥 − 𝑃𝐸𝑆|𝑓𝑟𝑎𝑡𝑒𝑑

) 

(4-3) 

𝑃𝐸𝑆|𝑓𝑟𝑎𝑡𝑒𝑑
< 𝑃𝐸𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 < 𝑃𝐸𝑆𝑚𝑖𝑛 

𝑓𝑣𝑖𝑟𝑡𝑢𝑎𝑙 = 𝐾𝑝𝑓(𝑃𝐸𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑃𝐸𝑆𝑚𝑖𝑛) + 𝑓𝑟𝑎𝑡𝑒𝑑 

𝐾𝑝𝑓 = (
𝑓𝑚𝑖𝑛 − 𝑓𝑟𝑎𝑡𝑒𝑑

𝑃𝐸𝑆|𝑓𝑟𝑎𝑡𝑒𝑑
− 𝑃𝐸𝑆𝑚𝑖𝑛

) 

(4-4) 

𝑄𝐸𝑆𝑚𝑎𝑥 < 𝑄𝐸𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 < 𝑄𝐸𝑆|𝑉𝑟𝑎𝑡𝑒𝑑
 

𝑉𝑣𝑖𝑟𝑡𝑢𝑎𝑙 = 𝐾𝑣𝑞(𝑄𝐸𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑄𝐸𝑆|𝑉𝑟𝑎𝑡𝑒𝑑
) + 𝑉𝑚𝑎𝑥 

𝐾𝑣𝑞 = (
𝑉𝑟𝑎𝑡𝑒𝑑 − 𝑉𝑚𝑎𝑥

𝑄𝐸𝑆𝑚𝑎𝑥 − 𝑄𝐸𝑆|𝑉𝑟𝑎𝑡𝑒𝑑

) 

(4-5) 

𝑄𝐸𝑆|𝑉𝑟𝑎𝑡𝑒𝑑
< 𝑄𝐸𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 < 𝑄𝐸𝑆𝑚𝑖𝑛 

𝑉𝑣𝑖𝑟𝑡𝑢𝑎𝑙 = 𝐾𝑣𝑞(𝑄𝐸𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑄𝑚𝑖𝑛) + 𝑉𝑟𝑎𝑡𝑒𝑑 

𝐾𝑣𝑞 = (
𝑉𝑚𝑖𝑛 − 𝑉𝑟𝑎𝑡𝑒𝑑

𝑄𝐸𝑆|𝑉𝑟𝑎𝑡𝑒𝑑
− 𝑄𝐸𝑆𝑚𝑖𝑛

) 

(4-6) 

4.2.2 Secondary Control (System Level) 

Primary control level is responsible of frequency regulation. During transient operation, 

deviation of voltage and frequency may occur due to the load power demand fluctuations or 

intermittency of renewable DGs. In microgrid systems, an advantage of energy storage is enabling 

the microgrid to compensate for frequency and voltage deviations in a fast manner. The role of 

secondary control comes at a slower response to frequency fluctuations in comparison the primary 

control. 
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 The function of the secondary control that works collaboratively to achieve optimization, 

protection, power calculations (with predefined system constraints), and failure management. 

Recently, efforts referred to the secondary control as the Energy Management System (EMS), 

where it continuously monitors the microgrid parameters, going into through data verification, and 

interacting with the Failure Management Unit. EMS dispatches microgrid components such as 

energy storage or backup generators for active and reactive power and commands the primary 

level. 

The secondary layer represents the Distributed Energy Resource Management Systems 

(DERMS) [1]. From the utility perspective, DERs can be in a form of a microgrid (sharing the 

same bus), or distributed over multiple different feeders in the Distribution System. The following 

sections explains the operations of this layer, and how they relate the concept of DERMS as a part 

of microgrid controllers. 

4.2.3 Tertiary Control (Grid Level) 

Generally, the tertiary control level manages the bidirectional power flow between the 

microgrid and the grid at the point of common coupling (PCC). This level also ensures optimal 

economical operation of the Microgrid [14]. This dissertation considers implementing the first two 

layers of controls. The tertiary layer is assigned as a future work. 

4.3 System Design 

Decentralized microgrid control system eliminated the single point of failure (central 

controller). Three main models are defined to accommodate the requirements of decentralization. 

For example, the controller should have certain level of embedded intelligence to maintain the 
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decentralized controllers operating as one virtual unit. Coordination and additional control logic is 

essential; therefore, three models have been defined as key requirements to proposed architecture. 

4.3.1 Controller Model 

The proposed design of the decentralized controller is shown in Figure 4-4 For simplicity, the 

design is virtually divided into three main units: Processing unit, where the main control logic 

algorithm is running, with the interrupt handling routines in case of any system Failures. The 

processing unit is comprised of data verification and consistency algorithms. These two units are 

collaboratively responsible of analyzing the inputs from the peer controllers. Faults diagnostic and 

detection algorithm is required for his design, triggering the interrupt handling routine.  

 

 

Figure 4-4. Conceptual Controller design for decentralized controls applications 
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The memory unit interacts with the processing unit to manage buffered data and temporary 

log. It also provides peer controllers information as inputs to the control algorithm. The dynamic 

DER directory holds the power components object model (Table 4-1).  

4.3.2 Data Exchange Model 

This model defines three aspects: 1) the necessary data to be exchanged between peer 

controllers. 2) the way they interact. 3) The frequency of data transmission. Data traffic starts from 

the electrical component system layer, where the components transmit their status data and 

measurements through the communication layer. Status data can be breaker status, device 

warnings or flags, measurements of voltage, active and reactive power, and frequency of each 

power component. Each controller receives data from its designated DER, validates the received 

information and synchronizes clocks. Considering possible delays or lost data packets during 

transmission over the network. Unit commitment and control algorithm utilizes the most recent 

data inputs and sends back commands through the communication layer, which is responsible of 

routing the commands to the designated DER.  

TABLE 4-1 LOW-BANDWIDTH DEMANDING DATA EXCHANGE MODEL. 

DG Type Wind, Solar, Energy Storage, Generator…etc. 

Identifier Unique IP address within the control subnet/Unique ID 

Attributes Status, active power, reactive power, bus voltage, 

frequency, breaker status, commands. 

Recently, many efforts have been initiated and led by research institutions, industry partners, 

and utility to achieve interoperability [1]. For that purpose, many communication frameworks were 

implemented, adopting certain communication protocols such as DNP3, Modbus, IEC 61850 

standard. From a distribution system perspective, DERMS is required to manage a group of DERs. 
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The local controllers are required to communicate to achieve uninterrupted operation. With the 

evolution of the Industrial IioT, utility suggests using lightweight Publish/Subscribe protocols. The 

proposed system implements a Publish/Subscribe protocol, which requires low bandwidth 

communications, and allows more efficient utilization to the bandwidth serving the data exchange 

frequency. Description of the protocol is provided in Chapter 6. 

The control system layer is a combination of the distributed controllers, communication lines, 

and switching/routing devices in between. Communication agent in Figure 4-3  handles the data 

exchange between peer controllers, and ensures minimum data loss due to high traffic and network 

congestion. However, it is tangential to choose the optimal network topology with high 

connectivity [10]. The proposed system adopts a complete connectivity graph between peer 

controllers, and applies the concept of consensus cooperative control [16]. Assuming five DERs 

in a microgrid, the adjacency matrix A, this subtopic will be conducted as a future work.  

𝐴 =

[
 
 
 
 
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0]

 
 
 
 

 (4-7) 

4.3.3 Failure model 

4.3.3.1 Failure Model Overview 

One of the challenges that needs to be addressed in any decentralized or distributed system is 

the resiliency to any component failure that may occur. To consider a system fault-tolerant, each 

distributed component must have Failure model contains aspects that relate to system reliability 

and availability (Figure 4-5). Most importantly, designing a self-healing distributed control system 

relies mainly on the robustness of the recovery algorithm in the interrupt routine. 
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If power system fault is detected, the controller moves to system fault handling routine. Based 

on the Status flags reported by peer controllers, faulted DER from the dynamic directory if any 

failure is detected; the controller goes back to normal operation. Same transitions for detecting 

communication faults. 

 

4.3.3.2 Fault Detection Methods 

4.3.3.2.1 Local Sensing 

Sensing local microgrid parameters is essential for microgrid operation control. Leveraging 

the data collected via local sensing, disturbances can be analyzed to foresee any possible failures 

in the system. Voltage or frequency changes interpreted as a failure in one power component. 

Assume a microgrid with n distributed controllers; for a controller Ci at time t, local voltage and 

frequency sensing is governed by equations in Chapter 7. 

4.3.3.2.2 Communications 

Decentralized architecture dictates the presence of a reliable communication network 

connecting all peer controllers. Various communication protocols can be applied to such system. 

Decentralized controllers are designed to have some level of intelligence, where delays and 

timestamping mismatch can be interpreted as a failure of a controller as in synchronous 

communications, which triggers the rest of the system to react accordingly. Table 4-2 shows the 

 
Figure 4-5. Microgrid Energy Management System sources of optimization data. (Red) is the 

proposed failure management Unit 
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difference between the synchronous versus the asynchronous transmissions. The lower bound and 

upper bound of execution (response) are predefined, and the behavior of communication process 

can be predicted and used to mitigate any delay effect. For example, in TCP/IP [4], the lack of 

acknowledgment for the 3-way handshake with any peer controller can be interpreted as a failure, 

and must be reported.  

TABLE 4-2 SYNCHRONOUS VS ASYNCHRONOUS TRANSMISSIONS  

Synchronous Asynchronous 

Lower and Upper bound for execution time are 

set 
No execution time bounds are set 

Predictable Behavior (time) Unpredictable (delays have no bounds) 

Synchronized time between all components No synchronization 

Timeouts can be used to determine 

communication faults 
Timeouts can’t be used 

 

4.3.3.2.3 Peer Reports 

We propose a technique for failure detection based on reporting from peer controllers. Since 

all controllers update their own status and local measurements, a peer report segment (as shown in  

Figure 4-6)  are allocated to broadcast any detected failures. This overcomes delay of the 

aforementioned techniques and help propagate the failure incident among all controllers. This 

technique speeds up the system fault handling as all controllers are informed about any occurring 

failures. 
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Figure 4-6 Status update packet with proposed peer report technique. 

 

4.3.4 Coordinated Failure Management 

The system is considered in normal operation when the following conditions are met:  

1) Constraint rules are not violated, where the bus voltage and frequency are within limits.  

2) Sanity check performed locally results a valid condition.  

3) Peer reports are all valid stating that all controllers are working properly and the system 

is stable. 

 Failure analysis are performed continuously after the updates are received from all peers.  In 

the case of no violations are detected, nor any failure have been reported, the control algorithm 

maintains at normal operation. If the output from failure analysis and detection is a failure code, 

the fault handling and recovery takes over and the normal operation algorithm halts. 

Unlike other EMS operations, failure management is an essential component of the unit 

commitment algorithm or the economic dispatch function when decentralized control architecture 

is deployed. At any time t, active and reactive power output of sources and the consumption of 
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loads follows mentioned in Chapter 7. Failure management unit follows algorithms for failure 

response and recovery, as illustrated in  Figure 4-7 and Figure 4-8. 
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Figure 4-7 Failure detection and response flowchart 

The flowchart in Figure 4-8 shows the chain of processes that each controller runs to achieve 

a synchronized outcome for the recovery plan. First, the current power demand is compared to the 

available DERs’ maximum power and dispatches the DERs on a prioritized manner. Depending 

on the failed controller, the decision of a controller is governed by the impact of the failing branch 

(controller or DER) on the three main objectives of microgrid operations. Normally, Energy 
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storage has the fastest response. Worst case scenario is a failure of a component forming the grid 

(voltage and frequency), an unintentional reconnection to the grid will be performed. 

 

 
Figure 4-8 Proposed Failure Recovery Algorithm Flowchart.  
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Chapter 5 Reliability Analysis  

5.1 Microgrid Reliability  

Studying microgrid reliability is a challenge due to the variety of power sources that can be 

included. Generally, the evaluation of microgrid reliability must consider the load demand, which 

influences the microgrid architecture at the design stage [50]. Other aspects such as protection 

schemes are considered as a microgrid reliability enhancement mechanism [51] [52]. The 

advancement of power electronics research efforts and control strategies for microgrid inverters, 

and hybrid AC-DC microgrids had invigorated power systems researchers in general to adopt state 

of the art technologies in designing reliable microgrid systems [53]. Communication-assisted 

control techniques drove the improvement of microgrid reliability arising cyber-security concerns 

[63]. 

The outcome of this chapter is to study the microgrid reliability enhancement and analysis by 

decentralizing the control architecture, regardless the control method applied. Microgrid reliability 

analyses are discussed and conducted providing a quantitative evidence of the reliability 

improvement in decentralized microgrids as opposed to the centrally controlled microgrids.  

Microgrids can be deployed for various purposes in an island or grid-connected structure. For 

example, a microgrid intended to operate in two modes (grid-connected and islanded) can be 

dispatchable, serving the purpose of supporting the distribution system. Distant microgrids away 

from the grid usually serve the purpose of continuously and independently supporting local loads. 

Loads can be categorized into critical and non-critical, and their characteristics can vary from static 

to dynamic behaviors. Regardless of the type, microgrids under any disturbance or fault condition 
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have different behavior and performance, while supporting critical loads. The reliability analysis 

of microgrids is performed here based on three objectives:  

1) Supporting critical loads, with the assumption of partially shedable loads. 

2) Microgrid bus voltage regulation.  

3) Microgrid bus frequency regulation. 

 
Figure 5-1 Redundant Control Architecture. 

 

 

 

 
Figure 5-2 Decentralized Control Architecture. 
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5.2 Reliability Metrics and Methods 

Reliability metrics provide a quantitative representation of how much reliance should we have 

in a system or a device.  In other words, reliability is the probability that a device will perform its 

intended function under known conditions for a specified time.  

5.2.1 Metrics and Quantitative Measures 

Definition 1: Reliability R(t) probability that the component or system experiences does not 

fail during the during a defined time interval. For repairable systems, if a repair is performed at 

time t1, reliability curve starts from the initial value of 1. 

Definition 2: Conditional Failure Rate or Failure Intensity: λ is the anticipated number of times 

an item will fail in a specific time interval. It also can be identified as a reliability measure of a 

component. This value is normally expressed as failures per million hours (fpmh or 106 hours). 

Failure rate calculations are based on complex models which include factors using specific 

component data such as temperature, environment, and stress. In the prediction model, assembled 

components are structured serially. Thus, calculated failure rates for assemblies are a sum of the 

individual failure rates for components within the assembly. This is clarified in the following 

subsections. 

Using the failure rate of a component, MTBF, MTTR, MTTF and FIT are reliability terms 

based on methods and procedures for lifecycle predictions for a product. MTBF (Mean Time 

Between Failure) in repairable systems, MTTR (Mean Time To Repair), MTTF (Mean Time To 

Failure) are ways of providing a numeric value based on a compilation of data to quantify a failure 

rate and the resulting time of expected performance. The numeric value can be expressed using 

any measure of time, but hours is the most common unit in practice. Figure 5-3 illustrated the 
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definitions of these metrics. MTBF can be calculated as the inverse of the failure rate λ for constant 

failure rate systems 

 

Figure 5-3 Reliability Metrics Definitions. 

5.2.2 Reliability Block Diagrams 

The reliability of a system cannot be evaluated or improved unless a detailed understanding of 

how the elements of the system function and contribute to the overall system operation. A 

Reliability Block Diagram is a method of modeling how components and sub-system failures 

combine to cause system failure. Reliability block diagrams may be analyzed to predict the 

availability of a system and determined the critical components from a reliability viewpoint. A 

system is considered functioning when there is at least one continuous path from the left side to 

the right side of the reliability block diagram. The elements in the block diagram may represent 

only the original components, or redundant components. The following sections provides the 

𝑀𝑇𝑇𝐹 =
1

𝜆
  (5-1) 

In Repairable systems:  

𝑀𝑇𝐵𝐹 =
1

𝜆
 

(5-2) 

Failure 

System 

running 

MTTR MTTF 

Repair Failure 

MTBF 
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application of RBD on the system being analyzed. The following equations provide some 

terminology definitions used within this chapter.  

Assuming a system of N components, Ri is the reliability of component Xi. The reliability of 

the system assuming the elements are in series (i.e. if a component fails, the whole system fails) 

𝑅𝑠𝑒𝑟𝑖𝑒𝑠 = ∏𝑅(𝑋𝑖)

𝑁

1

 

(5-3) 

Assuming the system components are all in parallel (i.e. the system fails if all components 

fail), the reliability is determined by 

Figure 6 shows the reliability bock diagram of possible microgrid configurations. Each block 

represents one possible component or a subsystem with a pre-defined failure rate. A working 

system remains while a continuous line from left to right is maintained. 

Higher reliability of a system is proportional to the degree of parallelization of the reliability 

model. In microgrids, the controller is a vital component to maintaining operation. As shown in 

Figure 5-5, The red portion of the diagram represents a controller as in series block to the system. 

Failure of the controller breaks the line and the system is declared in failure state.  

Decentralization of the control architecture eliminates the red portion in  Figure 5-4 making 

the whole system a bunch of parallel branches. The degree of importance of a controller is 

calculated using (3) for three cases: 1) Centralized controller architecture. 2) Redundant control 

𝑅𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = ∏(1 − 𝑅(𝑋𝑖))

𝑁

1

 

(5-4) 
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architecture with two controllers. 3) True decentralized control architecture. 

 

 
Figure 5-5 Microgrid Decentralized Control Architecture (Green). Eliminated centralized controller (Red). 

Example branch components (Subsystem) 

5.2.3 Importance of a component (Barlow-Porschan) 

The importance of a component indicates the impact of once component’s failure on the system 

failure [69]. In the early stages of system development, the components life distribution or 

 

Figure 5-4 Reliability block diagram of microgrid architecture. 
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reliabilities are assumed to be equal. A system with n components, considering a state 𝑥𝑖 of 

component i is defined by 

𝑥𝑖 = {
1 𝑖𝑓 𝑖 𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑔
0 𝑖𝑓 𝑖  𝑖𝑠 𝒏𝒐𝒕 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑔

      𝑖 ∈ (1, 𝑛) (5-5) 

A deterministic binary function 𝜑 of the system state, with x as the function vector input 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑛). 

𝜑(𝑥) = {
1 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑔
0 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚  𝑖𝑠 𝒏𝒐𝒕 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑔

 (5-6) 

The structure importance (Barlow-Porschan)  

𝐼𝜑(𝑗) = ∫(ℎ(1𝑗 , 𝑃) − (ℎ(0𝑗 , 𝑃)

1

0

𝑑𝑝 (5-7) 

In our case, it is possible to calculate the structural importance of component j in structure φ 

using (12). 

(1𝑗 , 𝑃) = (𝑥1, … 𝑥𝑗−1, 1, … , 𝑥𝑛) (5-8) 

(0𝑗 , 𝑃) = (𝑥1, … 𝑥𝑗−1, 0, … , 𝑥𝑛) (5-9) 

Where ℎ(1𝑗 , 𝑃) the probability that the system operates, as a function of component 

reliabilities. Equations that govern the importance of three cases from equations (7-9) are shown 

in the following cases. Where 𝑅𝐶𝑒𝑛(𝑡), 𝑅𝑅𝑐𝑜𝑛(𝑡), 𝑅𝐷𝑐𝑜𝑛(𝑡) are the total system reliability for the 

three cases, respectively. 𝑅𝐶𝑀𝐺𝐶(𝑡), 𝑅𝑅𝑀𝐺𝐶(𝑡), 𝑅𝐷𝑀𝐺𝐶(𝑡) are the controller reliability for each 
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case. 𝑅𝑃𝑆(𝑡) is the reliability of the system not including the controller (parallel section). 

𝑃𝑐𝑜𝑛 , 𝑃𝑐𝑜𝑚 are the failure probabilities of a controller and any other component, respectively. 

Case 1) Centralized:  

Figure 5-6 shows the RBD for this case assuming N = 5 DGs, the centralized controller in series 

with the rest of the system. In order to show how much does this configuration affects the system 

reliability, equations (4-4 to 4-8) are applied.  For this case the importance of a centralized 

controller is very dominant, which can be seen as a single point of failure to the overall system. 

While the rest of the components contribute to around 3% of the total system reliability. 

 

𝑅𝑖(𝑡) = 𝑃 
(5-10) 

𝑅𝑃𝑆(𝑡) = 1 − (∏ (1 − ∏ 𝑅𝑖(𝑡)
𝑚
𝑗=1 )𝑛

𝑖=1 ) = 1 − (1 − 𝑃𝑚)𝑛  
(5-11) 

𝑅𝐶𝑒𝑛(𝑡) = 𝑅𝑀𝐺𝐶(𝑡) ∗ 𝑅𝑠𝑦𝑠(𝑡) 
(5-12) 

𝑅𝐶𝑒𝑛(𝑡) = 𝑃𝑐𝑜𝑛(1 − (1 − 𝑃𝑐𝑜𝑚
𝑚 )𝑛) 

(5-13) 

Assuming 5 DGs in the system 
 

ℎ(1𝐶𝑐𝑜𝑛, 𝑃) = 1 − (1 − 𝑃4)5 
(5-14) 

ℎ(0𝑐𝑜𝑛, 𝑃) = 0 
(5-15) 
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ℎ(1𝐶𝐿1, 𝑃) = 𝑃(1 − (1 − 𝑃4)4 ∗ (1 − 𝑃3)) 

ℎ(0𝐶𝐿1, 𝑃) = 𝑃(1 − (1 − 𝑃4)4) 

𝐼𝜑(𝑀𝐺𝐶) = ∫1 − (1 − 𝑃4)5 − 0

1

0

𝑑𝑝 = 0.4116 = 41.16% 

𝐼𝜑(𝐶𝐿1) = 𝐼𝜑(𝐿𝐶) = 𝐼𝜑(𝐶𝐿2) = 𝐼𝜑(𝐷𝐺) 

= ∫𝑃(1 − (1 − 𝑃4)4 ∗ (1 − 𝑃3)) − 𝑃(1 − (1 − 𝑃4)4)

1

0

𝑑𝑝 = 0.0294 = 2.94% 

 

 

Figure 5-6 Reliability block diagram for the centralized case. 

 

Case 2) Redundant:  

Similarly, in case of a redundant controller added to the system, the RBD becomes as in Figure 

5-7.  Applying degree of importance equations results with: 

𝑅𝑖(𝑡) = 𝑃 (5-16) 

𝑅𝑅𝑀𝐺𝐶(𝑡) = 1 − (1 − 𝑃)2 (5-17) 

𝑅𝐶𝑒𝑛(𝑡) = 𝑅𝑀𝐺𝐶(𝑡) ∗ 𝑅𝑠𝑦𝑠(𝑡) (5-18) 

𝑅𝑅𝐸𝐷(𝑡) = 𝑅𝑅𝑀𝐺𝐶(𝑡) ∗ 𝑅𝑃𝑆(𝑡) = 1 − (1 − 𝑃)2 ∗ (1 − (1 − 𝑃𝑚)𝑛) (5-19) 

ℎ(1𝑅𝑀𝐺𝐶 , 𝑃) = 1 − (1 − 𝑃4)5 (5-20) 

ℎ(0𝑐𝑜𝑛, 𝑃) = 0 (5-21) 
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ℎ(1𝑅𝑀𝐺𝐶 , 𝑃) = 1 − (1 − 𝑃4)5 

ℎ(0𝑅𝑀𝐺𝐶 , 𝑃) = (1 − (1 − 𝑃)) ∗ 1 − (1 − 𝑃4)5 

ℎ(1𝐶𝐿1, 𝑃) = (1 − (1 − 𝑃)2) ∗ (1 − (1 − 𝑃4)4 ∗ (1 − 𝑃3)) 

ℎ(0𝐶𝐿1, 𝑃) = 1 − (1 − 𝑃)2 ∗ (1 − (1 − 𝑃4)4) 

𝐼𝜑(𝑅𝑀𝐺𝐶) =  0.0963 = 9.63% 

𝐼𝜑(𝐶𝐿1) = 𝐼𝜑(𝐿𝐶) = 𝐼𝜑(𝐶𝐿2) = 𝐼𝜑(𝐷𝐺)

= ∫ 𝑃(1 − (1 − 𝑃4)4 ∗ (1 − 𝑃3)) − 𝑃(1 − (1 − 𝑃4)4)

1

0

𝑑𝑝

= 0.0404 = 4.04% 

 

For this case, adding redundancy to the controllers decreases the significance of a single 

controller, which leads to a better reliability of the microgrid system. 

 

Figure 5-7 Reliability block diagram for the redundancy case. 

 

Case 3) Decentralized: 

For the decentralized case, the in-series controller block is eliminated and the overall system 

becomes a bunch of parallel branches. This is expected to improve the microgrid reliability. 
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Applying the degree of importance equations to determine the degree of importance of the 

controller results with: 

𝑅𝑖(𝑡) = 𝑃 (5-22) 

𝑅𝐷𝐸𝐶(𝑡) == (1 − (1 − 𝑃𝑐𝑜𝑚
𝑚 )𝑛) (5-23) 

ℎ(1𝐷𝑀𝐺𝐶 , 𝑃) = 1 − ((1 − 𝑃4)4 ∗ (1 − 𝑃3)) (5-24) 

ℎ(0𝐷𝑀𝐺𝐶 , 𝑃) = 1 − (1 − 𝑃4)4 

ℎ(1𝐶𝐿1, 𝑃) = 1 − ((1 − 𝑃4)4 ∗ (1 − 𝑃3)) 

ℎ(0𝐶𝐿1, 𝑃) = 1 − (1 − 𝑃4)4 

𝐼𝜑(𝐷𝑀𝐺𝐶) = ∫(1 − (1 − 𝑃)2) ∗ (1 − (1 − 𝑃4)4 ∗ (1 − 𝑃3)) − (1 − 𝑃4)5

1

0

− (1 − (1 − 𝑃)2 ∗ (1 − (1 − 𝑃4)4)) 𝑑𝑝 =  0.05 = 5.0% 

𝐼𝜑(𝐶𝐿1) = 𝐼𝜑(𝐿𝐶) = 𝐼𝜑(𝐶𝐿2) = 𝐼𝜑(𝐷𝐺)

= ∫ 𝑃(1 − (1 − 𝑃4)4 ∗ (1 − 𝑃3)) − 𝑃(1 − (1 − 𝑃4)4)

1

0

𝑑𝑝

= 0.05 = 5.0% 

 

 

Figure 5-8 Reliability block diagram for the decentralized case. 
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Figure 5-9 shows the calculation results of importance analysis in a microgrid control 

architecture for the aforementioned cases. Assuming M = 4 in-series components in a parallel 

branch, and varying the number of possible DGs in a microgrid. Scaling up the microgrid, the 

importance of a controller increases in the centralized architecture even with a redundant 

controller. However, due to parallelization in decentralized architecture, the importance of each 

controller decreases as the microgrid scales up in in terms of the number of DGs. 

 
Figure 5-9 Degree of importance variation of a single controller in a microgrid system. 

 
Figure 5-10 Degree of importance of other components in a microgrid system. 
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5.3 Applying Markov Chain Reliability Method  

MRM uses a stochastic process to model the system with several states and transitions between 

states. A Markov reliability model contains a series of the possible states in the system and uses 

possible failure rates and repair rates between those states. If X(t) is denoted as a random variable 

in Markov process, then Pij of transitioning probability from state i at t=0 to state j at t is  

 

 𝑃𝑖𝑗 = 𝑃[𝑋(𝑡) = 𝑗 |𝑋(𝑡) = 𝑖] 5-25) 

The probability of transitioning from state i to state j does not depend on the global time and 

only depends on the transition time interval. A simple Markov process for Figure 5-4 is shown in  

Figure 5-11. The states in Figure 5-11 show transition from state 0 which is the healthy state to 

state 1, when component A fails but the system survives. State 2 when component 2 fails but the 

system survives, and state 5 when component 3 fails and the system fails since component 5 ties 

the rest of the system to the output. Staying at a state means that no new fault even happened. State 

5 is an absorbing state of system failure since every physical system is expected to fail at some 

point in time.  

The transition from state i to j depends on the transition time interval ∆t, and does not have a 

memory characteristic. For a system of n states, a probability transition matrix is defined as 

 

𝑷(∆𝑡) = [

𝑃11(∆𝑡) 𝑃12(∆𝑡) … 𝑃1𝑛(∆𝑡)
𝑃21(∆𝑡) 𝑃22(∆𝑡) … 𝑃2𝑛(∆𝑡)

⋮ ⋮ ⋱ ⋮
𝑃𝑛1(∆𝑡) 𝑃𝑛2(∆𝑡) ⋯ 𝑃𝑛𝑛(∆𝑡)

] 5-26) 

Where 

 𝑃𝑖𝑗(∆𝑡) ≥ 0   𝑖, 𝑗 ∈ [1, 𝑛] 5-27) 
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∑𝑃𝑖𝑗(∆𝑡)

𝑛

𝑗=1

= 1,   𝑖 ∈ [1, 𝑛] (5-28) 

Equation (5-26) can be written as (5-29) due to homogeneous property. 

 

𝑃 = [

𝑃11 𝑃12 … 𝑃1𝑛

𝑃21 𝑃22 … 𝑃2𝑛

⋮ ⋮ ⋱ ⋮
𝑃𝑛1 𝑃𝑛2 ⋯ 𝑃𝑛𝑛

] (5-29) 

Markov reliability models can be simulated based on failure rates λ of system components 

instead of probability of failure P, forming a transition matrix M. If the system is repairable, repair 

rates μ are included to the transition matrix [70]. Simulation of the reliability model results with a 

predicted reliability of the system. An example of such technique is proposed in the next section. 

5.4 Reliably of Decentralized Control Architectures 

Figure 5-5 shows the proposed microgrid decentralized control architecture. By eliminating 

the centralized controller of a conventional architectures, the system transforms into certain 

number of parallel branches (subsystems). For this study purposes, each branch is assumed to have 

four components: the local decentralized controller, and two communication lines and the 

distributed generation (DG) unit. As an example, the DG in the expanded branch illustrates a PV 

system.  

Creating a Markov reliability model for the system in  Figure 5-5  results with transition matrix 

representing 241 states, assuming a microgrid has 5 DGs with centralized architecture, and 240 in 

decentralized architecture. Due to large number of states. Lumping technique is used to simplify 

the transition matrix for the Microgrid System [20]. Reliability of each branch is evaluated using 

Markov modeling. Two cases are considered, repairable and non-repairable. In a non-repairable 
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system, failure of any component is considered permanent. A repairable system is a practical case 

in power systems, where a failed component is repaired or replaced after failure is discovered. 

Markov chain simulation predicts the steady state reliability of the system. A repairable system 

converges to certain reliability with time, on the contrary of a non-repairable system where the 

reliability curves converges to 0, depending on the simulation time. 

 
Figure 5-11 Markov model and state transition diagram for a parallel branch. 

For each branch, the transition matrices as non-repairable and repairable cases are depicted in 

equations (5-32) (5-33) respectively, following Table of branch states and reliability. 

𝑃(𝑡) =  [𝑃00(𝑡) 𝑃01(𝑡) 𝑃02(𝑡) 𝑃03(𝑡) 𝑃04(𝑡)] 

 

(5-30) 

�̇�(𝑡) = 𝑃(𝑡).𝑀 
(5-31) 

𝑀𝑁𝑜_𝑅𝑒𝑝𝑎𝑖𝑟 =

[
 
 
 
 
∗ 𝜆1 𝜆2 𝜆3 𝜆4

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 ]

 
 
 
 

 (5-32) 
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𝑀𝑅𝑒𝑝𝑎𝑖𝑟 =

[
 
 
 
 
∗ 𝜆1 𝜆2 𝜆3 𝜆4

𝜇1 −𝜇1 0 0 0
𝜇2 0 −𝜇2 0 0
𝜇3 0 0 −𝜇3 0
𝜇4 0 0 0 −𝜇4]

 
 
 
 

 (5-33) 

The asterisk value is the negative summation of the rest of the row.  Figure 5-12 and Figure 5-13 

show the reliability curves based on Markov Chain simulation for each branch based on the branch 

states listed in Table 5-1.  

TABLE 5-1 BRANCH STATES AND RELIABILITY. 

State DER 

R1(t) 

CL2 

R2(t) 

Controller 

R3(t) 

CL1 

R4(t) 

System 

State C 

 

P(t) 

0 Up Up Up Up Up R1(t)* R2(t)* R3(t)* R4(t) 

1 Down Up Up Up Down (1-R1(t))* R2(t)* R3(t)* R4(t) 

2 Up Down Up Up Down R1(t)* (1-R2(t))* R3(t)* R4(t) 

3 Up Up Down Up Down R1(t)* R2(t)* (1-R3(t))* R4(t) 

4 Up Up Up Down Down R1(t)* R2(t)* R3(t). (1-R4(t)) 

 

 
Figure 5-12 Markov Chain Reliability results for each branch (No Repairs) 
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Figure 5-13 Markov Chain Reliability Simulating Results for Each MG Branch (With Repair) 

Similarly, given a microgrid with 5 DGs, transition matrices are implemented. Using lumping 

technique, the number of states are reduced, since the microgrid are now consisting of 5 

subsystems in addition to the controller (in case of centralized). Equations (5-34) (5-35) shows the 

transition matrices for both cases. 

𝑀𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 =

[
 
 
 
 
 
 
𝐴

𝐵

𝐶

𝐷]
 
 
 
 
 
 

 (5-34) 

Where A and B are 20Χ64 matrices. A and B represent the acceptable states and critically 

acceptable states respectively (total of 20 states). At these states, the centralized controller is in 

working state, while in C and D (44Χ64 matrices), the controller is down and the microgrid system 

is considered down or unstable and requires shutting down (total 44 states). In case of 

decentralization of controls, the transition matrix is reduced to 50% in terms of number of states 

since a single point of failure has been eliminated which is depicted as the red portion of the block 

diagram in Fig.4. The transition matrix for this case is defined as 
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𝑀𝐷𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 = [
𝐴

𝐵
] (5-35) 

Where A and B are 20x32 and 12x32 matrices, respectively.  The failure states follow the same 

description of the centralized transition matrix. 

Markov Chain simulation is performed using MATLAB©. Equivalent failure rates for each 

branch is calculated for the equivalent fault tree [70]. The Matlab code for the simulations can be 

found in the Appendices B to D. The main purpose of such analysis is to identify the improvement 

of the overall microgrid system reliability moving from centralized to decentralized architecture. 

Another purpose is to study the impact of a single controller on the overall system in both 

architectures. The probability distribution vector (5-36) is obtained using the transition matrix. 

Figure 5-14 shows the flow chart of the conducted MCM simulations. 

𝑃(𝑡) = [𝑃0(𝑡)… 𝑃𝑛(𝑡)] (5-36) 

�̇�(𝑡) = 𝑃(𝑡) ∙ 𝑀  (5-37) 

5.5 Simulation Results 

The results of the Markov reliability simulations are illustrated in Figure 5-15, and Figure 5-16. 

Figure 5-15 shows the reliability curves of the overall microgrid system for the two architectures: 

centralized and decentralized. The reliability function R(t) is the probability that an item does not 

fail in the time interval (0, t]. 

In centralized case, the oval microgrid reliability decreases with time and goes below 50% at 

2.5 years, in comparison to approximately 90% with decentralized architecture. However, for a 
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practical case where the system is repairable; the reliability of the microgrid converges to 56% in 

12 years with a centralized architecture compared to a 94% for the same time period in 

decentralized architecture. 

 
Figure 5-14 Markov Chain Modeling & Simulation Flow Chart 

Four improvements of controller failure rates are included in simulations results , which reflect 

20% decrease in failure rate of single controller. validating the results in Figure 5-9, the degree of 

importance of a single controller on the overall system reliability is larger in the case of centralized 

architecture. Generally, scaling up the microgrid (increasing the number of DGs), the overall 

reliability of the microgrid is improved when the architecture is decentralized, unlike the 

centralized choice where the reliability decreases.  

𝑆𝑒𝑡 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 
j=1, t=0 

 

𝐺 = �̇�(𝑡). 𝑋 
𝑋 = 𝑋 + 𝐺 

𝑅(𝑡) = 𝐶 ∗ 𝑋 

Initialize system state 
matrix X 

System “Up” Matrix C 

j > iterations 
No 

End 

Yes 

Start 



 74 

 
Figure 5-15 Microgrid system reliability curve assuming no repairs.  

 

 

 
Figure 5-16 Microgrid system reliability curves (repairable system).  
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Chapter 6 Hardware in the loop (HIL) Emulation for Microgrids 

6.1 Hardware In-the Loop Systems 

Hardware-in-the-loop (HIL) simulation is a technique for testing and validating a target 

controller running a control algorithm. This technique creates a virtual real-time environment that 

represents a physical plant or a simulated complex system. From the perspective of the controller 

under testing, the simulated plant is seen as an actual plant as a high accuracy of the plant model 

is achieved. HIL helps to test the behavior of the control algorithms without physical prototypes. 

Figure 6-1 Concept of Hardware-In-the-Loop Simulation System.Figure 6-1 shows the concept of 

a Hardware-In-the-Loop system.  

 

Figure 6-1 Concept of Hardware-In-the-Loop Simulation System. 

 

6.2 Microgrid HIL Types and Examples 

Real-time HILS systems is a powerful and a convenient tool for power system studies due to 

the possibility allow for hardware device to be tested in a real test conditions before deployment 

in the actual system and commissioned. It can also minimize the risk and cost to examine extreme 

conditions to identify hidden flaws before their impact manifests in actual operation. Using HIL, 

Target Controller Simulation Device 

Controller 

Model 
Plant Model I/

O
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we can create and simulate a cost effective virtual real-time implementation of physical 

components such as a plant, sensors, and actuators on a real-time target computer. As seen in 

Figure 6-2, simulation is an essential part of HIL platforms. For validation purposes, the control 

algorithm on an embedded controller and run the plant or environment simulation model in real 

time on a target computer connected to the controller. The embedded controller interacts with the 

plant model simulation through various I/O channels.  

In power system, two major types of HIL platforms is implemented: i) Controller-I.-the-Loop 

(CIL), and ii) Power Hardware-In-the-Loop (PHIL). The main difference between the two types 

is the component under testing. In CIL (Figure 6-2 (b)), the controller of a power system (i.e. 

microgrid controller) communicates with the microgrid simulation model. In PHIL (Figure 6-2 

(c)), one or more power components are involved in the emulation. For example, a real inverter is 

represented as a power source and the measurements are included as analog inputs. For this type, 

it is recommended to start building the platform with software representations of the components 

and gradually replace parts of the system environment with the actual hardware components. 

Controller HIL testbeds place all the expensive, potentially dangerous, high-voltage, high-

power equipment into a real-time simulation. Unlike a pure simulation, the actual device 

controllers are placed on the benchtop and interfaced to this simulation. The controllers, running 

the actual, proprietary control code that will be used to control the real microgrid assets, are 

configured as if they were operating real DERs, protection devices, and distribution equipment. 

This provides highly representative system behavior and allows the testing of a full range of edge 

conditions without risking damage to any equipment. The primary challenge with this approach: 

development of validated models of the power equipment. 
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Unlike a pure simulation, the actual device controllers are placed on the benchtop and 

interfaced to this simulation. The controllers, running the actual, proprietary control code that will 

be used to control the real microgrid assets, are configured as if they were operating real DERs, 

protection devices, and distribution equipment. This provides highly representative system 

behavior and allows the testing of a full range of edge conditions without risking damage to any 

equipment. The primary challenge with this approach: development of validated models of the 

power equipment. 

 
Figure 6-2 (a) Simulation. (b) Controller-In-the-Loop (CIL). (c) Power Hardware-In-the-Loop (PHIL). 

There are three main benefits for HIL in microgrid design and studies: 

1) Microgrid conceptual design. 

 At early stages of microgrid design, sizing DERs including energy storage is needed to ensure 

an optimal sitting of the overall system. Additionally, the design of the control platform is 

necessary to at early stages in order to define control strategies, modes of operation, switching 

sequences, unit commitment and Energy Management. as well as data-driven insights to modify 

the design to optimize performance. 

C C 

INV G 

~ 

C C 

INV G 

~ 

MGC 

C C 

INV G 

~ 

MGC 

(a) (b) (c) 
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2) Short and long-term microgrid configurations 

Creating a Digital Twin of a large system comes in handy when testing is required to provide 

more confidence that the system will perform as expected, Often, the specific use cases and 

application requirements for a microgrid are somewhat fluid and depend on a multitude of factors, 

including grid conditions, user energy demand, renewable generation, etc. HIL simulation enables 

specific use cases to be demonstrated and gather the data from the results. Demonstration may 

involve critical load uptime and black-start capabilities. Extended outage capabilities. Other 

demonstration that involve assuring power quality and system resilience. 

3) Microgrid protection 

Safety analysis is important in Microgrid protection and their fault analysis. Proper safety 

model provides appropriate level of confidence in protection system. In Microgrid design, safety 

design of microgrids should meet engineering requirements and standard. HIL allows certain level 

of necessary studies to perform safety analysis, such as short-circuit and coordination studies, 

interconnection and islanding requirements and protection analysis. 

6.3 Implementation of the True Decentralized MG Control system using HIL 

6.3.1 Overview 

The implemented HIL platform is intended to study microgrid operations with actual physical 

communication layer. Figure 6-3 Laboratory HIL setup component illustration.shows the 

schematic of the platform showing a dedicated workstation running microgrid simulation model. 

The workstation is equipped with multi-Ethernet ports, binding the model with a dedicated 

Ethernet port serves the purpose of avoiding congestion with other network related traffic, i.e. 

Internet. PSCAD is an ideal candidate for our platform. The simulator is widely used for multi-
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phase power systems and control networks in time domain, and mainly dedicated to the study of 

transients of power system, which is one of the future aspects to study using the proposed platform. 

Accurate model interaction between power system components and loads with various control 

topologies is also a preferred feature in simulation that is available in PSCAD. 

 

Figure 6-3 Laboratory HIL setup component illustration. 

 

6.3.2 Microgrid Component Modeling. 

The configuration of the Fort Sill microgrid studied is shown in Figure 6-4. The Fort Sill 

microgrid is rated at 480V, 60 Hz, and 630-kW. It is connected to the utility grid through a 

480V/13.20kV transformer and a static switch. The generations in this microgrid include two 

natural gas generators each rated at 190 kW, one 90 kW solar PV system, a 2.5 kW wind turbine 

and a 250-kW energy storage system. The solar PV and wind turbine generators are connected to 

the system through inverters operating in current mode and the energy storage inverter is operated 

in voltage mode. The system also includes various motor loads and variable loads. Motor loads 
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mainly include chillers, water pumps and air compressors. This microgrid can operate in a grid-tie 

mode or island mode. An energy storage inverter is always connected to the system. During grid-

tie operation, natural gas generators are turned off. In an island mode of operation, natural gas 

generators are responsible of voltage and frequency regulation. 

Fort Sill microgrid is used as a case study across this dissertation. The model is implemented 

in PSCAD. More details on the implementation and integration within the HIL setup will be 

discussed in this chapter. 

 
Figure 6-4 Fort Sill Microgrid. 

6.3.2.1 Natural Gas generator model. 

Figure 2-3 shows the basic block diagram of a natural generator connected to a grid or 

microgrid. To accurately study the behavior of a natural gas generator, it is required to model a 

synchronous generator, excitation, an Automatic Voltage Regulator (AVR) system, a gas engine, 

and a governor system with sufficient details. The exciter of a natural gas generator oversees 

reactive power and a governor adjusts the active power. By supplying active and reactive power 

to the system, it helps to maintain the voltage and frequency of a microgrid to a constant value. 

The rating details of the synchronous generator is shown in Table 6-1 Main parameters of the 
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modeled synchronous generator.Table 6-1. A detailed description of the modeled system is found 

in [23]. 

 

Figure 6-5 Block diagram of a grid connected Natural Gas Generator. 

 

TABLE 6-1 MAIN PARAMETERS OF THE MODELED SYNCHRONOUS GENERATOR. 

Parameter Value [Unit] 

Rated RMS line to neutral voltage 0.277 [KV] 

Rated RMS line current 0.360.8 [KA] 

Frequency 60 Hz 

Inertia constant 0.1619 [s] 

Armature time constant [Ta] 0.0212 [p.u] 

Unsaturated reactance[Xd] 2.7730 [p.u] 

Unsaturated transient reactance[Xd’] 0.2611 [p.u] 

Unsaturated transient reactance time(open)[Td0’] 1.7410 [s] 

Unsaturated sub transient reactance[Xd’’] 0.1478 [p.u] 

Unsaturated sub transient reactance time(open)[Td0’’] 0.0044 [s] 

Unsaturated reactance[Xq] 1.6440 [p.u] 

Unsaturated sub transient reactance[Xq’’] 0.1710 [p.u] 

Unsaturated sub transient reactance time(open)[Tq0’’] 0.0046 [s] 

 

6.3.2.2 Energy Storage Model 

The energy storage system is modeled using a simple controlled source in series with an 

internal resistance which is shown in Figure 6-6. The voltage of the controlled voltage source 

determined by SOC versus open circuit voltage (OCV) is given by the manufacturer for a specific 

battery or it can be derived from testing. The relationship between OCV and SOC can be 
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represented by an nth order polynomial function in equation or can be represented into lookup 

table into simulation model [93-95]. In PSCAD software, a piece-wise linear look-up table can be 

defined, where the XY coordinate points can be specified. The input to this component will be the 

SOC of the energy storage system and the output will be the OCV, which is the voltage of 

controlled voltage source. Based on the output current from the energy storage system SOC is 

calculated as follows: 

𝑆𝑂𝐶 =
𝑄 − 𝑖𝑡

𝑄
∗ 100 

(6-1) 

𝑖𝑡 =
1

3600
∫ 𝑖𝑜𝑢𝑡

𝑄.3600

0

 
(6-2) 

Where Q is the battery capacity (Ah), io is the battery output current (A), and iout is the actual 

battery charge (Ah). 

 
Figure 6-6 Energy storage system equivalent circuit. 

 

6.3.2.3 Wind turbine generator 
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The wind energy system with full conversion configuration is modeled in PSCAD [70] [71]. 

The topology of the turbine is shown in  Figure 5-7. The converter is operated in current mode and 

is configured to provide flexible active and reactive power [74]. A wind turbine extracts kinetic 

energy from the swept area of the blades. The power in the wind is derived in the following 

equation 

𝑃𝑤 =
1

2
 𝜌 𝐴 𝐶𝑝𝑣3 

(6-3) 

𝐶𝑝 ≈ 0.4 (𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡)  (6-4) 

Where Pw is the wind power (Watts), v is wind speed (m/s), and ρ is the air density (kg/m3). A 

is the turbine swept area. 

The above equations have been implemented in PSCAD software to model a wind turbine. 

Measured wind speed data has been used to calculate the wind power . A Maximum Power Point 

Tracking (MPPT) algorithm has been implemented. Sample wind turbine power for a period of 24 

hours for a 12 kW wind turbine generator is shown in Figure 6-8. 

 
Figure 6-7 Wind Turbine with full scale converter with grid connection. 
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Figure 6-8 Sample output power of 12 kW wind turbine. 

6.3.2.4 Photovoltaic System 

Solar arrays are fast growing in installation in efficiency improvements. Microgrid is a 

convenient environment for photovoltaic (PV) integration into the grid. The integration process 

takes into consideration all aspect that relate to system voltage, power quality, response to faults 

and shot circuit contributions. A schematic diagram of a solar PV generator is shown in Figure 

6-9. The inverter is modeled as a current source connected to the microgrid/grid. Maximum Power 

Point Tracking (MPPT) for the panels was developed and simulated [73]. 

 

Figure 6-9 Schematic of grid-connected PV array 

The solar PV array is modeled using an electrical equivalent circuit as shown in Figure 6-10. 

When solar radiation falls on a solar cell, a DC current (ISC) is generated. ISC varies proportionally 
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with changes in solar radiation. Applying Kirchhoff’s current law to the equivalent circuit gives 

[20], 

𝐼 = 𝐼𝑆𝐶 + 𝐼𝑑 + 𝐼𝑠ℎ (6-5) 

𝐼𝑑 = 𝐼𝑜 [exp(
𝑉 + 𝐼𝑅𝑠

𝑛𝑘𝑇𝑐

𝑞

) − 1] −
𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ
 (6-6) 

Where I0 is the reverse saturation current (A), n is the diode ideality factor (1 for an ideal 

diode), q is the electron charge, k is Boltzmann's constant, and Tc is the absolute temperature. 

 

Figure 6-10 PV array Equivalent Circuit. 

 

All constants can be determined from the manufacture’s specifications of the PV modules and 

from the I-V curves. A PV array is composed of series and parallel connected modules and the 

single cell circuit can be scaled up to represent any series/parallel combination. Based on the 

equations 6-5 and 6-6, PV cell model has been implemented [104].  



 86 

 

Figure 6-11 Solar system profile over a 24-hour time period. 

 

 
Figure 6-12 Microgrid model in PSCAD. 

6.3.3 Communication Interface from simulation. 

The microgrid model is implemented in PSCAD, generally, PSCAD does not support direct 

data exchange with any software outside the simulation environment. To overcome this issue, a C 

script is implemented within the simulation environment to move the simulation data to the host 

workstation and communication with control layer over Ethernet, the communication interface is 

shown if Figure 6-13.  
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Figure 6-13 Communication Actor in PSCAD environment. 

The communication actor is responsible of exchanging simulation data between PSCAD and 

the controller. The communication is performed through a local IP address, where a C# script with 

6 isolated software threads is running continuously. Each thread is bound to a dedicated Ethernet 

port where each controller has direct connection. The data exchange process is shown in Figure 

6-14. 

 
 

Figure 6-14  Hardware-Software TCP/IP communication flow diagram. 
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6.3.4 Control Layer 

The microgrid controls in this platform are developed the real-time module of the CompactRio 

from National Instruments. Its capability to run in real-time interface mode serves the purpose of 

the platform. Figure 6-15 shows the controller used in the platform, a processor running Linux 

Real-Time OS, a programmable FPGA, and modular I/O with vision, motion, and display 

capabilities. 

The CompactRIO Controller is a rugged, reliable, high-performance, industrial-grade 

embedded controller with industry-standard certifications. This controller can be used for 

applications that need high-speed control or signal processing, hardware algorithm acceleration, 

hardware reliable tasks, or unique timing and triggering. C Series I/O modules deliver high-

accuracy I/O with measurement-specific signal conditioning to connect to any sensor or device on 

any bus. This controller runs NI Linux Real‐ Time, which combines the performance of a real‐

time OS with the openness of Linux. LabVIEW system design software is used to create, debug, 

and deploy control logic. 

 
Figure 6-15 System controller (CompactRIO) from national instruments. 

Figure 6-17 Shows the schematic of the actual implementation of the HIL testbed. Each 

controller runs the control algorithm (as explained in Chapter 5). The communication between the 

controllers uses a publish/subscribe protocol [76]. The NI Publish and Subscribe Protocol (NI-

PSP) is a networking protocol optimized to be the transport for Network Shared Variables.  The 
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lowest level protocol underneath NI-PSP is TCP/IP. Figure 6-16 shows how the Shared Variable 

Engine handles the exchanged data, where buffering is help avoiding read/write fluctuations. 

 
Figure 6-16 hared Variable Engine and Network Shared Variable buffering. 

  

 
Figure 6-17 HIL testbed schematic (Lab implementation). 

For monitoring and data logging purposes, a Graphical User Interface (GUI) has been designed 

to accommodate the requirement of real-time monitoring of the exchanged data. LabVIEW 
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management of the controller variable and signal with the GUI is shown in Figure 6-18. The 

laboratory HIL experimental setup is shown in Figure 6-19. 

 

 

 
Figure 6-18 Graphical User Interface for real-time monitoring. 
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Figure 6-19 Lab HIL experimental setup. 
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Chapter 7 System Performance and Testing 

The case study for the proposed system is a microgrid that consists of various power 

components. Renewables (PV, wind), Energy Storage (ES), two backup natural gas generators. 

The schematic of the microgrid is shown in Fig. 9. Figures (10-11) shows the PV, wind, and load 

profiles of the test system. At t=T The instantaneous load power at each controller is calculated 

using equation (16) which is derived from equations (12) and (13). 

𝑃𝐿𝑂𝐴𝐷|𝑡=𝑇 = 𝑃𝑁𝐺1(𝑇) + 𝑃𝑁𝐺2(𝑇) + 𝑃𝐸𝑆(𝑇) + 𝑃𝑊𝑖𝑛𝑑(𝑇) + 𝑃𝑃𝑉(𝑇) (7-1) 

 

TABLE 7-1MICROGRID CASE STUDY SPECIFICATIONS. 

DER Symbol Rated Power Dispatchable 

Natural Gas Gen 𝑃𝑁𝐺1
𝑟𝑎𝑡𝑒𝑑 190 kW Y 

Natural Gas Gen 𝑃𝑁𝐺2
𝑟𝑎𝑡𝑒𝑑 190 kW Y 

Energy Storage 𝑃𝐸𝑠
𝑟𝑎𝑡𝑒𝑑 250 kW Y 

PV 𝑃𝑃𝑉
𝑟𝑎𝑡𝑒𝑑 90 kW N 

Wind 𝑃𝑊𝑖𝑛𝑑
𝑟𝑎𝑡𝑒𝑑 12 kW N 

Each controller is responsible of managing the output power of the DER, considering the 

constraints in equations (17—20). These constraints can lead to economic and environmental 

optimization challenges .  

𝑃𝑁𝐺
𝑚𝑖𝑛 < 𝑃𝑁𝐺(𝑡) < 𝑃𝑁𝐺

𝑟𝑎𝑡𝑒𝑑  (7-2) 
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0 < 𝑃𝑊(𝑡) < 𝑃𝑊
𝑟𝑎𝑡𝑒𝑑(𝑡) (7-3) 

0 < 𝑃𝑃𝑉(𝑡) < 𝑃𝑃𝑉
𝑟𝑎𝑡𝑒𝑑(𝑡) (7-4) 

𝑃𝐸𝑆
𝑚𝑖𝑛 < 𝑃𝐸𝑆(𝑡) < 𝑃𝐸𝑆

𝑟𝑎𝑡𝑒𝑑

𝐸𝐸𝑆
+ = 𝐸𝐸𝑆(𝑡) + 𝑃𝐸𝑆(𝑡) ∆𝑡

𝐸𝐸𝑆
+ > 𝐸𝐸𝑆

𝑚𝑖𝑛

} (7-5) 

Where 𝑃𝑥(𝑡) is the power output of source x at time t.   𝑃𝑥
𝑟𝑎𝑡𝑒𝑑 is the rated power of the source. 

For Energy Storage (ES), 𝐸𝐸𝑆
+  is the available energy in storage projected after ∆𝑡, 𝐸𝐸𝑆

𝑚𝑖𝑛 is the 

minimum energy storage allowed in ES, which reflects the minimum state of charge (SOC).  

 

Figure 7-1. Simulated PV(top) and Wind (bottom) profiles (24-hour profile). 
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Figure 7-2. Microgrid Load profile (24 hour). 

For testing purposes, a Hardware-In-the-Loop (HIL) platform were developed to study 

microgrid operations with real physical communication layer [17]. Chapter 6 describes the 

schematic of the platform applying the decentralized architecture. Three different experiments 

were in this Chapter:  

1) Proof-of concept of a 24-hour microgrid operation under a decentralized control 

system. 

2) Microgrid transient operations such as intentional islanding.  

3) demonstration of the proposed FMU in the recovery algorithm by injecting a controller 

failure. 

7.1 System State of Operation 

One major issue considered is the communication delays and their impact on the true 

decentralized microgrid control operations. As shown in Figure 7-3, the control cycle during 

normal operation of each controller is divided in five main steps. Lengths of time slots in Figure 

7-3 does not reflect the actual scale of time during the cycle. It is worth to note that receiving and 

broadcasting updates with peer controllers include communication delays, these delays can be 



 95 

interpreted as communication faults; which can lead to unnecessary controller state transition 

(Figure 7-3). 

 

Figure 7-3  Control Cycle during normal operation.  

 

Figure 7-4 Control Cycle during state transitions (Fault handling). 

 

Figure 7-5 shows the control cycle of any decentralized controller, the failure analysis is 

performed right after the updates are received from all peers.  In the case of no violations have 

been detected, nor any failure have been reported, the control algorithm maintains at normal 

operation. If the output from failure analysis and detection is a failure code, the fault handling and 

recovery takes over and the normal operation algorithm halts. 

Similarly, the control cycle during state transition (Figure 7-5) requires updates transmission 

to ensure concurrency. This allows each controller to make an accurate decision. However, the 

normal operation algorithm halts during self-healing process, but this time should be at minimum 

to prevent and reflection of this fault onto the microgrid operation. Assume a microgrid where a 

decentralized control architecture is applied (Table 7-1). The utility grid is assumed to be a power 
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component when the microgrid is in grid-connected mode. At any time t, the output power is 

bounded by the following constraints 

The system is considered in normal operation when the following conditions are met:  

1) Equations (7-6) and (7-7) are not violated, where the bus voltage and frequency are within 

limits.  

2) Sanity check performed locally results a valid condition.  

3) Peer reports are all valid stating that all controllers are working properly and the system is 

stable.  

𝑉𝐵𝑢𝑠|𝑡 = 𝑒𝑉𝑉𝐶𝑖
= 1 𝑝. 𝑢                 𝑖 = 1,2, … , 𝑛 (7-6) 

𝐹𝐵𝑢𝑠|𝑡 = 𝑒𝐹𝐹𝐶𝑖
= 60 𝐻𝑧                 𝑖 = 1,2, … , 𝑛 (7-7) 

Where 𝑒𝑥 is the allowed mismatch factor to remain in normal operation state.  

 

Figure 7-5  Controller state diagram with fault triggered state transitions. 
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7.2 Microgrid Normal Operation 

Figure 7-7 shows the microgrid normal curves over a 24-hour period of operation. The 

microgrid operates in a grid tie mode, where the utility supports the load with the power demand 

in addition the PV and wind. NG1and NG2 are not operating at this point, and ES is in standby 

mode. island mode. At t=7.55 hours, an intentional islanding command is issued by the PCC 

controller. The grid power support ramps down as the energy storage inverter ramps up the output 

power, and forms the microgrid bus during the transition period.  

 

 
Figure 7-6. Active and reactive power curves over 24-hour operation period. 
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Figure 7-7. Microgrid voltage and frequency profiles over 24-hour operation period 

7.3 System Transients 

Figure 4 shows active and reactive curves the microgrid during islanding. System simulation 

starts with fully charged ES. NG1, NG2 are off and their breakers are open. The nature of the loads 

varies with time starting with 60 KW and increasing. ES provides the power to the loads for 16 

seconds the decentralized controller at the ES unit measures 50% SOC remaining on the battery 

and publishes the update. The controller at NG1 commands to NG1 to start and synchronize with 

the bus, and commands the breaker after 6 seconds providing 190KW (NG rated power). Since the 

load demand is greater than the capacity of NG1, controller of NG2 detects the change of operation 
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and command the generator to connect. The controller of ES detects that NG1 and NG2 are active, 

and switches to charging mode. 

 
Figure 7-8. Frequency response and system interaction during islanding operation. 

7.4 Failures and recovery 

One of the advantages of using HIL platform is the capability of configuring and injecting 

failures at the hardware and/or software levels. Failing a controller is performed by powering down 

the controller, or resetting the controller manually. Decentralization of a control system comes 

with additional algorithm in response, the algorithm is introduced in Chapter 5. The responses of 

the decentralized controllers insure fast transition to a steady state after the failure occurs. 

Figure 7-9 illustrates the case for failure of one decentralized controller, the chosen controller 

for this test is NG1, which could be one of the extremist cases since the generator could be 

regulating the bus voltage/frequency. At t=47.5s, the controller of NG1 fails while both generators 

are running and the ES is in charge mode. Two controllers are capable of fast response to this 

change; ES controller can command ES to take over the load demand, or the PCC controller can 
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command emergency grid connection. For this case, PCC responded since the SOC of the battery 

is critically low. NG1and NG2 are shut down.  

 

Figure 7-9. FMU response demonstration, with controller failure. 

 

Another demonstration of the systems transients due to a failure detection, Figure shows the 

system response to a failure at NG2 controller. The design of the proposed system calculates the 

available power generation among all DERs, and determines that ES, PV, Wind and NG1 are 

capable of handling the demand. Therefore, the controller at ES responds to this failure by 

compensating the active and reactive power required. During this transition, NG1 remains at full 

capacity.  
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Figure 7-10 System Response to a failure at NG2 controller. 

During the Failure time of NG2, a repair is performed to the controller, and the status of NG2 

is restored. The control architecture guarantees a seamless recovery of NG2, where the controller 

of NG2 sends a message to the peer controllers. The rest of the system detects the recovery, and 

waits until NG2 is synchronized with the MG bus and the brokers closes. Figure 7-11 shows the 

active power curves of the plug-and-play transient due to a controller recovery. The following 

events describe the scenario: 

1. Due to the failure of NG2, the system was forces into an unintentional connection to the 

grid due to the high load demand. 

2. The PCC controller detects the recovery of NG2, calculates the available power supply and 

compares it to the current demand, and generates an automatic islanding command.  

3. The primary control algorithms regulate the bus voltage and frequency during this 

transition, with a short-term frequency deviation. 
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4. ES compensates active power shortage until NG2 reconnects. 

 
Figure 7-11 Active power curves during system response to NG2 recovery. 

 

Figure 7-12 shows the DER voltages during the previous failure demonstration. While the 

secondary control layer and FMU manages the failure response, the robust primary control 

mechanism maintains the voltage and frequency within their desired levels. 

A less severe case of failure may occur at the renewables controller, leading to isolation of the 

failing DER branch. In this microgrid case, the size of the renewables is relatively small in 

comparison to the rest of the DERs. Which leads to a minor frequency disturbance and t=24 sec 

(as seen in Figure 7-13), the transient at t=25 sec is pre-scheduled, and does not relate to the failure 

of the renewables controller. 
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Figure 7-12 Voltage/Frequency curves during system response to NG2 recovery. 

 

Figure 7-13 Active power curves during system response to renewables controller failure. 
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Chapter 8 Conclusions 

Microgrids serve as an integral part of future power distribution systems. Decentralizing power 

production aside from the utility providers, local controls are necessary for this type of future 

solution to power loss due to power transmission to distant areas. Typically, microgrids are 

managed by centralized controllers. The two main concerns about a single controller are: the single 

control could become performance and reliability bottleneck for the entire system, where its failure 

can bring the entire system down and excessive communication delays could degrade the system 

performance, and the communication delays and packet loss of command signals between the 

central controller and the microgrid components. 

In this dissertation, a true decentralized control architecture for microgrids is proposed. 

Distributing the controls to local agents decreases the possibility of network congestion to occur. 

Decentralization will also enhance the reliability of the system since the single point of failure is 

being replaced with a distributed architecture. Three different model were defined to achieve a 

complete practical control architecture: The controller model, where the internal firmware and 

hardware part were identrified. The data exchange model, where the peer-to-peer communications 

are designed and data models are implemented. The Failure model, where a new unit is proposed 

as an integral part of the microgrid energy management system. 

In the proposed architecture, device level and system level controller and interaction models 

are designed for a self-coordination. Results shows the robustness of the proposed architecture. 

Microgrid energy management system and control case scenarios are demonstrated. The proof-of-

concept of true decentralization of microgrid control architecture is implemented using Hardware-

in-The-Loop platform, developed using real physical communication links and network 
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components, and applying the concept of decentralization dynamically over a network of real-time 

controllers. The proposed system ensures reliable data exchange between controllers and 

microgrid components. The control concept is truly distributed and does not require a master or 

central controller. Load and generation forecasting can be integrated as well as energy storage 

operation, improving unit commitment and performance. 

A future work of this effort includes: Accurate modeling of DG output power versus bus 

frequency deviation. Accurate modeling of microgrid frequency versus the change in demand and 

generation. Include forecast for DG generation in the controls to increase reliability and improving 

performance. Prediction techniques can be adopted to provide a near future prediction of a failure 

and speeding up the recovery process. This requires a data buffer carrying a record of data for the 

overall microgrid. 

Other future considerations and analysis involve the cyber-security aspect of decentralized 

architectures. Conducting a comparative study for cyber-security issue may involve delay 

considerations due to the time complexity overhead of encryption and intrusion detection 

techniques.  
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Appendix A: Centralized System states based on the three MG 

objectives. 

 

State Grid  Solar Wind NG1 NG2 Storage System 

0 0  0 0 0 0 0 0 

1 0  0 0 0 0 1 1 

2 0  0 0 0 1 0 1 

3 0  0 0 0 1 1 1 

4 0  0 0 1 0 0 1 

5 0  0 0 1 0 1 1 

6 0  0 0 1 1 0 1 

7 0  0 0 1 1 1 1 

8 0  0 1 0 0 0 0 

9 0  0 1 0 0 1 1 

10 0  0 1 0 1 0 1 

11 0  0 1 0 1 1 1 

12 0  0 1 1 0 0 1 

13 0  0 1 1 0 1 1 

14 0  0 1 1 1 0 1 

15 0  0 1 1 1 1 1 

16 0  1 0 0 0 0 0 

17 0  1 0 0 0 1 1 

18 0  1 0 0 1 0 1 

19 0  1 0 0 1 1 1 

20 0  1 0 1 0 0 1 

21 0  1 0 1 0 1 1 

22 0  1 0 1 1 0 1 

23 0  1 0 1 1 1 1 

24 0  1 1 0 0 0 0 

25 0  1 1 0 0 1 1 

26 0  1 1 0 1 0 1 

27 0  1 1 0 1 1 1 

28 0  1 1 1 0 0 1 

29 0  1 1 1 0 1 1 

30 0  1 1 1 1 0 1 

31 0  1 1 1 1 1 1 

32 1  0 0 0 0 0 1 

33 1  0 0 0 0 1 1 

34 1  0 0 0 1 0 1 
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35 1  0 0 0 1 1 1 

36 1  0 0 1 0 0 1 

37 1  0 0 1 0 1 1 

38 1  0 0 1 1 0 1 

39 1  0 0 1 1 1 1 

40 1  0 1 0 0 0 1 

41 1  0 1 0 0 1 1 

42 1  0 1 0 1 0 1 

43 1  0 1 0 1 1 1 

44 1  0 1 1 0 0 1 

45 1  0 1 1 0 1 1 

46 1  0 1 1 1 0 1 

47 1  0 1 1 1 1 1 

48 1  1 0 0 0 0 1 

49 1  1 0 0 0 1 1 

50 1  1 0 0 1 0 1 

51 1  1 0 0 1 1 1 

52 1  1 0 1 0 0 1 

53 1  1 0 1 0 1 1 

54 1  1 0 1 1 0 1 

55 1  1 0 1 1 1 1 

56 1  1 1 0 0 0 1 

57 1  1 1 0 0 1 1 

58 1  1 1 0 1 0 1 

59 1  1 1 0 1 1 1 

60 1  1 1 1 0 0 1 

61 1  1 1 1 0 1 1 

62 1  1 1 1 1 0 1 

63 1  1 1 1 1 1 1 
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Appendix B. Degree of Importance Calculations (Matlab) 

syms P 
for i=1:1:10 
h1_MGC=P*(1-(1-P)^i)^4; 
h0_MGC=0; 
intee(i)=double(int(h1_MGC-h0_MGC,0,1)); 
end 
SumMGC=intee(4) 
plot(intee) 
h1_DG=P*(1-(1-P)^4)*(1-(1-P)^4)*(1-(1-P)^4)*(1-(1-P)^4); 
h0_DG=P*(1-(1-P)^3)*(1-(1-P)^3)*(1-(1-P)^3)*(1-(1-P)^3); 
intee_DG=double(int(h1_DG-h0_DG,0,1)) 

  
hold on 

  
for i=1:1:10 
h1=P^i*(1-(1-P)^i)^5; 
h0=0; 
intee(i)=double(int(h1-h0,0,1)); 
end 
plot(intee); 
hold off 
SumMGC; 
Sum2=sum(intee); 
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Appendix C: Markov Chain Simulation for Centralized 

Microgrid Model (Matlab) 

clear 
%Initialize Failure rates 
sf; 
wf; 
ef; 
n1; 
n22; 
cf2; 
 %Initialize repair rates (Zeros if no-repair) 
cr; 
n1r; 
n2r; 
sr=; 
wr=; 
er=; 

  

 
for kk=1:5 
    hold on 

  
   A= [Matrix initialization size (64x64)] 
%A=A'+A; 
jj=1; 
for ii=33:64 
    A(jj,ii)=cr; 
    jj=jj+1; 
end 

     
jj=1; 
for ii=17:32 
    A(jj,ii)=n1r; 
    A(jj+33,ii+32)=n1r; 
    jj=jj+1; 
end 

   
jj=1; 
for ii=9:16 
    A(jj,ii)=n2r; 
    A(jj+17,ii+16)=n2r; 
    A(jj+33,ii+32)=n2r; 
    A(jj+49,ii+48)=n2r; 
    jj=jj+1; 
end 

  
jj=1; 
for ii=5:8 
    A(jj,ii)=er; 
    A(jj+9,ii+8)=er; 
    A(jj+17,ii+16)=er; 
    A(jj+25,ii+24)=er; 
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    A(jj+33,ii+32)=er; 
    A(jj+41,ii+40)=er; 
    A(jj+49,ii+48)=er; 
    A(jj+57,ii+56)=er; 
  %  A(jj+,ii+28)=er; 
    jj=jj+1; 
end 
jj=1; 
for ii=3:4:63 
    A(jj,ii)=sr; 
    A(jj+1,ii+1)=sr; 
    jj=jj+4; 
end 

  
jj=1; 
for ii=2:2:64 
    A(jj,ii)=wr; 
    jj=jj+2; 
end 

  
for j=1:64 
    for k=1:64 
        if j==k 
            A(k,j)=-1* (sum(A(:,j ))); 
        end 
    end 
end 

  
Time=20; 
DIV=5000; 
dt=Time/DIV 

  

  
X=[1;0;0;0;  0;0;0;0;   0;0;0;0;   0;0;0;0; 0;0;0;0;   0;0;0;0; 0;0;0;0;   

0;0;0;0;     0;0;0;0;   0;0;0;0;   
    0;0;0;0;  0;0;0;0;    0;0;0;0;    0;0;0;0; 0;0;0;0;   0;0;0;0;] 
C=[1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; 

  
for i=1:1:DIV 
G=A*X; 
X = X + G*dt; 
Rel(i,kk)=C*X; 
Reliability = C*X; 

  
end 
cf2(kk)=cf; 
xx=dt:dt:Time; 
xx=xx.*8760; 

  
%figure(2); 
plot(xx,Rel,'g'); 

  

  



 120 

xlabel('Time(Hours)'); 
ylabel('Reliablity'); 
T=sum(dt.*Rel); 
display(T) 
cf=cf-(cf*0.2); 
wf=wf; 
sf=sf; 
n1f=n1f; 
n2f=n2f; 
ef=ef; 
end 
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Appendix D: Markov Chain Simulation for Decentralized 

Microgrid Model (Matlab) 

 

Clear 

for kk=1:5 
    hold on 
A=[Matrix initialization (32X32)]. 

  
jj=1; 
for ii=17:32 
    A(jj,ii)=n1r; 
    %A(jj+33,ii+32)=n1r; 
    jj=jj+1; 
end 

  
jj=1; 
for ii=9:16 
    A(jj,ii)=n2r; 
    A(jj+17,ii+16)=n2r; 
    %A(jj+33,ii+32)=n2r; 
    jj=jj+1; 
end 

  
jj=1; 
for ii=5:8 
    A(jj,ii)=er; 
    A(jj+9,ii+8)=er; 
    A(jj+17,ii+16)=er; 
    A(jj+25,ii+24)=er; 
 %   A(jj+33,ii+32)=er; 
  %  A(jj+,ii+28)=er; 
    jj=jj+1; 
end 
jj=1; 
for ii=3:4:32 
    A(jj,ii)=sr; 
    A(jj+1,ii+1)=sr; 
    jj=jj+4; 
end 

  
jj=1; 
for ii=2:2:32 
    A(jj,ii)=wr; 
    jj=jj+2; 
end 

  
for j=1:32 
    for k=1:32 
        if j==k 
            A(k,j)=-1*(sum(A(:,j))); 
        end 
    end 
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end 

  

  
B=A; 
Time=20; 
DIV=5000; 
dt=Time/DIV; 

  
X=[1;0;0;0;  0;0;0;0;   0;0;0;0;   0;0;0;0;    
    0;0;0;0;  0;0;0;0;    0;0;0;0;    0;0;0;0 ] 
C=[1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]; 

  
for i=1:1:DIV 
G=A*X; 
X = X + G*dt; 
Rel(i,kk)=C*X; 
Reliability = C*X; 
end 

  
xx=dt:dt:Time; 
xx=xx.*8760; 
%figure(2); 
%plot(Rel); 
plot(xx,Rel,'g'); 

  
xlabel('Time(Hours)'); 
ylabel('Reliablity'); 
T=sum(dt.*Rel); 
display(T); 
wf=wf-(wf*0.2); 
sf=sf-(sf*0.2); 
n1f=n1f-(n1f*0.2); 
n2f=n2f-(n2f*0.2); 
ef=ef-(ef*0.2); 
end 
hold off 
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