15 research outputs found

    Reinstatement of memory representations for lifelike events over the course of a week

    Get PDF
    When we remember an event, the content of that memory is represented across the brain. Detailed memory retrieval is thought to involve the reinstatement of those representations. Functional MRI combined with representational similarity analyses (RSA) of spatial patterns of brain activity has revealed reinstatement of recently-experienced events throughout a core memory retrieval network. In the present study, participants were scanned while they watched, immediately retrieved and then retrieved after a week, 24 short videos. Following the delayed retrieval, they freely recalled all videos outside of the scanner. We observed widespread within- and between-subject reinstatement effects within a posterior midline core memory retrieval network during all phases of the experiment. Within precuneus, bilateral middle temporal gyrus and the left hippocampus, reinstatement effects between the retrieval phases correlated with memory performance. These findings extend previous studies that have only employed short retention periods or highly rehearsed materials, demonstrating that memory representations for unique events are reliably reinstated over longer timeframes that are meaningful in the context of real-world episodic memory

    Weakly encoded memories due to acute sleep restriction can be rescued after one night of recovery sleep

    Get PDF
    Sleep is thought to play a complementary role in human memory processing: sleep loss impairs the formation of new memories during the following awake period and, conversely, normal sleep promotes the strengthening of the already encoded memories. However, whether sleep can strengthen deteriorated memories caused by insufficient sleep remains unknown. Here, we showed that sleep restriction in a group of participants caused a reduction in the stability of EEG activity patterns across multiple encoding of the same event during awake, compared with a group of participants that got a full night's sleep. The decrease of neural stability patterns in the sleep-restricted group was associated with higher slow oscillation-spindle coupling during a subsequent night of normal sleep duration, thereby suggesting the instantiation of restorative neural mechanisms adaptively supporting cognition and memory. Importantly, upon awaking, the two groups of participants showed equivalent retrieval accuracy supported by subtle differences in the reinstatement of encoding-related activity: it was longer lasting in sleep-restricted individuals than in controls. In addition, sustained reinstatement over time was associated with increased coupling between spindles and slow oscillations. Taken together, these results suggest that the strength of prior encoding might be an important moderator of memory consolidation during sleep. Supporting this view, spindles nesting in the slow oscillation increased the probability of correct recognition only for weakly encoded memories. Current results demonstrate the benefit that a full night's sleep can induce to impaired memory traces caused by an inadequate amount of sleep

    Neural Network Connectivity During Post-encoding Rest: Linking Episodic Memory Encoding and Retrieval

    Get PDF
    Commonly, a switch between networks mediating memory encoding and those mediating retrieval is observed. This may not only be due to differential involvement of neural resources due to distinct cognitive processes but could also reflect the formation of new memory traces and their dynamic change during consolidation. We used resting state fMRI to measure functional connectivity (FC) changes during post-encoding rest, hypothesizing that during this phase, new functional connections between encoding- and retrieval-related regions are created. Interfering and reminding tasks served as experimental modulators to corroborate that the observed FC differences indeed reflect changes specific to post-encoding rest. The right inferior occipital and fusiform gyri (active during encoding) showed increased FC with the left inferior frontal gyrus and the left middle temporal gyrus (MTG) during post-encoding rest. Importantly, the left MTG subsequently also mediated successful retrieval. This finding might reflect the formation of functional connections between encoding- and retrieval-related regions during undisturbed post-encoding rest. These connections were vulnerable to experimental modulation: Cognitive interference disrupted FC changes during post-encoding rest resulting in poorer memory performance. The presentation of reminders also inhibited FC increases but without affecting memory performance. Our results contribute to a better understanding of the mechanisms by which post-encoding rest bridges the gap between encoding- and retrieval-related networks

    Suppression weakens unwanted memories via a sustained reduction of neural reactivation

    Get PDF
    Aversive events sometimes turn into intrusive memories. However, prior evidence indicates that such memories can be controlled via a mechanism of retrieval suppression. Here, we test the hypothesis that suppression exerts a sustained influence on memories by deteriorating their neural representations. This deterioration, in turn, would hinder their subsequent reactivation and thus impoverish the vividness with which they can be recalled. In an fMRI study, participants repeatedly suppressed memories of aversive scenes. As predicted, this process rendered the memories less vivid. Using a pattern classifier, we observed that suppression diminished the neural reactivation of scene information both globally across the brain and locally in the parahippocampal cortices. Moreover, the decline in vividness was associated with reduced reinstatement of unique memory representations in right parahippocampal cortex. These results support the hypothesis that suppression weakens memories by causing a sustained reduction in the potential to reactivate their neural representations

    Hippocampal Contributions to the Large-Scale Episodic Memory Network Predict Vivid Visual Memories

    Get PDF
    † The first two authors contributed equally to this work. Abstract A common approach in memory research is to isolate the function(s) of individual brain regions, such as the hippocampus, without addressing how those regions interact with the larger network. To investigate the properties of the hippocampus embedded within large-scale networks, we used functional magnetic resonance imaging and graph theory to characterize complex hippocampal interactions during the active retrieval of vivid versus dim visual memories. The study yielded 4 main findings. First, the right hippocampus displayed greater communication efficiency with the network (shorter path length) and became a more convergent structure for information integration (higher centrality measures) for vivid than dim memories. Second, vivid minus dim differences in our graph theory measures of interest were greater in magnitude for the right hippocampus than for any other region in the 90-region network. Moreover, the right hippocampus significantly reorganized its set of direct connections from dim to vivid memory retrieval. Finally, beyond the hippocampus, communication throughout the whole-brain network was more efficient (shorter global path length) for vivid than dim memories. In sum, our findings illustrate how multivariate network analyses can be used to investigate the roles of specific regions within the large-scale network, while also accounting for global network changes

    From Knowing to Remembering: the Semantic-Episodic distinction

    Get PDF
    The distinction between episodic and semantic memory was proposed in 1972 by Endel Tulving and is still of central importance in Cognitive Neuroscience today. Data obtained in the last 30 years or so, however, support the idea that the frontiers between perception and knowledge and between episodic and semantic memory are not as clear cut as previously thought, prompting a rethinking of the episodic-semantic distinction. Here, we review recent research on episodic and semantic memory, highlighting similarities between the two systems. Taken together, current behavioral, neuropsychological and neuroimaging data are compatible with the idea that episodic and semantic memory are inextricably intertwined, yet retain a measure of distinctiveness, despite the fact that their neural correlates demonstrate considerable overlap

    Age differences in retrieval-related reinstatement reflect age-related dedifferentiation at encoding

    Get PDF
    Age-related reductions in neural selectivity have been linked to cognitive decline. We examined whether age differences in the strength of retrieval-related cortical reinstatement could be explained by analogous differences in neural selectivity at encoding, and whether reinstatement was associated with memory performance in an age-dependent or an age-independent manner. Young and older adults underwent fMRI as they encoded words paired with images of faces or scenes. During a subsequent scanned memory test participants judged whether test words were studied or unstudied and, for words judged studied, also made a source memory judgment about the associated image category. Using multi-voxel pattern similarity analyses, we identified robust evidence for reduced scene reinstatement in older relative to younger adults. This decline was however largely explained by age differences in neural differentiation at encoding; moreover, a similar relationship between neural selectivity at encoding and retrieval was evident in young participants. The results suggest that, regardless of age, the selectivity with which events are neurally processed at the time of encoding can determine the strength of retrieval-related cortical reinstatement

    What individual differences impact eyewitness identification performance?

    Get PDF
    The eyewitness’ memory of a crime is used to identify the perpetrator from a lineup. A lineup contains the police suspect (who is innocent or guilty) and fillers (people who are known to be innocent). Two kinds of performance accuracy are considered: discriminability and reliability. Discriminability is the ability to distinguish the guilty suspect from the innocent suspect. Reliability is the likelihood that the identified suspect is the perpetrator. Until now, there have been no investigations of individual factors, such as age, sex, and race, on discriminability and reliability. In this study, women vs men, young vs middle-aged vs. older adults, and different races are compared. Data from 17 published articles were analysed. In terms of discriminability, middle-aged adults outperform younger adults who outperform older adults. There were no differences between men and women. Participants who were of the same race as the suspect outperformed those whose race differed. In terms of reliability, there was a relationship between confidence and accuracy. That is, high confidence identifications were higher in accuracy than lower confidence identifications. Older adults perform worse than other two groups within medium and high confidence levels. There were no differences in reliability between men and women or across races. These results offer insights into individual differences and eyewitness identification performance to inform researchers, the police, judges, and jurors
    corecore