20,651 research outputs found

    A versatile and reconfigurable microassembly workstation

    Get PDF
    In this paper, a versatile and reconfigurable microassembly workstation designed and realized as a research tool for investigation of the problems in microassembly and micromanipulation processes and recent developments on mechanical and control structure of the system with respect to the previous workstation are presented. These developments include: (i) addition of a manipulator system to realize more complicated assembly and manipulation tasks, (ii) addition of extra DOF for the vision system and sample holder stages in order to make the system more versatile (iii) a new optical microscope as the vision system in order to visualize the microworld and determine the position and orientation of micro components to be assembled or manipulated, (iv) a modular control system hardware which allows handling more DOF. In addition several experiments using the workstation are presented in different modes of operation like tele-operated, semiautomated and fully automated by means of visual based schemes

    Method and apparatus for creating time-optimal commands for linear systems

    Get PDF
    A system for and method of determining an input command profile for substantially any dynamic system that can be modeled as a linear system, the input command profile for transitioning an output of the dynamic system from one state to another state. The present invention involves identifying characteristics of the dynamic system, selecting a command profile which defines an input to the dynamic system based on the identified characteristics, wherein the command profile comprises one or more pulses which rise and fall at switch times, imposing a plurality of constraints on the dynamic system, at least one of the constraints being defined in terms of the switch times, and determining the switch times for the input to the dynamic system based on the command profile and the plurality of constraints. The characteristics may be related to poles and zeros of the dynamic system, and the plurality of constraints may include a dynamics cancellation constraint which specifies that the input moves the dynamic system from a first state to a second state such that the dynamic system remains substantially at the second state

    Virtual Prototyping through Co-simulation of a Cartesian Plotter

    Get PDF
    This paper shows a model-based design trajectory for the development of real-time embedded control software using virtual prototyping. As a test case, a Cartesian plotter is designed. Functional correctness of the plotter software has been ensured by means of co-simulation using a virtual prototype before deploying it on target. Except for the interface implementation, the software that is used in the co-simulation is identical to the software that is compiled to run on the target computing platform. Virtual prototyping is especially important if the real target can damage itself if it is operated outside its safe operation zone or when prototypes are not yet available for testing. The co-simulation of the software against a virtual prototype resulted in a first-time-right deployment on the real target

    An Energy-based Approach to Ensure the Stability of Learned Dynamical Systems

    Full text link
    Non-linear dynamical systems represent a compact, flexible, and robust tool for reactive motion generation. The effectiveness of dynamical systems relies on their ability to accurately represent stable motions. Several approaches have been proposed to learn stable and accurate motions from demonstration. Some approaches work by separating accuracy and stability into two learning problems, which increases the number of open parameters and the overall training time. Alternative solutions exploit single-step learning but restrict the applicability to one regression technique. This paper presents a single-step approach to learn stable and accurate motions that work with any regression technique. The approach makes energy considerations on the learned dynamics to stabilize the system at run-time while introducing small deviations from the demonstrated motion. Since the initial value of the energy injected into the system affects the reproduction accuracy, it is estimated from training data using an efficient procedure. Experiments on a real robot and a comparison on a public benchmark shows the effectiveness of the proposed approach.Comment: Accepted at the International Conference on Robotics and Automation 202

    Stanford Aerospace Research Laboratory research overview

    Get PDF
    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be, addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modelling and control of extremely flexible space structures. The ARL has designed and built several semi-autonomous free-flying robots that perform numerous tasks in a zero-gravity, drag-free, two-dimensional environment. It is envisioned that future generations of these robots will be part of a human-robot team, in which the robots will operate under the task-level commands of astronauts. To make this possible, the ARL has developed a graphical user interface (GUI) with an intuitive object-level motion-direction capability. Using this interface, the ARL has demonstrated autonomous navigation, intercept and capture of moving and spinning objects, object transport, multiple-robot cooperative manipulation, and simple assemblies from both free-flying and fixed bases. The ARL has also built a number of experimental test beds on which the modelling and control of flexible manipulators has been studied. Early ARL experiments in this arena demonstrated for the first time the capability to control the end-point position of both single-link and multi-link flexible manipulators using end-point sensing. Building on these accomplishments, the ARL has been able to control payloads with unknown dynamics at the end of a flexible manipulator, and to achieve high-performance control of a multi-link flexible manipulator

    An integrated approach to the optimum design of actively controlled composite wings

    Get PDF
    The importance of interactions among the various disciplines in airplane wing design has been recognized for quite some time. With the introduction of high gain, high authority control systems and the design of thin, flexible, lightweight composite wings, the integrated treatment of control systems, flight mechanics and dynamic aeroelasticity became a necessity. A research program is underway now aimed at extending structural synthesis concepts and methods to the integrated synthesis of lifting surfaces, spanning the disciplines of structures, aerodynamics and control for both analysis and design. Mathematical modeling techniques are carefully selected to be accurate enough for preliminary design purposes of the complicated, built-up lifting surfaces of real aircraft with their multiple design criteria and tight constraints. The presentation opens with some observations on the multidisciplinary nature of wing design. A brief review of some available state of the art practical wing optimization programs and a brief review of current research effort in the field serve to illuminate the motivation and support the direction taken in our research. The goals of this research effort are presented, followed by a description of the analysis and behavior sensitivity techniques used. The presentation concludes with a status report and some forecast of upcoming progress

    Temporal models of motions and forces for Human-Robot Interactive manipulation

    Get PDF
    L'intérêt pour la robotique a débuté dans les années 70 et depuis les robots n'ont cessé de remplacer les humains dans l'industrie. L'automatisation à outrance n'apporte cependant pas que des avantages, car elle nécessite des environnements parfaitement contrôlés et la reprogrammation d'une tâche est longue et fastidieuse. Le besoin accru d'adaptabilité et de ré-utilisabilité des systèmes d'assemblage force la robotique à se révolutionner en amenant notamment l'homme et le robot à interagir. Ce nouveau type de collaboration permet de combiner les forces respectives des humains et des robots. Cependant l'homme ne pourra être inclus en tant qu'agent actif dans ces nouveaux espaces de travail collaboratifs que si l'on dispose de robots sûrs, intuitifs et facilement reprogrammables. C'est à la lumière de ce constat qu'on peut deviner le rôle crucial de la génération de mouvement pour les robots de demain. Pour que les humains et les robots puissent collaborer, ces derniers doivent générer des mouvements sûrs afin de garantir la sécurité de l'homme tant physique que psychologique. Les trajectoires sont un excellent modèle pour la génération de mouvements adaptés aux robots collaboratifs, car elles offrent une description simple et précise de l'évolution du mouvement. Les trajectoires dîtes souples sont bien connues pour générer des mouvements sûrs et confortables pour l'homme. Dans cette thèse nous proposons un algorithme de génération de trajectoires temps-réel basé sur des séquences de segments de fonctions polynomiales de degré trois pour construire des trajectoires souples. Ces trajectoires sont construites à partir de conditions initiales et finales arbitraires, une condition nécessaire pour que les robots soient capables de réagir instantanément à des événements imprévus. L'approche basée sur un modèle à jerk-contraint offre des solutions orientées performance: les trajectoires sont optimales en temps sous contraintes de sécurité. Ces contraintes de sécurité sont des contraintes cinématiques qui dépendent de la tâche et du contexte et doivent être spécifiées. Pour guider le choix de ces contraintes, nous avons étudié le rôle de la cinématique dans la définition des propriétés ergonomiques du mouvement. L'algorithme a également été étendu pour accepter des configurations initiales non admissibles permettant la génération de trajectoires sous contraintes cinématiques non constantes. Cette extension est essentielle dans le contexte des interactions physiques homme-robot, car le robot doit être capable d'adapter son comportement en temps-réel pour préserver la sécurité physique et psychologique des humains. Cependant considérer le problème de la génération de trajectoires ne suffit pas si on ne considère pas le contrôle. Le passage d'une trajectoire à une autre est un problème difficile pour la plupart des systèmes robotiques dans des contextes applicatifs réels. Pour cela, nous proposons une stratégie de contrôle réactif de ces trajectoires ainsi qu'une architecture construite autour de l'utilisation des trajectoires.It was in the 70s when the interest for robotics really emerged. It was barely half a century ago, and since then robots have been replacing humans in the industry. This robot-oriented solution doesn't come without drawbacks as full automation requires time-consuming programming as well as rigid environments. With the increased need for adaptability and reusability of assembly systems, robotics is undergoing major changes and see the emergence of a new type of collaboration between humans and robots. Human-Robot collaboration get the best of both world by combining the respective strengths of humans and robots. But, to include the human as an active agent in these new collaborative workspaces, safe and flexible robots are required. It is in this context that we can apprehend the crucial role of motion generation in tomorrow's robotics. For the emergence of human-robot cooperation, robots have to generate motions ensuring the safety of humans, both physical and physchological. For this reason motion generation has been a restricting factor to the growth of robotics in the past. Trajectories are excellent candidates in the making of desirable motions designed for collaborative robots, because they allow to simply and precisely describe the motions. Smooth trajectories are well known to provide safe motions with good ergonomic properties. In this thesis we propose an Online Trajectory Generation algorithm based on sequences of segment of third degree polynomial functions to build smooth trajectories. These trajectories are built from arbitrary initial and final conditions, a requirement for robots to be able to react instantaneously to unforeseen events. Our approach built on a constrained-jerk model offers performance-oriented solutions : the trajectories are time-optimal under safety constraints. These safety constraints are kinematic constraints that are task and context dependent and must be specified. To guide the choice of these constraints we investigated the role of kinematics in the definition of ergonomics properties of motions. We also extended our algorithm to cope with non-admissible initial configurations, opening the way to trajectory generation under non-constant motion constraints. This feature is essential in the context of physical Human-Robot Interactions, as the robot must adapt its behavior in real time to preserve both the physical and psychological safety of humans. However, only considering the trajectory generation problem is not enough and the control of these trajectories must be adressed. Switching from a trajectory to another is a difficult problem for most robotic systems in real applicative contexts. For this purpose we propose a strategy for the Reactive Control of these Trajectories as well as an architecture built around the use of trajectories

    Exploiting short-term memory in soft body dynamics as a computational resource

    Full text link
    Soft materials are not only highly deformable but they also possess rich and diverse body dynamics. Soft body dynamics exhibit a variety of properties, including nonlinearity, elasticity, and potentially infinitely many degrees of freedom. Here we demonstrate that such soft body dynamics can be employed to conduct certain types of computation. Using body dynamics generated from a soft silicone arm, we show that they can be exploited to emulate functions that require memory and to embed robust closed-loop control into the arm. Our results suggest that soft body dynamics have a short-term memory and can serve as a computational resource. This finding paves the way toward exploiting passive body dynamics for control of a large class of underactuated systems.Comment: 22 pages, 11 figures; email address correcte

    Smart grid architecture for rural distribution networks: application to a Spanish pilot network

    Get PDF
    This paper presents a novel architecture for rural distribution grids. This architecture is designed to modernize traditional rural networks into new Smart Grid ones. The architecture tackles innovation actions on both the power plane and the management plane of the system. In the power plane, the architecture focuses on exploiting the synergies between telecommunications and innovative technologies based on power electronics managing low scale electrical storage. In the management plane, a decentralized management system is proposed based on the addition of two new agents assisting the typical Supervisory Control And Data Acquisition (SCADA) system of distribution system operators. Altogether, the proposed architecture enables operators to use more effectively—in an automated and decentralized way—weak rural distribution systems, increasing the capability to integrate new distributed energy resources. This architecture is being implemented in a real Pilot Network located in Spain, in the frame of the European Smart Rural Grid project. The paper also includes a study case showing one of the potentialities of one of the principal technologies developed in the project and underpinning the realization of the new architecture: the so-called Intelligent Distribution Power Router.Postprint (published version
    • …
    corecore