Non-linear dynamical systems represent a compact, flexible, and robust tool
for reactive motion generation. The effectiveness of dynamical systems relies
on their ability to accurately represent stable motions. Several approaches
have been proposed to learn stable and accurate motions from demonstration.
Some approaches work by separating accuracy and stability into two learning
problems, which increases the number of open parameters and the overall
training time. Alternative solutions exploit single-step learning but restrict
the applicability to one regression technique. This paper presents a
single-step approach to learn stable and accurate motions that work with any
regression technique. The approach makes energy considerations on the learned
dynamics to stabilize the system at run-time while introducing small deviations
from the demonstrated motion. Since the initial value of the energy injected
into the system affects the reproduction accuracy, it is estimated from
training data using an efficient procedure. Experiments on a real robot and a
comparison on a public benchmark shows the effectiveness of the proposed
approach.Comment: Accepted at the International Conference on Robotics and Automation
202