32,287 research outputs found

    Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires

    Full text link
    The adaptive immune system recognizes antigens via an immense array of antigen-binding antibodies and T-cell receptors, the immune repertoire. The interrogation of immune repertoires is of high relevance for understanding the adaptive immune response in disease and infection (e.g., autoimmunity, cancer, HIV). Adaptive immune receptor repertoire sequencing (AIRR-seq) has driven the quantitative and molecular-level profiling of immune repertoires thereby revealing the high-dimensional complexity of the immune receptor sequence landscape. Several methods for the computational and statistical analysis of large-scale AIRR-seq data have been developed to resolve immune repertoire complexity in order to understand the dynamics of adaptive immunity. Here, we review the current research on (i) diversity, (ii) clustering and network, (iii) phylogenetic and (iv) machine learning methods applied to dissect, quantify and compare the architecture, evolution, and specificity of immune repertoires. We summarize outstanding questions in computational immunology and propose future directions for systems immunology towards coupling AIRR-seq with the computational discovery of immunotherapeutics, vaccines, and immunodiagnostics.Comment: 27 pages, 2 figure

    Activity Recognition and Prediction in Real Homes

    Full text link
    In this paper, we present work in progress on activity recognition and prediction in real homes using either binary sensor data or depth video data. We present our field trial and set-up for collecting and storing the data, our methods, and our current results. We compare the accuracy of predicting the next binary sensor event using probabilistic methods and Long Short-Term Memory (LSTM) networks, include the time information to improve prediction accuracy, as well as predict both the next sensor event and its mean time of occurrence using one LSTM model. We investigate transfer learning between apartments and show that it is possible to pre-train the model with data from other apartments and achieve good accuracy in a new apartment straight away. In addition, we present preliminary results from activity recognition using low-resolution depth video data from seven apartments, and classify four activities - no movement, standing up, sitting down, and TV interaction - by using a relatively simple processing method where we apply an Infinite Impulse Response (IIR) filter to extract movements from the frames prior to feeding them to a convolutional LSTM network for the classification.Comment: 12 pages, Symposium of the Norwegian AI Society NAIS 201

    ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra

    Get PDF
    Background: Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, with the goal to gain a better understanding of the system. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. Although there exist sophisticated algorithms to determine the dynamics of discrete models, their implementations usually require labor-intensive formatting of the model formulation, and they are oftentimes not accessible to users without programming skills. Efficient analysis methods are needed that are accessible to modelers and easy to use. Method: By converting discrete models into algebraic models, tools from computational algebra can be used to analyze their dynamics. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Results: A method for efficiently identifying attractors, and the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness, i.e., while the number of nodes in a biological network may be quite large, each node is affected only by a small number of other nodes, and robustness, i.e., small number of attractors

    Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    Get PDF
    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines, a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. Synaptic sampling machines perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate & fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based synaptic sampling machines outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware

    A response to “Likelihood ratio as weight of evidence: a closer look” by Lund and Iyer

    Get PDF
    Recently, Lund and Iyer (L&I) raised an argument regarding the use of likelihood ratios in court. In our view, their argument is based on a lack of understanding of the paradigm. L&I argue that the decision maker should not accept the expert’s likelihood ratio without further consideration. This is agreed by all parties. In normal practice, there is often considerable and proper exploration in court of the basis for any probabilistic statement. We conclude that L&I argue against a practice that does not exist and which no one advocates. Further we conclude that the most informative summary of evidential weight is the likelihood ratio. We state that this is the summary that should be presented to a court in every scientific assessment of evidential weight with supporting information about how it was constructed and on what it was based
    corecore