1,320 research outputs found

    SCFM: Social and crowdsourcing factorization machines for recommendation

    Get PDF
    With the rapid development of social networks, the exponential growth of social information has attracted much attention. Social information has great value in recommender systems to alleviate the sparsity and cold start problem. On the other hand, the crowd computing empowers recommender systems by utilizing human wisdom. Internal user reviews can be exploited as the wisdom of the crowd to contribute information. In this paper, we propose social and crowdsourcing factorization machines, called SCFM. Our approach fuses social and crowd computing into the factorization machine model. For social computing, we calculate the influence value between users by taking users’ social information and user similarity into account. For crowd computing, we apply LDA (Latent Dirichlet Allocation) on people review to obtain sets of underlying topic probabilities. Furthermore, we impose two important constraints called social regularization and domain inner regularization. The experimental results show that our approach outperforms other state-of-the-art methods.This project is supported by the National Natural Science Foundation of China (Nos. 61672340, 61472240, 61572268)

    Collaborative Deep Learning for Recommender Systems

    Full text link
    Collaborative filtering (CF) is a successful approach commonly used by many recommender systems. Conventional CF-based methods use the ratings given to items by users as the sole source of information for learning to make recommendation. However, the ratings are often very sparse in many applications, causing CF-based methods to degrade significantly in their recommendation performance. To address this sparsity problem, auxiliary information such as item content information may be utilized. Collaborative topic regression (CTR) is an appealing recent method taking this approach which tightly couples the two components that learn from two different sources of information. Nevertheless, the latent representation learned by CTR may not be very effective when the auxiliary information is very sparse. To address this problem, we generalize recent advances in deep learning from i.i.d. input to non-i.i.d. (CF-based) input and propose in this paper a hierarchical Bayesian model called collaborative deep learning (CDL), which jointly performs deep representation learning for the content information and collaborative filtering for the ratings (feedback) matrix. Extensive experiments on three real-world datasets from different domains show that CDL can significantly advance the state of the art

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Recommendation using DMF-based fine tuning method

    Full text link
    © 2016, Springer Science+Business Media New York. Recommender Systems (RS) have been comprehensively analyzed in the past decade, Matrix Factorization (MF)-based Collaborative Filtering (CF) method has been proved to be an useful model to improve the performance of recommendation. Factors that inferred from item rating patterns shows the vectors which are useful for MF to characterize both items and users. A recommendation can concluded from good correspondence between item and user factors. A basic MF model starts with an object function, which is consisted of the squared error between original training matrix and predicted matrix as well as the regularization term (regularization parameters). To learn the predicted matrix, recommender systems minimize the squared error which has been regularized. However, two important details have been ignored: (1) the predicted matrix will be more and more accuracy as the iterations carried out, then a fix value of regularization parameters may not be the most suitable choice. (2) the final distribution trend of ratings of predicted matrix is not similar with the original training matrix. Therefore, we propose a Dynamic-MF algorithm and fine tuning method which is quite general to overcome the mentioned detail problems. Some other information, such as social relations, etc, can be easily incorporated into this method (model). The experimental analysis on two large datasets demonstrates that our approaches outperform the basic MF-based method
    • …
    corecore