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Abstract

With the rapid development of social networks, the exponential growth of so-
cial information has attracted much attention. Social information has great
value in recommender systems to alleviate the sparsity and cold start prob-
lem. On the other hand, the crowd computing empowers recommender sys-
tems by utilizing human wisdom. Internal user reviews can be exploited
as the wisdom of the crowd to contribute information. In this paper, we
propose social and crowdsourcing factorization machines, called SCFM. Our
approach fuses social and crowd computing into the factorization machine
model. For social computing, we calculate the influence value between users
by taking users’ social information and user similarity into account. For
crowd computing, we apply LDA (Latent Dirichlet Allocation) on people re-
view to obtain sets of underlying topic probabilities. Furthermore, we impose
two important constraints called social regularization and domain inner reg-
ularization. The experimental results show that our approach outperforms
other state-of-the-art methods.
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t1. Introduction

Recommender Systems (RS) [Resnick and Varian (1997); Adomavicius
and Tuzhilin (2005)] aim to generate a list of items that may interest the
users. Collaborative filtering (CF) techniques are widely used for building
RS. Traditional CF methods can be classified into memory based and model
based methods. Memory based CF methods rely on the assumption that
similar users may have similar interests[Adomavicius and Tuzhilin (2005)],
therefore computing user-user or item-item similarity is the critical step.
Memory based CF has good result explanation, but it suffers from its in-
herent weaknesses: sparsity and cold start. The density of user-item rating
matrix for real commercial RS is usually less than 1% in practice. Nearly all
of the memory based CF algorithms can not deal with users who never rated
any item. Model based CF methods train a predefined model by adopting
machine learning techniques to obtain proper parameters to generate un-
known ratings. Since the Netflix price, the Matrix factorization (MF) [Koren
et al. (2009)] approach has been a general and effective factorization based
CF method. MF approximates the observed rating matrix by two low-rank
matrices. Andriy proposes Probabilistic Matrix Factorization(PMF)[Mnih
and Salakhutdinov (2007)] by using a probabilistic perspective on base MF.
PMF performs well on very large and sparse Netflix dataset. PMF and other
related methods [Salakhutdinov and Mnih (2008)] use the same assumption
that the user-specific and item-specific vectors are independent and identi-
cally distributed (i.i.d.). However, in social network, a user’s behavior may
influence others. For example, if a friend updates a comment ”The Star Wars
VII is a great movie” on facebook and many other friends agree with it, we
may be influenced by our friends and have a great interest in this movie.
Jiang et al. [Jiang et al. (2012)] points out that both of individual preference
and interpersonal influence have contributions on rating. Apparently, the
i.i.d. assumption between users is inappropriate for social network analysis.
With the rapid development of web2.0, online social websites and mobile
apps have produced a huge volume of social information. Incorporating this
important social information into recommender systems will definitely help
to improve recommendation quality.

Typical CF based social recommendations use rating information and
social information as inputs, therefore the general social recommendation
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framework includes a basic CF model and a social information model[Tang
et al. (2013)]. Following the classification of traditional CF methods, social
recommendation can be categorized into memory based and model based ap-
proaches. The MF related techniques are widely used in model based social
recommendation due to its flexibility and nice probabilistic interpretation
with Gaussian noise. Approaches [Ma et al. (2009, 2011); Jamali and Ester
(2010); Ma et al. (2008)] fuse MF with social information to improve rec-
ommendation accuracy. On the other hand, crowdsourcing is a new possible
way to fight the sparsity problem[Larson et al. (2013)] in RS.Outsourcing
micro-requests to the crowd, or exploiting internal user reviews as the wis-
dom of the crowd can help to improve recommendation accuracy. Intuitively,
user reviews (comments) are important for RS in rating prediction.

The main shortcoming of the existing factorization based models is that
these approaches may loss possible internal relations between users and rat-
ings when different important factors such as social information and user
reviews are considered simultaneously. In this paper, on the basis of our
previous work on SocialFM[Zhou et al. (2016)], we propose social and crowd-
sourcing factorization machines, called SCFM. The advantage of our method
is that social and crowd computing are combined to generate recommenda-
tions. For social influence, we fuse user trust value and user similarity value.
For crowdsourcing influence, we apply LDA(Latent Dirichlet Allocation)[Blei
et al. (2003)] on user reviews to obtain the latent topic probabilities.

The main contributions of this paper are:

1. Propose an improved factorization machine approach that fuses social
and crowd computing;

2. Propose social regularization and domain inner regularization to im-
prove recommendation accuracy .

The rest of the paper is organized as follows. In Section 2, we discuss
related work on trusted social recommendation, FMs related techniques and
crowd computing for recommender systems. In Section 3, we introduce the
construction of input feature vectors, describe the calculation of influence
value between users, and then present the objective function, regularization
terms and the learning algorithm. Experimental results are illustrated in
Section 4, followed by the conclusion in Section 5.
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2. Related work

2.1. Trust Related Social Recommendation

Trust information is important for social recommendation. A simple ex-
planation of trust relationship is that user a trusts in user b if a is willing
to rely on b’s activities [Mayer et al. (1995)]. In this case, a is the trustor,
b is the trustee. [Ma et al. (2009)] propose Social Trust Ensemble (RSTE)
which is a probabilistic factor analysis approach that fuses users’ prefer-
ences and their trusted friends’ interests together. [Jamali and Ester (2010)]
propose SocialMF that incorporates trust propagation mechanism into base
MF. Trust propagation is a crucial phenomenon in social network analysis
and trust-based recommendation. [Ma et al. (2011)] design two social reg-
ularization terms for model constraint. This approach treats friends with
dissimilar preferences differently in social regularization terms. [Yang et al.
(2012)] propose Circle-based recommendation (CircleCon) that focuses on
inferring category-specific social trust circles. The basic idea of CircleCon is
that a user may trust friends for only specific item categories. Three variants
of weigh value definition are presented: equal trust, expertise-based trust
and trust splitting. [Yang et al. (2013)] propose TrustMF which is a hybrid
approach that combines both of the truster model and the trustee model.
[Qian et al. (2014)] propose a PMF based approach that fuses personal inter-
est, interpersonal interest similarity and interpersonal influence into a unified
personalized recommendation model.

2.2. Factorization machines

The FM model is a generic framework that integrates the advantages
of flexible feature engineering and high-accuracy prediction of factorization
models[Rendle (2012a)]. In FMs, each rating behavior with other information
are integrated to generate a transaction described by vector x with p real-
value variables. A FM model of order d = 2 is defined as:

ŷ (x) = w0 +

p∑
j=1

wjxj +

p∑
j=1

p∑
j′=j+1

xjxj′
k∑

f=1

vj,fvj′ ,f (1)

where w0 represents the global bias, wj represents the bias factor for the j-th
variable. The pairwise interaction of vector xj and xj′ is captured by a fac-

torized parametrization
∑k

f=1 vj,fvj′ ,f instead of an independent parameter,
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where k is the number of factors. Thus, the hyperparameters Θ include:

w0 ∈ <, w ∈ <p, v ∈ <p×k. (2)

FMs can be extended to higher-order (d > 3) mode. Most of the FMs related
work merely focus on second order FMs because higher-order interactions are
hard to estimate due to sparse settings [Rendle (2010)]. FMs can mimic sev-
eral factorization models such as PITF [Rendle and Schmidt-Thieme (2010)],
SVD++ [Koren (2008a)] and BPTF [Xiong et al. (2010)], the complexity of
FMs is proven to be in linear time O(kn) because Equation 1 is equivalent
to:

ŷ (x) = w0 +

p∑
j=1

wjxj +
1

2

k∑
f=1

( p∑
j=1

vj,fxj

)2

−
p∑
j=1

vj,f
2xj

2

 (3)

Parameters θ ∈ Θ can be learned efficiently by applying alternating least-
squares (ALS)[Rendle et al. (2011)], adaptive stochastic gradient descent
(SGD)[Rendle (2012b)] and Markov Chain Monte Carlo inference inference[Freudenthaler
et al. (2011)].

FMs can model contextual information and provide context-aware rat-
ing predictions[Rendle et al. (2011)]. [Nguyen et al. (2014)] propose Gaus-
sian Process Factorization Machines (GPFM) to address the limitation of
linear combination between contextual variables for context-aware recom-
mendation. [Qiang et al. (2013)] propose Ranking FM model for Microblog
retrieval. [Rendle (2013)] proposes Scaling Factorization Machines to ad-
dress block structure problem and the proposed model speeds up compu-
tation. [Cheng et al. (2014)] propose Gradient Boosting Factorization Ma-
chines Model (GBFM) to employ gradient boosting algorithms for feature
selection. [Rendle (2012c)] adopts FMs to solve KDDCup2012 tasks: (Track
1) To predict which microblogger a user is following. (Track 2) To pre-
dict the click-through rate of ads. [Guo et al. (2016)] propose PRFM which
is a personalized ranking model incorporated with FM. [Li et al. (2016)]
propose DiFacto which is a distributed computing FM model with sparse
memory adaptive constraints and frequency adaptive regularization. [Zhou
et al. (2016)] proposes SocialFM which constructs social information domain
for FMs. The social influence propagation is estimated by taking trust value
and user similarity into account. The parameters of SocialFM can be learned
by using stochastic gradient descent (SGD) method. However, none of these
FM related works considers using crowd computation to improve recommen-
dation accuracy.
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2.3. Crowd Computing for Recommender Systems

[Felfernig et al. (2015)] introduce PeopleViews which employ human com-
putation concepts to extract recommendation knowledge in a constraint-
based recommendation environment. [Felfernig et al. (2014)] propose Rec-
Turk for constraint-based recommender application. RecTurk outsources
simple micro-tasks to persons without experiences. The ongoing work of
collecting data for PoliMovie[Nasery et al. (2015)] aims to provide a feature-
based dataset as a benchmark for recommender systems.

3. SCFM

In this section, we describe the details of our proposed SCFM model.
Section 3.1 presents input feature vector construction, section 3.2 introduces
influence value computation, section 3.3 expounds the objective function,
regularization terms and the learning algorithm. The order of SCFM is
d = 2.

3.1. Feature Vector Construction

In SCFM, rating information and social relationships are transformed into
feature vectors containing five categorical domains: user U , item I, trustee
T , other rated item RI and topic probabilities of user review TR. The user
domain U and item domain I are transformed into indicator value. SCFM
specifies domain T by taking the rating value and the influence value into
account. Domain T and RI are normalized and the sum of domain TR is
1. Domain T holds implicit influences of trustees, domain RI can be viewed
as the implicit influences of other rated items, and domain TR reflects the
probability distribution of user review in latent topics.

Here, we illustrate by a simple example. Assuming that data comes from
a movie review system. The system has user-movie rating records, user trust
information and people reviews. Let U , I be:

U = {Alice, Bob, Charlie}
I = {TItanic, Notting Hill, Star Wars, Star Trek}

The overstriking words represent abbreviated form. Observed ratings and
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trust relationships with calculated influence values are given by:

Rating Record = {{A,TI,5},{A,NH,3},{B,NH,4},{B,SW,1},
{B,ST,1},{C,SW,4},{C,ST,2},{C,TI,5}}

Trust NetWork= {{A,B,0.1},{A,C,0.4},{B,C,0.5}}
Review= {{A,TI,’The movie is great! I like it very much!’}

where tuple {A,TI,5} from the Rating Record set means user A scores item
’TI’ with the rating value of 5. Tuple {A,B,0.1} from the Trust Network set
indicates the trust relationship and the strength of trust value that A trusts
in B is 0.1. Tuple {A,B,0.1} represents user A give comment on movie ’TI’
when A rates on ’TI’. Figure 1 illustrates the constructed feature vectors x
which are the inputs for SCFM. x1 is the first transaction that Alice rates
movie Titanic on the score of 5, Alice trusts in Bob and Charlie with the
influence value of 0.2 and 0.8 respectively. Besides the film Titanic, Alice
also rated the film Notting Hill. Notice that the sum of trust users’ influence
values is 1. In RI domain, the value of a specific other rated movie is the
weight of ratings of all the other rated movies. The TR domain shows that
the comment of user A on item ’TI’ is converted to probability distribution
on latent topic 1, 2 and 3.

3.2. Influence Value Calculation

The influence value between friends is consist of two parts: trust value sa,b
and user similarity sim (a, b). In trust network, if user a trusts user b, then
sa,b = 1. We use the following formula to compute the trust value between
users:

sa,b = sa,b ×

√
d− (νb)

d+ (νa) + d− (νb)
(4)

where d+ (νa) is the outdegree of node νa, which indicates the number of
users that user a trusts. d− (νb) is the indegree of node νb, which represents
the number of users who trust user b.

For the social network viewed as an undirected graph, each node has the

same outdegree and indegree. The trust value sa,b = sb,a =
√

1
2

if user a

is user b’s friend. The trust value cannot actually reflect user b’s influence
on user a. We fuse user similarity into influence calculation together with

7
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𝟓
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0 0 0

User
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Figure 1: An example of feature vectors construction. The i − th row represents feature
vector xi with its corresponding target rating yi. The first 3 columns for domain U
represent indicator variables for the active user. The next 4 columns for domain I represent
the indicator variables for current rated items. The next 3 columns for domain T represent
trustees and their corresponding influence values. The next 4 columns for domain RI are
weighted values for other rated items. The last 3 columns for domain TR are probability
distribution on topics.

the trust value, the intuition is that trusted friends with similar tastes may
have deeper influence on each other. We apply Pearson Correlation Coef-
ficient(PCC) [Breese et al. (1998)] for similarity computing. The similarity
between user a and user b calculated by PCC method is defined as follows:

simPCC (a, b) =

∑
i∈I(a)

⋃
I(b)

(ra,i − r̄a) (rb,i − r̄b)√ ∑
i∈I(a)

⋃
I(b)

(ra,i − r̄a)2
√ ∑

i∈I(b)
⋃
I(b)

(rb,i − r̄b)2
(5)

where ra,i represents that user a rates on item i, r̄a denotes the average rating
value of user a, item i ∈ I (a)

⋃
I (b). PCC may have negative result which

reflects negative influence between users, we use the function sim(a, b) =
1
2
(simPCC(a, b) + 1) to guarantee that PCC similarity is in value interval

[0,1]. Then influence value between user a and user b is:

g (a, b) = sa,b ∗ sim (a, b) (6)

Finally, we normalize values as g (a, b) = g (a, b) /
∑

b∈C+
a
g (a, b), where

C+
a denotes user a’s trust user set.

8
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3.3. The SCFM Approach

3.3.1. The Objective Function

We define the objective function for SCFM as follows:

OPT (D,Θ) = arg min
θ

( ∑
(x,y)∈D

l (ŷ (x|θ)− y) +
∑
θ∈Θ

λθ||θ||2F

+ β
n∑
a=1

∑
b∈C+

a

k∑
f=1

(
g (a, b) ||va,f − vb,f ||2F

)
+ α

p∑
j=1

k∑
f=1

||vj,f − vj′ ,f ||
2

F
)

)
(7)

where j′ 6= j, j and j′ are in the same domain position in U and T , or I and
RI. D represents all training data, Θ represents hyperparameters. n is the
number of users, k is the number of factors, p is the variable number of the
vector x, || · ||2F denotes the Frobenius norm, g (a, b) is the influence value, C+

a

is user a’s trust user set, the superscript means the profile in corresponding
domain. λθ is the regularization parameter to avoid overfitting. The regu-
larization structure of λθ is : λ0 for w0, λ

j
w for wj, λ

f
v,j, where j ∈ {1, ..., p},

f ∈ {1, ..., k}.
For feature vectors, since we extend trusted users domain and calculate

influence values, we add two important regularization terms: social regu-
larization and domain inner connection regularization. For social regular-
ization, under the assumption that a user’s preference is close to his simi-
lar trustees, we impose the constraint to differently calculate influences for
users’ trustees and for other active users. The social regularization term
handles the situation if user a and his trustee b have completely different
preferences. In this case, the calculated result of small influence value be-
tween user a and b will have little effect on objective function, so if we
simply compute

∑n
a=1

∑k
f=1 ||va,f −

∑
b∈C+

a
sa,bvb,f ||2F , it may lose informa-

tion when users’ trustees have diverse interests. We adpot the regularization
term

∑n
a=1

∑
b∈C+

a

∑k
f=1

(
g (a, b) ||va,f − vb,f ||2F

)
and we employ parameter β

as the weight factor. The regularization for domain inner connection handles
the situation that input feature vectors are highly similar. In this case, input
feature vectors constructed from the same user hold very similar domains. To
alleviate this problem, we use the penalty term

∑p
j=1

∑k
f=1 ||vj,f − vj′ ,f ||

2

F
,

parameter α is the weight factor. It should be noticed that a better way

9
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of measuring user similarity is to use the cosine similarity, which, however,
would lead to difficulties in partial derivative calculation. Therefore we utilize
distance measure instead.

3.3.2. The Learning Algorithm

We use a stochastic gradient descent(SGD) algorithm to optimize our ob-
jective function. The objective function is convex and the SGD algorithm
is an efficient method to optimize factorization models for its low computa-
tional and storage complexity. The model parameters we need to estimate
are Θ = (w0,w,v), where w0 ∈ <,w ∈ <p,v ∈ <p×k. The update rules for
parameters are as follows:

w0 ← w0 − η
(

∂

∂w0

l (ŷ (x|θ) , y) + 2λ0w0

)
(8)

wj ← wj − η
(

∂

∂wj
l (ŷ (x|θ) , y) + 2λwwj

)
, j ∈ [1, ..., p] (9)

When updating vj,f , there are two different situations. In the first situa-
tion, for active user a, we need to calculate two terms, one is the difference
between a and his trustees C+

a , the other one is the difference between a and
his trustors C−a . The update rule of vj,f is as equation (10).

vj,f ← vj,f−η
(

∂

∂vj,f
l (ŷ (x|θ) , y) + 2λvvj,f

+ 2β

( ∑
b∈C+

a

g (a, b)
(
va,f − vb,f

)
+
∑
b∈C−a

g (b, a)
(
va,f − vb,f

))

+ 2α
(
va,f − va′,f

))
(10)

Where a′ 6= a. In the second situation, if vector xj and xj′ are both from
user a’s rating transaction, vj,f is updated by:

vj,f ← vj,f − η
(

∂

∂vj,f
l (ŷ (x|θ) , y) + 2λvvj,f + 2α

(
vj,f − vj′ ,f

))
(11)

10
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Where j′ 6= j. j and j′ are in the same domain position in U and T , or I
and RI. Algorithm1 describes the details.

Algorithm 1 Learning Algorithm for SCFM
Input:

Feature vector x with rating value y from training data D, Regulariza-
tion parameters λθ, learning rate η, weight factors α and β, initialization
parameter σ

Output:
Model parameters Θ = (w0,w,v)
w0 ← 0; w← (0, ..., 0); v ∼ N (0, σ) ;
repeat

for (x, y) ∈ D do
update w0 by equation (8).
for j ∈ [1, ..., p] ∧ xj 6= 0 do

update wj by equation (9).
for f ∈ [1, ..., k] do

if j ∈ domain U and active user is a then
update vj,f by equation (10).

else
update vj,f by equation (11).

end if
end for

end for
end for

until stopping criterion is met

3.3.3. Computational Complexity

For input vectors that have the same domain U , for example, from the
rating transaction of active user a, we need to calculate all the dissimilarities
between user a and his trustees in set C+

a and the differences between a and
his trustors in set C−a . In each step of the learning process, users’ feature
vectors v are updated by the result of influence value from their trustees and
trustors, which can be viewed as an influence propagation process. When
the objective function converges during the learning phase, the propagation
of influences will reach a harmonic status.

11
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Table 1: Description of Test Datasets with Basic Meta

Dataset Users Items Ratings Social Review Density

FilmTrust 1508 2071 35497 1853 - 1.13%
Epinions 1809 2000 12057 23090 - 0.33%
CiaoDVD 973 1197 17604 4221 - 1.51%

Musical In-
struments

900 1429 10261 - 10261 0.79%

Automotive 1835 2928 20473 - 20473 0.38%
Instant

Video
1685 5130 37126 - 37126 0.42%

Yelp 2000 1699 3103 5223 3103 0.09%

Vectors x constructed from real-word transaction data are very sparse,
the FM related models are efficient because most of the elements are zero.
For SCFM, the computational complexity of evaluating each predicted rating
is O (km̄), where m̄ (x) is the average value of m(x) for x∈ all transactions.
The computational complexity of parameter learning is O (|Cu|), where |Cu|
is the average number of trustees and trustors for all users.

4. EXPERIMENT

4.1. Datasets

We test the SCFM model on three different groups of datasets, which
are shown in the Table 1. Group one contains FilmTrust, Epinions and
CiaoDVD. FilmTrust and CiaoDVD datasets are taken from www.librec.net/datasets.html.
The Epinions dataset are selected from www.trustlet.org/wiki/Epinions. Group
two contains selected Amazon review datasets of Musical Instruments, Au-
tomotive and Instant Video from http://jmcauley.ucsd.edu/data/amazon/.
Group three is the selected data from Yelp Dataset Challenge. Datasets in
group one contain social information, datasets in group two contain review
information, dataset in group three contains both social and review informa-
tion.

4.2. Metrics

We apply two popular metrics to evaluate the prediction quality: Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE). The metrics

12
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are defined as:

MAE =

∑
i,j |ri,j − ˆri,j|

N
, RMSE =

√∑
i,j (ri,j − ˆri,j)

2

N
(12)

Where ri,j is the observed rating value that user u rates on item i in the
validation set, ˆri,j is the predicted rating value that user u rates on unknown
item i. N is the total number of ratings in the validation set. Smaller values
of MAE and RMSE represent better performance.

4.3. Experimental Result Comparison

4.3.1. Baseline Approaches

We adopt two different groups of baseline approaches. The approaches in
the first group are traditional collaborative filtering algorithms that do not
utilize social or crowd information.

• BiasedMF [Koren (2008b)]: this method is a baseline estimate that
fuses the global average and observed deviations of a specific user and
a certain item.

• PMF [Mnih and Salakhutdinov (2007)]: this method is a well-known
baseline. PMF models the Base MF method from a probabilistic per-
spective.

• BPMF [Salakhutdinov and Mnih (2008)]: this method presents a fully
Bayesian treatment of the PMF model and BPMF is trained by using
Markov chain Monte Carlo (MCMC) method.

• SVD++ [Koren (2008b)]: this method is another well-known baseline.
SVD++ is an extension of SVD-based latent factor models that inte-
grates implicit feedback into the model.

The methods in the second group are social-related algorithms that fully
consider social and trust information between users.

• RSTE [Ma et al. (2009)]: this method combines MF and social analysis
together with the notion that the predicted rating of user u on item i
should reflect the preferences of u himself and u’s trustees.

13
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• SoRec [Ma et al. (2008)]: this method fuses users’ social network in-
formation into the user-item rating matrix and solves the problem by
using PMF.

• SocialMF [Jamali and Ester (2010)]: this method incorporates trust
propagation into base MF approach.

• SoReg [Ma et al. (2011)]: this method proposes social regularizations
to constrain the objective function.

• TrustMF [Yang et al. (2013)]: this method proposes a hybrid model
that combines the trustor model and the trustee model from the per-
spectives of trustors and trustees.

4.3.2. Results Comparison

For each experiment, we use a 5-fold cross-validation method and take
the mean as the final result. The proportion of the training set is 80%, and
the rest 20% is for validation set. We adopt a grid search strategy to find
optimal parameters for test algorithms.

Table 2 describes the comparison of SCFM and other baseline algorithms
performed on FilmTrust, Epinions and CiaoDVD dataset. The three test
datasets contain social information without review information, so the TR
domain in SCFM is excluded. For SCFM, we set λ0 = −0.01, λw = −0.0001
and λv,f = 0.01, learning rate η = 0.003 and the number of factor is 5.
Parameters α = β = 0.1. We observe that, compared with the best baseline
algorithm outputs, SCFM improves 4.3% for MAE and 1.9% for RMSE on
the average.

Table 3 describes the comparison of SCFM and other baseline algorithms
performed in Amazon Musical Instruments, Amazon Automotive and Ama-
zon Instant Video dataset. The three test datasets contain review informa-
tion without social information, so the T domain in SCFM is excluded and
the objective function of SCFM is as equation(13),

OPT (D,Θ) = arg min
θ

( ∑
(x,y)∈D

l (ŷ (x|θ)− y) +
∑
θ∈Θ

λθ||θ||2F

+ α

p∑
j=1

k∑
f=1

||vj,f − vj′ ,f ||
2

F
)

) (13)
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Table 2: Baseline Algorithm Comparison I

MAE RSTE SoRec SocialMFSoReg TrustMF SCFM

FilmTrust 0.630 0.631 0.638 0.672 0.627 0.605
Epinions 0.889 0.879 0.858 0.955 0.856 0.815
CiaoDVD 0.849 0.745 0.821 0.730 0.737 0.695

RMSE RSTE SoRec SocialMFSoReg TrustMF SCFM

FilmTrust 0.811 0.812 0.837 0.878 0.808 0.798
Epinions 1.118 1.115 1.091 1.213 1.106 1.055
CiaoDVD 1.053 0.973 1.042 0.969 0.946 0.931

Table 3: Baseline Algorithm Comparison II

MAE BiasedMFPMF BPMF SVD++ SCFM

Musical
Instruments

0.621 0.890 0.694 0.629 0.586

Automotive 0.626 0.896 0.703 0.630 0.622
Instant Video 0.707 0.909 0.804 0.721 0.657

RMSE BiasedMFPMF BPMF SVD++ SCFM

Musical
Instruments

0.876 1.165 0.989 0.874 0.827

Automotive 0.894 1.171 1.025 0.896 0.857
Instant Video 0.961 1.197 1.126 0.963 0.888

We set parameters as follows, λ0 = 0.01, λw = 0.01 and λv,f = 0.01, learning
rate η = 0.001, α = 0.1, the number of factor is 5 and the number of latent
topic is 10. We can observe that SCFM improves 4.7% for MAE and 5.6%
for RMSE on the average.

Figure 2 illustrates the algorithms performed on Yelp dataset, the x-
axis represents algorithms. Note that we evaluate SCFM in different forms.
SCFM(n) represents SCFM without social and review term, then SCFM
turns to be basic FM model. SCFM(s) represents SCFM with social domain
only and SCFM(r) represents SCFM with review domain only. The best
results of MAE and RMSE achieved from baseline algorithms are 0.993 and
1.222. SCFM achieves 0.909 on MAE and 1.138 on RMSE, which makes
improvement by 8% on MAE and 6.8% on RMSE. The parameters are set as

15
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follows, λ0 = −0.01, λw = −0.0001 and λv,f = 0.01, learning rate η = 0.003,
α = β = 0.1, the number of factor is 5 and the number of latent topic
is 10. We notice that the test Yelp dataset is very sparse, each user rates
1.55 on the average and each item is rated for 1.82 times, the utilization
of social and review information can greatly improve rating accuracy. We
can also find that review information contributes more on rating prediction
compared with social information, and the combination of social and review
information achieves the best result.

BiasedMF PMF BPMF SVD++ RSTE SoRec SocialMF SoReg TrustMF SCFM(n) SCFM(s) SCFM(r) SCFM 
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

MAE
RMSE

Figure 2: Baseline Algorithm Comparison III

Figure 3 describes the impact of topics. We test on Yelp and Amazon
Musical Instrumental datasets. Considering that reviews are short comments
and the average number of words per comment is about 80, we set the maxi-
mum number of topics as 20. For Yelp dataset, MAE and RMSE decrease as
the number of topics increases. For Amazon Musical Instrumental dataset,
MAE and RMSE fluctuate as the number of topics increases. It needs to
be mentioned that the computation complexity rises if the number of topics
increases. We investigate the relationship between accuracy and efficiency
on Yelp dataset. We find that SCFM improves 13.7% for MAE and 6.5% for
RMSE compared with base FM model, but the time consumption of SCFM
is 2.6 times than that of base FM. It is easy to understand because the com-
putational complexity of SCFM expands with the increase of input vector
dimension. How to balance accuracy and efficiency is a problem needs to be
studied in future work.

In the regularization term of SCFM, parameter α controls the weight of
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inner relationship of domains and parameter β controls the weight of social
information, figure 4 illustrates the impact of α and β in FilmTrust datasets.
Both of MAE and RMSE perform best when α = 0.1 and β = 0.1. The
results of MAE and RMSE have no obvious fluctuation with the wide change
of α and β.

Figure 5 illustrates the performance of RMSE and MAE when the number
of factors f changes on FilmTrust dataset. When all the other parameters
are fixed, we can observe that we can get the best result when f = 10.

#topic=5 #topic=10 #topic=15 #topic=20
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0.85
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1.05

1.1

1.15

1.2

MAE
RMSE

(a) Yelp

#topic=5 #topic=10 #topic=15 #topic=20
0.5

0.55

0.6

0.65

0.7
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0.8

0.85

0.9

MAE
RMSE

(b) Amazon Musical Instruments

Figure 3: Impact of topics
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Figure 4: Impact of parameter α and β in FilmTrust
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Figure 5: Performance on FilmTrust with different value of f

4.3.3. Time Cost

We run our python code on the PC with the Intel i7-6700 CPU and 8
GB memory. When the SCFM learning algorithm achieves the best MAE
and RMSE results, the time cost on the Epinions dataset which has the most
social connections is 587 seconds, the time cost on the Amazon Instant Video
dataset which has the most review contents is 337 seconds, and the time
cost on the Yelp dataset which has both social and review information is 32
seconds. It is clear that the social factor has great impact on computational
complexity.
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5. Conclusion

In this paper, we propose SCFM which is an improved factorization ma-
chine model combining social and crowd information. SCFM constructs in-
put feature vectors by five domains: user, item, trustee, other rated items
and topic. The proposed method can take advantage of social and crowd
information to efficiently estimate interactions between categorical variables.
SCFM can simulate typical characteristics of social network by calculating
the influence between users, and apply LDA to obtain underlying topic prob-
abilities. We impose the social regularization to handle the situation that
trusted users have complete different preferences, and we build inner regular-
ization to alleviate the situation that input vectors are highly similar. The
experimental results show that our method is flexible and outperforms the
state-of-the-art algorithms. However, the SCFM model has its limitations.
SCFM cannot deal with cold start problem. Another shortcoming is that
the SCFM approach lacks a mechanism for dealing with large-scale data.
Future work may focus on the following aspects. First, we consider to design
a mechanism to deal with new user and item situation. One idea is that we
can choose a few representative users and items, then a new user or item can
be expressed by representative users or items using randomly given weight
value. Second, we consider to design a distributed algorithm for SCFM to
solve the bottleneck concerning large-scale data. Last, we consider to adopt
more semantic analysis methods on user review information. Since review
information plays an important role in making recommendation, we would
try to investigate the inner connection between review and rating to make
the recommendation results explainable.
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Highlights 

1. This paper proposes an improved factorization machine approach called SCFM for 

rating prediction in the recommender system. 

2. The SCFM approach fuses social and crowd computing, and also applies social 

regularization and domain inner regularization.  

3. To evaluate the performance of SCFM, a series of experiments have been conducted 

on different types of datasets, and the results are encouraging.  
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