1,076 research outputs found

    Task-related modulation of anterior theta and posterior alpha EEG reflects top-down preparation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prestimulus EEG alpha activity in humans has been considered to reflect ongoing top-down preparation for the performance of subsequent tasks. Since theta oscillations may be related to poststimulus top-down processing, we investigated whether prestimulus EEG theta activity also reflects top-down cognitive preparation for a stimulus.</p> <p>Results</p> <p>We recorded EEG data from 15 healthy controls performing a color and shape discrimination task, and used the wavelet transformation to investigate the time course and power of oscillatory activity in the signals. We observed a relationship between both anterior theta and posterior alpha power in the prestimulus period and the type of subsequent task.</p> <p>Conclusions</p> <p>Since task-differences were reflected in both theta and alpha activities prior to stimulus onset, both prestimulus theta (particularly around the anterior region) and prestimulus alpha (particularly around the posterior region) activities may reflect prestimulus top-down preparation for the performance of subsequent tasks.</p

    Neural oscillatory signatures of auditory and audiovisual illusions

    Get PDF
    Questions of the relationship between human perception and brain activity can be approached from different perspectives: in the first, the brain is mainly regarded as a recipient and processor of sensory data. The corresponding research objective is to establish mappings of neural activity patterns and external stimuli. Alternatively, the brain can be regarded as a self-organized dynamical system, whose constantly changing state affects how incoming sensory signals are processed and perceived. The research reported in this thesis can chiefly be located in the second framework, and investigates the relationship between oscillatory brain activity and the perception of ambiguous stimuli. Oscillations are here considered as a mechanism for the formation of transient neural assemblies, which allows efficient information transfer. While the relevance of activity in distinct frequency bands for auditory and audiovisual perception is well established, different functional architectures of sensory integration can be derived from the literature. This dissertation therefore aims to further clarify the role of oscillatory activity in the integration of sensory signals towards unified perceptual objects, using illusion paradigms as tools of study. In study 1, we investigate the role of low frequency power modulations and phase alignment in auditory object formation. We provide evidence that auditory restoration is associated with a power reduction, while the registration of an additional object is reflected by an increase in phase locking. In study 2, we analyze oscillatory power as a predictor of auditory influence on visual perception in the sound-induced flash illusion. We find that increased beta-/ gamma-band power over occipitotemporal electrodes shortly before stimulus onset predicts the illusion, suggesting a facilitation of processing in polymodal circuits. In study 3, we address the question of whether visual influence on auditory perception in the ventriloquist illusion is reflected in primary sensory or higher-order areas. We establish an association between reduced theta-band power in mediofrontal areas and the occurrence of illusion, which indicates a top-down influence on sensory decision-making. These findings broaden our understanding of the functional relevance of neural oscillations by showing that different processing modes, which are reflected in specific spatiotemporal activity patterns, operate in different instances of sensory integration.Fragen nach dem Zusammenhang zwischen menschlicher Wahrnehmung und HirnaktivitĂ€t können aus verschiedenen Perspektiven adressiert werden: in der einen wird das Gehirn hauptsĂ€chlich als EmpfĂ€nger und Verarbeiter von sensorischen Daten angesehen. Das entsprechende Forschungsziel wĂ€re eine Zuordnung von neuronalen AktivitĂ€tsmustern zu externen Reizen. Dieser Sichtweise gegenĂŒber steht ein Ansatz, der das Gehirn als selbstorganisiertes dynamisches System begreift, dessen sich stĂ€ndig verĂ€ndernder Zustand die Verarbeitung und Wahrnehmung von sensorischen Signalen beeinflusst. Die Arbeiten, die in dieser Dissertation zusammengefasst sind, können vor allem in der zweitgenannten Forschungsrichtung verortet werden, und untersuchen den Zusammenhang zwischen oszillatorischer HirnaktivitĂ€t und der Wahrnehmung von mehrdeutigen Stimuli. Oszillationen werden hier als ein Mechanismus fĂŒr die Formation von transienten neuronalen ZusammenschlĂŒssen angesehen, der effizienten Informationstransfer ermöglicht. Obwohl die Relevanz von AktivitĂ€t in verschiedenen FrequenzbĂ€ndern fĂŒr auditorische und audiovisuelle Wahrnehmung gut belegt ist, können verschiedene funktionelle Architekturen der sensorischen Integration aus der Literatur abgeleitet werden. Das Ziel dieser Dissertation ist deshalb eine PrĂ€zisierung der Rolle oszillatorischer AktivitĂ€t bei der Integration von sensorischen Signalen zu einheitlichen Wahrnehmungsobjekten mittels der Nutzung von Illusionsparadigmen. In der ersten Studie untersuchen wir die Rolle von Leistung und Phasenanpassung in niedrigen FrequenzbĂ€ndern bei der Formation von auditorischen Objekten. Wir zeigen, dass die Wiederherstellung von Tönen mit einer Reduktion der Leistung zusammenhĂ€ngt, wĂ€hrend die Registrierung eines zusĂ€tzlichen Objekts durch einen erhöhten Phasenangleich widergespiegelt wird. In der zweiten Studie analysieren wir oszillatorische Leistung als PrĂ€diktor von auditorischem Einfluss auf visuelle Wahrnehmung in der sound-induced flash illusion. Wir stellen fest, dass erhöhte Beta-/Gamma-Band Leistung ĂŒber occipitotemporalen Elektroden kurz vor der Reizdarbietung das Auftreten der Illusion vorhersagt, was auf eine BegĂŒnstigung der Verarbeitung in polymodalen Arealen hinweist. In der dritten Studie widmen wir uns der Frage, ob ein visueller Einfluss auf auditorische Wahrnehmung in der ventriloquist illusion sich in primĂ€ren sensorischen oder ĂŒbergeordneten Arealen widerspiegelt. Wir weisen einen Zusammenhang von reduzierter Theta-Band Leistung in mediofrontalen Arealen und dem Auftreten der Illusion nach, was einen top-down Einfluss auf sensorische Entscheidungsprozesse anzeigt. Diese Befunde erweitern unser VerstĂ€ndnis der funktionellen Bedeutung neuronaler Oszillationen, indem sie aufzeigen, dass verschiedene Verarbeitungsmodi, die sich in spezifischen rĂ€umlich-zeitlichen AktivitĂ€tsmustern spiegeln, in verschiedenen PhĂ€nomenen von sensorischer Integration wirksam sind

    Phase of Spontaneous Slow Oscillations during Sleep Influences Memory-Related Processing of Auditory Cues.

    Get PDF
    UNLABELLED: Slow oscillations during slow-wave sleep (SWS) may facilitate memory consolidation by regulating interactions between hippocampal and cortical networks. Slow oscillations appear as high-amplitude, synchronized EEG activity, corresponding to upstates of neuronal depolarization and downstates of hyperpolarization. Memory reactivations occur spontaneously during SWS, and can also be induced by presenting learning-related cues associated with a prior learning episode during sleep. This technique, targeted memory reactivation (TMR), selectively enhances memory consolidation. Given that memory reactivation is thought to occur preferentially during the slow-oscillation upstate, we hypothesized that TMR stimulation effects would depend on the phase of the slow oscillation. Participants learned arbitrary spatial locations for objects that were each paired with a characteristic sound (eg, cat-meow). Then, during SWS periods of an afternoon nap, one-half of the sounds were presented at low intensity. When object location memory was subsequently tested, recall accuracy was significantly better for those objects cued during sleep. We report here for the first time that this memory benefit was predicted by slow-wave phase at the time of stimulation. For cued objects, location memories were categorized according to amount of forgetting from pre- to post-nap. Conditions of high versus low forgetting corresponded to stimulation timing at different slow-oscillation phases, suggesting that learning-related stimuli were more likely to be processed and trigger memory reactivation when they occurred at the optimal phase of a slow oscillation. These findings provide insight into mechanisms of memory reactivation during sleep, supporting the idea that reactivation is most likely during cortical upstates. SIGNIFICANCE STATEMENT: Slow-wave sleep (SWS) is characterized by synchronized neural activity alternating between active upstates and quiet downstates. The slow-oscillation upstates are thought to provide a window of opportunity for memory consolidation, particularly conducive to cortical plasticity. Recent evidence shows that sensory cues associated with previous learning can be delivered subtly during SWS to selectively enhance memory consolidation. Our results demonstrate that this behavioral benefit is predicted by slow-oscillation phase at stimulus presentation time. Cues associated with high versus low forgetting based on analysis of subsequent recall performance were delivered at opposite slow-oscillation phases. These results provide evidence of an optimal slow-oscillation phase for memory consolidation during sleep, supporting the idea that memory processing occurs preferentially during cortical upstates

    Analytical methods and experimental approaches for electrophysiological studies of brain oscillations

    Get PDF
    Brain oscillations are increasingly the subject of electrophysiological studies probing their role in the functioning and dysfunction of the human brain. In recent years this research area has seen rapid and significant changes in the experimental approaches and analysis methods. This article reviews these developments and provides a structured overview of experimental approaches, spectral analysis techniques and methods to establish relationships between brain oscillations and behaviour

    Beta-Band Activity Is a Signature of Statistical Learning

    Get PDF
    First published August 21, 2020.Through statistical learning (SL), cognitive systems may discover the underlying regularities in the environment. Testing human adults (n = 35, 21 females), we document, in the context of a classical visual SL task, divergent rhythmic EEG activity in the interstimulus delay periods within patterns versus between patterns (i.e., pattern transitions). Our findings reveal increased oscillatory activity in the beta band (;20 Hz) at triplet transitions that indexes learning: it emerges with increased pattern repetitions; and importantly, it is highly correlated with behavioral learning outcomes. These findings hold the promise of converging on an online measure of learning regularities and provide important theoretical insights regarding the mechanisms of SL and predictionThis work was supported by ERC Advanced Grant Project 692502-L2STAT to R.F., Marie SkƂodowska-Curie Grant 743528 (IF-EF, European Union’s Horizon 2020 Research and Innovation Program) to L.B., the Basque Government BERC 2018-2021 program, and the Spanish State Research Agency BCBL Severo Ochoa excellence accreditation SEV-2015-0490

    Frequency shifts and depth dependence of premotor beta band activity during perceptual decision-making

    Get PDF
    Neural activity in the premotor and motor cortices shows prominent structure in the beta frequency range (13–30 Hz). Currently, the behavioral relevance of this beta band activity (BBA) is debated. The underlying source of motor BBA and how it changes as a function of cortical depth are also not completely understood. Here, we addressed these unresolved questions by investigating BBA recorded using laminar electrodes in the dorsal premotor cortex of 2 male rhesus macaques performing a visual reaction time (RT) reach discrimination task. We observed robust BBA before and after the onset of the visual stimulus but not during the arm movement. While poststimulus BBA was positively correlated with RT throughout the beta frequency range, prestimulus correlation varied by frequency. Low beta frequencies (∌12–20 Hz) were positively correlated with RT, and high beta frequencies (∌22–30 Hz) were negatively correlated with RT. Analysis and simulations suggested that these frequency-dependent correlations could emerge due to a shift in the component frequencies of the prestimulus BBA as a function of RT, such that faster RTs are accompanied by greater power in high beta frequencies. We also observed a laminar dependence of BBA, with deeper electrodes demonstrating stronger power in low beta frequencies both prestimulus and poststimulus. The heterogeneous nature of BBA and the changing relationship between BBA and RT in different task epochs may be a sign of the differential network dynamics involved in cue expectation, decision-making, motor preparation, and movement execution.Published versio

    Emotion attribution and memory in the ageing brain

    Get PDF
    Episodic memory is influenced by emotions and ageing. While emotional events elicit superior memory than neutral ones, older adults (OA) are better in shifting the valence of an episode to make it more positive. This thesis investigated the interaction between episodic memory, emotion and ageing using behavioural and event-related potentials measures. The first aim was to identify which steps in the memory process are affected by emotion and ageing. Experiment 1 showed that emotion influences encoding, and ageing influences retrieval. Experiment 2 showed that prestimulus encoding-related activity is influenced by the time available to process the upcoming emotional stimulus, suggesting that preparatory activity is a flexible, but effortful mechanism. The second aim was to use a novel evaluative conditioning procedure to investigate how neutral information acquires emotional valence and is encoded and retrieved by younger adults (YA) and OA. Participants created emotional or neutral sentences with neutral words and completed memory and likeability tasks. Experiments 3 and 4 revealed that spontaneous emotion attribution is influenced by personality traits and elicits stronger likeability changes than forced attribution. Experiments 5 and 6 showed that YA and OA can change their feelings about neutral information by attributing positive emotions. The likeability changes survive a one-week delay and are related to source memory for the attributed emotion. Experiment 7 showed that retrieval of positive emotions elicited brain activity usually related to imagery. In conclusion, emotion attribution and its relationship with memory are preserved in OA, being affected by spontaneity and individual differences. The link between likeability changes and memory may be related to the use of imagery. This thesis enhances the understanding of how episodic memory and its brain correlates are influenced by ageing when the to-be-retrieved information is intrinsically emotional or has acquired emotionality

    From rest to task

    Get PDF
    A primary goal of neuroscience research on psychiatric disorders such as schizophrenia is to enhance the current understanding of underlying biological mechanisms in order to develop novel interventions. Human brain functions are maintained through activity of large-scale brain networks. Accordingly, deficient perceptual and cognitive processing can be caused by failures of functional integration within networks, as reflected by the disconnection hypothesis of schizophrenia. Various neuroimaging techniques can be applied to study functional brain networks, each having different strengths. Frequently used complementary methods are the electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), which were shown to have a common basis. Given the feasibility of combined EEG and fMRI measurement, EEG signatures of functional networks have been described, providing complimentary information about the functional state of networks. Both at rest and during task completion, many independent EEG and fMRI studies confirmed deficient network connectivity in schizophrenia. However, a rather diffuse picture with hyper- and hypo- activations within and between specific networks was reported. Furthermore, the theory of state dependent information processing argues that spontaneous and prestimulus brain activity interacts with upcoming task-related processes. Consequently, observed network deficits that vary according to task conditions could be caused by differences in resting or prestimulus state in schizophrenia. Based on that background, the present thesis aimed to increase the understanding of aberrant functional networks in schizophrenia by using simultaneous EEG-fMRI under different conditions. One study investigated integrative mechanisms of networks during eyes-open (EO) resting state using a common-phase synchronization measure in an EEG-informed fMRI analysis (study 3). The other two studies (studies 1&2) used an fMRI-informed EEG analysis: The second study was an extension of the first, which was performed in healthy subjects only. Hence, the same methodologies and analyses were applied in both studies, but in the second study schizophrenia patients were compared to healthy controls. The associations between four temporally coherent networks (TCNs) – the default mode network (DMN), the dorsal attention network (dAN), left and right working memory networks (WMNs) – and power of three EEG frequency bands (theta, alpha, and beta band) during a verbal working memory (WM) task were investigated. Both resting state and task-related studies performed in schizophrenia patients (studies 2&3) revealed altered activation strength, functional states and interaction of TCNs, especially of the DMN. During rest (study 3), the DMN was differently integrated through common-phase synchronization in the delta (0.5 – 3.5Hz) and beta (13 – 30Hz) band. At prestimulus states of a verbal WM task, however, study 2 did not reveal differences in the activation level of the DMN between groups. Furthermore, from pre-to-post stimulus, the association of the DMN with frontal-midline (FM) theta (3 – 7Hz) band was altered, and a reduced suppression of the DMN during WM retention was detected. Schizophrenia patients also demonstrated abnormal interactions between networks: the DMN and dAN showed a reduced anti-correlation and the WMNs demonstrated an absent lateralization effect (study 2). The view that schizophrenia patients display TCN deficiencies is supported by the results of the present thesis. Especially the DMN and its interaction to the task-positive dAN showed specific alterations at different mental states and their interaction (during rest and from pre-to-post stimulus). Those alterations might at least partly explain observed symptomatology as attentional orientation deficits in patients. To conclude, functional networks as the DMN might represent promising targets for novel treatment options such as neurofeedback or transcranial direct current stimulation (tDCS)
    • 

    corecore