
Original Citation:

Cross-frequency phase-amplitude coupling as a mechanism for temporal orienting of attention in
childhood

MIT Press Journals
Publisher:

Published version:
DOI:

Terms of use:
Open Access

(Article begins on next page)

This article is made available under terms and conditions applicable to Open Access Guidelines, as described at
http://www.unipd.it/download/file/fid/55401 (Italian only)

Availability:
This version is available at: 11577/3265695 since: 2018-03-28T14:17:01Z

10.1162/jocn_a_01223

Università degli Studi di Padova

Padua Research Archive - Institutional Repository

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Padova

https://core.ac.uk/display/154330931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Cross-frequency Phase–Amplitude Coupling as a
Mechanism for Temporal Orienting of

Attention in Childhood

Giovanni Mento1, Duncan E. Astle2, and Gaia Scerif 3

Abstract

■ Temporal orienting of attention operates by biasing the allo-
cation of cognitive and motor resources in specific moments in
time, resulting in the improved processing of information from
expected compared with unexpected targets. Recent findings
have shown that temporal orienting operates relatively early
across development, suggesting that this attentional mechanism
plays a core role for human cognition. However, the exact neu-
rophysiological mechanisms allowing children to attune their
attention over time are not well understood. In this study, we
presented 8- to 12-year-old children with a temporal cueing task
designed to test (1) whether anticipatory oscillatory dynamics
predict children’s behavioral performance on a trial-by-trial basis

and (2) whether anticipatory oscillatory neural activity may be
supported by cross-frequency phase–amplitude coupling as pre-
viously shown in adults. Crucially, we found that, similar to what
has been reported in adults, children’s ongoing beta rhythm was
strongly coupled with their theta rhythm and that the strength of
this coupling distinguished validly cued temporal intervals, rela-
tive to neutral cued trials. In addition, in long trials, there was an
inverse correlation between oscillatory beta power and chil-
dren’s trial-by-trial reaction, consistent with oscillatory beta
power reflecting better response preparation. These findings
provide the first experimental evidence that temporal attention
in children operates by exploiting oscillatory mechanism. ■

INTRODUCTION

The Neural Underpinnings of Temporal Orienting
in Adults

The ability to selectively allocate attention in time (i.e.,
temporal orienting [TO]) plays an essential role in the
proactive regulation of human behavior (Nobre, 2001).
Specifically, using external environmental cues to estab-
lish temporal expectancy toward upcoming events repre-
sents an important gating mechanism that enables us to
prioritize relevant stimuli (Correa, 2010; Nobre, 2001).
This results in the improved processing of information
from expected compared with unexpected targets. This
is evidenced by faster RTs and increased perceptual ac-
curacy for expected versus neutrally or invalidly cued
targets (Correa, 2010). High temporal resolution neuro-
imaging techniques, like ERPs, have elucidated the brain
dynamics, which unfold during the anticipatory allocation
of cognitive and motor resources. Generally, these stud-
ies show that anticipatory brain activity varies as a func-
tion of subjective temporal expectation (Kononowicz &
Penney, 2016). In particular, the contingent negative
variation (CNV) is a reliable anticipatory ERP signature
reflecting temporal expectancy (Mento, 2013, 2017; Mento,

Tarantino, Sarlo, & Bisiacchi, 2013; Capizzi, Sanabria, &
Correa, 2012; Kononowicz & van Rijn, 2011; van Rijn,
Kononowicz, Meck, Ng, & Penney, 2011; Trillenberg,
Verleger, Wascher, Wauschkuhn, & Wessel, 2000; Miniussi,
Wilding, Coull, & Nobre, 1999) and correlates with both
temporal predictability of events and with behavioral per-
formance in terms of RT speed (Mento, Tarantino, Vallesi,
& Bisiacchi, 2015).

More recently, there has been an increasing interest in
understanding the role of neural oscillations in temporal
processing (Kononowicz & van Wassenhove, 2016). The
advantage of using oscillatory EEG to investigate TO is
that it captures ongoing neural processes that are missed
by the averaging across trials and collapsing across
frequencies bands, as is usually the case in event-related
analyses. When anticipating lateralized visual stimuli,
both the alpha-band activity in visual areas and beta-band
activity in motor areas is increased ipsilaterally and de-
creased controlaterally to the expected side of stimulus
presentation (Cravo, Rohenkohl, Wyart, & Nobre, 2011;
Thut, Nietzel, Brandt, & Pascual-Leone, 2006; Sauseng,
Klimesch, Schabus, & Doppelmayr, 2005). These effects
correspond to specific outcomes in participant’s perfor-
mance, being inversely related to perceptual detectability
(Romei, Gross, & Thut, 2010; Ergenoglu et al., 2004), dis-
criminability (van Dijk, Schoffelen, Oostenveld, & Jensen,
2008), and speed of visual and motor processing (Zhang,
Wang, Bressler, Chen, & Ding, 2008). Remarkably, this
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effect seems to be cross-modal, given that similar oscilla-
tory patterns have been reported also when anticipating
tactile (van Ede, de Lange, Jensen, & Maris, 2011) and
auditory (Todorovic, Schoffelen, van Ede, Maris, & de
Lange, 2015) expected stimuli. One possibility is that
the modulation of oscillatory activity preceding expected
events reflects a general rather than a modality-specific
anticipatory allocation of attentional resources.

Different frequency oscillations should not be consid-
ered as distinct, unrelated signals, but rather as different
hierarchical levels of neuronal coupling, that can be inte-
grated to organize and coordinate neural activity across
different spatial and temporal scales. It has been pro-
posed that the nested activity of different frequency
bands may represent a reliable neurophysiological mech-
anism underpinning complex behaviors such as those
implying the hierarchical coordination of different com-
putational processes, such as executive control and visual
memory (Sauseng et al., 2006). Phase–amplitude cou-
pling (PAC) provides a mechanistic framework by which
different rhythms can become hierarchically nested. PAC
refers to a phenomenon whereby the amplitude of
higher-frequency activity is significantly associated with
the phase of lower-frequency oscillation (Onslow, Jones,
& Bogacz, 2014). Low-frequency oscillations may mediate
large-scale functional connectivity among distal, large
neuronal populations, whereas high-frequency activity
mostly reflects local oscillatory patterns of activity involv-
ing small populations of neurons (Buzsaki, 2009). PAC
has been observed in different cortical regions, including
both primary, secondary, and associative areas both in
humans adults (Axmacher et al., 2010), children (Barnes,
Nobre, Woolrich, Baker, & Astle, 2016), and nonhuman
models (Whittingstall & Logothetis, 2009). This has impli-
cated PAC in many cognitive functions, including percep-
tual processes (Esghaei & Xue, 2016), working memory
(Barnes et al., 2016; Lisman& Jensen, 2013), executive con-
trol (Engel, Fries, & Singer, 2001), and motor responses
(Yanagisawa et al., 2012).

Few studies have investigated the oscillatory dynamics
underlying anticipatory TO. But those few studies pro-
vide converging evidence that various oscillatory patterns
play a role in the allocation of cognitive and motor
resources over time. Both alpha (8–12 Hz) and beta
(13–30 Hz) bands may play an important role in TO as
a possible mediating mechanism for tuning cortical excit-
ability at the expected timing of upcoming stimuli
(Rohenkohl & Nobre, 2011; Tzagarakis, Ince, Leuthold,
& Pellizzer, 2010; Sauseng, Klimesch, Gerloff, & Hummel,
2009; Schroeder & Lakatos, 2009; Alegre et al., 2006). A
crucial role has also been hypothesized for lower-
frequency bands, including both delta (1–4 Hz) and theta
(5–7 Hz), whose power is highest in anticipation of crit-
ical targets (Cravo et al., 2011). The theta band may pro-
vide a central mechanism for encoding anticipation rate
and that this may support higher-frequency activity,
which may reflect more specific and local processes that

reflect the nature of the sensory or motor computations
that need to be readied before the stimulus appears.

TO: A Developmental Perspective

Investigating the TO of attention in childhood may shed
light on the temporal dynamics that enable the adult end
state of attentive functions (Mento & Vallesi, 2016), as it
has been suggested for the study of attentional control
more generally (Amso & Scerif, 2015). Moreover, from
a clinical perspective, temporal attention seems to be
impaired in several developmental disabilities, including
dyslexia (Visser, 2014), language disorders (Dispaldro &
Corradi, 2015; Dispaldro et al., 2013), attention deficit/
hyperactivity disorder (Carelli & Wiberg, 2012), and
autism spectrum disorder (Ronconi et al., 2013). It has
been difficult to understand the specific mechanisms
impaired across these disorders, however, because little
is currently known about the mechanisms underpinning
TO in typical development. TO has been demonstrated in
children as young as 6 years old, using a child-friendly
temporal cueing paradigm (Mento & Tarantino, 2015).
However, the absence of significant age-related changes
in the TO delta effect (i.e., RTs in temporally cued minus
RTs in neutrally cued targets) from 6 years of age onward
suggests that TO benefits are not substantially influenced
by developmental changes in other functions such as
memory, language, executive function, and motor pro-
cessing. Rather, it is possible that TO may represents a
fundamental attentional mechanism for biasing our
attention in time, analogous to that reported for spatial
attention in children (Amso & Scerif, 2015).
More recently, Mento and Vallesi (2016) combined the

investigation of ERP effects with source reconstruction in
children. In line with adult findings (Mento et al., 2013,
2015; Capizzi, Correa, & Sanabria, 2013; Miniussi et al.,
1999), in children the CNV reflects the implementation
of a priori target expectancy over time. Moreover, the
need to update a posteriori temporal expectancy over
time as a function of elapsing time (i.e., hazard function)
resulted in the modulation of a prefrontal ERP signature
defined as anterior anticipatory index or ANTANI. A
CNV-like anticipatory effect has also been reported in
9-month-old infants (Mento & Valenza, 2016). In this
study, we wanted to explore the presence of specific os-
cillatory EEG mechanisms, akin to those implicated in
adults (Cravo et al., 2011; Rohenkohl & Nobre, 2011)
and nonhuman models, as a framework by which chil-
dren proactively regulate their attention in time. We hy-
pothesized that 8- to 12-year-old children who already
demonstrate TO behavioral benefits (Mento & Tarantino,
2015) and anticipatory slow potentials (CNV and ANTANI;
Mento & Vallesi, 2016) modulate oscillatory activity when
endogenously orienting attention in time. In addition, we
further addressed (1) whether the anticipatory oscillatory
dynamics predict children’s behavioral performance on a
trial-by-trial basis and (2) whether anticipatory oscillatory
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neural activity may be supported by cross-frequency
coupling (PAC) as previously shown in adults (Cravo,
Rohenkohl, Wyart, & Nobre, 2013). In short, we wanted
to identify a neurophysiological framework by which
children regulate their attention over time and
understand how it supports this fundamental attentional
process in childhood.

METHODS

An orthogonal ERP analysis of this data set has already
been reported by Mento and Vallesi (2016).

Participants

As described in Mento and Vallesi (2016), data were col-
lected from 18 typically developing children (mean age =
9.3 years, SD = 2.05, range = 8–12 years; eight male;
16 right-handed). Visual acuity was normal or corrected
to normal. For each child involved in this study, a signed
parental form was submitted. All experimental methods
were approved by the Research Ethics Committee of
the School of Psychology, University of Padua (Prot.
No. 1179).

Stimuli and Task

On all trials, participants were instructed to respond to
the onset of a target stimulus. On half of these trials, this
stimulus was predictable, because it was preceded by a
valid cue. On the remaining trials, the onset of this tar-
get item was unpredictable, being preceded by an
uninformative neutral trial. This paradigm has already
been shown to reliably elicit both behavioral (Mento &
Tarantino, 2015) and ERP (Mento & Vallesi, 2016) TO
effects in children as well as adults (Mento, 2017). Impor-
tantly, both kinds of trials were matched for sensorimotor
requirements, because the sequence of stimuli and the
required responses were always the same, with the only
difference between conditions being the level of target
predictability. Each trial began with the central presenta-
tion of a visual cue, followed by the presentation of a tar-
get stimulus. The visual cue remained on screen until
target onset and consisted of the image of a black camera
lens surrounded by a circle (total size of the stimulus:
840 × 840 pixels, 144 dpi, 10.62° × 10.54° of visual an-
gle). The target stimulus consisted of the picture of a
gray-scale animal, which was displayed centrally within
the camera lens (840 × 840 pixels, 144 dpi, 10.62° ×
10.54° of visual angle) until response and in any case
up to a maximum of 3000 msec. The cue–target SOA
was manipulated (either 600 or 1400 msec). The intertrial
interval was randomly and continuously manipulated be-
tween 600 and 1500 msec. Participants were required to
press the spacebar with the index finger of the dominant
hand as soon as possible at target onset. To encourage
good performance, children were given the following

instructions: “Imagine that you are at the zoo and you
have a camera. Your task is to take a picture of the ani-
mals appearing within the camera lens as soon as possi-
ble. To do that, you have to press the spacebar with your
index finger. Please, be careful to click as quickly as pos-
sible once you see the animals, otherwise they will dis-
appear. Please, be also careful not to click before the
animals appear!” Children were also instructed that, de-
pending on trial type, they may or may not be able to
predict the onset of the animal.

On temporal cueing trials (Figure 1A), the visual cue
provided valid temporal information concerning the
SOA duration. In particular, the outer circle of the camera
lens was colored, either in blue or orange. Each color was
associated with a specific SOA duration (i.e., 600 or
1400 msec): a temporal short (T-Short) and a temporal
long (T-Long) SOA condition. Children were explicitly
told about the cue–SOA association. In line with Mento
and Tarantino (2015) and Mento and Vallesi (2016), the
association between colors and SOA was fixed (100% va-
lidity) and counterbalanced across participants. No catch
trials were included, that is, the target stimulus always
appeared at the expected SOA. This was done to increase
the likelihood of TO effect and avoid the so-called

Figure 1. Experimental paradigm. In the temporal cueing block (A),
the visual cue provided fixed temporal information concerning the
SOA duration, which could be short (left) or long (right), according
to the color of the cue. By contrast, in the neutral cueing block (B),
participants never knew in advance the duration of the SOA, which
could nevertheless have the same short or long duration as in the
temporal cueing block.
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“dispreparation effects,” as defined by Correa, Lupiáñez,
Milliken, and Tudela (2004).

On neutral cueing trials (Figure 1B), the outer circle
surrounding the camera lens was always black, providing
no information about SOA duration. In this case, the cue
simply acted as a warning signal, which nonspecifically
prepared for the forthcoming target without furnishing
temporal information about it. Nevertheless, as for the
temporal cueing conditions, the SOA was manipulated
to create a neutral short (N-Short) and a neutral long
(N-Long) SOA condition (600 and 1400msec, respectively).
To maximize the hazard ratio-related effects inducing TO
updating over time, an “aging” probability distribution
(Trillenberg et al., 2000; Niemi & Näätänen, 1981) was
used, with an equal a priori odd ratio (50%) for each
SOA duration. Stimuli were presented on a 17-in. monitor
at a resolution of 1,280 × 1,024 pixels. Participants were
seated comfortably in a chair at a viewing distance of
∼60 cm from the monitor.

Experimental Design

Both the type of cue (temporal vs. neutral) and the SOA
length (short vs. long) were manipulated and orthogo-
nally contrasted, leading to a 2 × 2 factorial design. This
allowed us to test for the presence of TO (i.e., cue effect)
for different SOA durations. More specifically, the TO in
short SOA trials was calculated by comparing N-Short and
T-Short trials; the TO effect in long SOA trials was calcu-
lated by comparing N-Long and T-Long trials. The exper-
imental task included temporal and neutral cueing
blocks, which were administered block-wise rather than
trial-by-trial to reduce top–down control required to
switch continuously from a predictive to a nonpredictive
setting (Capizzi et al., 2013), as continuous switching may
have particularly affected children. In the temporal cue-
ing blocks, a total of 120 trials (60 for the T-Short condi-
tion and 60 for the T-Long condition) were randomly
delivered. In the remaining neutral cueing blocks, partic-
ipants were given a total of 120 trials (60 for N-Short con-
dition and 60 for N-Long condition), randomly delivered.
The order of the blocks was counterbalanced across
participants. The whole experiment lasted about 16 min.

EEG Recordings

During the session, EEG data were continuously re-
corded and amplified using a geodesic EEG system (Elec-
tric Geodesic Instruments GES-300), through a precabled
high-density 128-channel HydroCel Geodesic Sensor
Net (HC GSN-128) and referenced to the vertex. The
acquisition band-pass filtering was between 0.01 and
100 Hz. The sampling rate was 500 Hz. The impedance
was maintained below 30 KΩ for each sensor. To reduce
the presence of EOG artifacts, children were instructed
to limit both eye blinks and eye movements as much as
possible.

Data Analysis

Behavioral Analysis

RTs to target stimuli in all experimental conditions were
recorded. RTs below 150 msec or above 1500 msec were
discarded. A 2 × 2 repeated-measures ANOVA was per-
formed, with cue (temporal vs. neutral) and SOA (short
vs. long) as within-subject factors. Bonferroni corrections
were employed to deal with for multiple comparisons.
Effect size was calculated by using partial eta square (ηp

2).

EEG Analysis

All the EEG recordings were preliminary processed off-
line by using the MATLAB toolbox EEGLAB (Delorme &
Makeig, 2004). The data were first band-pass filtered be-
tween 0.1 and 45 Hz and segmented into epochs starting
200 msec before cue onset and ending 1500 msec after it.
Epochs were then visually inspected to interpolate bad
channels and remove artifacts. Artifact-reduced data were
then subjected to independent component analysis
(Stone, 2002). All independent components were visually
inspected, and those related to eye blinks or eye move-
ments according to their morphology and scalp distribu-
tion were discarded. The remaining components were
then projected back into electrode space to obtain cleaner
EEG epochs. The remaining epochs containing excessive
noise or drift (±100 μV at any electrode) were further
rejected. Data were then re-referenced to the average
of all electrodes. A mean of 51.7 ± 6 (SD) epochs per
condition were accepted. A four-way ANOVA with all
conditions as repeated measures yielded no significant
differences in epochs retained across conditions, F(3,
51) = 2.49, p > .7.

Trial-wise Time–Frequency Analysis

In our initial analysis, we explored the oscillatory corre-
lates of children’s anticipation of the target. We examined
this separately for the two SOAs (600 and 1400 msec).
These two SOAs had to be considered separately because
this analysis is repeated across time, meaning that the
timing of events has to be consistent across all trial types
included in the analysis. This first analysis collapsed
across trial types (valid vs. neutral trials) and instead used
RT as a continuous measure of children’s preparedness.
We adopted this approach because this trial-wise RT mea-
sure is the most sensitive metric of children’s anticipation
of the onset of the target and using it as continuous fac-
tor in our analysis allowed us to capture the trial-to-trial
variability in children’s TO. To be clear, the purpose of
this initial analysis is to identify the most sensitive EEG
marker of children’s preparedness for the target. This
would then be used in our subsequent PAC analysis that
compared the different conditions.
We used a continuous Morlet wavelet transform to de-

compose the raw EEG data into distinct frequencies,
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from 3 to 40 Hz. This was performed across the entire
epoch, from −200 to 1500 msec, relative to the onset
of the target. Within each child, for each frequency and
each time point, we applied a trial-wise general linear
model (GLM). This contained the child’s normalized RT
values and a constant term. For ease of interpretation,
the output of this GLMwas expressed as a standard T value.
This value expresses the trial-to-trial association between
amplitude at that time point, frequency, and the child’s
RT. This process was repeated over all combinations of
frequency and time. The result was that for each individual
child we had a new data set, in which we had established
the trial-to-trial association between amplitude and how
prepared children were at the end of the trial (as indexed
by their RT on that trial).
Once this process was repeated across all children, we

combined their data with a second-level analysis. This
was done using a one-sample t test: At each frequency
and time point, the subject specific t values were com-
pared with 0. This process was repeated over all combi-
nations of frequency and time to produce a group-level
data set, in which the effect of trial-to-trial EEG variability
on preparation is established at each time point and fre-
quency. This process results in a substantial multiple
comparisons problem that needs to be controlled for.
This was done using a nonparametric sign-flipping per-
mutation approach (Maris & Oostenveld, 2007). We iden-
tified any clusters of consecutive values of t > 2.3 (this is
arbitrary but approximates an uncorrected threshold of
p = .05), across frequencies, time points, and sensors.
We calculated the size of these and then used a permu-
tation testing approach to test whether any of these clus-
ters were significant. For each permutation, the first steps
of the analysis were identical, but at the final step, the
sign of each child was randomly assigned. We then identi-
fied the largest cluster, using the same threshold as in the
original analysis. This process was repeated 1000 times,
building up a null distribution of cluster sizes that would
be expected by chance. Against this distribution, we
could then compare the actual effects and derive
p values. This randomization procedure is an extremely
powerful way of testing for significance in an analysis
such as this. Any nonlinearities in the data or biases oc-
curring as a result of the various necessary steps are cor-
rected for, because they are recreated perfectly in each
permutation. Furthermore, it makes no a priori assump-
tions about when or where effects are likely to be ap-
parent, correcting for multiple comparisons over time,
frequency, and electrodes.

PAC Analysis

We used the initial trial-wise time–frequency analysis to
guide a subsequent PAC analysis that explored differ-
ences between the two trial types. To foreshadow the re-
sult of the above analysis, we identified activity in the
beta band over central areas during the long SOA trials,

as these best indexed the degree of preparation (see
Results section). We used the sensors and frequencies
from this significant cluster and explored the extent to
which this rhythmic component became coupled with
ongoing theta band cycle as measured at Cz (following
the methodology developed for adults data by Cravo
et al., 2013). To do this, we calculated circular–linear
correlations (Barnes et al., 2016; Berens, 2009) to test the
strength of association between the phase of activity
within the theta band and the amplitude of the beta
activity established in our first analysis. For each child,
taking 400 msec windows at a time, we calculated the
strength of association between the phase of the theta
cycle and the amplitude of the beta rhythm. This was ex-
pressed as a circular–linear correlation, which was then
converted to a z score using a standard Fisher r-to-z
transform. This was repeated over all frequencies within
the theta band (3–8 Hz) in 0.5-Hz steps and over all time
points by sliding the window along the epoch in 4-msec
increments. The result was a data set in which we had
estimated the strength of PAC, at each frequency of theta,
for each child, expressed as a z score. We performed this
process separately for valid and neutral trials so that we
could compare these two conditions. To do this, we used
a paired-sample t test, which was applied over each fre-
quency and time point. A multiple comparisons correc-
tion was then performed using the same nonparametric
sign-flipping permutation approach described above.

RESULTS

Behavioral Results

As described in Mento and Vallesi (2016), behavioral per-
formance in this task reached a high-accuracy level
(93.75 ± 0.87% correct) and was not differentiated
between conditions ( p > .5). The behavioral benefits
conferred by TO were observed in RTs. These consisted
of overall faster responses for temporally than neutrally
cued targets, F(1, 17) = 5.66, p < .03, ηp

2 = 0.25. We also
found a main effect of the SOA, because RTs were overall
shorter in the long than in the short SOA conditions,
F(1, 17) = 18.83, p < .0001, ηp

2 = .53. In addition, a sig-
nificant Cue × SOA interaction, F(1, 17) = 6.03, p < .03,
ηp
2 = .26, revealed that TO produced an asymmetrical

effect, as the speeding up of RTs induced by the temporal
cue was present for short ( p < .01) but not long ( p > .4)
SOAs (Figure 2).

Trial-wise Time–Frequency Results

Our trial-by-trial time–frequency analysis revealed a sig-
nificant cluster on long SOA trials in the beta band (22–
40 Hz), between 1240 and 1296 msec postcue ( pcorrected =
.041). The relationship between this and RT was
positive—the stronger the beta suppression effect, the
faster children tended to be. In short, beta suppression
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leading up the onset of the target was significantly asso-
ciated with children’s degree of preparation. This result
can be seen in Figure 3A. A topographical display of this
effect can be seen in Figure 3B. By contrast, there were
no significant associations at the short SOA, as can be
seen in Figure 3C. The significant beta oscillatory modu-
lation was then used to guide a phase–amplitude analysis
that explored the coupling mechanisms that might
underpin TO.

Phase–Amplitude Coupling

The purpose of the PAC analysis was to explore whether
the beta effect associated with preparedness tracked the

cycle of the theta rhythm during the cueing interval
(Cravo et al., 2013). The beta effect was more strongly
coupled to the theta rhythm on temporally cued versus
neutral trials. This was apparent just before the onset of
the target, just as the original main effect reported by
Mento and Vallesi (2016). However, we also observed
substantial differences in coupling earlier in the trial, with
a significant cluster centered on 390 msec and the phase
of the 6 Hz theta rhythm ( pcorrected = .011). This effect
can be seen in Figure 4A. We also plotted the time course
of the coupling between the beta effect and the phase
of the 6-Hz theta cycle. This can be seen in Figure 4B.
In short, when children knew the gap between the cue
and the target, the beta rhythm became strongly coupled
to the cycle of the slow theta rhythm.

DISCUSSION

Although the neurocognitive mechanisms underlying TO
in adults have been relatively well elucidated (Coull,
2010), little is known about the developmental aspects
of this important attentional function. In the present ar-
ticle, we show that neural oscillations in healthy children
mirror the deployment of preparatory resources over
time (Cravo et al., 2013; Rohenkol et al., 2011).
Our primary finding is that children’s beta rhythm be-

comes strongly coupled with their ongoing theta rhythm
and that the strength of this coupling is altered as

Figure 3. The result of our
trial-wise GLM analysis, showing
the significant relationship
between beta-band activity
and RT in long trials. The top
(A) shows the strength of this
relationship (as T values) across
time at those sensors forming
part of our significant cluster.
The middle topographical plot
(B) shows the distribution of
those sensors. The bottom
plot (C) shows the absence of
relationship between beta band
activity and RT in short trials.

Figure 2. Behavioral performance (RTs) of children.
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children update their temporal expectancy; it increases
periodically for validly cued trials, relative to neutral trials.
This is in keeping with a framework in which higher-
frequency local activity, reflecting specific sensory or mo-
tor processes, becomes nested within a slower rhythm
and that this provides a means of organizing the local ac-
tivity according to higher-level expectations (Onslow
et al., 2014). This effect can be clearly identified as a
marker of TO. First, it distinguishes the trial types, so is
sensitive to children’s advance knowledge of the upcom-
ing interval. Second, it occurs relatively early in the trial,
well in advance of any hazard function or specific motor
preparation per se. And third, the PAC analysis is pur-
posefully insensitive to the overall amplitude of the beta
effect but is instead sensitive to the degree of coupling.
Specifically, in line with neuroimaging and ERP evidence
in adults (Mento, 2017; Coull, Cotti, & Vidal, 2016; Mento
et al., 2015; Coull, 2011) and children (Mento & Vallesi,
2016), we propose that theta–beta coupling may represent
an oscillatory mechanismmediating the ability to generate,
implement, and update temporal expectancy.
A secondary finding, established in preparation for our

PAC analysis, is an inverse correlation between the oscil-
latory power in the beta range (22–40 Hz) and the behav-
ioral performance collected on a trial-by-trial basis.
Specifically, our data show that the more the anticipatory
beta activity was desynchronized, the faster the children
were in detecting and responding to targets. This effect
was present in a narrow temporal window extending
about a hundred milliseconds before targets and only
in the long SOA trials. This result may be interpreted as
an oscillatory neural signature reflecting action prepara-
tory mechanisms induced by the simple temporal struc-
ture of trials. Indeed, in the context of the current
paradigm, long trials are characterized by the automatic
boost of temporal expectancy as a function of the very
passage of time. This phenomenon, well-known as the
cumulative hazard function (Coull, 2009; Nobre, Correa,

& Coull, 2007; Luce, 1986; Niemi & Näätänen, 1981), is
instantiated by the conditional probability of stimulus oc-
currence over time as a function of the evidence that it
has not occurred yet. Thus, in line with previous evi-
dence (van Ede et al., 2011), we might assume that over-
all beta desynchronization in long but not short trials
could reflect the presence of the hazard function rather
than the effect of endogenous TO itself. Importantly,
whatever this beta suppression process indexes, it varies
systematically across trials in line with children’s degree
of preparedness, as indexed by their RT. This makes it a
particularly useful effect for our subsequent PAC analysis.
These trial-by-trial oscillatory findings suggest that the in-
tertrial variability in behavioral performance in children
may be accounted for by anticipatory mechanisms rather
than or simply by a greater or faster posttarget processing
per se. This suggests a possible avenue for investigating
the relationship between anticipatory neural activity and
behavioral performance in atypical developmental popu-
lation characterized by a high intra- and intersubject var-
iability in RTs, such as children with attention-deficit/
hyperactivity disorder.

As a possible interpretation of this finding in neuro-
physiological terms, the slower rhythm may modulate lo-
cal spike timing, thereby modulating neuronal excitability.
The scalp distribution of beta suppression shows that this
effect mainly spreads over frontocentral areas, suggesting
a possible neural origin around premotor or motor corti-
ces. Concerning the nested oscillations revealed by the
PAC analysis, this effect may represent a mechanism that
allows different cortical regions to become functionally
attuned (Fries, 2005). This coordination may support an
efficient exchange of information, in this case providing
a candidate neurophysiological mechanism for temporal
expectation. Importantly, this putative oscillatory mecha-
nism is already established and functionally operative
from 8 years of age onward, corroborating previous
experimental evidence of TO as a fundamental, relatively

Figure 4. The top shows the
impact of cueing (cued vs.
neutral trials) on PAC across
different phase frequencies
within the theta band. The
bottom shows the time course
of that coupling effect for the
two conditions: validly cued
and neural trials.
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early attentional mechanism for biasing our attention in
time.

In conclusion, our findings show that TO behavioral
effects previously reported in children (Mento & Vallesi,
2016; Mento & Tarantino, 2015) may be supported by
patterns of oscillatory neural activity taking place during
the anticipation of expected events.
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