2,057 research outputs found

    Modeling the evolution of item rating networks using time-domain preferential attachment

    Get PDF
    The understanding of the structure and dynamics of the intricate network of connections among people that consumes products through Internet appears as an extremely useful asset in order to study emergent properties related to social behavior. This knowledge could be useful, for example, to improve the performance of personal recommendation algorithms. In this contribution, we analyzed five-year records of movie-rating transactions provided by Netflix, a movie rental platform where users rate movies from an online catalog. This dataset can be studied as a bipartite user-item network whose structure evolves in time. Even though several topological properties from subsets of this bipartite network have been reported with a model that combines random and preferential attachment mechanisms [Beguerisse DĂ­az et al., 2010], there are still many aspects worth to be explored, as they are connected to relevant phenomena underlying the evolution of the network. In this work, we test the hypothesis that bursty human behavior is essential in order to describe how a bipartite user-item network evolves in time. To that end, we propose a novel model that combines, for user nodes, a network growth prescription based on a preferential attachment mechanism acting not only in the topological domain (i.e. based on node degrees) but also in time domain. In the case of items, the model mixes degree preferential attachment and random selection. With these ingredients, the model is not only able to reproduce the asymptotic degree distribution, but also shows an excellent agreement with the Netflix data in several time-dependent topological properties

    Gravity Effects on Information Filtering and Network Evolving

    Full text link
    In this paper, based on the gravity principle of classical physics, we propose a tunable gravity-based model, which considers tag usage pattern to weigh both the mass and distance of network nodes. We then apply this model in solving the problems of information filtering and network evolving. Experimental results on two real-world data sets, \emph{Del.icio.us} and \emph{MovieLens}, show that it can not only enhance the algorithmic performance, but can also better characterize the properties of real networks. This work may shed some light on the in-depth understanding of the effect of gravity model

    Ranking in evolving complex networks

    Get PDF
    Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google’s PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes

    Collaboration and followership: A stochastic model for activities in social networks

    Get PDF
    In this work we investigate how future actions are influenced by the previous ones, in the specific contexts of scientific collaborations and friendships on social networks. We describe the activity of the agents, providing a model for the formation of the bipartite network of actions and their features. Therefore we only require to know the chronological order in which the actions are performed, and not the order in which the agents are observed. Moreover, the total number of possible features is not specified a priori but is allowed to increase along time, and new actions can independently show some new-entry features or exhibit some of the old ones. The choice of the old features is driven by a degree-fitness method: indeed, the probability that a new action shows one of the old features does not solely depend on the popularity of that feature (i.e. the number of previous actions showing it), but it is also affected by some individual traits of the agents or the features themselves, synthesized in certain quantities, called fitnesses or weights, that can have different forms and different meaning according to the specific setting considered. We show some theoretical properties of the model and provide statistical tools for the parameters' estimation. The model has been tested on three different datasets and the numerical results are provided and discussed

    Community structures and role detection in music networks

    Full text link
    We analyze the existence of community structures in two different social networks obtained from similarity and collaborative features between musical artists. Our analysis reveals some characteristic organizational patterns and provides information about the driving forces behind the growth of the networks. In the similarity network, we find a strong correlation between clusters of artists and musical genres. On the other hand, the collaboration network shows two different kinds of communities: rather small structures related to music bands and geographic zones, and much bigger communities built upon collaborative clusters with a high number of participants related through the period the artists were active. Finally, we detect the leading artists inside their corresponding communities and analyze their roles in the network by looking at a few topological properties of the nodes.Comment: 14 pages 7 figure

    Attention Harvesting for Knowledge Production

    Get PDF
    abstract: This dissertation seeks to understand and study the process of attention harvesting and knowledge production on typical online Q&A communities. Goals of this study include quantifying the attention harvesting and online knowledge, damping the effect of competition for attention on knowledge production, and examining the diversity of user behaviors on question answering. Project 1 starts with a simplistic discrete time model on a scale-free network and provides the method to measure the attention harvested. Further, project 1 highlights the effect of distractions on harvesting productive attention and in the end concludes which factors are influential and sensitive to the attention harvesting. The main finding is the critical condition to optimize the attention harvesting on the network by reducing network connection. Project 2 extends the scope of the study to quantify the value and quality of knowledge, focusing on the question answering dynamics. This part of research models how attention was distributed under typical answering strategies on a virtual online Q&A community. The final result provides an approach to measure the efficiency of attention transferred into value production and observes the contribution of different scenarios under various computed metrics. Project 3 is an advanced study on the foundation of the virtual question answering community from project 2. With highlights of different user behavioral preferences, algorithm stochastically simulates individual decisions and behavior. Results from sensitivity analysis on different mixtures of user groups gives insight of nonlinear dynamics for the objectives of success. Simulation finding shows reputation rewarding mechanism on Stack Overflow shapes the crowd mixture of behavior to be successful. In addition, project proposed an attention allocation scenario of question answering to improve the success metrics when coupling with a particular selection strategy.Dissertation/ThesisDoctoral Dissertation Applied Mathematics for the Life and Social Sciences 201
    • …
    corecore