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Abstract

In this work we investigate how future actions are influenced by the previous ones, in the

specific contexts of scientific collaborations and friendships on social networks. We describe

the activity of the agents, providing a model for the formation of the bipartite network of

actions and their features. Therefore we only require to know the chronological order in

which the actions are performed, and not the order in which the agents are observed. More-

over, the total number of possible features is not specified a priori but is allowed to increase

along time, and new actions can independently show some new-entry features or exhibit

some of the old ones. The choice of the old features is driven by a degree-fitness method:

indeed, the probability that a new action shows one of the old features does not solely

depend on the popularity of that feature (i.e. the number of previous actions showing it), but

it is also affected by some individual traits of the agents or the features themselves, synthe-

sized in certain quantities, called fitnesses or weights, that can have different forms and dif-

ferent meaning according to the specific setting considered. We show some theoretical

properties of the model and provide statistical tools for the parameters’ estimation. The

model has been tested on three different datasets and the numerical results are provided

and discussed.

Introduction

In the last years complex networks established as a proper tool for the description of the inter-

actions within large systems [1–4]. The renewed attention to this field can be dated back to the

well known Barabási-Albert model [5], in which the authors provide an explanation of the

power-law distribution of node degrees in the World Wide Web (WWW) via a dynamic gen-

erative network model. At every step a new vertex is added and the probability to observe a

new link is proportional to the number of connections (i.e. the degree) of the target node. The

success of this proposal resides in the fact that only this simple rule, called preferential attach-

ment, is able to reproduce with good accuracy the degree distribution of many real networks,

such as the WWW. Even if the original mechanism was already present in the literature in a

slightly different form [6, 7], the paper of Barábasi-Albert boosted the attractiveness of com-

plex networks and other scholars delved into the investigation of the properties of generative
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models based on different types of dependence of the connection probabilities and the degrees

[8, 9]. The preferential attachment was enriched with another ingredient, such as the fitness

[10, 11]: a quantity defined per node that measures the intrinsic ability of the vertex to collect

links. Then, the probability of targeting a certain node becomes the product of its fitness and

degree. The effect of this new variable is to amplify or dampen the preferential attachment

effect. Indeed, the presence of the fitness permits to overcome the “first move advantage” (i.e.

the fact that older nodes have greater degrees by construction), thus permitting to young

nodes to grow easily. Furthermore time dependence has been included by considering the pos-

sibility of node aging, i.e. multiplying the probability of link by a time dependent damping

function [2, 12–14]. The importance of the previous proposals was not in the definition of the

model per se, but in providing an explanation for the structure of the networks examined. For

instance, the preferential attachment in [5] explains the power-law degree distribution in the

World Wide Web and describes a “rich get richer” competition for links. Instead, in the fitness

methods, some attributes of the nodes, not directly observed in the network, define the struc-

ture of the network (as in the case of e-mails networks, in which senders do not have access to

information about the number of connection of the receivers [15]). In the same way, fitness

aging [13] gives an explanation to the limited (in time) growth in citation of most of the

papers.

All previous efforts were devoted to monopartite, directed or undirected, networks. A

much smaller number of contributions is available for the description of the evolution of

bipartite networks. In bipartite networks, nodes are divided into two different classes and

only links connecting nodes belonging to different classes are allowed [1, 4]. Guillame and

Latapy [16] proposed a simple model that produce a power-law degree distribution for both

classes (for instance, this is the case of reviews and reviewers in the Netflix dataset). Some

other dynamical models for bipartite networks were proposed for the description of specific

systems. For instance, in [17] the authors propose a generative model to study the bipartite

networks of lawyers and clients that develops according to a recommendation process: more

popular lawyers are also more likely to be hired by new clients. Furthermore, the authors in

[18] provide a framework in which the simultaneous evolution of two systems has been stud-

ied. Indeed, they analyse communities of scientists considering both the monopartite network

describing the interactions among agents themselves and the bipartite semantic network in

which the agents are associated to the concepts they use. Another example is [19], in which

the structure of the (growing) bipartite trade network (one class includes the countries and

the other one includes the exported products) was reproduced by assigning links with sequen-

tial preferential attachment, considering the degree of both nodes in the process. In order to

describe the generation of an innovative product, following the idea of the “adjacent possibles”

[20], new nodes (i.e. new products) are derived by the structure of an unobserved monopartite

network of products describing the hierarchical productive process relations. Therefore, the

evolution of the bipartite system is due to the simultaneous dynamics of an unobserved evolv-

ing network.

The present work aims at providing a generative model for the bipartite networks, where

one class is formed by agents and the other one includes their actions. The starting point is the

model for monopartite networks studied in [21] and its variant introduced in [22]. In [21], a

set of nodes sequentially join the network, each of them showing a set of features. Each node

can either exhibit new features or adopt some of the features already present in the network.

This choice is regulated by a preferential attachment rule: the larger the number of nodes

showing a certain feature, the greater the probability that future nodes will adopt it too. The

total number of possible features is not specified a priori, but is allowed to increase along time.

Differently from [16, 23], each node has been weighted with a fitness variable, that accounts
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for nodes’ personal ability to transmit its own features to future nodes. The model in [22]

introduces some novelties in the previous context: the probability to exhibit one of the features

already present in the network is defined as a mixture, i.e. a convex combination, of random

choice and preferential attachment. However, neither fitnesses nor weights are introduced in

the model, so that all nodes are assumed to have equal capabilities in transmitting their per-

sonal features to the newcomers. The present work moves along the same research line of the

previously mentioned papers [21, 22], but with a different spirit. Indeed, the previous papers

provide two different models of network formation, in which the nodes sequentially join the

network and the number of common features affects the probability of connections among

them. The main drawback of these two models resides in the assumed chronological order of

nodes’ arrivals, which may typically be unknown (or non-relevant) in many real-world sys-

tems. In the present paper, given a system of n agents, we provide a model for the formation of

the bipartite network of agents’ actions and their features. Therefore, this model can be applied

to all settings in which agents of interest are not observed in a specific chronological order,

because the assumption on the chronological order is specified on the agents’ actions only.

Moreover, the probability to exhibit one of the features already observed is defined as a mix-

ture of random choice and preferential attachment with weights, i.e. the probability of connec-

tion depends both on the features’ degrees and the fitness of the agents involved and/or of the

features themselves. These weightsWt,j,k can have different forms and meanings according to

the specific setting considered: the weight at time-step t of the observed feature k can depend

on some characteristics of k itself, or it can be directly established by the agent performing

action t; it may also represent the inclination of the agent performing action t in adopting the

previous observed features, or some properties of the agent performing the previous action j
with k among its features (for instance, her/his ability to transmit her/his own features).

We analyse two datasets of scientific publications (respectively IEEE for Automatic Driving,

and arXiv for Theoretical High Energy Physics, or more briefly Hep-Th) and a dataset of posts

of Instagram. We not only obtain a good fit of our model to the data, but our analysis also

results useful in order to highlight interesting aspects of the activity of the three considered

networks. Indeed, we find different variables playing a role in their evolution. In the three sys-

tems studied, we consider the degrees of the features (i.e. the popularity of, respectively, key-

words in a scientific paper or hashtags on Instagram) and some fitness variables associated to

the agents as drivers for the dynamics. For the scientific publications, we show a good agree-

ment of the model to the IEEE dataset for Automatic Driving and to the arXiv dataset for Hep-

Th with weights based on the number of publications or the number of co-authors of an

author, the former performing better in the case of Automatic Driving. Otherwise stated, in

the case of Automatic Driving the ability of an author to transmit the keywords of her/his

papers, that essentially describe her/his research topics, is better reproduced by her/his number

of publications, while in Hep-Th this ability is related both to the activity of the author, i.e. to

the number of her/his publications, and to the number of collaborations established in her/his

career. This difference can be due to the nature of the two research fields in the considered

temporal window. Automatic Driving is more recent and limited, and new results drive the

evolution of the research. Thus, an author transmits more keywords the more its activity in the

research. Hep-Th research area, instead, is an older and structured research field, evolved in

different specialized branches. In the case of Instagram, we find that the dynamics is well

reproduced using the popularity of the users in a tricky sense: a standard user tends to employ

many already existing hashtags, in order to acquire more visibility, while popular users men-

tion just few already existing hashtags. Moreover, as for the previous two collaboration net-

works, also for the on-line social network Instagram, the relevance of an agent (with respect to
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the probability of transmitting her/his features) is well measured by her/his activity, that is the

number of her/his actions.

The present paper is so organized. We first illustrate in detail the proposed model for the

formation of the actions-features bipartite network. Then, we explain the meaning of the

model parameters and the role of the weights introduced into the preferential attachment

term. Some asymptotic results regarding the behavior of the total number of features and the

mean number of edges in the actions-features bipartite network are collected in Section A.1 in

S1 Text. The same file also contains a description of the statistical tools for the estimation of

the model parameters (see Section A.2 in S1 Text). In the subsequent section we provide the

general methodology used to analyse the data (the data cleaning procedure is explained in Sec-

tion A.3 in S1 Text), and then we show the application of the model to the above mentioned

real-world cases (IEEE, arXiv, Instagram datasets). We summarize the overall contents of the

paper and recap the main findings in the last section.

Model

Suppose to have a system of n agents that sequentially perform actions along time. Each agent

can perform more than one action. The running of the time-steps coincide with the flow of the

actions and so sometimes we use the expression “time-step t” in order to indicate the time of

action t. Each action is characterized by a finite number of features and different actions can

share one or more features. It is important to point out that we do not specify a priori the total

number of possible features in the system, but we allow this number to increase along time. In

what follows, we describe the model for the dynamical evolution of the bipartite network that

collects actors’ actions on one side and the corresponding features of interest on the other side.

We denote by F the adjacency matrix related to this network. The dynamics starts with the

observation of action 1, the first action done by an agent of the considered system, that shows

N1 features, where N1 is assumed Poisson distributed with parameter α> 0. (This distribution

will be denoted from now on by the symbol Poi(α)). Moreover, we number the observed fea-

tures with k from 1 toN1 and we set F1,k = 1 for k = 1, . . .,N1. Then, for each consecutive action

t� 2, we have:

1. Action t exhibits some old features, where “old” means already shown by some of the previ-

ous actions 1, . . ., t − 1. More precisely, if Nj denotes the number of new features exhibited

by action j and we set

Lt� 1 ¼
Xt� 1

j¼1

Nj

¼ the overall number of different observed features for the first t � 1 actions;

ð1Þ

the new action t can independently display each old feature k 2 {1, . . ., Lt − 1} with probabil-

ity

PtðkÞ ¼
d

2
þ ð1 � dÞ

Pt� 1

j¼1
Fj;kWt;j;k

Bt
ð2Þ

where δ 2 [0, 1] is a parameter, Fj,k = 1 if action j shows feature k and Fj,k = 0 otherwise,

Wt,j, k� 0 is a random weight associated to feature k, measured at the time of action t and

related to the previous action j. Finally Bt is a suitable normalizing factor so that
Pt� 1

j¼1
Fj;kWt;j;k=Bt belongs to [0, 1]. We will refer to quantity (2) as the “inclusion probabil-

ity” of feature k at time-step t.
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2. Action t can also exhibit a number of new features Nt, where Nt is assumed Poi(λt)-distrib-

uted with parameter

lt ¼
a

t1� b
; ð3Þ

where β 2 [0, 1] is a parameter. The variable Nt is supposed independent of N1, . . ., Nt−1

and of all the appeared old features and their weights (including those of action t).

With the observation of the tth action, all the matrix elements Ft,k with k 2 {1, . . ., Lt} are set

equal to 1 if action t shows feature k and equal to 0 otherwise. Here is an example of a Fmatrix

with t = 3 actions:

F ¼

1 1 1 1 0 0 0 0 0

1 0 1 0 1 1 0 0 0

1 0 1 1 0 1 1 1 1

0

B
B
B
@

1

C
C
C
A
:

In boldface we highlight the new features for each action: we have N1 = 4, N2 = 2, N3 = 3

and so L1 = 4, L2 = 6, L3 = 9 and, for each action t, we have Ft,k = 1 for each k 2 {Lt−1 + 1, . . .,

Lt}. Moreover, some elements Ft,k, with k 2 {1, . . ., Lt−1}, are equal to 1 and they represent the

features brought by previous actions exhibited also by action t.
It may be worth to note that our model resembles the one known as the “Indian buffet pro-

cess” in Bayesian Statistics [24–26], but indeed there are significant differences in the defini-

tion of the inclusion probabilities: in particular, the parameter δ and the weightsWt,j,k.

Moreover, Bayesian Statistics deals with exchangeable sequences, while here we do not require

this property. As a consequence, the role played by each parameter in (2) and (3) results more

straightforward and easy to be implemented.

Discussion of the model

We now discuss the meaning of the model parameters α, β and δ and the role of the weights

Wt,j,k. Some asymptotic results for the model and the statistical tools employed to estimate the

model parameters are collected in Sections A.1 and A.2 in S1 Text, respectively.

The parameters α and β
In the above model dynamics, the probability distribution of the random number Nt of new

features brought by action t is regulated by the pair of parameters (α, β) (see (3)). Specifically,

the larger α, the higher the total number of new features brought by an action, while β controls

the asymptotic behavior of the random variable Lt ¼
Pt

j¼1
Nj, i.e. the total number of features

observed for the first t actions, as a function of t. In particular, it has been shown in [22] that

the parameter β> 0 corresponds to the power-law exponent of Lt: precisely, if β = 0 then the

asymptotic behavior of Lt is logarithmic, while for β 2 (0, 1] we obtain a power-law behavior

with exponent β (see Section A.1 in S1 Text).

The parameter δ and the random weights Wt,j,k

Looking at Eq (2) of the above model dynamics, we can see that, for a generic action t, both the

parameter δ and the random weightsWt,j,k affect the number of old features (k = 1, . . ., Lt−1)

also shown by action t. Specifically, the value δ = 1 corresponds to the pure i.i.d. case with

inclusion probability equal to 1/2: an action can exhibit each feature with probability 1/2 inde-

pendently of the other actions and features. The value δ = 0 corresponds to the case in which
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the inclusion probability Pt(k) entirely depends on the (normalized) total weight associated to

feature k at the time of action t, i.e. to the quantity

Pt� 1

j¼1
Fj;kWt;j;k

Bt
: ð4Þ

In Eq (4), the termWt,j,k� 0 is the random weight at time-step t associated to feature k that

can be related to the course of previous actions j. We denote this case as the “pure weighted

preferential attachment case” since the larger the total weight of feature k, the greater the prob-

ability that also the new action will show feature k. When δ 2 (0, 1), we have a mixture of the

two cases above: the smaller δ, the more significant is the role played by the weighted preferen-

tial attachment in the spreading of the observed features to the new actions. In the sequel we

will refer to (4) as the “weighted preferential attachment term”.

Regarding the weights, the possible ways in which they can be defined benefit of a great

flexibility. Of course their meaning has to be discussed in relation to the particular application

considered. For instance, the weightWt,j,k can be directly assigned by the agent performing

action t to the feature k in connection with the previous action j, or it may represent the incli-

nation of the agent performing action t of adopting the previous observed features, or it may

implicitly due to some properties of the agent performing the previous action j (for instance,

her/his ability to transmit her/his own features), or even more. We here describe some general

interesting frameworks:

1. If we setWt,j,k = 1 for all t, j, k with normalizing factor Bt = t, then all the observed features

have the same weight. Then the sum in the numerator of (4) becomes the popularity of fea-

ture k, that is the total number of previous actions that have already exhibited feature k,

while the quantity (4) is essentially the average popularity of feature k (we divide by t
instead of t − 1 in order to avoid the quantity (4) to be exactly equal to 1 for all the first N1

features). In this case the actions-features dynamics coincides with the nodes-features

dynamics considered in [22].

2. We can assume that a positive random variable Gi (with i = 1, . . ., n) is associated to each

agent in order to describe her/his ability to transmit the features of her/his actions to the

others. This random variable can be seen as a static fitness as defined in [10, 11, 15]. In this

case the weightWt,j,k can be defined as Gi(j) (or a function of this quantity), where i(j)
denotes the agent performing action j. In particular, we haveWt,j,k =Wj, that is the weights

only depend on j. Hence, the weight of a feature k is only due to the fitness of the agent that

performs an action with k among its features and the sum in the numerator of (4) becomes

the total weight of the feature k due to the agents that have previously exhibited it in their

actions. The quantity Bt ¼ cþ
Pt� 1

h¼1
Wh can be chosen as normalizing factor, i.e. we basi-

cally normalize by the total fitness of the agents that have performed actions 1, . . ., t − 1.

Note that case 1) can be seen as a special case of the present, taking Gi = 1 and c = 1. More-

over, another interesting element to observe is that the weighted preferential attachment

term (4) can be explained with an urn process. Indeed, for each feature k, let t(k) be the first

action that has k as one of its features and image to have an urn with balls of two colors, say

red and black, and associate an extraction from the urn to each action t� t(k) + 1. The ini-

tial total number of balls in the urn is cþ
PtðkÞ

h¼1
Wh, of whichWt(k) red. At each time-step t

� t(k) + 1, if the extracted ball is red then action t exhibits feature k and the composition of

the urn is updated withWt red balls; otherwise, action t does not exhibit feature k and the

composition of the urn is updated withWt black balls. Therefore quantity (4) gives the

probability of extracting a red ball at time-step t. This is essentially the nodes-features
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dynamics considered in [22] with δ = 0 only. If we have Gi� 1, an alternative normalizing

factor is Bt = t. In this case the quantity (4) is the empirical mean of the random variables Fj,-
kWj, with j = 1, . . ., t − 1 (again we divide by t instead of t − 1 for the same reason explained

above).

3. We can extend case 2) to the case in which the fitness variables change along time and so

we haveWt,j,k =Wt,j defined in terms of Gt,i(j), where i(j) denotes the agent that performs

action j and Gt,i(j) is her/his fitness at the time-step of action t, thus following prescription

similar to those of [13, 14]. We can also extend to the case in which the actions can be per-

formed in collaboration by more than one agent. In this case the weightWt,j can be defined

as a function of the fitness at time-step t of all the agents performing action j.

4. We can setWt,j,k =Wt,k for all t, j, k with Bt = t so that the term (4) becomes the average

popularity of feature k adjusted by the quantityWt,k. For instance, we can takeWt,k as a

decreasing function of t�(k) = max{j: 1� j� t − 1 and Fj,k = 1}, which is the last action,

before action t, that has k among its features. By doing so, in (4) the average popularity of k
is discounted by the length of time between the last appearance of feature k and t. Another

possibility is to use a weightWt,k in order to give more relevance to the features already

shown by the same agent performing action t in the previous actions. More precisely, we

can denote by i(j) the agent that performs action j and, for each action t, we can defineWt,k

as an increasing function of the sum ∑j=1,. . .,t−1,i(j)=i(t) Fj,k so that the more an agent has

exhibited feature k in her/his own previous actions, the greater the probability that also her/

his new action will show feature k. An additional possibility is to eliminate the dependence

on t and consider weightsWt,j,k =Wk, whereWk can be seen as a fitness random variable

associated to feature k.

5. We can modify case 2) by giving a different meaning to Gi. Indeed, we can associate to each

agent i a positive random variable Gi in order to describe her/his inclination of adopting the

already appeared features. Then we can define the weightWt,j,k as Gi(t) (or as a function of

it), where i(t) denotes the agent performing action t. In this way, we haveWt,j,k =Wt for all

t, j, k, that is the weights only depend on the inclination of the agent performing the action

and, if we set Bt = t as in case 4), the term (4) becomes the average popularity of feature k
adjusted by the quantityWt.

6. Finally, we can takeWt,j,k =Wj,k (i.e. depending on j and k, but not on t) in order to repre-

sent the weight given by the agent performing action j to feature k exhibited in this action.

Therefore the total weight of feature k at time-step t is the total weight given to feature k by

the agents who performed the previous actions.

These are just general examples of possible weights. We refer to the following applications

to real datasets for special cases of the above examples. It is worth to note that the weights

Wt,j,k may be not independent. For example, in case 5) we have exactly the same weight for all

the actions performed by the same agent.

Results

In this section we present some applications of the model to different real-world bipartite

networks. In the first subsection we illustrate the general methodology used to analyse the

datasets (we refer to S1 Text for the data cleaning procedure). The other subsections contain

instead three examples: we first consider two different collaboration networks, the first one

in the area of Automatic Driving and downloaded from the IEEE database, the second one in
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the research field of High Energy Physics and downloaded from the arXiv repository. In both

cases, the agents are the authors, the agents’ actions are the published papers and the features

are all 1-grams (nouns and adjectives) included in the title or abstract of each paper. Thus,

the considered features identify the main research subjects treated in the papers. For these

applications we make use of weights of the formWt,j, that are defined in terms of a fitness

variable associated to the agents who performed previous action j, but measured at the time-

step of the current action t. Finally, we present the last example: we study the quite popular

on-line social network of Instagram, in which the users are the agents, the agents’ actions are

the posted photos and, for each media, the features are the hashtags included in its descrip-

tion. Thus, the considered features identify the topics the considered posts refer to. For this

example, we investigate two kinds of weights: weights of the formWt, that solely depend on

some quantity related to the agent performing the current action t, in order to adjust the

average popularity of each feature in (4), and, as in the previous two applications, weights of

the formWt,j, that are defined in terms of a fitness variable associated to the agents who

performed previous action j. In all the three applications, the weights are observable random

variables. A more detailed interpretation of the considered weights is provided in each sub-

section.

General methodology

For each considered applications, the analysis develops according to the same outline that we

describe in the following subsections.

Estimation of the model parameters. We provide the estimated value of the parameters

α, β and δ of the model by means of the tools illustrated in Section A.2 in S1 Text. For each

parameter p 2 {α, β, δ}, we also give the averaged value �p of the estimates on a set of R realiza-

tions and the related mean squared errorMSE(p). More precisely, starting from the estimated

values â, b̂ and d̂ (and the observed chosen weights), we generate a sample of R simulated

actions-features matrices and we estimate again the parameters on each realization, obtaining

the values âr, b̂r and d̂r, for r = 1, . . ., R. We then compute, for each parameter p 2 {α, β, δ}, the

average estimate �p over all the simulations and theMSE(p), as follows

�p ¼
1

R

XR

r¼1

p̂r MSEðpÞ ¼
1

R

XR

r¼1

ðp̂r � p̂Þ
2
: ð5Þ

Check of the asymptotic behaviors. We consider the behavior of the total number Lt of

observed features along the time-steps t and we compare it with the theoretical one of the

model (see Section A.1.1 in S1 Text). In particular, for each application, we verify that the

power-law exponent matches the estimated parameter β. Moreover, we consider the behavior

of the total number e(t) of edges in the real actions-features network and we compare it with

the mean number μe(t) of edges obtained averaging over R simulated actions-features net-

works, obtained by the model with the selected weights.

Comparison between real and simulated matrices and selection of the weights. We

compare the real and simulated actions-features matrices on the basis of two groups of indica-

tors: one regarding the spreading of the old features in the new actions, which depends on the

weights, and the other one regarding the arrival process of the features, which does not depend

on the weights. The first indicators allow us to select the most appropriate weights among

those taken into consideration.
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Indicators for the spreading process of the old features: We take into account the indicator

�OT ¼
1

ðT � 1Þ

XT

t¼2

Ot with Ot ¼
XLt� 1

k¼1

Ft;k: ð6Þ

For each action t, with 2� t� T, the quantity Ot is the number of old features shown by

action t and �OT provides the averaged value overall the set of observed actions. This indicator

is computed for the real matrix, for the simulated matrix by the model with different kinds of

weights, including also the constant weights equal to 1 in order to evaluate the relevance of the

weights inside the dynamics. In particular, for the simulated matrices, the provided values are

an average on R realizations, together with their sample standard deviation sOT . Furthermore,

in order to take into account also the not-exhibited old features (i.e. the zeros in the matrix F),

we check also the number of correspondences, that is we compute the indicator

mO ¼
1

T � 1

XT

t¼2

mOðtÞ with

mOðtÞ ¼
1

min ðLret� 1
; Lsimt� 1

; k�Þ

XminðLret� 1
;Lsimt� 1

;k�Þ

k¼1

IfFret;k¼Fsimt;k g:

ð7Þ

where we use the apex abbreviation re or sim to indicate whether the considered quantity is

related to the real matrix or the simulated matrix, respectively. The meaning of the above indi-

cator is the following. Given the simulated matrix, for a certain action t, the quantitymO(t) cal-

culates the fraction of correctly attributed old features among the features in {1, . . ., k�} and

mO is the corresponding averaged values overall the set of observed actions. A value ofmO
close to 1 indicates that a very high fraction of features has been correctly allocated by the

model. We try different values of k� in order to detect the area where there are the major differ-

ences. As above, we simulate the matrix by the model with the chosen weights and with all the

weights equal to 1 and the provided values are an average on R simulations, together with their

sample standard deviations smO . On the basis of these two indicators, we select the suitable

weights.

Indicators for the arrival process of the features: As said before, this process is not affected by

the weights. We take into account the indicator

�NT ¼
LT
T
¼

1

T

XT

t¼1

Nt; ð8Þ

where Nt = Lt − Lt−1 (with L0 = 0) is the number of new features brought by action t and �NT

provides the averaged value overall the set of observed actions. This indicator is computed for

the real matrix and for the simulated matrix. In particular, for the simulated matrix, the pro-

vided value is an average on R realizations, together with its sample standard deviation sNT .

Moreover, we consider the indicator

mL ¼
1

T � 1

XT

t¼2

mLðtÞ with mLðtÞ ¼
jLret � L

sim
t j

Lret
; ð9Þ

where, as above, we use the apex abbreviation re or sim to indicate whether the considered

quantity is related to the real matrix or the simulated matrix, respectively. The meaning of the

above indicator is the following. Given the simulated matrix, for a certain t, the quantitymL(t)
computes the relative error committed in the total number of observed features andmL is the
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corresponding averaged values overall the observations. A value ofmL close to 0 indicates that

the relative error in the total number of observed features is very low. Again, the provided

value is an average on R simulations, together with its sample standard deviation smL .

Predictive power of the model. Once the weights are selected, we perform a prediction

analysis on the actions-features matrix: we estimate the model parameters only on a subset of

the observed actions, we simulate the rest by means of the model and compare the real and

simulated matrices. More precisely, fixed a time-step T� < T, we estimate the model parame-

ters on the “training set” corresponding to the set of actions observed at t = 1, . . ., T�. We then

employ those estimates to simulate the dynamics of the actions-features network related to the

remaining set of actions at times t = T� + 1, . . ., T. Finally, taking the features really observed

for these last actions as “test set”, we evaluate the goodness of our predictions by computing

the following indicators:

m�O ¼
1

T � T�
XT

t¼T�þ1

m�OðtÞ with

m�OðtÞ ¼
1

min ðLret� 1
; Lsimt� 1

; k�Þ

XminðLret� 1
;Lsimt� 1

;k�Þ

k¼1

IfFret;k¼Fsimt;k g

and

m�L ¼
1

T � T�
XT

t¼T�þ1

m�LðtÞ with m
�

LðtÞ ¼
jLret � L

sim
t j

Lret
;

ð10Þ

where, as before, we use the apex abbreviation re or sim to indicate whether the considered

quantity is related to the real matrix or the simulated matrix, respectively. The meaning of the

above indicators is the same ofmO andmL: given a simulated matrix, for a certain action t,
with T� + 1� t� T, the quantitym�OðtÞ calculates the fraction of correctly attributed old fea-

tures among the features in {1, . . ., k�}, whilem�LðtÞ computes the relative error in the total

number of observed features. Then,m�O andm�L are the corresponding averaged values over the

test set of actions. Values ofm�O andm�L respectively close to 1 and 0 indicate that, starting from

the observation of the first T� actions (the training set), a very high fraction of features has

been correctly predicted by the model and that the relative error in the total number of

observed features is very low. The provided values are an average on R simulations of the

model with the selected weights.

IEEE dataset for Automatic Driving

For the first application we have downloaded (on June 26, 2018) all papers recorded between

2000 and 2003 present in the IEEE database in the scientific research field of Automatic Driv-

ing. As in [22], we selected all papers containing at least one of the keywords: Lane Departure

Warning, Lane Keeping Assist, Blindspot Detection, Rear Collision Warning, Front Distance

Warning, Autonomous Emergency Braking, Pedestrian Detection, Traffic Jam Assist, Adap-

tive Cruise Control, Automatic Lane Change, Traffic Sign Recognition, Semi-Autonomous

Parking, Remote Parking, Driver Distraction Monitor, V2V or V2I or V2X, Co-Operative

Driving, Telematics & Vehicles, and Night vision. The download has yielded 492 distinct pub-

lications belonging to the required scientific field and period. For each paper we have at our

disposal all the bibliographic records, such as title, full abstract, authors’ names, keywords,

year of publication, date in which the paper was added to the IEEE database, and many others.

The papers have been sorted chronologically according to the date in which they were added
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to the database. We have considered all nouns and adjectives (from now on “key-words”)

included in the title or abstract as the features of the model and sorted them according to their

arrival time. (See Section A.3 in S1 Text for a more detailed description of the data preparation

procedure.) The features matrix obtained at the end of the cleaning procedure collects T = 492

papers (actions) recorded in the period 2000 − 2003 and involving n = 1251 distinct authors

(agents) and containing LT = 4553 key-words (features). The binary matrix entry Ft,k indicates

whether feature k is present or not into the title or the abstract of the paper recorded at time-

step t. A pictorial representation of the matrix is provided in Fig 1.

For this application, we use weights of the type 3): indeed, at each time-step t, we associate

to each author i a fitness variable Gt,i that quantifies the influence of author i in the considered

research field, and we define the weights as

Wt;j;k ¼Wt;j ¼ e� 1=Mt;j with Mt;j ¼ maxfGt;i : i 2 IðjÞg where

IðjÞ ¼ set of the agents performing action j :
ð11Þ

Therefore the inclusion probability in Eq (2) reads as

PtðkÞ ¼
d

2
þ ð1 � dÞ

Pt� 1

j¼1
Fj;k e� 1=Mt;j

t
: ð12Þ

The termMt,j is the maximum among the fitness variables Gt,i at time-step t of all the

authors i 2 IðjÞ, i.e. the authors who published the paper appeared at time-step j. A high value

of Gt,i should identify a person who is relevant in the considered research field so that it is

likely that other scholars use the same features of her/his actions, that are the keywords related

to her/his research. As a consequence, in the preferential attachment term, we give to each old

feature k a weight that is increasing with respect to the fitness variables of the authors who

included k in their papers. We analyse two different fitness variables:

Gpubt;i ¼ ðtotal number of author i’s publications until time‐step t � 1Þ þ 1 ð13Þ

Fig 1. IEEE Automatic Driving dataset. Observed actions-features matrix with dimension T × LT = 492 × 4553. Black

dots represent 1 while white dots represent 0.

https://doi.org/10.1371/journal.pone.0223768.g001
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and

Gcolt;i ¼ ðtotal number of author i’s collaborators until time‐step t � 1Þ þ 1: ð14Þ

(Note that 1 is added in order to avoid division by zero in the previous formula (11)).

We perform the analysis following the general methodology explained in the previous sec-

tion (with R = 500), taking into both definition of fitness. We first estimate the model’s param-

eters, obtaining the results in Table 1. The estimated value for the parameter δ, which is zero,

points out that the weighted preferential attachment term (4) plays a leading role in the inclu-

sion probabilities. Fig 2 provides in the left panel a log-log plot of the cumulative count of new

features (key-words) as a function of time (see the red dots), that clearly shows a power-law

behavior. Moreover, this agrees with the theoretical property of the model stated in Section

A.1.1 in S1 Text, according to which the power-law exponent has to be equal to the parameter

β (in the figure the black line has slope equal to the estimated value for β, that is b̂ ¼ 0:5962).

The goodness of fit of the model to the dataset has been evaluated through the computation of

Table 1. IEEE Automatic Driving dataset. Estimation of the model parameters.

p p̂ �p MSE(p)

α 68.533 68.589 11.765

β 0.5962 0.5963 0.0001

δ with Gpubt;i 0 3.96 � 10−5 5.02 � 10−9

δ with Gcolt;i 0 4.77 � 10−5 7.31 � 10−9

https://doi.org/10.1371/journal.pone.0223768.t001

Fig 2. IEEE Automatic Driving dataset. Left: Plot of ln(Lt) as a function of ln(t), with the power-law trend. The red dots refer to the real data and the black line gives

the theoretical regression line with slope b̂ ¼ 0:5962. Right: Asymptotic behavior of the number of edges in the actions-features network. Red dots refer to e(t) of the

real data, while the black line shows μe(t) obtained by the model with Gpubt;i (averaging over R = 500 simulations).

https://doi.org/10.1371/journal.pone.0223768.g002
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the quantities (6), (7), (8) and (9). These results are shown in Tables 2, 3 and 4. We can see that

the average number of old features (i.e. the quantity �OT) is well reproduced only in the case

with Gpubt;i , that is the case with the fitness based on the number of publications. Moreover, the

average number of new features �NT perfectly matches with the real one, see Table 3. Table 4

also indicates that the model with Gpubt;i is the best performing. More precisely, for the model

with the fitness Gpubt;i , the computed value of �mO ranges from 88% to 97%, pointing out that a

high percentage of the entries in the actions-features matrix have been correctly inferred by

the model. The same value for the model with the fitness Gcolt;i ranges from 83% to 96%, and, for

the model with all the weights equal to 1, it ranges from 55% to 93%. The differences are more

evident when we select the first k� features: indeed, with Gpubt;i we succeed to infer the value of

at least 88% of the entries; while with Gcolt;i and with all the weights equal to 1 the percentage

remains under 88% and 70%, respectively. This means that the major difference in the perfor-

mance of the different considered weights is in the first features, that are those for which the

preferential attachment term (that depends on the weights) is more relevant. Note also that the

actions-features matrix is more dense in the part corresponding to the first k� features. At this

point, we select the model with the weights that take into account the authors’ number of pub-

lications as the best performing one for the considered dataset and in the following we focus

on it. In Table 5 we evaluate the predictive power of the model: we estimate the parameters of

the model only on a subset of the observed actions, respectively the 75%, 50% and 25% of the

total observations; we then predict the features for the future actions {T� + 1, . . ., T} and com-

pare the predicted and observed results by means of the indicators in (10) over the whole set of

features and only on a portion of it. Finally, in the right panel of Fig 2, we provide the

Table 2. IEEE Automatic Driving dataset. Comparison between real and simulated actions-features matrices by

means of the indicators (6).

Matrix �OT sOT

Real 31.54

Weights with Gpubt;i 31.94 1.33

Weights with Gcolt;i 54.46 2.52

Weights = 1 134.39 6.66

https://doi.org/10.1371/journal.pone.0223768.t002

Table 3. IEEE Automatic Driving dataset. Comparison between real and simulated actions-features matrices by

means of the indicators (8) and (9).

Matrix �NT sNT
�mL smL

Real 9.25

Simulated 9.26 0.14 0.048 0.010

https://doi.org/10.1371/journal.pone.0223768.t003

Table 4. IEEE Automatic Driving dataset. Comparison between real and simulated actions-features matrices by means of the indicators (7), computed on the whole

matrix (k� = 4553) and also taking into account only the first k� = 300, 200, 100 features.

�mOðsmO
Þ k� = 4553 k� = 300 k� = 200 k� = 100

Weights with Gpubt;i 0.969(0.001) 0.914(0.003) 0.902(0.003) 0.882(0.005)

Weights with Gcolt;i 0.959(0.001) 0.876(0.005) 0.855(0.007) 0.831(0.009)

Weights = 1 0.925(0.003) 0.703(0.016) 0.640(0.019) 0.548(0.028)

https://doi.org/10.1371/journal.pone.0223768.t004
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asymptotic behavior of the number of edges in the actions-features network: more precisely,

the red dots represent the total number e(t) of edges observed in the real actions-features

matrix at each time-step; while the continuous black line shows the mean number μe(t) of

edges obtained averaging over R = 500 simulations of the model with the chosen weights.

It is worth to note that the difference in the performance between the two definitions of fit-

ness variables has a straightforward interpretation: in the considered case, i.e. for the publica-

tions in the area of Automatic Driving in the considered period, the relevance of an author

(with respect to the probability of transmitting her/his features) is better measured by consid-

ering the number of her/his publications rather than the number of her/his co-authors. As we

will see later on, we get a different result for the second application.

ArXiv dataset for Theoretical High Energy Physics

The second application has been performed with the arXiv dataset of publications in the scien-

tific area of Theoretical High Energy Physics (Hep-Th), recorded in the period 2000−2003

(the same period used for the first application), freely available from [27]. The dataset collects

a sample of text files reporting the full frontispiece of each paper, so we have information on:

arXiv id number, date of submission, name and email of the author who made the submission,

title, authors’ names and the entire text of the abstract. From the original format we isolate the

submission date and the identity number of the paper, in order to sort all papers (actions)

chronologically. Then, with the final purpose of constructing the features matrix, we consider

all key-words included either in the main title or in the abstract as the features of the papers

and we sort them according to their time of appearance. (The complete data preparation phase

is described in Section A.3 in S1 Text). We constructed the features matrix F, whose elements

are equal to Ft,k = 1 if paper t includes word k either in the title or in the abstract and Ft,k = 0

otherwise. The result is shown in Fig 3, where the observed actions-features matrix collects

T = 10603 papers (actions) registered between 2000 and 2003 and LT = 22304 key-words

appeared in the title or in the abstract (features), while the total number of involved authors

(agents) is n = 5633.

The weights for this application are defined as in the previous one, described in Eq (11). We

consider again the two different definitions for the fitness term Gt,i (see (13) and (14)). The

performed analysis follows the general methodology (with R = 500) previously explained. We

first estimate the model’s parameters, obtaining the results in Table 6. Again, the estimated

value for the parameter δ points out that the weighted preferential attachment term (4) plays a

leading role in the inclusion probabilities. Fig 4 provides in the left panel a log-log plot of the

cumulative count of new features (key-words) as a function of time (see the red dots), that

clearly shows a power-law behavior. Moreover, this agrees with the theoretical property of the

model stated in Section A.1.1 in S1 Text, according to which the power-law exponent has to be

equal to the parameter β: indeed, in the figure the black line has slope equal to the estimated

value of the parameter β, that is b̂ ¼ 0:6305. The goodness of fit of the model to the dataset

Table 5. IEEE Automatic Driving dataset. Predictions on the actions-features matrix. The indicators (10) are computed for different levels of information used as “train-

ing set”: more precisely, the different values of T� correspond to 75%, 50% and 25% of the set of the actions, respectively. Moreover, the indicator �m�O is computed on the

whole matrix (k� = 4553) and also taking into account only the first k� = 200 features. In the brackets, there are the sample standard deviations.

Weights with Gpub
t;i

�m�O with k� ¼ 4553 �m�O with k� ¼ 200 �m�L
T� = 369 0.9857(0.0001) 0.9263(0.0012) 0.0165(0.003)

T� = 246 0.9847(0.0001) 0.9272(0.0009) 0.0600(0.006)

T� = 123 0.9828(0.0001) 0.9296(0.0008) 0.1138(0.009)

https://doi.org/10.1371/journal.pone.0223768.t005
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Fig 3. arXiv High Energy Physics dataset. Observed actions-features matrix with dimension T × LT = 10603 × 22304.

Black dots represent 1 while white dots represent 0.

https://doi.org/10.1371/journal.pone.0223768.g003

Table 6. arXiv High Energy Physics dataset. Estimation of the model parameters.

p p̂ �p MSE(p)

α 40.81 40.82 2.12

β 0.63052 0.63054 2.05 � 10−5

δ with Gpubt;i 0 1.06 � 10−6 3.82 � 10−12

δ with Gcolt;i 0 1.12 � 10−6 4.37 � 10−12

https://doi.org/10.1371/journal.pone.0223768.t006

Fig 4. arXiv High Energy Physics dataset. Left: Plot of ln(Lt) as a function of ln(t), with the power-law trend. The red dots refer to the real data

and the black line gives the theoretical regression line with slope b̂ ¼ 0:6305. Right: Asymptotic behavior of the number of edges in the actions-

features network. Red dots refer to e(t) of the real data, while the black line shows μe(t) obtained by the model with Gcolt;i (averaging over R = 500

simulations).

https://doi.org/10.1371/journal.pone.0223768.g004
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has been evaluated through the computation of the quantities (6), (7), (8) and (9). These results

are shown in Tables 7, 8 and 9. We can see that the model is able to perfectly reproduce the

average number of new features �NT . Instead, the average number of old features (i.e. the quan-

tity �OT) is under-estimated by the model with the weights based on Gpubt;i and Gcolt;i , while it is

widely over-estimated in the case with all the weights equal to 1. The discrepancy in the values

is a little smaller for the case with Gcolt;i (that is the case with the fitness based on the number of

collaborators). Table 8 shows that the performance of the model in reproducing the data are

comparable with both the considered definitions of fitness and they are slightly better than in

the case with all weights equal to one. At this point, since the best performance in reproducing

�OT , we select the weights that take into account the authors’ number of collaborations and the

last analysis focuses on it. In Table 10 we evaluate the predictive power of the model: we esti-

mate the parameters of the model only on a subset of the observed actions, respectively the

75%, 50% and 25% of the total observations; we then predict the features for the future actions

{T� + 1, . . ., T} and compare the predicted and observed results by means of the indicators in

(10) over the whole set of features and only on a portion of it. Finally, in the right panel of

Table 7. arXiv High Energy Physics dataset. Comparison between real and simulated actions-features matrices by

means of the indicators (6).

Matrix �OT sOT

Real 28.42

Weights with Gpubt;i 15.50 0.44

Weights with Gcolt;i 18.70 0.63

Weights = 1 97.09 4.99

https://doi.org/10.1371/journal.pone.0223768.t007

Table 8. arXiv High Energy Physics dataset. Comparison between real and simulated actions-features matrices by means of the indicators (7), computed on the whole

matrix (k� = 22304) and also taking into account only the first k� = 16728, 11152, 5576 features.

�mOðsmO
Þ k� = 22304 k� = 16728 k� = 11152 k� = 5576

Weights with Gpubt;i 0.99749(1.8 � 10−4) 0.9967(2 � 10−4) 0.9952(3 � 10−4) 0.9907(6 � 10−4)

Weights with Gcolt;i 0.99741(1.8 � 10−4) 0.9966(2 � 10−4) 0.9951(4 � 10−4) 0.9904(7 � 10−4)

Weights = 1 0.9940(4 � 10−4) 0.9920(5 � 10−4) 0.9882(8 � 10−4) 0.9770(1.6 � 10−3)

https://doi.org/10.1371/journal.pone.0223768.t008

Table 9. arXiv High Energy Physics dataset. Comparison between real and simulated actions-features matrices by

means of the indicators (8) and (9).

Matrix �NT sNT
�mL smL

Real 2.10

Simulated 2.10 0.01 0.021 0.004

https://doi.org/10.1371/journal.pone.0223768.t009

Table 10. arXiv High Energy Physics dataset. Predictions on the actions-features matrix. The indicators (10) are computed for different levels of information used as

“training set”: more precisely, the different values of T� correspond to 75%, 50% and 25% of the set of the actions, respectively. Moreover, the indicator �m�O is computed on

the whole matrix (k� = 22304) and also taking into account only the first k� = 11152 features. In the brackets, there are the sample standard deviations.

Weights with Gcol
t;i �m�O with k� ¼ 22304 �m�O with k� ¼ 11152 �m�L

T� = 7952 0.99715(2.2 � 10−4) 0.99709(2.1 � 10−4) 0.0059(1.7 � 10−3)

T� = 5302 0.99709(2.2 � 10−4) 0.9946(4 � 10−4) 0.026(2 � 10−3)

T� = 2651 0.9947(4 � 10−4) 0.9948(4 � 10−4) 0.035(4 � 10−3)

https://doi.org/10.1371/journal.pone.0223768.t010
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Fig 4, we provide the asymptotic behavior of the number of edges in the actions-features net-

work: more precisely, the red dots represent the total number e(t) of edges observed in the real

actions-features matrix at each time-step; while the continuous black line shows the mean

number μe(t) of edges obtained averaging over R = 500 simulations of the model with the cho-

sen weights.

Contrarily to the previous case, in this application we observe a comparable performance of

the model with both the considered definitions of fitness. This means that, for the publications

in High Energy Physics in the considered period, both the number of co-authors and the num-

ber of publications of an author can be considered as reasonable measures in order to evaluate

her/his relevance in the research field.

Instagram dataset

The dataset has been crawled through the Instagram API between January 20 and February 17,

2014 and collects public media (with their author, time-stamp and set of hashtags) as well as

users information (with their list of followers and followees) of a set of 2100 anonymized par-

ticipants to 72 popular photographic contests that took place between October 2010 and Feb-

ruary 2014. A detailed description of the dataset used for this application can be found in [28].

The overall media dataset records more than one million posts but, with the purpose of maxi-

mizing the density of our actions-features matrix, we considered only those posts posted dur-

ing the weekends in the crawling period (Jan 20−Feb 17, 2014) in which at least 5 hashtags are

used. This procedure yields a sample of T = 2151 posts (actions) and LT = 5890 hashtags (fea-

tures). The available posts were ordered chronologically according to the associate time-stamp

of publication and the hashtags (features) were sorted in terms of their first appearance in a

post. After this first phase of data arrangement, we constructed the actions-features matrix F,

with Ft,k = 1 if post t contains hashtag k and Ft,k = 0 otherwise. The resulting matrix is shown

in Fig 5, with non-zero values indicated by black points.

For this application, we first consider weights of the type 5), that depend on an indicator

related to the underlying Instagram network. Precisely, we associate to each agent i the variable

Gfoli defined as the number of user i’s followers, among those who were active during the crawl-

ing period and we set

Wt;j;k ¼Wt ¼ e
� Gfol

iðtÞ ; ð15Þ

where i(t) denotes the author of post t. Therefore the inclusion probability for hashtag k
becomes

PtðkÞ ¼
d

2
þ ð1 � dÞ

Pt� 1

j¼1
Fj;k
t

e� G
fol
iðtÞ ; ð16Þ

where the average popularity of hashtag k is exponentially discounted by the factor GfoliðtÞ. The

decision to introduce such kind of weights was driven by the following consideration. A user

with a very high number of followers identifies a person who is very popular on the social net-

works, an “influencer” in the extreme case. As a consequence, it may be reasonable to think

that she/he is less affected by other people’s posts and, consequently, less prone to use old hash-

tags. For this user, the average popularity of k in the inclusion probability Pt(k) should be less

relevant. On the contrary, a user with a low number of followers may be more incline to follow

the current trends and the others’ preferences and choices. It is worthwhile to point out that in

the definition of the weights, we considered the number of followers of an user as fixed to the

value we observed at the end of the period of observation (the crawling period). In general, it
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may change in time, depending on the changes in her/his network of virtual friendships. How-

ever, we assume it to be constant because of the short time span considered.

Moreover, we also use weights of the type 3), similar to those used in the previous two appli-

cations: indeed, at each time-step t, we associate to each user i the fitness variable

Gpostst;i ¼ ðtotal number of user i’s posts until time‐step t � 1Þ þ 1 ð17Þ

and we define the weights as

Wt;j;k ¼Wt;j ¼ e
� 1=Gposts

t;iðjÞ where

iðjÞ ¼ author of the post j :
ð18Þ

(As before, we add 1 in (17) in order to avoid division by zero in (18).) A high value of Gpostst;i

should identify a user who is very active in the considered context so that it is likely that other

users employ the same hashtags of her/his posts. Accordingly, the inclusion probability in Eq

(2) reads as

PtðkÞ ¼
d

2
þ ð1 � dÞ

Pt� 1

j¼1
Fj;k e

� 1=Gposts
t;iðjÞ

t
: ð19Þ

The performed analysis follows the general methodology (with R = 500) explained above.

We first estimate the model’s parameters, obtaining the results in Table 11. Again, the esti-

mated values for δ reveal that the weighted preferential attachment term (4) plays an impor-

tant role in the inclusion probabilities. Fig 6 provides in the left panel a log-log plot of the

cumulative count of new features (key-words) as a function of time (see the red dots), that

clearly shows a power-law behavior. Moreover, this agrees with the theoretical property of

the model stated in Section A.1.1 in S1 Text, according to which the power-law exponent has

to be equal to the parameter β (in the figure the black line has slope equal to the estimated

value for β, that is b̂ ¼ 0:5897). The goodness of fit of the model to the dataset has been eval-

uated through the computation of the quantities (6), (7), (8) and (9). These results are shown

in Tables 12, 13 and 14. We can see that the average number of old features, i.e. the quantity

Fig 5. Instagram dataset. Observed actions-features matrix, with dimension T × LT = 2151 × 5890. Black dots

represent 1 while white dots represent 0.

https://doi.org/10.1371/journal.pone.0223768.g005
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�OT , shows a good agreement with the observed quantity in the case of the model with both

the considered weights, contrarily to the model with all the weights equal to one for which we

obtain a much higher value. We note that the difference in the values is smaller for the case

with Gfoli (i.e. the case with the fitness based on the number of followers). Moreover, the

model is perfectly able to reproduce the average number of new features �NT . Table 13 also

indicates that the model with weights (15) (i.e. those with fitness expressed as the number of

followers) shows a better performance than the one with the weights depending on the num-

ber of posts or the one with all the weights equal to one. More precisely, for the model with

weights (15), the computed values of �mO ranges from 97% to 99%, pointing out that a high

percentage of the entries in the actions-features matrix have been correctly inferred by the

model. The differences are more evident when we select the first k� features: indeed, with

with weights (15) we succeed to infer the values of at least 97% of the entries; while with

weights (18) and with all the weights equal to 1 the percentage remains under 96% and 86%,

respectively. This means that the major difference in the performance of the different

Table 11. Instagram dataset: Estimation of the model parameters.

p p̂ �p MSE(p)

α 37.896 37.901 4.086

β 0.5897 0.5899 7.45 � 10−5

δ with Gfoli 0.0063 0.0062 2.69 � 10−8

δ with Gpostst;i 0 9.80 � 10−6 2.93 � 10−10

https://doi.org/10.1371/journal.pone.0223768.t011

Fig 6. Instagram dataset. Left: Plot of ln(Lt) as a function of ln(t), with the power-law trend. The red dots refer to the real data and the black line gives the theoretical

regression line with slope b̂ ¼ 0:5897. Right: Asymptotic behavior of the number of edges in the actions-features network. Red dots refer to e(t) of the real data, while

the black line shows μe(t) obtained by the model with Gfoli (averaging over R = 500 simulations).

https://doi.org/10.1371/journal.pone.0223768.g006
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considered weights is in the first features, that are those for which the preferential attachment

term (that depend on the weights) is more relevant. Note also that the actions-features matrix

is more dense in the part corresponding to the first k� features. At this point, we select the

weights (15) (i.e. those taking into account the users’ number of followers) and the last analy-

sis focuses on it. In Table 15 we evaluate the predictive power of the model with the chosen

weights: we estimate the parameters of the model only on a subset of the observed actions,

respectively the 75%, 50% and 25% of the total observations; we then predict the features for

the future actions {T� + 1, . . ., T} and compare the predicted and observed results by means

of the indicators in (10) over the whole set of features and only on a portion of it. Finally, in

the right panel of Fig 6, we provide the asymptotic behavior of the number of edges in the

actions-features network: more precisely, the red dots represent the total number e(t) of

edges observed in the real actions-features matrix at each time-step; while the continuous

black line shows the mean number μe(t) of edges obtained averaging over R = 500 simulations

of the model with the chosen weights.

Table 13. Instagram dataset. Comparison between real and simulated actions-features matrices by means of the indicators (7), computed on the whole matrix (k� = 5890)

and also taking into account only the first k� = 500, 250, 100 features.

�mOðsmO
Þ k� = 5890 k� = 500 k� = 250 k� = 100

Weights with Gfoli 0.9912(0.0001) 0.9797(0.0001) 0.9754(0.0001) 0.9666(0.0002)

Weights with Gpostst;i 0.9879(0.0003) 0.9644(0.0011) 0.9524(0.0021) 0.9327(0.0036)

Weights = 1 0.9652(0.0020) 0.8580(0.0089) 0.7720(0.0168) 0.6282(0.0291)

https://doi.org/10.1371/journal.pone.0223768.t013

Table 14. Instagram dataset. Comparison between real and simulated actions-features matrices by means of the indi-

cators (8) and (9).

Matrix �NT sNT
�mL smL

Real 2.74

Simulated 2.74 0.03 0.0376 0.0105

https://doi.org/10.1371/journal.pone.0223768.t014

Table 12. Instagram dataset. Comparison between real and simulated actions-features matrices by means of the indi-

cators (6).

Matrix �OT sOT

Real 14.23

Weights with Gfoli 13.58 0.21

Weights with Gpostst;i 16.26 0.71

Weights = 1 79.44 4.79

https://doi.org/10.1371/journal.pone.0223768.t012

Table 15. Instagram dataset. Predictions on the actions-features matrix. The indicators (10) are computed for different levels of information used as “training set”: more

precisely, the different values of T� correspond to 75%, 50% and 25% of the set of the actions, respectively. Moreover, the indicator �m�O is computed on the whole matrix

(k� = 5890) and also taking into account only the first k� = 250 features. In the brackets, there are the sample standard deviations.

Weights with Gfol
i

�m�O with k� ¼ 5890 �m�O with k� ¼ 250 �m�L
T� = 1613 0.99354(0.00003) 0.9775(0.0002) 0.0060(0.0024)

T� = 1076 0.99241(0.00003) 0.9754(0.0001) 0.0312(0.0055)

T� = 538 0.99019(0.00003) 0.9733(0.0001) 0.0983(0.0082)

https://doi.org/10.1371/journal.pone.0223768.t015
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We can conclude that for the considered dataset of Instagram, the number of followers of a

user is a good measure in order to evaluate her/his inclination to employ old hashtags, but in

the inverse sense: the bigger the popularity, the smaller the tendency of re-use already existing

hashtags. The difference in the performance of the model with weights based on the number

of followers and with weights based on the number of posts is not so significant. Therefore, as

in the previous two applications, we can affirm that the relevance of an agent (with respect to

the probability of transmitting her/his features) is well measured by the number of her/his

actions.

Summary of the results

We here summarize the major findings of the three considered applications.

In all the three cases we chose the weights depending on a fitness variable. In the first two

applications (IEEE and arXiv), the fitness variable measures the ability of the agents (authors)

to transmit the features (keywords) of their actions (publications). In the third application

(Instragram) we considered two kinds of fitness: one quantifies the inclination of the agents

(users) to follow the features (hashtags) of the previous actions (posts) and the other, as before,

measures the ability of the agents to transmit the features of their actions. From the performed

analyses of the actions-features bipartite networks, we get the following main common issues

for the three applications:

• In the inclusion probabilities defined by (2), the preferential attachment term plays a relevant

role, because of the small estimated values obtained for the parameter δ.

• The considered indicators and the plots regarding the behavior along time of the total num-

ber of observed features Lt show a good fit between the model with the selected weights and

the real datasets. In particular, the power-law behavior of Lt perfectly matches the theoretical

one with the estimated parameter b̂ as the power-law exponent, and a high percentage of the

entries of the actions-features matrix is successfully inferred with the model. Moreover, a

good performance is also obtained when making a prediction analysis, i.e. testing the per-

centage of the entries that are successfully recovered by the model providing it with different

levels of information. Regarding the plot of μe(t), we note that the observed total number of

edges is well replicated in all applications. Nevertheless, the plots of its dynamics show that

the slope of the simulated curve and the real one asymptotically match only in the case of

IEEE dataset. In the other applications the two curve intersect, but their slope are not the

same. The different performance in replicating the dynamics of Lt and μe(t) reveal that the

arrival process of the features is simpler and well captured by the proposed model (recall that

in the model the dynamics of Lt does not depend on the weights, but only on the parameters

α and β) than the selection mechanism of the old features. Therefore, it is hard to recover the

whole dynamics of μe(t) along time. However, as said before, in all the considered applica-

tions, the proposed dynamics for the selection of old features (that is the inclusion probabili-

ties endowed with suitable observed random weights and a single estimated parameter δ)

show a good performance with respect to the employed indicators.

• With respect to the “flat weights”, i.e. all weights equal to 1, the selected weights guarantee a

better agreement with the real actions-features matrices. The difference in the performance

of the model with different weights is put in evidence by the indicator �OT and it is also evi-

dent when we consider a subset of the overall set of the observed features for the computa-

tion of the indicator �mO. Indeed, the actions-features matrices appear more dense in the part

corresponding to the first features and these features are those for which the preferential

attachment term, that depends on the weights, is more relevant.
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Conclusions

In this work we have presented our contribution to the stream of literature regarding stochas-

tic models for networks formation. With respect to the previous publications, the present

paper introduces some novelties. First of all, our focus is to define a model for the bipartite net-

work that describes the activity of some agents, studying the behavior in time of agents’ actions

and the features shown by these actions. Therefore, we only assume to know the chronological

order in which we observe the agents’ actions, and not the order in which the agents arrive.

Second, we extend the concept of “preferential attachment with weights” [10, 11] to this frame-

work. The weights can have different forms and meanings according to the specific setting

considered and play an important role since the probability that a future action shows a certain

feature depends, not only on its popularity (i.e. the number of previous actions showing the

feature) as stated by the preferential attachment rule, but also on some characteristics of the

agents and/or the features themselves. For instance, the weights may give information regard-

ing the ability of an agent to transmit the features of her/his actions to the future actions, or

the inclination of an agent to adopt the features shown in the past.

Summarizing, we first provide a full description of the model dynamics and interpretation

of the included parameters and variables, also showing some theoretical results regarding the

asymptotic properties of some important quantities. Moreover, we illustrate the necessary

tools in order to estimate the parameters of the model and we consider three different applica-

tions. For each of them, we evaluate the goodness of fit of the model to the data by checking

the theoretical asymptotic properties of the model in the real data, by comparing several indi-

cators computed both on the real and simulated matrices, as well as testing the ability of the

model as a predictive instrument in order to forecast which features will be shown by future

actions. All in all, the analyses point out a good fit of the model and a good performance of the

adopted tools in all the three considered cases.

The model and the related analysis have been able to detect some interesting aspects that

characterize the different examined contexts. In the first two applications (IEEE and arXiv) we

examined the publications in the scientific areas of Automatic Driving and of High Energy

Physics (briefly Hep-Th) and we took into account two kinds of fitness variables for the

authors: one based on the number of publications and the other based on the number of col-

laborators. This study reveals that, for Hep-Th, both the number of publications of an author

and the number of her/his collaborators are able to provide a good agreement with real data,

while, for Automatic Driving, we found a better performance of the model with the weights

based on the number of publications. Probably this difference is due to the fact that, while, in

the considered temporal window, the Physics of High Energies is quite an old subject in which

different branches developed, Automatic Driving is a much younger research area. (Indeed,

the observed values of T and LT, that is the number of publications and the number of key-

words in the considered period, for the Automatic Driving are much smaller than the ones

observed for Hep-Th in the same period. The indicator �NT also suggests that Automatic Driv-

ing is a younger research field than Hep-Th, since the observed value for the former is greater

than the one for the latter.) The behavior of the considered on-line social network results well

described with a different kind of weights. We examined the dataset of Instagram, with posts

considered as actions and hashtags as features, and we observed that the less followers a user

has the higher the number of old hashtags used. This could be related to the fact that less popu-

lar users tend to re-use many old hashtags in order to increase their visibility, while highly

famous users do not feel the need of improving their popularity in this way and focus on few

old hashtags. Indeed, this behavior seems to show a different role of the “on-line followership”

relations respect to coauthorships: while collaborations incentive the usage of a high number
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of existing features, the number of followers takes to a limited usage of existing hashtags.

Regarding this application, we also observed that, as in the considered collaboration networks,

the relevance of an agent (with respect to the probability of transmitting her/his features) is

well measured by her/his activity, that is the number of her/his actions.
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S1 Text. Some asymptotic results for the model, estimation of the model parameters and

data cleaning procedure.
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