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The understanding of the structure and dynamics of the intricate network of connections among 
people that consumes products through Internet appears as an extremely useful asset in order 
to study emergent properties related to social behavior. This knowledge could be useful, for 
example, to improve the performance of personal recommendation algorithms. In this contri­
bution, we analyzed five-year records of movie-rating transactions provided by Netflix, a movie 
rental platform where users rate movies from an online catalog. This dataset can be studied as 
a bipartite user-item network whose structure evolves in time. Even though several topological 



properties from subsets of this bipartite network have been reported with a model that combines 
random and preferential attachment mechanisms [Beguerisse Diaz et al, 2010], there are still 
many aspects worth to be explored, as they are connected to relevant phenomena underlying 
the evolution of the network. In this work, we test the hypothesis that bursty human behavior 
is essential in order to describe how a bipartite user-item network evolves in time. To that end, 
we propose a novel model that combines, for user nodes, a network growth prescription based 
on a preferential attachment mechanism acting not only in the topological domain (i.e. based on 
node degrees) but also in time domain. In the case of items, the model mixes degree preferential 
attachment and random selection. With these ingredients, the model is not only able to repro­
duce the asymptotic degree distribution, but also shows an excellent agreement with the Netflix 
data in several time-dependent topological properties. 

1. Introduction 

During the past years, we have witnessed a wide 
range of contributions on the applications of 
Complex Networks Theory to real data [Newman, 
2003; Boccaletti et al, 2006; Costa et al, 2011]. 
The main reason behind this explosion is the large 
number of datasets accessible to any user through 
Internet. Nevertheless, an excess of information can, 
sometimes, be a disadvantage, since a user may have 
problems to find specific information or even get lost 
in the pool of data. Personal recommendation algo­
rithms deal with this drawback of large datasets, 
and have been specially fruitful in the context of 
music [Herlocker et al, 2004; Cano et al, 2006; 
Zanin et al, 2009; Celma, 2010] or movie recom­
mendation [Zhang et al, 2007; Zhou et al, 2007; 
Beguerisse Diaz et al, 2010]. Within this frame­
work, collaborative filtering methods [Sarwar et al, 
2001; Herlocker et al, 2004] have shown very high 
performance as measured by high scores in their 
recommendation results. This kind of algorithms 
rely on the data previously collected from users' 
behavior, namely the number, type and rating of 
the items they have consumed. In the last decade, 
a lot of effort has been made in order to improve 
collaborative filtering algorithms, trying to increase 
their score in the prediction of what users' next 
choice will be [Bobadilla et al, 2009; Zanin et al, 
2009]. Nevertheless, less attention has been paid to 
the data that these recommendation algorithms are 
using as a ground for their automatic predictions. In 
the current work, we are concerned about the cre­
ation and evolution of rating networks, which are 
usually taken as the input of collaborative filtering 
algorithms. Rating networks are bipartite networks 

[Holme et al, 2003] whose fundamental nodes are 
split into two kinds, users and items, and links are 
created when a user gives a rate to a certain item 
that he/she has consumed. In this way, we obtain 
(complex) rating networks that are continuously 
evolving in time, increasing its number of users, 
items and links. Due to its relevance and availabil­
ity, we have analyzed the rating dataset given by 
Netflix, an online movie rental platform [Netflix, 
2011]. 

Statistical features of Netflix data were already 
the subject of several studies. Some of them have 
focused on collaborative filtering procedures and/or 
recommendation algorithms [Bennett & Lanning, 
2007; Zanin et al, 2009], others [Beguerisse 
Diaz et al, 2010] in describing relevant topological 
properties of the subsets of the Netflix database. 
In the present contribution our aim is twofold: on 
one hand, we want to understand the underlying 
rules that drive the evolution of this rating network 
and, on the other hand, we want to design a model 
able to reproduce the main features of users, items 
and links. We will see that the analysis of one-year 
long top-rated movies shows a power-law distribu­
tion in the degree of items (movies) and an absence 
of a power law behavior in the degree distribution 
of users, as well as a non-Poissonian distribution in 
human activity time domain, which is characterized 
by bursts of intense activity (high number of rat­
ings) followed by periods of inactivity. These long-
tailed distribution was already reported for the Net­
flix network [Beguerisse Diaz et al, 2010], as well as 
for other kinds of human activities [Barabasi, 2005; 
Oliveira & Barabasi, 2005; Vazquez et al, 2006, 
2007; Zhou et al, 20081. 



Interestingly, we found that a model for the cre­
ation of new links that is only based on preferen­
tial attachment and random selection is not capable 
of reproducing the complete abovementioned obser­
vations. In particular, it is not able to reproduce 
the bursty behavior observed in user node's dynam­
ics. In this contribution, we will show that a com­
bination of preferential attachment in degree and 
time-domain is indeed needed to better describe the 
evolving rating networks. Moreover, the observed 
balance between these driving forces could also 
be taken into account in order to design efficient 
recommendation algorithms based on this kind of 
datasets. 

The manuscript is organized as follows: in 
Sec. 2, we define the main properties of the Rat­
ing Network (RN) we are studying; in Sec. 3, we 
show the results obtained when analyzing the net­
work structure and its temporal evolution; Sec. 4 
is devoted to the design of an evolutionary model 
that reproduces the fundamental properties of the 
Netflix Rating Network; finally, in Sec. 5, we sum­
marize the results obtained and discuss the implica­
tions that the network evolution has on the design 
of recommendation algorithms. 

2. The Netfl ix Rat ing Network 

Netflix is an online movie rental platform upon 
which a social network of user-assigned video rat­
ings was established. Six years of online ratings 
(i.e. transactions) were made publicly available as 
a part of the Netflix competition [Bennett & Lan-
ning, 2007] in the year 2007. The whole dataset 
includes a collection of 480 189 users, 17 770 movies, 
and 100 480 507 ratings, spanning about six years of 
activity, from October 1998 to December 2005. 

The Netflix rating dataset can be naturally cast 
into a bipartite network representation in which 
users and movies are continuously entering the sys­
tem. New links are established between both types 
of nodes every time a rating transaction is regis­
tered. A schematic picture of the network temporal 
dynamics can be seen in Fig. 1. 

The first user's rating determines his/her entry 
time point to the market. Analogously, the first 
rating a given film receives defines its entrance in 
the network. These two quantities can be used to 
trace the overall dynamical evolution of the Netflix 
expanding market. From the observed dynamics, 
phenomenological growing laws, M(t) and C7(t), can 
be inferred for movies and users respectively (see 

new users 

Fig. 1. Construction and evolution of a user-item rating 
network. Users, items and ratings appear at discrete times t^. 
A new link is created when a user rates a certain item (movies, 
in the case of Netflix). Users and items are continuously 
added to the system. In this qualitative example, Item 3 
would be a network hub. 

Fig. 7 in Appendix A). In the following sections 
we have made use of this phenomenological grow­
ing curves in order to model the network dynamics. 

For the sake of computational modeling efforts, 
we decided to consider only a representative subset 
of the complete database. On one hand, we focus 
on ratings that were worth the highest score (five 
stars) in order to assure that the user's feeling about 
the movie is fully positive. On the other, we only 
keep transactions that have occurred between Jan­
uary 6, 2001 and January 6, 2002. We verify that 
several topological and dynamical features remain 
unaltered for other date choices, as long as a whole 
year of sampling period was considered (see Fig. 8 
in Appendix A). This is somehow to be expected, 
as a calendar one-year period can be considered a 
natural time scale to describe human-related activ­
ity patterns. Keeping track of five-stars transactions 
over one year resulted in a network of U = 17729 
users, M = 4734 movies and T = 300 351 ratings 
(links). 

3. Topological Propert ies of Netfl ix 
Bipart i te Network 

The first step in order to unveil a bipartite net­
work connectivity pat tern can be done by analyz­
ing the degree distribution of user and movie nodes. 
They are depicted in Fig. 2, in panel (a) for movies 
and panel (b) for users. The movie's degree dis­
tribution displays a dominant power-law behavior 
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Fig. 2. Degree dis t r ibut ions (P(fc)) for (a) movies and (b) users. Netflix d a t a from 2001 (in black) as well as results of Q P 
model for Q = 0.56 and P = 0.99 (in red) are shown. Meanwhile, the one corresponding to movies displays a predominant 
power law behavior wi th exponent a ~ 1.15 in t he range (k = 1-300), t he dis t r ibut ion corresponding to users shows a s trong 
exponential character . T h e insets show the cumulat ive degree distr ibutions. 

(truncated by finite size effects) with an exponent 
of a ~ 1.15, although this is not the case for the 
user's degree distribution. The simplest assumption 
in order to model this behavior is that a preferential 
attachment mechanism underlies the selection pro­
cedure of movies, meanwhile a mixing with random 
selection should be involved in the users's behavior. 
This approximation was already used in [Beguerisse 
Diaz et al, 2010] and it will be tested in Sec. 3.1. 

3.1. A basic approximation: 
Preferential attachment and 
random selection 

We start with a simple model (the QP-Model), sim­
ilar to the one presented in [Beguerisse Diaz et al. 
2010], which combines preferential attachment and 
a random node selection prescription onto an evolv­
ing user-item network. The dynamics of the model 
is defined by the evolution of the nodes and the 
rules by which a user selects a given item. The evo­
lution in time of movies and users, M(t) and U(t). 
are taken as empirical growth laws, since they were 
fitted from the data (see Appendix A for details). 
Each simulation step, ts, corresponds to a rating 
transaction that links a user to a movie. If a new 

user (movie) node has to be incorporated to the 
market at a given simulation step, it would be the 
one selected to participate in the transaction. Oth­
erwise an already existing user (movie) node would 
be selected following the P(ui,ts) (P(mi,ts)) prob­
ability distribution function: 

P(ui,t8) = Q 

P(mj,ts) = P 

Ki(ts 

U(ts) 
+ (l - Q) 

l 
U(ts 

Kj [ts 

M(ts) 

Y, h^ 
+ ( i - - p ) M(ts 

(1) 

(2) 

where U(ts),M(ts) are the number of users and 
movies that are already in the market after ts trans­
actions and ki/j is the node degree. Q e [0,1] and 
P G [0,1] are model parameters that control the rel­
ative strength between the preferential attachment 
and the random assignment character of the proba­
bilistic assignment rule for users and movies, respec­
tively. The entire simulation included M = 4734 
movies, U = 17 729 users and T = 300 351 ratings 
which corresponds to a one-year period (2001). 



It is important to point out that even though 
human days (labeled as t in this work) were the time 
units used in the original dataset, we considered the 
number of transactions (ts) as the model time scale. 
The correspondence between days and transactions 
was fitted from the original dataset following the 
same approach used in [Beguerisse Diaz et al, 2010] 
(see Appendix A for further details). 

As can be seen in Fig. 2 (in red), the model 
could adequately fit the empirical data for the 
degree distribution of both type of nodes (Q = 0.56, 
P = 0.99, XNORM = °-14)- Details about the fit­
ting procedure can be seen in Appendix A. Looking 
at the best fit parameter values it can be realized 
that rather large deviation from a pure preferen­
tial attachment behavior is obtained for user nodes, 
given the empirical node degree distribution which 
displays a strong exponential character. 

3.2. Network dynamical features 

Given that the network is continually growing with 
the influx of new nodes (users and movies), it is 
sensible to investigate some dynamical features of 
the system in order to better understand its tem­
poral organization. The trivial tendency of elder 
nodes to have participated in more transactions 
than newcomers, just because they were around 
longer in the market, was analyzed in Figs. 3(a) 
and 3(b). In these panels we show the average 
node degree {k) function of the insertion date, 
for users and movies, respectively. It is remarkable 
that, whereas older films tend to show higher aver­
age degree values than recently incorporated ones, 
no such strong correlation could be established for 
users. This asymmetry could not be recapitulated 
by the QP-model (in red). 

USERS 

400 

(a) 

A 
V 

100 

10 

1 

. , 

*J. Ill fli 
-

MOVIES 
I i i i i I i i i i I 

i mill I i 
1UJ U i i , , |b i : IffrrW 

— 

; 

ilk S 
• " ~ ~ = 

100 200 
t 

(b) 

300 400 

(c) 

1000 

(d) 

1000 

2x104 

1x104 

-

-

" 

I I I I I I I 

I , I , I "> 

-

-

" 

100 200 
t 

300 400 

(e) 

4000 

2000 

-

i ' i V i — J -

\ \ ~ 
t _ 

I , I , I 
100 200 

t 
300 400 

(f) 

Fig. 3. Topological dynamical analysis of the Netflix data (in black) and QP-Model (Q = 0.56 and P = 0.99, red) for 
(left) users and (right) movies, (a) and (b) Mean degree (k) as a function of the market insertion date, (c) and (d) distribution 
of times between transactions, P(Ai) , (e) and (f) the life cycle of users and movies. Active (total) nodes are shown with dashed 
(full) lines. Left panels show how the QP model fails to describe the dynamical features of the network. 



The rate of individual transactions is another 
interesting dynamical feature of our system. 
Figures 3(c) and 3(d) show the distribution of 
times between transactions, P(At), for users and 
movies. Aside from the expected seven-day pat­
tern of activity (small ripples in the figure, also 
in panel (c) of Fig. 8) which corresponds to typi­
cal inter-event period in time organization of many 
human activities, we found a heavily-tailed distri­
bution for both, users and movies distributions, 
with a stronger power-law dominance in the lat­
ter case. We can observe that the QP-model (red 
lines) could fit accurately enough the data corre­
sponding to movies. However, also in this case, it 
fails to reproduce the observed behavior for users, 
displaying a larger than observed fraction of small, 
and midsize inter-event intervals, and underrepre-
sented largely delayed patterns of activities. 

In the same figure, in panels (e) and (f), the 
permanence of users and movies in the network is 
analyzed. We define the duration of the spanning 
life cycle of a node over a finite temporal window, 
as the number of days that mediate between its 
appearance on the network (first rating recorded) 
and their last rating within the analyzed period. We 
consider that a node is active if it has not reached 
its corresponding final degree. Again, and in con­
cordance with the above observations, we noticed 
that the QP-model fails to mimic the observed 
behavior for users. The overrepresentation of small 
inter-event times, observed in panel (c) for user 
transactions results in the consumers with similar 
degrees remaining active for longer times in the 
model than in the real network. 

4. A New Model: Degree and Time 
Preferential Attachment 

At this point, it becomes evident that even the 
node degree distribution could be well adjusted by 
the QP-model, the preferential-attachment and ran­
dom selection mechanisms did not convey the model 
enough flexibility to adequately fit the reported 
dynamical behavior of the system. Even if several 
movie-related temporal observables could be nicely 
adjusted by the model, this was not generally the 
case of user-related dynamical behavior. This kind 
of qualitative asymmetry could not be corrected by 
different values of parameters Q and P. On the 
contrary, it reflects the intrinsic different nature 
between both types of nodes, and the complexity 
of human temporal task organization. In order to 

look for differences in temporal patterns between 
users and movies we plot, in Fig. 4, the time interval 
between consecutive transactions function of 
the transaction number for randomly selected users 
and movies of three arbitrarily categories: highly 
connected nodes (k ~ 360 for users k ~ 2100 for 
movies), regular ones (k ~ 155 for users k ~ 615 for 
movies) and low connected nodes (k ~ 50 for users 
k ~ 110 for movies). 

Figure 4 contrasts the dynamical activity of 
movies and users. It can be noticed that the 
latter ones display bursts of activity separated 
from long periods of inactivity, consistently with 
reported patterns of inter-event distribution asso­
ciated with human dynamics [Barabasi, 2005: 
Oliveira & Barabasi, 2005; Vazquez et al, 2006]. 

In order to take into account these observa­
tions, we develop a new model of network evolution 
(the RP-model), which combines for user dynam­
ics a preferential attachment in the degree with a 
preferential attachment in the time domain. We use 
the same empirical growing laws than in the QP-
model (i.e. M(t) and U(t) as shown in Fig. 7) and 
the same number of movies, users and transactions 
(M = 4734, U = 17 729 and T = 300 351, respec­
tively) but we change the probability of selecting 
an existing user at a given time. In this model, 
the probabilities of selecting a user or a movie are 
read as, 

1 

P ^ ^ = RU(M + il-R)u(ts) 

l l l s ls,l 

(3) 

pto>v=pT£^+t-p)m)> (4) 

E w*) 
i 

where U(ts),M(ts) are the number of users and 
movies that are already in the market after ts trans­
actions, ki/j is the node degree and tJ^i is the time 
step where the ith user has made his last rate. 
R E [0,1] is the model parameter that controls the 
relative strength between the preferential attach­
ment in degree and preferential attachment in time 
domain. P E [0,1] plays the same role as in the 
QP-model. 

This model takes into account the asymmetry 
observed in the temporal behavior of humans and 
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Fig. 4. Dynamical behavior of consumers and movies. The time interval between consecutive transactions as a function of 
the transaction number for (left) users and (right) movies are plotted, (a) and (b) High, (c) and (d) medium, (e) and (f) 
low connected nodes are sketched. Both columns highlight the differences in their dynamical behavior: Whereas the human 
activity is organized in burst of activity separated with long periods of inactivity for different kind of consumers, the movie's 
behavior depends on their degree of popularity. In particular, the most ranked movies are consumed almost every day. This 
plot also clearly shows how the QP-model fails to reproduce the behavior of users, but accurately describes how the movies 
behave. 

movies by breaking the symmetry between nodes 
and movies selection probability rules. The second 
term of Eq. (3), that is, the one proportional to 
l/(ts — tgj) ensures a succession of consecutive rat­
ings for users who have recently qualified while 
the first term allows a user who has not rated 
for some time to requalify and enter again in a 
regime of bursts. In addition, the selection intro­
duced by the first term of Eq. (3) is through the 
usual degree-based preferential attachment, and it 
promotes bringing back users of high degree. 

Following the same procedure used with the 
previous model, we adjust the parameters R and 
P in order to get the best fit to the users and 
movies degree distributions in the year 2001 Net­
flix database. We obtained R = 0.11 and P = 1.0 
w i t h

 XNORM = °-25-
In Fig. 5, we show the performance of the new 

RP-model (for R = 0.11 and P = 1.0), matching 

several topological/dynamical features of the Net­
flix network that were already examined in Figs. 2 
and 3 for the simpler QP-model, i.e. the degree dis­
tributions [panels (a) and (b)], the mean degree 

function of the market insertion date [panels 
(c) and (d)], distribution of times between trans­
actions, P(At) [panels (e) and (f)], and the life 
cycle of users and movies [panels (g) and (h)]. 
We can appreciate how the incorporation of pref­
erential attachment in time domain, instead of a 
random selection, is enough to qualitatively repro­
duce the main dynamical aspects of Netflix bipartite 
network. 

For users, their dynamics in the RP-model is 
much closer to those observed in the data when we 
use the probability of the form Eqs. (3) and (4). 
Equiprobable random assignment, as in the QP-
model, overemphasizes the importance of the per­
manence of the users so that, on average, only the 
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Fig. 5. Topological /dynamical analysis of t he Netflix d a t a (black), RP-Model (R = 0.11 and P = 1, green) and QP-Model 
(Q = 0.56 and P = 0.99, red) for (left) users and (right) movies, (a) and (b) Degree dis t r ibut ions , (c) and (d) mean degree (fc) 
as a function of t he market insertion da te , (e) and (f) d is t r ibut ion of t imes between t ransact ions , P ( A i ) , (g) and (h) the life 
cycle of users and movies. Active (total) nodes are shown by dashed (full) lines. Left panels confirm t h a t R P model describes 
accurately t he dynamical features of the Netflix b ipar t i te network. 

initial nodes can be high degree nodes and also fails 
to capture the inter-event dynamics. The exponen­
tial character of the distribution, when using ran­
domness, would indicate that the appearance of 
users follows a pattern more in accordance with a 
Poissonian process [Vazquez et al, 2006] in which 
a time scale for time intervals between consecutive 
transactions can be defined. 

In order to further characterize the tempo­
ral activity patterns generated by the RP-model 
and compare with those observed in Netflix 

data, we define an observable which quantitatively 
characterizes the user-nodes bursting behavior. For 
each user node in the model, we considered the 
sequence of inter-event intervals {At,} (j e [l,k — 1] 
(as plotted in Fig. 4), where k is the node degree). 
We sorted this set in a decreasing order, and calcu­
lated the time, tgo, at which the cumulative inac­
tivity period reaches 90% of the life time of each 
node. A small tgo value corresponds to a situa­
tion where the temporal transaction history of a 
given user is dominated by large inactivity periods. 
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Fig. 6. Characterization of bursting behavior through inac­
tivity periods of time, tgo distribution (normalized by the 
time at which the cumulative inactivity period reaches 90% of 
the life time of each user) is obtained for all user nodes of the 
real network (black), QP-model (red), and RP-model (green). 
Lower values of tgo indicate longer period of inactivity. 

On the contrary, a user behavior dominated by 
small intervals will display a large value of tgo-

In Fig. 6, we report the tgo distribution 
obtained for all user nodes of the real network 
(black), QP-model (red), and RP-model (green). 
We can see that for real users, the tgo distribution 
is dominated by small values. This is compatible 
with the idea that the respective temporal dynamics 
shows a combination of a few large inactivity peri­
ods mixed with burst activity patterns. The curves 
associated to the RP-model present a rather similar 
character to the real ones (albeit they do show less 
variability than the real data). Finally, the tgo distri­
bution of the QP-model indicates a behavior domi­
nated by small time intervals. This is a remarkable 
result, as the model parameters were obtained just 
by fitting a static observable, i.e. the node degree 
distribution. 

5. Conclusions 

During the last years, rating networks have been 
a useful source of information for the development 
of personal recommendation algorithms. Neverthe­
less, the structure and evolution of this kind of 
networks has to be taken into account for the devel­
opment of these algorithms since processes as ran­
domness, preferential attachment or aging, to name 
a few, may have crucial implications in the score 
of the recommendation algorithms. In the current 
work, we have shown that the traditional paradigm 

of modeling user-item networks with a combina­
tion of preferential attachment and randomness 
successfully reproduces the degree distribution of 
both users and items, showing a dominant power-
law behavior in movies and stronger exponen­
tial dominance for consumers. Nevertheless, this 
approximation is insufficient for those systems 
where the interventions of the users report burst­
ing phenomena. To overcome this drawback, we 
have designed a model of the network growing with 
explicit temporal correlation in the rating behav­
ior of users. The inclusion of a parameter R, that 
balances whether the preferential attachment mech­
anism takes place in the connectivity or in time 
domain, successfully reproduces several dynamical 
properties of the network. This is a remarkable 
result, as the model parameters were obtained just 
by fitting a static observable, i.e. the node degree 
distribution. The optimal obtained combination of 
user node selection strategies shows that 11% of 
connectivity preferential attachment is enough to fit 
experimental data when combined with temporal-
based prescription. This value is to be compared 
with the 56% level of connectivity-PA needed when 
combined with a random selectivity criteria in the 
QP-model. It is clear then that on one hand, the 
new introduced mechanism serves to partially grant 
a "rich-get-richer" scenario regarding connectivity 
distributions. But most importantly the preferential 
attachment mechanism in time domain favors the 
emergence of pattern of burst activity as it favors 
the succession of consecutive ratings for users who 
have recently qualified. Moreover the degree-based 
PA mechanism makes it possible for a user who has 
not rated for some time to requalify and enter again 
in a regime of bursts. This selection promotes bring­
ing back users of high degree. 

Finally, we think that it is possible to trace an 
analogy between these results and those obtained 
in [Zanin et al, 2009], where authors showed that 
aging effects could increase the efficiency of personal 
recommendation algorithms. In our case, we believe 
that the inclusion of the bursting as an a priori 
pattern of users's behavior could also enhance the 
score of these methods (e.g. to take into account the 
bursting in order to find the most suitable time to 
recommend). 
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Appendix A 

Growth 

If we take the first rate date as introductory date 
for a node in the network, we can construct the 
curves M(t) and U(t) which represent the number 
of movies and users incorporated to the system at 
i-days from the beginning. These curves (in black) 
are shown in panels (b) and (c) of Fig. 7. 

In order to incorporate this growing process 
to the model, we fit both curves in the whole 365 
day period following a two-regimes adjustment. For 
users, this partition is a lineal growing (1 < t < 3) 
followed by power law curve (4 < t < 365), mean­
while for movies we used a combination of two dif­
ferent power law growths (1 < t < 9) and (10 < 
t < 365). This scheme resulted in the red curves of 
Fig. 7. 

As we said in the description of the QP-model, 
the time in the original dataset is given in days 
(labeled as t in this work), meanwhile the natural 
time scale in the model is in transactions (ts). The 
correspondence between days and transactions was 
fitted from the original dataset following the same 
approach used in [Beguerisse Diaz et al, 2010] and 
it is shown in panel (a) of Fig. 7 for the whole Net-
flix dataset. 

Validation of the Extracted 
One-Year Subset 

In Fig. 8 we show how the topological properties of 
bipartite Netflix network for three consecutive years 
(2001-2003) superimpose each order, validating the 

http://www.netflix.com
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Fig. 7. Growth process of the network and the model, (a) Number of transactions, (b) users and (c) movies as a function of 
time. In (a) if for the full 5-year period, (b) and (c) are shown for the 2001 year. Netflix data are in black, meanwhile model 
curves are displayed in red. 
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Fig. 8. Topological properties of bipartite Netflix network for three consecutive years (2001-2003) in one year, temporal 
windows for (left) users and (right) movies, (a) and (b) Probability of having a degree of k, (c) and (d) normalized distribution 
of times between transactions, P(Ai) . 
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approach of taking one-year windows to analyze 
the data. 

Model Optimal Fit Parameters 

In order to compare the QP and RP models against 
real data we choose a set of parameters R, P or 
Q, P which give the best fit in the degree distri­
butions P(k) of users and movies. This adjustment 
was quantified using the %2 of the degree distribu­
tions of users and movies for the model when com­
pared with the corresponding real network. Using 
a step of A_R = A P = AQ = 0.01 in the region 
0.45 < Q < 0.58 and 0.85 < P < 1.0 (for the QP 
model) and 0.04 < R < 0.20 and 0.9 < P < 1.0 (for 
the RP model) we have explored a total of 224 and 
187 configurations, respectively. 

Since we are interested in finding the 
best configuration that fits both distributions 

simultaneously, we minimize the sum of the %2 for 
both types of node. To make the sum and to con­
sider equal weights for both types of nodes, we nor­
malize the value of %2 for each distribution (users 
and movies) according to: 

min(%2) 
Anorm 

X 
(max(%2) — min(%2))' 

so that the quantity to minimize for the optimal fit 
will be 

2 _ 2 , 2 
ANORM Xnorm(users) "•" Xnorm(movies)' (A.l) 

In this way, we find the optimal parame­
ters of the QP and RP models taking the min­
imum value (A.l) inside the explored region of 
parameters. 


