475 research outputs found

    The interplay of descriptor-based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases

    Get PDF
    One of the most intriguing groups of enzymes, the feruloyl esterases (FAEs), is ubiquitous in both simple and complex organisms. FAEs have gained importance in biofuel, medicine and food industries due to their capability of acting on a large range of substrates for cleaving ester bonds and synthesizing high-added value molecules through esterification and transesterification reactions. During the past two decades extensive studies have been carried out on the production and partial characterization of FAEs from fungi, while much less is known about FAEs of bacterial or plant origin. Initial classification studies on FAEs were restricted on sequence similarity and substrate specificity on just four model substrates and considered only a handful of FAEs belonging to the fungal kingdom. This study centers on the descriptor-based classification and structural analysis of experimentally verified and putative FAEs; nevertheless, the framework presented here is applicable to every poorly characterized enzyme family. 365 FAE-related sequences of fungal, bacterial and plantae origin were collected and they were clustered using Self Organizing Maps followed by k-means clustering into distinct groups based on amino acid composition and physico-chemical composition descriptors derived from the respective amino acid sequence. A Support Vector Machine model was subsequently constructed for the classification of new FAEs into the pre-assigned clusters. The model successfully recognized 98.2% of the training sequences and all the sequences of the blind test. The underlying functionality of the 12 proposed FAE families was validated against a combination of prediction tools and published experimental data. Another important aspect of the present work involves the development of pharmacophore models for the new FAE families, for which sufficient information on known substrates existed. Knowing the pharmacophoric features of a small molecule that are essential for binding to the members of a certain family opens a window of opportunities for tailored applications of FAEs

    Update of PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence

    Get PDF
    Sequence-derived structural and physicochemical features have been extensively used for analyzing and predicting structural, functional, expression and interaction profiles of proteins and peptides. PROFEAT has been developed as a web server for computing commonly used features of proteins and peptides from amino acid sequence. To facilitate more extensive studies of protein and peptides, numerous improvements and updates have been made to PROFEAT. We added new functions for computing descriptors of protein–protein and protein–small molecule interactions, segment descriptors for local properties of protein sequences, topological descriptors for peptide sequences and small molecule structures. We also added new feature groups for proteins and peptides (pseudo-amino acid composition, amphiphilic pseudo-amino acid composition, total amino acid properties and atomic-level topological descriptors) as well as for small molecules (atomic-level topological descriptors). Overall, PROFEAT computes 11 feature groups of descriptors for proteins and peptides, and a feature group of more than 400 descriptors for small molecules plus the derived features for protein–protein and protein–small molecule interactions. Our computational algorithms have been extensively tested and used in a number of published works for predicting proteins of specific structural or functional classes, protein–protein interactions, peptides of specific functions and quantitative structure activity relationships of small molecules. PROFEAT is accessible free of charge at http://bidd.cz3.nus.edu.sg/cgi-bin/prof/protein/profnew.cgi

    Classification of HCV NS5B Polymerase Inhibitors Using Support Vector Machine

    Get PDF
    Using a support vector machine (SVM), three classification models were built to predict whether a compound is an active or weakly active inhibitor based on a dataset of 386 hepatitis C virus (HCV) NS5B polymerase NNIs (non-nucleoside analogue inhibitors) fitting into the pocket of the NNI III binding site. For each molecule, global descriptors, 2D and 3D property autocorrelation descriptors were calculated from the program ADRIANA.Code. Three models were developed with the combination of different types of descriptors. Model 2 based on 16 global and 2D autocorrelation descriptors gave the highest prediction accuracy of 88.24% and MCC (Matthews correlation coefficient) of 0.789 on test set. Model 1 based on 13 global descriptors showed the highest prediction accuracy of 86.25% and MCC of 0.732 on external test set (including 80 compounds). Some molecular properties such as molecular shape descriptors (InertiaZ, InertiaX and Span), number of rotatable bonds (NRotBond), water solubility (LogS), and hydrogen bonding related descriptors performed important roles in the interactions between the ligand and NS5B polymerase

    Building an automated platform for the classification of peptides/proteins using machine learning

    Get PDF
    Dissertação de mestrado em BioinformaticsOne of the challenging problems in bioinformatics is to computationally characterize sequences, structures and functions of proteins. Sequence-derived structural and physico-chemical properties of proteins have been used in the development of machine learning models in protein related problems. However, tools and platforms to calculate features and perform Machine learning (ML) with proteins are scarce and have their limitations in terms of effectiveness, user-friendliness and capacity. Here, a generic modular automated platform for the classification of proteins based on their physicochemical properties using different ML algorithms is proposed. The tool developed, as a Python package, facilitates the major tasks of ML and includes modules to read and alter sequences, calculate protein features, preprocess datasets, execute feature reduction and selection, perform clustering, train and optimize ML models and make predictions. As it is modular, the user retains the power to alter the code to fit specific needs. This platform was tested to predict membrane active anticancer and antimicrobial peptides and further used to explore viral fusion peptides. Membrane-interacting peptides play a crucial role in several biological processes. Fusion peptides are a subclass found in enveloped viruses, that are particularly relevant for membrane fusion. Determining what are the properties that characterize fusion peptides and distinguishing them from other proteins is a very relevant scientific question with important technological implications. Using three different datasets composed by well annotated sequences, different feature extraction techniques and feature selection methods (resulting in a total of over 20 datasets), seven ML models were trained and tested, using cross validation for error estimation and grid search for model selection. The different models, feature sets and feature selection techniques were compared. The best models obtained for distinct metric were then used to predict the location of a known fusion peptide in a protein sequence from the Dengue virus. Feature importances were also analysed. The models obtained will be useful in future research, also providing a biological insight of the distinctive physicochemical characteristics of fusion peptides. This work presents a freely available tool to perform ML-based protein classification and the first global analysis and prediction of viral fusion peptides using ML, reinforcing the usability and importance of ML in protein classification problems.Um dos problemas mais desafiantes em bioinformática é a caracterização de sequências, estruturas e funções de proteínas. Propriedades físico-químicas e estruturais derivadas da sequêcia proteica têm sido utilizadas no desenvolvimento de modelos de aprendizagem máquina (AM). No entanto, ferramentas para calcular estes atributos são escassas e têm limitações em termos de eficiência, facilidade de uso e capacidade de adaptação a diferentes problemas. Aqui, é descrita uma plataforma modular genérica e automatizada para a classificação de proteínas com base nas suas propriedades físico-químicas, que faz uso de diferentes algoritmos de AM. A ferramenta desenvolvida facilita as principais tarefas de AM e inclui módulos para ler e alterar sequências, calcular atributos de proteínas, realizar pré-processamento de dados, fazer redução e seleção de features, executar clustering, criar modelos de AM e fazer previsões. Como é construído de forma modular, o utilizador mantém o poder de alterar o código para atender às suas necessidades específicas. Esta plataforma foi testada com péptidos anticancerígenos e antimicrobianos e foi ainda utilizada para explorar péptidos de fusão virais. Os péptidos de fusão são uma classe de péptidos que interagem com a membrana, encontrados em vírus encapsulados e que são particularmente relevantes para a fusão da membrana do vírus com a membrana do hospedeiro. Determinar quais são as propriedades que os caracterizam é uma questão científica muito relevante, com importantes implicações tecnológicas. Usando três conjuntos de dados diferentes compostos por sequências bem anotadas, quatro técnicas diferentes de extração de features e cinco métodos diferentes de seleção de features (num total de 24 conjuntos de dados testados), sete modelos de AM, com validação cruzada de io vezes e uma abordagem de pesquisa em grelha, foram treinados e testados. Os melhores modelos obtidos, com avaliações MCC entre 0,7 e o,8 e precisão entre 0,85 e 0,9, foram utilizados para prever a localização de um péptido de fusão conhecido numa sequência da proteína de fusão do vírus do Dengue. Os modelos obtidos para prever a localização do péptido de fusão são úteis em pesquisas futuras, fornecendo também uma visão biológica das características físico-químicas distintivas dos mesmos. Este trabalho apresenta uma ferramenta disponível gratuitamente para realizar a classificação de proteínas com AM e a primeira análise global de péptidos de fusão virais usando métodos baseados em AM, reforçando a usabilidade e a importância da AM em problemas de classificação de proteínas

    Applying Machine Learning Algorithms for the Analysis of Biological Sequences and Medical Records

    Get PDF
    The modern sequencing technology revolutionizes the genomic research and triggers explosive growth of DNA, RNA, and protein sequences. How to infer the structure and function from biological sequences is a fundamentally important task in genomics and proteomics fields. With the development of statistical and machine learning methods, an integrated and user-friendly tool containing the state-of-the-art data mining methods are needed. Here, we propose SeqFea-Learn, a comprehensive Python pipeline that integrating multiple steps: feature extraction, dimensionality reduction, feature selection, predicting model constructions based on machine learning and deep learning approaches to analyze sequences. We used enhancers, RNA N6- methyladenosine sites and protein-protein interactions datasets to evaluate the validation of the tool. The results show that the tool can effectively perform biological sequence analysis and classification tasks. Applying machine learning algorithms for Electronic medical record (EMR) data analysis is also included in this dissertation. Chronic kidney disease (CKD) is prevalent across the world and well defined by an estimated glomerular filtration rate (eGFR). The progression of kidney disease can be predicted if future eGFR can be accurately estimated using predictive analytics. Thus, I present a prediction model of eGFR that was built using Random Forest regression. The dataset includes demographic, clinical and laboratory information from a regional primary health care clinic. The final model included eGFR, age, gender, body mass index (BMI), obesity, hypertension, and diabetes, which achieved a mean coefficient of determination of 0.95. The estimated eGFRs were used to classify patients into CKD stages with high macro-averaged and micro-averaged metrics

    Prediction of lung tumor types based on protein attributes by machine learning algorithms

    Full text link
    corecore