302 research outputs found

    A randomized kinodynamic planner for closed-chain robotic systems

    Get PDF
    Kinodynamic RRT planners are effective tools for finding feasible trajectories in many classes of robotic systems. However, they are hard to apply to systems with closed-kinematic chains, like parallel robots, cooperating arms manipulating an object, or legged robots keeping their feet in contact with the environ- ment. The state space of such systems is an implicitly-defined manifold, which complicates the design of the sampling and steering procedures, and leads to trajectories that drift away from the manifold when standard integration methods are used. To address these issues, this report presents a kinodynamic RRT planner that constructs an atlas of the state space incrementally, and uses this atlas to both generate ran- dom states, and to dynamically steer the system towards such states. The steering method is based on computing linear quadratic regulators from the atlas charts, which greatly increases the planner efficiency in comparison to the standard method that simulates random actions. The atlas also allows the integration of the equations of motion as a differential equation on the state space manifold, which eliminates any drift from such manifold and thus results in accurate trajectories. To the best of our knowledge, this is the first kinodynamic planner that explicitly takes closed kinematic chains into account. We illustrate the performance of the approach in significantly complex tasks, including planar and spatial robots that have to lift or throw a load at a given velocity using torque-limited actuators.Peer ReviewedPreprin

    Safety Awareness for Rigid and Elastic Joint Robots: An Impact Dynamics and Control Framework

    Get PDF
    This thesis aims at making robots with rigid and elastic joints aware of human collision safety. A framework is proposed that captures human injury occurrence and robot inherent safety properties in a unified manner. It allows to quantitatively compare and optimize the safety characteristics of different robot designs and is applied to stationary and mobile manipulators. On the same basis, novel motion control schemes are developed and experimentally validated

    Optimal Constrained Planning for Complex Mechatronic Systems

    Get PDF
    This thesis focuses on the challenging problem of the optimal planning for mechatronic systems. The goal is to find strategies which maximize or minimize some cost criteria defined over a given constrained problem. The planning for mobile or industrial robots is a general framework under which several different open research issues can be found. Motion planning, in fact, involves the solution of a variety of optimality problems which range from the optimal path design to the optimal trajectory planning. Since, obviously, this is a very wide research field the scope of our analysis has been limited to three main contributions which represents the novelties proposed in this thesis. Initially, the optimal path generation problem is solved in the case of planar paths for mobile robots by using a new and powerful planning primitive recently proposed in the literature. Subsequently, the optimal path tracking problem is handled by a new control scheme able to online optimal scale any designed trajectory, which can be phisically unfeasible for the controlled system, in order to fulfill given kinematic and/or dynamic constraints. Finally, the problem of the generation of optimal controls for the minimum-time state transitions of nonlinear systems is presented and an innovative differential method is devised.La tesi tratta il problema della pianificazione ottima vincolata per sistemi meccatronici. In generale, l'obiettivo è la determinazione di strategie che minimizzino o massimizzino funzionali di costo definiti su dati problemi vincolati. Il termine di pianificazione ottima riferito a dispositivi robotici mobili o industriali individua una vasta area di ricerca all'interno della quale numerosi problemi di ottimizzazioni sono ancora indagati. La pianificazione di moto, infatti, richiede la risoluzione di una ampia varietà di problemi di ottimizzazione vincolata che spazia dalla ottima pianificazione di percorso alla pianificazione di traiettoria. Nella presente tesi, l'obiettivo di ricerca è stato limitato a tre importanti contributi innovativi. Inizialmente viene affrontato il problema della pianificazione di percorsi planari ottimi per dispositivi mobili mediante l'uso di una nuova ed estremamente versatile primitiva di pianificazione proposta in letteratura. Successivamente si affronta il problema dell'inseguimento di percorso. E' proposta una nuova struttura di controllo in grado di scalare in linea qualsiasi traiettoria pianificata, che potrebbe essere fisicamente irrealizzabile, in modo tale che i vincoli cinematici e dinamici che il sistema controllato impone siano soddisfatti. Infine si analizza il problema della generazione ottima di set-point per transizioni dello stato di generici sistemi nonlineari ed, in particolare, un innovativo metodo puramente differenziale per il controllo a tempo minimo è descritto

    Kinodynamic planning on constraint manifolds

    Get PDF
    This report presents a motion planner for systems subject to kinematic and dynamic constraints. The former appear when kinematic loops are present in the system, such as in parallel manipulators, in robots that cooperate to achieve a given task, or in situations involving contacts with the environment. The latter are necessary to obtain realistic trajectories, taking into account the forces acting on the system. The kinematic constraints make the state space become an implicitly-defined manifold, which complicates the application of common motion planning techniques. To address this issue, the planner constructs an atlas of the state space manifold incrementally, and uses this atlas both to generate random states and to dynamically simulate the steering of the system towards such states. The resulting tools are then exploited to construct a rapidly-exploring random tree (RRT) over the state space. To the best of our knowledge, this is the first randomized kinodynamic planner for implicitly-defined state spaces. The test cases presented validate the approach in significantly-complex systems.Peer ReviewedPreprin

    Motion Planning : from Digital Actors to Humanoid Robots

    Get PDF
    Le but de ce travail est de développer des algorithmes de planification de mouvement pour des figures anthropomorphes en tenant compte de la géométrie, de la cinématique et de la dynamique du mécanisme et de son environnement. Par planification de mouvement, on entend la capacité de donner des directives à un niveau élevé et de les transformer en instructions de bas niveau qui produiront une séquence de valeurs articulaires qui reproduissent les mouvements humains. Ces instructions doivent considérer l'évitement des obstacles dans un environnement qui peut être plus au moins contraint. Ceci a comme consequence que l'on peut exprimer des directives comme “porte ce plat de la table jusqu'ac'estu coin du piano”, qui seront ensuite traduites en une série de buts intermédiaires et de contraintes qui produiront les mouvements appropriés des articulations du robot, de façon a effectuer l'action demandée tout en evitant les obstacles dans la chambre. Nos algorithmes se basent sur l'observation que les humains ne planifient pas des mouvements précis pour aller à un endroit donné. On planifie grossièrement la direction de marche et, tout en avançant, on exécute les mouvements nécessaires des articulations afin de nous mener à l'endroit voulu. Nous avons donc cherché à concevoir des algorithmes au sein d'un tel paradigme, algorithmes qui: 1. Produisent un chemin sans collision avec une version réduite du mécanisme et qui le mènent au but spécifié. 2. Utilisent les contrôleurs disponibles pour générer un mouvement qui assigne des valeurs à chacune des articulations du mécanisme pour suivre le chemin trouvé précédemment. 3. Modifient itérativement ces trajectoires jusqu'à ce que toutes les contraintes géométriques, cinématiques et dynamiques soient satisfaites. Dans ce travail nous appliquons cette approche à trois étages au problème de la planification de mouvements pour des figures anthropomorphes qui manipulent des objets encombrants tout en marchant. Dans le processus, plusieurs problèmes intéressants, ainsi que des propositions pour les résoudre, sont présentés. Ces problèmes sont principalement l'évitement tri-dimensionnel des obstacles, la manipulation des objets à deux mains, la manipulation coopérative des objets et la combinaison de comportements hétérogènes. La contribution principale de ce travail est la modélisation du problème de la génération automatique des mouvements de manipulation et de locomotion. Ce modèle considère les difficultés exprimées ci dessus, dans les contexte de mécanismes bipèdes. Trois principes fondent notre modèle: une décomposition fonctionnelle des membres du mécanisme, un modèle de manipulation coopérative et, un modéle simplifié des facultés de déplacement du mécanisme dans son environnement.Ce travail est principalement et surtout, un travail de synthèse. Nous nous servons des techniques disponibles pour commander la locomotion des mécanismes bipèdes (contrôleurs) provenant soit de l'animation par ordinateur, soit de la robotique humanoïde, et nous les relions dans un planificateur des mouvements original. Ce planificateur de mouvements est agnostique vis-à-vis du contrôleur utilisé, c'est-à-dire qu'il est capable de produire des mouvements libres de collision avec n'importe quel contrôleur tandis que les entrées et sorties restent compatibles. Naturellement, l'exécution de notre planificateur dépend en grand partie de la qualité du contrôleur utilisé. Dans cette thèse, le planificateur de mouvement est relié à différents contrôleurs et ses bonnes performances sont validées avec des mécanismes différents, tant virtuels que physiques. Ce travail à été fait dans le cadre des projets de recherche communs entre la France, la Russie et le Japon, où nous avons fourni le cadre de planification de mouvement à ses différents contrôleurs. Plusieurs publications issues de ces collaborations ont été présentées dans des conférences internationales. Ces résultats sont compilés et présentés dans cette thèse, et le choix des techniques ainsi que les avantages et inconvénients de notre approche sont discutés. ABSTRACT : The goal of this work is to develop motion planning algorithms for human-like figures taking into account the geometry, kinematics and dynamics of the mechanism and its environment. By motion planning it is understood the ability to specify high-level directives and transform them into low-level instructions for the articulations of the human-like figure. This is usually done while considering obstacle avoidance within the environment. This results in one being able to express directives as “carry this plate from the table to the piano corner” and have them translate into a series of goals and constraints that result in the pertinent motions from the robot's articulations in such a way as to carry out the action while avoiding collisions with the obstacles in the room. Our algorithms are based on the observation that humans do not plan their exact motions when getting to a location. We roughly plan our direction and, as we advance, we execute the motions needed to get to the desired place. This has led us to design algorithms that: 1. Produce a rough collision free path that takes a simplified model of the mechanism to the desired location. 2. Use available controllers to generate a trajectory that assigns values to each of the mechanism's articulations to follow the path. 3. Modify iteratively these trajectories until all the geometric, kinematic and dynamic constraints of the problem are satisfied.Throughout this work, we apply this three-stage approach with the problem of generating motions for human-like figures that manipulate bulky objects while walking. In the process, several interesting problems and their solution are brought into focus. These problems are, three- imensional collision avoidance, two-hand object manipulation, cooperative manipulation among several characters or robots and the combination of different behaviors. The main contribution of this work is the modeling of the automatic generation of cooperative manipulation motions. This model considers the above difficulties, all in the context of bipedal walking mechanisms. Three principles inform the model: a functional decomposition of the mechanism's limbs, a model for cooperative manipulation and, a simplified model to represent the mechanism when generating the rough path. This work is mainly and above all, one of synthesis. We make use of available techniques for controlling locomotion of bipedal mechanisms (controllers), from the fields of computer graphics and robotics, and connect them to a novel motion planner. This motion planner is controller-agnostic, that is, it is able to produce collision-free motions with any controller, despite whatever errors introduced by the controller itself. Of course, the performance of our motion planner depends on the quality of the used controller. In this thesis, the motion planner, connected to different controllers, is used and tested in different mechanisms, both virtual and physical. This in the context of different research projects in France, Russia and Japan, where we have provided the motion planning framework to their controllers. Several papers in peer-reviewed international conferences have resulted from these collaborations. The present work compiles these results and provides a more comprehensive and detailed depiction of the system and its benefits, both when applied to different mechanisms and compared to alternative approache

    An Overview on Principles for Energy Efficient Robot Locomotion

    Get PDF
    Despite enhancements in the development of robotic systems, the energy economy of today's robots lags far behind that of biological systems. This is in particular critical for untethered legged robot locomotion. To elucidate the current stage of energy efficiency in legged robotic systems, this paper provides an overview on recent advancements in development of such platforms. The covered different perspectives include actuation, leg structure, control and locomotion principles. We review various robotic actuators exploiting compliance in series and in parallel with the drive-train to permit energy recycling during locomotion. We discuss the importance of limb segmentation under efficiency aspects and with respect to design, dynamics analysis and control of legged robots. This paper also reviews a number of control approaches allowing for energy efficient locomotion of robots by exploiting the natural dynamics of the system, and by utilizing optimal control approaches targeting locomotion expenditure. To this end, a set of locomotion principles elaborating on models for energetics, dynamics, and of the systems is studied

    Using motion planning and genetic algorithms in movement optimization of industrial robots

    Get PDF
    The issues of path and trajectory planning algorithms and optimization of industrial manipulator trajectory generation are still not completely solved due to their variability and increasing complexity with the growing number of robot degrees of freedom. Generation of an optimal trajectory can be solved in several ways, such as traditional numeric and more recent approaches, which include evolutionary algorithms and genetic algorithms within them. The first chapter is devoted to a brief overview of path planning methods, especially in mobile robots. The second chapter deals with a more detailed overview of robot path planning methods in continuous and discrete environments. The third chapter describes the most popular motion planning algorithms. The fourth chapter is dedicated to genetic algorithms which we used as an optimization method. The fifth chapter focuses on optimal robot motion control and optimization methods using genetic algorithms as the method for an industrial manipulator control. The next chapter contains a solution and its implementation in support software, as well as the experimental verification of the results. The last chapter evaluates the results and their benefits
    • …
    corecore