
IRI-TR-19-02

A Randomized Kinodynamic Planner for

Closed-chain Robotic Systems

R. Bordalba
L. Ros
J. M. Porta



Abstract

Kinodynamic RRT planners are effective tools for finding feasible trajectories in many classes of robotic

systems. However, they are hard to apply to systems with closed-kinematic chains, like parallel robots,

cooperating arms manipulating an object, or legged robots keeping their feet in contact with the environ-

ment. The state space of such systems is an implicitly-defined manifold, which complicates the design

of the sampling and steering procedures, and leads to trajectories that drift away from the manifold when

standard integration methods are used. To address these issues, this report presents a kinodynamic RRT

planner that constructs an atlas of the state space incrementally, and uses this atlas to both generate ran-

dom states, and to dynamically steer the system towards such states. The steering method is based on

computing linear quadratic regulators from the atlas charts, which greatly increases the planner efficiency

in comparison to the standard method that simulates random actions. The atlas also allows the integration

of the equations of motion as a differential equation on the state space manifold, which eliminates any

drift from such manifold and thus results in accurate trajectories. To the best of our knowledge, this is

the first kinodynamic planner that explicitly takes closed kinematic chains into account. We illustrate the

performance of the approach in significantly complex tasks, including planar and spatial robots that have

to lift or throw a load at a given velocity using torque-limited actuators.

Institut de Robòtica i Informàtica Industrial (IRI)

Consejo Superior de Investigaciones Científicas (CSIC)

Universitat Politècnica de Catalunya (UPC)

Llorens i Artigas 4-6, 08028, Barcelona, Spain

Tel (fax): +34 93 401 5750 (5751)

http://www.iri.upc.edu

Corresponding author:

R. Bordalba

tel: +34 93 4015806

rbordalba@iri.upc.edu

Copyright IRI, 2019

http://www.iri.upc.edu
rbordalba@iri.upc.edu


Section 1 Introduction 1

1 Introduction

Since its formalization in the early nineties [21], the kinodynamic planning problem remains one of the

most challenging open problems in robotics. The problem entails finding feasible trajectories connecting

two given states of a robot, each defined by a configuration and a velocity of the underlying mechanical

system. The problem is difficult to solve in general. To ensure feasibility, the trajectory should: 1) ful-

fil all kinematic constraints of the system, including holonomic ones, like loop-closure or end-effector

constraints, or nonholonomic ones, like rolling contact or velocity limit constraints; 2) be compliant with

the equations of motion of the robot; 3) avoid the collisions with static or moving obstacles in the envi-

ronment; and 4) be executable with the limited force capacity of the actuators. In certain applications,

moreover, the trajectory should also be optimal in some sense, minimising, for example, the time or

control effort required for its execution.

The ability to plan such trajectories is key in a robotic system. Above all, it endows the system with

a means to convert higher-level commands—like “move to a certain location”, or “throw the object at a

given speed”—into appropriate reference signals that can be followed by the actuators. By accounting

for the robot dynamics and force limitations at the planning stage, moreover, the motions are easier to

control, and they often look more graceful, or physically natural [43], as they tend to adapt to the normal

modes of oscillation of the system, taking advantage of gravity, inertia, and centripetal forces to the

benefit of the task.

The kinodynamic planning problem can be viewed as a full motion planning problem in the state

space, as opposed to a purely kinematic problem that only requires the planning of a path in configuration

space (C-space). This makes the problem harder, as the dimension of the state space is twice that of the

C-space, and its obstacle region is virtually larger, involving those states that correspond to an actual

collision, but also those from which a future collision is inevitable due to the system momentum. The

planning of steering motions between nearby states is considerably more difficult as well. While straight-

line motions usually suffice in configuration space, steering motions in the state space must conform to

the vector fields defined by the equations of motion and the actuator limits of the robot.

Among all kinodynamic planning techniques, the rapidly-exploring random tree (RRT) method has

emerged as one of the most successful algorithms to date [42]. This algorithm makes intensive use of

sampling and dynamic simulations to grow trajectory trees over the state space until the start and goal

states get connected. The efficiency of the approach is remarkable, especially in view of its simplicity

and relative ease of implementation. The method is fairly general and, with proper extensions, can even

converge to minimum-cost motions [31, 45]. However, the algorithm also suffers from an important

limitation: it assumes that the robot state can be described by means of independent generalised coor-

dinates. This implies that the algorithm is directly applicable to open-chain robots, or to robots with

explicit state space parametrisations, but it has problems in dealing with general mechanisms involv-

ing closed-kinematic chains. Such chains arise frequently in today’s robots and manipulation systems

(Fig. 1), which explains the growing interest they arouse in the literature [2, 30, 34, 37, 38, 53, 54].

Unlike in the open-chain case, the state space of a closed-chain robot is not flat anymore. Instead,

it is a nonlinear manifold defined implicitly by a system of equations that, in general, cannot be solved

in closed form. This manifold is a zero-measure set in a larger ambient space, which complicates the

design of sampling and steering methods to explore the manifold efficiently. Moreover, if the dynamic

model of the robot is not properly handled, the state space trajectories may deviate substantially from the

manifold, leading to undesired violations of the kinematic constraints. Forward singularities in which

the robot is locally underactuated also complicate the planning and control of motions across certain

surfaces of the state space [10].

The purpose of this report is to extend the planner in [42] to cope with the previous complica-

tions. As we shall see, by constructing an atlas of the state space in parallel to the RRT, one can define

proper sampling and steering methods that deal with closed kinematic chains effectively, while pro-

ducing accurate dynamic simulations of the system even across forward singularities. A preliminary



2 A Randomized Kinodynamic Planner for Closed-chain Robotic Systems

Figure 1: Example systems involving closed kinematic chains. The chains may be intrinsic to the robot

structure, as in parallel robots (left picture), or they may result from contact constraints during a task,

as in multi-limb systems manipulating an object, or keeping legs in contact with the environment (right

pictures). From left to right: A Delta parallel robot [11], the Atlas robot from Boston Dynamics lifting a

heavy load [26], the Robonaut 2 robot with two legs clamped to the International Space Station [20],

and the SpiderFab Bot, a conceptual design for self-fabricating space systems [33]. Pictures courtesy

of ABB, Boston Dynamics, NASA, and Tethers Unlimited, Inc (respectively).

version of the planner we propose was presented in [14]. In comparison to [14], this report develops

a new steering method based on linear quadratic regulators (LQR), which greatly increases the effi-

ciency of the planner in comparison to the randomized steering strategy in [14]. New challenging test

cases are also included for demonstration, including tasks that require the throwing of objects at a given

velocity, and bimanual manipulations of heavy loads, which were difficult to solve with [14]. It is

worth noting that, while some path planning approaches have previously dealt with closed kinematic

chains [2, 18, 29, 34, 37, 54, 65, 70], none of these approaches has considered the dynamics of the sys-

tem into the planner. Our kinodynamic planner, in fact, can also be seen as an extension of the work

in [34] to cope with dynamic constraints.

The rest of this document is organized as follows. Section 2 briefly reviews the state of the art on

kinodynamic planning to better place our work into context. Section 3 formally states the problem we

confront, taking into account the various constraints intervening. Section 4 recalls the standard RRT

method in [42] and describes, at the same time, the main difficulties it exhibits in the presence of closed

kinematic chains. Sections 5 and 6 then present effective sampling, simulation, and steering methods that

allow overcoming such difficulties. The resulting tools are used in Section 7 to implement the planning

method we propose, whose performance is examined in Section 8 using illustrative examples. Section 9

finally provides the conclusions and discusses several points deserving further attention. In the end of the

we also include three appendices that prove some needed results, and describe the constraint formulations

that we adopt in the planner.

2 Related work

2.1 Configuration space approaches

The sheer complexity of kinodynamic planning is usually managed by decomposing the problem into

two simpler problems [41]. Initially, the dynamic constraints of the robot are neglected and a collision-

free path in the C-space is sought that solely satisfies the kinematic constraints. Then, a time-parametric

trajectory constrained to the previous path is designed while accounting for the dynamic constraints and



Section 2 Related work 3

force limits of the actuators. Although many techniques can be used to compute the path, including

probabilistic roadmaps or randomized tree techniques among others [17, 41], the trajectory is usually

obtained with the time-scaling method in [8], or its later improvements [49, 62–64]. This method regards

the path as a function qqq= qqq(s) in which qqq is the robot configuration and s is some path parameter, and then

finds a monotonic time scaling s = s(t) such that qqq(t) = qqq(s(t)) connects the start and goal configurations

in minimum time. The method is fast and elegant, as it exploits the bang-bang nature of the solution in

the (s, ṡ) plane, and robust implementations have recently been developed [52].

The previous approach obtains a trajectory that is only time-optimal for the computed path, but it

is appealing in that it makes the problem more tractable. The approach has been the method of choice

traditionally, as it proves to be effective in systems with many degrees of freedom like humanoids, legged

robots, or mobile robot formations [50]. Its lack of completeness, moreover, can always be alleviated by

improving the trajectory a posteriori, using appropriate optimization techniques [7, 60, 61]. Time scaling

methods, in addition, have recently been extended to compute the feasible velocities at the end of a path,

given an initial range of velocities [51], which can be combined with randomized planners to generate

graceful dynamic motions [50].

It must be noted that, despite their advantages, the previous methods essentially work in the C-space,

which makes them limited in some way or another. For instance, path planning approaches cannot

generate swinging paths in principle, and such paths may be required in highly dynamic tasks like lifting

a heavy load under strict torque limitations. In other approaches, start or goal states with nonzero velocity

cannot be specified, which is necessary in catching or throwing objects at a certain speed and direction.

Time scaling methods, moreover, require the robot to be fully actuated. While this is rarely an issue in

robot arms or humanoids under contact constraints [30, 53], parallel robots with passive joints make the

robot underactuated at forward singularities [10]. These configurations are problematic when managed

in the C-space as they can only be traversed under particular velocities and accelerations. As we shall see

in this report, on the contrary, the previous limitations do not apply when robot trajectories are directly

planned in the state space.

2.2 State space approaches

Existing techniques for planning in the state space can roughly be grouped into optimization and ran-

domized approaches. On the one hand, optimization approaches can be applied to remarkably-complex

problems [4, 35, 56, 59, 71]. An advantage is that they can accommodate a wide variety of kinematic

and dynamic constraints. For instance, differential constraints describing the robot dynamics can be

enforced by discretising the trajectory into different knot points using an Euler method, or any higher-

order method if more accuracy is necessary. However, there is a trade-off between the number of knot

points and integration method adopted, and the computational cost of the resulting optimization prob-

lem. In systems with closed kinematic chains, moreover, the discretization of the differential equations

produces knot points that easily drift away from the state space manifold, which results in unwanted

link disassemblies, or contact losses. In [56], differential constraints were approximated explicitly by

means of polynomial functions while guaranteeing third-order integration accuracy in constrained sys-

tems. Nevertheless, the problem size becomes huge for long time horizons or systems with many degrees

of freedom [50]. Good discussions on the advantages and pitfalls of optimization-based techniques can

be found in [5] and [30]. On the other hand, randomized approaches like the RRT can cope with dif-

ferential constraints in relatively high-dimensional problems, and guarantee to find a feasible solution

when it exists and enough computing time is available [42]. Their main issue, however, is that exact

steering methods are not available for nonlinear dynamical systems. The standard RRT method tries to

circumvent this issue by simulating random actions for a given time, and then selecting the action that

gets the system closest to the target [42]. For particular systems, better solutions exist. For instance, the

approach in [40] assumes double integrator dynamics for the systems, and then exploits the fact that the

minimum time problem has an efficient solution in this case. The resulting planner is fast, but the full



4 A Randomized Kinodynamic Planner for Closed-chain Robotic Systems

dynamics of the system can only be coped via feedback linearisation, which might require unfeasible

torques from the motors. The method in [47] linearises the system dynamics and uses an infinite-horizon

LQR controller to define a steering method, but such a controller cannot be used to reach goal states

with nonzero velocity. In contrast, [27] and [69] use finite-horizon LQR controllers that yield open-loop

control policies. The LQR-trees algorithm in [66] uses the same control policy to initialize a trajectory

optimization process with the full nonlinear dynamics of the system. As designed, however, the previ-

ous steering methods cannot be applied to robots with closed kinematic chains, as they assume the state

coordinates to be independent. Our steering approach is similar to those in [27, 66, 69], but extended to

also cope with closed kinematic chains.

3 Problem formulation

To formulate our problem, we describe the robot configuration by means of a tuple qqq of nq generalized

coordinates, which determine the positions and orientations of all links at a given instant of time. We

restrict our attention to robots with closed kinematic chains, in which qqq must satisfy a system of ne

nonlinear equations

ΦΦΦ(qqq) = 000 (1)

enforcing the closure conditions of the chains. The C-space of the robot is then the set

C = {qqq : ΦΦΦ(qqq) = 000},

whose structure may be quite complex in general. For simplicity, however, we assume that the Jacobian

ΦΦΦqqq(qqq) = ∂ΦΦΦ/∂qqq is full rank for all qqq∈ C, so that C is a smooth manifold of dimension dC = nq−ne. This

assumption is not too restrictive, as geometric singularities can be removed from C by judicious mechan-

ical design [10], or through the addition of singularity-avoidance constraints [9, 12]. By differentiating

Eq. (1) with respect to time, we also obtain the velocity equation of the robot

ΦΦΦqqq(qqq) · q̇qq = 000, (2)

which characterises the feasible vectors q̇qq at a given qqq ∈ C. Appendix B explains the particular formula-

tions of Eqs. (1) and (2) that we adopt in our implementation.

Let FFF(xxx) = 000 denote the system formed by Eqs. (1) and (2), where xxx = (qqq, q̇qq) ∈ R
nx is the state

vector of the robot, with nx = 2nq. While path planning approaches operate in C, kinodynamic planning

problems are better represented in the state space

X = {xxx : FFF(xxx) = 000}. (3)

It can be shown that, since ΦΦΦqqq(qqq) is full rank in our case, X is also a smooth manifold, but of dimension

dX = 2 dC . This implies that the tangent space of X at xxx,

TxxxX = {ẋxx ∈ R
nx : FFFxxx(xxx) ẋxx = 000}, (4)

is well-defined and dX -dimensional for any xxx ∈ X .

We shall encode the forces and torques of the actuators into an action vector uuu = (u1, . . . ,unu
) ∈ R

nu .

Given a starting state xxxs ∈ X , and the vector uuu as a function of time, uuu = uuu(t), the time evolution of the

robot is determined by a system of differential-algebraic equations of the form

{

FFF(xxx) = 000,

ẋxx = ggg(xxx,uuu).

(5)

(6)

In this system, Eq. (5) forces the states xxx to remain in X , and Eq. (6) models the dynamics of the robot.

As explained in Appendix C, Eq. (6) can be obtained from the multiplier form of the Euler-Lagrange



Section 4 Drawbacks of the standard RRT method 5

xxxs

xxxg

xxxnew

xxxnear

xxxrand

Xfeas

Xobs

Figure 2: The standard RRT method in [42].

equations for example. Note that for each value of uuu, Eq. (6) defines a vector field over X , which can

be used together with Eq. (5) to integrate the robot motion forward in time, using proper numerical

methods [57].

To model the fact that the actuator forces are limited, we will assume that uuu can only take values

inside the box

U = [−l1, l1]× [−l2, l2]× . . .× [−lnu
, lnu

] (7)

of Rnu , where li denotes the limit force or torque that the i-th motor can exert. For simplicity, the li
values are taken to be constant, but our algorithms could also be adapted to cope with state-dependent

bounds if desired. Along a trajectory, moreover, the robot cannot incur in collisions with itself or with

the environment, and should fulfil any limits imposed on qqq and q̇qq. This reduces the feasible states xxx to

those lying in a subset Xfeas ⊆ X .

With the previous definitions, the planning problem we confront can be phrased as follows: Given a

kinematic and dynamic model of the robot, a geometric model of the environment, and two states xxxs and

xxxg of Xfeas, find a control policy uuu = uuu(t) ∈ U such that the trajectory xxx = xxx(t) determined by Eqs. (5)

and (6) for xxx(0) = xxxs fulfils xxx(t f ) = xxxg for some time t f > 0, with xxx(t) ∈ Xfeas for all t ∈ [0, t f ].
Observe that, in contrast to [42], we allow the presence of Eq. (5) in our planning problem, which

makes it more general and challenging at the same time. Thus, whereas in [42] X is simply R
nx , in our

case X is a lower dimensional manifold embedded in R
nx . In [41], minor modifications to [42] were

suggested to cope with such manifolds, but we next explain that these lead to several complications.

4 Drawbacks of the standard RRT method

Recall from [42] that a standard RRT is initialized at xxxs and it is expanded by applying the following

steps repeatedly (see Fig. 2): 1) a guiding state xxxrand ∈ X is randomly selected; 2) the RRT state xxxnear

that is closest to xxxrand is determined according to some metric; 3) a steering method is used to compute

the action uuu ∈ U that brings the system as close as possible to xxxrand in the absence of obstacles; and 4)

the movement that results from applying uuu during some time ∆t is obtained by integrating Eq. (6). This

yields a new state xxxnew, which is added to the RRT if it lies in Xfeas, or it is discarded otherwise. In the



6 A Randomized Kinodynamic Planner for Closed-chain Robotic Systems

R
nx

X

xxxrand

xxxnear

xxx′rand

Figure 3: Generation of a guiding sample according to [41].

former case, the action uuu is stored in the new edge connecting xxxnear to xxxnew. The process stops when a

tree node is close enough to xxxg. It is worth noting that, in many implementations, steps 3) and 4) are

repeated with xxxnew playing the role of xxxnear, as long as xxxnew gets closer to xxxrand .

Three complications arise when applying the previous method to closed kinematic chains. First, the

points xxxrand are difficult to obtain in general, as X will not admit explicit parametrizations. To avoid this

problem, [41, Sec. 7.4.1] proposes to randomly pick xxxrand from the larger ambient space R
nx (Fig. 3)

and use, as a guiding state, the point xxx′rand that results from projecting xxxrand onto the tangent space of X
at xxxnear. However, while xxx′rand is easy to compute, its pulling effect on the RRT may be small. Notice

that the ambient space could be large in comparison to X , resulting in points xxx′rand that might often be

close to xxxnear, which diminishes the Voronoi bias of the RRT. All these effects were analysed in [34]

and [36]. A second complication concerns the dynamic simulation of robot motions. The standard RRT

method would only use Eq. (6) to generate such motions, on the grounds that Eq. (5) is accounted for

implicitly by Eq. (6) [41, Sec. 13.4.3.1]. However, from multibody mechanics it is known that the

motion of a closed-chain mechanism can only be predicted reliably if Eq. (5) is actively used during the

integration of Eq. (6) [48]. Otherwise, the inevitable errors introduced when discretising Eq. (6) will

make the trajectory xxx(t) increasingly drift away from X as the simulation progresses. It is shown in [14]

that such a drift may even be large enough to prevent the connection of xxxs with xxxg. The use of Baumgarte

stabilization to compensate this drift [25] is also problematic, as it may lead to instabilities [6], it alters

the system energy artificially, and its stabilising parameters are not easy to tune in general. A third

difficulty, finally, concerns the steering method. A simple strategy based on simulating random actions

from U is proposed in [42]. This strategy is easy to implement, but it can be inefficient because the

number of samples required to properly represent U grows exponentially with nu. The lack of a good



Section 5 Mapping and exploring the state space 7

steering strategy is a general problem of RRT methods, but it is more difficult to address when closed

kinematic chains are present. In fact, existing methods to alleviate this problem have only been given for

open-chain robots to date [27, 40, 47, 66, 69].

In the next two sections we shall see that the previous difficulties can all be overcome by constructing

an atlas of X . The atlas will provide us with the tools to: 1) sample the X manifold directly instead of

its ambient space R
nX ; 2) integrate Eqs. (5) and (6) as a true differential-algebraic equation to guarantee

driftless motions on X ; and 3) define an effective steering method for closed kinematic chains.

5 Mapping and exploring the state space

5.1 Atlas construction

Formally, an atlas of X is a collection of charts mapping X entirely, where each chart c is a local

diffeomorphism ϕϕϕc from an open set Vc ⊂ X to an open set Pc ⊆ R
dX [Fig. 4(a)]. The Vc sets can be

thought of as partially-overlapping tiles covering X , in such a way that every xxx ∈ X lies in at least one

set Vc. The point yyy = ϕϕϕc(xxx) provides the local coordinates, or parameters, of xxx in chart c. Since each map

ϕϕϕc is a diffeomorphism, its inverse map ψψψc = ϕϕϕ−1
c also exists, and gives a local parametrisation of Vc.

For particular manifolds, ϕϕϕc and ψψψc can be defined in closed form. However, we propose to use the

tangent space parametrization [32] to define them for any manifold. Using this parametrisation, the map

yyy = ϕϕϕc(xxx) around a given xxxc ∈ X is obtained by projecting xxx orthogonally to Txxxc
X [Fig. 4(b)], so this

map takes the form

yyy =UUU⊤c (xxx− xxxc), (8)

where UUUc is an nx×dX matrix whose columns provide an orthonormal basis of Txxxc
X . The inverse map

xxx = ψψψc(yyy) is implicitly determined by the system of nonlinear equations

FFF(xxx) = 000

UUU⊤c (xxx− xxxc)− yyy = 000

}

(9)

which, for a given yyy, can be solved for xxx using the Newton-Raphson method when xxx is close to xxxc.

Assuming that an atlas has been created, the problem of samplingX boils down to generating random

points yyyrand in the Pc sets, as they can always be projected to X using the map xxxrand = ψψψc(yyyrand). Also,

the atlas allows the conversion of the vector field defined by Eq. (6) into one in the coordinate spaces Pc.

The time derivative of Eq. (8), ẏyy =UUU⊤c ẋxx, gives the relationship between the two vector fields, and allows

writing

ẏyy =UUU⊤c ggg(ψψψc(yyy),uuu) = g̃gg(yyy,uuu), (10)

which is Eq. (6), but expressed in local coordinates. This equation still takes the full dynamics into

account, and forms the basis of geometric methods for the integration of differential-algebraic equations

as ordinary differential equations on manifolds [28]. Given a state xxxk and an action uuuk, xxxk+1 is estimated

by obtaining yyyk = ϕϕϕc(xxxk), then computing yyyk+1 using a discrete form of Eq. (10), and finally getting

xxxk+1 = ψψψc(yyyk+1). The procedure guarantees that xxxk+1 will lie on X by construction, thus making the

integration compliant with all kinematic constraints in Eq. (5).

5.2 Incremental atlas and RRT expansion

One could construct a full atlas of the implicitly-defined state space and then use its local parametrisations

to implement a kinodynamic RRT planner. However, the construction of a full atlas is only feasible for

low-dimensional state spaces. On the other hand, only part of the atlas is necessary to solve a given

motion planning problem. As an alternative, we thus propose to combine the construction of the atlas

and the expansion of the RRT [34]. In this approach, a partial atlas is used to both generate random states



8 A Randomized Kinodynamic Planner for Closed-chain Robotic Systems

X

X

(a)

(b)

xxx

yyy

ẋxx

ẏyy

R
dXR

dX

Pc

Vc

Pk

Vk

ψψψc

ψψψk

ϕϕϕc

ϕϕϕk

xxx

TxxxcX
yyy =UUU⊤c (xxx− xxxc)

xxxc

Figure 4: (a) Two neighbouring charts of X , labelled c and k, together with their maps ϕϕϕc and ϕϕϕk, and

inverse maps ψψψc and ψψψk. (b) Using the tangent space parametrisation, ϕϕϕc is defined by the projection of

xxx onto TxxxcX .

and grow the RRT branches. As described next, new charts are also created as the RRT branches reach

unexplored regions of the state space.

Suppose that xxxk and xxxk+1 are two consecutive states along an RRT branch, both covered by a chart

at xxxc, and let yyyk and yyyk+1 be their local coordinate vectors in Txxxc
X . Then, a new chart at xxxk is created if

Eq. (9) cannot be solved for xxxk+1 using the Newton-Raphson method, or if any of the following conditions



Section 5 Mapping and exploring the state space 9

xxxc

xxxk

xxxk+1

yyyk yyyk+1

α

ε

ρ

TxxxcX

X

Figure 5: Thresholds determining the extension of the Pc set of the chart at xxxc. While yyyk lies in Pc, yyyk+1

does not because it violates Eqs. (11)-(13).

is met

‖xxxk+1− (xxxc +UUUc yyyk+1)‖> ε , (11)

‖yyyk+1− yyyk‖

‖xxxk+1− xxxk‖
< cosα , (12)

‖yyyk+1‖> ρ, (13)

where ε , α , and ρ are user-defined thresholds (Fig. 5). These conditions are introduced to ensure that the

Pc sets of the created charts capture the overall shape ofX with sufficient detail. The first condition limits

the maximal distance between the tangent space and the manifold X . The second condition ensures a

bounded curvature in the part of X that is covered by a chart, as well as a smooth transition between

neighbouring charts. The third condition finally guarantees the generation of new charts as the RRT

grows, even for almost flat manifolds.

5.3 Chart coordination

Since the charts will be used to generate samples on X , it is important to reduce the overlap between

new charts and those already present in the atlas. Otherwise, the areas of X covered by several charts

would be oversampled. To avoid so, the Pc set of each chart is initialized as a ball of radius σ centred

at the origin of RdX . This ball is progressively bounded as new neighbouring charts are created around

the chart. If, while growing an RRT branch, a neighbouring chart is created at a point xxxk with parameter

vector yyyk in Pc, the following inequality

yyy⊤yyyk−
‖yyyk‖

2

2
≤ 0 (14)

is added as a bounding half-plane of Pc (Fig. 6). An analogous inequality is added to the Pk set of the

chart at xxxk, but using yyyc = ϕϕϕk(xxxc) instead of yyyk in Eq. (14). Note that the radius σ of the initial ball

must be larger than ρ to guarantee that the RRT branches covered by chart c will eventually trigger the

generation of new charts, i.e., to guarantee that Eq. (13) will eventually hold. Also, since Eq. (13) forces

the norm of yyyk to be limited by ρ , the half-plane defined by Eq. (14) will be guaranteed to clip Pc.

Consequently, the Pc sets of those charts fully surrounded by neighbouring charts will be significantly



10 A Randomized Kinodynamic Planner for Closed-chain Robotic Systems

‖yyyk‖
2

‖yyyc‖
2

σσ yyyk yyyc

R
dXR

dX

Pc Pk

Figure 6: Half planes added to trim the Pc and Pk sets of two neighboring charts. Note that yyyk = ϕϕϕc(xxxk)

and yyyc = ϕϕϕk(xxxc).

smaller than the Pc sets of the charts at the exploration border of the atlas. As we shall see below, this

will favour the growth of the tree towards unexplored regions of X .

6 A steering method

As explained in Sec. 4, the standard RRT algorithm relies on a randomized steering method that is

inefficient when nu is large. To address this problem, we here propose an alternative approach based

on linear quadratic regulators. As we shall see, by linearising the system dynamics at the various chart

centres we will be able to obtain a sequence of control laws bringing the robot from xxxnear to xxxrand .

6.1 System linearisation at a chart centre

To apply LQR techniques to our problem we must first linearise our system model at the chart centres xxxc

and null action uuu = 000. To do so, we cannot linearise Eq. (6) however, as this would disregard the fact that

the xxx variables are coupled by Eq. (5). We must instead linearise Eq. (10), which expresses Eq. (6) in the

independent yyy coordinates of Txxxc
X . Since the point xxx = xxxc corresponds to yyy = 000 in the local coordinates

of Txxxc
X , the sought linearisation is

ẏyy =
∂ g̃gg

∂yyy

∣
∣
∣
∣
yyy=000
uuu=000

︸ ︷︷ ︸

AAA

yyy+
∂ g̃gg

∂uuu

∣
∣
∣
∣
yyy=000
uuu=000

︸ ︷︷ ︸

BBB

uuu+ g̃gg(000,000)
︸ ︷︷ ︸

ccc

, (15)

which can be written as

ẏyy = AAAyyy+BBBuuu+ ccc. (16)

This system will be assumed to be controllable hereafter.

Observe that, in Eq. (16), the term

ccc = g̃gg(000,000) =UUU⊤c ggg(xxxc,000)

is not null in principle, because (xxx,uuu) = (xxxc,000) is not necessarily an equilibrium point of the system in

Eq. (10). Moreover, by applying the chain rule and using the fact that
∂ψψψ
∂yyy

∣
∣
yyy=000

=UUUc (see Appendix A),

the AAA and BBB terms can be written as:

AAA =
∂ g̃gg

∂yyy

∣
∣
∣
∣
yyy=000
uuu=000

=UUU⊤c
∂ggg

∂xxx

∣
∣
∣
∣xxx=xxxc

uuu=000

UUUc,



Section 6 A steering method 11

X

xxxrand

xxxnear

xxxc

yyy = 000

yyy
rand

yyy near Txxxc
X

Figure 7: When xxxnear and xxxrand are covered by a same chart, the steering of the system can be reduced

to a steering problem in TxxxcX .

and

BBB =
∂ g̃gg

∂uuu

∣
∣
∣
∣
yyy=000
uuu=000

=UUU⊤c
∂ggg

∂uuu

∣
∣
∣
∣xxx=xxxc

uuu=000

.

Notice, therefore, that AAA, BBB, and ccc can exactly be obtained by evaluating the original function ggg(xxx,uuu) and

its derivatives ∂ggg/∂xxx and ∂ggg/∂uuu at (xxx,uuu) = (xxxc,000). In those robots in which these derivatives are not

easy to obtain in closed form, AAA and BBB can always be approximated numerically using finite differences.

6.2 Steering on a single chart

Suppose now that both xxxnear and xxxrand lie in the same chart c, centred at xxxc ∈ X (Fig. 7). In this case,

the problem of steering the robot from xxxnear to xxxrand can be reduced to that of steering the system in Eq.

(16) from yyynear = ϕϕϕc(xxxnear) to yyyrand = ϕϕϕc(xxxrand). This problem can be formulated as follows: Find the

control policy uuu(t) = uuu∗(t) and time t f = t∗f that minimize the cost function

J(uuu(t), t f ) =
∫ t f

0

(

1+uuu(t)⊤RRR uuu(t)
)

dt, (17)

subject to the constraints

ẏyy = AAAyyy+BBBuuu+ ccc, (18)

yyy(0) = yyynear, (19)

yyy(t f ) = yyyrand . (20)

In Eq. (17), the unit term inside the integral penalizes large values of t f , while the term uuu(t)⊤RRR uuu(t)
penalizes high control actions. In this term, RRR is a symmetric positive-definite matrix that is known

beforehand.

The problem just formulated is known as the fixed final state optimal control problem [44]. We shall

solve this problem in two stages. Initially, we will obtain uuu∗(t) assuming that t f is fixed, and then we

will find a time t f that leads to a minimum of J(uuu(t), t f ).



12 A Randomized Kinodynamic Planner for Closed-chain Robotic Systems

6.3 Fixed final state and fixed final time problem

If t f is fixed, we can find the optimal action uuu(t) = uuu∗(t) by applying Pontryagin’s minimum principle.

Since the function uuu⊤(t) RRR uuu(t) is convex, this principle provides necessary and sufficient conditions of

optimality in our case [3]. To apply the principle, we first define the Hamiltonian function

H(yyy,uuu,λλλ ) = 1+uuu⊤ RRR uuu+λλλ
⊤ (AAAyyy+BBBuuu+ ccc) , (21)

where λλλ = λλλ (t) is an undetermined Lagrange multiplier. Then, the corresponding state and costate

equations are

ẏyy =
∂H

∂λλλ

⊤

= AAAyyy+BBBuuu+ ccc, (22)

λ̇λλ =−
∂H

∂yyy

⊤

=−AAA⊤λλλ . (23)

For uuu = uuu∗(t) to be an optimal control policy, H must be at a stationary point relative to uuu, i.e., it must be

∂H

∂uuu

∣
∣
∣
∣

⊤

uuu=uuu∗(t)
= RRR uuu∗(t)+BBB⊤λλλ = 000, (24)

and thus,

uuu∗(t) =−RRR−1BBB⊤λλλ (t). (25)

Since Eq. (23) is decoupled from Eq. (22), its solution can be found independently. It is

λλλ (t) = eAAA
⊤
(t f−t)λλλ (t f ), (26)

where λλλ (t f ) is still unknown.

To find λλλ (t f ), let us consider the closed-form solution of Eq. (22) for uuu = uuu∗(t):

yyy(t) = eAAAtyyy(0)+
∫ t

0
eAAA(t−τ) (BBBuuu∗(τ)+ ccc) dτ . (27)

If we evaluate this solution for t = t f and take into account Eqs. (25) and (26), we arrive at the expression

yyy(t f ) = rrr(t f )−GGG(t f ) λλλ (t f ), (28)

where

rrr(t f ) = eAAAt f yyy(0)+
∫ t f

0
eAAA(t f−τ) ccc dτ , (29)

and

GGG(t f ) =
∫ t f

0
eAAA(t f−τ) BBBRRR−1BBB⊤ eAAA

⊤
(t f−τ) dτ

=
∫ t f

0
eAAAτ BBBRRR−1BBB⊤ eAAA

⊤
τ dτ . (30)

Given that yyy(t f ) is known from Eq. (20), we can solve Eq. (28) for λλλ (t f ) to obtain

λλλ (t f ) = GGG(t f )
−1 (rrr(t f )− yyy(t f )) . (31)

Now, substituting Eq. (31) into (26), and the result into Eq. (25), we finally obtain the optimal control

policy for the fixed final state and fixed final time problem:

uuu∗(t) =−RRR−1BBB⊤eAAA
⊤
(t f−t) GGG(t f )

−1 (rrr(t f )− yyy(t f )) . (32)

Note that this is an open-loop policy, as uuu∗ depends on t only. The values rrr(t f ) and GGG(t f ) in this policy

can be obtained by computing the integrals in Eqs. (29) and (30) numerically. The matrix GGG(t f ) is known

as the weighted continuous reachability Gramian, and since the system is controllable, it is symmetric

and positive-definite for t > 0 [69], which ensures that GGG(t f )
−1 always exists.



Section 7 Planner implementation 13

(a) (b) (c)

xxxnear

xxxnear

xxxnear

yyynear X X

X

xxxrand

xxxrand

xxxrand

yyyrandyyyrand

yyy
rand

xxxk

xxxk

xxxc

xxxc
xxxc

Figure 8: (a) Steering towards states not covered by the chart of xxxnear. (b) Cyclic behavior of the steering

method. (c) Convergence to yyyrand but not to xxxrand .

6.4 Finding the optimal time t f

To find a time t∗f for which the cost J in Eq. (17) attains a minimum value, we substitute the optimal

policy in Eq. (32) into Eq. (17), and take into account Eq. (30), obtaining

J(t f ) = t f +[yyy(t f )− rrr(t f )]
⊤

GGG(t f )
−1 [yyy(t f )− rrr(t f )] . (33)

The time t∗f is thus the one that minimizes J(t f ) in Eq. (33). Assuming that t∗f lies inside a specified time

window [0, tmax], this time can be computed approximately by evaluating rrr(t f ), GGG(t f ) and J(t f ) using

Eqs. (29), (30), and (33) for t f = 0 to t f = tmax, and selecting the t f value for which J(t f ) is minimum.

Finally, the values t∗f , rrr(t∗f ), and GGG(t∗f ) can be used to evaluate the optimal control policy in Eq. (32).

By applying this policy to the full nonlinear system of Eq. (6) during t∗f seconds, we will follow a

trajectory ending in some state yyy′rand close to yyyrand . This trajectory can be recovered on the X space by

means of the ψψψc map and, if it lies in Xfeas, the corresponding branch can be added to the RRT.

6.5 Steering over multiple charts

If xxxrand is not covered by the chart c of xxxnear, we can iteratively apply the steering process as shown in

Fig. 8(a). To this end, we compute yyyrand = ϕϕϕc(xxxrand) and drive the system from yyynear = ϕϕϕc(xxxnear) towards

yyyrand on Txxxc
X , projecting the intermediate states yyy to X via ψψψc. Eventually, we will reach some state

xxxk ∈ X that is in the limit of the Vc set of the current chart (see the conditions in Sec. 5.2). At this point,

we generate a chart at xxxk and linearise the system again. We then use this linearisation to recompute the

optimal control policy to go from xxxk to xxxrand . Such a “linearise and steer" process can be repeated as

needed, until the system gets closely enough to xxxrand .

Although the previous procedure is in general effective, it can also fail in some situations. As shown

in Fig. 8(b), the initial steering on chart c might bring the system from xxxnear to xxxk but, due to the position

of xxxrand , a new control policy computed at xxxk would steer the system back to xxxnear, leading to a back-and-

forth cycle not converging to xxxrand . Such limit cycles can be detected however, because the time t∗f will

no longer decrease eventually. As shown in Fig. 8(c), moreover, the steering procedure can sometimes

reach yyyrand , but we might find that ψψψc(yyyrand) 6= xxxrand because, due to the curvature of X , several states

can project to the same point on a given tangent space. Such situations do not prevent the connection of

xxxnear with xxxrand though, as the steering algorithm is to be used inside a higher-level RRT planner. The

implementation of such a planner is addressed in the following section.

7 Planner implementation

Algorithm 1 gives the top-level pseudocode of the planner. At this level, the algorithm is almost identical

to the RRT planner in [42]. The only difference is that, in our case, we construct an atlas A of X to



14 A Randomized Kinodynamic Planner for Closed-chain Robotic Systems

support the lower-level sampling, simulation, and steering tasks. The atlas is initialized with one chart

centred at xxxs and another chart centred at xxxg (line 1). As in [42], the algorithm implements a bidirectional

RRT where a tree Ts is rooted at xxxs (line 2) and another tree Tg is rooted at xxxg (line 3). Initially, a random

state is sampled (xxxrand in line 5), the nearest state in Ts is determined (xxxnear in line 6), and then Ts is

extended with the aim of connecting xxxnear with xxxrand (line 7). The CONNECT method reaches a state xxxnew

and adds it to Ts if xxxnew ∈Xfeas. Due to the presence of obstacles or to a failure of the steering procedure,

xxxnew may be different from xxxrand . Next, the state in Tg that is nearest to xxxnew is determined (xxx′near in line 8)

and Tg is extended from xxx′near with the aim of reaching xxxnew (line 9). This extension generates a new state

xxx′new that is added to Tg. After this step, the trees are swapped (line 10) and, if the last connection was

unsuccessful, i.e., if xxxnew and xxx′new are not closer than a user-provided threshold (line 11), steps 5 to 10

are repeated again. If the connection was successful, a solution trajectory is reconstructed using the paths

from xxxnew and xxx′new to the roots of Ts and Tg (line 12). Different metrics can be used to determine the

distance between two states without affecting the overall structure of the planner. As in [42], we use the

Euclidean distance for simplicity.

7.1 Sampling

The SAMPLE method is described in Algorithm 2. Initially, one of the charts covering the tree T is

selected at random with uniform distribution (line 2). A vector yyyrand of parameters is next randomly

sampled inside a ball of radius σ centered at the origin of RdX (line 3), repeating this sampling if nec-

essary until yyyrand falls inside the Pc set for the selected chart. The method then attempts to compute the

point xxxrand = ψψψc(yyyrand) (line 5) and returns this point if the Newton method implementing ψψψc is suc-

cessful (line 8). Otherwise, it returns the ambient space point corresponding to yyyrand (line 7). This point

lies on Txxxc
X , instead of on X , but it also provides a guiding direction to steer the tree towards uncharted

regions of X .

As explained in Sec. 5.3, the Pc set of fully-surrounded charts become significantly smaller than the

original ball of radius ρ , which decreases considerably their probability of being sampled. Charts that

lie at the borders of the atlas, on the contrary, have fewer neighbouring charts (and thus a larger Pc set),

resulting in a higher probability of being sampled. In this way, the growing of the tree is biased towards

uncharted regions of the state space.

Algorithm 1: The top-level pseudocode of the planner

PLAN TRAJECTORY(xxxs,xxxg)

input : The query states, xxxs and xxxg.

output: A trajectory connecting xxxs and xxxg.

1 A← INITATLAS(xxxs,xxxg)
2 Ts← INITRRT(xxxs)
3 Tg← INITRRT(xxxg)
4 repeat

5 xxxrand ← SAMPLE(A,Ts)
6 xxxnear← NEARESTSTATE(Ts,xxxrand)
7 xxxnew← CONNECT(A,Ts,xxxnear,xxxrand)
8 xxx′near← NEARESTSTATE(Tg,xxxnew)
9 xxx′new← CONNECT(A,Tg,xxx

′
near,xxxnew)

10 SWAP(Ts,Tg)

11 until ‖xxxnew− xxx′new‖< β

12 RETURN(TRAJECTORY(Ts,xxxnew,Tg,xxx
′
new))



Section 7 Planner implementation 15

Algorithm 2: Generate a random state xxxrand .

SAMPLE(A,T )

input : The atlas A and the tree T to be extended.

output: A guiding sample xxxrand .

1 repeat

2 c← RANDOMCHARTINDEX(A,T )
3 yyyrand ← RANDOMONBALL(σ)

4 until yyyrand ∈ Pc

5 xxxrand ← ψψψc(yyyrand)
6 if xxxrand = NULL then

7 xxxrand ← xxxc +UUUc yyyrand

8 RETURN(xxxrand)

Algorithm 3: Try to connect xxxnear with xxxrand .

CONNECT(A,T,xxxnear,xxxrand)

input : An atlas A, a tree T , the state xxxnear from which T is to be extended, and the guiding sample xxxrand .

output: The new state xxxnew.

1 xxxnew← xxxnear

2 t∗f p← ∞

3 repeat

4 (uuu∗, t∗f )← LQRPOLICY(A,xxxnear,xxxrand)

5 if t∗f ≤ t∗f p then

6 t∗f p← t∗f
7 (xxxnew,uuunew)← SIMULATE(A,T,xxxnear,xxxrand ,uuu

∗, t∗f )

8 if xxxnew ∈ Xfeas then

9 T ← ADDEDGE(T,xxxnear,uuunew,xxxnew)
10 xxxnear← xxxnew

11 until xxxnew /∈ Xfeas or ‖xxxnew− xxxrand‖ ≤ δ or t∗f > t∗f p

12 RETURN(xxxnew)

7.2 Tree extension

Algorithm 3 attempts to connect a state xxxnear to a state xxxrand . The algorithm implements a loop where,

initially, the optimal policy uuu∗ and time t∗f to connect these two states are computed (line 4). The policy

is a function of time given by Eq. (32). If t∗f is lower than the optimal time t∗f p obtained in the previous

iteration, the policy is used to simulate the evolution of the system from xxxnear (line 7). The simulation

produces a new state xxxnew which, if feasible (i.e., if it is collision-free and inside the workspace limits),

is added to the tree. This involves the creation of an edge between xxxnear and xxxnew (line 9), which also

stores the control sequence uuunew executed in the simulation. The loop is repeated until the new state is

unfeasible, or xxxrand is reached with accuracy δ , or t∗f is larger than t∗f p (line 11).

Algorithm 4 summarizes the procedure used to simulate a given policy uuu∗(t) from a particular state

xxxk. The simulation is carried on while the new state is valid, and the target state is not reached with

accuracy δ , and the integration time t is lower than t∗f (line 4). A state is not valid if is not in Xfeas

(line 9), if it is not in the validity area of the chart (line 15), or if it is not included in the current Pc set

(line 21). In the first case, both the simulation and the connection between states are stopped. In the last

two cases the simulation is stopped, but the connection continues after recomputing the optimal policy,

either using a newly-created chart (line 14) or the atlas chart covering the new state.

The key procedure in the simulation is the NEXTSTATE method (line 7), which provides the next



16 A Randomized Kinodynamic Planner for Closed-chain Robotic Systems

Algorithm 4: Simulate an action.

SIMULATE(A,T,xxxk,xxxrand ,uuu
∗, t∗f )

input : An atlas, A, a tree, T , the state from where to start the simulation, xxxk, the state to approach, xxxrand ,

the policy to simulate, uuu∗, and the optimal time t∗f to simulate.

output: The last state in the simulation and the executed control sequence.

1 t← 0

2 uuuk← /0

3 VALIDSTATE← TRUE

4 while VALIDSTATE and ‖xxxk− xxxrand‖> δ and |t|< t∗f do

5 c← CHARTINDEX(xxxk)
6 yyyk← ϕϕϕc(xxxk)
7 (xxxk+1,yyyk+1,h)← NEXTSTATE(xxxk,yyyk,uuu

∗(t),FFF,xxxc,UUUc,δ )
8 if xxxk+1 /∈ Xfeas then

9 VALIDSTATE← FALSE

10 else

11 if ‖xxxk+1− (xxxc +UUUc yyyk+1)‖> ε or

12 ‖yyyk+1− yyyk‖/‖xxxk+1− xxxk‖< cos(α) or

13 ‖yyyk+1‖> ρ then

14 ADDCHARTTOATLAS(A,xxxk)
15 VALIDSTATE← FALSE

16 else

17 xxxk← xxxk+1

18 uuuk← uuuk ∪{(uuu(t),h)}
19 t← t +h

20 if yyyk+1 /∈ Pc then

21 VALIDSTATE← FALSE

22 RETURN(xxxk,uuuk)

state xxxk+1, given the current state xxxk and the action uuu∗(t) at time t. This is implemented by integrating

Eq. (6) using local coordinates as explained in Section 5.1. Any numerical integration method, either

explicit or implicit, could be used to discretise Eq. (10). We here apply the trapezoidal rule as it yields an

implicit integrator whose computational cost (integration and projection to the manifold) is similar to the

cost of using an explicit method of the same order [57]. Also, it gives more stable and accurate solutions

over long time intervals. Using this rule, Eq. (10) is discretised as

yyyk+1 = yyyk +
h

2
UUU⊤c (ggg(xxxk,uuu)+ggg(xxxk+1,uuu)), (34)

where h is the integration time step. The value xxxk+1 in Eq. (34) is unknown but, since it must satisfy

Eq. (9), it must fulfil

FFF(xxxk+1) = 000,

UUU⊤c (xxxk+1− xxxc)− yyyk+1 = 000.
(35)

Now, substituting Eqs. (34) into Eq. (35) we obtain

FFF(xxxk+1) = 000,

UUU⊤c (xxxk+1−
h
2
(ggg(xxxk,uuu)+ggg(xxxk+1,uuu))− xxxc)− yyyk = 000,

(36)

where xxxk, yyyk, and xxxc are known and xxxk+1 is the unknown to be determined. We could use a Newton

method to solve this system, but the Broyden method is more suitable as it avoids the computation of

the Jacobian of the system at each step. Potra and Yen [57] gave an approximation of this Jacobian that

allows finding xxxk+1 in only a few iterations.



Section 8 Planning examples 17

Figure 9: Example tasks used to illustrate the performance of the planner. From left to right, and colum-

nwise: weight lifting, weight throwing, conveyor switching, and truck loading. The robots involved are,

respectively, a four-bar robot, a five-bar robot, a Delta robot, and a double-arm manipulation system.

The top and bottom rows show the start and goal states for each task. In the goal state of the second

task, and in the start state of the third task, the load is moving at a certain velocity indicated by the red

arrow. The velocity of the remaining start and goal states is null. In all robots, the motor torques are

limited to prevent the generation of direct trajectories to the goal.

Table 1: Problem dimensions and performance statistics for the example tasks.
Randomized steering LQR steering

Example task nq ne dX nu No. samples No. charts Plan. Time (s) Success Rate No. samples No. charts Plan. Time (s)

Weight lifting 4 3 2 1 875 160 0.7 100% 128 95 0.4

Weight throwing 5 3 4 2 12837 2295 229.6 100% 717 242 8.5

Conveyor switching 15 12 6 3 38597 313 561.4 100% 4889 173 88.8

Truck loading 10 6 8 10 9381 1087 1930.0 45% 6588 1103 104.0

For backward integration, i.e., when extending the RRT with root at xxxg, the time step h in Eq. (36)

mas be negative negative. In any case, h is adjusted so that the change in parameter space, ‖yyyk+1− yyyk‖,
is bounded by δ , with δ ≪ ρ . This is necessary to accurately detect the transitions between charts.

8 Planning examples

The planner has been implemented in C and it has been integrated into the CUIK suite [55]. We next

analyse its performance in planning four tasks of increasing complexity (Fig. 9). The first two tasks

involve planar single-loop mechanisms, which are simple enough to illustrate key aspects of the planner,

like the formulation of Eqs. (1) and (2), the performance of the steering method, the traversal of singu-

larities, or the ability to plan trajectories towards nonzero velocity states. The third and fourth tasks, on

the other hand, show the planner performance in spatial robots of considerable complexity. In all cases



18 A Randomized Kinodynamic Planner for Closed-chain Robotic Systems

Figure 10: Solution trajectories for the four test cases. The shown trails depict earlier positions of the

load during a same time span. A longer trail, therefore, corresponds to a higher velocity of the load. See

youtu.be/-_DMzK5SGzQ for an animated version of this figure.

the robots are subject to gravity and viscous friction in all joints, and their action bounds li in Eq. (7) are

small enough so as to impede direct trajectories between xxxs and xxxg. This complicates the problems and

forces the generation of swinging motions to reach the goal. As for the planner parameters, the matrix RRR

in Eq. (17) has been set to be diagonal with RRRi,i = 1/li
2, and we have fixed δ = 0.05, σ = dX , ρ = dX /2,

cos(α) = 0.1, ε = 0.1, β = 0.05dX , and tm = 1. No special effort has been made to tune these param-

eters however, since the performance gracefully degrades when modifying their values. The resulting

trajectories can be seen in Fig. 10 and in the companion video of this report (also available through

youtu.be/-_DMzK5SGzQ. The complete set of geometric and dynamic parameters of all examples are

provided in http://www.iri.upc.edu/cuik.

Table 1 summarizes the problem dimensions and performance statistics for the four mentioned tasks.

For each task we provide the number of generalized coordinates in qqq (nq), the number of loop-closure

constraints (ne), the dimension of the state space (dX ), and the dimension of the action space (nu). The

table also provides the average over twenty runs of the number of samples and charts required to solve

the problem, and the planning time in seconds using a MacBook Pro with an Intel i9 octa-core processor

running at 2.93 GHz. This time is largely dependent on dX and nu, but is also affected by many other

https://youtu.be/-_DMzK5SGzQ
https://youtu.be/-_DMzK5SGzQ
http://www.iri.upc.edu/cuik


Section 8 Planning examples 19

aspects, like the torque limits of the actuators, the system masses, or the presence of obstacles. Note also

that the number of charts needed to plan a task does not necessarily grow in parallel with the planning

time, as it mostly depends on the curvature and size of the region of X that has to be explored in order

to solve the problem. In the table, statistics for both the randomized steering strategy in [14] and the

LQR steering strategy we propose are given for comparison. The randomized strategy employs 2 nu

random actions from U , and its parameter value tm is set to 0.1 in accordance with [14]. As seen in

the table, in terms of exploration the randomized strategy is less efficient than the LQR strategy, as it

requires a larger number of samples and charts to find a solution. Although the randomized strategy has

been implemented by simulating the various random actions in parallel, it is still slower than the LQR

strategy. In fact, the success rate of the randomised strategy is only 45% in the truck loading task (fixing

a maximum planning time of one hour). Further details on the four tasks are next provided.

8.1 Weight lifting

The first task to be planned consists in lifting a heavy load with a four-bar robot (Fig. 9, left column).

The robot involves four links cyclically connected with revolute joints (Fig. 11). Following Appendix B,

we label the links as L0, . . . ,L3, and the joints as J1, . . . ,J4. Only joint J1 is actuated. The relative angle

with the following link is denoted by qi, and the robot configuration is then given by qqq = (q1,q2,q3,q4).

To formulate Eq. (1), we attach a coordinate system to each link Li, centred at joint Ji+1 and with the

xi axis aligned with the link. This system is called the link i coordinates. The loop-closure condition of

robot can then be written as
4

∏
i=1

TTT z(qi) ·CCCi = III, (37)

q1

q2

q3

q4

x0

x1

x2

x3

L0

L1

L2

L3

J1

J2
J3

J4

Figure 11: Geometry of the four-bar mechanism in Fig. 9, left column. For each coordinate system, only

the x axis is depicted.



20 A Randomized Kinodynamic Planner for Closed-chain Robotic Systems

xxxs

xxxg

q1

q̇1 q̇2

Figure 12: A partial atlas of X used to plan the lifting of a weight with the four-bar robot. The red and

green trees are rooted at xxxs and xxxg respectively, and they are grown towards each other in parallel with the

atlas. Each polygon in dark blue corresponds to the Pc set of a given chart. See youtu.be/-_DMzK5SGzQ

for an animated version of this figure.

where

TTT z(qi) =





cos(qi) −sin(qi) 0

sin(qi) cos(qi) 0

0 0 1



 (38)

and

CCCi =





1 0 di

0 1 0

0 0 1



 (39)

are the planar counterparts of the transforms in Eq. (46), di is the distance between the two revolute

joints of link Li, and III is the 3× 3 identity matrix. To form Eq. (1), however, it suffices to select the

scalar equations that correspond to the elements (2,1), (1,3), and (2,3) of Eq. (37), as the remaining

equations are dependent on them.

Eq. (2) could now be obtained by taking the time derivative of Eq. (1), but Appendix B shows that

this equation reduces to JJJ · q̇qq = 0, where JJJ is the screw Jacobian of the 4-bar loop. This Jacobian has the

form

JJJ =





b1 b2 b3 b4

−a1 −a2 −a3 −a4

1 1 1 1



 , (40)

where (ai,bi) are the (x,y) coordinates of joint Ji in link 0 coordinates [22]. Using the fact that (a1,b1) =
(0,0), these coordinates can be written as follows in terms of q1, . . . ,q4:

ai = ai−1+di cos(q1 + . . .+qi−1), (41)

bi = bi−1+di sin(q1 + . . .+qi−1). (42)

https://youtu.be/-_DMzK5SGzQ


Section 8 Planning examples 21

0 2 4 6 8 10

-3

-2

-1

0

1

2

0 20 40 60

1

2

3

4

0 1 2 3

-2

-1

0

1

2

3

0 2 4 6 8
0

1

2

3

xxxnear

xxxnear

xxxrand

xxxrand

ee e
(t
)

ee e
(t
)

Position error

Position error

Velocity error

Velocity error

t [s]

t [s]

t∗ f
[s

]
t∗ f

[s
]

iterations

iterations

Optimal time

Optimal time

Robot state error

Robot state error

The optimal time no longer decreases

Figure 13: Steering the four-bar robot from xxxnear to xxxrand . Top: The LQR strategy allows the planner to

connect xxxnear and xxxrand . Bottom: The strategy enters a limit cycle and is never able to reach xxxrand . The

right plot shows that t∗f no longer decreases after six iterations, so it would be aborted at this point.

Under the previous formulation we have nq = 4 and ne = 3, so in this case X is of dimension

dX = 2 dC = 2 (nq−ne) = 2.

To have an idea, Fig. 12 shows the shape of X when projected to the space defined by q1, q̇1, and q̇2, with

the start and goal states indicated. To design a trajectory connecting xxxs with xxxg, the planner constructs

the partial atlas that is shown in the figure. Since the motor torque at J1 is limited, quasi static trajectories

near the straight line from xxxs to xxxg are impossible, and the robot is deemed to perform pendulum-like

motions to be able to reach the goal. This translates into the spirally tree trajectories that we observe in

the figure. The trajectory returned by the planner can be seen in Fig. 10, top row.

The same example can be used to illustrate the performance of the LQR steering strategy. Fig. 13-top,

shows an example in which this strategy successfully finds a trajectory connecting xxxnear with xxxrand , with

t∗f always decreasing. In contrast, Fig. 13-bottom shows another example in which the process tends

to a limit cycle like the one in Fig. 8(b), and is never able to reach the goal. The steering method in

Algorithm 3 would stop after a few iterations because a point is reached in which t∗f no longer decreases.

In Fig. 14 we also show the performance of the LQR strategy for states xxxrand that are progressively

further away from xxxnear. We have generated 5 batches of 100 random samples, where the samples in

each batch are at tangent space distances of 0.4, 1, 2, 3, and 4 from xxxnear. As a reference, the distance

from xxxs to xxxg is 3.7 in this example. The states xxxrand that could be connected to xxxnear are shown in green,

while those that could not are shown in red. As expected for a local planner, the closer xxxrand from xxxnear,

the higher the probability of success of the steering process.

8.2 Weight throwing

The second task involves a five-bar robot. It consists in throwing a given object from a certain position

at a prescribed velocity (indicated with the red arrow in Fig. 9, second column). This shows the planner

ability to reach goal states xxxg with nonzero velocity, which would be difficult to achieve with conventional

C-space approaches.

The formulation of Eqs. (1) and (2) is analogous to the one in the previous example, with the dif-

ference that the robot now has one additional link and joint. As a result, nq = 5, ne = 3, and X is

four-dimensional in this case. Only the two ground joints are actuated, so nu = 2.



22 A Randomized Kinodynamic Planner for Closed-chain Robotic Systems

xxxnear

xxxrand

Successful connection

Failed connection

Distance 0.4 1 2 3 4

Success rate 100% 99% 56% 26% 10%

Figure 14: Success rate of the LQR steering strategy for states xxxrand that are increasingly far from xxxnear.

The computed trajectory can be seen in the second row of Fig. 10. The robot first lifts the object

to the right until it achieves a zero-velocity position (second snapshot), to later move it back to the left

along a nearly-circular path (remaining snapshots). Almost two turns of this path are completed in order

to reach the launch point with the required momentum (last snapshot).

The task also illustrates the planner capacity to traverse forward singularities, which are configura-

tions in which the robot is locally underactuated. These configurations are difficult to manage, as they can

only be crossed under very specific velocities and accelerations fulfilling certain rank-deficiency condi-

tions [15, 16]. However, since our planner trajectories result from simulating control policies uuu(t) using

forward dynamics, they naturally satisfy the mentioned conditions at the singularities, and are thus kine-

matically and dynamically feasible even in such configurations. In particular, a five-bar robot is known

to exhibit a forward singularity when its two distal links happen to be aligned [15]. In the trajectory

shown in Fig. 10 this occurs in the third and sixth snapshots. From the companion video we see that the

robot passes through these configurations in a smooth and predictable manner with no difficulty. Note

that, while such a trajectory would be difficult to execute using classical computed-torque controllers [1],

recent LQR controllers for closed kinematic chains have no trouble in accomplishing this task [13].

8.3 Conveyor switching

In the previous tasks the robot was a single-loop mechanism in an obstacle-free environment. To ex-

emplify the planner in a multi-loop mechanism surrounded by obstacles, we next apply it to a conveyor

switching task on a Delta robot (Fig. 9, third column). The system is formed by a fixed base connected

to a moving platform by means of three legs. Each leg is an R-R-Pa-R chain, where R and Pa refer to a

revolute and a parallelogram joint respectively (Fig. 15, left). The Pa joint is a planar four-bar mecha-

nism whose opposite sides are of equal length. While it seems that such a leg should be modelled with

seven joint angles, we use the fact that the leg is kinematically equivalent to an R-U-U chain (Fig. 15,

right), where U refers to a universal joint. By noting that a U joint is equivalent to two R joints with

orthogonal axes, we conclude that only five angles are needed to define a leg configuration. Our qqq vector



Section 8 Planning examples 23

R

R

R

R

Pa

U

U

Figure 15: A leg of a Delta robot (left) and its equivalent R-U-U chain (right).

for the Delta robot will thus involve nq = 3 ·5 = 15 angles in total. Only the revolute joints at the fixed

base of the robot are actuated, meaning that nu = 3 in this case.

To formulate Eqs. (1) and (2), note that every two legs of the robot define a six-dimensional loop-

closure constraint (Appendix C), which gives three such constraints in total. Only two of the constraints

are actually independent however, so ne = 2 ·6 = 12 in this system. This means that dX = 2 (nq−ne) =
2 (15−12) = 6. As in all Delta robots, our robot dimensions are such that the moving platform can only

translate in its workspace.

The task to be planned consists in picking a loudspeaker from a conveyor belt moving at a certain

speed, to later place it inside a static box on a second belt. Obstacles play a major role in this example, as

the planner has to avoid the collisions of the robot with the conveyor belts, the boxes, and the supporting

structure, while respecting the joint limits. In fact, around 70% of branch extensions are stopped due to

collisions in this example. The resulting trajectory can be seen in Fig. 10, third row, and in its companion

video. Given the velocity of the moving belt, the planner is forced to reduce the initial momentum of

the load before it can place it inside the destination box. The trajectory follows an ascending path that

converts the initial momentum into potential energy, to later move the load back to the box on the goal

location.

8.4 Truck loading

The fourth task involves two 7-DOF Franka Emika arms moving a gas bottle cooperatively. The task

consists in lifting the bottle onto a truck while avoiding the collisions with the surrounding obstacles (a

conveyor belt, the ground, and the truck). The first and last joints in each arm are held fixed during the

task, and the goal is to compute control policies for the remaining joints, which are all actuated. The

weight of the bottle is twice the added payload of the two arms, so in this example the planner allows the

system to move much beyond its static capabilities.

The example also illustrates that the randomized steering strategy performs poorly when nu is large.

In this case, nu = 10, which is notably higher than in the previous examples. Note that the number of

random actions needed to properly represent U should be proportional to its volume, so it should grow

exponentially with nu in principle. To alleviate the curse of dimensionality, however, [42] proposes to

simulate only 2 nu random actions for each branch extension. Our implementation adopts this criterion

but, like [42], it then shows a poor exploration capacity when nu is large, resulting in the excessive

planning times reported for the truck loading task (Table 1). We have also tried to simulate 2nu random

actions, instead of just 2 nu, but then the gain in exploration capacity does not outweigh the large com-

putational cost of simulating the actions. In contrast, the LQR strategy only computes one control policy



24 A Randomized Kinodynamic Planner for Closed-chain Robotic Systems

per branch extension, so an increase in nu does not affect the planning time dramatically (Table 1, last

column). Using this strategy, the planner obtained the trajectory shown in Fig. 10, bottom row, in which

we see that, in order to gain momentum, the robot is moved backwards before it lifts the bottle onto the

truck.

9 Conclusions

This report has proposed a randomised planner to compute dynamically-feasible trajectories for robots

with closed kinematic chains. The state space of such robots is an intricate manifold that poses three

major hurdles on the planner design: 1) the generation of random samples on the manifold; 2) the

accurate simulation of robot trajectories along the manifold; and 3) the steering of the system towards

random states. The three issues have been addressed by constructing an atlas of the manifold in parallel to

the RRT. The result is a planner that can explore the state space in an effective manner, while conforming

to the vector fields defined by the equations of motion of the robot and the force bounds of the actuators.

The planner is probabilistically complete, but a proof of this point has been omitted because it would be

lengthy, and it would mainly replicate the arguments in [39] with minor adaptations. The examples in

the report show that the planner can solve significantly complex problems that require the computation

of swinging motions between start and goal states, under restrictive torque limitations imposed on the

motors.

Several points should be considered in further improvements of this work. Note that, as usual in

a randomised planner, our control policies are piecewise continuous, so the planned trajectories are

smooth in position, but not in velocity or acceleration. Therefore, to reduce control or vibration issues in

practice, a post-processing should be applied to obtain twice-differentiable trajectories. The trajectories

should also be made locally-optimal in some sense, minimising the time or control effort required for

its execution. Trajectory optimization tools like those in [56], [4], or [5] might be very helpful to both

ends. Another sensitive point is the metric employed to measure the distance between two states. This is

a general concern in any motion planner, but it is more difficult to address in our context as such metric

should consider the vector flows defined by the equations of motion, but also the curvature of the state

space manifold defined by the loop-closure constraints. Using a metric derived from geometric insights

provided by such constraints might result in substantial performance improvements. Another point de-

serving attention would be the evaluation of constraint forces during the planning. While such forces

result in no motion, they do stress the robot parts unnecessarily and should be kept below admissible

bounds. The ability to impose bounds on the constraint forces would also allow the planner to compute

trajectories in closed kinematic chains induced by unilateral contacts, like those that arise when a hand

moves an object in contact with a surface.

Appendices

A The Ψ mapping

Note that
∂ψψψ(yyy)

∂yyy can be computed in closed form. Consider the mapping

yyy = ϕϕϕ(xxx) =UUU⊤c (xxx− xxxc) . (43)

Lets now use the inverse mapping xxx = ψψψ(yyy) to rewrite Eq. (43) as

yyy =UUU⊤c (ψψψ(yyy)− xxxc) . (44)



Section B Formulation of the state space equations 25

Link 1

Link 0
(Base link)

Link n
(Tip link)

same link

Joint i

Link i−1
Link i

yi−1
y′i−1

xi−1

x′i−1

xi

yi

xn yn

Figure 16: A kinematic loop in exploded view. The tip link is a copy of the base link. In an assembled

configuration, these two bodies are forced to coincide.

If we compute the partial derivative of both side of Eq. (44) with respect to yyy, we have

IIIdX =UUU⊤c
∂ψψψ(yyy)

∂yyy
, (45)

where IIIdX is the dX ×dX identity matrix. Thus,
∂ψψψ(yyy)

∂yyy must be UUUc.

B Formulation of the state space equations

The first step to formulate Eqs. (1) and (2) is to select appropriate qqq coordinates to define our system

configuration. The main choices in multibody dynamics include relative coordinates, reference point

coordinates, and natural coordinates [19]. In our case, we adopt relative coordinates, as they provide

compact formulations that easily allow the modelling of actuation and friction forces at the joints. This

appendix shows how to formulate Eqs. (1) and (2) using such coordinates. We assume for simplicity

that the robot exhibits just one kinematic loop. If more loops were present, we would just collect the

equations below for a maximal set of independent loops in the mechanism. We also treat revolute or

prismatic joints only, as more complex joints can always be formulated using a combination of these

elementary pairs.

A kinematic loop can be regarded as a serial chain in which the base and tip links are forced to

coincide. Fig. 16 shows such a chain in exploded view, with our conventions depicted. The links are

numbered from 0 to n, where 0 and n refer to the base and tip links respectively. The joints are numbered

from 1 to n, with joint i being the one that connects links i and i− 1. We also define two coordinate

systems for each joint: one attached to the body that is closest to the base, and one attached to the body

that is closest to the tip. On joint i, these two systems are called the (i− 1) and (i− 1)′ coordinates

respectively. The tip link also has another coordinate system attached, called the link n coordinates,

which should coincide with the link 0 coordinates in an assembled configuration.

With the previous definitions, the homogeneous transformation that locates the link i coordinates

relative to the link i−1 ones is given by

i−1TTT i = TTT z(qi) ·CCCi (46)

where TTT z(qi) is given in Table 2, and CCCi is a constant transformation that locates the i coordinates relative



26 A Randomized Kinodynamic Planner for Closed-chain Robotic Systems

to the (i−1)′ ones. Then, by defining

TTT (qqq) =0 TTT 1 ·
1 TTT 2 · . . . ·

n−1 TTT n, (47)

the loop-closure constraint can simply be posed as

TTT (qqq) = III. (48)

Eq. (48) is a system of 4×4 scalar equations in n unknowns, but only six of these equations are indepen-

dent [58]. In particular, Eq. (1) can be formulated by choosing

ΦΦΦ(qqq) =











TTT 3,2

TTT 1,3

TTT 2,1)

TTT 1,4

TTT 2,4

TTT 3,4











(49)

where TTT i, j refers to the (i, j) entry of TTT (qqq).
On the other hand, the feasible velocities q̇qq = (q̇1, . . . , q̇n) are those that fulfil the time derivative of

Eq. (48):
∂TTT

∂q1

· q̇1 + . . .+
∂TTT

∂qn

· q̇n = 000. (50)

From the results in [67], it is not difficult to see that, when qqq satisfies Eq. (48), we have

∂TTT

∂qi

= SSSi,

where SSSi is the 4×4 matrix encoding the unit twist of link i as observed from link i−1, but expressed in

link 0 coordinates. This twist can be obtained by using the change of coordinates formula

SSSi =
0 TTT i−1 ·

i−1SSSi ·
0 TTT−1

i−1,

where i−1SSSi is the same twist, but expressed in link i−1 coordinates (see Table 2). Like in Eq. (48), only

six of the 4× 4 equations of Eq. (50) are actually independent. From these equations, we can extract a

subset of six independent equations by writing

ŜSS1 · q̇1 + · · ·+ ŜSSn · q̇n = 0, (51)

where ŜSSi ∈ R
6 is the spatial velocity vector that corresponds to the SSSi matrix. This vector is the one

formed by taking the components (3,2), (1,3), (2,1), (1,4), (2,4), and (3,4) of SSSi. Therefore, when

formulating loop-closure equations, Eq. (2) can be written as

JJJ · q̇qq = 0, (52)

where JJJ = [ŜSS1, . . . , ŜSSn] is the screw Jacobian of the kinematic loop [24]. In other words, ΦΦΦqqq(qqq) = JJJ when

ΦΦΦ(qqq) = III and ΦΦΦ(qqq) is defined as in Eq. (49).

C Formulation of the equation of motion

We now turn into the problem of formulating Eq. (6). As in Appendix B, we assume that our robot

consists of a single kinematic loop with n 1-DOF joints, which can be prismatic or revolute joints. For

convenience, such a loop can be viewed as being cut at some link, but subject to the spatial constraint



Section C Formulation of the equation of motion 27

Table 2: Expressions of TTT z(qi) and i−1SSSi, where sqi
= sinqi and cqi

= cosqi

Joint type TTT Z(qi)
i−1SSSi

qi

qix i−
1

x
′

i−
1 yi−1

y′i−1

zi−1 z′i−1

Link

Link
i

i−1







cqi
−sqi

0 0

sqi
cqi

0 0

0 0 1 0

0 0 0 1













0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0







qi

x i−
1

x
′
i−

1

yi−1

y ′
i−1

zi−1 z′i−1

Link

Link
i

i−1







1 0 0 0

0 1 0 0

0 0 1 qi

0 0 0 1













0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0







forces f̂ff and − f̂ff that the half links exert on each other (Fig 17). Geometrically, the half links play the

same role as the base and tip links defined in Appendix B, but each of them has half the inertia of the

original link. The force f̂ff , moreover, is a 6-D vector encoding the resultant torque and force applied by

the base link on the tip link.

Under the previous view, the equation of motion of the robot takes the form

HHH(qqq) q̈qq = QQQ−CCC(qqq, q̇qq)+QQQ f , (53)

where HHH(qqq) is the mass matrix of the system, QQQ is the generalised actuation force, −CCC is the generalised

force modelling gravity and inertial velocity-product terms, and QQQ f is the net generalised force of f̂ff and

− f̂ff .

Since HHH and CCC depend only on the inertial properties of the bodies and on the robot state, they can

be computed by treating the system as a kinematic tree: the one that results from cutting the link as in

Fig. 17, but with f̂ff and − f̂ff omitted. The equation of motion of such a tree is thus Eq. (53) with QQQ f

suppressed:

HHH(qqq) q̈qq = QQQ−CCC(qqq, q̇qq).

Note that CCC(qqq, q̇qq) = QQQ when q̈qq = 000, which shows that CCC(qqq, q̇qq) can be regarded as the generalised force

that imparts a null acceleration to the tree. Thus, we can easily compute CCC(qqq, q̇qq) by setting q̈qq = 000 in the

recursive Newton-Euler method of inverse dynamics [46]. The HHH matrix could also be computed via

inverse dynamics, but the composite rigid-body method by Walker and Orin is more efficient [68]. In our

implementation, however, we compute CCC and HHH with the spatial versions of such algorithms [23].



28 A Randomized Kinodynamic Planner for Closed-chain Robotic Systems

Base link Tip link

f̂ff − f̂ff

Figure 17: A kinematic loop can be thought of as being cut at some link, but subject to the spatial

constraint forces f̂ff and − f̂ff .

Both QQQ and QQQ f are easy to obtain in Eq. (53). The kth component of QQQ is the motor force or torque

τk applied at joint k, which is null if the joint is passive. Together, the τk values of the powered joints

form the action vector uuu in Eq. (6). Moreover, it can be shown that

QQQ f = JJJ⊤ f̂ff ,

where JJJ is the loop Jacobian defined in Appendix B [23].

When qqq, q̇qq, and uuu are known, Eq. (53) is an undetermined system of n equations in n+6 unknowns

(the n components of q̈qq and the 6 components of f̂ff ). To be able to solve for q̈qq, we have to supplement

Eq. (53) with the time derivative of Eq. (52),

JJJ q̈qq+ J̇JJ q̇qq = 000, (54)

which adds 6 additional constraints. Together, Eqs. (53) and (54) give rise to the system

[
HHH JJJ⊤

JJJ 000

][
q̈qq

λλλ

]

=

[
QQQ−CCC

−J̇JJ q̇qq

]

(55)

where λλλ =− f̂ff ∈ R
6 plays the role of a Lagrange multiplier vector. This system can be solved for q̈qq and

f̂ff in general, since HHH is positive-definite and JJJ is full rank when the mechanism is free from C-space

singularities.

It is worth noting that, while the calculation of J̇JJ q̇qq is often expensive, this term is equal to the

difference between the spatial accelerations of the tip and base links when q̈qq= 000 [23]. These accelerations

are recursively obtained during the earlier calculation of CCC(qqq, q̇qq), as part of the Newton-Euler method of

inverse dynamics. Once obtained, therefore, they can be stored to construct J̇JJ q̇qq in Eq. (55).

Eq. (6) can finally be written as

ẋxx = ggg(xxx,uuu) =

[
q̇qq

fff (qqq, q̇qq,uuu)

]

, (56)



REFERENCES 29

where

fff (qqq, q̇qq,uuu) =
[
IIIn 000

]
[

HHH JJJ⊤

JJJ 000

]−1[
QQQ−CCC

−J̇JJ q̇qq

]

. (57)

References

[1] F. Aghili. A unified approach for inverse and direct dynamics of constrained multibody systems

based on linear projection operator: applications to control and simulation. IEEE Transactions on

Robotics, 21(5):834–849, 2005.

[2] D. Berenson, S. Srinivasa, and J. J. Kuffner. Task space regions: A framework for pose-constrained

manipulation planning. International Journal of Robotics Research, 30(12):1435–1460, 2011.

[3] D. P. Bertsekas. Dynamic programming and optimal control. Athena Scientific, 2005.

[4] J. T. Betts. Practical methods for optimal control and estimation using nonlinear programming.

SIAM Publications, 2010.

[5] John T Betts. Survey of numerical methods for trajectory optimization. Journal of Guidance,

Control, and Dynamics, 21(2):193–207, 1998.

[6] W. Blajer. Methods for constraint violation suppression in the numerical simulation of constrained

multibody systems - A comparative study. Computer Methods in Applied Mechanics and Engi-

neering, 200(13-16):1568–1576, 2011.

[7] James E Bobrow. Optimal robot path planning using the minimum-time criterion. IEEE Journal

on Robotics and Automation, 4(4):443–450, 1988.

[8] James E Bobrow, Steven Dubowsky, and JS Gibson. Time-optimal control of robotic manipulators

along specified paths. The International Journal of Robotics Research, 4(3):3–17, 1985.

[9] O. Bohigas, M. E. Henderson, L. Ros, M. Manubens, and J. M. Porta. Planning singularity-free

paths on closed-chain manipulators. IEEE Transactions on Robotics, 29(4):888–898, 2013.

[10] O. Bohigas, M. Manubens, and L. Ros. Singularities of robot mechanisms: numerical computation

and avoidance path planning, volume 41 of Mechanisms and Machine Science. Springer, 2017.

[11] Ilian Bonev. Delta parallel robot - the story of success. Newsletter, available at

http://www.parallemic.org, 2001.

[12] R. Bordalba, J. M. Porta, and L. Ros. Randomized planning of dynamic motions avoiding forward

singularities. In Advances in Robot Kinematics, pages 170–178, 2018.

[13] R. Bordalba, J. M. Porta, and L. Ros. A singularity-robust LQR controller for parallel robots. In

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 270–276, 2018.

[14] R. Bordalba, L. Ros, and J. M. Porta. Randomized kinodynamic planning for constrained systems.

In IEEE International Conference on Robotics and Automation, pages 7079–7086, 2018.

[15] F. Bourbonnais, P. Bigras, and I. A. Bonev. Minimum-time trajectory planning and control of a

pick-and-place five-bar parallel robot. IEEE/ASME Transactions on Mechatronics, 20(2):740–749,

2015.

[16] S. Briot and V. Arakelian. Optimal force generation in parallel manipulators for passing through

the singular positions. The International Journal of Robotics Research, 27(8):967–983, 2008.



30 REFERENCES

[17] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun.

Principles of robot motion: theory, algorithms, and implementations. Intelligent Robotics and

Autonomous Agents. MIT Press, 2005.

[18] J. Cortés, T. Siméon, and J.-P. Laumond. A random loop generator for planning the motions of

closed kinematic chains using PRM methods. In IEEE International Conference on Robotics and

Automation, pages 2141–2146, 2002.

[19] Javier García de Jalón and Eduardo Bayo. Kinematic and dynamic simulation of multibody systems.

Springer Verlag, 1993.

[20] M. A. Diftler, J. S. Mehling, M. E. Abdallah, N. A. Radford, L. B. Bridgwater, A. M. Sanders,

R. S. Askew, D. M. Linn, J. D. Yamokoski, F. A. Permenter, B. K. Hargrave, R. Platt, R. T. Savely,

and R. O. Ambrose. Robonaut 2 - the first humanoid robot in space. In 2011 IEEE International

Conference on Robotics and Automation, pages 2178–2183, 2011.

[21] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning. Journal of the ACM,

40(5):1048–1066, 1993.

[22] J. Duffy. Statics and kinematics with applications to robotics. Cambridge University Press, 1996.

[23] R. Featherstone. Robot dynamics algorithms. Kluwer, Norwell, MA, 1987.

[24] R. Featherstone. Rigid body dynamics algorithms. Springer, 2014.

[25] Roy Featherstone and David E Orin. Dynamics. In Springer Handbook of Robotics, pages 37–66.

Springer, 2016.

[26] Siyuan Feng, Eric Whitman, X Xinjilefu, and Christopher G Atkeson. Optimization based full

body control for the atlas robot. In IEEE-RAS International Conference on Humanoid Robots,

pages 120–127, 2014.

[27] G. Goretkin, A. Perez, R. Platt, and G. Konidaris. Optimal sampling-based planning for linear-

quadratic kinodynamic systems. In IEEE International Conference on Robotics and Automation,

pages 2429–2436, 2013.

[28] E. Hairer. Geometric integration of ordinary differential equations on manifolds. BIT Numerical

Mathematics, 41(5):996–1007, 2001.

[29] L. Han and N. M. Amato. A kinematics-based probabilistic roadmap method for closed chain

systems. In Algorithmic and Computational Robotics - New Directions, pages 233–246, 2000.

[30] K. Hauser. Fast interpolation and time-optimization with contact. The International Journal of

Robotics Research, 33(9):1231–1250, 2014.

[31] Kris Hauser and Yilun Zhou. Asymptotically optimal planning by feasible kinodynamic planning

in a state–cost space. IEEE Transactions on Robotics, 32(6):1431–1443, 2016.

[32] M. E. Henderson. Multiple parameter continuation: computing implicitly defined k-manifolds.

International Journal of Bifurcation and Chaos, 12(3):451–476, 2002.

[33] Robert P Hoyt. Spiderfab: An architecture for self-fabricating space systems. In AIAA Space 2013

Conference and Exposition, page 5509, 2013.

[34] L. Jaillet and J. M. Porta. Path planning under kinematic constraints by rapidly exploring manifolds.

IEEE Transactions on Robotics, 29(1):105–117, 2013.



REFERENCES 31

[35] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. STOMP: Stochastic trajectory

optimization for motion planning. In IEEE International Conference on Robotics and Automation,

pages 4569–4574, 2011.

[36] B. Kim, T. T. Um, C. Suh, and F. C. Park. Tangent bundle RRT: A randomized algorithm for

constrained motion planning. Robotica, 34(1):202–225, 2016.

[37] Zachary Kingston, Mark Moll, and Lydia E Kavraki. Decoupling constraints from sampling-based

planners. In International Symposium of Robotics Research, 2017.

[38] Zachary Kingston, Mark Moll, and Lydia E Kavraki. Sampling-based methods for motion planning

with constraints. Annual Review of Control, Robotics, and Autonomous Systems, 1:159–185, 2018.

[39] M. Kleinbort, K. Solovey, Z. Littlefield, K. E. Bekris, and D. Halperin. Probabilistic completeness

of RRT for geometric and kinodynamic planning with forward propagation. IEEE Robotics and

Automation Letters, 4(3):277–283, 2019.

[40] T. Kunz and M. Stilman. Probabilistically complete kinodynamic planning for robot manipulators

with acceleration limits. In IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 3713–3719, 2014.

[41] S. M. LaValle. Planning algorithms. Cambridge University Press, New York, 2006.

[42] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. International Journal of

Robotics Research, 20(5):378–400, 2001.

[43] Sung-Hee Lee, Junggon Kim, Frank Chongwoo Park, Munsang Kim, and James E Bobrow.

Newton-type algorithms for dynamics-based robot movement optimization. IEEE Transactions

on robotics, 21(4):657–667, 2005.

[44] F. L. Lewis, D. Vrabie, and V. L. Syrmos. Optimal control. John Wiley & Sons, 2012.

[45] Y. Li, Z. Littlefield, and K. E. Bekris. Asymptotically optimal sampling-based kinodynamic plan-

ning. The International Journal of Robotics Research, 35(5):528–564, 2016.

[46] John YS Luh, Michael W Walker, and Richard PC Paul. On-line computational scheme for me-

chanical manipulators. Journal of Dynamic Systems, Measurement, and Control, 102(2):69–76,

1980.

[47] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez. LQR-RRT*: Optimal

sampling-based motion planning with automatically derived extension heuristics. In IEEE Interna-

tional Conference on Robotics and Automation, pages 2537–2542, 2012.

[48] L. R. Petzold. Numerical solution of differential-algebraic equations in mechanical systems simu-

lation. Physica D: Nonlinear Phenomena, 60(1–4):269–279, 1992.

[49] Friedrich Pfeiffer and Rainer Johanni. A concept for manipulator trajectory planning. IEEE Journal

on Robotics and Automation, 3(2):115–123, 1987.

[50] Q.-C. Pham, S. Caron, P. Lertkultanon, and Y. Nakamura. Admissible velocity propagation: Be-

yond quasi-static path planning for high-dimensional robots. The International Journal of Robotics

Research, 36(1):44–67, 2017.

[51] Q.-C. Pham, S. Caron, and Y. Nakamura. Kinodynamic planning in the configuration space via

admissible velocity propagation. In Robotics: Science and Systems, 2013.



32 REFERENCES

[52] Quang-Cuong Pham. A general, fast, and robust implementation of the time-optimal path parame-

terization algorithm. IEEE Transactions on Robotics, 30(6):1533–1540, 2014.

[53] Quang-Cuong Pham and Olivier Stasse. Time-optimal path parameterization for redundantly ac-

tuated robots: A numerical integration approach. IEEE/ASME Transactions on Mechatronics,

20(6):3257–3263, 2015.

[54] J. M. Porta, L. Jaillet, and O. Bohigas. Randomized path planning on manifolds based on higher-

dimensional continuation. The International Journal of Robotics Research, 31(2):201–215, 2012.

[55] J. M. Porta, L. Ros, O. Bohigas, M. Manubens, C. Rosales, and L. Jaillet. The Cuik Suite: Ana-

lyzing the motion of closed-chain multibody systems. IEEE Robotics and Automation Magazine,

21(3):105–114, 2014.

[56] M. Posa, S. Kuindersma, and R. Tedrake. Optimization and stabilization of trajectories for con-

strained dynamical systems. In IEEE International Conference on Robotics and Automation, pages

1366–1373, 2016.

[57] F. A. Potra and J. Yen. Implicit numerical integration for Euler-Lagrange equations via tangent

space parametrization. Journal of Structural Mechanics, 19(1):77–98, 1991.

[58] J.-P. Samin and P. Fisette. Symbolic modeling of multibody systems. Springer, 2003.

[59] J. Schulman, Duan Y, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg, and

P. Abbeel. Motion planning with sequential convex optimization and convex collision checking.

The International Journal of Robotics Research, 33(9):1251–1270, 2014.

[60] Z. Shiller and S. Dubowsky. On computing the global time-optimal motions of robotic manipulators

in the presence of obstacles. IEEE Transactions on Robotics and Automation, 7(6):785–797, Dec

1991.

[61] Zvi Shiller and Steven Dubowsky. Robot path planning with obstacles, actuator, gripper, and pay-

load constraints. The International Journal of Robotics Research, 8(6):3–18, 1989.

[62] Zvi Shiller and Hsueh-Hen Lu. Computation of path constrained time optimal motions with dy-

namic singularities. Journal of Dynamic Systems, Measurement, and Control, 114(1):34–40, 1992.

[63] Kang Shin and Neil McKay. Minimum-time control of robotic manipulators with geometric path

constraints. IEEE Transactions on Automatic Control, 30(6):531–541, 1985.

[64] J-JE Slotine and Hyun S Yang. Improving the efficiency of time-optimal path-following algorithms.

IEEE Transactions on Robotics and Automation, 5(1):118–124, 1989.

[65] M. Stilman. Task constrained motion planning in robot joint space. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 3074–3081, 2007.

[66] Russ Tedrake. LQR-Trees: Feedback motion planning on sparse randomized trees. In Robotics:

Science and Systems, 2009.

[67] L.-W. Tsai. Robot analysis: The mechanics of serial and parallel manipulators. John Wiley and

Sons, 1999.

[68] Michael W Walker and David E Orin. Efficient dynamic computer simulation of robotic mecha-

nisms. Journal of Dynamic Systems, Measurement, and Control, 104(3):205–211, 1982.



REFERENCES 33

[69] D. J. Webb and J. van den Berg. Kinodynamic RRT*: Asymptotically optimal motion planning for

robots with linear dynamics. In IEEE International Conference on Robotics and Automation, pages

5054–5061, 2013.

[70] J. H. Yakey, S. M. LaValle, and L. E. Kavraki. Randomized path planning for linkages with closed

kinematic chains. IEEE Transactions on Robotics and Automation, 17(6):951–958, Dec 2001.

[71] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin, J. A. Bag-

nell, and S. S. Srinivasa. CHOMP: Covariant Hamiltonian optimization for motion planning. The

International Journal of Robotics Research, 32(9-10):1164–1193, 2013.



34 REFERENCES





IRI reports

This report is in the series of IRI technical reports.
All IRI technical reports are available for download at the IRI website

http://www.iri.upc.edu.

http://www.iri.upc.edu

	Introduction
	Related work
	Configuration space approaches
	State space approaches

	Problem formulation
	Drawbacks of the standard RRT method
	Mapping and exploring the state space
	Atlas construction
	Incremental atlas and RRT expansion
	Chart coordination

	A steering method
	System linearisation at a chart centre
	Steering on a single chart
	Fixed final state and fixed final time problem
	Finding the optimal time tf
	Steering over multiple charts

	Planner implementation
	Sampling
	Tree extension

	Planning examples
	Weight lifting
	Weight throwing
	Conveyor switching
	Truck loading

	Conclusions
	The  mapping
	Formulation of the state space equations
	Formulation of the equation of motion

