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Abstract

Trajectory for n-DOF manipulators without considering the manipulator dynamics may lead to
an over or under estimation of the capabilities, and potentially result in (short term) failure of
the machine. Traditional techniques rely on carefully constructing the movement of the manip-
ulator, but this is not scalable for more complex tasks in dynamic environments. In the past,
several algorithms have been developed which utilise a model of the manipulator, and can handle
constraints up to the second order. Two of such algorithms are implemented and their practical
considerations discussed. They are then applied to several use cases to show their effectiveness.
Furthermore, a novel smoothing method is described which is able to reduce high-jerk motion
from a reference trajectory. This method is then also applied and shown to work.
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Chapter 1

Introduction

1.1 Motivation

It is impossible to imagine current production processes without some form of robotics. With the
advantage of high-precision positioning, a higher productivity can be achieved in general. However,
these robotic manipulators are an expensive piece of equipment. Therefore, optimal usage of these
machines is crucial to result in a net gain for use cases.

There exist a wide variety of robotics manipulators. A robot is an actuated mechanism pro-
grammable in two or more axes with a degree of autonomy, moving within its environment, to
perform intended tasks [1]. Their usage in industrial applications has increased significantly in
the last ten years [2]. Their use cases extend a wide variety of industrial sectors, the largest sector
being the automotive industry, followed closely by the electronics sector. Some examples of specific
usages include, but are not limited to: welding, glue dispensing, order picking and spray paint-
ing operations. Typically, the tool situated at the tip of the manipulator can be changed, which
makes these machines so versatile. Their high reliability, speed and precision makes them perfectly
suitable for assembly line manufacturing. Since they are able to operate autonomously, they are
also suitable for operating in hostile environments such as working with radioactive materials, or
performing tasks in space [3].

When robots were first introduced into industrial processes, engineers “taught” the robots
fixed trajectories. This could be done by specifying waypoints, or directly controlling the actu-
ators themselves in a predefined way. This was sufficient for those applications, since they were
relatively simple: the robots operated in a static environment with known geometry. Over time,
the robots were required to perform more complex tasks. However, for such more complex tasks
the environment cannot be assumed to be static, it is instead dynamic. An example of this is a
human-robot work cell, in which a human operates alongside a manipulator. Moreover, “teach-
ing” the robot trajectories becomes impractical for tasks that do not have fixed trajectories, for
example bin-picking tasks. For those, the decisions are not fixed but depend on some external
factor, such as a vision system deciding what and how to pick up an object. It was therefore
required to formulate a new approach to more generic trajectory generation.

To increase productivity, not only safer manipulators are required, they must be used to their
full potential. Time-optimal trajectories, trajectories that require the least amount of operation
time for the manipulator, are an integral part to achieve this goal. It has been an active area of
research since last decade, and it continued being so. Conventional optimal control theory is well
developed for linear systems. However, it is difficult to apply these concepts to (highly) non-linear
dynamic systems with complex constraints, such as robotic manipulators [4]. These constraints
are necessary for a manipulator to function properly, even for an extended lifetime. There exist
a wide variety of constraints: constraints which put a limit on the movement of the joints or
end-effector, such as limits on velocity, acceleration, jerk, etc. Other constraints put limits on the
actuator torque, or actuator current. Some constraints put limitations on the end-effector tool,

Time-optimal trajectory generation for n-DOF manipulators 1



CHAPTER 1. INTRODUCTION

such as a grasp stability constraint. Apart from these constraints, other optimisation goals than
time-optimality exist, e.g. computational complexity or energy-optimal. The specific constraints
depend on the application of the manipulator.

1.2 Problem formulation

The general problem of robotics planning admits a wide variety of techniques. While there exist
many different goals for such algorithms, this thesis focuses on time-optimal trajectory genera-
tion. In general, the input to such algorithms is some task description which defines what the
manipulator is expected to do, i.e. move from A to B. The output is then a trajectory. We make
a clear distinction between a (geometric) path and a trajectory. A geometric path is a description
which defines the shape of the movement of the manipulator, and does not carry any relevant
information about the movement such as velocity and acceleration. A trajectory, on the other
hand, is a path augmented with timing information such as velocity and acceleration.

To plan true time-optimal trajectories, an algorithm should consider both the path and the
timing information, i.e. the path (timing) parameterisation, at the same time. This is often
referred to as the coupled approach1. The shortest path does not guarantee being part of the
optimal trajectory, simply because of the dynamics involved in multi-axis systems. It is often the
case that a longer path is required, because it can be traversed faster, obtaining a shorter total
traversal time.

While the coupled approach yields the most desired result, it is notoriously hard in practice.
To this end, the decoupled approach has been developed. In the decoupled approach, the path
planning is separated from the trajectory generation. This does not yield true time-optimal
trajectories in general, but it reduces the computation complexity greatly. By splitting these
two stages, the challenges can be solved each in their own domain. For practical considerations,
these stages can be separately developed, and different implementations for specific use cases can
be switched at will. In the remainder of this thesis, the decoupled approach is assumed.

It is now possible to define the stages from input to operation in more detail, and provide more
context to each separate stage.

Task definition The goal of this first stage is to collect a complete description of the task, and
all applicable constraints. This includes for example beginning and end positions of the
manipulator, a geometric description of the environment, limits on actuator dynamics.

Geometric path planning This stage is responsible for generating a geometric path through the
task space, or configuration space, of the manipulator. Challenges that occur at this stage
are respecting the geometric constraints by obstacle avoidance and avoiding self-intersection.
Another challenge which often occurs is singularity avoidance: points at which the velocity is
often required to be very low, in order to satisfy the constraints. Hence, avoiding such points
is beneficial for the total traversal time. The precise method of how a path is generated can
differ greatly, and change depending on the requirements of the application. A path can be
defined by a series of waypoints, predefined segments, or in terms of actuator configurations.

Trajectory generation At this stage, also commonly referred to as time scaling, the geomet-
ric path is converted into a trajectory. This involves adding timing information such as
timestamps, velocity, acceleration, and higher derivatives if required to the path. The res-
ulting velocity, acceleration, etc. should respect the system constraints as defined in the task
definition.

Execution Finally, the resulting trajectory is executed by the controller of the manipulator such
that the movement is realised. While this is not directly related to path and trajectory gen-
eration, this stage comes with its own challenges as well. For example path tracking: keeping

1Some authors have called this “global search”, but the majority agrees on the terminology presented in this
thesis.
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CHAPTER 1. INTRODUCTION

the manipulator on, or close to, the designed path. When a manipulator moves, it creates
vibrations in the physical system. If not taken care of, these can cause resonance, reduce
tracking precision, and exert undesired stress on the components. Typically, a controller is
specifically created for a type of robot and tuned individually.

Although each stage comes with a set of interesting challenges, this thesis focuses on the
trajectory generation stage of this general framework. It is therefore assumed from this point
onward, unless otherwise stated, that a geometric path for each joint has been generated by some
arbitrary path planning algorithm.

The topic of this thesis, and therefore the problem formulation, is the study of the feasibility
and practical considerations of known algorithms which are developed and improved upon in the
last four decades. While some algorithms are technically feasible and computationally possible,
their complexity and computation time make them unsuitable in practice. The contributions of
this thesis are threefold:

i An extensive literature survey is provided containing varying methods of achieving time-
optimal, or near time-optimal, trajectories for various types of constraints and purposes.
Moreover, other works are reviewed which consider challenges regarding the practical feas-
ibility of techniques.

ii A practical implementation and comparison of various known techniques from previous liter-
ature to give insight into the development of such algorithms, and the practical considerations
thereof.

iii A description of a novel technique for third-order constraints (i.e. joint jerk limits) for a path
with specific assumptions to be elaborated on later.

1.3 Thesis outline

The outline for the rest of this thesis is as follows: Chapter 2 gives an literature overview of
previously obtained results and developed techniques, which are divided into several categories.
Chapter 3 is about algorithms to solve for second order constraints. Two algorithms from the
literature are explained and implemented: TOPP-NI and TOPP-RA. Practical considerations are
also discussed. Chapter 4 explorers a novel smoothing technique, to “smooth” a second order
compliant trajectory such that it respects third order bounds, i.e. bounds on the jerk. In chapter
5, these algorithms are applied to several use cases which consist of chosen robot configurations
and movements. The outputs of each algorithm are shown. Finally, chapter 6 concludes this
thesis.

Time-optimal trajectory generation for n-DOF manipulators 3



Chapter 2

Literature review

This chapter contains an overview of the previous literature on the topic of time optimal motion
for robotic manipulators. As was explained in the introduction, there are essentially two types
of algorithms which solve this problem: the coupled and the decoupled approach. Although
it has been mentioned that this thesis focuses primarily on the trajectory generation step in
the decoupled approach, some attention is given to the other approaches related to trajectory
planning algorithms. There are many characterising features by which the trajectory generation,
i.e. time optimal motion generation, can be subdivided: e.g. the manipulator model (fully actuated
vs redundantly actuated manipulators) and the type of constraints. In general, three families
of algorithms can be distinguished: numerical integration, dynamic programming and convex
optimisation. The relevant literature for these families is discussed in the following subsections.

2.1 Numerical integration

The idea of incorporating the non-linear dynamics of a robotic manipulator was pioneered by
Bobrow et al. [5, 6], Shin and McKay [7], and Pfeiffer and Johanni [8]. They were the first au-
thors that developed algorithms which computed a time-optimal trajectory with those type of con-
straints. The new key insight that allowed this development is that they used a re-parameterisation
function γ. This function γ takes as input a timestep, and returns the position along the path,
precisely defining the trajectory velocity, acceleration, etc. The constraints are then formulated in
terms of this function, allowing a solution to be found. This new space is called the phase space,
or phase plane. In this new context, the re-parameterisation function is numerically integrated to
obtain an optimal solution. Within the phase plane, one can distinguish admissible and inadmiss-
ible regions. The boundary between these regions is often referred to as the Maximum Velocity
Curve, or MVC for short. A valid trajectory is a line that connects the beginning and end positions
through the admissible region. Bobrow assumed in his paper that the inadmissible region is simply
connected [6], but Shin and McKay showed that this is not the case when viscous friction forces
are taken into account in the dynamic model of the manipulator [7]. The three authors developed
similar algorithms based on the same technique, but their precise formulations differ. Practical
implementations of these algorithms have been demonstrated to work in CAD(-like) programs
[4, 9].

These algorithms rely on so called switch points, points at which the trajectory switches from
maximum acceleration to minimum acceleration. Slotine et al. [10] developed a new method in
which they first precompute these points. This heavily reduced the cost of searching for those
points in the original approaches. However, Shiller and Lu showed that these algorithms failed
at so called singular critical points [11, 12]. A critical point is a point on the MVC at which
there does not exist a unique acceleration. This happens when the inertia term of a joint becomes
zero. Singular critical points occur when a following the maximum acceleration profile pushes
the trajectory into the inadmissible region. To combat this issue, Shiller and Lu developed their

4 Time-optimal trajectory generation for n-DOF manipulators
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own algorithm which puts more computational effort into dealing with this type of critical points.
Some years later, Ghasemi et al. developed a technique to compute these critical points for parallel
manipulators [13]. Later, Pham revisited the research on singular critical points and developed a
complete solution which resulted in a more robust algorithm [14]. This algorithm has also been
presented as an open-source implementation in C++/Python1.

Having showed that it is feasible to perform trajectory generation with non-linear dynamics,
other authors started to experiment with new types of constraints. For example, Dubowsky et
al. developed a set of constraints that minimised the disturbance of a manipulator mounted
on a spacecraft [3]. Ma et al. developed a set of algorithms based around heat and kinematic
characteristics for (non-)redundant serial manipulators [15, 16, 17, 18, 19]. Cho et al. developed an
algorithm with impulsive constraints [20]. This is useful when a manipulator is carrying sensitive
or dangerous objects. Zlajpah extended Bobrow’s algorithm by also including other factors such
as joint velocities and task requirements [21]. Constantinescu et al. developed an algorithm which
handles the first derivative of the actuator torques, i.e. the torque rates [22]. In their view, this
limits the jerky motion and severe vibrations in the arm, which may lead to failure of the operation,
and in even worse situations the machine itself.

Another direction researchers have spend time on is approximation algorithms. Pardlo-Castellote
et al. developed a proximate time-optimal path parameterisation algorithm [23]. Although the
solution is not truly optimal, the worse-case runtime is linear with respect to the path length and
is predictable as a function of the path length. It first computes the local minima using [10], and
then integrates each segment once. Later, Matmüller et al. build upon this technique and develop
a proximate time-optimal algorithm which takes jerk constraints into account [24].

Previous papers spent their attention mostly on second order dynamics, and the third order
case has received less attention. Shiller and Tarkiainen noted that the optimal control of such
models is usually discontinuous in the actuator torques [25]. This yields physically unrealistic
trajectories due to delays caused by actuator dynamics. Even worse, the transient response of
(neglected) actuator dynamics can possibly cause significant tracking errors. To obtain a more
realistic solution, an optimised model is required. Shiller et al. developed an algorithm which
takes the third order dynamics into account [25]. However, this significantly increases the run-
ning time due to the phase space becoming three dimensional. A year later, Shiller published
another algorithm in which he modelled the actuator dynamics using a time-energy cost func-
tion [26]. More recently, Pham et al. developed TOPP3, a robust algorithm which is capable of
handling third order constraints. In their original paper, they have studied the structure of third
order solutions and identified two main difficulties with third order trajectory generation: how to
smoothly connect optimal profiles and how to address singularities which stop profile integration
prematurely. According to them, their algorithm addresses those issues [27].

A promising new method was found last decade which combines sampling-based planning
and time-optimal trajectory generation to make the TOPP problem significantly more tractable.
Admissible Velocity Propogation (AVP) computes all feasible trajectories by finding an interval
[28, 29]. Given a path and an interval of reachable velocities at the beginning of that path, AVP
efficiently computes the interval of all reachable velocities at the end of the path, while respecting
the system constraints [30].

2.2 Convex optimisation

The second family of algorithms used to solve the TOPP problem is convex optimisation. With
this approach, TOPP is formulated as a large convex optimisation problem, whose optimisation
variables are the control (e.g. acceleration, jerk). While general mathematical optimisation is hard
[31], there exist classes of convex optimisation problems that admit a polynomial-time algorithm
[32]. It is therefore a simple method in execution, since off-the-shelves algorithms can be applied
which are efficient and reliable.

1https://github.com/quangounet/TOPP
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The difficulty with this approach, however, is that the constraints must remain, or become,
convex. Verscheure et al. transformed the problem into a convex optimal control problem with a
single state using various convexity preserving extensions [33]. They developed a similar algorithm
for the online case [34]. While these methods guarantee the efficient computation of optimal
solutions, they fail to address many practical applications such as torque rate constraints, velocity-
dependent torque constraints or viscous friction effects. This is primarily due to the fact that
these constraints give rise to non-convex formulations. To combat this issue, an extension on their
original paper has been proposed using sequential convex programming [35]. A similar technique
is used in a paper by Hauser on time-optimisation for robots under contact constraints, which
can be encountered in legged locomotion [36]. Palleschi et al. applied McCormick envelopes to
perform efficient and reliable convex relaxation, because of which they are able to use jerk as the
control input [37].

More recently, Pham et al. developed an algorithm based on reachability analysis, a standard
concept in control theory, to solve for the second-order case [38]. This technique is heavily related
to Admissible Velocity Propogation (AVP). Their algorithm computes the reachable sets of control,
i.e. the velocities, which is the same concept as AVP. They claim that the admissible control can
be computed quickly and robustly using linear programs. This technique is explained in more
detail later.

2.3 Dynamic programming

Another method that is used in the literature to solve the TOPP problem is applying dynamic
programming to the phase space [39]. According to Shin and McKay, dynamic programming places
few restrictions on the cost function that is to be minimised [40], which is the case for numerical
integration techniques. The algorithm they developed is similar to their numerical integration
technique [7], and they explain how jerk constraints can be incorporated into the algorithm.
However, this requires the algorithm to search through the three dimensional phase space, instead
of the two dimensional phase plane. Singh and Leu improved this technique by removing the need
for the path to be parameterised by a scalar parameter, but instead it can be represented by a
sequence of points [41].

2.4 Other approaches

2.4.1 Coupled approach

Coupled approaches have the advantage of generating truly time-optimal trajectories, with the
negative side of high computational cost. While this is not the focus of this thesis, we shed a bit
of light on the research done in this area.

Gilbert et al. created a (coupled) algorithm which applied “simple” dynamics to make the
algorithm feasible, but they mostly focused on collision avoidance [42]. The joint motions are
optimised whilst ensuring that at each moment in time, obstacles are avoided. An alternative
approach is developed by Bobrow, in which the motion of each joint is paramterised first in space
and then in time [43]. To find the time-optimal motion along a specified path, Bobrow uses his own
developed algorithm a few years prior [6]. Around the same time, Shiller and Dubowsky presented
their coupled approach which computes global time-optimal solution [44]. Their algorithm uses
hierarchical search to reduce the set of feasible paths. Paths are pruned based on lower-bound
estimators on the traversal time.

2.4.2 Practical considerations

It is important to understand the structure of the optimal solution when working on a practical
implementation of these algorithms. Bobrow et al. assumed in their original paper [6] that at

6 Time-optimal trajectory generation for n-DOF manipulators
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least one actuator is saturated at all times when considering optimal control. Chen at al. showed,
however, that there is one, and only one, actuator saturated at a time [45].

Time-optimal trajectories require the maximum allowable control. Combined with the above
fact, there is always one actuator operating at its maximum torque. There is therefore no margin
for error to cope with disturbances or model inaccuracies [46]. Trajectories are planned without
considering the dynamics due to the tracking controller, and, trajectories are planned without
considering the requirements for tracking accuracy. This inevitably may result in deviations from
the path, a highly undesirable artifact in precision positioning systems. Dahl and Nielsen therefore
developed a path velocity controller which modifies a nominal solution, coming from a time-optimal
algorithm [47]. This method has also been experimentally evaluated [48].
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Second order solution

In this chapter, the second-order case is discussed. Constraints using derivatives up to the second
order are considered, e.g. acceleration bounds, torque constraints and direct velocity limits. First,
the problem formulation is given for this scenario. Then, two implementations are discussed:
TOPP-NI, an algorithm developed by Bobrow et al. using numerical integration techniques [6];
and TOPP-RA, a more recent algorithm developed by Pham et al. which employs reachability
analysis and linear programming [38].

3.1 Problem formulation

3.1.1 Input

Path and trajectory

We consider an n-DOF manipulator, whose configuration is commonly denoted by q ∈ Rn. Since
we are dealing with paths, it is more natural to treat q as a function, defined as q : [0, send]→ Rn

for some value send. This function is a path through the configuration space, which defines how
the robotic manipulator moves. q(s) for some 0 ≤ s ≤ send then simply refers to a specific position
along the path. The decoupled scenario is assumed and therefore q is completely known. We
furthermore assume that q is twice differentiable, and therefore q′ and q′′ exist, which we will refer
to the path velocity and path acceleration respectively. Since the constraints are of the second
order, we do not require q to be thrice differentiable and hence jerk constraints are not considered.

We make a distinction here between a path and a trajectory. The former is a geometric
description of how the manipulator moves through the configuration space. The latter is a path
with timesteps associated with each position. The goal is to find a trajectory which has the same
geometric shape as the path, and satisfies all the constraints. A time-optimal trajectory is then
a trajectory which minimises the total time that is needed to traverse the path. Let q̂ denote the
trajectory.

Constraints

Constraints are put on the trajectory q̂ to bound the kinodynamic motion. In the second order
case, these constraints may consist of up to the second derivative of q̂. Two simple constraints are
for example (direct) trajectory velocity bounds, and trajectory acceleration bounds. These simply
put a hard limit on the direct movement of each joint.

q̂′min(t) ≤ q̂′(t) ≤ q̂′max(t)

q̂′′min(t) ≤ q̂′′(t) ≤ q̂′′max(t)
(3.1)

As explained in the introduction, when the manipulator moves, other forces start to contribute
to the overall motion of the system. To model these forces, one can use the torque bounds on a
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fully-actuated manipulator:
M(q̂)q̂′′ + q̂′>C(q̂)q̂′ + g(q̂) = τ (3.2)

where M is the mass matrix, C is the Coriolis and centrifugal tensor, g is the vector of gravity
forces and τ is a vector of joint torques. For each individual joint i, a limit can be defined as
follows:

τi,min ≤ τi(t) ≤ τi,max (3.3)

These constraints can actually be put in a more generalised form: the generalised second order
constraints:

A(q̂)q̂′′ + q̂′>B(q̂)q̂′ + f(q̂) = τ (3.4)

where A,B and f are continuous mappings from Rn to Rm×n, Rn×m×n and Rm respectively and
m being the number of constraint inequalities [49]. This is a broad definition and can account for
a large variety of constraint types. By appropriately setting these matrices and tensors, the direct
velocity and acceleration bounds can be modeled, as well as the model for a fully-actuated manip-
ulator in Equation 3.2. Other constraints types not considered in this thesis fit this generalised
model too, e.g. torque bounds for redundantly-actuated manipulators, or contact stability under
a Coulomb friction model.

Initial and final conditions

Finally, it is desirable to be able to set the initial and final velocity of the trajectory. This is par-
ticularly useful when the algorithm is used to find a trajectory for an already moving manipulator,
or to bring the manipulator to a particular position with a specific velocity. As will be shown, the
two algorithms discussed later handle these initial and final velocities differently.

3.1.2 Output

The objective is to construct a trajectory q̂ which has the same geometric shape as q, and satisfies
all the input constraints. This is achieved by constructing a function γ:

γ : [0, tend]→ [0, send] (3.5)

such that the trajectory q̂(t) = q(γ(t)) for 0 ≤ t ≤ tend minimises tend. Intuitively, this function
acts as a sort of “time-dilation” function, mapping from the time domain to a configuration of
the manipulator along the path. This then defines the trajectory velocity and acceleration at any
timestep along the trajectory.

While the path and trajectory velocity and acceleration seem to be disconnected, they can be
linked by means of this function γ. It is not only useful, but it is required for the algorithms to
be discussed later. The trajectory velocity can be derived by differentiating q̂ once:

q̂′(t) = q′(γ(t))γ′(t) (3.6)

And differentiating q̂ twice (using the chain and product) rule yields:

q̂′′(t) = q′′(γ(t))γ′2(t) + q′(γ(t))γ′′(t) (3.7)

Note that q̂′ and q̂′′ are commonly called q̇ and q̈ in the literature. The dot refers to the differenti-
ating q̂ to the time parameter, which yields the trajectory velocity and acceleration. We attempt
to disambiguate between the separate concepts of path and trajectory here a bit further.

3.1.3 Reinterpretation in the phase space

The problem definition in its current form provides a clear intuition of what needs to be achieved.
However, it does not admit a practical algorithm. Instead, the problem is usually transformed to
the so called phase space (γ, γ′), which in the case of (at most) second order constraints can also
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be referred to as the phase plane. Instead of looking at the graph (t, γ′(t)), we look at the graph
(s, v(s)) where v(s) = γ′(s) for the time t such that γ(t) = s. There are two major advantages in
doing so [25]:

1. The final point of the movement (q̂(tend), tend) is not known beforehand in the original form.
This is because tend is precisely a part of the result of the algorithm. In the phase plane,
however, the start and end points are (γ0, γ

′
0) and (γend, γ

′
end). Here, γ0 and γend are the

beginning and end of the path parameter, and γ′0 and γ′end are the initial and final velocity
which can now also be an input to the algorithm. A move from rest to rest then has (γ0, 0)
and (γend, 0) as beginning and end positions in the phase plane.

2. Instead of having to search through the n+ 1 dimensional space (q̂, tend) to find a solution,
one can search through the two dimensional phase plane. This greatly reduces the the curse
of dimensionality and thereby the computational complexity.

To transform the orignal definition into the phase plane, it is required to transform the con-
straints into constraints on γ′ and γ′′. From this point on we shall refer to γ′ as the pseudo velocity
and γ′′ as the pseudo acceleration. It is called “pseudo” velocity/acceleration because it relates
the path velocity/acceleration with the trajectory velocity/acceleration in Equation 3.6 and 3.7
respectively, but it is not any joint or end-effector velocity/acceleration directly.

Transforming the direct velocity and acceleration constraints are the easiest to derive using
Equation 3.6 and 3.7 and their limits q̂′min, q̂

′
max, q̂

′′
min and q̂′′max. For each joint 0 ≤ i ≤ n, compute

the minimum pseudo velocity and pseudo acceleration as follows

γ′i,min =
q̂′i,min

q′i
γ′′i,min =

q̂′′i,min − q′′i γ′2

q′i
(3.8)

The actual minimum pseudo velocity and acceleration is then the maximum over these values.
This yields

γ′min = max
i
γ′i,min γ′′min = max

i
γ′′i,min (3.9)

Similarly for the maximum pseudo velocity and acceleration. Putting this all together, we obtain
the following constraints for the pseudo velocity:

max
i

(
q̂′i,min

q′i

)
≤ γ′ ≤ min

i

(
q̂′i,max

q′i

)
(3.10)

And similarly for the pseudo acceleration:

max
i

(
q̂′′i,min − q′′i γ′2

q′i

)
≤ γ′′ ≤ min

i

(
q̂′′i,max − q′′i γ′2

q′i

)
(3.11)

Note that the limits on the pseudo velocity only depend on the current position on the path, while
the limits on the pseudo acceleration depend both on the position and the current pseudo velocity
γ′.

Transforming the generalised second order constraints in Equation 3.4 can be done by sub-
stituting Equations 3.6 and 3.7 into it. This yields a bound on the pseudo acceleration. The
derivation is as follows:

A(q̂)(q′′γ′2 + q′γ′′) + (q′γ′)>B(q̂)q′γ′ + f(q̂) = τ

Aq′′γ′2 +Aq′γ′′ + q′>B(q̂)q′γ′2 + f(q̂) = τ

γ′′Aq′ + γ′2(Aq′′ + q′>B(q̂)q′) + f(q̂) = τ

(3.12)

At this point, the equation is of the following form for some t such that s = γ(t):

a(s)γ′′ + b(s)γ′2 + c(s) = τ (3.13)
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Where

a(s) = Aq′

b(s) = Aq′′ + q′>B(q̂)q′

c(s) = f(q̂)

(3.14)

This equation relates the desired quantities with each other. Note that the quantities a(s), b(s)
and c(s) do not depend on the function γ. Plugging in the torque bounds from Equation 3.3
yields:

τmin ≤ a(s)γ′′ + b(s)γ′2 + c(s) ≤ τmax (3.15)

And from this point it is now possible to define bounds on the pseudo acceleration for each joint
0 ≤ i ≤ n separately in terms of s and γ′, the position along the path and the pseudo velocity.
Let αi(s, γ

′) be the minimum allowed acceleration that satisfies the above constraint, and βi(s, γ
′)

be the maximum allowed acceleration, then for a valid trajectory αi(s, γ
′) ≤ γ′′i ≤ βi(s, γ

′) must
hold for any position along the path. The definitions for these bounds are:

αi(s, γ
′) =

{
τi,min − biγ′2 − ci/ai if ai > 0

τi,max − biγ′2 − ci/ai if ai < 0

βi(s, γ
′) =

{
τi,max − biγ′2 − ci/ai if ai > 0

τi,min − biγ′2 − ci/ai if ai < 0

(3.16)

Which are derived by manipulation of Equation 3.15. The final bounds are obtained by taking
the maximum and minimum on α and β as follows:

α(s, γ′) = max
i
αi(s, γ

′)

β(s, γ′) = min
i
βi(s, γ

′)
(3.17)

These constraints put limits on the control, i.e. the pseudo acceleration, and thereby also on
the admissible space in the phase plane which are characterised by so called “limiting curves”.
These curves form a boundary above which no admissible control exists. Any trajectory through
this part of the phase plane will result in motion that violates one or more constraints. From
the already discussed constraints, we can directly derive some of those limiting curves, some of
which are also extensively used in previous literature. One of these widely defined curves is the
Maximum Velocity Curve (MVC), which is derived from the acceleration vector fields. When the
minimum allowed acceleration α exceeds the maximum allowed acceleration β, i.e. α > β, then
there does not exist admissible control γ′′ which keeps the manipulator on the path. It is those
regions that form the inadmissible part of the phase plane. The MVC is then precisely the curve
for which α = β holds.

Figure 3.1 shows an example of how such a phase plane with two solutions might look like.
The shaded area is the inadmissible region, which has the MVC as boundary. The two solutions
shown, i.e. T1 and T2, connect the initial and final positions γ0 and γend. Note that T1 reaches
higher values for γ′, which means that the velocity for this solution is higher than that of T2.
However, the solution for T1 might still not be time-optimal, since it could have reached a higher
velocity while staying below the MVC. This depends on the particular shape of the vector fields
α and β of course. The following section explains how time-optimal solutions can be found.
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γ

γ
′ MVC

inadmissible region

γendγ0

T1

T2

Figure 3.1: Example phase plane showing two solutions T1 and T2, and MVC (red) with the
inadmissible region.

3.2 Implementations

This section contains a practical explanation of several techniques, how they can be used in a real-
world scenario. Two variants of the algorithms previously mentioned are discussed: one based on
numerical integration and on based on linear programming.

3.2.1 TOPP-NI

The idea of using numerical integration to solve the TOPP problem was first introduced by Bobrow
et al. [6]. The basic concept of numerical integration is to integrate along a maximum acceleration
and a minimum acceleration vector fields and carefully choosing the points when to switch between
one of the other. The goal is to find the largest possible acceleration profile, which keeps the
velocity profile within the maximum allowed velocity at each point on the path. The key insight
is that the control is a “bang-bang” type, which means that either the maximum or minimum
permissible acceleration is used. Any other control would yield a sub-optimal solution [50, 51].

In the previous section, the constraints in the phase plane were given. More specifically, α
and β define two vector fields inside the phase plane that this algorithm utilises to construct
the maximum acceleration and minimum acceleration curves. As long as β ≥ α, there exists a
feasible acceleration profile that keeps the manipulator on the path. The “bang-bang” control
type requires that no motion can deviate from those vector fields. The solution in the phase plane
then consists of a combination of maximum and minimum acceleration curves. The main goal of
the algorithm is to find the so called “switch points”, the points at which the profile switches from
maximum to minimum acceleration.

An example of a basic trajectory in the phase plane is shown in Figure 3.2. On the horizontal
axis, we have γ (the position) and on the vertical axis we have γ′, the pseudo velocity. The
blue segment represents the curve following maximum acceleration, and the yellow minimum
acceleration. At the top, there is a switch point.

Computation of trajectories

Before the strategy to find these switch points is discussed, an explanation to construct the max-
imum and minimum acceleration curves is given. The construction of the curves is done by
numerical integration of Newton’s equations of motion using the Euler method [52]. These equa-
tions require a time step, which will be fixed to be ∆t. Now, consider a point (si, γ

′
i), suppose we

wish to integrate using the maximum acceleration vector field, or profile. The next point can then
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γ
′

γ

Figure 3.2: A simple trajectory consisting of maximum acceleration (blue) followed by minimum
acceleration (yellow).

be computed by:

si+1 = si + ∆tγ′ +
1

2
∆t2α(si, γ

′
i)

γ′i+1 = γ′ + ∆tα(si, γ
′
i)

(3.18)

Similarly, following the minimum acceleration profile can be computed by swapping α by β in
the above equations. This is the forward integration case. We also require a method to integrate
backward, i.e. starting from a point (si, γ

′
i) and computing (si−1, γ

′
i−1). This is done in a similar

fashion:

si−1 = si −∆tγ′ +
1

2
∆t2α(si, γ

′
i)

γ′i−1 = γ′ −∆tα(si, γ
′
i)

(3.19)

Dealing with switch points

To find the switch points, first integrate forwards following the maximum acceleration profile from
the starting position (s0, γ

′
0) until either: si passes the final position send or the MVC is hit.

Similarly, integrate backwards following the minimum acceleration profile from the final position
(send, γ

′
end) until si < 0, or the MVC is hit. In the most simple scenario, both curves do not cross

the MVC and must at some point have crossed each other. This point is then a switch point. The
solution then consists of: following the maximum acceleration profile until the switch point, then
switching to the minimum acceleration profile until the end. This is graphically shown in Figure
3.3 case A.

There are six possible cases for a forward and backward trajectory to interact, which are
shown in Figure 3.3. The simplest case A has already been discussed. In case C and D, one
trajectory does hit the MVC (and enter the inadmissible area), but the switch point (i.e. the
intersection between the forward and backward trajectory) lies before that. In these cases, the
solution presented in the previous paragraph still holds. In cases E and F , the two trajectories do
not hit the MVC, but the integration does not connect the initial and final end velocities properly.
In E, the system constraints do not allow the velocity to increase to the required end velocity, and
in case F the initial velocity is too high and the constraints do not allow for a suitable deceleration.
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γ
′

end
γ
′

end
γ
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A C E

B D F

γ
′
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Figure 3.3: Six possible cases for forward and backward trajectories to “interact”.

In these cases, there does not exist a solution to the problem, and either the initial velocity, final
velocity or constraints must be changed.

γ

γ
′

p

p̄

r1

r2

Figure 3.4: Schematic representation of how switch points are handled. The dotted yellow lines
represent two trajectories starting at the same γ position as p̄, but either hitting the MVC or
reaching γ′ = 0 before the end point.
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In case B, both trajectories first hit the MVC and then intersect. A schematic overview of
how to handle this case is given in Figure 3.4. To handle these switch points, the following steps
are taken:

1. Detection: As explained earlier, we must deal with a switch point when the forward curve
has hit the MVC, i.e. α > β, and both the forward trajectory and backward trajectory have
not yet crossed each other. Let p = (γp, γ

′
p) be the point at which the forward trajectory

hits the MVC, as shown in Figure 3.4.

2. Drop: A point below p, called p̄, is selected such that when integrating forward from p̄
following the minimum acceleration profile, the trajectory hits the MVC tangentially. Let
this point be r2, which is a switch point. The two dashed yellow trajectories shown in Figure
3.4 represent: one trajectory starting too high and hitting the MVC; one trajectory starting
too low and reaching γ′ = 0 before the final position γend. Note that the switch point need
not to be at a local minimum of the MVC.

3. Connect: To connect the initial trajectory stopping at p, and the new trajectory starting
in p̄, the algorithm integrates backward following the minimum acceleration profile starting
in p̄ until the initial trajectory is crossed. Let this intersection point be called r1, which is
also a switch point.

4. Resume: The algorithm can then continue on the sub-problem given by r2 and γend. It
is guaranteed that the algorithm cannot get stuck behind the MVC at the switch point r2

when following the maximum acceleration profile [6].

This completes the scheme on how to handle switch points. The precise methods of how to find p̄
and the intersection between trajectories is discussed in more detail later.

Algorithm

A summary of the algorithm is given in Algorithm 1. It starts by computing the initial forward
and backward trajectories. When those do not intersect, the while-loop body is executed, which
resolves the switch points. A point p̄ is found below p. The trajectory starting at p̄ and following
the minimum acceleration profile stops at a point r2 where the trajectory hits the MVC tangen-
tially. The trajectory piece between p̄ and r2 is called C2. The trajectory piece connecting C2

to the initial trajectory is given by C1 and the new forward trajectory is computed as C3. The
algorithm then repeats until all switch points are resolved. Note that appending a segment to
the solution requires a bit more work than just to copy arrays. The final solution must have an
monotonically increasing position. In some cases, the intersection between the already existing
solution and the to be appended segment must be computed to correctly extend the solution.

Finding point p̄

To find the point p̄ is a non-trivial task. While the γ coordinate is fixed, the pseudo velocity
coordinate lies in the interval between p and the γ-axis. Assume that we can sample the phase
plane with infinite precision, and hence also integrate with infinite precision. A trajectory starting
above p̄ must either: also hit the MVC tangentially, or cross the MVC. Similarly, a trajectory
starting below p̄ must either: also hit the MVC tangentially, or never cross the MVC. Suppose the
last property does not hold, then it means that no trajectory starting from p̄ can decelerate down
to a stand-still. From this analysis, it is possible to find the point p̄ using binary search.

However, in any practical application it is not possible to sample the phase plane with infinite
precision. It is therefore not possible to proof rigorously that binary search will always result in
a solution. Suppose the following hypothetical example: we consider two candidates for p̄ namely
p̄1 and p̄2, where p̄1 lies above p̄2. Integrating forward from p̄1 only considers some set X1 of the
phase plane, while the integration forward from p̄2 considers a set X2 in the phase plane. Let
X1 ∩ X2 = ∅. It is now possible that the trajectory starting at p̄1 does not cross the MVC, does
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Algorithm 1: TOPP-NI

Step 1: compute initial forward and backward trajectories
F ← integrateForward(β, (0, γ′0));
B ← integrateBackward(α, (γend, γ

′
end));

S ← {F};
Step 2: while the forward and backward trajectories do not intersect, resolve switch points
while F and B do not intersect do

p← last point of F ;
p̄, r2, C2 ← resolveSwitchPoint(p);
C1 ← integrateBackward(α, p̂);
C3 ← integrateForward(β, r2);
Step 3: append the switch point trajectory pieces to the solution
Append C1, C2 and C3 to S;
F ← C3;

end
Step 4: append final trajectory piece to the solution
Append B to S;

not hit it tangentially and simply drops to zero velocity, while the trajectory starting at p̄2 does
cross the MVC. A schematic representation of this argument is shown in Figure 3.5.

p̄1

p̄2

γ

Figure 3.5: Schematic representation of the analysis why binary search may fail to find a suitable
trajectory. The blue shaded area is X1 and the white shaded area is X2.

While this is a theoretical issue, if a sufficiently small integration timestep is chosen, the
occurrence of this happening is minimised. Nonetheless, attention must be given to check for such
a scenario, e.g. limiting the binary search algorithm by a constant number of passes.

To practically compute whether a curve hits the MVC tangentially is a non-trivial task as well.
A curve could get arbitrarily close to the MVC, but the algorithm needs to decide at some point
that the curve is tangent. There are essentially two methods to determine whether a point on the
curve is tangent to the MVC: either compute it directly or find it by trial-and-error. The former
has been investigated by Slotine et al. [10], the latter is employed in the original algorithm by
Bobrow et al. [6], which is also the method explained here. The algorithm has three requirements
to decide that a point r2 hits the MVC tangentially:
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1. r2 is ε-close to the MVC, that is, β − α ≤ ε in r2.

2. The minimum acceleration vector at r2 is roughly in the same direction as the MVC in the
vicinity of r2.

3. Integrating the trajectory forward following the minimum acceleration profile crosses γ′ = 0
line at some point to the right of r2. Or, while integrating forward, the trajectory crosses
the backward trajectory, to which we needed to connect.

The first two conditions require the point to be close to the MVC, and to follow a trajectory which
lies tangent to the MVC. The third condition follows from the binary search argument.

Polyline intersection

A subroutine to compute the intersections between polylines is used to find the intersection between
two trajectories. This subroutine is hidden in some of the steps of the algorithm, however, a couple
of notes can be made on this subroutine. An algorithm exists which computes all the intersections
between a set of n line segments in O(n log n+I log n) time, where I is the number of intersections
[53]. However, an intersection is always computed between two trajectories (no self-intersections)
and all trajectories are monotonically increasing polylines in γ. It is therefore possible to compute
the intersections in linear time.

Runtime analysis

The analysis of this algorithm is not straightforward: the iteration cycles of the while loop is
linear with the number of switch points, and the runtime of the while loop body depends on two
integration steps and the switch point resolution subroutine. The latter is based on binary search,
but this is not performed on a discrete domain. To limit the computation time needed, the binary
search can be limited to a bounded number of iterations, after which the most suitable candidate
trajectory is returned (or failure in case no candidate was found). Another factor which influences
the runtime is the choice of ∆t. Increasing this value results in a quicker runtime, but at the cost
of decreasing the resolution, and hence quality, of the solution.

3.2.2 TOPP-RA

A different method to approach TOPP problem is based on Reachability Analysis [49], a standard
concept from control theory. The key insight with this technique is based on the following: Assume
an interval Is of (squared) velocities at some point s along the path. Why the velocities are
squared is explained in further detail in the next section. The reachable set is another interval
Is+∆ of (squared) velocities that is reachable following admissible control from Is. Similarly, the
controllable set Is−∆ is the set of (squared) velocities such that there exists admissible control
leading to a velocity in Is. These sets can be computed quickly and robustly by solving a few
small Linear Programs (LP). To obtain a solution, the phase plane is discretised into N segments,
at which the controllable sets are computed recursively. This technique can therefore be put in
the characteristic group of Convex Optimisation algorithms. One of the biggest advantages of
TOPP-RA over TOPP-NI is that the initial and final velocity are allowed to be intervals, instead
of a single value.

In short, the algorithm performs two passes: a backward pass and a forward pass. Given the
desired end velocity, the backward pass computes the controllable sets, i.e. it computes at each
discretised point in the phase plane the admissible control at the point. If any set is empty, then
there does not exist a sequence of admissible control which steers the system to the end velocity.
In this case, the algorithm reports failure. Otherwise, the algorithm proceeds to the forward pass.
In the forward pass, the algorithm chooses the control greedily, i.e. it chooses the highest possible
control which steers the system from one controllable set to the next, until the final position has
been reached.
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The algorithm is now explained in more detail, starting with a definition of the control and
how a trajectory is formed in the phase plane. Then an explanation is given of how to compute
this control. Finally, a final pass is required to generate the timing information from the solution,
to obtain the desired output.

Definition of state and control

The phase plane is discretised into N segments: 0 = s0 < s1 < . . . < sN = send, where si is
referred to as the i-stage. The acceleration over the interval [si, si+1] is denoted by ui, which is
assumed to be constant, and the squared velocity is denoted by xi = γ′2i . ui is referred to as
the control, whereas xi is referred to as the state: the acceleration makes changes to the velocity
between each interval. We denote the difference in path position between to subsequent i-stages
by ∆i = si+1 − si. We have the following relation:

xi+1 = xi + 2∆iui for 0 ≤ i ≤ N − 1 (3.20)

Proof. γ(t) is a monotonically increasing function in t, thus there is a unique value s ∈ [0, send]
for every value of t. Therefore, the inverse γ−1(s) exists. We define the pseudo velocity for a
point s in terms of γ by V (s) = γ′(γ−1(s)). Similarly, the pseudo acceleration is defined as
A(s) = γ′′(γ−1(s)). For the inverse, we have:

(γ−1)′(s) =
1

γ′(γ−1(s))

=
1

V (s)

(3.21)

Because of the inverse function theorem, and the definition of V (s). Let us now differentiate V (s),
yielding:

V ′(s) = γ′′(γ−1(s)) · (γ−1)′(s) (3.22)

We will now define a function X(s) = V 2(s), differentiate and simplify:

X ′(s) = 2V (s) · V ′(s)
= 2V (s) · γ′′(γ−1(s)) · (γ−1)′(s)

= 2V (s) ·A(s) · 1

V (s)

= 2A(s)

(3.23)

The second derivative of X(s) is given by X ′′(s) = 2A′(s). In fact, this is zero since we have made
the assumption that the acceleration is constant over an interval. The second, and consecutive
derivatives are hence zero. Let us now consider the Taylor expansion of X(s) evaluated at si+1 =
si + ∆i around the point si. This is given by:

X(si) +
X ′(si)

1!
(si + ∆i − si) +

X ′′(si)

2!
(si + ∆i − si)2 + . . . (3.24)

Since the second and consecutive derivatives are all zero, this infinite series reduces to:

X(si) + 2∆iA(si) (3.25)

Which is precisely the desired result.

Computation of control

The algorithm only considers admissible state-control pairs. These are pairs (xi, ui) for some stage
i for which the input constraints hold. The definition of the set containing all i-stage admissible
state-control pairs is given by:

Ωi = {(u, x) | τmin,i ≤ aiu+ bix+ ci ≤ τmax, i} (3.26)
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Where ai, bi and ci are the i-stage quantities of Equation 3.14. The i-stage set of admissible
control is the projection of Ωi on the control axis, given by:

Ui(x) = {u | (u, x) ∈ Ωi} (3.27)

And similarly, the admissible states is a projection of Ωi on the state axis

Xi = {x | (u, x) ∈ Ωi} (3.28)

Note that the definition of X in the previous section is completely separate from here.

TOPP-RA defines two concepts: the i-stage reachable set and the i-stage controllable set.
The reachable set is a set of states that, given some beginning interval of states, a sequence of
admissible control can steer the system towards. More formally, for the zeroth-stage interval I0,
the i-stage reachable set, denoted by Li(I0), is the set of states x ∈ Xi such that there exists a
sequence of admissible control that steers the system from a state x0 ∈ I0 to x. In the case the
sequence only consists of one step, then this is referred to as the reach set Ri(I) of some interval
I. This set is specifically about moving from stage i to the stage i+ 1, i.e. only one step.

The dual notion of the i-stage reachable set is the i-stage controllable set. The controllable set
is a set of admissible states that steer the system towards some final interval of velocities. More
formally, for an interval IN , the controllable set at stage i is the set of states x ∈ Xi such that
there exists sequence of admissible control that steers the system from x to a state xN ∈ IN . The
i-stage reachable set is denoted by Ki(IN ). This set also has a one step version: given a set of
states I, the one step set is a set of states x ∈ Xi and an admissible control u ∈ Ui(x) such that
there exists a state x̄ ∈ I for which x̄ = x+ 2∆iu holds. The one step set is denoted by Qi(I).

Since the admissible set Ωi is convex, the reachable and controllable sets are intervals (and
similarly also the one step versions). They can thus be completely defined by their upper and
lower bounds. Pham et al. has formulated these computations as small linear programs (LPs).
The following two LPs compute the lower and upper bound for the one step reach set of an interval
I set respectively:

minimise x̄+ 2∆iu

subject to (x̄, u) ∈ R2

τmin ≤ aiu+ bix̄+ ci ≤ τmax

x̄ ∈ I

maximise x̄+ 2∆iu

subject to (x̄, u) ∈ R2

τmin ≤ aiu+ bix̄+ ci ≤ τmax

x̄ ∈ I

The LPs to compute the lower and upper bound for the one step controllable set Qi(I) are again
very small and look very similar to the previous two LPs. The following LP computes the lower
bound on the controllable set of an interval I:

minimise x

subject to (x, u) ∈ R2

τmin ≤ aiu+ bix+ ci ≤ τmax

x+ 2∆iu ∈ I
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And similarly the following LP computes the upper bound on the controllable set of an interval I:

maximise x

subject to (x, u) ∈ R2

τmin ≤ aiu+ bix+ ci ≤ τmax

x+ 2∆iu ∈ I

The latter two LPs are used to compute the lower and upper bound for the controllable sets
Ki in Algorithm 2, inside the subroutine backwardLP. While these LPs only consider the torque
bounds, it is not too difficult to add direct velocity and acceleration bounds. The bounds given
by Equation 3.10 and Equation 3.11 can be incorporated into these LPs.

Extract solution

The algorithm computes at each discretised point the (pseudo) position, velocity and acceleration,
but the timing information is not yet computed. To obtain this information, the second-order
equations of motion can be used to calculate the time period of position intervals:

si+1 = si + ∆tγ
′
i +

1

2
∆2

tγ
′′
i (3.29)

Constant acceleration in the i-stage interval is assumed. Using the quadratic formula it is possible
to solve this equation for ∆t. While this yields in some cases two solutions (i.e. when γ′′ 6= 0), the
correct solution is always the smallest strictly positive solution, because the timestep must always
be positive. It remains to be proven why the smallest positive solution is the correct solution for
t.

Proof. Let us first rename some variables to make this proof easier to read, i.e. let vi = γ′i, ai = γ′′i
and ∆t = ti:

si+1 = si + viti +
1

2
ait

2
i (3.30)

We will consider three distinct cases: ai < 0, ai = 0 and ai > 0.

Case ai = 0: In this case, Equation 3.30 reduces to si+1 = si + viti, which yields precisely one
strictly positive solution for ti since si−si+1 > 0 by construction of the discretised intervals.

Case ai > 0: There are two solutions for t which can be found using the quadratic formula:

t =
−v +

√
v2 − 2(si − si+1)ai

ai
∨ t =

−v −
√
v2 − 2(si − si+1)ai

ai
(3.31)

Note that si − si+1 = −∆i as defined earlier, making the discriminant D = v2 + 2∆iai
precisely equal to the condition in the linear programs. It must therefore be positive by
construction, and thus there must exist two solutions for t. In this case, the acceleration is
positive and therefore we have that v <

√
v2 − 2(si − si+1)ai. Using this result, we obtain

that one solution for t is negative (since the numerator becomes negative) and the other
solution for t is positive, which is the selected solution in this case.

Case ai < 0: Using the same analysis as for the case ai > 0 yields that there are two positive
solutions for t. Further analysis is thus required. For a solution to be suitable in our case,
the derivative of Equation 3.30 should be positive, since we assume that the position always
increases. In the case when ai < 0, Equation 3.30 is a mountain parabola, hence for one
solution the derivative must be positive, and negative for the other solution. The derivative
is given by: 2ait+ vi. Let t1 and t2 be the two solutions given by:

t1 =
−v +

√
v2 − 2(si − si+1)ai

ai
, t2 =

−v −
√
v2 − 2(si − si+1)ai

ai
(3.32)
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Evaluating the derivative at t1 yields the solution
√
v2 − 2(si − si+1)ai and evaluating the

derivative at t2 yields −
√
v2 − 2(si − si+1)ai. Thus, t1 is the suitable solution in this case,

which is indeed the smallest strictly positive solution.

Algorithm

A summary of the steps is given in Algorithm 2. As previously discussed, the algorithm consists of
a backward pass and a forward pass. In the backward pass, the subroutine backwardLP computes
the controllable sets Ki using the LPs defined earlier. The set Ki+1 is used for I in the LPs.
This results in the lower and upper bound for the i-stage controllable set, which is then used to
compute the i − 1 controllable set, until the 0-stage. Then, the forwardLP subroutine computes
the control greedily using the following LP:

maximise u

subject to (x, u) ∈ R2

τmin ≤ aiu+ bix+ ci ≤ τmax

x+ 2∆iu ∈ Ki+1

This LP computes the highest possible acceleration, which respects the system bounds, and keeps
the trajectory within the already computed controllable sets. Note that the initial controllable set
Kn can be an interval having lower and upper bounds too.

Algorithm 2: TOPP-RA

Kn ← {γ′2n } ;
for i ∈ {n− 1, . . . , 0} do

Ki ← backwardLP(Ki+1) ;
end
if K0 = ∅ ∨ γ′20 /∈ K0 then

Report failure ;
end
x0 ← γ′20 ;
for i ∈ {0, . . . , n− 1} do

ui ← forwardLP(xi, Ki+1) ;
xi+1 ← xi + 2∆iui ;

end

Runtime analysis

The number of iterations of this algorithm is linear in N , however, the computational complexity of
each iteration depends on the number of constraints. This is theoretically faster than the previously
discussed algorithm TOPP-NI. This is because the numerical integration, the time expensive step,
has been replaced by a fixed number of linear programs. The linear programs scale with respect to
the number of constraints, which in this case remains constant throughout the algorithm. Another
advantage is that TOPP-RA does not only yield a trajectory, but the controllable sets themselves
can possibly also be used as they form an upper bound on the admissible control. This is also
commonly known as Admissible Velocity Propogation, AVP. This can be advantageous to existing
geometric planners [38]. Another advantage of TOPP-RA over TOPP-NI is the fact that it can
handle parametric uncertainties without much modification.
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3.2.3 Comparison

TOPP-NI and TOPP-RA essentially solve the same problem, but achieve this using a different
method. TOPP-NI relies heavily on numerical integration in the phase plane, while TOPP-RA
uses linear programming to find the optimal control. There are advantages to both methods: For
certain use cases where the number of switch points is expected to be low, the TOPP-NI algorithm
may be faster as it does not require the overhead of setting up and executing N linear programs.
On the other hand, for more complex use cases, TOPP-RA may be significantly faster since the
runtime does not depend on the number of switch points, but only on the number of iterations
and constraints.

In the introduction of this chapter, q is assumed to be twice differentiable, i.e. to be C2-
continuous. In fact, it is sufficient to require q to be piece wise C2-continuous. Both TOPP-NI
and TOPP-RA require an initial and final velocity as input. It is therefore possible to solve for
each segment of q, and string together the solutions for those pieces to obtain the final solution.
Actually, TOPP-RA has a major advantage over TOPP-NI in this regard, since it can handle
an interval of initial and final velocities while TOPP-NI can only handle a single initial and final
velocity.
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Third order solution

Trajectory planning with second order constraints has received much attention. It has been shown
that these algorithms can compute a time-optimal trajectory with reasonable computational cost.
However, because the nature of these trajectories are bang-bang, the acceleration jumps between
its maximum and minimum, which results in infinite jerk. Of course, in practical environments the
jerk cannot be infinite. The consequence of this discrepancy is reduced accuracy in path tracking,
i.e. the manipulator is likely to deviate from the generated path and trajectory. Constraining the
jerk has several advantages:

• A jerk constrained trajectory is smoother than a acceleration constrained trajectory. Smoother
trajectories can be tracked more accurately [54]. Moreover, some tasks require a smooth tra-
jectory. Take for instance a manipulator which must move tubes with liquid. Second order
trajectories would almost surely cause spillage whereas smooth, third order, trajectories are
more suitable.

• Third order trajectories increase the life-span of the manipulators, its actuators and com-
ponents. Jerky motion tends to cause vibrations in the manipulator by exciting resonant
frequencies [54, 55]. Jerk bounded trajectories therefore prevent excessive mechanism wear
and prolong the life-span of the manipulator. This makes the manipulator overall more
cost-effective since the amount of maintenance, repairs and replacements is reduced.

• In some industrial applications, third order constraints are also a part of the problem defin-
ition. For example, electric motors have bounds on their input voltages, which in turn
translate to torque rate constraints. Another example is fluids flowing through pistons and
being compressed [27].

The most common ways of solving third order trajectories either disregard the system dynamics
[54], or require much more computational effort due to the fact that the search space is increased by
one dimension [40]. Convex optimisation becomes harder to perform since the introduction of third
order dynamics often break the convexity of the equations. Near-optimal trajectories are therefore
also considered [24], or planners which subdivide the trajectory into carefully constructed splines
or polynomials of the desired degree [56, 57]. Time-optimal third order trajectories do therefore
not yet admit a time-efficient algorithm, however, for some industrial applications third order
constrained trajectories outweigh the need for time-optimality.

In the previous chapter it has been shown how to efficiently construct a time-optimal second
order trajectory. At certain locations, the third order constraints are most likely violated, such as at
switch points where the acceleration flips from its allowed maximum to its minimum. Graphically,
this is represented in the phase plane as a sharp turn of the trajectory graph. Suppose we could
“smooth” out this corner, such that the resulting curve respects the third order constraints. An
example is given in Figure 4.1. This chapter explains this novel idea, its implementation and
drawbacks.
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Figure 4.1: Concept of smoothing sharp bends in a trajectory. The blue line represents the
“smoothing” segment, connecting the maximum and minimum velocity profiles shown in dark
blue and yellow.

4.1 Trajectory smoothing

The principle of smoothing a trajectory is rather simple. Take an initial reference trajectory
and transform it until it conforms to the desired constraints. In this case, these are the third
order constraints. The previous chapter discussed how to construct time-optimal second order
trajectories. These will form the initial reference trajectory to the following smoothing operation.

4.1.1 Tangent Circle Smoothing

Jerk constraints forces the trajectory to be smooth, both as a physical trajectory, and the graphic
representation of their velocity. Visually, this means that the trajectory in the phase plane cannot
have sharp bends or corners. In other words, the curvature of the trajectory is constrained. Let
us now consider a reference trajectory with a point, or an interval, at which the third order bound
is violated. Suppose we could gently slide a circle with a radius equal to the maximum allowed
curvature into this area, such that it hits the trajectory on the left side of this point or interval,
and that it hits the trajectory to the right side. This circle then lies tangent to both the left side
and the right side. Instead of the trajectory going around the sharp bend at which the third order
constraints are violated, it could follow the circular arc connecting the two tangent points. Since
the circle has an admissible curvature, the jerk violation is removed and the trajectory is hence
smoothed. This is the basic principle behind the Tangent Circle Method (TCM).

As will be shown in detail later, the smoothing will be applied to the trajectory curve in the
(t, γ′) plane. Only this plane admits a usable bound on the curvature. Changing the trajectory
in this plane changes the traveled distance of the manipulator. This is because the area under
the curve corresponds to the distance traveled, and since the smoothing operation strictly lowers
the trajectory, the traveled distance is decreased. This loss in distance must be sufficiently com-
pensated for. This is actually not too difficult: we can insert a straight line piece at the highest
point of the circular trajectory. The loss in distance can be computed, and therefore the com-
pensation length of this straight segment can be determined. A summary of TCM is given in
Algorithm 3. The input are the two segments of the trajectory, A and B, which constitutes the
segment on the left of the interval in which the jerk constraint is violated, and the segment on the
right. A further explanation of each step is given next.
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Algorithm 3: TCM

Step 1: compute radius of maximum curvature circle
Rmin ← (1 + γ′′2max)

3
2 /γ′′′max ;

Step 2: find center of circle and compute circular arc
Apar ← computeParallel(Rmin, A) ;
Bpar ← computeParallel(Rmin, B) ;
C ← polyLineIntersection(Apar, Bpar) ;
Tarc, aend, bbegin ← computeArc(C) ;
Step 3: compute compensation distance
L0 ← γ(bbegin)− γ(aend) ;
L← chordArea(aend, bbegin, C) + quadArea(aend, bbegin) ;
Lcomp ← (L0 − L)/top-y(Tarc) ;
Step 4: Regenerate trajectory data
Tnew ← regenerateTrajectoryData(A,B, Tarc, Lcomp) ;

Step 1: compute maximum curvature

The first step of the algorithm is to compute the radius of the circle which has the maximum allowed
curvature, depending on the jerk constraint. For a twice differentiable parametric representation
of a curve `(t) = (x(t), y(t)), the curvature is defined as follows:

k =
|x′y′′ − y′x′′|
(x′2 + y′2)

3
2

(4.1)

To obtain the curvature of the trajectory in the (t, γ′) plane, the derivatives of x and y can be
substituted by derivatives of t and γ respectively as follows:

k =
|1 · γ′′′ − γ′′ · 0|

(12 + γ′′2)
3
2

=
|γ′′′|

(1 + γ′′2)
3
2

(4.2)

t is a linear function, and therefore the second and third derivative are respectively 1 and 0. Note
that the γ′′′ term appears alone, and the denominator is bounded by 1 ≤ (1 + γ′′2)

3
2 . The radius

is related to curvature by:

R =
1

k
=

(1 + γ′′2)
3
2

|γ′′′|
(4.3)

To bound the radius, we consider the maximum allowed jerk γ′′′max and the maximum acceleration
γ′′max present in the reference trajectory. The minimum curvature is then given by:

Rmin =
(1 + γ′′2max)

3
2

γ′′′max

(4.4)

This concludes this step of the algorithm. However, it may be useful to understand why this
method does not work in the phase plane as explained in the previous chapter. It is precisely
because this relation between γ′′′max and Rmin does not exist in a useful way. Suppose we substitute
for x and y the quantities γ and γ′ in Equation 4.1 respectively, then we obtain the following
equation:

k =
|γ′ · γ′′′ − γ′′2|
(γ′2 + γ′′2)

3
2

(4.5)

It is not possible to place a suitable bound on k using this equation and therefore it is impossible
to define a maximum curvature.
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Rmin

t

γ
′

A
B

Apar Bpar

aend bbegin

C

Figure 4.2: Example construction of the center of the circle. The dashed blue lines, Apar and Bpar,
represents the parallel lines to the reference trajectory given in gray.

Step 2: Compute circular arc

The second step of the smoothing algorithm consists of computing the circular arc connecting
segment A and B. This circle must lie tangent to both trajectories A and B, otherwise a smooth
transition from either of those trajectories to or from the circular arc cannot be made. To find all
the locations at which the circle is at the right distance and tangent to those segments, two parallel
lines Apar and Bpar must be constructed at a distance of Rmin. This is shown visually in Figure
4.2. The reference trajectory is given in gray and the parallel lines are shown as blue dashed lines.
At the intersection of these two parallel lines, the center of the circle can be placed such that it
is tangent to both A and B. Since the trajectories are polylines, i.e. consisting of straight line
segments, a parallel line is easily computed by simply taking the normal to the segment, traveling
a distance of Rmin and placing a point for the parallel polyline. Finally, given the center of the
circle, the arc is constructed starting from aend, the point connecting A and the arc, and ends in
bbegin, the point connecting the arc to B.

Note that in some extreme cases, the parallel lines might not intersect and cause difficulties
in computing the center of the circle. Those edge cases require further analysis, but should not
be too hard to solve. An example of such a scenario is when the distance Rmin is larger than the
length of segment A. In this particular case, circle should lay tangent to B and cross the first
point of A to form a solution. These edge cases are not considered.

Step 3: compute compensation distance

As explained in the introduction to this method, the graph of the trajectory in the (t, γ′) plane
is locally lowered and therefore the distance traveled is decreased. To account for this, a straight
line segment can be added to counteract this loss. A suitable place for this straight line segment is
to insert it at the top of the arc. This keeps the arc tangent to the initially found points on A and
B, and the length of this piece is easily computed. The loss in distance is the previously travelled
distance minus the new travelled distance. The previously travelled distance is easily available,
since the reference trajectory contains the distance parameter γ for each point, it is therefore equal
to:

L0 = γ(bbegin)− γ(aend) (4.6)

Where γ(·) acts as a accessor function. The new traveled distance, without the straight line
segment for now, is the area under the curve between aend and bbegin. This is equal to the area of
the quadrilateral connecting these points and their perpendicular position on the γ axis, and the
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t

γ
′

Aquad

Achord

A
B

aend bbegin

Figure 4.3: Computation of the area under the circular arc, consisting of the area of the quadri-
lateral Aquad, and the area of the chord Achord.

t

γ
′ Lcomp

A B

aend bbegin

Figure 4.4: The completed trajectory with inserted compensation straight line segment, pushing
the right trajectory segment B further to the right.

area of the circular chord, which is given by:

Achord =
1

2
R2

min(∠aendCbbegin − sin(∠aendCbbegin)) (4.7)

This is shown visually in Figure 4.3, where the shaded area represents the area of the quadrilateral
plus the chord. The length of the straight line segment, given in time, is then the loss in distance,
divided by the pseudo velocity at the top of the circular arc, as is computed in the algorithm.
Figure 4.4 shows how the straight line segment is inserted, which pushes the right trajectory
segments to the right.

Step 4: regenerate trajectory data

The final step of the algorithm is to complete the trajectory data. Each point of the reference
trajectory contains the timestamp, position, pseudo velocity and pseudo acceleration. The inserted
arc and straight line segment only contain the timestamp and velocity. Therefore, the missing data
must be computed. This is not too difficult, as this information can be derived from the existing
information. The new position γi for a point i is given by:

γi = γi−1 + (ti − ti−1) · γ′i−1 (4.8)
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And the acceleration at point i is given by:

γ′′i =
γ′i+1 − γ′i
ti+1 − ti

(4.9)

4.1.2 Runtime analysis

The input to this algorithm is a reference trajectory split around the interval at which the jerk
bound is violated. We therefore do not consider the runtime require to generate this reference
trajectory. For this, we refer the reader to the previous chapter about the second order algorithms.
Most steps in Algorithm 3 require constant time, as they are simple calculations. The parallel
line computation requires linear time, and the polyline intersection algorithm requires O(n log n+
I log n) time, where n is the number of line segments and I is the number of intersections [53]. The
number of intersections is, however, most likely not in the order of n because of the construction
of the parallel polylines.

4.1.3 Further remarks

The proposed method is suitable to smooth out trajectories with high jerk, such as encountered
at switch points. The bound on the curvature is not tight, however, which means that the jerk of
the smoothed out segment may lie between the desired bounds, but not at the limit. The resulting
trajectory is therefore not third order optimal, but this method merely reduces the overall jerk
of a solution. This can both be an advantage is that was the goal, or an disadvantage if faster
trajectories are still required.

This method works well when the acceleration changes from maximum to minimum. In such
cases, the smoothed trajectory lies beneath the reference trajectory, having a lower velocity at
the smoothed out segment. This means that the smoothed trajectory can never cross the MVC,
considering that the reference trajectory never crossed the MVC. When this procedure is applied
to a segment where the acceleration goes from minimum to maximum, then the smoothed out
segment lies above the reference trajectory. In such a case, it could violate the MVC bound. For
these cases, further analysis is required.

A related field of research is Dubins paths [58]. A Dubins path is a curve which connects two
points in euclidean space with constrained curvature. It has been proven that such paths exist and
consist only of circular arcs of maximum curvature and straight line pieces. This is related to the
smoothing procedure explained in this chapter: two (to be determined) points must be connected
by a curve with a maximum curvature. The results and algorithms developed in this area could
unfortunately not be applied to this case, due to several reasons which we were not (yet) able to
overcome: the start and end point are not known beforehand, the smoothed trajectory must be
monotonically increasing in the horizontal direction and the velocity γ′, i.e. the highest point,
must ideally be maximised.

28 Time-optimal trajectory generation for n-DOF manipulators



Chapter 5

Experiments

In this chapter, the algorithms and methods discussed in previous chapters are applied to exper-
imental and realistic input data, i.e. geometric paths for robotic manipulators and their corres-
ponding constraints. We will show different visualisations of the various steps in the algorithm,
and that indeed the input constraints are respected in the output trajectory. All experiments are
performed using Python 3.6 on a desktop running 64-bit Windows 10 build 19043.1110, Intel Core
i5-4460 (3.20 GHz) as CPU and with 8GB of RAM.

5.1 Application on use cases

In this section, the TOPP-RA algorithm is applied to several selected manipulators and input
paths. The intermediate results of the algorithm, i.e. the trajectories in the phase plane, are shown,
as well as output statistics to show that the trajectories indeed respect the system constraints.

5.1.1 Input definition

Several manipulators are considered, for which their shape and paths are explained in this section.
For each manipulator, their Denavit–Hartenberg parameters (DH parameters) [59] are given. The
DH parameters, or also known as the DH convention, are a four parameters which describe how
to attache reference frames to links of robotic manipulators. The specific mass distribution, and
hence inertia and Coriolis tensors, are not given as the specific values are not relevant for the
experiments. The Robotics Toolbox developed by Peter Corke1 is used to compute these matrices,
and to compute the configuration of the robot given the DH parameters.

Basic arm

This manipulator consists of a single rotating axis, moving a weight at the end of the arm. The
constraints on the torque are sufficiently high such that the trajectory does not get near the
maximum velocity curve. This is to provide a clear example of the “bang-bang” control structure.
The DH parameters, while rather trivial for this robotic manipulator, are given in Table 5.1. The
trajectory is also fairly simple: the arm makes a 180◦ rotation. The input functions are thus given
by:

q(s) = s · π q′(s) = π q′′(s) = 0 (5.1)

The torque limits are set sufficiently high. This use case will also be used to demonstrate the
direct velocity bounds using Equation 3.10. Let the maximum velocity be q̂′i,min = 1. The limit on
the pseudo velocity is then calculated as q̂′i,min/q

′
i for each position. Since the first path derivative

is a constant, this results in constant upper bound for γ′, namely 1/π.

1https://petercorke.com/toolboxes/robotics-toolbox/
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Joint Type θ d a α

1 Rotational 0 0 0.1 0

Table 5.1: DH parameters for basic arm manipulator

3D printer

A common 3D printer setup consists of three prismatic joints (i.e. translational axis), allowing the
printer head to move in three dimensions. Depending on the specific use case, a rotational axis
can be attached to the end to allow for rotation of the tool tip. This is not required for simple
3D printing tasks, and has not been included in this experiment. The DH parameters are given
in Table 5.2. The programmed movement is the tool tip performing a circular motion translated
from its origin. This is described by:

q1(s) = a cos(2πs) + b q2(s) = a sin(2πs) + b (5.2)

q′1(s) = 2π · −a sin(2πs) + b q′2(s) = 2π · a cos(2πs) + b (5.3)

q′′1 (s) = (2π)2 · −a cos(2πs) + b q′′2 (s) = (2π)2 · −a sin(2πs) + b (5.4)

for some parameters a, b and 0 ≤ s ≤ 1. The other joints do not move and therefore their functions
return zero.

Joint Type θ d a α

1 Prismatic π/2 9.5 -0.5 π/2
2 Prismatic π/2 -1 1 π/2
3 Prismatic −π/2 0.5 -1 π/2
4 Prismatic π/2 0.5 0 π

Table 5.2: DH parameters for 3D printer manipulator

Panda

Finally we consider the Panda robotic arm developed by FRANKA EMIKA2. It is a 7-DOF
manipulator aimed for usages in production lines, hospitals, laboratories, logistics platforms and
more. The DH parameters for this robot are given in Table 5.3. Note that the angle offsets need
not to be strictly specified. The movement of this manipulator is a simple linear interpolation
between two configurations C1 = (0, 0, 0, 0, 0, 0, 0) and C2 = (π/2,−0.3, π/4,−3.2, 3, 2, π/4). This
movement moves the manipulator between the default configuration to a carefully selected ending
configuration such that the MVC limit is reached in the phase plane graph.

Joint Type θ d a α

1 Rotational θ1 0.33 0 0
2 Rotational θ2 0 0 −π/2
3 Rotational θ3 0.316 0 π/2
4 Rotational θ4 0 0.0825 π/2
5 Rotational θ5 0.384 -0.0825 −π/2
6 Rotational θ6 0 0 π/2
7 Rotational θ7 0 0.088 π/2

Table 5.3: DH parameters for Panda manipulator

2https://www.generationrobots.com/en/403317-panda-robotic-arm.html
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Figure 5.1: Phase plane visualisation of the basic arm.

5.1.2 Results

The TOPP-RA algorithm is applied to all manipulators discussed above. The number of intervals
N is set to 1000 to allow for a sufficient accuracy and resolution of the output. For each ma-
nipulator, the phase plane will be shown, as well as the derivatives of the joints and the torques.
Finally, graphs of the function γ are shown.

The images of the phase plane consists of three elements: the profile vectors, the maximum
velocity curve (MVC) and the trajectory itself. The blue and yellow arrows show the direction
of respectively the maximum and minimum velocity profiles at discretised positions. The curve
shown in gray represents the solution found by the algorithm. The MVC may appear jagged
instead of a smooth line. This is because the MVC is also computed by means of sampling at
discretised positions since there is no closed form formula describing this curve.

For the basic arm manipulator shown in Figure 5.1, the forces stay well within the bounds
and therefore the MVC is not visible in shown range for γ′. At first, the trajectory moves up
following maximum acceleration until some point γ′ ≈ 0.6, after which the minimum acceleration
profile is followed until the manipulator has reached its goal. This clearly depicts the “bang-bang”
control structure of an optimal solution. Figure 5.2 shows the phase plane for the basic arm with
the direct velocity constraint. Note that the MVC is actually situated right on the straight gray
trajectory, but because of sampling it appears higher. The pseudo velocity reaches the limit which
we already computed. The phase plane graph of the 3D printer as shown in Figure 5.3 shows
shows more interesting features. Firstly, the MVC is clearly visible and constraining the trail of
the solution. It consists of several peaks and valleys, which could trap the trajectory if it did not
switch at the right moment. These switch points are easily distinguishable as well because their
sharp bends. Interestingly, the MVC appears to be symmetric. This is not too surprising given the
fact that the geometric path for this manipulator is also symmetric, i.e. a circle. The phase plane
of the Panda manipulator is shown in Figure 5.4. This graph is similar to the 3D printer graph
as it shown several clear peaks and valleys in the MVC, which the trajectory carefully avoids as
intended.
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Figure 5.2: Phase plane visualisation of the basic arm, with a direct velocity constraint.

Figure 5.3: Phase plane visualisation for the 3D printer manipulator.
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Figure 5.4: Phase plane visualisation for the Panda manipulator.

The graphs of the joint derivatives, i.e. the position, velocity and acceleration, show the
second order nature of the solution and again the “bang-bang” control structure. Figure 5.5
shows the joint derivatives for the basic arm manipulator. This shows a typical second order
graph, where the acceleration is a constant straight line (with one discontinuity), the velocity is
linear and the position follows a quadratic curve. The joint derivatives graph for the case when
then direct velocity constraint is added (Figure 5.6) clearly shows the desired maximum velocity.
The velocity increases linearly until it has reached its maximum and continues until deceleration.
The 3D printer, shown in Figure 5.7, shows a more interesting graph for the joint derivatives.
The first and last actuator perform no action and therefore their joints do not move. Joint 3 is
most of its time operating at its maximum. The short period in the middle of the action when
it is not operating at its maximum, joint 2 is operating at its upper bound. As is clearly shown,
always one joint is operating at its maximum and therefore the manipulator is operating optimally.
The sudden spikes in the graph can be explained by numerical instability. In the joint torques
graph of the Panda manipulator shown in Figure 5.8, the joint velocity and acceleration are less
important. What is interesting to see is that the position increases non-linearly. The input was
a linear interpolation between two configurations, and thus the algorithm has indeed changed the
timing for the path in a non-linear fashion.

The joint derivatives graph does not show the precise joint torque limits as was defined in the
input. For this we have plotted the joint torque in Figure 5.9 for the basic arm, Figure 5.10 for
the 3D printer and in Figure 5.11 for the Panda manipulator. It is clearly visible that in each of
these graphs, at any point in time at least one joint operates at its maximum. The discontinuities
can again be explained because of numerical instability. One can also observe that (almost) at
most one joint is operating at its maximum allowed torque at any time. Disregarding possible
approximation errors, this is precisely as Chen et al. have shown in their work [45].
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Figure 5.5: Joint derivatives for the basic arm; position (red), velocity (blue) and acceleration
(purple).

Figure 5.6: Joint derivatives for the basic arm with direct velocity constraint; position (red),
velocity (blue) and acceleration (purple).
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Figure 5.7: Joint derivatives for the 3D printer; position (red), velocity (blue) and acceleration
(purple).
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Figure 5.8: Joint derivatives for the Panda manipulator; position (red), velocity (blue) and accel-
eration (purple).
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Figure 5.9: Joint torques for the basic arm; torque (red) and limits (dashed, black)

Figure 5.10: Joint torques for the 3D printer; torque (red) and limits (dashed, black)
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Figure 5.11: Joint torques for the Panda manipulator; torque (red) and limits (dashed, black)
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5.2 Comparison TOPP-NI, TOPP-RA

To investigate the performance of each algorithm, TOPP-NI and TOPP-RA are run on two sets
of inputs with varying parameter settings. The inputs are taken from the previous section: the
basic arm and the 3D printer. For TOPP-NI, the parameter ∆t is varied while for TOPP-RA,
the parameter N is varied. To compare the results, the total running time (in milliseconds) and
total trajectory traversal time Tend (also in milliseconds) are recorded, and averaged over five runs.
It is expected that TOPP-NI will take significantly longer to run than TOPP-RA, but the total
traversal time computed by both algorithms is expected not to differ by a significant amount.

Use case - ∆t = 0.1 ∆t = 0.05 ∆t = 0.01 ∆t = 0.005

Basic arm
Runtime 129 265 1 864 5 033
Tend 3 300 3 250 3 210 3 215

3D printer
Runtime 4 432 9 459 53 934 123 094
Tend 5 300 5 100 4 990 4 965

Table 5.4: Performance results for TOPP-NI algorithm

Use case - N = 50 N = 100 N = 1000 N = 10000

Basic arm
Runtime 165 219 2 218 22 011
Tend 3 210 3 187 3 202 3 210

3D printer
Runtime 526 589 5 805 63 491
Tend 4 915 4 918 4 937 4 945

Table 5.5: Performance results for TOPP-RA algorithm

The results are shown in Table 5.4 for TOPP-NI and in Table 5.5 for TOPP-RA. A couple of
interesting remarks can be made on this data. Firstly, both TOPP-NI and TOPP-RA appear to
have a linear relationship between their parameter (i.e. ∆t and N) and the total runtime. Another
interesting observation is that TOPP-NI has a lower runtime on the basic arm use case, but it
has a much higher runtime on the 3D printer use case than TOPP-RA. This difference can be
explained by the number of switch points, since the dominant factor adding runtime in TOPP-NI
is the subroutine responsible for handling those points. The total traversal time Tend also seems
to be more consistent for different values for the parameter for TOPP-RA than for TOPP-NI.
This is most likely explained by numerical instability of the integration in TOPP-NI when using
a larger integration interval.

To show that both algorithms produces the same result, one can compare the (t, γ) graph for
each manipulator. If the algorithms produces the same output, their graph should look the same.
This has been done in Figure 5.12 for the 3D printer manipulator. The blue line corresponds to
the output of the TOPP-NI algorithm and the orange line for the TOPP-RA algorithm. As one
can see, their graphs look almost perfectly similar, indicating that they indeed produce the same
output, with some margin on the error.
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Figure 5.12: Comparison of (t, γ) graph of TOPP-NI and TOPP-RA.

5.3 Smoothing

To show the practical application of the smoothing algorithm, we first require a reference trajectory.
For this, we use the TOPP-RA algorithm on the basic arm manipulator use case. The other use
cases include some edge cases which are not implemented in this thesis.

Applying the smoothing subroutine on the reference trajectory in the (t, γ) plane results in
the picture shown in Figure 5.13. The gray reference trajectory shows a spike at the middle of
the movement, which is precisely the switch point in the phase plane shown in Figure 5.1. The
blue trajectory consists of a circular arc, a straight line segment, and another circular arc. Since
the new, blue, trajectory reaches a smaller pseudo velocity, the total traversal time must increase.
This is clearly visible in the graph.

The torque bounds of this new trajectory are shown in Figure 5.14. The only and slight viola-
tion of this bound at t = 0.9 occurs when the trajectory switches between the reference trajectory
and the circular arc. This can easily be fixed by exactly computing a suitable switch point, instead
of reusing existing points on these trajectories, as is done in the current implementation. Note
that the torque is not at its maximum at any time. This is because the radius of the circular arc
is computed using the maximum acceleration present in the trajectory, and the radius may be
smaller over an interval where the acceleration is smaller than the maximum acceleration.

Finally, we compare the (t, γ) graph of the reference trajectory and the smoothed trajectory.
This is shown in Figure 5.15. The reference trajectory shown in red reaches a steeper slope, while
the smoothed blue trajectory does not. It is again visible that the smoothed trajectory has a
larger traversal time.
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Figure 5.13: Reference trajectory (gray) and smoothed trajectory (blue) shown in (t, γ′) plane.

Figure 5.14: Torque of smoothed trajectory. Bounds are displayed as black, dashed, lines.

Figure 5.15: (t, γ) graph of the reference trajectory (red), and the smoothed trajectory (blue).
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Conclusion

In this chapter we summarise the most important results, as well as explain a direction for further
research and improvements.

6.1 Summary

In this thesis, we have focused on time-optimal trajectory generation for n-DOF manipulators,
considering their full non-linear dynamics. A literature survey has been performed which includes
most of the major works done within this research area. It has been observed that second order
constraints have received more attention in the literature than third (or higher) order constraints.
The second order case admits a computationally efficient time-optimal algorithm, but for the third
order constraints this is only achievable by approximation.

Two algorithms which handle second order constraints are investigated and implemented:
TOPP-NI and TOPP-RA. The practicalities of these algorithms are studied, and they have been
applied to several use cases. Important details regarding the implementation have been discussed.
For TOPP-NI, this entails the subroutine to find the tangent trajectory. For TOPP-RA, the tra-
jectory regeneration subroutine has been discussed and proven to yield correct results. It has been
shown that the solution produced by these algorithms indeed respect the system bounds in the
practical examples. The “bang-bang” control structure was clearly visible in the output.

For the third order constraints, a smoothing algorithm has been developed based on bounding
the curvature in the (t, γ′) plane. Jerky motion is identified by sharp bends and corners in
this plane, which intuitively can be smoothed out by constructing circular arcs. A bound on
the curvature has been identified, which is used in this construction. This method has then
been applied to a use case to show its effectiveness. The resulting trajectory is not time-optimal
anymore, but near time-optimal, which is in some situations more desirable. Edge cases appearing
in this method have been discussed, but a complete solution has not been given.

6.2 Improvements

The results obtained in this thesis leave room for further improvements. We present here a list of
several directions for future ideas and works:

• To improve the runtime of the TOPP-NI algorithm, the results from Slotine et al. [10] can
be used to precompute the switch points. This could potentially lead to an algorithm which
makes use of multi-threading, solving subproblems in parallel.

• The smoothing procedure as presented in this thesis is merely a concept which can be build
upon. Edge cases were not yet considered, such as when the parallel lines do not have an
intersection point. There also exists a potential failure when the smoothing procedure is
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applied to a valley in the trajectory, where it avoids a valley in the MVC. In such a scenario,
the smoothed trajectory could potentially penetrate the inadmissible area.

• The smoothing procedure is faintly related to Dubins paths. It may be possible to combine
results from that area of research to the problem of trajectory smoothing. Due to problems
discussed in Section 4.1.3, it was not (yet) possible to work out this idea. Perhaps by careful
manipulation of the constraints, it may be possible to use Dubins paths to find a suitable,
smoothed, trajectory.

• No error bounds have been given for the results in this thesis. Since all these methods rely
on some form of sampling, error bounds can be used to better understand the practical
limitations of these algorithms. Furthermore, for high-precision machines, they may even be
strictly required.
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