240 research outputs found

    Energy-Economical Heuristically Based Control of Compass Gait Walking on Stochastically Varying Terrain

    Get PDF
    Investigation uses simulation to explore the inherent tradeoffs ofcontrolling high-speed and highly robust walking robots while minimizing energy consumption. Using a novel controller which optimizes robustness, energy economy, and speed of a simulated robot on rough terrain, the user can adjust their priorities between these three outcome measures and systematically generate a performance curveassessing the tradeoffs associated with these metrics

    Anion Exchange Resins as Effective Sorbents for Removal of Acid, Reactive, and Direct Dyes from Textile Wastewaters

    Get PDF
    Coloured wastewaters are a consequence of batch processes in both dye-manufacturing and dye-consuming industries. Dyes are widely used in a number of industries, such as textile and leather dyeing, food, cosmetics, paper printing, gasoline, with the textile industry as the largest consumer. Dyeing as a fundamental operation during textile fibre processing causes the production of more or less coloured wastewaters, depending on the degree of fixation of dyes on substrates, which varies with the nature of substances, desired intensity of coloration, and application method. Dye bearing effluents are considered to be a very complex and inconsistent mixture of many pollutants ranging from dyes, dressing substances, alkalis, oils, detergents, salts of organic and inorganic acids to heavy metals.Thus after dyeing wastewaters are characterized not only by intensive and difficult for removal colour but also by high pH, suspended and dissolved solids, chemical and biochemical oxygen demands. Ion exchange is a very versatile and effective tool for treatment of aqueous hazardous wastes including dyes. The role of ion exchange in dye effluents treatment is to reduce the magnitude of hazardous load by converting them into a form in which they can be reused, leaving behind less toxic substances in their places or to facilitate ultimate disposal by reducing the hydraulic flow of the stream bearing toxic substances. Another significant feature of the ion exchange process is that it has the ability to separate as well as to concentrate pollutants. Taking into account high capacity and selectivity of ion exchange resins for different dyes, they seem to be proper materials for dyes sorption from textile effluents. The aim of the paper is to study the removal of the acid, reactive and direct textile dyes such as C.I. Acid Orange 7, C.I. Reactive Black 5 and C.I. Direct Blue 71 on the commercially available anion exchangers (Lewatit MonoPlus MP 62, Lewatit MonoPlus MP 64, Lewatit MonoPlus MP 500, Lewatit MonoPlus M 500, Amberlite IRA 67, Amberlite IRA 478RF, Amberlite IRA 458 and Amberlite IRA 958) differing not only in basicity of the functional groups but also in composition and structure of the matrix. Comparison of the sorption parameters obtained by the batch method taking into account influence of phase contact time, dyes initial concentration and solution pH were discussed in detail. Desorption conditions depending on the dyes sorption mechanism were also presented. Influence of the auxiliaries typically present in textile effluents such as inorganic electrolytes and different surfactants on the amounts of dyes retained by the anion exchangers was presented. The adsorption behaviour of the polyacrylic Amberlite IRA 958 demonstrates that it can be a promising adsorbent for the textile wastewater treatment. The results obtained with raw textile wastewaters purification confirmed this statement

    Skrzynka kontaktowa : Kraków, ul. Olszewskiego 2

    Get PDF

    Hydrogels from Fundaments to Application

    Get PDF
    Polymer superabsorbents commonly known as hydrogels are cross-linked highly molecular compounds able to absorb water from physicochemical fluids in the amounts from 10-fold to 100-fold larger than their dry mass. Numerous investigations have shown that they can help reduce irrigation water consumption, lower the death rate of plants, improve fertilizer retention in soil and increase plant growth rate. Besides water absorption and retention, the superabsorbent polymers have many advantages over conventional ones, such as a sustained supply of nutrition to plants for a longer time, thus increasing the phosphate fertilizer use efficiency and decreasing application frequency. The aim of this study is to investigate the influence of chemical conditions on hydrogels, kinetic and absorption behaviour towards metal ions in the presence of the chelating agent of a new generation. In this group, there are IDS, EDDS, GLDA, MGDA, etc. In the chapter, the research on the applicability of the effective absorption of metal complexes with a biodegradable complexing agent will be presented. The possibility of the preparation of slow-release fertilizers of controlled activity of a new generation in such system will also be discussed

    Chlorates(VII) removal on Dowex™PSR-2 resin

    Get PDF
    Lately there has been observed the increased presence of chlorates(VII) in the natural environment which can affect human health negatively. Therefore the removal of chlorate(VII) ions using the gel type resin functionalized with the tri-n-butyl ammonium (Dowex™PSR-2) from waters was studied. The main aim was to evaluate the effects of experimental conditions including contact time, initial solution concentration, pH and temperature on chlorate(VII) ions removal as well as the anion exchanger properties on chlorate(VII) ions sorption. It was found that only the pseudo second order model described the experimental data well and the intraparticle diffusion was not the rate-limiting step. According to the Freundlich model, the qe value was to be 69.26 mg/g at optimum conditions (pH 7.0 at 25 oC)

    Don't break a leg: Running birds from quail to ostrich prioritise leg safety and economy in uneven terrain

    Get PDF
    Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force–length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force–length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics

    Ion Exchange Method for Removal and Separation of Noble Metal Ions

    Get PDF
    Ion exchange has been widely applied in technology of chemical separation of noble metal ions. This is associated with dissemination of methods using various ion exchange resins which are indispensable in many fields of chemical industry. Due to small amounts of noble elements in nature and constant impoverishment of their natural raw materials, of particular importance are physicochemical methods of their recovery from the second sources e.g. worn out converters of exhausted gases, chemical catalysts, dental alloys, anodic sludges from cooper and nickiel electrorefining as well as waste waters and running off waters from refineries containing trace amount of noble metals. It should be stated that these waste materials are usually pyro- and hydrometallurgically processed. Recovery of noble metals, from such raw materials requires individual approach to each material and application of selective methods for their removal. Moreover, separation of noble metals, particularly platinum metals and gold from geological samples, industrial products, synthetic mixtures along with other elements is a problem of significant importance nowadays. In the paper the research on the applicability of different types of ion exchangers for the separation of noble metals will be presented. The effect of the different parameters on their separation will be also discussed. The examples of the removal of noble metals chlorocomplexes will also be presented in detail

    The High-Speed 6xxx Aluminum Alloys in Shape Extrusion Industry

    Get PDF
    This chapter describes and analyzes the 6xxx aluminum alloys used in the shape extrusion sector dedicated to automotive and construction industry. The division and application of 6xxx aluminum alloys are performed. The precipitation hardening of 6xxx (Al-Mg-Si) alloys is presented as these alloys easily undergo deformation and present the potential for new kinds of alloys for high-speed extrusion. The mechanisms of strengthening are shown with the evolution of precipitation sequences. Also some examples of industry applications of 6xxx aluminum alloys are presented
    corecore