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Abstract 

 

The issues of path and trajectory planning algorithms and optimization 

of industrial manipulator trajectory generation are still not completely 

solved due to their variability and increasing complexity with the growing 

number of robot degrees of freedom. Generation of an optimal trajectory 

can be solved in several ways, such as traditional numeric and more recent 

approaches, which include evolutionary algorithms and genetic algorithms 

within them.  

The first chapter is devoted to a brief overview of path planning 

methods, especially in mobile robots. The second chapter deals with a more 

detailed overview of robot path planning methods in continuous and 

discrete environments. The third chapter describes the most popular motion 

planning algorithms. The fourth chapter is dedicated to genetic algorithms 

which we used as an optimization method. The fifth chapter focuses on 

optimal robot motion control and optimization methods using genetic 

algorithms as the method for an industrial manipulator control. The next 

chapter contains a solution and its implementation in support software, as 

well as the experimental verification of the results. The last chapter 

evaluates the results and their benefits. 

 

Key words 

 

trajectory planning, optimization, genetic algorithms, industrial manipulator 

 

 



6 
 

LIST OF SYMBOLS AND ABBREVIATIONS 

 
Abbreviations 

 

GA genetic algorithm 
PA probabilistic algorithm 
RRT Rapidly-exploring Random Tree  
EST Expansive-Spaces Tree  
SBL Single-query, Bi-directional, Lazy-collision checking 
PRM Probabilistic Road Map  
C-space configuration space 
PMP Pontrjagin Minimum Principle  
 
Symbols 

 

Path and trajectory planning 

g(x) distance from start to finish 
h(x) distance from current node to finish  
lx , ly length of environment in x- and in y-axes  
nx , ny number of cells in x- and y-axes 
  
Genetic algorithms 
P population 
N number of population elements 
S population element 
F fitness function 
Θ selection operator 
Ω set of genetic operators 
Ψ reduction operator 
Τ accomplishment criterion 
  
Motion control 
qi(t) time function 
Qk set of tolerable system configurations  
  
Optimal motion control 
u(t) control 
x(t) control response 
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J(u) purpose function  
x&  vector of state variables  

U vector of control  
A vector of non-linear state and control functions   
M(ϕ ) matrix of mass 

C(ϕ ) matrix of damping  

K(ϕ ) matrix of stiffness 
ϕ  vector degrees of freedom of general shift  
F(t) vector of control powers driving the  
x(t0), x(tf) joint position at the beginning and end of motion  

−
iU , +

iU  minimum and maximum torque generated by actuator 

J*, x*, u* optimal parameter values 
gi optimized criterion 
wi weight factor 
  
Genetic planning of trajectory 

Np set of real parameters 
x̂  chromosome of population 

xi real parameter 
U

ix  maximum boundary value of  real parameter 

L

ix  minimum boundary value of real parameter 

ix̂  binary string 

iL̂  binary string length  

qi  ith arm turn angle in momentary position 

iq&  velocity of ith-joint 

qg total angle of manipulator arms at the end of motion  

T1 time from initial position to momentary position  
t2 time from momentary position to destination position  
gk restriction of inequality  
hl restriction of equality  
M1, M2 restriction numbers of inequalities and equalities  
φ (), ψ () 

punishment functions for restriction of inequalities and 
equalities  
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P(x) punishment function 
Q, q& , q&&  generalized vectors of position, velocity and 

acceleration  
tF road time from initial to destination positions  
T generalized vector torque control (force) 
M(q) matrix of inertia  
C(q, q& ) Coriolis and centrifugal power vector  

G(q) vector of gravity 
qj,i , vj,i , aj,i position, velocity, acceleration of jth joint in ith node 

point  
fit fitness population 

sΩ , cΩ , mΩ  operator of selection, crossing, mutation 

pc, pm probability of crossing, mutation  
Npop size of population 
Ngen number of generations 
τ, dτ, N time, period of sampling, partial road time 
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INTRODUCTION 

 
Optimization issues can occur in all fields of human activities. They 

emerge in such situations when it is necessary to come to some solution.  

Obviously, we seek the most convenient solution. Optimization issues can 

be handled by optimization methods. To be able to formulate the 

optimization matter in a mathematical way, it is necessary to constitute 

a mathematical model of the situation. A real situation model is always 

simplified, i.e. a mathematically processable situation model does not 

describe true reality, and vice versa, a model close to the reality does not 

have to be processable in a mathematical way. 

The best solution selection brings along certain drawbacks. For the 

mathematical formulation of an optimization matter we choose such 

a criterion that allows us to select the best solution variable. The optimum 

criterion selection is problematic and in many applications it is frequently 

subject to subjective requirements. To solve a real optimization matter via 

its mathematical model, it is often necessary to specify the model and 

modify the optimum criterion. Various versions of the optimization matter 

have to be dealt with repeatedly as well as verified via simulation and 

comparison with reality. Transition from a real optimization matter to its 

mathematical model is very important and essentially influences the 

utilization of results. 

Looking for an optimal solution via mathematical modeling is 

basically looking for a function extreme by which the system is 

mathematically described. Specifically, it is looking for local extremes 

which are or are not global extremes at the same time. 
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When elaborating a mathematical model, the increasing performance 

of computers should not tempt us to neglect the volume of calculations 

necessary to solve the optimization matter. Some systems are so complex 

that in the attempt to put all the essential system properties in order, we 

finally come to a model that cannot be used even by the most advanced 

information technology. 

Evolutionary algorithms belong to the modern methods of system 

optimization. Evolutionary mechanisms verified by nature can be 

successfully applied to technical issues as well, mainly to complex matters 

and matters that are difficult to describe by mathematical methods.  

Evolutionary algorithms (EA) are very efficient optimization 

algorithms that come out from natural genetics and its laws. Evolutionary 

algorithms are usually classified as genetic algorithms, genetic 

programming and evolutionary strategies. 

Classic genetic algorithms (GA) use the operations of selection, 

crossing and mutation to simulate the reproduction process. Regarding the 

diversity of handled optimization matters, there is no generally available 

optimization algorithm. It is always an algorithm which is matter dependent, 

i.e. more or less suitable to the purpose function given. Evolutionary 

optimization algorithms are not suitable for applications where the purpose 

function gradients can be easily identified or the purpose function is 

difficult to calculate. The combination of non-evolutionary optimization 

methods (e.g. simulated annealing, the method of forbidden searching, 

climbing algorithms, etc.) and evolutionary optimizations are the source of 

hybrid algorithms. An agent with the best achieved evaluation (fitness) is 

considered to be the solution to the matter. 
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The evolution process of exploring the space of potential solutions 

requires looking for a compromise (balance) to achieve the following two 

goals: 

• to find the nearest (mostly local) solution in small surroundings of 

the initial point as soon as possible, 

• to explore the space of all possible solutions as soon as possible. 

Individual methods differ according to the goal preferred.  

The issue of planning the motion of a mobile robot is a frequently 

discussed topic. Various aspects have been researched by IT experts, 

engineers and mathematicians. Theoretical outcomes have led only to 

certain general solutions of the matter, as the matter requires an enormous 

amount of calculations.  

Optimal motion of an industrial robot on a specific trajectory requires 

definition of an optimization criterion and then modification of the 

generated trajectory so that for example the motion performance is 

minimized while the maximum speed and the acceleration cannot be 

exceeded, so that the life of the gears is not shortened due to the significant 

load on joints and high moment of inertia. 

Regarding the manipulation tasks, the optimization of shortening the 

time via the utilization of robot’s available performance is becoming more 

and more important. Besides achieving the maximum speed, the ability of 

utilizing the gear units’ potential to achieve an optimal acceleration in any 

motion point – when it is possible to shorten the cycle time in practice by 

25% – is important as well. It might seem not to make a big difference; 

however, in large serial productions the savings are significant.  
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Optimization of the trajectory brings the achievement of full control 

over the motion and provides the space for productivity improvement with 

no external changes to the workplace needed, only via utilization of the 

robot control system possibilities. 

The first chapter is devoted to a brief overview of path planning 

methods, especially in mobile robots. The second chapter deals with a more 

detailed overview of the robot path planning methods in continuous and 

discrete environments. The third chapter describes the most popular motion 

planning algorithms. The fourth chapter is dedicated to genetic algorithms 

which we used as optimization methods. The fifth chapter focuses on 

optimal robot motion control, and optimization methods using genetic 

algorithms as the optimization method for an industrial manipulator control. 

The next chapter contains a solution and its implementation in support 

software, as well as the experimental verification of the results. The last 

chapter evaluates the results and their benefits. 
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1. THEORETICAL BACKGROUND  

1.1 Robot and surrounding environment 

 

A robot is a mechanical device capable of performing a variety of 

programmed tasks. It can operate under direct human control (e.g. the 

robotic arm of a space shuttle) or autonomously under programmed 

computer control. 

Robots can be divided into manipulators (industrial robots) and mobile 

robots. Mobile robots are capable of motion in their working environment 

and are not fixed to one physical place. In contrast to them, manipulators 

comprise a jointed arm attached to a fixed surface. 

 

1.2 Degrees of freedom 

 

Due to the variety of navigable places in the robot working 

environment, it is very useful to know the way to describe the position of 

each point of the robot in the moment fully and clearly. If the robot 

represents a point in a space, as is theoretically common, it can be fully 

described by its motion coordinates (x, y, z). If the robot is a fixed solid 

moving freely in 3D space, six parameters are needed (x, y, z, α, β, γ), then 

the coordinate in each of three axes as well as the axis rotation to be able to 

describe the position of each robot’s body point. Each of the parameters or 

coordinates is called a degree of freedom. 
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1.3 Overview of robot path planning methods  

At present there are many robot path planning methods based on 

different principles. Each of these methods has its benefits and constraints; 

therefore, it always depends on the application given as well as on the 

complexity of its tasks. 

1.3.1 Exact planning 

This type of algorithm is smart and efficient; however, it is applicable 

only to simple tasks. It does not utilize approximation and it always finds 

the path if there is one. If there is no path, the algorithm verifies that the 

path really does not exist. 

1.3.2 Visibility graph   

A visibility graph is a graph whose nodes are represented by start and 

destination points and vertices of all obstacles. Only those connecting paths 

are selected that do not cross the obstacles. The issue of path planning is 

then transferred to the shortest possible path search by the graph between 

the start and destination points. 

1.3.3 Retraction method 

This method uses a Voronoi diagram to search for the shortest possible 

path. The edges of the Voronoi diagram are represented by paths equally 

distant from the two nearest obstacles and its vertices are represented by 

points where three or more such paths meet. The search for the shortest path 

by the graph is the solution.   
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1.3.4 Potential field methods   

These methods use the idea of imaginary forces acting on a robot. The 

obstacles act on the robot by a repelling force, whereas the finish acts on 

a robot by an attractive force. The sum of these forces, the R result force, 

determines the consequent direction a speed of the path. One reason for 

these methods’ popularity is in their simplicity and elegance. On the other 

hand these methods do not guarantee that the found path will be the shortest 

and safest one. 

1.3.5 Dividing  the space into simple areas 

One of the oldest approaches to path planning is opening the space in 

which the robot operates into simple areas called cells and the construction 

of a non-oriented graph, a so-called continuous graph. The graph represents 

the relation of the neighborhood among cells. A Dijkstra search algorithm 

or A* algorithm are usually used to generate the path. 

1.3.6 A* algorithm  

An A* algorithm utilizes a heuristic function which, depending on the 

sum of distances from the start and finish of individual points, determines 

the order of these points. For each of the nodes we work with these three 

values: 

g(x): real distance from the start to a current node  

h(x): distance from a current node to the finish 

f(x): sum of g(x) and h(x) 

In a search such a node will be selected which has the smallest value 

of the f(x) evaluation function. Since the h(x) function is not known, we 
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replace it by the h*(x) function which expresses the distance estimation 

from the given node to the destination. It is called a heuristic function and it 

is essential for search efficiency. The path made by the start point is placed 

as the first one to the front of paths. Then the paths are taken from the front 

until the last point is the same as the destination; then the path is the 

solution. Otherwise, new paths are made by joining this path and adjacent 

points. These new paths are filed into the front in the order according to the 

distance from the finish. The points once crossed by the algorithm are filed 

into the file of closed points, and the paths ending by such a point are not 

further processed. 

1.3.7 Probabilistic planning 

This type – as the name suggests – is based on probability. The way of 

planning can manage a non-convex robot (a turning robot), robots with 

limited motion (a car), and motion dynamics represented by inertia as well 

as limited acceleration. To describe the probabilistic planning it is necessary 

to define the configuration space indicated as C-space. C-space is  

n-dimensional space, where n is the number of parameters unambiguously 

defining the robot position or configuration. That means that instead of 

being interested in the environment in which the robot operates, we are 

more interested in the number of parameters describing its configuration. 

1.3.8 Genetic algorithm - GA 

This method was discovered in the 70s of the last century and is based 

on the application of Darwin’s theory of natural selection for the solution to 

complex situations where classical mathematical and physical approaches 

fail. I will deal with this method in more detail in Chapter 3. 
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2. MOTION TRAJECTORY PLANNING 

2.1 Global and local planning 

 

Global planning is aimed at finding a non-collision path from start to 

destination configurations. Global planning is made before the robot makes 

the first motion and requires that the environment is completely known, i.e. 

the path map is at disposal, including all the static obstacles to avoid. This 

path is then sent for further processing to the local planner which controls 

the robot and considers possible constraints (robot motion constraints, new 

obstacles, etc.) that occur in the course of going on the path. The task of the 

local planning is the control of the robot on the path planned within the 

global planning. 

 

2.2 Holonomic and non-holonomic planning 

 

Regarding the constraints on the robot’s motion we distinguish two 

basic kinds of motion planning – holonomic and non-holonomic planning. 

In classical mechanics a system can be defined as a holonomic one, if 

all its constraints are holonomic. Holonomic constraints are such constraints 

which can be expressed as functions f(x1, x2, x3,...xn , t) = 0, i.e. constraints   

depend only on coordinates of the system and time. The constraint does not 

depend on the velocity or mobility of the system.   

In robotics holonomity expresses the relation among the number of the 

robot’s controllable degrees of freedom and their total number.  
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If the number of controllable degrees of freedom is the same as their 

total number, then we can say that the robot is holonomic.  

If the number of controllable degrees of freedom is smaller than their 

total number, then the robot is non-holonomic. 

A car is an example of a non-holonomic system, as its motion to the 

sides is limited by the maximum turn of its front wheels. 

 

2.3 Complete motion planning algorithms 

 

An algorithm for motion planning is complete if the search between 

two robots’ configurations is guaranteed, if there is a path; in the opposite 

case it announces that there is no path. Complete algorithms are sometimes 

indicated as exact algorithms. 

 

2.4 Path planning 

 

In recent decades the matter of roadmap planning is frequently 

discussed by the scientific community. Within the basic matter one robot is 

in the static and known environment, and the task is to calculate a non-

collision path describing the motion that replaces the robot from its current 

position to some desired position. There many varieties of the matter.    

In general, the solution to even the basic matter of the path planning 

requires time growing exponentially with the number of degrees of 

freedom. Many so-called complete planners have been developed that are 

not applicable in various practical situations, because they find no solution. 

Many researchers have tried to make the path planning complexity more 

simple. 
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Completeness is a preferred property of motion planners, and 

probabilistic completeness in particular. The planner is probabilistically 

complete if in the solution to the matter the probability approximates a 

value of 1 as the running time approaches the infinity. 

The environment in which the robot moves is static (does not change 

in time). In its search dynamic changes do not occur. The environment can 

be plastic with rises and falls. It can simulate a certain state. 

2.4.1 Discrete environment 

A right-angled chessboard-like network consisting of cells is the basis 

of this environment. A space originated from three cells is called a scene 

(2D). This scene is of a rectangular shape.   

2.4.2 Continuous environment 

A continuous environment is not divided into a square network as 

known by the discrete environment. It is a continuous space that can be 

compared to the environment around us. The robot can move in a random 

direction.  

The obstacles are surface unevenness, objects on the ground, etc., in 

fact the environment we move in. These obstacles limit the robot’s mobility. 

To simplify that, we mainly consider one type of obstacle – non-transferable 

static. There are also obstacles that can be overcome. The robot, in 

overcoming such obstacles, has to make specific operations, e.g. crossing 

over, etc.  

Another classification of obstacles is static and dynamic ones. 

Dynamic obstacles are, for example, people or other robots. Static obstacles 

do not change their position or size during the robotic motion. 



20 
 

The representation of obstacles is qualified mainly by the type of 

environment. For instance, in a discrete environment the obstacle comprises 

one or more inseparable units. In a continuous environment the obstacle is 

usually defined by its vertices and edges. 

 

Fig. 1  Representation of obstacles.                                                                       

In discrete (left) and continuous (right) environments. 

2.4.3 Robot movement 

Robots move in continuous or discrete environments according to 2D 

or 3D dimensions in space. We choose two random points of the space as 

the start and destination robot positions (there should be no obstacle in these 

places). The task is to find the path which the robot can take to go from the 

initial to destination positions. The path should not cross any obstacle. 

The robot motion speed is considered as a constant for the calculation 

simplification or as a variable. 

From the point of view of the searching algorithms, the robot motion 

possibilities are limited in the discrete environment by the way of 

discretion. For instance, in a chessboard discrete environment the robot can 

move in eight directions, as illustrated in Fig. 2. Four directions are in the 
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main axes directions (up, down, left, and right) and four are in the directions 

of diagonals (left up, right up, left down, right down). 

 

Fig. 2 Chessboard environment (a) directions of motion;                                       

(b) distances of motion 

 

In the continuous environment the robot is not limited in its motion by 

the way of landscape representation. In contrast to discretion landscape it is 

usually specified by more complex difficulty of searching. 

2.4.4 Probabilistic algorithms 

Probabilistic algorithms (PAs) work on the basis of random sampling 

of the continuous environment and their subsequent connection into a graph 

by some basic deterministic algorithm. The calculation of the path 

exploration is played out before the robot motion; therefore the probabilistic 

algorithms are sometimes indicated as offline algorithms. 

2.4.5 Use of probabilistic algorithms 

Robotic arms in production lines are a typical utilization of 

probabilistic algorithms in 3D environment/space. They frequently have 

a large number of degrees of freedom – in that case every degree of freedom 
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is represented as another environment/space dimension; therefore PAs are 

very suitable for such tasks. 

In a 2D environment PA either non-holonomic (e.g. robot type – a car) 

or holonomic (all directional) robots are utilized for the robot motion 

control. It is also possible to include the motion dynamics by using the so-

called algorithms based on the control. 

2.4.6 Classification of planning algorithms 

Basic classification of the probabilistic algorithms is based on the fact 

of whether the graph built by them and the recording of the space given can 

be used repeatedly – i.e. for exploring the way among various points: 

• A single query-algorithm builds a graph between two specific points 

in space and the graph is not usable repeatedly for exploration 

between two other points. RRT an EST belong here.  

• A multiple query-algorithm first builds a graph (a network of points, 

road map) recording the space given and via this graph it is possible 

to explore the path between two random space points repeatedly. 

PRM and its modifications belong here.   

• A combined query – SRT algorithm belongs to this category, and it 

stands on the border of the aforementioned queries as it is possible to 

be utilized for repeated exploration between two random space 

points; however, they can be faster than the single query and what is 

more, it utilizes the function of the single query internally by itself. 

In general, SRT is the most efficient algorithm. 
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There are differences among the specific algorithms and it is also important 

which space they operate in, nevertheless, we can state that single query-

algorithms are faster for finding the path between two specific space points, 

however, if we want to explore the space repeatedly, we had better utilize 

multiple query-algorithms which take a longer time to build the graph, but 

they are faster in repeated path exploration than their single query 

counterparts (1). 



24 
 

3. GENETIC ALGORITHMS 

A genetic algorithm (GA) is a heuristic approach trying to look for the 

solution to complex issues by the application of the principles of evolution 

biology, if there is no exact algorithm available. Genetic algorithms or all 

procedures classified as the so-called evolution algorithms use techniques 

simulating the evolution processes known from biology – heredity, 

mutation, natural selection and crossover – for the “improvement” of the 

solution to the task given.    

The principle of the genetic algorithm lies in the gradual building of 

the generations of various solutions to the issue. In the solution a population 

in which each individual represents one solution to the issue given is kept.  

As the population undergoes evolution, the solutions improve. 

Traditionally, the solution is represented by binary numbers, strings of 

nulls, and units, however also other representations are used (tree, field, 

matrix, etc). At the beginning the simulation (in the first generation) 

population is typically composed of completely random individuals. In the 

transition to the new generation, the so-called fitness function expressing 

the quality represented by the member in question is calculated for each 

individual. Due to this quality the individuals are selected at random, then 

modified (via mutation and crossover), which leads to the origin of a new 

population. The procedure is repeated iteratively, which makes the solution 

quality gradually improve. The algorithm is usually stopped after achieving 

a sufficient solution quality, or possibly in the period given. 
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3.1 GA definition 

 

A genetic algorithm is a random adaptive algorithm comprising the 

following operators and parameters: 

GA = (N, P, f, Θ, Ω, Ψ, τ) 

where P is the population of N elements (individuals), P = {S1, S2,..., SN}. 

Each element Si, i=1,..., N is a string (or a set) of whole numbers of the 

fixed length n, representing the solution to the issue, i.e. Si ∈ Zn. 

f indicates the so-called fitness function, which assigns each of the elements 

a positive real number: 

f = Si → R+; i = 1,…,N 

Θ is a selection operator of parent elements – a parent selection operator 

which selects u elements of P: 

Θ : P→ {P1,…,Pu} 

Ω is a set of genetic operators, including crossover operator Ωc, mutation 

operator Ωm and possibly other specific operators which altogether generate 

v offspring, the children of u parents: 

Ω = {Ωc, Ωm, …} : {P1,…,Pu} → {O1,…,Ov} 

Ψ is the deletion operator deleting v selected elements in the current 

population P. Then v offspring are added to the new population P(t +1): 

P(t + 1) = P(t) – Ψ (P(t)) + {O1,..., Ov} 
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τ is the criterion of the end: 

τ : P(ť) → {true,false} 

the parent selection operator Θ and genetic operators Ω are of probabilistic 

character, whereas the deletion operator Ψ can be deterministic. 

 

3.2 Size of population 

 

By selecting the size of population N, we have considered two 

contradictive requirements: 

• variety 

• rate of convergence. 

It is obvious that in selecting a small population there is also a small initial 

variety of elements in the population, and therefore the population tends to 

converge fast, however most frequently to the local optimum instead of the 

global optimum. In the opposite case, in the selection of a large population, 

there is a large initial variety of elements in the population, which means 

that GA has a bigger chance to find the optimal solution. Obviously, the 

price we pay here is the lower convergence and an increased number of 

algorithm operations. The size of the population in usual scope of 50 ≤ N ≤ 

200 fully meets the majority of issues. 

 

3.3 Initial population 

 

The initial population is either generated at random or is achieved as 

a set of a “good solution” via another heuristic method or from the previous 

genetic algorithm calculation. 
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3.4 Chromosome representation 

 

The solution of the combinatory issue can be represented by the final 

set of parameters or variables acquiring discrete values. These parameters 

(in GA indicated as genes) make strings of values (chromosomes). In classic 

Holland GA the chromosome is represented by the string of binary values. 

Nevertheless, it is not the only way.  

 

3.5 Fitness 

 

The value of the fitness function determines the rate of the chance of 

the individuals in the population for the reproduction and survival to the 

next generation. The simplest definition of the fitness function is the direct 

use of the purpose function of the issue solved. In GA elements with the 

highest value of the purpose function by the maximization matters are 

preferred. By the minimization matters it is necessary to modify the fitness 

function, e.g. we subtract the purpose function from a specific invariable 

fmax, which is higher than all the values of the fmax, has to be selected 

sufficiently high, and then the values fmax – f (Si) for i = 1, ..., N can be quite 

close which eliminates the differences between “good” and “bad” solutions 

and makes the selection of elements for further operations complicated. 

  

3.6 Selection of parents 

 

The mechanism of parent selection plays a key role in GA if we want 

to select u parent elements, and then it seems that the best thing is to select 
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the individuals whose fitness function values are in the first u places of the 

not growing sequence of the values. Unfortunately, this strategy results in 

lower genotype diversity and the individuals in the populations of the 

following generations are gradually concentrated only in one part of the 

exploring space. This can mean that the procedure can converge to the local 

extreme. With certain exaggeration we can say, that it comes to the similar 

effect as by the offspring degeneration, whose forefathers are in close 

family relationships. To avoid these unwanted effects for the parent 

selection, strategies based on probabilistic rules are used. Tournament, 

roulette and ordered selection are the most used strategies. 

 

3.7 Genetic crossover operator  

 

A crossover operator is generally considered to be the most important 

exploration operator. The crossover operator combines the segments of 

selected parent elements. The aim is to build new elements leading to better 

solutions. We mostly use discrete, point, diagonal and average crossover. 

 

3.8 Genetic mutation operator  

 

Mutation does not infer the appearance of the new generation very 

much; nevertheless, it has an important function.  By the mutation it comes 

to a random change at a random place in the chromosome. At first sight it 

may seem that the mutation in the overall mechanism is useless, however, 

as already mentioned, it has important functions. Due to this marginal 

change, the sufficient variety of the whole population is ensured. It can 



29 
 

come to the increase of the fitness function with the chromosome given, 

since by the mutation a better solution has been achieved. The mutation 

hinders the situation when a lot of individuals undergo such a crossover that 

a further crossover would produce the same individuals and would be 

useless. In practice it means that it is an attempt to find solutions also 

beyond the original area. We utilize single point or multiple point 

mutations.  

 

3.9 Replacement scheme 

 

The change of a population is a replacement scheme. Immediately, as 

the v offspring are generated, these offspring replace v elements in the 

current population (the size of population stays invariable) and the 

reproduction cycle is repeated. By the change of population the generation 

exchange and incremental replacement are used.   

 

3.10  Criterion of ending 

 

Regarding the fact that we do not know the optimal solution for the 

practical tasks of a large scope, the ending of GA is controlled by the 

achievement of a defined value of a specific parameter. In analogy to some 

iterative methods of the numerical mathematics, two basic strategies are 

mostly used: 

• maximum number of generations tmax , 

• intergenerational relative improvement of the fitness function 

value of the best population solution. 



30 
 

This cycle is repeated as long as the sufficient solution is found. By 

the strategy of the selection of specific genetic operator types, the achieved 

results change significantly, therefore it is necessary to try deploying 

several types and then evaluating their successfulness for the solution to the 

specific matter. 

 

 

 

Fig. 3 Flow chart of a genetic algorithm 
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4. ROBOT MOTION CONTROL 

 

Non-linear algorithms of the manipulator motion control are the basis 

of the motion planning and they utilize the solution of the direct and 

feedback tasks on the position of the executive robot mechanism.   

The second task is to plan the type elementary motions of the 

executive mechanism building the basis of technological operations.  

A random complex trajectory can be composed of type elementary motions. 

The direct task on the mechanism position determines the position and 

orientation of the gripper regarding the knowledge of the mutual motions of 

the kinetic scheme individual members. The task is solved via the relation 

that can help determine the coordinates of the robot’s destination point in 

the system of coordinates connected to the base.  

By the solution of the feedback task the generalized variables at the 

known vector specifying the position of the robot’s end link are determined. 

In this case it is necessary to deal with the system of non-linear algebraic 

equations arising from the relation for the direct kinematic task.  Regarding 

that, we need six parameters to determine the position; the initial set usually 

comprises six unknowns. Six degrees of freedom is also an essential 

prerequisite for achieving the required point with the required gripper 

orientation. For the systems with more degrees of freedom it is suitable to 

introduce additional conditions. 

Information on the link position and orientation is first known for the 

end link. It is necessary to determine the characteristic link positions and 

orientation for the largest possible amount of kinematic scheme members. 
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The vectors characterizing the position of the end link in the coordinate 

systems of links are calculated gradually for the links in the direction from 

the end link. The result of the feedback task is a graph which each branch 

corresponding to a certain configuration of the kinematic scheme.   

Planning of the trajectory is also required for the simplest motions. On 

the path of the motion we determine several node points, for which it is 

necessary to define the joint variables by the solution to the feedback task. 

Therefore, it is possible to make up a table of points from relevant joint 

variables. On the basis of this table, for the known way of interpolation and 

known boundaries it is possible to state the feasibility of the researched 

variation of replacement. If it is not possible to execute the motion desired, 

then it is necessary to utilize the in-definitiveness of the feedback task 

solution, to select another set of joint variables and to repeat the procedure. 

If it is not possible to meet the requirements for boundaries for any of the 

sets of variables, then we have to change the trajectory, or possibly use 

places for laying the object aside and to grasp it then again. In the regime of 

the transition, the force is adjusted to the prescribed value, while in specific 

cases we can use the sensors of object slipping in the grab. 

Making up the table of variables is not sufficient for the robot servo 

systems control. For this activity time functions qi(t) are defined, where i is 

the number of a kinematic couple. In the solution it is necessary to 

determine the decomposition of the whole trajectory into sections and the 

way of interpolation in these sections. 

The planning of the trajectory is carried out by the operator, or it is 

carried out on the higher control level. On the basis of the known trajectory 

and by the solution of feedback tasks the control orders for the drives of 
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individual degrees of freedom are determined. Regarding the fact that this is 

the solution of non-linear equations, the solution is frequently executed via 

computers or via physical models. 

Approximate solution can be achieved by the linearization of the 

equations describing the kinematic scheme. This description is due to small 

changes of coordinates.  

Linearized equations for velocity increase in links’ position and 

working forces represent the basis for the solution to tasks for the 

manipulator drive control. 

The operator determines the desired motion speed of the end link, 

replacement of the robot’s work parts, or possibly the force activity on the 

end link. Regarding this information we have to determine the drive’s 

activity. In the process, the following methods of planning the motion 

trajectory of the kinematic scheme are possible: control according to the 

speed vector, control according to the position increase, and control 

according to the force vector. 

Control according to the force vector is characterized by assigning the 

motion speed by the projections of the angle force vector speed of the work 

part in the coordinate system which the control system cooperates with, so 

that the motion velocity of the end link in the given trajectory point is 

determined. 

Desired values for servo systems can be then set as an integral of 

generalized speeds. In the solution, very high desired values can occur and 

they cannot be precisely monitored by the servo systems. Therefore, the 

algorithms should be modified in order to accept only feasible solutions, or 

solutions ensuring a minimum error in the desired motion execution. 
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The components of the speed vector of the end link are set to the 

operators or they are generated automatically. In the first case the execution 

of desired trajectories are checked in the presentation mode to the operators, 

because the system is positionally closed through the operator. The specific 

motion speed of the end link corresponds with each of the positions of the 

given set of signals. Such a way is effective in the necessity of fast 

transition of the end link from one position to another and if high accuracy 

of the position is not required. In the other case, the operator sets the change 

of the end link position and the system determines the way to achieve the 

desired position. The speed vector is generated on the basis of regulation 

deviation of the end link position from the desired position. 

In the control synthesis according to the speed vector, approximate 

solutions coming out of the boundaries of the given coordinates values are 

used. We usually consider three sets of coordinate values (two marginal and 

one in the middle) and the inversion matrix is quantified for them. For all 

other coordinates the inversion matrix is determined by the interpolation. 

An error occurred by the interpolation is usually negligible. 

The method of gradual position correction is used in numerical control 

systems. Then the control algorithm according to the speed vector is 

specified as an increase of coordinates in one algorithm calculation cycle. 

In the implementation of the aforementioned method it is necessary to 

select node points on the complex trajectory sufficiently close to each other, 

so that the transition from one point to another ensures the desired trajectory 

shape. 

The control process and related calculations are simplified if the force 

vector control is used. The robot’s servo systems develop such generalized 



35 
 

forces which are dynamically equivalent to the forces given replacing thus 

their activity on the kinematic scheme. The control system calculates the 

generalized forces for the coordinates controlled by the drives from the 

setting signals. 

Redundant degrees of freedom and existence of borders/boundaries of 

generalized coordinates do not permit investigation of the linear equations 

describing the system by standard methods. Nevertheless, for the given 

manipulation system configuration it is possible to write all the boundaries 

as linear equations and inequalities via linear programming method. The 

control of the trajectory motion planning is based on the use of a linear 

model and has the following stages: 

- determination of current values of generalized coordinates of q 

manipulation system elements and the control target determining the 

destination position of the robot end link, 

- calculation of the continuous value of the end link position and 

generation of the control vector of this position change if the target 

has not been achieved yet, 

- construction of a linear model, calculation of the transition matrix 

and boundaries dependent on the continuous manipulator and system 

state configurations, 

- determination of generalized coordinates q growths via the solution 

to the task of linear programming, 

- delivery of control signals q to the executive level and return to the 

first point. 
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If the degrees of freedom is insufficient for the given motion 

execution, then only the probable solution with the error minimization is 

determined. 

The method of dynamic programming requires a precise solution to 

the feedback task in the node points and is suitable for kinematic schemes in 

which the feedback task can be solved only analytically. The difficulty of 

the solution is in the fact that a certain point of the space in the systems with 

higher number of degrees of freedom can be achieved by various 

combinations of the joint variables. In contrast to the feedback task, the 

position of the final/destination point is clearly determined by the joint 

variables assignment. By this method, at the beginning the feedback task for 

the given sequence {rk} k = 1,...N of destination link positions in the work 

space is solved. This results in the sequence Qk of the set of permitted 

system configurations. Such a configuration is permitted for which the 

values of generalized coordinates correspond with the construction 

boundaries to the scope of their changes: 

 
qk min ≤ qk ≤ qk max , k=1,...N 

 

If some values of generalized coordinates cannot be determined, they 

are lain as equal to the values in the previous node point Qk-1. The 

trajectory will be made by the sequence of transitions from one node 

configuration to the other one and the task leads to the selection of the 

optimality indicator (power, time, etc.). 

Industrial robots represent complex mechatronic devices comprising 

more functional subsystems which have to ensure various types of robot 

activities. 
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The majority of industrial robots which are currently used in practice 

are industrial robots of a stationary type. They represent such robot types 

which are firmly anchored to the base and their change of the manipulation 

space is possible only on the basis of the kinematic structure pre-

configuration. Meeting the requirements for technically and economically 

effective robot implementation is possible mainly on the basis of a modular 

approach to robotic devices. 

Mechanical systems with more degrees of freedom made mainly of 

open kinematic chains are the basis of industrial robot construction. By the 

mechanical robot concept, besides the degrees of freedom it is necessary to 

consider also the kinematic principle ensuring them. By the kinematic 

solution of the robots’ mechanical systems the matter of the robot’s working 

motions by the executive link defined motion is also implicitly determined. 

By the prescribed effector position in dependence on time, it is possible to 

define the kinematic functions of the track control, which is called the 

inverse task of kinematic robots. After the determination of kinematic 

control functions, it is possible to derive the dynamic functions of drive 

controls as well (3). 

 

4.1 Optimal robot control 

 

Since industrial robots and manipulators are determined to repeat 

predefined tasks at a high number of repetitions, even small improvements 

of their performance can lead to valuable time, power, or financial savings. 
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In this contribution I try to minimize the time of the motion action 

between two points regarding the best possible utilization of available robot 

servo gears. 

 

4.2 Formulation of the robot optimal control matter  

 

Manipulator dynamics connect the control u(t) to the dynamic 

response x(t). Typically, there are two kinds of matters where the dynamics 

utilize the manipulator’s proposal. The first one is the issue of inverse 

dynamics, when the trajectory x(t) is known and control forces have to be 

determined. The other issue of the direct dynamics is when it is necessary to 

determine the behavior of the manipulator for certain forces. 

The aim of the optimal control playing a significant role in the 

proposal of advanced systems is to determine simultaneously u(t) and x(t), 

which could be minimized by a certain criterion - functional. In the optimal 

control the functional of quality of the dynamic system (hereafter the 

functional of quality) is expressed as follows: 

∫ →=
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    [4.1] 

It is expected that at least one x(t) and one u(t) exist, and they meet the 

conditions. Such a solution is considered as optimal. 

Optimal control requires a mathematical process model, which is to be 

controlled, and then it needs the determination of physical restriction and 

quality assessment. 
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4.2.1 Dynamics of manipulator 

In control theory the system state I am dealing with here, and which 

represents the mathematical model of the manipulator dynamics, is usually 

written as follows: 

),,( tuxax =&       [4.2] 

where x is the vector of state variables, u is the vector of control, a is the 

vector of non-linear functions of states and control. In the structural 

dynamics the motion equations are usually written as follows: 

)()()()()()( tFtKCtM =++ ϕϕϕϕϕϕ &&&   [4.3] 

where M(ϕ ), C(ϕ ) and K(ϕ ) are non-linear matrices of weight, damping 

and stiffness. ϕ  is the vector of the degrees of freedom of the general shift 

and F(t) is the vector of control forces driving the system. The equations 

[4.3] can be simply rewritten as [4.2].  

Each component iϕ  in the vector of degrees of freedom represents two 

state variables: d

kx = iϕ a v

lx = iϕ& , where k = 2i-1, l=2i = k+1. i=1,..., n. 

The upper indexes d and v represent the shift and velocity of shift change. 

This allows the division of the state vector x into two parts:  

x= [
dx1 ,

vx2 ,
dx3 ,

vx4 ,...,
d

nx 12 − ,
v

nx2 ]T. In the substitution into (4.3), motion 

equations the perception of state variables are as follows: 

d

kx& = v

lx  

v

lx& = )]C([ ji
1 d

kji

v

ljij xKxFM +−−
   [4.4] 

where i, j = 1, ... , n. This means a random system with n degrees of 

freedom can be defined by 2n state variables. 
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4.2.2 Marginal conditions and restrictions 

A mathematical model of the discussed matter should also comprise 

the marginal conditions and physical restrictions given by the states or 

control elements. The marginal manipulator conditions are as follows: 

x(t0) = x0 x(tf) = xf                    [4.5] 

where x(t0) and x(tf) represent the positions and velocities of joints at the 

beginning and end of the motion. There are also state restrictions/limitations 

as follows: 

 xmin ≤ x(t) ≤ xmax       [4.6] 

Any state trajectory meeting these state restrictions during the whole motion 

is called the permitted trajectory. The restrictions of control elements are: 

 +− ≤≤ iii UtuU )(       [4.7] 

where −
iU  and +

iU  are minimum and maximum forces or moments, which 

can be generated by related drive engines. If the history of control 

instructions meets the restrictions of control elements during the whole 

motion, we can talk about permitted control.   

4.2.3 Functional of quality of dynamic system 

In optimal control the functional of quality of the dynamic system is 

minimized or maximized. The designer of the optimized system should take 

several quality assessments into consideration before s/he selects the 

specific optimization target. 

For instance, large structures or manipulators used in outer space 

applications are manufactured flexibly due to the requirement of a high cost 

decrease for material transferred to orbit. Nevertheless, higher flexibility 
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can introduce additional vibrations influencing the maneuver accuracy. 

Outer space manipulators could be optimized with respect to their accuracy 

as well as to their weight. This can be achieved by vector optimization, 

which can include these two aims. 

If we want to control the manipulator by a given general task within the 

individual limits of control elements (U+, U-) and space (x0, xf), we can use 

the theory of optimal control, while the functional of quality 

∫=
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has to be minimized. 

Note that formally the left side of (4.8) should be written as J(x, u); 

however, as u and x are connected by a state equation, the performance 

depends only on the control. The achievement of such an optimal control 

depends on the specific formulation of g(x,u,t). If g=g1(x), the 

corresponding functional can be used to suppress the vibrations or to 

monitor the specific path. For instance, for g=g1(x)=xTKx, where K is the 

matrix of toughness, the performance represents the deformation system 

power. If g=g2(u) the corresponding functional can be used for fuel 

consumption minimization or power consumption minimization. The use of 

g = g2(u) = uTQu, where Q is the matrix given, suppresses the scope of 

control forces. If g = c, where c is constant, the functional of quality 

represents the minimum time, which is 
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Since t0 is known, this functional quality will minimize tf. This is the 

problem of time-optimal control. 

4.2.4 Formulation of optimal control  

The aim of optimal control is to determine u(t), which minimizes the 

J(u) functional. From the physical point of view state x shall be continuous; 

however, the control u can be interrupted. For better control performance, 

the control can need changing from its maximum value +
iU  to its minimum 

value −
iU . Such a moment is indicated as a switch over time. If the control 

is carried out only by the use of extreme values—the switch over between 

the minimum and maximum values—it is the so-called percussion control.  

Optimal control means finding the permitted control u(t), which means that 

the system (4.2) monitors the permitted trajectory x(t) and minimizes the 

functional quality (4.8). Such u and x are optimal control interventions and 

optimal state trajectories. Minimum J(u) = J*(u) means that: 

J*(u)= ∫∫ ≤
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for all permitted states and all permitted control interventions. The values 

J*, x*, u* are optimal parameter values. They define the global minimum J. 

Inequality (4.10) can also be met only for some scopesof states (||x|| < b), 

where || || means the standard of permitted trajectoriesand b is a positive 

value. In this case [4.10] would define the local minimum. 
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4.2.5 Types of optimal control 

Optimal control provides the history of permitted control interventions 

in the form u(t) = f(x(t), t). From the point of the control, this is considered 

a control system with a closed loop, if it depends on the state. The law of 

optimal control can be linear, time-independent feedback, if u(t) = Cx(t), 

where C is a real matrix constant. The optimal control has an open loop, if 

u(t) = f(t), as this does not depend on the state. The open regulation loop has 

several applications. An industrial robot manipulator with a specific task is 

an example with the open regulation loop. 

 

4.3 Solution to optimal control  

 

Optimal control similarly as all optimizing matters can be achieved via 

two methods: direct and indirect methods. The direct method is an 

approach, in which the sets (x(k), u(k)) and (x(k+1), u(k+1)), would be 

selected in two subsequent iterations so that J(k+1) < J(k) . The functional 

of quality is directly minimized and simultaneously we try to meet all the 

restrictions via various exploration techniques. The direct methods usually 

utilize parametric optimization methods such as methods of punishment, 

gradient, associated gradient, etc. 

Regarding the high number of parameters 7 as well as the time 

consumption, the direct methods (indicated also as parametric optimization 

solving random optimization matter) are quite inefficient. 

An alternative approach is an indirect method. This method is more 

analytical than the direct method. The conditions to be met on the optimal 

path shall be derived as first. These conditions are represented by 
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Pontrjagin’s Minimum Principle (PMP) and are essential for optimal 

solution. The further step is the determination of the controls and the 

trajectory meeting these conditions. In general, the indirect methods, in case 

of being successful, converge faster; however, it can come to convergence 

difficulties. They can be very complex in terms of mathematics as well.   

Due to this complexity, the indirect methods are now mostly used only to 

verify the solution found via other optimization methods.   

To solve the optimization of complex systems controlling such 

manipulators, we need the numerical approach. Regarding the fact that PMP 

for time optimal control comprises initial and final conditions, the matter is 

two-pointed with marginal conditions. The shooting method is one of the 

basic ways to solve such tasks. Nevertheless, the method is very sensitive 

and converges by the optimal manipulator control.   

 

4.4 Overview of existing methods of optimal motion control  

 

Recently, there are lots of sources dealing with various aspects of 

optimal control. The fields considered can be classified into four larger 

groups, starting with general optimizing matters and going to more specific 

topics related directly to time optimal control of two- and more-armed 

manipulators. 

The first group of contributions is focused on the optimal control 

stipulation from the point of view of vector optimization. The second group 

represents the optimal control application of flexible manipulators or 

structures. The third group comprises time optimizing matters of the control 

and their applications – which is also the topic of our contribution. The 
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fourth group describes the numerical methods for solution of various 

matters to optimal control. 

4.4.1 Optimization with more criteria 

We usually need to investigate and optimize several aspects of the 

proposal process. This prepares optimizing tasks with more than one goal, 

which represents the vector optimization. The vector optimization includes 

the matter of optimal control and can be expressed as follows  

min),,()(
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where i = l, ....m and m is the number of the criterion to be optimized.  

By more criteria or by the vector optimization we deal with the 

proposal vector of variables suitable for all restrictions and minimize the 

components of the purpose functions vector. 

The existence of target conflicts is one of the characteristic properties 

of multi-criteria optimization, i.e. none of the solutions allows the current 

minimization of all targets. This is sometimes called a compromise of the 

functional. The matter is commonly reduced to scalar optimization by the 

stipulation of alternative matters or an alternative functional.  

4.4.2 Time-optimal control 

Time optimal matters can be represented by the following functional 

of quality  

J(u) = 0
0

ttdt f

t

t

f

−=∫                [4.12] 

when the final time tf is unknown. It is characteristic that in these matters 

the control is usually not continuous. We can consider two types: for known 
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trajectories it is necessary to find the control u (monitoring the path at the 

shortest possible time), or also the trajectory u shall be found (matter of 

time minimum).  

4.4.3 Optimization via genetic algorithms 

Trajectory planning can be divided into two groups; one is planning 

along a defined path, and the other one is without the path given. 

The space explored is reduced a lot for the matters related to the first 

category; therefore, they are the dynamic programming issues, graph 

methods, and phase plane algorithms. Phase plane algorithms are 

particularly efficient in time optimal planning. Nevertheless, it is 

complicated to apply these methods for high-dimensional exploring matters.    

The matter in the other category is more complex than in the first one; 

both the path and trajectory planning have to be considered. This belongs to 

the matter of the two-point task in the optimal control theory 

and Pontrjagin’s Minimum Principle provides us with basic analysis tools. 

The algorithm of shooting is a typical numerical tool for solving the 

problem. Other solution methods are based on the trajectory 

parameterization and non-linear programming. It is not simple to find the 

solution to the matter due to the non-linearity of the manipulator’s 

dynamics. Therefore, the matter remains still unsolved. 

Recently the genetic algorithms have performed as a suitable tool. The 

use of genetic algorithms has several advantages in comparison to classical 

methods. They have properties allowing them to avoid getting stuck in the 

local minimum and continue towards the global optimum via the combined 

information in many points of exploration, which makes GA robust in non-
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linear matters. Further on, we will deal with the method of trajectory 

planning via genetic algorithms and its implementation with focus on the 

parameterization of genetic trajectory via acceleration.   

4.4.4 Introduction to the subject matter solution via genetic algorithms  

In the genetic algorithm the population of strings is processed many 

times. Each element of the string represents a possible solution. Some 

strings represent unfeasible solutions, whereas some represent good 

solutions. Finally, after a long process, the population converges to the best 

possible solution, i.e. only copies of good solutions are left and the wrong 

ones are eliminated. 

In our case the string should represent the nodes, which are the 

intersections in the motion trajectory of each joint. The best string or 

chromosome is the one that optimizes for example the motion time or 

overall electric power consumed by the manipulator. 

Regarding the fact that we code directly the string of real numbers, the 

process is called a “Genetic algorithm with real coding”. 

Genetic algorithms begin with the initial population of individuals. 

The population is randomly initialized within the joint restrictions; the 

processes of selection, crossover and mutation help develop towards better 

and better fields when exploring the space.  

Matter representation 

We have a two-armed plane robotic manipulator which should move 

from the start position to the stable destination position. The aim is to find 

an optimal path by which the manipulator passes at the shortest possible 

time. 
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To simplify the matter we consider these prerequisites: 

1. the robot is considered to be a two-armed plane manipulator; 

2. individual kinematic restrictions shall be stated and tolerable trajectory 

points shall be from its possible working area; 

3. the overall manipulator trajectory comprises transition points – nodes 

obtained from the genetic algorithm and are processed in regular time 

intervals; 

4. for individual paths among the nodes, the approximation via the spline 

curve is used; 

5. it is presumed that the manipulator end effector starts its motion from 

zero velocity and ends on zero velocity, while it does not stop on the 

transition node.   

 

4.5 Formulation of genetic trajectory planning 

 

Simple genetic algorithm usually uses binary coding for parameter 

representation. We consider the set of real parameters with Np number, 

which is given to x = {x1, x2,…,xi,…, 
pNx } (further we define it as x = 

{ i

N

i xU p

1= }), is coded into a binary string x̂ (={ i

N

i xU p ˆ1= }), and which is 

called a chromosome. Each real xi parameter having the maximum boundary 

value U

ix and minimum boundary value L

ix  is coded into a binary string 

ix̂ using the binary length iL̂ . 
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For the manipulator shown in Fig. 4 it is necessary to optimize nine 

parameters in the form of the following chromosome: 

[q1, q2, q3, qg, 1q& , 2q& , 3q& , t1, t2] 

where  

qi are angles of arm turns in transition points, 

iq&  are velocities of ith joint,  

qg  is a total angle of the final manipulator configuration, which equals to 

the addition of the angles, 

t1 is time from the start to the transition positions, 

t2 is time from the transition to destination positions. 

 

Fig. 4  Manipulator with three links 

  

4.5.1 Fitness transformation via punishment function 

Similarly as many other engineering matters, planning the optimal 

trajectory of a robotic manipulator can be understand as a kind of 

optimization matter with a restriction. A genetic algorithm is not primarily 
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determined for this matter; however, this is solved by the introduction of the 

so-called finding function. The following purpose function, with the 

restrictions represented by the limitations of equality and inequality,  

minimize    f(x)                                                                   [4.13] 

 

   with respect to  gk(x) ≤ 0 (k = 1,2, ... , M1) 

    hl(x) = 0 (l = 1,2, ... , M2). 

We can convert to an assistant/auxiliary function without restrictions for the 

finding function in the following form: 
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where M1 and M2 are restriction numbers of inequalities and equalities. φ () 

and ψ () are finding functions for inequalities and equalities restrictions, 

which are usually determined as φ (y) = |max(0,y)m| and ψ (y) = |y|m. 

max(x, y) returns the maximum value between x and y.  |.| means an absolute 

value of the function and m is a positive number. In genetic algorithms the 

fitness is defined as a maximization of the purpose function and it shall be 

positive. A commonly used fitness transformation is the inverse value of the 

auxiliary function (4.14) or its subtraction from some high positive number 

Cmax. Therefore, the fitness of the aforementioned issue can be expressed as 

follows: 

fit = max (0,1/P(x)) or max (0, Cmax – P(x))  [4.15] 
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4.5.2 Subject matter definition 

For many industrial applications the current robotic manipulators are 

slow to be used economically. Their velocity and thus their productivity are 

limited by their drives’ capability. The increase of the drives and their force 

is not the best solution, as the inertia of the drives themselves increases, as 

well as the price and power consumption. The minimization of time 

necessary for the execution of the given task regarding the drives’ 

restrictions is a more successful approach.  

There are more approaches to the issue, however I selected the method 

of genetic trajectory parameterization via acceleration (13), which regarding 

my research experience is the most elaborated method utilizing evolutionary 

principles and considering many aspects concerning the optimal motion of 

the manipulator, including its dynamics, in the environment with some 

obstacles or without. The method does not have the point approximation of 

the trajectory motion along the curve, which is important due to the 

manipulator motion fluency and due to avoidance of jump motions from 

point to point – this the subject of my improvement in Chapter 5. 

First we get acquainted with the method and then I introduce the 

improvement implementation. 

The essential idea of the method (13) is to select such an acceleration 

profile producing the highest velocity profile, so that for each path point the 

maximum velocity is not higher than the velocity by which the drives keep 

the manipulator on the track without breaking the restrictions. 

We define the matter of planning the optimal trajectory of an industrial 

robot.  
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For given start and destination marginal trajectory conditions (OP): 

q(0) = q0, q(tF) = qF  {OPP}: position               [4.16] 

q& (0) = 0, q& (tF) = 0  {OPR}: velocity               [4.17] 

and dynamics of the robotic manipulator: 

M(q) q&&  + C(q, q& ) + G(q) = T  {R}               [4.18] 

to find optimal manipulator trajectories having the certain minimum 

criterion, in our case we consider time minimization: 

∫
Ft

dt
0

= tF  {criterion}                             [4.19] 

with meeting the following restriction conditions (ObP): 

QL ≤ q ≤ QU  {ObPP}: position             [4.20] 

 

VL ≤ q&  ≤ VU  {ObPR}: velocity             [4.21] 

 

AL ≤ q&&  ≤ AU  {ObPZ}: acceleration              [4.22] 

 

TL ≤ T ≤ TU  {ObPM}: moment              [4.23] 

where 

n : manipulator degree of freedom, 

tF : path time from the start to destination positions, 

q, q& , q&&   ∈ Rn : generalized vectors of position, velocity and acceleration, 

T ∈ Rn : generalized vector of the moment (force) of the control, 

M(q) ∈ Rn × n : matrix of inertia, 
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C(q, q& ) ∈ Rn : Coriolis’s and centrifugal vector of force, 

G(q) ∈ Rn : vector of gravitation force, 

U,L : top and bottom border/boundary values. 

4.5.3 Parameterization of genetic trajectory 

Variables of a trajectory can be divided into two groups: variables of a 

kinematic trajectory and a control moment. Variables of the kinematic 

trajectory are as follows: arm position, velocity and acceleration. Trajectory 

restriction consists of two parts: restrictions of equality of trajectory 

marginal conditions (OPP, OPR) and inequality of restricting trajectory 

conditions (ObPP, ObPR, ObPZ and ObPM). 

In robotics it is important how to select the parameters from trajectory 

variables and how to select the optimization method for trajectory planning. 

We chose the arm acceleration as a parameter for trajectory genetic 

parameterization. Despite having chosen tangential acceleration as the 

variable for mathematical expression of time optimization, we also consider 

the drives of moments controlling the motion. 

 

4.6 Procedure of genetic trajectory planner 

 

4.6.1 Acceleration parameterization for genetic algorithm 

 

In this part I describe the procedure of acceleration parameterization 

for effective genetic algorithm implementation. 
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We introduce the following variables: 

n: number of manipulator joints 

N: number of trajectory parts 

∆t(=tF/N): evenly divided path time 

qj,vj ( = jq& ), aj ( = jq&& ) , Tj: position, velocity, acceleration and moment of 

the jth joint 

qj,i , vj,i (= ijq ,& ), Aj,i (= ijq ,&& ) (j = 1,2, ..., N): position, velocity, acceleration 

of the jth joint in the ith node point  

Qj,i, Vj,i (i = 0,1, ...., N): position, velocity of the jth joint in the ith node point 

where i=0,N means start and destination node points 

Q ={Qj,i | j = 1,2,..., n, i=0,1,...,N} : set of node points positions 

V ={Vj,i | j = 1,2,..., n, i=0,1,...,N} : set of velocities of node points 

A ={Aj,i | j = 1,2,..., n, i=1,2,...,N} : set of accelerations of node points 

The method of trajectory discretion: First we divide the path time interval 

[0,tF] into N amount of the same partial intervals. That is: 

[0,tF] = [t0,t1] ∪ [t1,t2] ∪ ,...,∪ [tN-1,tN]               [4.24] 

where  

∆t=ti – ti-1 = 
N

tF (i = 1,2,...,N)                           [4.25] 

The accelerations remain constant in each partial path time interval, i.e.: 

Aj,i = const. (i=1,2,...,N)                 [4.26] 

For the explicit path time specification and its adoption as a system 

parameter, we express the path time t ∈[ti-1, ti] by a standardized τ 

parameter as follows: 
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τ = 
t

tt i

∆
− −1  (i = 1,2,..., N), τ ∈[0,1]               [4.27] 

Then the velocity of the joint in the ith partial interval of the path time can 

be expressed as follows: 

vj,i = Vj,i-1 + ∫
−

t

t

ij

i

dtA

1

,

                 

[4.28] 

and the shift of the joint can be expressed as follows: 

qj,i = Qj,i-1 + ∫
−

t

t

ij

i

dtv

1

, = Qj,i-1 + 

2

1
τ∆t(Vj,i-1 + vj,I                           [4.29] 

The overall sum of the joints’ accelerations and the related interval of the 

path time shall be the difference of the destination and start velocity which 

is zero in this case (OPR). 

∫
Ft

j dta
0

= tA
N

i

ij ∆∑
=1

, = 0                              [4.30] 

Then the joint acceleration in the ith node point of the time path interval we 

obtain recursively as follows: 

Vj,i = Vj,i-1 + Aj,i∆t = tA
i

k

kj ∆∑
=1

,                 [4.31] 

The joint position in the ith node point of the path time interval is given: 

Qj,i = Qj,i-1 + 

2

1
τ∆t(Vj,i-1 + Vj,i) ∆t                [4.32] 
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After substitution of (4.30) for (4.33) we get: 

Qj,N - Qj,0 = tV
N

i

ij ∆∑
−

=

1

1
,  = 

2
1

1
,)( tAiN

N

i

ij ∆−∑
−

=

              [4.33] 

After the substitution, the relation among the joint position and two points 

and joint accelerations is as follows: 

Qj,N - Qj,0 = N (
2

1
,, ) tAA

N

i

Njij ∆−∑
=

-
2

1

1
, tiA

N

i

ij ∆∑
−

=

= - 
2

1
, tiA

N

i

ij ∆∑
=        

[4.34] 

If we consider the joints’ accelerations as genetic coding parameters, then 

two dependent parameters of joint accelerations Aj,k and Aj,l shall be 

sufficient for the equalities (4.30) and (4.34) to meet two marginal 

trajectory conditions (OPP, OPR). That is: 










lj

kj

A

A

,

.
 = 



















−
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−

−










−

−

− ∑

∑
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≠=
N
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ij

Njj

N

lkii

ij

iA
t

QQ

A

k

l

kl

,,1
,2

,0,

,,1
,

.
1

11
 

for k, l = 1,2,..., N and k ≠ l. 

4.6.2 Trajectory parameter coding 

If we take the acceleration as a parameter of genetic trajectory coding, 

in general, we can select two dependent parameters Aj,N-1, Aj,N to meet the 

marginal trajectory conditions (OPP, OPR). The set of coding parameters of 

each of the individual strings is given as follows:  
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2

1
,ˆ                  [4.35] 

where 








=

−

=
UU

n

j

N

i

ijA
1

2

1
,  are  coding parameters of acceleration and tF is the 

coding parameter of the path time. Two dependent parameters of 

acceleration selected with respect to marginal trajectory conditions (OPP, 

OPR) are given as follows: 
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QQ
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          [4.36] 

The size of the coding parameter is for each individual string x̂  as follows: 

 Np = n.(N – 2) + 1                               [4.37] 

4.6.3 Working with limit conditions 

It is not easy to work with the limit conditions of the robotic 

manipulator trajectory expressed by the equations of inequalities; therefore 

we transformed them to static restrictions. For illustration, we consider the 

following dynamic system: 

we have:  x& (t) = f(x(t),u(t)) 

for which it applies:  xL ≤ x(t) ≤ xU , [ ]Ftt ,0∈∀
              

[4.38] 

where x(t) is a state variable with bottom boundary xL , top boundary xU and 

 u is the controlled input. Continuous dynamic restrictions in the form of 
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inequalities (4.38) can be transformed to static restrictions in the form of 

inequalities: 

c(x) = ( )( ) ( )( ) dtxxxxw LU
t

x

F 22

0
0,min0,min −+−∫            [4.39] 

If c(x) is equal to zero, the inequality restrictions in (4.38) is met. Similarly, 

we will work with the restrictions of trajectory limits. For simplicity, we 

consider xj as trajectory variable of such a jth joint, that xj =qj (position), vj 

(velocity), aj (acceleration), Tj (turning moment). And we indicate the 

trajectory variable from the record (4.20) – (4.23) as  

xj(t) [ ] [ ]F

U

j

L

j ttxx ,0,, ∈∀∈ , where 
L

jx and 
U

jx
 
are the bottom and top 

boundaries of each trajectory variable of the jth joint. Then we can rewrite 

(4.20)  – (4.23) as follows: 

 G(xj) = )( j

t

x xgW
                 

[4.40] 

where 

 g(xj) = 
12

0

0

)0,/1min(

)0,/1min(
×∈















−

−

∫
∫

R
dtxx

dtxx

F

F

t
mU

jj

t
mL

jj
 

is the vector breaking the restrictions, [ ] 21×∈= RwwW U

x

L

x

t

x  is the weight 

vector related to the bottom and top boundaries x and m is a positive number 

of the exponent. If G(xj) is approaching zero, i.e. that, xj trajectory variable 

meets its restriction condition in  [4.20] – [4.23]. 

Fighting off the trajectory restriction condition in (4.40) to the fitness 

function, the fitness trajectories for trajectory genetic planning are indicated 

as: 
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fit =max
∑ ∑+ =x

n
j jF xGt 1 )(

1
,0( )                     [4.41] 

where 

tF : time of path (criterion of minimization), 

max(x,y): maximum value between x and y, 

xj : type of variable trajectory of such a jth joint, where x =q(position), 

v(velocity), a(acceleration), T (turning moment), 

G(x) : modified limit conditions related to x type (ObPP, ObPR, ObPZ, 

ObPM), 

∑x
: record expressing every limit condition in the fitness trajectory. 
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5. SOLUTION PROPOSAL AND 

IMPLEMENTATION 

5.1 Algorithm of the whole procedure 

 

The procedure for genetic planning of the trajectory for the robotic 

manipulator is expressed as follows: 

x̂ = { ix̂ | i = 1,2, ... , Np} : trajectory chromosome in [4.35] 

 k = 1,2, ..., Npop : index of kth population individual 

X̂ = {
kx̂ | k = 1,2, … , Npop} : population chromosome 

Fit = {fitk | k = 1,2, … , Npop} : fitness population vector  

XRX popN

s
ˆˆ: a×Ω ; selection operator  

XXc
ˆˆ: aΩ ; crossover operator 

XXm
ˆˆ: aΩ ; mutation operator  

Initial conditions: 

robot:  arms parameters 

QL, ... , TU : bottom and top boundaries of limit conditions 

in (4.20) – (4.23)  

GA:  pc, pm ∈ [0,1] : probability of crossover, mutation 

  [
Lx̂ ,

Ux̂ ] : x̂  chromosome boundaries coding 

  }N,...,2,1|L̂{ˆ
pi == iL : lengths of coding x̂  

  Npop : population size, Ngen : max. number of generations 

other:  dτ : period of sampling, N : partial path time 
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Input:  q0, qF : start and destination robot positions (OPP) 

Stop: 

  Λ : X̂  a  {Yes, No};  stop when the generation number 

achieves Ngen 

outcome: 

  trajectory of an elite string meeting the stop criteria  

Pseudocode  Algorithm  

1. Initialization 

1.1. Execute start setting of robot’s parameters and genetic algorithm 

1.2. Input conditions (OPP) 

1.3. gen ←  1, X̂ (gen) ←  Initialization of chromosomes 

(
Lx̂ ,

Ux̂ , L̂ , Npop) 

while (Λ : X̂ (gen) ≠ Yes) do 

2. Evaluation of Fit(gen) s X̂ (gen) 

for k=1 to Npop do 

2.1. x̂ ←  
kx̂  

2.2. calculation of ∆t according to [4.25] 

2.3. calculation of the set of accelerations A according to [4.36]  

2.4. calculation of the set of speeds of V nodes, of the set of positions 

Q according to [4.31] – [4.32]  

2.5. calculation of q&&  acceleration from A, q&  velocity and q position 

according to [4.28] – [4.29] and  T moment according to [4.18]  

2.6. calculations of fitness fit according to [4.40] – [4.41]  

2.7. fitk ←  fit 
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end 

3. GA operations 

3.1. ))(),(ˆ()(ˆ genFitgenXgenX ss Ω←  

3.2. ))(ˆ()1(ˆ genXgenX scc Ω←+  

3.3. ))(ˆ()1(ˆ genXgenX cmm Ω←+  

4. gen ←gen + 1, )(ˆ genX ← )(ˆ genX m  

end 

return the result 

Kinematic chains of industrial robots are usually open and consist of two 

parts. The first part is a positioning device comprising individual 

components and shifting and rotation kinematic couples. The other part of 

the industrial robot kinematic chain is the device for orientation consisting 

mainly of rotation kinematic couples with one, two, or three motion degrees 

of freedom. A mechanical system of an open industrial robot kinematic 

chain is accomplished by an effector, i.e. an executive link of the robot. 

 

Fig. 5 Kinematic scheme of an industrial robot 

y 
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The position of the P working point of the robotic effector regarding the 

coordinate system of the mechanism and for the orientation according to 

Fig. 5 can be expressed as follows: 

xP = L1.sin q1 + L2.sin (q1 + q2) 

yP = L1 cos q1 + L2 cos (q1 + q2) 

The task is to investigate the necessary motion in kinematic couples to 

ensure the replacement of the P working point of the robot effector from P0 

position to P1 position. At the beginning and the end of the motion the 

speed and acceleration of the P point shall be zero. 

Dynamic equations of the manipulator in Fig. 4 can be stated as follows: 

2
2212121111 2 qhqqhqMqMT &&&&&&& −−+=  

2
11122222 qhqMqMT &&&&& ++=  

where  

( ))cos(2 221
2
2

2
12

2
112111 qlLlLmlmIIM +++++=  

)cos( 2212
2
22212 qlLmlmIM ++=  

2
22222 lmIM +=  

)sin( 2212 qlLmh=  

while 

M11, M12, M22  are drive moments generated by servo gears L1, L2 are        

                         lengths of robot links  

I1, I2  are mass moments of inertia to link centres  

l1,l2  are distances of individual links centres  

m1, m2 are masses of individual links. 
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Fig. 6 Destination effector point trajectory 

We look for time courses of turn angles qi(t) and qj(t) in the form of a fifth 

degree polynomial: 

qi(t) = a1t
5 + a2t

4 + a3t
3 + a4t

2 + a5t + a6 

qj(t) = b1t
5 + b2t

4 + b3t
3 + b4t

2 + b5t + b6 

Constants in these polynomials are determined from the start and 

destination conditions for the motion of P working point. 

The point P trajectory shown in Fig. 6 corresponds with the replacement 

from the start to the destination positions.  

Turn angles of individual mechanism components - for the orientation 

expressed as functions of time – represent the kinematic control functions of 

the robot’s mechanical subsystem.   

start point  

iii
qqq &&& ,,

destination point 

fff
qqq &&& ,,

mm
qq &,

m
q&&

1t 2t

interposition point  
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Fig. 7 What is needed to optimize 

 

 

 

5.2 Solution implementation in support software 

5.2.1 Robot model  

 

To understand what properties the unoptimized trajectory has, it is 

suitable to prepare a robot model respecting its kinematics and dynamics.  

We looked for the suitable environment, in which the implementation could 

be executed for quite a long time. We selected MATLAB™, which allows 

a lot of engineering and scientific calculations, and it is possible to 

supplement it by various toolboxes, programming of one’s own functions, 

and therefore its possibilities in the field of scientific calculations are almost 

unlimited.   

iii qqq &&& ,,

a are given 

21,tta can be optimized 

     we can define via afore-mentioned parameters  

start point 

destination point 

1t 2t

interposition point  

iii qqq &&& ,, fff qqq &&& ,,

mm qq &, mm qq &,

mq&&

fff qqq &&& ,,
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We built the robot model in the  MATLAB™ program with the use of 

the RobotiCad Toolbox which allowed us to create the motion scheme of 

a random kinematic chain in a user-friendly way. It also cooperates with the 

SIMULINK® simulation tool, where the dynamic chain properties can be 

defined as necessary for the application of our method of optimal trajectory 

generation.  

 .  

Fig. 8 Plane mechanism trajectory 

 

Fig. 8 shows the model of a plane mechanism with three degrees of 

freedom. The program allows illustrating the destination effector trajectory. 

For illustration we chose a simple trajectory from the point with zero y 

coordinate, positive x coordinate and zero arms turn angles to the point with 
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a negative x coordinate, non-zero y coordinate and positive arms turn 

angles. 

We would like to optimize a similar trajectory in the MATLAB™ 

Optimization Toolbox. The robot in real applications carries out a lot of 

motion actions, so its trajectory comprises a lot of smaller trajectories 

similar to the one we have decided to analyze. The principle applies for any 

random trajectories.  

First we illustrated the time courses of the angles of the arms´ turns, 

speeds and accelerations in order to show the trajectory given and describe 

what we need to improve.   

The horizontal axis comprises the time; the vertical axis comprises the 

angle (Fig. 9), speed and acceleration. 

 

 

Fig. 9 Time courses of arms angles 
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The illustrated courses of individual turn angles in Fig. 9 show that the 

curves do not indicate any “interventions” during the motion, which could 

lead to possible more efficient motion during the manipulation action. The 

same applies for the courses of the arms´ velocities and accelerations in Fig. 

10 and Fig. 11. 

 

 

Fig. 10  Time courses of arms’ velocities 
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Fig. 11 Time courses of arms’ accelerations 

5.2.2 Trajectory optimization 

In this chapter I describe the parameters of the plane mechanism 

tested. The arms’ lengths were l1 = 1 m, l2 = 1 m and l3 = 0.5 m. Mass m1 = 

1 kg, m2 = 1 kg and m3 = 0.5 kg. The maximum permitted drive moments 1, 

2 and 3 are 45 Nm, 20 Nm and 5 Nm. The speeds and accelerations in the 

start and destination positions are null. 

For the genetic algorithm the following parameters were valid: 

crossover probability Pc = 0.8 to a chromosome (function Pc determines 

how often the chromosome is crossed), mutation probability Pm = 0.05 

(function Pm determines how often than chromosome part is mutated) and 

the population of 40 individuals for the angles in the interpositions, arms´ 

speeds and times, string size of the chromosome 9. The number of crossed 

chromosomes in each of the generations is defined as a multiple of Pc and 

the population size. The number of mutated genes in each generation is 
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defined as a multiple of Pm, population size and chromosome length. We 

used a tournament selection, elitism and the maximum number of 

generations – 80. 

We have carried out the following experimental results verification in 

the MATLAB™ environment with the use of a toolbox for optimization via 

genetic algorithms. 

Fig. 12 shows the optimized trajectory, which even at first sight has 

a different trajectory course than the original one illustrated in Fig. 8. We 

can see the illustration of the gradual motion of individual arms; the turn 

angle of the first arm does not change first at all, and only in the third of the 

motion sequence a deviation can be recorded.  

 

Fig. 12  Optimized trajectory 
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The largest turn angle and its largest moment of servo gear have been 

developed in the second joint immediately after the motion sequence 

beginning.  

The illustrated course is calculated after the run of maximum number 

of generations - 80. During the calculation of individual generations the 

course has gradually approximated optimal values.  

Fig. 13 shows the course of fitness in individual generations. We can 

see the falling tendency with the number of generations, which indicates the 

successful calculation leading to finding the time optimal parameters of the 

mechanism motion trajectory. 

 

Fig. 13 Course of fitness 
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To compare, in Fig. 14 we can see the time courses of arm turns 

angles. In contrast to the course shown in Fig. 9 we can see a significant 

change in the angle turn of the other arm, which slows down in the other 

half of the motion sequence and the turn angle is almost not changed. The 

course of the angle turn of the first arm is different, it starts with an easy 

angle change and approximately in the half of the motion sequence it 

increases. The third arm is turned gradually almost evenly and continuously 

during the motion sequence. 

 

Fig. 14 Time courses of arms angles 

 
In relation to the time courses of angles the time courses of other 

quantities change also, the velocities and accelerations of arms in particular.  

Fig. 15 illustrates the time courses of arms velocities. 
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Fig. 15 Time courses of arms velocities 

It is necessary to notice that the velocity of the other arm began to 

grow sharply in the first third of the manipulation sequence. In the second 

third it had a falling tendency and in the last one it was almost none. The 

first arm achieved the highest velocity in the last third of its motion. 

 

Fig. 16 Time courses of arms’ accelerations 
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The courses of acceleration in Fig. 16 show that the gear properties for 

achieving the maximum allowed arms moments are utilized at their 

maximum. If we compare these courses to those in Fig. 11 from the original 

mechanism, the main difference, besides completely different curve shapes, 

is seen approximately in the middle of the motion, where a sharp course 

change occurs. 

The main task is to define the moment when the breaking should 

occur. It is clearly seen in the course of the first arm, where the breaking 

moment occurs approximately in the middle of the motion.  

 

 

Fig. 17 Time courses of arms’ moments 
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Fig. 18 Dependence of motion duration from the point to the point                     

on the number of generations  

 

 

Fig. 19 Dependence of the total sum of arms’ turn angles on the number             

of generations 
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Fig. 20 Dependence of the total length of Cartesian trajectory                              

on the number of new generations 

 

 

Fig. 21 Dependence of the total excessive turning moment on the number                

of generations  
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5.2.3 Simulation results 

The verifying study has been carried out for a 3-link plane mechanism 

moving in a free working space. We have learned the decrease of motion 

time and at the same time the decrease of Cartesian trajectory length.  

Genetic algorithms have proved to be a suitable optimization method; 

the results are illustrated in the graphs in the previous chapter.   

The moments of drives in the motion have not exceeded the allowed 

values and at the same time they have been fully utilized. 

 

5.3 Experimental verification of results 

 

Since the solution is not limited only to a specific manipulator type, it 

is possible to test it on a random robot type with regard to the setting of 

similar conditions as by the simulation mentioned. To test the optimized 

trajectory we have selected a real tool for an offline robot programming. As 

we have had the possibility to work with Denso robot (in Fig. 22), testing 

has been carried out in the environment delivered with it. It is WINCAPS 

III software, whose trial version has been at our disposal. WINCAPS III 

Program is a program package for an effective development and verification 

of robot control programs. It allows checking the robot operations, 

variables, PC inputs and outputs connected to the robot control circuits.  It 

also allows program administration as projects, storing of frequently used 

programs in program files registers and also other functions for program 

functions administration. Denso Robot can be connected to a PC via 

Ethernet or via a serial port.  
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Fig. 22  Denso VS-6556G Robot 

 

 

Fig. 23 WINCAPS III Program environment 
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Fig. 23 shows the WINCAPS III Program environment. In Part A there 

is the program menu, B comprises of various control panels, C is the  

so-called docking window with various information on the current project 

of a robotic workplace, etc., and D is the so-called view of the program 

where we can see the source code of the program, the 3D window with the 

robotic workplace, etc. A specific robot model from the robot models 

catalogue can be included to the program and then programmed. In our case 

it is the Denso VS-6556G robot. 

In the Model window a 3D object representing the workplace elements 

or obstacles can be inserted into the scene. 

In the Arm operation window we can define the robot’s motion either 

in the mode of setting the point coordinates or in the mode of setting the 

individual arms’ turn angles. 

 

Fig. 24 Start point in Arm operation 
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Fig. 25 Destination point in Arm operation 

 

First I defined a common trajectory from one point to the other point 

in the Arm 3D View window. 

In the bottom part of WINCAPS environment there is a window, 

which can take over the robot’s defined position from the Arm operation 

window by clicking the key Get Position. Fig. 26 shows the defined 

positions of the robot in the destination point coordinates system mode. 

Line 0 corresponds with the start position and line 1 corresponds with the 

destination position of a robot. Fig. 27 shows the defined robot’s positions 

in the mode of the arms’ turn angles. Line 0 corresponds with the start 

position and line 2 with the destination position of a robot.  

 

Fig. 26 Defined points of a robot in the position coordinates mode  
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Fig. 27 Defined points of a robot in the arms’ turn angles mode 

 

To execute our experiment for verifying the simulation results in the 

MATLAB™ environment we define for the Denso mode robot the 

trajectory via motion points. This can be done in the ArmPlayerPlus 

window (Fig. 28), where we build the robot program by taking over the 

defined points by the order MOVE in the right side. Beside this, under the 

key MOVE, there are various ways of trajectory points definition, in the 

program it is displayed in the record of the order MOVE P, @parameter, 

where “parameter” means in the case: 

• @P, that the robot in the given trajectory point does not accelerate 

and slow down, which on the other hand can result in the fact, that 

it does not cross the point all the time and can bypass it, 

• @0 slows down and accelerates, but only partially; the point is 

partially bypassed, 

• @E means complete stop in the point given; this is used if we need 

to reach an exact specific point. 

 

Example of a simple program: 
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'!TITLE "<Titile>" 

PROGRAM motion 

 MOVE P,@P J4, S=100 

 MOVE P,@E J5, S=100 

END 

Order MOVE P, @P J4, S=100 means that the robot executes a motion in 

the mode from the point to the point, while the point is determined by the 

arms turn angles from the Table type J in the line 4 (J4). Since @P is stated 

there, the robot does not accelerate nor slowdown in the point. In the end of 

the line the speed is defined in percentage (S=100), i.e. the robot moves to 

this point with a maximum possible speed. 

Order MOVE P, @P J5, S=100 means that the robot carries out a motion in 

the mode from a point to a point, where the point is determined by the arms 

turn angle from the Table J in line 5 (J5). Since @E is stated, the robot stops 

in the point given. 

 

Fig. 28 Definition of motion points in ArmPlayerPlus 
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When we run the motion sequence in ArmPlayerPlus, the program will 

move the robot from the first point to the other point. 

In the ArmPlayerPlus window we can see the time in seconds 6.83 s 

(Fig.29). It is the time in which the robot executes the motion from the 

starting point defined in line 21 to the destination point in line 30 (in the 

program specified as J30), while the motion is not optimized at all.    

The trajectory is in the shape of an arc as illustrated in Fig. 8. The 

trajectory points are defined by well proportioned division of turn angles in 

the scope from -72° to 90°. 

 

 

Fig. 29 Coordinates of points and duration of a non-optimal trajectory 
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Since we do not have available software to transfer the trajectory 

directly from the MATLAB™ environment to WINCAPS with defined 

trajectory points and speeds in individual points, it is necessary to carry out 

the action manually and set the optimized trajectory in the form of a specific 

number of trajectory points. 

The table of points of the optimized trajectory is shown in Fig. 30. The 

points are given according to the generated optimal trajectory based on the 

data in Fig. 24 showing the course of the individual arms turn angles in 

specific time periods. 

 

 

Fig. 30 Coordinates of points and duration of the optimized trajectory  
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After the assignment of the optimal trajectory due to the table of points 

defined in lines from 11 to 20 we have learned, that the generated optimized 

trajectory has shortened the time of motion to 5.42 s (Fig. 31).  It is the time 

necessary for the robot to move from the start point defined in line 11 to the 

destination point defined in line 20 (in the program indicated as J20). 

 

 

Fig. 31 Duration of the optimal trajectory 

 

The method improvement proposed by us (13) in the form of the 

points’ approximation of the motion trajectory along the curve has made the 

time shortening from 5.42 s to 3.38 s possible. The shortening of time is 

significant, since in the case of optimal trajectory method (13) being in 

individual points the manipulator carries out partial motions, slows down 

and subsequently accelerates to reach the point specified. 

In the case of optimal trajectory it is a continuous motion along the 

curve whose parameters were generated by the applied genetic algorithm. 

Individual points of the existing trajectory are approximated by the curve, 



86 
 

no slowing down or acceleration occur, and therefore, the motion is 

continuous and the trajectory length is shorter. 

 

 

Fig. 32 Trajectory optimization 
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6. CONCLUSION 

 

Based on the analysis of various existing methods and regarding the 

drives moments constraints, I implemented and improved the algorithm to 

an off-line generating of a time optimal trajectory generated via the genetic 

algorithm. 

For a specific manipulator this algorithm requires: that the angles in 

terms of the position on the path can be calculated, the dynamic equations 

are known as well as the maximum and minimum possible generated drives 

moments as functions of arms angles, and angular speeds are known. 

The algorithm implementation of the manipulator trajectory genetic 

planning which optimally controls the robot motion in terms of time is the 

main contribution. The method can be utilized to generate optimal 

parameters for an industrial robot motion trajectory with various numbers of 

freedom degrees. 

For simplification and better illustration the experiments were carried 

out on the model of a surface manipulator with three freedom degrees. The 

mentioned procedure is suitable for further 3D processing, for other 

manipulator types, and testing of generated trajectory in some of the 

environments for a robot control in the mode of setting the points’ motion 

coordinates. 

It could be suitable to develop support software able to rewrite the 

generated trajectory from the MATLAB™ environment in the form of 

appropriate orders directly for a specific robot in a specific control 

environment.  
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Similarly, I considered only time as a criterion for minimization; 

however, this could be enhanced to further criteria such as power. Also 

other constraints and tasks, e.g. avoiding obstacles and cooperation of more 

robots could be subject to further research.   
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