
Pavol Bezák

Using Motion Planning and genetic Algorithms in
Movement Optimization of industrial Robots

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224754494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Scientific Monographs in Automation and
Computer Science

Edited by
Prof. Dr. Peter Husar (Ilmenau University of Technology) and
Dr. Kvetoslava Resetova (Slovak University of Technology in
Bratislava)

Vol. 5

USING MOTION PLANNING
AND GENETIC ALGORITHMS

IN MOVEMENT OPTIMIZATION
OF INDUSTRIAL ROBOTS

Pavol Bezák

Universitätsverlag Ilmenau
2012

Impressum

Bibliographic information of the German National Library
The German National Library lists this publication in the German national
bibliography, with detailed bibliographic information on the Internet at
http://dnb.d-nb.de.

Author’s acknowledgement to Gabriela Chmelíková for translation.

This scientific monograph originated from the author's dissertation thesis defended
at the Slovak University of Technology in Bratislava, Faculty of Materials Science
and Technology in Trnava.

Reviewers:

Doc. Ing. Anton Kachaňák, CSc.
Prof. Ing. Juraj Špalek, PhD.
Doc. Ing. Peter Schreiber, PhD.
Ing. Augustín Gese, PhD.

Author’s contact address:

Ing. Pavol Bezák, PhD.
Slovak University of Technology in Bratislava
Faculty of Materials Science and Technology in Trnava

Ilmenau Technical University / University Library
Universitätsverlag Ilmenau
Postfach 10 05 65
98684 Ilmenau
www.tu-ilmenau.de/universitaetsverlag

Production and delivery
Verlagshaus Monsenstein und Vannerdat OHG
Am Hawerkamp 31
48155 Münster
www.mv-verlag.de

ISSN 2193-6439 (Print)
ISBN 978-3-86360-047-1 (Print)
URN urn:nbn:de:gbv:ilm1-2012100195

Titelfoto: photocase.com

5

Abstract

The issues of path and trajectory planning algorithms and optimization

of industrial manipulator trajectory generation are still not completely

solved due to their variability and increasing complexity with the growing

number of robot degrees of freedom. Generation of an optimal trajectory

can be solved in several ways, such as traditional numeric and more recent

approaches, which include evolutionary algorithms and genetic algorithms

within them.

The first chapter is devoted to a brief overview of path planning

methods, especially in mobile robots. The second chapter deals with a more

detailed overview of robot path planning methods in continuous and

discrete environments. The third chapter describes the most popular motion

planning algorithms. The fourth chapter is dedicated to genetic algorithms

which we used as an optimization method. The fifth chapter focuses on

optimal robot motion control and optimization methods using genetic

algorithms as the method for an industrial manipulator control. The next

chapter contains a solution and its implementation in support software, as

well as the experimental verification of the results. The last chapter

evaluates the results and their benefits.

Key words

trajectory planning, optimization, genetic algorithms, industrial manipulator

6

LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviations

GA genetic algorithm
PA probabilistic algorithm
RRT Rapidly-exploring Random Tree
EST Expansive-Spaces Tree
SBL Single-query, Bi-directional, Lazy-collision checking
PRM Probabilistic Road Map
C-space configuration space
PMP Pontrjagin Minimum Principle

Symbols

Path and trajectory planning

g(x) distance from start to finish
h(x) distance from current node to finish
lx , ly length of environment in x- and in y-axes
nx , ny number of cells in x- and y-axes

Genetic algorithms
P population
N number of population elements
S population element
F fitness function
Θ selection operator
Ω set of genetic operators
Ψ reduction operator
Τ accomplishment criterion

Motion control
qi(t) time function
Qk set of tolerable system configurations

Optimal motion control
u(t) control
x(t) control response

7

J(u) purpose function
x& vector of state variables

U vector of control
A vector of non-linear state and control functions
M(ϕ) matrix of mass

C(ϕ) matrix of damping

K(ϕ) matrix of stiffness
ϕ vector degrees of freedom of general shift
F(t) vector of control powers driving the
x(t0), x(tf) joint position at the beginning and end of motion

−
iU , +

iU minimum and maximum torque generated by actuator

J*, x*, u* optimal parameter values
gi optimized criterion
wi weight factor

Genetic planning of trajectory

Np set of real parameters
x̂ chromosome of population

xi real parameter
U

ix maximum boundary value of real parameter

L

ix minimum boundary value of real parameter

ix̂ binary string

iL̂ binary string length

qi ith arm turn angle in momentary position

iq& velocity of ith-joint

qg total angle of manipulator arms at the end of motion

T1 time from initial position to momentary position
t2 time from momentary position to destination position
gk restriction of inequality
hl restriction of equality
M1, M2 restriction numbers of inequalities and equalities
φ (), ψ ()

punishment functions for restriction of inequalities and
equalities

8

P(x) punishment function
Q, q& , q&& generalized vectors of position, velocity and

acceleration
tF road time from initial to destination positions
T generalized vector torque control (force)
M(q) matrix of inertia
C(q, q&) Coriolis and centrifugal power vector

G(q) vector of gravity
qj,i , vj,i , aj,i position, velocity, acceleration of jth joint in ith node

point
fit fitness population

sΩ , cΩ , mΩ operator of selection, crossing, mutation

pc, pm probability of crossing, mutation
Npop size of population
Ngen number of generations
τ, dτ, N time, period of sampling, partial road time

9

INTRODUCTION

Optimization issues can occur in all fields of human activities. They

emerge in such situations when it is necessary to come to some solution.

Obviously, we seek the most convenient solution. Optimization issues can

be handled by optimization methods. To be able to formulate the

optimization matter in a mathematical way, it is necessary to constitute

a mathematical model of the situation. A real situation model is always

simplified, i.e. a mathematically processable situation model does not

describe true reality, and vice versa, a model close to the reality does not

have to be processable in a mathematical way.

The best solution selection brings along certain drawbacks. For the

mathematical formulation of an optimization matter we choose such

a criterion that allows us to select the best solution variable. The optimum

criterion selection is problematic and in many applications it is frequently

subject to subjective requirements. To solve a real optimization matter via

its mathematical model, it is often necessary to specify the model and

modify the optimum criterion. Various versions of the optimization matter

have to be dealt with repeatedly as well as verified via simulation and

comparison with reality. Transition from a real optimization matter to its

mathematical model is very important and essentially influences the

utilization of results.

Looking for an optimal solution via mathematical modeling is

basically looking for a function extreme by which the system is

mathematically described. Specifically, it is looking for local extremes

which are or are not global extremes at the same time.

10

When elaborating a mathematical model, the increasing performance

of computers should not tempt us to neglect the volume of calculations

necessary to solve the optimization matter. Some systems are so complex

that in the attempt to put all the essential system properties in order, we

finally come to a model that cannot be used even by the most advanced

information technology.

Evolutionary algorithms belong to the modern methods of system

optimization. Evolutionary mechanisms verified by nature can be

successfully applied to technical issues as well, mainly to complex matters

and matters that are difficult to describe by mathematical methods.

Evolutionary algorithms (EA) are very efficient optimization

algorithms that come out from natural genetics and its laws. Evolutionary

algorithms are usually classified as genetic algorithms, genetic

programming and evolutionary strategies.

Classic genetic algorithms (GA) use the operations of selection,

crossing and mutation to simulate the reproduction process. Regarding the

diversity of handled optimization matters, there is no generally available

optimization algorithm. It is always an algorithm which is matter dependent,

i.e. more or less suitable to the purpose function given. Evolutionary

optimization algorithms are not suitable for applications where the purpose

function gradients can be easily identified or the purpose function is

difficult to calculate. The combination of non-evolutionary optimization

methods (e.g. simulated annealing, the method of forbidden searching,

climbing algorithms, etc.) and evolutionary optimizations are the source of

hybrid algorithms. An agent with the best achieved evaluation (fitness) is

considered to be the solution to the matter.

11

The evolution process of exploring the space of potential solutions

requires looking for a compromise (balance) to achieve the following two

goals:

• to find the nearest (mostly local) solution in small surroundings of

the initial point as soon as possible,

• to explore the space of all possible solutions as soon as possible.

Individual methods differ according to the goal preferred.

The issue of planning the motion of a mobile robot is a frequently

discussed topic. Various aspects have been researched by IT experts,

engineers and mathematicians. Theoretical outcomes have led only to

certain general solutions of the matter, as the matter requires an enormous

amount of calculations.

Optimal motion of an industrial robot on a specific trajectory requires

definition of an optimization criterion and then modification of the

generated trajectory so that for example the motion performance is

minimized while the maximum speed and the acceleration cannot be

exceeded, so that the life of the gears is not shortened due to the significant

load on joints and high moment of inertia.

Regarding the manipulation tasks, the optimization of shortening the

time via the utilization of robot’s available performance is becoming more

and more important. Besides achieving the maximum speed, the ability of

utilizing the gear units’ potential to achieve an optimal acceleration in any

motion point – when it is possible to shorten the cycle time in practice by

25% – is important as well. It might seem not to make a big difference;

however, in large serial productions the savings are significant.

12

Optimization of the trajectory brings the achievement of full control

over the motion and provides the space for productivity improvement with

no external changes to the workplace needed, only via utilization of the

robot control system possibilities.

The first chapter is devoted to a brief overview of path planning

methods, especially in mobile robots. The second chapter deals with a more

detailed overview of the robot path planning methods in continuous and

discrete environments. The third chapter describes the most popular motion

planning algorithms. The fourth chapter is dedicated to genetic algorithms

which we used as optimization methods. The fifth chapter focuses on

optimal robot motion control, and optimization methods using genetic

algorithms as the optimization method for an industrial manipulator control.

The next chapter contains a solution and its implementation in support

software, as well as the experimental verification of the results. The last

chapter evaluates the results and their benefits.

13

1. THEORETICAL BACKGROUND

1.1 Robot and surrounding environment

A robot is a mechanical device capable of performing a variety of

programmed tasks. It can operate under direct human control (e.g. the

robotic arm of a space shuttle) or autonomously under programmed

computer control.

Robots can be divided into manipulators (industrial robots) and mobile

robots. Mobile robots are capable of motion in their working environment

and are not fixed to one physical place. In contrast to them, manipulators

comprise a jointed arm attached to a fixed surface.

1.2 Degrees of freedom

Due to the variety of navigable places in the robot working

environment, it is very useful to know the way to describe the position of

each point of the robot in the moment fully and clearly. If the robot

represents a point in a space, as is theoretically common, it can be fully

described by its motion coordinates (x, y, z). If the robot is a fixed solid

moving freely in 3D space, six parameters are needed (x, y, z, α, β, γ), then

the coordinate in each of three axes as well as the axis rotation to be able to

describe the position of each robot’s body point. Each of the parameters or

coordinates is called a degree of freedom.

14

1.3 Overview of robot path planning methods

At present there are many robot path planning methods based on

different principles. Each of these methods has its benefits and constraints;

therefore, it always depends on the application given as well as on the

complexity of its tasks.

1.3.1 Exact planning

This type of algorithm is smart and efficient; however, it is applicable

only to simple tasks. It does not utilize approximation and it always finds

the path if there is one. If there is no path, the algorithm verifies that the

path really does not exist.

1.3.2 Visibility graph

A visibility graph is a graph whose nodes are represented by start and

destination points and vertices of all obstacles. Only those connecting paths

are selected that do not cross the obstacles. The issue of path planning is

then transferred to the shortest possible path search by the graph between

the start and destination points.

1.3.3 Retraction method

This method uses a Voronoi diagram to search for the shortest possible

path. The edges of the Voronoi diagram are represented by paths equally

distant from the two nearest obstacles and its vertices are represented by

points where three or more such paths meet. The search for the shortest path

by the graph is the solution.

15

1.3.4 Potential field methods

These methods use the idea of imaginary forces acting on a robot. The

obstacles act on the robot by a repelling force, whereas the finish acts on

a robot by an attractive force. The sum of these forces, the R result force,

determines the consequent direction a speed of the path. One reason for

these methods’ popularity is in their simplicity and elegance. On the other

hand these methods do not guarantee that the found path will be the shortest

and safest one.

1.3.5 Dividing the space into simple areas

One of the oldest approaches to path planning is opening the space in

which the robot operates into simple areas called cells and the construction

of a non-oriented graph, a so-called continuous graph. The graph represents

the relation of the neighborhood among cells. A Dijkstra search algorithm

or A* algorithm are usually used to generate the path.

1.3.6 A* algorithm

An A* algorithm utilizes a heuristic function which, depending on the

sum of distances from the start and finish of individual points, determines

the order of these points. For each of the nodes we work with these three

values:

g(x): real distance from the start to a current node

h(x): distance from a current node to the finish

f(x): sum of g(x) and h(x)

In a search such a node will be selected which has the smallest value

of the f(x) evaluation function. Since the h(x) function is not known, we

16

replace it by the h*(x) function which expresses the distance estimation

from the given node to the destination. It is called a heuristic function and it

is essential for search efficiency. The path made by the start point is placed

as the first one to the front of paths. Then the paths are taken from the front

until the last point is the same as the destination; then the path is the

solution. Otherwise, new paths are made by joining this path and adjacent

points. These new paths are filed into the front in the order according to the

distance from the finish. The points once crossed by the algorithm are filed

into the file of closed points, and the paths ending by such a point are not

further processed.

1.3.7 Probabilistic planning

This type – as the name suggests – is based on probability. The way of

planning can manage a non-convex robot (a turning robot), robots with

limited motion (a car), and motion dynamics represented by inertia as well

as limited acceleration. To describe the probabilistic planning it is necessary

to define the configuration space indicated as C-space. C-space is

n-dimensional space, where n is the number of parameters unambiguously

defining the robot position or configuration. That means that instead of

being interested in the environment in which the robot operates, we are

more interested in the number of parameters describing its configuration.

1.3.8 Genetic algorithm - GA

This method was discovered in the 70s of the last century and is based

on the application of Darwin’s theory of natural selection for the solution to

complex situations where classical mathematical and physical approaches

fail. I will deal with this method in more detail in Chapter 3.

17

2. MOTION TRAJECTORY PLANNING

2.1 Global and local planning

Global planning is aimed at finding a non-collision path from start to

destination configurations. Global planning is made before the robot makes

the first motion and requires that the environment is completely known, i.e.

the path map is at disposal, including all the static obstacles to avoid. This

path is then sent for further processing to the local planner which controls

the robot and considers possible constraints (robot motion constraints, new

obstacles, etc.) that occur in the course of going on the path. The task of the

local planning is the control of the robot on the path planned within the

global planning.

2.2 Holonomic and non-holonomic planning

Regarding the constraints on the robot’s motion we distinguish two

basic kinds of motion planning – holonomic and non-holonomic planning.

In classical mechanics a system can be defined as a holonomic one, if

all its constraints are holonomic. Holonomic constraints are such constraints

which can be expressed as functions f(x1, x2, x3,...xn , t) = 0, i.e. constraints

depend only on coordinates of the system and time. The constraint does not

depend on the velocity or mobility of the system.

In robotics holonomity expresses the relation among the number of the

robot’s controllable degrees of freedom and their total number.

18

If the number of controllable degrees of freedom is the same as their

total number, then we can say that the robot is holonomic.

If the number of controllable degrees of freedom is smaller than their

total number, then the robot is non-holonomic.

A car is an example of a non-holonomic system, as its motion to the

sides is limited by the maximum turn of its front wheels.

2.3 Complete motion planning algorithms

An algorithm for motion planning is complete if the search between

two robots’ configurations is guaranteed, if there is a path; in the opposite

case it announces that there is no path. Complete algorithms are sometimes

indicated as exact algorithms.

2.4 Path planning

In recent decades the matter of roadmap planning is frequently

discussed by the scientific community. Within the basic matter one robot is

in the static and known environment, and the task is to calculate a non-

collision path describing the motion that replaces the robot from its current

position to some desired position. There many varieties of the matter.

In general, the solution to even the basic matter of the path planning

requires time growing exponentially with the number of degrees of

freedom. Many so-called complete planners have been developed that are

not applicable in various practical situations, because they find no solution.

Many researchers have tried to make the path planning complexity more

simple.

19

Completeness is a preferred property of motion planners, and

probabilistic completeness in particular. The planner is probabilistically

complete if in the solution to the matter the probability approximates a

value of 1 as the running time approaches the infinity.

The environment in which the robot moves is static (does not change

in time). In its search dynamic changes do not occur. The environment can

be plastic with rises and falls. It can simulate a certain state.

2.4.1 Discrete environment

A right-angled chessboard-like network consisting of cells is the basis

of this environment. A space originated from three cells is called a scene

(2D). This scene is of a rectangular shape.

2.4.2 Continuous environment

A continuous environment is not divided into a square network as

known by the discrete environment. It is a continuous space that can be

compared to the environment around us. The robot can move in a random

direction.

The obstacles are surface unevenness, objects on the ground, etc., in

fact the environment we move in. These obstacles limit the robot’s mobility.

To simplify that, we mainly consider one type of obstacle – non-transferable

static. There are also obstacles that can be overcome. The robot, in

overcoming such obstacles, has to make specific operations, e.g. crossing

over, etc.

Another classification of obstacles is static and dynamic ones.

Dynamic obstacles are, for example, people or other robots. Static obstacles

do not change their position or size during the robotic motion.

20

The representation of obstacles is qualified mainly by the type of

environment. For instance, in a discrete environment the obstacle comprises

one or more inseparable units. In a continuous environment the obstacle is

usually defined by its vertices and edges.

Fig. 1 Representation of obstacles.

In discrete (left) and continuous (right) environments.

2.4.3 Robot movement

Robots move in continuous or discrete environments according to 2D

or 3D dimensions in space. We choose two random points of the space as

the start and destination robot positions (there should be no obstacle in these

places). The task is to find the path which the robot can take to go from the

initial to destination positions. The path should not cross any obstacle.

The robot motion speed is considered as a constant for the calculation

simplification or as a variable.

From the point of view of the searching algorithms, the robot motion

possibilities are limited in the discrete environment by the way of

discretion. For instance, in a chessboard discrete environment the robot can

move in eight directions, as illustrated in Fig. 2. Four directions are in the

21

main axes directions (up, down, left, and right) and four are in the directions

of diagonals (left up, right up, left down, right down).

Fig. 2 Chessboard environment (a) directions of motion;

(b) distances of motion

In the continuous environment the robot is not limited in its motion by

the way of landscape representation. In contrast to discretion landscape it is

usually specified by more complex difficulty of searching.

2.4.4 Probabilistic algorithms

Probabilistic algorithms (PAs) work on the basis of random sampling

of the continuous environment and their subsequent connection into a graph

by some basic deterministic algorithm. The calculation of the path

exploration is played out before the robot motion; therefore the probabilistic

algorithms are sometimes indicated as offline algorithms.

2.4.5 Use of probabilistic algorithms

Robotic arms in production lines are a typical utilization of

probabilistic algorithms in 3D environment/space. They frequently have

a large number of degrees of freedom – in that case every degree of freedom

A
B

C

D
E

F

G

H

(a) (b)

b

b

a a

a

c

b
y

x

22

is represented as another environment/space dimension; therefore PAs are

very suitable for such tasks.

In a 2D environment PA either non-holonomic (e.g. robot type – a car)

or holonomic (all directional) robots are utilized for the robot motion

control. It is also possible to include the motion dynamics by using the so-

called algorithms based on the control.

2.4.6 Classification of planning algorithms

Basic classification of the probabilistic algorithms is based on the fact

of whether the graph built by them and the recording of the space given can

be used repeatedly – i.e. for exploring the way among various points:

• A single query-algorithm builds a graph between two specific points

in space and the graph is not usable repeatedly for exploration

between two other points. RRT an EST belong here.

• A multiple query-algorithm first builds a graph (a network of points,

road map) recording the space given and via this graph it is possible

to explore the path between two random space points repeatedly.

PRM and its modifications belong here.

• A combined query – SRT algorithm belongs to this category, and it

stands on the border of the aforementioned queries as it is possible to

be utilized for repeated exploration between two random space

points; however, they can be faster than the single query and what is

more, it utilizes the function of the single query internally by itself.

In general, SRT is the most efficient algorithm.

23

There are differences among the specific algorithms and it is also important

which space they operate in, nevertheless, we can state that single query-

algorithms are faster for finding the path between two specific space points,

however, if we want to explore the space repeatedly, we had better utilize

multiple query-algorithms which take a longer time to build the graph, but

they are faster in repeated path exploration than their single query

counterparts (1).

24

3. GENETIC ALGORITHMS

A genetic algorithm (GA) is a heuristic approach trying to look for the

solution to complex issues by the application of the principles of evolution

biology, if there is no exact algorithm available. Genetic algorithms or all

procedures classified as the so-called evolution algorithms use techniques

simulating the evolution processes known from biology – heredity,

mutation, natural selection and crossover – for the “improvement” of the

solution to the task given.

The principle of the genetic algorithm lies in the gradual building of

the generations of various solutions to the issue. In the solution a population

in which each individual represents one solution to the issue given is kept.

As the population undergoes evolution, the solutions improve.

Traditionally, the solution is represented by binary numbers, strings of

nulls, and units, however also other representations are used (tree, field,

matrix, etc). At the beginning the simulation (in the first generation)

population is typically composed of completely random individuals. In the

transition to the new generation, the so-called fitness function expressing

the quality represented by the member in question is calculated for each

individual. Due to this quality the individuals are selected at random, then

modified (via mutation and crossover), which leads to the origin of a new

population. The procedure is repeated iteratively, which makes the solution

quality gradually improve. The algorithm is usually stopped after achieving

a sufficient solution quality, or possibly in the period given.

25

3.1 GA definition

A genetic algorithm is a random adaptive algorithm comprising the

following operators and parameters:

GA = (N, P, f, Θ, Ω, Ψ, τ)

where P is the population of N elements (individuals), P = {S1, S2,..., SN}.

Each element Si, i=1,..., N is a string (or a set) of whole numbers of the

fixed length n, representing the solution to the issue, i.e. Si ∈ Zn.

f indicates the so-called fitness function, which assigns each of the elements

a positive real number:

f = Si → R+; i = 1,…,N

Θ is a selection operator of parent elements – a parent selection operator

which selects u elements of P:

Θ : P→ {P1,…,Pu}

Ω is a set of genetic operators, including crossover operator Ωc, mutation

operator Ωm and possibly other specific operators which altogether generate

v offspring, the children of u parents:

Ω = {Ωc, Ωm, …} : {P1,…,Pu} → {O1,…,Ov}

Ψ is the deletion operator deleting v selected elements in the current

population P. Then v offspring are added to the new population P(t +1):

P(t + 1) = P(t) – Ψ (P(t)) + {O1,..., Ov}

26

τ is the criterion of the end:

τ : P(ť) → {true,false}

the parent selection operator Θ and genetic operators Ω are of probabilistic

character, whereas the deletion operator Ψ can be deterministic.

3.2 Size of population

By selecting the size of population N, we have considered two

contradictive requirements:

• variety

• rate of convergence.

It is obvious that in selecting a small population there is also a small initial

variety of elements in the population, and therefore the population tends to

converge fast, however most frequently to the local optimum instead of the

global optimum. In the opposite case, in the selection of a large population,

there is a large initial variety of elements in the population, which means

that GA has a bigger chance to find the optimal solution. Obviously, the

price we pay here is the lower convergence and an increased number of

algorithm operations. The size of the population in usual scope of 50 ≤ N ≤

200 fully meets the majority of issues.

3.3 Initial population

The initial population is either generated at random or is achieved as

a set of a “good solution” via another heuristic method or from the previous

genetic algorithm calculation.

27

3.4 Chromosome representation

The solution of the combinatory issue can be represented by the final

set of parameters or variables acquiring discrete values. These parameters

(in GA indicated as genes) make strings of values (chromosomes). In classic

Holland GA the chromosome is represented by the string of binary values.

Nevertheless, it is not the only way.

3.5 Fitness

The value of the fitness function determines the rate of the chance of

the individuals in the population for the reproduction and survival to the

next generation. The simplest definition of the fitness function is the direct

use of the purpose function of the issue solved. In GA elements with the

highest value of the purpose function by the maximization matters are

preferred. By the minimization matters it is necessary to modify the fitness

function, e.g. we subtract the purpose function from a specific invariable

fmax, which is higher than all the values of the fmax, has to be selected

sufficiently high, and then the values fmax – f (Si) for i = 1, ..., N can be quite

close which eliminates the differences between “good” and “bad” solutions

and makes the selection of elements for further operations complicated.

3.6 Selection of parents

The mechanism of parent selection plays a key role in GA if we want

to select u parent elements, and then it seems that the best thing is to select

28

the individuals whose fitness function values are in the first u places of the

not growing sequence of the values. Unfortunately, this strategy results in

lower genotype diversity and the individuals in the populations of the

following generations are gradually concentrated only in one part of the

exploring space. This can mean that the procedure can converge to the local

extreme. With certain exaggeration we can say, that it comes to the similar

effect as by the offspring degeneration, whose forefathers are in close

family relationships. To avoid these unwanted effects for the parent

selection, strategies based on probabilistic rules are used. Tournament,

roulette and ordered selection are the most used strategies.

3.7 Genetic crossover operator

A crossover operator is generally considered to be the most important

exploration operator. The crossover operator combines the segments of

selected parent elements. The aim is to build new elements leading to better

solutions. We mostly use discrete, point, diagonal and average crossover.

3.8 Genetic mutation operator

Mutation does not infer the appearance of the new generation very

much; nevertheless, it has an important function. By the mutation it comes

to a random change at a random place in the chromosome. At first sight it

may seem that the mutation in the overall mechanism is useless, however,

as already mentioned, it has important functions. Due to this marginal

change, the sufficient variety of the whole population is ensured. It can

29

come to the increase of the fitness function with the chromosome given,

since by the mutation a better solution has been achieved. The mutation

hinders the situation when a lot of individuals undergo such a crossover that

a further crossover would produce the same individuals and would be

useless. In practice it means that it is an attempt to find solutions also

beyond the original area. We utilize single point or multiple point

mutations.

3.9 Replacement scheme

The change of a population is a replacement scheme. Immediately, as

the v offspring are generated, these offspring replace v elements in the

current population (the size of population stays invariable) and the

reproduction cycle is repeated. By the change of population the generation

exchange and incremental replacement are used.

3.10 Criterion of ending

Regarding the fact that we do not know the optimal solution for the

practical tasks of a large scope, the ending of GA is controlled by the

achievement of a defined value of a specific parameter. In analogy to some

iterative methods of the numerical mathematics, two basic strategies are

mostly used:

• maximum number of generations tmax ,

• intergenerational relative improvement of the fitness function

value of the best population solution.

30

This cycle is repeated as long as the sufficient solution is found. By

the strategy of the selection of specific genetic operator types, the achieved

results change significantly, therefore it is necessary to try deploying

several types and then evaluating their successfulness for the solution to the

specific matter.

Fig. 3 Flow chart of a genetic algorithm

Population initialization

Generation = 1

End ?

End

Yes

No

Evaluate fitness of individuals

Selection and reproduction

Crossover

Mutation

Generation = Generation + 1

Keep the best
individual

E
vo

lu
ti

on
 c

yc
le

31

4. ROBOT MOTION CONTROL

Non-linear algorithms of the manipulator motion control are the basis

of the motion planning and they utilize the solution of the direct and

feedback tasks on the position of the executive robot mechanism.

The second task is to plan the type elementary motions of the

executive mechanism building the basis of technological operations.

A random complex trajectory can be composed of type elementary motions.

The direct task on the mechanism position determines the position and

orientation of the gripper regarding the knowledge of the mutual motions of

the kinetic scheme individual members. The task is solved via the relation

that can help determine the coordinates of the robot’s destination point in

the system of coordinates connected to the base.

By the solution of the feedback task the generalized variables at the

known vector specifying the position of the robot’s end link are determined.

In this case it is necessary to deal with the system of non-linear algebraic

equations arising from the relation for the direct kinematic task. Regarding

that, we need six parameters to determine the position; the initial set usually

comprises six unknowns. Six degrees of freedom is also an essential

prerequisite for achieving the required point with the required gripper

orientation. For the systems with more degrees of freedom it is suitable to

introduce additional conditions.

Information on the link position and orientation is first known for the

end link. It is necessary to determine the characteristic link positions and

orientation for the largest possible amount of kinematic scheme members.

32

The vectors characterizing the position of the end link in the coordinate

systems of links are calculated gradually for the links in the direction from

the end link. The result of the feedback task is a graph which each branch

corresponding to a certain configuration of the kinematic scheme.

Planning of the trajectory is also required for the simplest motions. On

the path of the motion we determine several node points, for which it is

necessary to define the joint variables by the solution to the feedback task.

Therefore, it is possible to make up a table of points from relevant joint

variables. On the basis of this table, for the known way of interpolation and

known boundaries it is possible to state the feasibility of the researched

variation of replacement. If it is not possible to execute the motion desired,

then it is necessary to utilize the in-definitiveness of the feedback task

solution, to select another set of joint variables and to repeat the procedure.

If it is not possible to meet the requirements for boundaries for any of the

sets of variables, then we have to change the trajectory, or possibly use

places for laying the object aside and to grasp it then again. In the regime of

the transition, the force is adjusted to the prescribed value, while in specific

cases we can use the sensors of object slipping in the grab.

Making up the table of variables is not sufficient for the robot servo

systems control. For this activity time functions qi(t) are defined, where i is

the number of a kinematic couple. In the solution it is necessary to

determine the decomposition of the whole trajectory into sections and the

way of interpolation in these sections.

The planning of the trajectory is carried out by the operator, or it is

carried out on the higher control level. On the basis of the known trajectory

and by the solution of feedback tasks the control orders for the drives of

33

individual degrees of freedom are determined. Regarding the fact that this is

the solution of non-linear equations, the solution is frequently executed via

computers or via physical models.

Approximate solution can be achieved by the linearization of the

equations describing the kinematic scheme. This description is due to small

changes of coordinates.

Linearized equations for velocity increase in links’ position and

working forces represent the basis for the solution to tasks for the

manipulator drive control.

The operator determines the desired motion speed of the end link,

replacement of the robot’s work parts, or possibly the force activity on the

end link. Regarding this information we have to determine the drive’s

activity. In the process, the following methods of planning the motion

trajectory of the kinematic scheme are possible: control according to the

speed vector, control according to the position increase, and control

according to the force vector.

Control according to the force vector is characterized by assigning the

motion speed by the projections of the angle force vector speed of the work

part in the coordinate system which the control system cooperates with, so

that the motion velocity of the end link in the given trajectory point is

determined.

Desired values for servo systems can be then set as an integral of

generalized speeds. In the solution, very high desired values can occur and

they cannot be precisely monitored by the servo systems. Therefore, the

algorithms should be modified in order to accept only feasible solutions, or

solutions ensuring a minimum error in the desired motion execution.

34

The components of the speed vector of the end link are set to the

operators or they are generated automatically. In the first case the execution

of desired trajectories are checked in the presentation mode to the operators,

because the system is positionally closed through the operator. The specific

motion speed of the end link corresponds with each of the positions of the

given set of signals. Such a way is effective in the necessity of fast

transition of the end link from one position to another and if high accuracy

of the position is not required. In the other case, the operator sets the change

of the end link position and the system determines the way to achieve the

desired position. The speed vector is generated on the basis of regulation

deviation of the end link position from the desired position.

In the control synthesis according to the speed vector, approximate

solutions coming out of the boundaries of the given coordinates values are

used. We usually consider three sets of coordinate values (two marginal and

one in the middle) and the inversion matrix is quantified for them. For all

other coordinates the inversion matrix is determined by the interpolation.

An error occurred by the interpolation is usually negligible.

The method of gradual position correction is used in numerical control

systems. Then the control algorithm according to the speed vector is

specified as an increase of coordinates in one algorithm calculation cycle.

In the implementation of the aforementioned method it is necessary to

select node points on the complex trajectory sufficiently close to each other,

so that the transition from one point to another ensures the desired trajectory

shape.

The control process and related calculations are simplified if the force

vector control is used. The robot’s servo systems develop such generalized

35

forces which are dynamically equivalent to the forces given replacing thus

their activity on the kinematic scheme. The control system calculates the

generalized forces for the coordinates controlled by the drives from the

setting signals.

Redundant degrees of freedom and existence of borders/boundaries of

generalized coordinates do not permit investigation of the linear equations

describing the system by standard methods. Nevertheless, for the given

manipulation system configuration it is possible to write all the boundaries

as linear equations and inequalities via linear programming method. The

control of the trajectory motion planning is based on the use of a linear

model and has the following stages:

- determination of current values of generalized coordinates of q

manipulation system elements and the control target determining the

destination position of the robot end link,

- calculation of the continuous value of the end link position and

generation of the control vector of this position change if the target

has not been achieved yet,

- construction of a linear model, calculation of the transition matrix

and boundaries dependent on the continuous manipulator and system

state configurations,

- determination of generalized coordinates q growths via the solution

to the task of linear programming,

- delivery of control signals q to the executive level and return to the

first point.

36

If the degrees of freedom is insufficient for the given motion

execution, then only the probable solution with the error minimization is

determined.

The method of dynamic programming requires a precise solution to

the feedback task in the node points and is suitable for kinematic schemes in

which the feedback task can be solved only analytically. The difficulty of

the solution is in the fact that a certain point of the space in the systems with

higher number of degrees of freedom can be achieved by various

combinations of the joint variables. In contrast to the feedback task, the

position of the final/destination point is clearly determined by the joint

variables assignment. By this method, at the beginning the feedback task for

the given sequence {rk} k = 1,...N of destination link positions in the work

space is solved. This results in the sequence Qk of the set of permitted

system configurations. Such a configuration is permitted for which the

values of generalized coordinates correspond with the construction

boundaries to the scope of their changes:

qk min ≤ qk ≤ qk max , k=1,...N

If some values of generalized coordinates cannot be determined, they

are lain as equal to the values in the previous node point Qk-1. The

trajectory will be made by the sequence of transitions from one node

configuration to the other one and the task leads to the selection of the

optimality indicator (power, time, etc.).

Industrial robots represent complex mechatronic devices comprising

more functional subsystems which have to ensure various types of robot

activities.

37

The majority of industrial robots which are currently used in practice

are industrial robots of a stationary type. They represent such robot types

which are firmly anchored to the base and their change of the manipulation

space is possible only on the basis of the kinematic structure pre-

configuration. Meeting the requirements for technically and economically

effective robot implementation is possible mainly on the basis of a modular

approach to robotic devices.

Mechanical systems with more degrees of freedom made mainly of

open kinematic chains are the basis of industrial robot construction. By the

mechanical robot concept, besides the degrees of freedom it is necessary to

consider also the kinematic principle ensuring them. By the kinematic

solution of the robots’ mechanical systems the matter of the robot’s working

motions by the executive link defined motion is also implicitly determined.

By the prescribed effector position in dependence on time, it is possible to

define the kinematic functions of the track control, which is called the

inverse task of kinematic robots. After the determination of kinematic

control functions, it is possible to derive the dynamic functions of drive

controls as well (3).

4.1 Optimal robot control

Since industrial robots and manipulators are determined to repeat

predefined tasks at a high number of repetitions, even small improvements

of their performance can lead to valuable time, power, or financial savings.

38

In this contribution I try to minimize the time of the motion action

between two points regarding the best possible utilization of available robot

servo gears.

4.2 Formulation of the robot optimal control matter

Manipulator dynamics connect the control u(t) to the dynamic

response x(t). Typically, there are two kinds of matters where the dynamics

utilize the manipulator’s proposal. The first one is the issue of inverse

dynamics, when the trajectory x(t) is known and control forces have to be

determined. The other issue of the direct dynamics is when it is necessary to

determine the behavior of the manipulator for certain forces.

The aim of the optimal control playing a significant role in the

proposal of advanced systems is to determine simultaneously u(t) and x(t),

which could be minimized by a certain criterion - functional. In the optimal

control the functional of quality of the dynamic system (hereafter the

functional of quality) is expressed as follows:

∫ →=
ft

t
dttuxguJ

0

min),,()(
 [4.1]

It is expected that at least one x(t) and one u(t) exist, and they meet the

conditions. Such a solution is considered as optimal.

Optimal control requires a mathematical process model, which is to be

controlled, and then it needs the determination of physical restriction and

quality assessment.

39

4.2.1 Dynamics of manipulator

In control theory the system state I am dealing with here, and which

represents the mathematical model of the manipulator dynamics, is usually

written as follows:

),,(tuxax =& [4.2]

where x is the vector of state variables, u is the vector of control, a is the

vector of non-linear functions of states and control. In the structural

dynamics the motion equations are usually written as follows:

)()()()()()(tFtKCtM =++ ϕϕϕϕϕϕ &&& [4.3]

where M(ϕ), C(ϕ) and K(ϕ) are non-linear matrices of weight, damping

and stiffness. ϕ is the vector of the degrees of freedom of the general shift

and F(t) is the vector of control forces driving the system. The equations

[4.3] can be simply rewritten as [4.2].

Each component iϕ in the vector of degrees of freedom represents two

state variables: d

kx = iϕ a v

lx = iϕ& , where k = 2i-1, l=2i = k+1. i=1,..., n.

The upper indexes d and v represent the shift and velocity of shift change.

This allows the division of the state vector x into two parts:

x= [
dx1 ,

vx2 ,
dx3 ,

vx4 ,...,
d

nx 12 − ,
v

nx2]T. In the substitution into (4.3), motion

equations the perception of state variables are as follows:

d

kx& = v

lx

v

lx& =)]C([ji
1 d

kji

v

ljij xKxFM +−−
 [4.4]

where i, j = 1, ... , n. This means a random system with n degrees of

freedom can be defined by 2n state variables.

40

4.2.2 Marginal conditions and restrictions

A mathematical model of the discussed matter should also comprise

the marginal conditions and physical restrictions given by the states or

control elements. The marginal manipulator conditions are as follows:

x(t0) = x0 x(tf) = xf [4.5]

where x(t0) and x(tf) represent the positions and velocities of joints at the

beginning and end of the motion. There are also state restrictions/limitations

as follows:

 xmin ≤ x(t) ≤ xmax [4.6]

Any state trajectory meeting these state restrictions during the whole motion

is called the permitted trajectory. The restrictions of control elements are:

 +− ≤≤ iii UtuU)([4.7]

where −
iU and +

iU are minimum and maximum forces or moments, which

can be generated by related drive engines. If the history of control

instructions meets the restrictions of control elements during the whole

motion, we can talk about permitted control.

4.2.3 Functional of quality of dynamic system

In optimal control the functional of quality of the dynamic system is

minimized or maximized. The designer of the optimized system should take

several quality assessments into consideration before s/he selects the

specific optimization target.

For instance, large structures or manipulators used in outer space

applications are manufactured flexibly due to the requirement of a high cost

decrease for material transferred to orbit. Nevertheless, higher flexibility

41

can introduce additional vibrations influencing the maneuver accuracy.

Outer space manipulators could be optimized with respect to their accuracy

as well as to their weight. This can be achieved by vector optimization,

which can include these two aims.

If we want to control the manipulator by a given general task within the

individual limits of control elements (U+, U-) and space (x0, xf), we can use

the theory of optimal control, while the functional of quality

∫=
ft

t
dttuxguJ

0

),,()([4.8]

has to be minimized.

Note that formally the left side of (4.8) should be written as J(x, u);

however, as u and x are connected by a state equation, the performance

depends only on the control. The achievement of such an optimal control

depends on the specific formulation of g(x,u,t). If g=g1(x), the

corresponding functional can be used to suppress the vibrations or to

monitor the specific path. For instance, for g=g1(x)=xTKx, where K is the

matrix of toughness, the performance represents the deformation system

power. If g=g2(u) the corresponding functional can be used for fuel

consumption minimization or power consumption minimization. The use of

g = g2(u) = uTQu, where Q is the matrix given, suppresses the scope of

control forces. If g = c, where c is constant, the functional of quality

represents the minimum time, which is

42

J(u)=)(0
0

ttcdtc f

t

t

f

−=∫ [4.9]

Since t0 is known, this functional quality will minimize tf. This is the

problem of time-optimal control.

4.2.4 Formulation of optimal control

The aim of optimal control is to determine u(t), which minimizes the

J(u) functional. From the physical point of view state x shall be continuous;

however, the control u can be interrupted. For better control performance,

the control can need changing from its maximum value +
iU to its minimum

value −
iU . Such a moment is indicated as a switch over time. If the control

is carried out only by the use of extreme values—the switch over between

the minimum and maximum values—it is the so-called percussion control.

Optimal control means finding the permitted control u(t), which means that

the system (4.2) monitors the permitted trajectory x(t) and minimizes the

functional quality (4.8). Such u and x are optimal control interventions and

optimal state trajectories. Minimum J(u) = J*(u) means that:

J*(u)= ∫∫ ≤
ff t

t

t

t
dttuxgdttuxg

00

),,(),,(**
 [4.10]

for all permitted states and all permitted control interventions. The values

J*, x*, u* are optimal parameter values. They define the global minimum J.

Inequality (4.10) can also be met only for some scopesof states (||x|| < b),

where || || means the standard of permitted trajectoriesand b is a positive

value. In this case [4.10] would define the local minimum.

43

4.2.5 Types of optimal control

Optimal control provides the history of permitted control interventions

in the form u(t) = f(x(t), t). From the point of the control, this is considered

a control system with a closed loop, if it depends on the state. The law of

optimal control can be linear, time-independent feedback, if u(t) = Cx(t),

where C is a real matrix constant. The optimal control has an open loop, if

u(t) = f(t), as this does not depend on the state. The open regulation loop has

several applications. An industrial robot manipulator with a specific task is

an example with the open regulation loop.

4.3 Solution to optimal control

Optimal control similarly as all optimizing matters can be achieved via

two methods: direct and indirect methods. The direct method is an

approach, in which the sets (x(k), u(k)) and (x(k+1), u(k+1)), would be

selected in two subsequent iterations so that J(k+1) < J(k) . The functional

of quality is directly minimized and simultaneously we try to meet all the

restrictions via various exploration techniques. The direct methods usually

utilize parametric optimization methods such as methods of punishment,

gradient, associated gradient, etc.

Regarding the high number of parameters 7 as well as the time

consumption, the direct methods (indicated also as parametric optimization

solving random optimization matter) are quite inefficient.

An alternative approach is an indirect method. This method is more

analytical than the direct method. The conditions to be met on the optimal

path shall be derived as first. These conditions are represented by

44

Pontrjagin’s Minimum Principle (PMP) and are essential for optimal

solution. The further step is the determination of the controls and the

trajectory meeting these conditions. In general, the indirect methods, in case

of being successful, converge faster; however, it can come to convergence

difficulties. They can be very complex in terms of mathematics as well.

Due to this complexity, the indirect methods are now mostly used only to

verify the solution found via other optimization methods.

To solve the optimization of complex systems controlling such

manipulators, we need the numerical approach. Regarding the fact that PMP

for time optimal control comprises initial and final conditions, the matter is

two-pointed with marginal conditions. The shooting method is one of the

basic ways to solve such tasks. Nevertheless, the method is very sensitive

and converges by the optimal manipulator control.

4.4 Overview of existing methods of optimal motion control

Recently, there are lots of sources dealing with various aspects of

optimal control. The fields considered can be classified into four larger

groups, starting with general optimizing matters and going to more specific

topics related directly to time optimal control of two- and more-armed

manipulators.

The first group of contributions is focused on the optimal control

stipulation from the point of view of vector optimization. The second group

represents the optimal control application of flexible manipulators or

structures. The third group comprises time optimizing matters of the control

and their applications – which is also the topic of our contribution. The

45

fourth group describes the numerical methods for solution of various

matters to optimal control.

4.4.1 Optimization with more criteria

We usually need to investigate and optimize several aspects of the

proposal process. This prepares optimizing tasks with more than one goal,

which represents the vector optimization. The vector optimization includes

the matter of optimal control and can be expressed as follows

min),,()(
0

→= ∫
ft

t
ii dttuxguJ

[4.11]

where i = l,m and m is the number of the criterion to be optimized.

By more criteria or by the vector optimization we deal with the

proposal vector of variables suitable for all restrictions and minimize the

components of the purpose functions vector.

The existence of target conflicts is one of the characteristic properties

of multi-criteria optimization, i.e. none of the solutions allows the current

minimization of all targets. This is sometimes called a compromise of the

functional. The matter is commonly reduced to scalar optimization by the

stipulation of alternative matters or an alternative functional.

4.4.2 Time-optimal control

Time optimal matters can be represented by the following functional

of quality

J(u) = 0
0

ttdt f

t

t

f

−=∫ [4.12]

when the final time tf is unknown. It is characteristic that in these matters

the control is usually not continuous. We can consider two types: for known

46

trajectories it is necessary to find the control u (monitoring the path at the

shortest possible time), or also the trajectory u shall be found (matter of

time minimum).

4.4.3 Optimization via genetic algorithms

Trajectory planning can be divided into two groups; one is planning

along a defined path, and the other one is without the path given.

The space explored is reduced a lot for the matters related to the first

category; therefore, they are the dynamic programming issues, graph

methods, and phase plane algorithms. Phase plane algorithms are

particularly efficient in time optimal planning. Nevertheless, it is

complicated to apply these methods for high-dimensional exploring matters.

The matter in the other category is more complex than in the first one;

both the path and trajectory planning have to be considered. This belongs to

the matter of the two-point task in the optimal control theory

and Pontrjagin’s Minimum Principle provides us with basic analysis tools.

The algorithm of shooting is a typical numerical tool for solving the

problem. Other solution methods are based on the trajectory

parameterization and non-linear programming. It is not simple to find the

solution to the matter due to the non-linearity of the manipulator’s

dynamics. Therefore, the matter remains still unsolved.

Recently the genetic algorithms have performed as a suitable tool. The

use of genetic algorithms has several advantages in comparison to classical

methods. They have properties allowing them to avoid getting stuck in the

local minimum and continue towards the global optimum via the combined

information in many points of exploration, which makes GA robust in non-

47

linear matters. Further on, we will deal with the method of trajectory

planning via genetic algorithms and its implementation with focus on the

parameterization of genetic trajectory via acceleration.

4.4.4 Introduction to the subject matter solution via genetic algorithms

In the genetic algorithm the population of strings is processed many

times. Each element of the string represents a possible solution. Some

strings represent unfeasible solutions, whereas some represent good

solutions. Finally, after a long process, the population converges to the best

possible solution, i.e. only copies of good solutions are left and the wrong

ones are eliminated.

In our case the string should represent the nodes, which are the

intersections in the motion trajectory of each joint. The best string or

chromosome is the one that optimizes for example the motion time or

overall electric power consumed by the manipulator.

Regarding the fact that we code directly the string of real numbers, the

process is called a “Genetic algorithm with real coding”.

Genetic algorithms begin with the initial population of individuals.

The population is randomly initialized within the joint restrictions; the

processes of selection, crossover and mutation help develop towards better

and better fields when exploring the space.

Matter representation

We have a two-armed plane robotic manipulator which should move

from the start position to the stable destination position. The aim is to find

an optimal path by which the manipulator passes at the shortest possible

time.

48

To simplify the matter we consider these prerequisites:

1. the robot is considered to be a two-armed plane manipulator;

2. individual kinematic restrictions shall be stated and tolerable trajectory

points shall be from its possible working area;

3. the overall manipulator trajectory comprises transition points – nodes

obtained from the genetic algorithm and are processed in regular time

intervals;

4. for individual paths among the nodes, the approximation via the spline

curve is used;

5. it is presumed that the manipulator end effector starts its motion from

zero velocity and ends on zero velocity, while it does not stop on the

transition node.

4.5 Formulation of genetic trajectory planning

Simple genetic algorithm usually uses binary coding for parameter

representation. We consider the set of real parameters with Np number,

which is given to x = {x1, x2,…,xi,…,
pNx } (further we define it as x =

{ i

N

i xU p

1= }), is coded into a binary string x̂ (={ i

N

i xU p ˆ1= }), and which is

called a chromosome. Each real xi parameter having the maximum boundary

value U

ix and minimum boundary value L

ix is coded into a binary string

ix̂ using the binary length iL̂ .

49

For the manipulator shown in Fig. 4 it is necessary to optimize nine

parameters in the form of the following chromosome:

[q1, q2, q3, qg, 1q& , 2q& , 3q& , t1, t2]

where

qi are angles of arm turns in transition points,

iq& are velocities of ith joint,

qg is a total angle of the final manipulator configuration, which equals to

the addition of the angles,

t1 is time from the start to the transition positions,

t2 is time from the transition to destination positions.

Fig. 4 Manipulator with three links

4.5.1 Fitness transformation via punishment function

Similarly as many other engineering matters, planning the optimal

trajectory of a robotic manipulator can be understand as a kind of

optimization matter with a restriction. A genetic algorithm is not primarily

50

determined for this matter; however, this is solved by the introduction of the

so-called finding function. The following purpose function, with the

restrictions represented by the limitations of equality and inequality,

minimize f(x) [4.13]

 with respect to gk(x) ≤ 0 (k = 1,2, ... , M1)

 hl(x) = 0 (l = 1,2, ... , M2).

We can convert to an assistant/auxiliary function without restrictions for the

finding function in the following form:

min P(x) = f(x) +))((.))((.
21

11

xhwxgw l

M

k

lk

M

k

k ψφ ∑∑
==

+ [4.14]

where M1 and M2 are restriction numbers of inequalities and equalities. φ ()

and ψ () are finding functions for inequalities and equalities restrictions,

which are usually determined as φ (y) = |max(0,y)m| and ψ (y) = |y|m.

max(x, y) returns the maximum value between x and y. |.| means an absolute

value of the function and m is a positive number. In genetic algorithms the

fitness is defined as a maximization of the purpose function and it shall be

positive. A commonly used fitness transformation is the inverse value of the

auxiliary function (4.14) or its subtraction from some high positive number

Cmax. Therefore, the fitness of the aforementioned issue can be expressed as

follows:

fit = max (0,1/P(x)) or max (0, Cmax – P(x)) [4.15]

51

4.5.2 Subject matter definition

For many industrial applications the current robotic manipulators are

slow to be used economically. Their velocity and thus their productivity are

limited by their drives’ capability. The increase of the drives and their force

is not the best solution, as the inertia of the drives themselves increases, as

well as the price and power consumption. The minimization of time

necessary for the execution of the given task regarding the drives’

restrictions is a more successful approach.

There are more approaches to the issue, however I selected the method

of genetic trajectory parameterization via acceleration (13), which regarding

my research experience is the most elaborated method utilizing evolutionary

principles and considering many aspects concerning the optimal motion of

the manipulator, including its dynamics, in the environment with some

obstacles or without. The method does not have the point approximation of

the trajectory motion along the curve, which is important due to the

manipulator motion fluency and due to avoidance of jump motions from

point to point – this the subject of my improvement in Chapter 5.

First we get acquainted with the method and then I introduce the

improvement implementation.

The essential idea of the method (13) is to select such an acceleration

profile producing the highest velocity profile, so that for each path point the

maximum velocity is not higher than the velocity by which the drives keep

the manipulator on the track without breaking the restrictions.

We define the matter of planning the optimal trajectory of an industrial

robot.

52

For given start and destination marginal trajectory conditions (OP):

q(0) = q0, q(tF) = qF {OPP}: position [4.16]

q& (0) = 0, q& (tF) = 0 {OPR}: velocity [4.17]

and dynamics of the robotic manipulator:

M(q) q&& + C(q, q&) + G(q) = T {R} [4.18]

to find optimal manipulator trajectories having the certain minimum

criterion, in our case we consider time minimization:

∫
Ft

dt
0

= tF {criterion} [4.19]

with meeting the following restriction conditions (ObP):

QL ≤ q ≤ QU {ObPP}: position [4.20]

VL ≤ q& ≤ VU {ObPR}: velocity [4.21]

AL ≤ q&& ≤ AU {ObPZ}: acceleration [4.22]

TL ≤ T ≤ TU {ObPM}: moment [4.23]

where

n : manipulator degree of freedom,

tF : path time from the start to destination positions,

q, q& , q&& ∈ Rn : generalized vectors of position, velocity and acceleration,

T ∈ Rn : generalized vector of the moment (force) of the control,

M(q) ∈ Rn × n : matrix of inertia,

53

C(q, q&) ∈ Rn : Coriolis’s and centrifugal vector of force,

G(q) ∈ Rn : vector of gravitation force,

U,L : top and bottom border/boundary values.

4.5.3 Parameterization of genetic trajectory

Variables of a trajectory can be divided into two groups: variables of a

kinematic trajectory and a control moment. Variables of the kinematic

trajectory are as follows: arm position, velocity and acceleration. Trajectory

restriction consists of two parts: restrictions of equality of trajectory

marginal conditions (OPP, OPR) and inequality of restricting trajectory

conditions (ObPP, ObPR, ObPZ and ObPM).

In robotics it is important how to select the parameters from trajectory

variables and how to select the optimization method for trajectory planning.

We chose the arm acceleration as a parameter for trajectory genetic

parameterization. Despite having chosen tangential acceleration as the

variable for mathematical expression of time optimization, we also consider

the drives of moments controlling the motion.

4.6 Procedure of genetic trajectory planner

4.6.1 Acceleration parameterization for genetic algorithm

In this part I describe the procedure of acceleration parameterization

for effective genetic algorithm implementation.

54

We introduce the following variables:

n: number of manipulator joints

N: number of trajectory parts

∆t(=tF/N): evenly divided path time

qj,vj (= jq&), aj (= jq&&) , Tj: position, velocity, acceleration and moment of

the jth joint

qj,i , vj,i (= ijq ,&), Aj,i (= ijq ,&&) (j = 1,2, ..., N): position, velocity, acceleration

of the jth joint in the ith node point

Qj,i, Vj,i (i = 0,1,, N): position, velocity of the jth joint in the ith node point

where i=0,N means start and destination node points

Q ={Qj,i | j = 1,2,..., n, i=0,1,...,N} : set of node points positions

V ={Vj,i | j = 1,2,..., n, i=0,1,...,N} : set of velocities of node points

A ={Aj,i | j = 1,2,..., n, i=1,2,...,N} : set of accelerations of node points

The method of trajectory discretion: First we divide the path time interval

[0,tF] into N amount of the same partial intervals. That is:

[0,tF] = [t0,t1] ∪ [t1,t2] ∪ ,...,∪ [tN-1,tN] [4.24]

where

∆t=ti – ti-1 =
N

tF (i = 1,2,...,N) [4.25]

The accelerations remain constant in each partial path time interval, i.e.:

Aj,i = const. (i=1,2,...,N) [4.26]

For the explicit path time specification and its adoption as a system

parameter, we express the path time t ∈[ti-1, ti] by a standardized τ

parameter as follows:

55

τ =
t

tt i

∆
− −1 (i = 1,2,..., N), τ ∈[0,1] [4.27]

Then the velocity of the joint in the ith partial interval of the path time can

be expressed as follows:

vj,i = Vj,i-1 + ∫
−

t

t

ij

i

dtA

1

,

[4.28]

and the shift of the joint can be expressed as follows:

qj,i = Qj,i-1 + ∫
−

t

t

ij

i

dtv

1

, = Qj,i-1 +

2

1
τ∆t(Vj,i-1 + vj,I [4.29]

The overall sum of the joints’ accelerations and the related interval of the

path time shall be the difference of the destination and start velocity which

is zero in this case (OPR).

∫
Ft

j dta
0

= tA
N

i

ij ∆∑
=1

, = 0 [4.30]

Then the joint acceleration in the ith node point of the time path interval we

obtain recursively as follows:

Vj,i = Vj,i-1 + Aj,i∆t = tA
i

k

kj ∆∑
=1

, [4.31]

The joint position in the ith node point of the path time interval is given:

Qj,i = Qj,i-1 +

2

1
τ∆t(Vj,i-1 + Vj,i) ∆t [4.32]

56

After substitution of (4.30) for (4.33) we get:

Qj,N - Qj,0 = tV
N

i

ij ∆∑
−

=

1

1
, =

2
1

1
,)(tAiN

N

i

ij ∆−∑
−

=

 [4.33]

After the substitution, the relation among the joint position and two points

and joint accelerations is as follows:

Qj,N - Qj,0 = N (
2

1
,,) tAA

N

i

Njij ∆−∑
=

-
2

1

1
, tiA

N

i

ij ∆∑
−

=

= -
2

1
, tiA

N

i

ij ∆∑
=

[4.34]

If we consider the joints’ accelerations as genetic coding parameters, then

two dependent parameters of joint accelerations Aj,k and Aj,l shall be

sufficient for the equalities (4.30) and (4.34) to meet two marginal

trajectory conditions (OPP, OPR). That is:

lj

kj

A

A

,

.
 =

−
∆

−

−

−

−

− ∑

∑

≠=

≠=
N

lkii

ij

Njj

N

lkii

ij

iA
t

QQ

A

k

l

kl

,,1
,2

,0,

,,1
,

.
1

11

for k, l = 1,2,..., N and k ≠ l.

4.6.2 Trajectory parameter coding

If we take the acceleration as a parameter of genetic trajectory coding,

in general, we can select two dependent parameters Aj,N-1, Aj,N to meet the

marginal trajectory conditions (OPP, OPR). The set of coding parameters of

each of the individual strings is given as follows:

57

=
=

−

=
UU

n

j

N

i

Fij taAx
1

2

1
,ˆ [4.35]

where

=

−

=
UU

n

j

N

i

ijA
1

2

1
, are coding parameters of acceleration and tF is the

coding parameter of the path time. Two dependent parameters of

acceleration selected with respect to marginal trajectory conditions (OPP,

OPR) are given as follows:

 −

Nj

Nj

A

A

,

1.
 =

−
∆

−

−

−

−

∑

∑
−

=

−

=
2

1
,2

,0,

2

1
,

.
11

1
N

i

ij

Njj

N

i

ij

iA
t

QQ

A

N

N
 [4.36]

The size of the coding parameter is for each individual string x̂ as follows:

 Np = n.(N – 2) + 1 [4.37]

4.6.3 Working with limit conditions

It is not easy to work with the limit conditions of the robotic

manipulator trajectory expressed by the equations of inequalities; therefore

we transformed them to static restrictions. For illustration, we consider the

following dynamic system:

we have: x& (t) = f(x(t),u(t))

for which it applies: xL ≤ x(t) ≤ xU , []Ftt ,0∈∀

[4.38]

where x(t) is a state variable with bottom boundary xL , top boundary xU and

 u is the controlled input. Continuous dynamic restrictions in the form of

58

inequalities (4.38) can be transformed to static restrictions in the form of

inequalities:

c(x) = ()() ()() dtxxxxw LU
t

x

F 22

0
0,min0,min −+−∫ [4.39]

If c(x) is equal to zero, the inequality restrictions in (4.38) is met. Similarly,

we will work with the restrictions of trajectory limits. For simplicity, we

consider xj as trajectory variable of such a jth joint, that xj =qj (position), vj

(velocity), aj (acceleration), Tj (turning moment). And we indicate the

trajectory variable from the record (4.20) – (4.23) as

xj(t) [] []F

U

j

L

j ttxx ,0,, ∈∀∈ , where
L

jx and
U

jx

are the bottom and top

boundaries of each trajectory variable of the jth joint. Then we can rewrite

(4.20) – (4.23) as follows:

 G(xj) =)(j

t

x xgW

[4.40]

where

 g(xj) =
12

0

0

)0,/1min(

)0,/1min(
×∈

−

−

∫
∫

R
dtxx

dtxx

F

F

t
mU

jj

t
mL

jj

is the vector breaking the restrictions, [] 21×∈= RwwW U

x

L

x

t

x is the weight

vector related to the bottom and top boundaries x and m is a positive number

of the exponent. If G(xj) is approaching zero, i.e. that, xj trajectory variable

meets its restriction condition in [4.20] – [4.23].

Fighting off the trajectory restriction condition in (4.40) to the fitness

function, the fitness trajectories for trajectory genetic planning are indicated

as:

59

fit =max
∑ ∑+ =x

n
j jF xGt 1)(

1
,0() [4.41]

where

tF : time of path (criterion of minimization),

max(x,y): maximum value between x and y,

xj : type of variable trajectory of such a jth joint, where x =q(position),

v(velocity), a(acceleration), T (turning moment),

G(x) : modified limit conditions related to x type (ObPP, ObPR, ObPZ,

ObPM),

∑x
: record expressing every limit condition in the fitness trajectory.

60

5. SOLUTION PROPOSAL AND

IMPLEMENTATION

5.1 Algorithm of the whole procedure

The procedure for genetic planning of the trajectory for the robotic

manipulator is expressed as follows:

x̂ = { ix̂ | i = 1,2, ... , Np} : trajectory chromosome in [4.35]

 k = 1,2, ..., Npop : index of kth population individual

X̂ = {
kx̂ | k = 1,2, … , Npop} : population chromosome

Fit = {fitk | k = 1,2, … , Npop} : fitness population vector

XRX popN

s
ˆˆ: a×Ω ; selection operator

XXc
ˆˆ: aΩ ; crossover operator

XXm
ˆˆ: aΩ ; mutation operator

Initial conditions:

robot: arms parameters

QL, ... , TU : bottom and top boundaries of limit conditions

in (4.20) – (4.23)

GA: pc, pm ∈ [0,1] : probability of crossover, mutation

 [
Lx̂ ,

Ux̂] : x̂ chromosome boundaries coding

 }N,...,2,1|L̂{ˆ
pi == iL : lengths of coding x̂

 Npop : population size, Ngen : max. number of generations

other: dτ : period of sampling, N : partial path time

61

Input: q0, qF : start and destination robot positions (OPP)

Stop:

 Λ : X̂ a {Yes, No}; stop when the generation number

achieves Ngen

outcome:

 trajectory of an elite string meeting the stop criteria

Pseudocode Algorithm

1. Initialization

1.1. Execute start setting of robot’s parameters and genetic algorithm

1.2. Input conditions (OPP)

1.3. gen ← 1, X̂ (gen) ← Initialization of chromosomes

(
Lx̂ ,

Ux̂ , L̂ , Npop)

while (Λ : X̂ (gen) ≠ Yes) do

2. Evaluation of Fit(gen) s X̂ (gen)

for k=1 to Npop do

2.1. x̂ ←
kx̂

2.2. calculation of ∆t according to [4.25]

2.3. calculation of the set of accelerations A according to [4.36]

2.4. calculation of the set of speeds of V nodes, of the set of positions

Q according to [4.31] – [4.32]

2.5. calculation of q&& acceleration from A, q& velocity and q position

according to [4.28] – [4.29] and T moment according to [4.18]

2.6. calculations of fitness fit according to [4.40] – [4.41]

2.7. fitk ← fit

62

end

3. GA operations

3.1.))(),(ˆ()(ˆ genFitgenXgenX ss Ω←

3.2.))(ˆ()1(ˆ genXgenX scc Ω←+

3.3.))(ˆ()1(ˆ genXgenX cmm Ω←+

4. gen ←gen + 1,)(ˆ genX ←)(ˆ genX m

end

return the result

Kinematic chains of industrial robots are usually open and consist of two

parts. The first part is a positioning device comprising individual

components and shifting and rotation kinematic couples. The other part of

the industrial robot kinematic chain is the device for orientation consisting

mainly of rotation kinematic couples with one, two, or three motion degrees

of freedom. A mechanical system of an open industrial robot kinematic

chain is accomplished by an effector, i.e. an executive link of the robot.

Fig. 5 Kinematic scheme of an industrial robot

y

m2, I2

m1, I1

L1
L2

l1

l2

q1

q2

C.G.

C.G. (center of gravity) x

63

The position of the P working point of the robotic effector regarding the

coordinate system of the mechanism and for the orientation according to

Fig. 5 can be expressed as follows:

xP = L1.sin q1 + L2.sin (q1 + q2)

yP = L1 cos q1 + L2 cos (q1 + q2)

The task is to investigate the necessary motion in kinematic couples to

ensure the replacement of the P working point of the robot effector from P0

position to P1 position. At the beginning and the end of the motion the

speed and acceleration of the P point shall be zero.

Dynamic equations of the manipulator in Fig. 4 can be stated as follows:

2
2212121111 2 qhqqhqMqMT &&&&&&& −−+=

2
11122222 qhqMqMT &&&&& ++=

where

())cos(2 221
2
2

2
12

2
112111 qlLlLmlmIIM +++++=

)cos(2212
2
22212 qlLmlmIM ++=

2
22222 lmIM +=

)sin(2212 qlLmh=

while

M11, M12, M22 are drive moments generated by servo gears L1, L2 are

 lengths of robot links

I1, I2 are mass moments of inertia to link centres

l1,l2 are distances of individual links centres

m1, m2 are masses of individual links.

64

Fig. 6 Destination effector point trajectory

We look for time courses of turn angles qi(t) and qj(t) in the form of a fifth

degree polynomial:

qi(t) = a1t
5 + a2t

4 + a3t
3 + a4t

2 + a5t + a6

qj(t) = b1t
5 + b2t

4 + b3t
3 + b4t

2 + b5t + b6

Constants in these polynomials are determined from the start and

destination conditions for the motion of P working point.

The point P trajectory shown in Fig. 6 corresponds with the replacement

from the start to the destination positions.

Turn angles of individual mechanism components - for the orientation

expressed as functions of time – represent the kinematic control functions of

the robot’s mechanical subsystem.

start point

iii
qqq &&& ,,

destination point

fff
qqq &&& ,,

mm
qq &,

m
q&&

1t 2t

interposition point

65

Fig. 7 What is needed to optimize

5.2 Solution implementation in support software

5.2.1 Robot model

To understand what properties the unoptimized trajectory has, it is

suitable to prepare a robot model respecting its kinematics and dynamics.

We looked for the suitable environment, in which the implementation could

be executed for quite a long time. We selected MATLAB™, which allows

a lot of engineering and scientific calculations, and it is possible to

supplement it by various toolboxes, programming of one’s own functions,

and therefore its possibilities in the field of scientific calculations are almost

unlimited.

iii qqq &&& ,,

a are given

21,tta can be optimized

 we can define via afore-mentioned parameters

start point

destination point

1t 2t

interposition point

iii qqq &&& ,, fff qqq &&& ,,

mm qq &, mm qq &,

mq&&

fff qqq &&& ,,

66

We built the robot model in the MATLAB™ program with the use of

the RobotiCad Toolbox which allowed us to create the motion scheme of

a random kinematic chain in a user-friendly way. It also cooperates with the

SIMULINK® simulation tool, where the dynamic chain properties can be

defined as necessary for the application of our method of optimal trajectory

generation.

 .

Fig. 8 Plane mechanism trajectory

Fig. 8 shows the model of a plane mechanism with three degrees of

freedom. The program allows illustrating the destination effector trajectory.

For illustration we chose a simple trajectory from the point with zero y

coordinate, positive x coordinate and zero arms turn angles to the point with

67

a negative x coordinate, non-zero y coordinate and positive arms turn

angles.

We would like to optimize a similar trajectory in the MATLAB™

Optimization Toolbox. The robot in real applications carries out a lot of

motion actions, so its trajectory comprises a lot of smaller trajectories

similar to the one we have decided to analyze. The principle applies for any

random trajectories.

First we illustrated the time courses of the angles of the arms´ turns,

speeds and accelerations in order to show the trajectory given and describe

what we need to improve.

The horizontal axis comprises the time; the vertical axis comprises the

angle (Fig. 9), speed and acceleration.

Fig. 9 Time courses of arms angles

68

The illustrated courses of individual turn angles in Fig. 9 show that the

curves do not indicate any “interventions” during the motion, which could

lead to possible more efficient motion during the manipulation action. The

same applies for the courses of the arms´ velocities and accelerations in Fig.

10 and Fig. 11.

Fig. 10 Time courses of arms’ velocities

69

Fig. 11 Time courses of arms’ accelerations

5.2.2 Trajectory optimization

In this chapter I describe the parameters of the plane mechanism

tested. The arms’ lengths were l1 = 1 m, l2 = 1 m and l3 = 0.5 m. Mass m1 =

1 kg, m2 = 1 kg and m3 = 0.5 kg. The maximum permitted drive moments 1,

2 and 3 are 45 Nm, 20 Nm and 5 Nm. The speeds and accelerations in the

start and destination positions are null.

For the genetic algorithm the following parameters were valid:

crossover probability Pc = 0.8 to a chromosome (function Pc determines

how often the chromosome is crossed), mutation probability Pm = 0.05

(function Pm determines how often than chromosome part is mutated) and

the population of 40 individuals for the angles in the interpositions, arms´

speeds and times, string size of the chromosome 9. The number of crossed

chromosomes in each of the generations is defined as a multiple of Pc and

the population size. The number of mutated genes in each generation is

70

defined as a multiple of Pm, population size and chromosome length. We

used a tournament selection, elitism and the maximum number of

generations – 80.

We have carried out the following experimental results verification in

the MATLAB™ environment with the use of a toolbox for optimization via

genetic algorithms.

Fig. 12 shows the optimized trajectory, which even at first sight has

a different trajectory course than the original one illustrated in Fig. 8. We

can see the illustration of the gradual motion of individual arms; the turn

angle of the first arm does not change first at all, and only in the third of the

motion sequence a deviation can be recorded.

Fig. 12 Optimized trajectory

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5
5

1

1.5
5

2

2.5
5

x(m)

y(m)

gen. no.80

Optimal trajectory

71

The largest turn angle and its largest moment of servo gear have been

developed in the second joint immediately after the motion sequence

beginning.

The illustrated course is calculated after the run of maximum number

of generations - 80. During the calculation of individual generations the

course has gradually approximated optimal values.

Fig. 13 shows the course of fitness in individual generations. We can

see the falling tendency with the number of generations, which indicates the

successful calculation leading to finding the time optimal parameters of the

mechanism motion trajectory.

Fig. 13 Course of fitness

0 10 20 30 40 50 60 70 80
25

26

27

28

29

30

31

32

33

34

35

generation

min. fitness

72

To compare, in Fig. 14 we can see the time courses of arm turns

angles. In contrast to the course shown in Fig. 9 we can see a significant

change in the angle turn of the other arm, which slows down in the other

half of the motion sequence and the turn angle is almost not changed. The

course of the angle turn of the first arm is different, it starts with an easy

angle change and approximately in the half of the motion sequence it

increases. The third arm is turned gradually almost evenly and continuously

during the motion sequence.

Fig. 14 Time courses of arms angles

In relation to the time courses of angles the time courses of other

quantities change also, the velocities and accelerations of arms in particular.

Fig. 15 illustrates the time courses of arms velocities.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

2.5

 arm 1
arm 2
arm 3

arm angle (rad)

time(s)

73

Fig. 15 Time courses of arms velocities

It is necessary to notice that the velocity of the other arm began to

grow sharply in the first third of the manipulation sequence. In the second

third it had a falling tendency and in the last one it was almost none. The

first arm achieved the highest velocity in the last third of its motion.

Fig. 16 Time courses of arms’ accelerations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 arm 1
arm 2
arm 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1.5

-1

-0.5

0

0.5

1

1.5

 arm 1
arm 2
arm 3

arm velocity (rad/s)

time(s)

time(s)

arm acceleration (rad/s)

74

The courses of acceleration in Fig. 16 show that the gear properties for

achieving the maximum allowed arms moments are utilized at their

maximum. If we compare these courses to those in Fig. 11 from the original

mechanism, the main difference, besides completely different curve shapes,

is seen approximately in the middle of the motion, where a sharp course

change occurs.

The main task is to define the moment when the breaking should

occur. It is clearly seen in the course of the first arm, where the breaking

moment occurs approximately in the middle of the motion.

Fig. 17 Time courses of arms’ moments

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-40

-30

-20

-10

0

10

20

30

40

50

time (s)

arm moment (N.m)

 arm 1
arm 2
arm 3

75

Fig. 18 Dependence of motion duration from the point to the point

on the number of generations

Fig. 19 Dependence of the total sum of arms’ turn angles on the number

of generations

0 10 20 30 40 50 60 70 80
4.5

5

5.5

6

6.5

7

7.5

8

8.5

generation

motion time
from point to point (s)

0 10 20 30 40 50 60 70 80
3.5

4

4.5

5

5.5

6

6.5

generation

total sum of arm
angles (rad)

76

Fig. 20 Dependence of the total length of Cartesian trajectory

on the number of new generations

Fig. 21 Dependence of the total excessive turning moment on the number

of generations

0 10 20 30 40 50 60 70 80
6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7

generation

total length of
Carthesian trajectory (m)

0 10 20 30 40 50 60 70 80
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

generation

total excessive
turning moment (N.m)

77

5.2.3 Simulation results

The verifying study has been carried out for a 3-link plane mechanism

moving in a free working space. We have learned the decrease of motion

time and at the same time the decrease of Cartesian trajectory length.

Genetic algorithms have proved to be a suitable optimization method;

the results are illustrated in the graphs in the previous chapter.

The moments of drives in the motion have not exceeded the allowed

values and at the same time they have been fully utilized.

5.3 Experimental verification of results

Since the solution is not limited only to a specific manipulator type, it

is possible to test it on a random robot type with regard to the setting of

similar conditions as by the simulation mentioned. To test the optimized

trajectory we have selected a real tool for an offline robot programming. As

we have had the possibility to work with Denso robot (in Fig. 22), testing

has been carried out in the environment delivered with it. It is WINCAPS

III software, whose trial version has been at our disposal. WINCAPS III

Program is a program package for an effective development and verification

of robot control programs. It allows checking the robot operations,

variables, PC inputs and outputs connected to the robot control circuits. It

also allows program administration as projects, storing of frequently used

programs in program files registers and also other functions for program

functions administration. Denso Robot can be connected to a PC via

Ethernet or via a serial port.

78

Fig. 22 Denso VS-6556G Robot

Fig. 23 WINCAPS III Program environment

79

Fig. 23 shows the WINCAPS III Program environment. In Part A there

is the program menu, B comprises of various control panels, C is the

so-called docking window with various information on the current project

of a robotic workplace, etc., and D is the so-called view of the program

where we can see the source code of the program, the 3D window with the

robotic workplace, etc. A specific robot model from the robot models

catalogue can be included to the program and then programmed. In our case

it is the Denso VS-6556G robot.

In the Model window a 3D object representing the workplace elements

or obstacles can be inserted into the scene.

In the Arm operation window we can define the robot’s motion either

in the mode of setting the point coordinates or in the mode of setting the

individual arms’ turn angles.

Fig. 24 Start point in Arm operation

80

Fig. 25 Destination point in Arm operation

First I defined a common trajectory from one point to the other point

in the Arm 3D View window.

In the bottom part of WINCAPS environment there is a window,

which can take over the robot’s defined position from the Arm operation

window by clicking the key Get Position. Fig. 26 shows the defined

positions of the robot in the destination point coordinates system mode.

Line 0 corresponds with the start position and line 1 corresponds with the

destination position of a robot. Fig. 27 shows the defined robot’s positions

in the mode of the arms’ turn angles. Line 0 corresponds with the start

position and line 2 with the destination position of a robot.

Fig. 26 Defined points of a robot in the position coordinates mode

81

Fig. 27 Defined points of a robot in the arms’ turn angles mode

To execute our experiment for verifying the simulation results in the

MATLAB™ environment we define for the Denso mode robot the

trajectory via motion points. This can be done in the ArmPlayerPlus

window (Fig. 28), where we build the robot program by taking over the

defined points by the order MOVE in the right side. Beside this, under the

key MOVE, there are various ways of trajectory points definition, in the

program it is displayed in the record of the order MOVE P, @parameter,

where “parameter” means in the case:

• @P, that the robot in the given trajectory point does not accelerate

and slow down, which on the other hand can result in the fact, that

it does not cross the point all the time and can bypass it,

• @0 slows down and accelerates, but only partially; the point is

partially bypassed,

• @E means complete stop in the point given; this is used if we need

to reach an exact specific point.

Example of a simple program:

82

'!TITLE "<Titile>"

PROGRAM motion

 MOVE P,@P J4, S=100

 MOVE P,@E J5, S=100

END

Order MOVE P, @P J4, S=100 means that the robot executes a motion in

the mode from the point to the point, while the point is determined by the

arms turn angles from the Table type J in the line 4 (J4). Since @P is stated

there, the robot does not accelerate nor slowdown in the point. In the end of

the line the speed is defined in percentage (S=100), i.e. the robot moves to

this point with a maximum possible speed.

Order MOVE P, @P J5, S=100 means that the robot carries out a motion in

the mode from a point to a point, where the point is determined by the arms

turn angle from the Table J in line 5 (J5). Since @E is stated, the robot stops

in the point given.

Fig. 28 Definition of motion points in ArmPlayerPlus

83

When we run the motion sequence in ArmPlayerPlus, the program will

move the robot from the first point to the other point.

In the ArmPlayerPlus window we can see the time in seconds 6.83 s

(Fig.29). It is the time in which the robot executes the motion from the

starting point defined in line 21 to the destination point in line 30 (in the

program specified as J30), while the motion is not optimized at all.

The trajectory is in the shape of an arc as illustrated in Fig. 8. The

trajectory points are defined by well proportioned division of turn angles in

the scope from -72° to 90°.

Fig. 29 Coordinates of points and duration of a non-optimal trajectory

84

Since we do not have available software to transfer the trajectory

directly from the MATLAB™ environment to WINCAPS with defined

trajectory points and speeds in individual points, it is necessary to carry out

the action manually and set the optimized trajectory in the form of a specific

number of trajectory points.

The table of points of the optimized trajectory is shown in Fig. 30. The

points are given according to the generated optimal trajectory based on the

data in Fig. 24 showing the course of the individual arms turn angles in

specific time periods.

Fig. 30 Coordinates of points and duration of the optimized trajectory

85

After the assignment of the optimal trajectory due to the table of points

defined in lines from 11 to 20 we have learned, that the generated optimized

trajectory has shortened the time of motion to 5.42 s (Fig. 31). It is the time

necessary for the robot to move from the start point defined in line 11 to the

destination point defined in line 20 (in the program indicated as J20).

Fig. 31 Duration of the optimal trajectory

The method improvement proposed by us (13) in the form of the

points’ approximation of the motion trajectory along the curve has made the

time shortening from 5.42 s to 3.38 s possible. The shortening of time is

significant, since in the case of optimal trajectory method (13) being in

individual points the manipulator carries out partial motions, slows down

and subsequently accelerates to reach the point specified.

In the case of optimal trajectory it is a continuous motion along the

curve whose parameters were generated by the applied genetic algorithm.

Individual points of the existing trajectory are approximated by the curve,

86

no slowing down or acceleration occur, and therefore, the motion is

continuous and the trajectory length is shorter.

Fig. 32 Trajectory optimization

Trajectory optimization

6.83

5.42

3.38

0

1

2

3

4

5

6

7

8

Un-optimized optimized optimal

Motion trajectory

type of trajectory

time [s]

Un-optimized motion
trajectory
optimized motion
trajectory
optimal motion
trajectory

87

6. CONCLUSION

Based on the analysis of various existing methods and regarding the

drives moments constraints, I implemented and improved the algorithm to

an off-line generating of a time optimal trajectory generated via the genetic

algorithm.

For a specific manipulator this algorithm requires: that the angles in

terms of the position on the path can be calculated, the dynamic equations

are known as well as the maximum and minimum possible generated drives

moments as functions of arms angles, and angular speeds are known.

The algorithm implementation of the manipulator trajectory genetic

planning which optimally controls the robot motion in terms of time is the

main contribution. The method can be utilized to generate optimal

parameters for an industrial robot motion trajectory with various numbers of

freedom degrees.

For simplification and better illustration the experiments were carried

out on the model of a surface manipulator with three freedom degrees. The

mentioned procedure is suitable for further 3D processing, for other

manipulator types, and testing of generated trajectory in some of the

environments for a robot control in the mode of setting the points’ motion

coordinates.

It could be suitable to develop support software able to rewrite the

generated trajectory from the MATLAB™ environment in the form of

appropriate orders directly for a specific robot in a specific control

environment.

88

Similarly, I considered only time as a criterion for minimization;

however, this could be enhanced to further criteria such as power. Also

other constraints and tasks, e.g. avoiding obstacles and cooperation of more

robots could be subject to further research.

89

References

1. LAVALLE, S. M. Planning Algorithms. University of Illinois, 2004.
2. SEKAJ, I. Evolučné výpočty a ich využitie v praxi. (Evolutionary

calculations and their utilization in practice.) Bratislava: IRIS, 2005.
157 p. ISBN 80-89018-87-4

3. JURIŠICA, L., HUBINSKÝ, P, KARDOŠ, J. Robotika. (Robotics.)
Bratislava: STU, 2005. 134 p.

4. CRAIG, J.J. Introduction to Robotics. Massachusetts:
Addison·Wesley, 1986.

5. FU, K.S., GONZALEZ, R.C., LEE, C.S.G. Robotics: Control,

Sensing, Vision, and Intelligence. New York, N.Y.: McGraw - Hill
Book Company, 1987.

6. LASTMAN, G. J. A shooting method for solving two-point boundary-
value problems arising from non-singular bang-bang optimal control

problems. International Journal of Control, 1978, 27(4), pp. 513-524.
7. ARORA, J.S. Introduction to Optimum Design. New York, NY:

McGraw - Hill Book Company, 1989.
8. IRK, D.E. Optimal Control Theory an Introduction. Englewood Cliffs,

New Jersey: Prentice-Hall Inc., 1970.
9. PINCH, E.R. Optimal Control and the Calculus of Variations. New

York: Oxford University Press Inc., 1993.
10. ESCHENAUER, H., KOSKI, J., OSYCZKA, A. Multicriteria Design

Optimization. Heidelberg, Germany: Springer-Verlag, 1990.
11. STADLER, W. Multicriteria optimization in mechanics: A survey.

Journal of Applied Mechanics Reviews, 1984, 37(3), pp. 227-286.
12. TIAN, L., COLLINS, C. Motion planning for redundant manipulators

using a floating point genetic algorithm. Journal of Intelligent and
Robotic Systems, Theory and Applications, 38(3-4), pp. 297–312,
2003.

13. LEE, B.H., LEE, Y.D. Genetic Trajectory Planner for a Manipulator

with Acceleration Parametrization. Journal of Universal Computer
Science, 1997, 3(9), pp. 1056-1073.

14. YAMAMOTO, M., MOHRI, A. Planning of quasi-minimum time

trajectories for robot manipulators (generation of a bang-bang

control). Robotica, 1989, 7, pp. 43-47.

90

15. SZYSZKOWSKI, W., FOTOUHI-C, R. A numerical method for time-

optimal control of double arms robot. IEEE Transactions on
Automatic Control, 1995.

16. BOBROW, J.E., DUBOWSKY, S. On the optimal control of robotic

manipulators with actuator constraints. Proceedings of 1983
American Control Conference.

17. Genetic Algorithm and Direct Search Toolbox for Use with MATLAB

– User’s Guide. The Mathworks Inc., Natick (USA) 2004.
18. Optimization Toolbox for Use with MATLAB – User’s Guide. The

Mathworks Inc., Natick (USA) 2000.
19. KOZÁK, S., KAJAN, S. Matlab – Simulink I. Bratislava: STU, 2006.
20. DISSANAYAKE, M. W, GOH, C. J., PHAN-THIEN, N. Time-

optimal trajectories for robot manipulators. Robotica, 1991, 9(2), pp.
131-138.

21. CHAN K. K., ZALZALA, A. M. S. Genetic-based minimum-time

trajectory planning of articulated manipulators with torque

constraints. IEE Colloquium on Genetic Algorithms for Control
Systems Engineering, London, pp. 4/1 -4/3, 1993.

22. KIM, K-W, KIM, H-S, CHOI, Y-K., PARK, J-H. Optimization of

cubic polynomial joint trajectories and sliding mode controllers for

robots using evolution strategy. Proceedings of the 23rd International
Conference on Industrial Electronics, Control and Instrumentation
IECON 97, 1997, 3, pp. 1444 -1447.

23. RANA, A., ZALZALA, A. An evolutionary planner for near time-

optimal collision-free motion of multi-arm robotic manipulators.
Exeter, Proceedings of International Conference on Control, pp. 29-35,
1996.

24. DOYLE, A. B., JONES, D. I. Robot path planning with genetic

algorithm. Proceedings of 2nd Portuguese Conference on Automatic
Control, 1996, pp. 312-318.

25. PACK, D., TOUSSANT, G., HAUPT, R. Robot trajectory planning

using a genetic algorithm. SPIE, 1996, 2824, pp. 171-182.

91

CONTENTS

INTRODUCTION .. 9

1. Theoretical background.. 13

1.1 Robot and sorrounding environment 13

1.2 Degrees of freedom .. 13

1.3 Overview of robot path planning methods 14

1.3.1 Exact planning .. 14

1.3.2 Visibility graph ... 14

1.3.3 Retraction method .. 14

1.3.4 Potential field methods ... 15

1.3.5 Dividing the space into simple areas 15

1.3.6 A* algorithm .. 15

1.3.7 Probabilistic planning ... 16

1.3.8 Genetic algorithm - GA .. 16

2. Motion trajectory planning ... 17

2.1 Global and local planning ... 17

2.2 Holonomic and non-holonomic planning 17

2.3 Complete motion planning algorithms 18

2.4 Path planning ... 18

2.4.1 Discrete environment .. 19

2.4.2 Continuous environment ... 19

2.4.3 Robot movement .. 20

2.4.4 Probabilistic algorithms .. 21

2.4.5 Use of probabilistic algorithms.. 21

2.4.6 Classification of planning algorithms 22

3. Genetic algorithms ... 24

3.1 GA definition ... 25

3.2 Size of population .. 26

3.3 Initial population .. 26

3.4 Chromosome representation ... 27

3.5 Fitness ... 27

3.6 Selection of parents .. 27

3.7 Genetic crossover operator ... 28

3.8 Genetic mutation operator .. 28

3.9 Replacement scheme .. 29

3.10 Criterion of ending ... 29

4. Robot motion control ... 31

92

4.1 Optimal robot control .. 37

4.2 Formulation of the robot optimal control matter 38

4.2.1 Dynamics of manipulator... 39

4.2.2 Marginal conditions and restrictions 40

4.2.3 Functional of quality of dynamic system 40

4.2.4 Formulation of optimal control .. 42

4.2.5 Types of optimal control .. 43

4.3 Solution to optimal control .. 43

4.4 Overview of existing methods of optimal motion control 44

4.4.1 Optimization with more criteria 45

4.4.2 Time-optimal control ... 45

4.4.3 Optimization via genetic algorithms 46

4.4.4 Introduction to the subject matter solution via genetic
algorithms ... 47

4.5 Formulation of genetic trajectory planning 48

4.5.1 Fitness transformation via punishment function................ 49

4.5.2 Subject matter definition .. 51

4.5.3 Parameterization of genetic trajectory 53

4.6 Procedure of genetic trajectory planner 53

4.6.1 Acceleration parameterization for genetic algorithm 53

4.6.2 Trajectory parameter coding .. 56

4.6.3 Working with limit conditions ... 57

5. Solution proposal and implementation .. 60

5.1 Algorithm of the whole procedure ... 60

5.2 Solution implementation in support software 65

5.2.1 Robot model .. 65

5.2.2 Trajectory optimization ... 69

5.2.3 Simulation results .. 77

5.3 Experimental verification of results ... 77

6. Conclusion ... 87

References ... 89

