9,946 research outputs found

    Accelerating Consensus by Spectral Clustering and Polynomial Filters

    Get PDF
    It is known that polynomial filtering can accelerate the convergence towards average consensus on an undirected network. In this paper the gain of a second-order filtering is investigated. A set of graphs is determined for which consensus can be attained in finite time, and a preconditioner is proposed to adapt the undirected weights of any given graph to achieve fastest convergence with the polynomial filter. The corresponding cost function differs from the traditional spectral gap, as it favors grouping the eigenvalues in two clusters. A possible loss of robustness of the polynomial filter is also highlighted

    Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication

    Full text link
    This paper proposes a novel class of distributed continuous-time coordination algorithms to solve network optimization problems whose cost function is a sum of local cost functions associated to the individual agents. We establish the exponential convergence of the proposed algorithm under (i) strongly connected and weight-balanced digraph topologies when the local costs are strongly convex with globally Lipschitz gradients, and (ii) connected graph topologies when the local costs are strongly convex with locally Lipschitz gradients. When the local cost functions are convex and the global cost function is strictly convex, we establish asymptotic convergence under connected graph topologies. We also characterize the algorithm's correctness under time-varying interaction topologies and study its privacy preservation properties. Motivated by practical considerations, we analyze the algorithm implementation with discrete-time communication. We provide an upper bound on the stepsize that guarantees exponential convergence over connected graphs for implementations with periodic communication. Building on this result, we design a provably-correct centralized event-triggered communication scheme that is free of Zeno behavior. Finally, we develop a distributed, asynchronous event-triggered communication scheme that is also free of Zeno with asymptotic convergence guarantees. Several simulations illustrate our results.Comment: 12 page

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com
    • …
    corecore