2,669 research outputs found

    On the maturity of parallel applications for asymmetric multi-core processors

    Get PDF
    Asymmetric multi-cores (AMCs) are a successful architectural solution for both mobile devices and supercomputers. By maintaining two types of cores (fast and slow) AMCs are able to provide high performance under the facility power budget. This paper performs the first extensive evaluation of how portable are the current HPC applications for such supercomputing systems. Specifically we evaluate several execution models on an ARM big.LITTLE AMC using the PARSEC benchmark suite that includes representative highly parallel applications. We compare schedulers at the user, OS and runtime levels, using both static and dynamic options and multiple configurations, and assess the impact of these options on the well-known problem of balancing the load across AMCs. Our results demonstrate that scheduling is more effective when it takes place in the runtime system level as it improves the baseline by 23%, while the heterogeneous-aware OS scheduling solution improves the baseline by 10%.This work has been supported by the RoMoL ERC Advanced Grant (GA 321253), by the European HiPEAC Network of Excellence, by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P), by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), and by the European Union's Horizon 2020 research and innovation programme under grant agreement No 671697 and No. 779877. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal fellowship number RYC-2016-21104.Peer ReviewedPostprint (author's final draft

    POSTER: Exploiting asymmetric multi-core processors with flexible system sofware

    Get PDF
    Energy efficiency has become the main challenge for high performance computing (HPC). The use of mobile asymmetric multi-core architectures to build future multi-core systems is an approach towards energy savings while keeping high performance. However, it is not known yet whether such systems are ready to handle parallel applications. This paper fills this gap by evaluating emerging parallel applications on an asymmetric multi-core. We make use of the PARSEC benchmark suite and a processor that implements the ARM big.LITTLE architecture. We conclude that these applications are not mature enough to run on such systems, as they suffer from load imbalance. Furthermore, we explore the behaviour of dynamic scheduling solutions on either the Operating System (OS) or the runtime level. Comparing these approaches shows us that the most efficient scheduling takes place in the runtime level, influencing the future research towards such solutions.This work has been supported by the Spanish Government (SEV2015-0493), by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P), by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), by the RoMoL ERC Advanced Grant (GA 321253) and the European HiPEAC Network of Excellence. The Mont-Blanc project receives funding from the EU's Seventh Framework Programme (FP7/2007-2013) under grant agreement number 610402 and from the EU's H2020 Framework Programme (H2020/2014-2020) under grant agreement number 671697. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047. M. Casas is supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the 7th R&D Framework Programme of the European Union (Contract 2013 BP B 00243).Peer ReviewedPostprint (author's final draft

    High performance cloud computing on multicore computers

    Get PDF
    The cloud has become a major computing platform, with virtualization being a key to allow applications to run and share the resources in the cloud. A wide spectrum of applications need to process large amounts of data at high speeds in the cloud, e.g., analyzing customer data to find out purchase behavior, processing location data to determine geographical trends, or mining social media data to assess brand sentiment. To achieve high performance, these applications create and use multiple threads running on multicore processors. However, existing virtualization technology cannot support the efficient execution of such applications on virtual machines, making them suffer poor and unstable performance in the cloud. Targeting multi-threaded applications, the dissertation analyzes and diagnoses their performance issues on virtual machines, and designs practical solutions to improve their performance. The dissertation makes the following contributions. First, the dissertation conducts extensive experiments with standard multicore applications, in order to evaluate the performance overhead on virtualization systems and diagnose the causing factors. Second, focusing on one main source of the performance overhead, excessive spinning, the dissertation designs and evaluates a holistic solution to make effective utilization of the hardware virtualization support in processors to reduce excessive spinning with low cost. Third, focusing on application scalability, which is the most important performance feature for multi-threaded applications, the dissertation models application scalability in virtual machines and analyzes how application scalability changes with virtualization and resource sharing. Based on the modeling and analysis, the dissertation identifies key application features and system factors that have impacts on application scalability, and reveals possible approaches for improving scalability. Forth, the dissertation explores one approach to improving application scalability by making fully utilization of virtual resources of each virtual machine. The general idea is to match the workload distribution among the virtual CPUs in a virtual machine and the virtual CPU resource of the virtual machine manager

    Exploiting asymmetric multi-core systems with flexible system software

    Get PDF
    Asymmetric multi-cores (AMCs) are a successful architectural solution for both mobile devices and supercomputers. These architectures combine different types of processing cores designed at different performance and power optimization points, thus exposing a performance-power trade-off. By maintaining two types of cores, AMCs are able to provide high performance under the facility power budget. However, there are significant challenges when using AMCs such as scheduling and load balancing. This thesis initially explores the potential of AMCs when executing current HPC applications and searches for the most appropriate execution model. Specifically we evaluate several execution models on an Arm big.LITTLE AMC using the PARSEC benchmark suite that includes representative HPC applications. We compare schedulers at the user, OS and runtime system levels, using both static and dynamic options and multiple configurations, and assess the impact of these options on the well-known problem of balancing the load across AMCs. Our results demonstrate that scheduling is more effective when it takes place in the runtime system as it improves the user-level scheduling by 23%, while the heterogeneous-aware OS scheduling solution improves the user-level scheduling by 10%. Following this outcome, this thesis focuses on increasing performance of AMC systems by improving scheduling in the runtime system level. Scheduling in the runtime system level is provided by the use of task-based parallel programming models. These programming models offer programming flexibility as they consist of an interface and a runtime system to manage the underlying resources and threads. In this thesis we improve scheduling with task-based programming models by providing three novel task schedulers for AMCs. These dynamic scheduling policies reduce total execution time either by detecting the longest or the critical path of the dynamic task dependency graph of the application. They use dynamic scheduling and information discoverable during execution, fact that makes them implementable and functional without the need of off-line profiling. In our evaluation we compare these scheduling approaches with an existing state-of the art heterogeneous scheduler and we track their improvement over a FIFO baseline scheduler. We show that the heterogeneous schedulers improve the baseline by up to 1.45x on a real 8-core AMC and up to 2.1x on a simulated 32-core AMC. Another enhancement we provide in task-based programming models is the adaptability to fine grained parallelism. The increasing number of cores on modern CMPs is pushing research towards the use of fine grained workloads, which is an important challenge for task-based programming models. Our study makes the observation that task creation becomes a bottleneck when executing fine grained workloads with task-based programming models. As the number of cores increases, the time spent generating tasks is becoming more critical to the entire execution. To overcome this issue, we propose TaskGenX. TaskGenX minimizes task creation overheads and relies both on the runtime system and a dedicated hardware. On the runtime system side, TaskGenX decouples the task creation from the other runtime activities. It then transfers this part of the runtime to a specialized hardware. From our evaluation using 11 HPC workloads on both symmetric and AMC systems, we obtain performance improvements up to 15x, averaging to 3.1x over the baseline. Finally, this thesis presents a showcase for a real-time CPU scheduler with the goal to increase the frames per second (FPS) of the game-play on mobile devices with AMC systems. We design and implement the RTS scheduler in the Android framework. RTS provides an efficient scheduling policy that takes into account the current temperature of the system to perform task migration. RTS solution increases the median FPS of the baseline mechanisms by up to 7.5% and at the same time it maintains temperature stable.Los procesadores multinúcleos asimétricos (AMC) son una solución arquitectónica exitosa para dispositivos móviles y supercomputadores. Estas arquitecturas combinan diferentes tipos de núcleos de procesamiento diseñados con diferentes propiedades de rendimiento y potencia. Al mantener dos o más tipos de núcleos, los AMCs pueden proporcionar un alto rendimiento con un consumo bajo de energía de las infraestructuras. Sin embargo, existen importantes desafíos al usar los AMC, como la programación y el equilibrio de carga. Esta tesis explora inicialmente el potencial de los AMC al ejecutar aplicaciones actuales de Computacion de Alto Rendimiento (HPC) y busca el modelo de ejecución más apropiado para ellas. Específicamente evaluamos varios modelos de ejecución en un procesador asimétrico Arm big.LITTLE utilizando las aplicaciones PARSEC que son aplicaciones representativas de HPC. En este trabajo se compara la programación en los niveles de usuario, sistema operativo y librería y evaluamos el impacto de estas opciones en el conocido problema de equilibrar la carga entre los AMCs. Nuestros resultados demuestran que la programación es más efectiva cuando se lleva a cabo en el nivel del runtime, ya que mejora la programación del nivel de usuario en un 23%, mientras que la solución de programación del sistema operativo heterogéneo mejora la programación del nivel de usuario en un 10%. Siguiendo este resultado, esta tesis se centra en aumentar el rendimiento de los sistemas AMC mejorando la programación al nivel de librería. La programación en este nivel se proporciona mediante el uso de Modelos de Programación Paralelos Basados en Tareas (MPBT). Estos modelos de programación ofrecen flexibilidad de programación, ya que consisten en una interfaz y un runtime para administrar los recursos e hilos subyacentes. En esta tesis, mejoramos la programación con MPBT al proporcionar tres nuevos planificadores de tareas para AMCs. Estos planificadores dinámicos reducen el tiempo total de ejecución ya sea detectando la camino más largo o el camino crítico del grafo de dependencia de tareas de la aplicación, que es generado dinámicamente. En nuestra evaluación, comparamos estos planificadores con un planificador heterogéneo existente y demonstramos su mejora sobre un planificador FIFO. Mostramos que los planificadores heterogéneos mejoran el planificador FIFO en hasta 1.45x en un AMC real de 8 núcleos y hasta 2.1x en un AMC simulado de 32 núcleos. Otra contribución en los MPBT es la adaptabilidad al paralelismo de grano fino. El creciente número de núcleos en los chip multinúcleos modernos está empujando la investigación hacia el uso de cargas de trabajo de grano fino, que es un desafío importante para los MPBT. Nuestro estudio observa que la creación de tareas bloquea la ejecución con cargas de trabajo de grano fino con MPBT. Cuando el número de núcleos aumenta, el tiempo empleado en generar tareas pasa a ser más crítico para toda la ejecución. Nuestra solución es TaskGenX, que minimiza los costes de creación de tareas y se basa en una extensión del runtime y en un hardware dedicado. En el runtime, TaskGenX desacopla la creación de tareas de las otras actividades del runtime, ejecutando esta actividad en un hardware especializado. Evaluamos 11 aplicaciones de HPC con TaskGenX en sistemas simétricos y AMC y obtenemos mejoras de rendimiento de hasta 15x, con un promedio de 3.1x sobre la implementación de referencia. Finalmente, esta tesis presenta un planificador de CPU con el objetivo de aumentar los fotogramas por segundo (FPS) para juegos en dispositivos móviles con sistemas AMC. Diseñamos e implementamos el planificador de Real-Time Scheduler (RTS) en Android. El RTS proporciona una política de programación eficiente que tiene en cuenta la temperatura actual del sistema para realizar la migración de tareas. La solución RTS aumenta la FPS mediana de los mecanismos de referenci

    Exploiting asymmetric multi-core systems with flexible system software

    Get PDF
    Asymmetric multi-cores (AMCs) are a successful architectural solution for both mobile devices and supercomputers. These architectures combine different types of processing cores designed at different performance and power optimization points, thus exposing a performance-power trade-off. By maintaining two types of cores, AMCs are able to provide high performance under the facility power budget. However, there are significant challenges when using AMCs such as scheduling and load balancing. This thesis initially explores the potential of AMCs when executing current HPC applications and searches for the most appropriate execution model. Specifically we evaluate several execution models on an Arm big.LITTLE AMC using the PARSEC benchmark suite that includes representative HPC applications. We compare schedulers at the user, OS and runtime system levels, using both static and dynamic options and multiple configurations, and assess the impact of these options on the well-known problem of balancing the load across AMCs. Our results demonstrate that scheduling is more effective when it takes place in the runtime system as it improves the user-level scheduling by 23%, while the heterogeneous-aware OS scheduling solution improves the user-level scheduling by 10%. Following this outcome, this thesis focuses on increasing performance of AMC systems by improving scheduling in the runtime system level. Scheduling in the runtime system level is provided by the use of task-based parallel programming models. These programming models offer programming flexibility as they consist of an interface and a runtime system to manage the underlying resources and threads. In this thesis we improve scheduling with task-based programming models by providing three novel task schedulers for AMCs. These dynamic scheduling policies reduce total execution time either by detecting the longest or the critical path of the dynamic task dependency graph of the application. They use dynamic scheduling and information discoverable during execution, fact that makes them implementable and functional without the need of off-line profiling. In our evaluation we compare these scheduling approaches with an existing state-of the art heterogeneous scheduler and we track their improvement over a FIFO baseline scheduler. We show that the heterogeneous schedulers improve the baseline by up to 1.45x on a real 8-core AMC and up to 2.1x on a simulated 32-core AMC. Another enhancement we provide in task-based programming models is the adaptability to fine grained parallelism. The increasing number of cores on modern CMPs is pushing research towards the use of fine grained workloads, which is an important challenge for task-based programming models. Our study makes the observation that task creation becomes a bottleneck when executing fine grained workloads with task-based programming models. As the number of cores increases, the time spent generating tasks is becoming more critical to the entire execution. To overcome this issue, we propose TaskGenX. TaskGenX minimizes task creation overheads and relies both on the runtime system and a dedicated hardware. On the runtime system side, TaskGenX decouples the task creation from the other runtime activities. It then transfers this part of the runtime to a specialized hardware. From our evaluation using 11 HPC workloads on both symmetric and AMC systems, we obtain performance improvements up to 15x, averaging to 3.1x over the baseline. Finally, this thesis presents a showcase for a real-time CPU scheduler with the goal to increase the frames per second (FPS) of the game-play on mobile devices with AMC systems. We design and implement the RTS scheduler in the Android framework. RTS provides an efficient scheduling policy that takes into account the current temperature of the system to perform task migration. RTS solution increases the median FPS of the baseline mechanisms by up to 7.5% and at the same time it maintains temperature stable.Los procesadores multinúcleos asimétricos (AMC) son una solución arquitectónica exitosa para dispositivos móviles y supercomputadores. Estas arquitecturas combinan diferentes tipos de núcleos de procesamiento diseñados con diferentes propiedades de rendimiento y potencia. Al mantener dos o más tipos de núcleos, los AMCs pueden proporcionar un alto rendimiento con un consumo bajo de energía de las infraestructuras. Sin embargo, existen importantes desafíos al usar los AMC, como la programación y el equilibrio de carga. Esta tesis explora inicialmente el potencial de los AMC al ejecutar aplicaciones actuales de Computacion de Alto Rendimiento (HPC) y busca el modelo de ejecución más apropiado para ellas. Específicamente evaluamos varios modelos de ejecución en un procesador asimétrico Arm big.LITTLE utilizando las aplicaciones PARSEC que son aplicaciones representativas de HPC. En este trabajo se compara la programación en los niveles de usuario, sistema operativo y librería y evaluamos el impacto de estas opciones en el conocido problema de equilibrar la carga entre los AMCs. Nuestros resultados demuestran que la programación es más efectiva cuando se lleva a cabo en el nivel del runtime, ya que mejora la programación del nivel de usuario en un 23%, mientras que la solución de programación del sistema operativo heterogéneo mejora la programación del nivel de usuario en un 10%. Siguiendo este resultado, esta tesis se centra en aumentar el rendimiento de los sistemas AMC mejorando la programación al nivel de librería. La programación en este nivel se proporciona mediante el uso de Modelos de Programación Paralelos Basados en Tareas (MPBT). Estos modelos de programación ofrecen flexibilidad de programación, ya que consisten en una interfaz y un runtime para administrar los recursos e hilos subyacentes. En esta tesis, mejoramos la programación con MPBT al proporcionar tres nuevos planificadores de tareas para AMCs. Estos planificadores dinámicos reducen el tiempo total de ejecución ya sea detectando la camino más largo o el camino crítico del grafo de dependencia de tareas de la aplicación, que es generado dinámicamente. En nuestra evaluación, comparamos estos planificadores con un planificador heterogéneo existente y demonstramos su mejora sobre un planificador FIFO. Mostramos que los planificadores heterogéneos mejoran el planificador FIFO en hasta 1.45x en un AMC real de 8 núcleos y hasta 2.1x en un AMC simulado de 32 núcleos. Otra contribución en los MPBT es la adaptabilidad al paralelismo de grano fino. El creciente número de núcleos en los chip multinúcleos modernos está empujando la investigación hacia el uso de cargas de trabajo de grano fino, que es un desafío importante para los MPBT. Nuestro estudio observa que la creación de tareas bloquea la ejecución con cargas de trabajo de grano fino con MPBT. Cuando el número de núcleos aumenta, el tiempo empleado en generar tareas pasa a ser más crítico para toda la ejecución. Nuestra solución es TaskGenX, que minimiza los costes de creación de tareas y se basa en una extensión del runtime y en un hardware dedicado. En el runtime, TaskGenX desacopla la creación de tareas de las otras actividades del runtime, ejecutando esta actividad en un hardware especializado. Evaluamos 11 aplicaciones de HPC con TaskGenX en sistemas simétricos y AMC y obtenemos mejoras de rendimiento de hasta 15x, con un promedio de 3.1x sobre la implementación de referencia. Finalmente, esta tesis presenta un planificador de CPU con el objetivo de aumentar los fotogramas por segundo (FPS) para juegos en dispositivos móviles con sistemas AMC. Diseñamos e implementamos el planificador de Real-Time Scheduler (RTS) en Android. El RTS proporciona una política de programación eficiente que tiene en cuenta la temperatura actual del sistema para realizar la migración de tareas. La solución RTS aumenta la FPS mediana de los mecanismos de referenciaPostprint (published version

    A Study on Performance and Power Efficiency of Dense Non-Volatile Caches in Multi-Core Systems

    Full text link
    In this paper, we present a novel cache design based on Multi-Level Cell Spin-Transfer Torque RAM (MLC STTRAM) that can dynamically adapt the set capacity and associativity to use efficiently the full potential of MLC STTRAM. We exploit the asymmetric nature of the MLC storage scheme to build cache lines featuring heterogeneous performances, that is, half of the cache lines are read-friendly, while the other is write-friendly. Furthermore, we propose to opportunistically deactivate ways in underutilized sets to convert MLC to Single-Level Cell (SLC) mode, which features overall better performance and lifetime. Our ultimate goal is to build a cache architecture that combines the capacity advantages of MLC and performance/energy advantages of SLC. Our experiments show an improvement of 43% in total numbers of conflict misses, 27% in memory access latency, 12% in system performance, and 26% in LLC access energy, with a slight degradation in cache lifetime (about 7%) compared to an SLC cache

    DynamO: A free O(N) general event-driven molecular-dynamics simulator

    Full text link
    Molecular-dynamics algorithms for systems of particles interacting through discrete or "hard" potentials are fundamentally different to the methods for continuous or "soft" potential systems. Although many software packages have been developed for continuous potential systems, software for discrete potential systems based on event-driven algorithms are relatively scarce and specialized. We present DynamO, a general event-driven simulation package which displays the optimal O(N) asymptotic scaling of the computational cost with the number of particles N, rather than the O(N log(N)) scaling found in most standard algorithms. DynamO provides reference implementations of the best available event-driven algorithms. These techniques allow the rapid simulation of both complex and large (>10^6 particles) systems for long times. The performance of the program is benchmarked for elastic hard sphere systems, homogeneous cooling and sheared inelastic hard spheres, and equilibrium Lennard-Jones fluids. This software and its documentation are distributed under the GNU General Public license and can be freely downloaded from http://marcusbannerman.co.uk/dynamo

    Planificación consciente de la contención y gestión de recursos en arquitecturas multicore emergentes

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 14-12-2021Chip multicore processors (CMPs) currently constitute the architecture of choice for mosto general-pùrpose computing systems, and they will likely continue to be dominant in the near future. Advances in technology have enabled to pack an increasing number of cores and bigger caches on the same chip. Nevertheless, contention on shared resources on CMPs -present since the advent of these architectures- still poses a big challenge. Cores in a CMP typically share a last-level cache (LLC) and other memory-related resources with the remaining cores, such as a DRAM controller and an interconnection network. This causes that co-running applications may intensively compete with each other for these shared resources, leading to substantial and uneven performance degradation...Los procesadores multinúcleo o CMPs (Chip Multicore Processors) son actualmente la arquitectura más usada por la mayoría de sistemas de computación de propósito general, y muy probablemente se mantendrían en esa posición dominante en el futuro cercano. Los avances tecnológicos han permitido integrar progresivamente en el mismo chip más cores y aumentar los tamaños de los distintos niveles de cache. No obstante, la contención de recursos compartidos en CMPs {presente desde la aparición de estas arquitecturas{ todavía representa un reto importante que afrontar. Los cores en un CMP comparten en la mayor parte de los diseños una cache de último nivel o LLC (Last-Level Cache) y otros recursos, como el controlador de DRAM o una red de interconexión. La existencia de dichos recursos compartidos provoca en ocasiones que cuando se ejecutan dos o más aplicaciones simultáneamente en el sistema, se produzca una degradación sustancial y potencialmente desigual del rendimiento entre aplicaciones...Fac. de InformáticaTRUEunpu

    Design of a High Capacity, Scalable, and Green Wireless Communication System Leveraging the Unlicensed Spectrum

    Get PDF
    The stunning demand for mobile wireless data that has been recently growing at an exponential rate requires a several fold increase in spectrum. The use of unlicensed spectrum is thus critically needed to aid the existing licensed spectrum to meet such a huge mobile wireless data traffic growth demand in a cost effective manner. The deployment of Long Term Evolution (LTE) in the unlicensed spectrum (LTE-U) has recently been gaining significant industry momentum. The lower transmit power regulation of the unlicensed spectrum makes LTE deployment in the unlicensed spectrum suitable only for a small cell. A small cell utilizing LTE-L (LTE in licensed spectrum), and LTE-U (LTE in unlicensed spectrum) will therefore significantly reduce the total cost of ownership (TCO) of a small cell, while providing the additional mobile wireless data offload capacity from Macro Cell to small cell in LTE Heterogeneous Networks (HetNet), to meet such an increase in wireless data demand. The U.S. 5 GHz Unlicensed National Information Infrastructure (U-NII) bands that are currently under consideration for LTE deployment in the unlicensed spectrum contain only a limited number of 20 MHZ channels. Thus in a dense multi-operator deployment scenario, one or more LTE-U small cells have to co-exist and share the same 20 MHz unlicensed channel with each other and with the incumbent Wi-Fi. This dissertation presents a proactive small cell interference mitigation strategy for improving the spectral efficiency of LTE networks in the unlicensed spectrum. It describes the scenario and demonstrate via simulation results, that in the absence of an explicit interference mitigation mechanism, there will be a significant degradation in the overall LTE-U system performance for LTE-U co-channel co-existence in countries such as U.S. that do not mandate Listen-Before-Talk (LBT) regulations. An unlicensed spectrum Inter Cell Interference Coordination (usICIC) mechanism is then presented as a time-domain multiplexing technique for interference mitigation for the sharing of an unlicensed channel by multi-operator LTE-U small cells. Through extensive simulation results, it is demonstrated that the proposed usICIC mechanism will result in 40% or more improvement in the overall LTE-U system performance (throughput) leading to increased wireless communication system capacity. The ever increasing demand for mobile wireless data is also resulting in a dramatic expansion of wireless network infrastructure by all service providers resulting in significant escalation in energy consumption by the wireless networks. This not only has an impact on the recurring operational expanse (OPEX) for the service providers, but importantly the resulting increase in greenhouse gas emission is not good for the environment. Energy efficiency has thus become one of the critical tenets in the design and deployment of Green wireless communication systems. Consequently the market trend for next-generation communication systems has been towards miniaturization to meet this stunning ever increasing demand for mobile wireless data, leading towards the need for scalable distributed and parallel processing system architecture that is energy efficient, and high capacity. Reducing cost and size while increasing capacity, ensuring scalability, and achieving energy efficiency requires several design paradigm shifts. This dissertation presents the design for a next generation wireless communication system that employs new energy efficient distributed and parallel processing system architecture to achieve these goals while leveraging the unlicensed spectrum to significantly increase (by a factor of two) the capacity of the wireless communication system. This design not only significantly reduces the upfront CAPEX, but also the recurring OPEX for the service providers to maintain their next generation wireless communication networks
    • …
    corecore