
UNIVERSIDAD COMPLUTENSE DE MADRID
FACULTAD DE INFORMÁTICA

TESIS DOCTORAL

Planificación consciente de la contención y gestión de recursos
en arquitecturas multicore emergentes

Contention-aware scheduling and resource management for

emerging multicore architectures

MEMORIA PARA OPTAR AL GRADO DE DOCTOR

PRESENTADA POR

Adrián García García

Directores

Manuel Prieto Matías
Juan Carlos Sáez Alcaide

Madrid

© Adrián García García, 2021

UNIVERSIDAD COMPLUTENSE DE MADRID
FACULTAD DE INFORMÁTICA

TESIS DOCTORAL

PLANIFICACIÓN CONSCIENTE DE LA CONTENCIÓN Y GESTIÓN DE

RECURSOS EN ARQUITECTURAS MULTICORE EMERGENTES

-

CONTENTION-AWARE SCHEDULING AND RESOURCE MANAGEMENT

FOR EMERGING MULTICORE ARCHITECTURES

ADRIÁN GARCÍA GARCÍA

DIRECTORES:

MANUEL PRIETO MATÍAS

JUAN CARLOS SÁEZ ALCAIDE

UNIVERSIDAD COMPLUTENSE DE MADRID
FACULTAD DE INFORMÁTICA

TESIS DOCTORAL

PLANIFICACIÓN CONSCIENTE DE LA CONTENCIÓN Y GESTIÓN DE

RECURSOS EN ARQUITECTURAS MULTICORE EMERGENTES

-

CONTENTION-AWARE SCHEDULING AND RESOURCE MANAGEMENT

FOR EMERGING MULTICORE ARCHITECTURES

MEMORIA PARA OPTAR AL GRADO DE DOCTOR.

PRESENTADA POR:

ADRIÁN GARCÍA GARCÍA

DIRECTORES:

MANUEL PRIETO MATÍAS

JUAN CARLOS SÁEZ ALCAIDE

Planificación consciente de la
contención y
gestión de recursos en platafor-
mas multicore emergentes

Memoria presentada por Adrián Garćıa
Garćıa para optar al grado de Doctor por la
Universidad Complutense de Madrid, reali-
zada bajo la dirección de Juan Carlos Sáez
Alcaide y Manuel Prieto Mat́ıas.

Contention-aware scheduling
and resource management
for emergent multicore architec-
tures

Dissertation submitted by Adrián Garćıa
Garćıa to the Complutense University of Ma-
drid in partial fulfillment of the requirements
for the degree of doctor of philosophy, work
supervised by Juan Carlos Sáez Alcaide and
Manuel Prieto Mat́ıas.

Madrid, 20 de Julio de 2020.

Agradecimientos

En primer lugar, me gustaŕıa agredecer el cariño y apoyo de mi familia y amigos, que
en los momentos de incertidumbre me hicieron perseverar. En especial, a Fernando,
Rosa y Paula que me han apoyado en todo momento y permitido tener todo lo
necesario para terminar este proyecto y hacer llegar esta tesis a buen puerto.

Además, agradezco a mis directores, Juan Carlos Sáez y Manuel Prieto, por creer
en mi desde un primer momento y por su interminable ayuda a lo largo de estos
años sin la que hubiera sido imposible realizar este trabajo.

Por último, agradezco al grupo de investigación ArTeCs por los recursos técnicos
facilitados para el desarrollo de esta investigación y a la Universidad de Complutense
de Madrid por la financiación proporcionada a través de su programa de becas
predoctorales. Este trabajo ha sido apoyado directa o indirectamente por la EU
(FEDER), el MINECO y la Comunidad de Madrid CM bajo los proyectos y/o
contratos TIN 2015-65277-R, RTI2018-093684-B-I00 y S2018/TCS-4423.

Contents

Abstract 1

1. Introduction 3

1.1. Multicore architectures . 4

1.2. Heterogeneity and Asymmetric multicore processors 8

1.3. Thesis contributions . 10

1.4. Thesis structure . 14

2. Background 15

2.1. Shared-resource contention . 15

2.2. Asymmetry-aware scheduling . 18

2.2.1. Determining the speedup factor 18

2.2.2. Throughput optimization . 19

2.2.3. Delivering fairness . 19

2.2.4. Other optimization goals and workload types 20

3. Experimental setup 23

3.1. Hardware . 23

3.1.1. Asymmetric Multicore Platforms 23

3.1.2. Symmetric multicore platforms 24

3.2. Software . 24

3.2.1. Scheduling Framework for AMPs 24

3.2.2. PMCTrack . 26

3.2.3. Scheduling mode and monitoring modules 27

3.2.4. Intel Resource Director Technology 29

ii CONTENTS

3.2.4.1. Shared-resource monitoring technologies 29

3.2.4.2. Shared-resource allocation technologies 30

3.3. Metrics . 31

3.3.1. Metrics on CMPs . 31

3.3.2. Metrics on AMPs . 33

4. CAMPS: a Contention-aware scheduler for AMPS 35

4.1. Motivation . 37

4.1.1. Fairness on AMPs . 37

4.1.2. Impact of shared resource contention on AMPs 37

4.2. Related Work . 40

4.3. The CAMPS scheduler . 43

4.3.1. CAMPS in the Linux kernel 43

4.3.2. Determining the slowdown at runtime 44

4.3.3. Progress tracking and enforcing fairness 46

4.3.4. Non-work conserving mode 49

4.3.5. Special support for multithreaded applications 51

4.3.6. Trading fairness for throughput 52

4.4. Experimental evaluation . 54

4.4.1. Determining the history table size 54

4.4.2. CAMPS vs CFS and HMP 56

4.4.3. Trading fairness for throughput 60

4.4.4. CAMPS vs. other asymmetry-aware schedulers 62

4.4.4.1. Workloads for the 2B-4S configuration 64

4.4.4.2. Workloads for the 4B-4S-Odroid configuration . . . 66

4.5. Conclusions . 69

5. PBBCache: A parallel simulator for rapid prototyping and evalu-
ation of cache-partitioning policies 71

5.1. Background . 73

5.1.1. Optimal cache-partitioning problem 73

5.1.2. Optimal cache-clustering problem 75

CONTENTS iii

5.2. Related Work . 76

5.2.1. Cache-partitioning and cache-clustering policies 76

5.2.2. Parallel Branch-and-Bound 76

5.3. Design of the PBBCache simulator 78

5.3.1. Input data and command-line options 78

5.3.2. Determining the slowdown under cache-partitioning 80

5.3.2.1. Modeling Memory Bandwidth Contention 80

5.3.3. Determining the slowdown for cache-clustering policies . . . 82

5.3.4. Partitioning policies . 83

5.3.5. Notes on the simulator implementation 84

5.4. Formalization of Opt-STP and Opt-Unf as MINLPs 86

5.5. Determining the optimal solution 87

5.5.1. Initial solution for B&B . 88

5.5.2. Bounding functions . 89

5.5.3. Parallel distributed-memory B&B algorithms 91

5.5.4. Determining the optimal cache-clustering solution 95

5.6. Experiments . 95

5.6.1. Experimental Setup . 95

5.6.2. Validation of the simulator 96

5.6.3. Effectiveness of the bounding functions 99

5.6.4. Scalability of the distributed-memory parallel B&B strategy 101

5.7. Conclusions . 103

6. LFOC: A lightweight fairness-oriented cache clustering policy for
commodity multicores 105

6.1. Background . 106

6.1.1. Related Work . 106

6.1.1.1. Cache partitioning proposals 106

6.1.1.2. Cache clustering proposals 107

6.2. Analysis of the optimal cache-clustering solution 108

6.3. Design and Implementation . 110

iv CONTENTS

6.3.1. Algorithm outline . 111

6.3.2. Application Classification 112

6.4. Experiments . 114

6.4.1. Evaluation of Clustering Algorithms 115

6.4.2. Study of the dynamic policies 117

6.5. Conclusions . 119

7. Conclusions 121

7.1. Future work . 124

Resumen en español 127

List of Figures

1.1. Manufacturing process roadmap of different foundries as portrayed
in [76]. 4

1.2. On the top, Figure 1.2a illustrates the different levels of the memory
hierarchy of an Intel Skylake processor [158]. Below, Figure 1.2b
shows how the LLC is split among cores in various slices that are
connected through a ring bus. The system agent or uncore acts as
an interface through an interconnection network to different shared
resources. 6

1.3. Relative performance degradation of different SPEC CPU bench-
marks, when running simultaneously on an Intel Skylake multicore
processor . 7

1.4. Linux HMP patch . 8

1.5. Block diagram of Intel Lakefield SoC 11

1.6. Strict cache partitioning vs. cache-clustering 12

3.1. Experimental configuration of the asymmetric platforms 24

3.2. Architecture layout of the hardware platforms Broadwell-EP and
Skylake presented in Table 3.2. 25

3.3. PMCTrack monitoring module architecture 28

3.4. The MSR IA32 PQR ASSOC, present in every CPU, allows to track
each application’s RMIDs through context switches and CPU migra-
tions . 30

3.5. The MSRs IA32 QM EVTSEL and IA32 QM CTR in charge of se-
lecting and reading a specific event supported by Intel RDT 30

3.6. Capacity bitmasks used to establish which cache ways are shared by
each CoS. Note that all the active ways in a CBM must be adjacent. 31

vi LIST OF FIGURES

4.1. Average slowdown relative to solo execution experienced by various
benchmarks when mapped to a big core and run simultaneously with
several instances of an aggressor. The error bars report the minimum
and maximum values gathered across the various runs (five execu-
tions). A suffix (“00” or “06”) was appended to the application name
to indicate the benchmark suite it belongs to (CPU2000 or CPU2006,
respectively). 38

4.2. Diagram of the CAMPS architecture that summarizes the function-
ality of the the core scheduler and the performance monitor. 43

4.3. Mechanism used by CAMPS for approximating a thread’s slowdown
with help from the history table . 45

4.4. Example that illustrates CAMPS design when scheduling two appli-
cations at different points of their execution on an AMP system. . . 47

4.5. Phase hit rate for different maximum number of entries in history
table. 55

4.6. CFS vs. CAMPS on the Intel QuickIA (a) and HMP vs. CAMPS
on the Odroid 4 XU board (b) when running the different benchmarks 57

4.7. CFS vs. CAMPS on the Intel QuickIA (a) and HMP vs. CAMPS
on the Odroid 4 XU board (b) when running the ebizzy benchmark 59

4.8. CFS vs. CAMPS on the Intel QuickIA (a) and HMP vs. CAMPS on
the Odroid 4 XU board (b) when running the schbench benchmark 60

4.9. Normalized unfairness and throughput for different workloads and
values of the UF parameter under ACFS 60

4.10. Normalized unfairness and throughput for different workloads and
values of the UF parameter under CAMPS 61

4.11. Unfairness (top) and throughput (bottom) for the workloads in Ta-
ble 4.3 running on 2B-4S-Juno under the various scheduling algorithms 64

4.12. Unfairness (top) and throughput (bottom) for the workloads in Ta-
ble 4.5 running on 4B-4S-Odroid under the various scheduling algo-
rithms . 68

5.1. Number of possible ways to partition a LLC as we increase the num-
ber of applications for 11 and 20 cache ways, respectively. The num-
ber of ways and applications considered are based on the features of
Platforms A and B, described in Section 3 75

5.2. Simulator’s diagram that shows an example of the user interaction
with the simulator via command line, the data input and the gener-
ated output. 79

LIST OF FIGURES vii

5.3. Memory bandwidth vs. slowdown observed for omnetpp and libquantum

as increasing the total memory bandwidth consumption. The slow-
down prediction provided by Morad’s model (Bai/B

′
ai

) and PBB-
Cache’s model (SBpart,ai) is also reported. 81

5.4. Comparison of various approximate algorithms and the optimal so-
lution. 88

5.5. Search space tree for the optimal cache-partitioning problem with 4
applications and 6 ways. Equation 5.5 indicates the different cases
to be considered in expanding each node based on W (remaining
ways) and N (remaining applications). A node has only one child
(leaf) when W=N or N=1. Otherwise it has as many as W−N+1
children, that come from inserting a number ∈ {1 .. W−N+1} at
the end of the node’s list. 89

5.6. Traces for Opt-STP-P obtained with Paraver [33] (6 applications and
4 slave processes). Tasks in blue denote node (a) and subnode (b)
processing; idle periods appear in gray; light-green tasks represent
the parallel initialization of the subnode queue. 92

5.7. Real vs. simulator-provided values for the STP and Unfairness met-
rics on Broadwell-EP (left) and Skylake (right), normalized to the
results of the Equal-Part scheme. 96

5.8. Real vs. simulator-provided values for the STP and Unfairness met-
rics on Platforms Broadwell-EP and Skylake, normalized to the re-
sults of Equal-Part. 98

5.9. Pruning rate (a) and completion time (b) for sequential B&B algo-
rithms under different sets of workloads. Labels X axis, with format
n/target indicate the number of applications in the workload (n) in
the corresponding set, and the optimization metric. 100

5.10. Scalability for different workload sets consisting of 6, 7 and 8 appli-
cations . 101

5.11. (a) Speedup for different workload sets using from one to four nodes
(16 cores each) on SandyBridge-EP. (b) Excerpt of the execution
trace for W66 with 64 cores. Note that idle periods are denoted in
grey as in traces shown in Section 5.5.3 102

6.1. Slowdown and LLCMPKC for different way counts 109

6.2. Comparison of optimal clustering vs optimal partitioning. 110

6.3. Cluster count and breakdown of applications into the different cate-
gories for each cluster size. 111

6.4. LLCMPKC captured at the beginning of the execution of fotonik3d. 113

viii LIST OF FIGURES

6.5. Multiprogram workloads used for our experiments. Each matrix cell
indicates the number of instances of a benchmark (x-axis) in a work-
load (y-axis).. 115

6.6. Normalized unfairness and STP values obtained by the static version
of the various clustering algorithms. 116

6.7. Normalized unfairness and STP values delivered by the dynamic
cache clustering approaches . 118

List of Tables

3.1. Features of the AMP systems of this thesis 23

3.2. Features of the various platforms used equipped with Intel RDT . . 24

3.3. Features of the various platforms used for the assessment of the sim-
ulator’s accuracy and scalability. 25

4.1. Table that gathers CAMPS parameters used for the experiments on
this chapter. 54

4.2. Average reduction in unfairness and increase in throughput achieved
by CAMPS over the other schemes on the Odroid XU4 board. . . . 56

4.3. Multi-application workloads for the 2B-4S-Juno AMP configuration. 63

4.4. Average reduction in unfairness and increase in throughput achieved
by CAMPS over the other schemes on 2B-4S-Juno. 65

4.5. Multi-application workloads for the 2B-4S-Juno AMP configuration. 67

5.1. Number of nodes of the search space tree for different workloads on
Broadwell-EP. 99

6.1. Classification of applications based on cache behavior 108

6.2. Average execution time (in ms) of the KPart and LFOC algorithms 117

x LIST OF TABLES

Abstract

Chip multicore processors (CMPs) currently constitute the architecture of choice for
most general-purpose computing systems, and they will likely continue to be domi-
nant in the near future. Advances in technology have enabled to pack an increasing
number of cores and bigger caches on the same chip. Nevertheless, contention on
shared resources on CMPs –present since the advent of these architectures– still
poses a big challenge. Cores in a CMP typically share a last-level cache (LLC)
and other memory-related resources with the remaining cores, such as a DRAM
controller and an interconnection network. This causes that co-running applica-
tions may intensively compete with each other for these shared resources, leading
to substantial and uneven performance degradation.

Previous research has demonstrated that the system software can be extremely
useful in mitigating these problems. In this thesis, OS-level strategies have been
devised, and implemented in the Linux kernel, to effectively deal with contention
and improve system-wide fairness. One of the major proposals of this thesis is
a contention-aware scheduler for asymmetric multicore processors (AMPs). These
architectures combine high-performance big cores with low-power small cores on the
same platform, all of them exposing a common ISA (Instruction Set Architecture).
While many scheduling techniques where proposed in the last decade to mitigate
the negative impact of contention, none of them was suitable for AMP systems,
where an application may experience substantial performance degradation (relative
to an execution in isolation) due to the combined competition for the utilization of
big cores and shared resources. Our scheduling proposal –referred to as CAMPS–
, accurately tracks the progress of each application as it runs on different core
types during the workload execution and under varying levels of shared-resource
contention. CAMPS fairly distributes big-core and small-core cycles among threads
based on their observed progress.

This thesis also explores how to effectively partition the last-level cache (LLC)
on symmetric CMPs. After years of research on cache-partitioning strategies, the
necessary hardware support for the wide adoption of these strategies is now avail-
able on many commercial processors. Specifically, the thesis focuses on the design
of cache-clustering or partition-sharing techniques, which potentially allow several
applications to share the same cache partition. Motivated by the inherent com-
plexity in the design of this type of techniques, we built the PBBCache simula-
tor, which constitutes an open-source tool for rapid prototyping and evaluation of
cache-clustering policies. PBBCache is also equipped with a parallel algorithm to
efficiently determine the optimal solution for various optimization objectives. Via
extensive experimentation with this simulator, we were able to guide the design of
LFOC, an OS-level cache-partitioning scheme that strives to deliver fairness while
providing acceptable system throughput.

Chapter 1

Introduction

In the midst of the two thousands, the Dennard scaling rule [52], which assured
constant in-die power density in spite of transistor shrinkage, came to an end. All
together, the capacity to integrate a higher amount of transistors in a given size
was increasingly different to Moore’s law predictions for every new generation; and
this gap is expected to be even wider in the future as the industry gets closer to
the physical limitations of CMOS technology. This alarming trend stands in stark
contrast to the growing needs for computing power of emerging application domains.

Besides, there are huge technical challenges associated with downscaling the man-
ufacturing process that have also contributed to increasing the fabrication costs
substantially. A remarkable aspect is the slower rate in which new microarchitec-
tures are being produced. The Tick-Tock model – promoted by manufacturers like
Intel – no longer stands still; every 18 months a new family of chips was supposed
to come out with either a new microarchitecture design or a shrinkage of the fabri-
cation process. However, this cyclical process was halted by the challenge of getting
past the 14 nm barrier and, instead, newer generations have been iterating over the
Skylake architecture by introducing countless optimizations and creating a plethora
of new lakes.

The main technical innovations in the semiconductor industry – such as the usage of
strained silicon [145], materials with high dielectric constants (high-k) in transistor
gates [31] or the FinFET/multigate transistors [47] – have enabled to move past the
90 nm nodes of 2003 to the current 10 nm, 7 nm [74, 30] or even 5nm production
chips by TSMC [76]. Traditionally, this size referred to gate length, but currently
is just a commercial name that does not reflect the real transistor geometry [100,
49, 75]. Figure 1.1 shows the manufacturing process roadmap of multiple top tier
manufacturers and as it can be appreciated, Samsung remains close to TSMC.
Even though Intel has been lagging behind and stuck in between 14nm and 10
nm on recent years, their scheduled leap for 7nm is said to be a contender for the
other companies’ 5 nm. The manufacturing process will likely keep improving in
the near future thanks to technological innovations, but the rate will progressively
get slower while the transistor gate size gets closer and closer to the atomic scale.
At this size, undesirable quantum effects like electron tunnelling take over, where

4 Chapter 1. Introduction

Figure 1.1: Manufacturing process roadmap of different foundries as portrayed in [76].

electrons moving through thin materials (around 1 nm thick) might literally teleport
from one place to another.

Even if at slower pace than before, the number of components per unit area has not
stopped rising. Hence, energy consumption has become the main limiting factor
of microprocessor technological evolution. To cope with this challenge –commonly
referred to as power wall [74]– two major trends have emerged in microprocessor
manufacturing. First, the improved iterations of microprocessor technology allowed
the integration of an increasing higher number of cores per chip with a limited fre-
quency that avoided otherwise excessive temperatures. Second, a broad spectrum
of heterogeneous architectures have been designed to efficiently cater to specific ap-
plication domains, where a combination of cores of different types or accelerators
on the same platform for a general or specific usage may bring substantial bene-
fits [80]. Despite the progressively slower technological breakthroughs, multicore
processors –aka Chip Multi-Processors (CMPs)– still constitute a basic building
block of general-purpose architectures.

1.1. Multicore architectures

Processor design has changed substantially during the last decade in response to
energy efficiency issues. The aggressive microprocessor designs of the early two
thousands carelessly pushed for improving performance at the expense of increasing
clock frequencies and power consumption, such as the Intel NetBurst or Prescott
architectures [84], which featured execution pipelines of up to 31 stages. In order
to keep thermal power dissipation under control, the clock frequencies have settled
in the 3 to 5 GHz range and the pipeline depth remains in between 14 to 19 stages
in general purpose multicores [60, 79]. Furthermore, out-of-order execution has
become a standard in performance-oriented chip designs, even in mobile processors
such as the ARM Cortex A76.

As soon as increasing the processor frequency stopped being feasible, packing mul-
tiple processing cores on the same chip became the next most used technique to

1.1 Multicore architectures 5

improve performance. However, this did not solve the issue of excessive energy con-
sumption. In fact, saving power does not come from having a higher core count, but
from using simpler and more energy-efficient core designs [81]. Moreover, adding
cores brings additional challenges and potential sources of inefficiencies to deal with.
This has been one of the design aspects that gathered more attention in the recent
years and has had a substantial impact on both hardware and system software [113],
specially since heterogeneous designs were shown to deliver higher energy efficiency.

A question that naturally arises is up until when this trend of adding cores in every
other generation can be upheld. Mid-range CPUs usually integrate 4 to 8 cores,
but the core counts in the server market segment stand significantly higher. Chiplet
based designs, which consist in integrating multiple dies on the same physical pack-
age, constitutes an additional way to increase the number of cores as an alternative
to technology scaling. This idea is nothing but an evolution of the Multi-Chip-
Module (MCM) technology that was already used during the eighties, especially in
mainframes [65, 109]. For instance, recent AMD EPYC processor families[178, 34]
leverage chiplet-based layouts. Specifically, the second generation, codenamed as
Rome, employs a scalable System on Chip (SoC) design based on 8 core-dies, which
can be interconnected in a multi-chip package of up to 8 CPU dies using AMD’s
Infinity fabric, which is an evolution of the former HyperTransport [178] technol-
ogy for multichip connections. Moreover, Intel has also opted for a chiplet design
in multiple of their products, such as the Cascade Lake server processors, in which
they combine 2 dies on the same package to reach up to 56 cores or 112 threads.

An important aspect associated with the rising number of cores is how to effi-
ciently manage the interaction with the well-known memory wall problem. This
issue has been aggravated due to the fact that there are more cores that simul-
taneously demand instructions and data from memory. This performance-limiting
factor –alongside the increased energy demands, latency and memory bandwidth–
constitute the main limitations to continue scaling the number of cores in this kind
of architectures [85, 59].

Another related issue is the fact that having more cores available increases the
contention present in different parts of the memory hierarchy; Figure 1.2 shows an
example of a modern CPU memory hierarchy from a Skylake processor. Which
shows how cache memory is partitioned in different levels and some of them are
shared among cores. Intel follows a non-uniform cache architecture (NUCA) where
the LLC is divided into multiple slices interconnected via a bi-directional ring bus.
In Figure 1.2 we can as well take a closer look at the system agent (a.k.a. uncore)
that acts as a centralized peripheral device integration unit, it manages various
shared resources and I/O components such as the Peripheral Component Inter-
connect Express (PCIe) or Direct Media Interface (DMI). Additionally, one of its
roles is to serve as on-die memory controller, enabling direct memory access (DMA)
and maintaining cache coherence when there are simultaneous requests to the same
cache line from different cores.

Taking all of this into account, cores in a CMP are not completely independent
processors but instead typically share a last-level cache (LLC) and other memory-

6 Chapter 1. Introduction

(a) Different levels of the memory hierarchy

Core

LLC slice

Core

LLC slice

Core

LLC slice

Core

LLC slice

System Agent
Display

IMC

PCIe

DMI

Main
memoryRing Bus

GPU & Media

(b) Detailed view of the banked distribution of LLC slices among cores

Figure 1.2: On the top, Figure 1.2a illustrates the different levels of the memory hierarchy of
an Intel Skylake processor [158]. Below, Figure 1.2b shows how the LLC is split among cores
in various slices that are connected through a ring bus. The system agent or uncore acts as an
interface through an interconnection network to different shared resources.

1.1 Multicore architectures 7

omnetpp06 Xalancbmk17 soplex06 CactusADM06 GemsFDTD06 gamess06 fotonik3d17 lbm060%

10%

20%

30%

40%

50%

60%

Pe
rfo

rm
an

ce
 d

eg
ra

da
tio

n
re

la
tiv

e
to

 so
lo

 e
xe

cu
tio

n

Figure 1.3: Relative performance degradation of different SPEC CPU benchmarks, when running
simultaneously on an Intel Skylake multicore processor

related resources with the remaining cores, such as a DRAM controller and a mem-
ory bus or interconnection network [205, 54]. The applications that run simultane-
ously on different cores naturally compete for the usage of shared resources, which
may degrade their performance unevenly, limiting global throughput and fairness
on the platform [171].

In this thesis, we have mainly looked at the contention problem in the LLC. Notably,
the amount of space in the LLC allotted by the hardware to a specific application is
not proportional to its priority or to its potential performance benefit, but instead
it is tightly related to its rate of demand [153]. Despite the advances in technol-
ogy, which have made it possible to pack bigger LLCs on the same chip, cache
contention stills has a great impact on performance, causing large disparities in
the degradation suffered by various applications co-running on a CMP system. To
illustrate this fact, Figure 1.3 reports the relative performance degradation that 8
single-threaded applications from SPEC CPU experience when running together on
a server system featuring an Intel Xeon Gold 6138 (“Skylake”) processor. As is ev-
ident, the per-application performance degradation –reported w.r.t. the execution
of the corresponding application alone on the CMP system– widely differs across
programs; while some of them, such as fotonik3d or lbm achieve nearly the same
performance as in the solo execution, other programs, such as omnetpp slow down
its execution by a factor of up to 1.63x. Note also that in this experiment, only
8 cores out of the 20 available on the platform were used. Therefore, substantial
performance degradation may still become apparent when the workload does not
even fully utilize all processing cores.

Shared-resource contention may introduce a number of undesirable effects on the
system. For example, contention may cause an application’s completion time to
differ significantly across runs, depending on its co-runners in the workload [205, 63].
In addition, equal-priority applications may not experience the same performance
degradation when running together relative to the performance observed when each
application runs alone on the CMP [138, 54]. These issues make priority-based
scheduling policies ineffective [54], reduce performance predictability [197] and may
lead to unfair billings in commercial cloud-like computing services [63], where users
are charged for CPU hours. Notably, unfairness also leads to uneven progress of the
various threads in HPC multithreaded applications [182, 167], which may seriously
limit scalability.

8 Chapter 1. Introduction

Figure 1.4: Linux HMP patch

Multiple OS-level techniques have been proven effective in mitigating the negative
effects of shared-resource contention, such as co-scheduling “compatible” processes
in different cores that share an LLC [203, 128] or using non-work-conserving tech-
niques [161, 192], which rely on disabling some cores temporarily. Partitioning the
shared LLC (i.e. dividing the available cache space among applications) also consti-
tutes a very effective technique to deal with shared-resource contention [153, 86, 195,
137, 101]. After years of research showing the potential of cache-partitioning [133,
205], Intel [142], Cavium [187] and AMD [12] have finally opted to add hardware
support for cache-partitioning in some of their latest multicore processors. This
support enables the system software to distribute the cache space more effectively
among applications. In the case of Intel, the corresponding hardware extensions
are commercially known as Cache Allocation Technology (CAT), and provide an
interface for LLC way-partitioning. In this thesis we devised means to efficiently
exploit these hardware extensions from the operating system to automatically de-
liver its benefits to unmodified applications. In doing so we paid special attention
to improving the degree of fairness on the platform.

1.2. Heterogeneity and Asymmetric multicore pro-

cessors

Apart from the integration of an increasing number of cores per chip, coupling dif-
ferent core types on the same platform for diverse and specialized use has settled in
as one of the strategies to knock down the different walls that microprocessor tech-
nology faces. In fact, heterogeneous architectures can deliver more energy efficiency
than conventional multicores in some specific application domains [81].

The degree of diversity segregates heterogeneous architectures into various classes,
each one becoming a unique point in the design space. One point of this spectrum is
to augment conventional processors with special-purpose units and accelerators [48].
This is the case of systems that add application-specific processing components
such as GPUs [144], FPGAs [48, 39] or Tensor Processor Units (TPUs) [99]. These
architectures have been leading High-Performance Computing (HPC) over the last

1.2 Heterogeneity and Asymmetric multicore processors 9

few years thanks to their paramount efficiency in terms of performance per watt.
Although substantial programming effort is usually required to tap into their full
potential [120, 146], they are key elements for the success of emerging applications
domains such as deep learning, cryptocurrency mining, or high definition image
and video processing. Indeed, their widespread usage by large communities has
also driven major advances in compiler technology and the development of new
programming models, interfaces, and libraries that are promoting their adoption
even further.

At the other end of the design spectrum we find asymmetric single-ISA multi-
core processors (AMPs) [114]. These designs integrate a mix of complex high-
performance big cores and power-efficient small cores, that offer higher energy ef-
ficiency than conventional multicore processors. While an application can be de-
signed so as to specifically exploit the features of the different core types in dedicated
fashion, the shared ISA and general-purpose nature of these cores allows the exe-
cution of asymmetry-agnostic (unmodified) software. This versatility, coupled with
the outstanding energy efficiency benefits of AMP designs [114], has drawn the
attention of major hardware players, giving rise to products for different market
segments [19, 43, 103, 17, 53].

In fact, current asymmetric multicore processors have become the bread and butter
of commercial mobile devices, where the number of products that integrate this
kind of processor architecture clearly outnumbers those based on symmetric de-
signs, especially on high end handheld devices. The Samsung SoC Exynos 7 Octa
or the Qualcom Snapdragon 855, present in smartphones like the Google Pixel 4
or the Samsung Galaxy S10, are recent examples of asymmetric platforms that fea-
ture ARM big.LITTLE processors [18], one of the most commercially widespread
AMP architectures. Among the reasons they might be so popular are the great
energy efficiency they provide alongside the simplicity for the OS to manage a com-
mon workload in mobile devices. In this context, high-performance big cores must
preferably be used to accelerate foreground tasks, that the user is interacting with,
and demand a high CPU usage. On the contrary, there are plenty of background
or I/O tasks that can make do with running on energy-efficient little cores.

The HMP patch for the Linux kernel[154], which is an extension of CFS for big.LITTLE
platforms commonly used in Android devices, introduces a series of changes to the
scheduler to make this kind of thread assignments transparently to the user (see
Fig. 1.4). As we demonstrate in this thesis, this patch, which has not been of-
ficially incorporated into the main branch of the Linux kernel, causes substantial
problems when using non-mobile workloads, thus making an unlikely candidate for
widespread adoption in desktop and server OSs.

In this thesis, we focused on how to fairly and efficiently schedule general-purpose
and high-performance workloads (consisting of unmodified applications) on AMP
systems. In this scenario, AMP processors introduce a number of critical challenges
to the system software [134], which has been traditionally designed from the ground
up to deal with identical cores. After several years of research on AMP systems, it
is crystal clear that the OS scheduler plays a key role in automatically delivering

10 Chapter 1. Introduction

the benefits of these systems to unmodified applications [69].

In particular, to optimize system throughput, the scheduler has to dedicate big
cores to running those applications that use them effectively, because they obtain a
higher performance improvement or speedup relative to running on small cores [114].
Note that some applications fail to use high-performance big cores efficiently, due to
incurring substantial pipeline stall cycles caused by frequent branch missprediction
or numerous long-latency cache misses [111]. Additional throughput gains can be
obtained on AMPs by using big cores to accelerate scalability bottlenecks present
in multithreaded programs [165, 164, 98, 129, 96]. A critical challenge to effectively
drive thread-to-core mappings on AMPs systems is to equip the scheduler with a
mechanism enabling it to accurately approximate the relative benefit that every
thread in the workload derives from running on different core types over time [164,
167].

Despite these challenges, the interest in asymmetric platforms even outside the
mobile arena, is still substantial today. A clear example is the recent release of the
Intel Lakefield SoC (System on Chip)1, that combines 1 high-performance “Sunny
cove” core with 4 energy-efficient “Tremont” cores on the same SoC platform, as
shown in Fig. 1.5. Even more recently, Apple has opted for asymmetric-multicores
for some of its latest desktop computers, which feature the Apple M1 SoC [17].

The importance of hardware specialization is growing day by day, specially in the
field of systems on chip where there are components specifically designed to solve
tasks with outstanding performance per watt. Despite the energy efficiency ben-
efits of AMP designs, effectively dealing with the different performance delivered
by heterogeneous cores to the various applications, still constitutes a significant
challenge to the different layers of the system software, ranging from the operating
system [69, 120] to the runtime system [45, 44]. Even though the interest on AMPs
is quite high and there are many examples of new asymmetric platforms coming
out recently; there is still many gaps to fill in terms of asymmetry-aware software,
specially at the operating system level.

1.3. Thesis contributions

In this thesis we propose different OS-level techniques to improve fairness on sym-
metric and asymmetric multicore systems via contention-aware scheduling and re-
source management. We focused on solutions at the OS level so as to transparently
address the effects of shared resource contention and, hence, to automatically deliver
the benefits of current multicore architectures to unmodified applications.

The first major contribution of this thesis is the design and implementa-
tion of CAMPS, a contention-aware scheduler for off-the-self asymmetric

1Note also that 10 nm Intel Alder Lake [117] desktop processors feature asymmetric config-
urations with higher core counts than Lakefield including 8 Golden Cove big cores alongside 8
Gracemont little cores.

1.3 Thesis contributions 11

Figure 1.5: Block diagram of Intel Lakefield SoC

multicore processors (AMPs). While the vast majority of scheduling proposals
for AMPs have strived to optimize throughput or reduce energy consumption only,
our CAMPS scheduler was designed to deliver fairness while ensuring acceptable
system throughput.Moreover, CAMPS exposes a configurable parameter enabling
the user to trade fairness for throughput when needed. Our scheduling proposal
constitutes the first fairness-oriented scheduler for AMPs that caters to both perfor-
mance asymmetry (i.e., the fact that various cores on the platform deliver different
performance) and to the relative performance degradation that an application may
experience due the contention that may arise when sharing the system with other
programs.

One of the main challenges in designing our contention-aware scheduler for AMPs
was to equip it with an online mechanism for predicting the performance degrada-
tion (slowdown) that a thread in the workload experiences as it runs on the various
cores of an AMP, relative to a hypothetical execution in isolation. While previous
scheduling schemes relied on slowdown-prediction techniques that considered per-
formance asymmetry only, ours is the first one that also factors in the degradation
due to shared-resource contention as well. To guide the design of our slowdown
prediction model, we conducted a comprehensive experimental analysis using cur-
rent x86 and ARM asymmetric multicore platforms. Based on the main insights
of our study, we devised a novel runtime mechanism that enables the scheduler to
approximate a thread’s current slowdown by gathering various runtime metrics via
performance monitoring counters (PMCs), and by comparing that information with
the thread’s past history collected in low contention scenarios. This mechanism re-
lies on the gathering of a reduced set of fixed PMCs metrics that can be easily
measured at runtime on commercial AMP hardware, thus making our CAMPS
scheduler portable across architectures.

We implemented CAMPS in the Linux kernel, on top of the Completely Fair Sched-
uler (CFS), which is largely asymmetry agnostic. As we demonstrate in this thesis,

12 Chapter 1. Introduction

the completion time of an application under the stock Linux scheduler may vary
substantially across multiple runs of the same workload on an AMP. As a result,
CFS and the HMP (Heterogeneous Multi-Processing) scheduler [154] constitute
unfair scheduling schemes for asymmetric multicores, especially when compute-
intensive applications are present in the workload. Notably, CAMPS delivers more
consistent performance from run to run and higher degree of fairness for a wider
spectrum of workloads. We also performed an extensive experimental comparison
with previously proposed asymmetry-aware schemes [111, 164, 167]. Our experi-
mental analysis –using OS-level implementations and real asymmetric hardware–
reveals that CAMPS improves fairness by up to 11% compared to a state-of-the-art
fairness-aware scheduler [167], and at the same time improves throughput by up to
17%.

While for AMPs we exploited scheduling as a means to deliver fairness,
for symmetric CMPs we focused on the design of resource-management
techniques that leverage the hardware extensions for cache partitioning
currently available on commercial high-performance symmetric multi-
cores from Intel or AMD. Despite the fact that a large body of research exists
on fairness-oriented cache-partitioning techniques, most of the previous partitioning
approaches were evaluated via simulation or implemented as user-space resource-
management strategies. Our goal was instead to build a lightweight partitioning
mechanism ready for adoption in a real operating system.

Specifically, in this thesis we explored the potential of cache-clustering (aka. par-
tition sharing) strategies to improve fairness on multicore systems. As depicted
in Fig. 1.6, cache-clustering (aka partition-sharing) constitutes a generalization of
strict cache partitioning, where, instead of assigning applications to separate cache
partitions (as in Fig. 1.6a), each partition can be shared by a group of applica-
tions or cluster (as in Fig. 1.6b). We observed that on current high-performance
multicore systems, which typically support the creation of a limited number of
coarse-grained cache partitions (i.e., in the order of megabytes) cache-clustering
proves more effective than strict cache-partitioning as the number of applications
increases. This is due to the finer grained distribution of the cache space that natu-
rally results from sharing cache ways between applications (in this thesis we leverage
way-partitioning). Unfortunately, building efficient and effective cache-clustering
strategies is substantially more challenging than designing strict cache partition-
ing strategies. While partitioning the cache optimally for a certain optimization
objective is an NP-hard problem [133], determining the optimal cache-clustering
solution adds a new level of complexity, as a decision must be made on how to best
group applications into clusters, and how to optimally distribute cache space across
clusters.

To enable rapid prototyping and evaluation of cache-partitioning and
cache-clustering policies, we built the PBBCache [68] simulator, which
constitutes the second key contribution of this thesis. This open-source
parallel simulator relies on offline performance data (e.g., instructions per cycle,
memory bandwidth consumption, etc.) to approximate the degree of throughput,
fairness or other metrics for a workload under a particular partitioning approach.

1.3 Thesis contributions 13

Way0 Way1 Way2 Way3 Way4 Way5 Way6 Way7 Way8 Way9 Way10

Last Level Cache

Core 0

GemsFDTD

Core 1

leslie3d

Core 2

milc

Core 3

sjeng

Core 4

hmmer

Core 5

cactusADM

Core 6

gamess

Core 7

soplex

(a) Strict cache-partitioning

Way0 Way1 Way2 Way3 Way4 Way5 Way6 Way7 Way8 Way9 Way10

Last Level Cache

Core 0

GemsFDTD

Core 1

leslie3d

Core 2

milc

Core 3

sjeng

Core 4

hmmer

Core 5

cactusADM

Core 6

gamess

Core 7

soplex

(b) Cache-clustering or partition-sharing

Figure 1.6: Strict cache partitioning vs. cache-clustering

The simulator is equipped with a slowdown-prediction model enabling to determine
the performance degradation that an application suffers due to cache-sharing and
memory-bandwidth contention. To approximate bandwidth contention for a certain
distribution of cache space across applications in a workload, we extended the prob-
abilistic model proposed in [136] with information on how sensitive an application
is to a reduction in its effective bandwidth consumption at runtime. To increase
programming productivity, PBBCache has been implemented in Python.The sim-
ulator allows researchers (1) to guide the design process of their algorithms and,
more importantly, (2) to easily discard unpromising approaches without having to
go through the tedious development process in the system software.

A powerful feature of the PBBCache simulator is its ability to determine the solu-
tion for the optimal strict cache partitioning and optimal cache-clustering problems
for different optimization objectives. To efficiently determine the optimal cache
space distribution (strict cache partitioning) the simulator leverages a novel paral-
lel branch-and-bound (B&B) algorithm. Notably, this strategy has been specifically
designed for the optimization problems that arise in the context of cache partition-
ing, and enables to effectively distribute the computation across cores on one or
multiple computing nodes. To the best of our knowledge, our proposal is the first
parallel approach to solve the optimal cache-partitioning problem by factoring in
both cache-sharing and memory-bandwidth contention. To evaluate the effective-
ness of PBBCache we implemented existing partitioning policies [153, 58, 195] on
top of it, and compared the results it provides with the actual figures observed
on real hardware equipped with Intel-CAT enabled processors. Moreover, to as-
sess the performance and scalability of the parallel B&B algorithm we conducted
experiments using single-node and multi-node machine configurations.

Via extensive analysis of the solution provided by PBBCache for the optimal cache-
clustering problem, we were able to guide the design of LFOC, a novel OS-level
cache-clustering strategy that strives to deliver fairness. The design an imple-
mentation of LFOC constitutes the third major contribution of this the-
sis. To mimic the behavior of the optimal cache-clustering solution for fairness,
LFOC effectively identifies streaming aggressor programs and cache-sensitive ap-
plications at runtime, and then assigns these kinds of programs to separate cache
partitions. The size of the various cache partitions is determined dynamically by
leveraging a lightweight algorithm that factors in to the varying degree of cache
sensitivity across applications.

We implemented LFOC in the Linux kernel by using a monitoring plugin of the
PMCTrack tool [160]. In this thesis, PMCTrack’s functionality was also augmented

14 Chapter 1. Introduction

to enable direct access to privileged hardware cache-partitioning facilities (e.g. Intel
CAT) via a custom kernel-level API. We evaluated the effectiveness of LFOC on a
real system featuring an Intel Skylake processor, where we compared its effectiveness
to that of two previously proposed policies –Dunn [171] and KPart[58]–, which
optimize fairness and throughput, respectively. Our analysis reveals that LFOC is
able to deliver higher throughput and fairness than every analysed scheme for the
vast majority of the workload scenarios considered.

To conclude this section, it is worth highlighting that the main contributions and
results of this thesis (CAMPS, PBBCache and LFOC) have been summarized and
discussed in articles published in the Journal of Computational Science [71] and
IEEE Transactions on Computers [69] –two high impact factor journals ranked
in the first quartile of the Journal Citation Reports –, and in the International
Conference on Parallel Processing [70], a relevant conference on parallelism and
computer architecture, ranked as Class 2 in the GII-GRIN-SCIE (GGS) Conference
Rating.

1.4. Thesis structure

The remainder of this thesis is organized as follows:

Chapter 2 provides some background in the most relevant fields of research in
this thesis, shared resource contention and scheduling on Asymmetric Multi-
core Processors.

Chapter 3 introduces the different experimental platforms used in this thesis.

Chapter 4 focuses on the CAMPS scheduler, a contention-aware fair scheduler
for AMPs that primarily targets long-running compute-intensive workloads.

Chapter 5 illustrates the inner workings of PBBCache, a parallel simulator
that makes it possible to quickly compare the effectiveness of different cache-
partitioning policies with the optimal solution for different optimization ob-
jectives.

Chapter 6 presents the LFOC algorithm, a cluster-based cache partitioning
strategy that seeks to reduce contention and deliver fairness while maintaining
system throughput.

Chapter 7 outlines the main conclusions of this thesis an discusses possible
avenues of future work.

Chapter 2

Background

In this chapter we discuss the state of the art in shared-resource contention and
asymmetry-aware scheduling.

2.1. Shared-resource contention

Multicore processors constitute the main architecture of choice for modern com-
puting systems in different market segments and they will likely remain as such in
the foreseeable future. Despite their potential, the contention that naturally ap-
pears when multiple applications compete for the use of shared resources among
cores may bring performance and scalability bottlenecks on resources such as the
last-level cache, memory bus, interconnection networks, DRAM controllers and pre-
fetchers. This might have a negative impact on key system performance metrics
such as throughput, energy efficiency and fairness.

Indubitably, the last-level cache represents a key component to consider when try-
ing to tackle shared-resource contention. In this regard, replacement policies play a
crucial role. A widely-used policy in modern systems is Least Recently Used (LRU)
policy, which seeks to provide temporal locality by preserving the most recently
accessed information on cache memory. This generally works well when a single
thread runs on the system, but in the context of multithreaded workloads, perfor-
mance variability arises; since all misses are served equally, cache allocation ends up
depending on each thread’s memory access rate [92]. Besides, those threads with
higher access rates may not be the ones that experience a higher benefit from using
more cache space.

Recent multicore processors typically integrate a tiled layout of the last level cache,
which is shared by all cores on the chip but physically distributed among cores. The
various LLC banks are interconnected with a shared bus or a network on chip (NOC)
to the DRAM controller; this stands out as another crucial place where contention
appears, since they represent the last chance to prevent costly off-chip memory
accesses. In [110] the authors evaluate through simulation the performance penalty

16 Chapter 2. Background

that arises when two applications run simultaneously while competing for memory
bus usage. They observed slowdowns up to 60% relative to the solo executions.
Furthermore, there was a huge slowdown variability from run to run depending on
the co-running applications.

Another major component of the memory hierarchy related to contention is the
DRAM controller, which is in charge of serving memory requests. Notably, most
controllers were designed with the goal of maximizing overall data throughput in
mind [157]; and they ignore the contention present when multiple applications com-
pete for its use. In [138], the authors prove that when multiple threads run on a
system, different memory system performances could be obtained from run to run:
while one thread is prioritized by the DRAM controller, others starve for mem-
ory bandwidth. Despite the fact that NUMA architectures (Non-Uniform Memory
Access) have significantly improved the issue of memory bandwidth contention,
several works have highlighted that shared-resource contention was still present on
these systems [204, 27]. Likewise, these architectures bring several challenges that
must be tackled, like the extra overhead of inter-processor migrations [119] and a
requirement for complex chip-specific memory controllers [106].

Plenty of techniques have been proposed to mitigate the effects of shared-resource
contention, including both software techniques and hardware techniques In the early
two thousands, there was already a significant amount of work done in this field
that strived mostly for improving system throughput. It fell mainly into two cat-
egories [205]: those that make cache microarchitecture optimizations [177, 20,
105, 122, 153, 176, 156, 184, 95, 190]– and DRAM memory controller scheduling
[35, 157, 51, 180, 87, 186, 138, 139, 26, 125].

No matter what technique is used to manage shared-resource contention, even if it
is applied at different parts of the memory hierarchy, a common requirement is the
ability to measure how contention affects the performance of specific applications.
In other words, the ability to measure the slowdown that a specific application
suffers when sharing the system with others. Furthermore, it is worth noting that
every application’s performance suffers from contention in an uneven way, which
also varies when they go through different program phases. Hence, predicting how
each application is affected by contention at runtime is fundamental in realizing
which applications need to receive a special treatment.

There have been plenty of techniques with the goal of measuring contention [37,
201, 188, 200], the majority focused on the contention generated in the LLC. One of
the most relevant mechanisms used in predicting shared-resource contention have
been Stack Distance Profiles (SDP), used as early as the 1970s [130], and Miss Rate
Curves (MRC), which were initially used for prediction in [41].

Furthermore, the interference produced when more than two threads share memory
resources substantially increases the complexity of predicting application-specific
slowdowns. Multiple proposals have strived to address shared-cache interference [41,
189, 56, 42] by means of complex statistical models that may incur in significant
overheads. On the other hand, there have been much simpler proposals, like [137],
that actually manage to model the combined memory usage of multiple applications

2.1 Shared-resource contention 17

that share a specific cache size. In doing so, it makes it possible to assess the impact
of assigning certain applications to cache partitions of a given size. This model relies
on creating a combined miss curve by taking into account the memory access rates
of the threads at specific cache sizes.

Previous research has highlighted the usefulness of cache-partitioning (i.e. splitting
the cache space between applications) in mitigating the negative effects of shared-
resource contention [175]. In [20] they proved that offering configurable cache
partitions in the LLC could provide an average 43% reduction in memory hierarchy
energy consumption in addition to improved performance. . After some years of
promising results [153, 54], major hardware manufacturers finally added the widely
demanded support for cache partitioning with Intel CAT [143] and AMD Quality
of Service extensions [12]. On these platforms, which support a limited number of
coarse-grained cache partitions (e.g., 11 in the experimental platform used in this
thesis), cache-clustering constitutes a more flexible alternative than strict cache-
partitioning [70, 71]. Instead of establishing partitions for specific applications,
cache clusters might be shared by a group or cluster of applications.

As far as we know, there were two early adopters of the Intel CAT technologies that
used cache partitioning via way-partitioning of the LLC. One of them was Heracles
[123], their strategy uses multiple software and hardware techniques to enforce
CPU, memory, and network isolation. The main goal is to assure that latency-
sensitive tasks fulfil their latency deadlines, while providing as much throughput
as possible for best-effort jobs. Heracles uses cache-partitioning by searching for a
right-sized allocation that eliminates latency violations and enforces SLOs (Service
Level Objectives).

The other proposal that also used the Intel CAT technology was Ginseng [66]. They
focused on making cloud providers able to optimize client satisfaction and improve
hardware usage. Their strategy is a market-driven auction system that maximizes
the aggregated benefit of the guests in terms of the economic value they attribute
to the desired allocation. To guarantee achieving the client’s performance goals,
they apply per-application cache partitioning in the LLC to isolate applications and
prevent them from suffering the negative effects of shared-resource contention. Even
though if these approaches come from different research fields, they have proven
themselves useful in minimizing the negative effects of shared-resource contention.

Conversely to cache-partitioning and bandwidth allocation, another approach for
tackling shared resource contention is thread level scheduling [21, 108, 94, 181,
203, 132]. The advent of multicore processors and increasing core counts opened a
new field for these techniques to shine and propelled tons of new research. Since
multicores became widespread, schedulers evolved from deciding how to share single
processing units (time-sharing) to handling multiple cores and establishing thread
assignments (space-sharing). Different research proposals have targeted goals like
enforcing fairness, thread priorities or real-time deadlines. But up until this thesis
started, there was no other proposal that dealt with shared-resource contention and
tackled multiple contention-inducing factors at the OS-level in real hardware.

18 Chapter 2. Background

2.2. Asymmetry-aware scheduling

A large body of work has advocated the benefits of AMPs over symmetric CMPs [114,
112, 83]. Despite these benefits, AMPs give rise to a number of challenges to the
system software [155, 134, 163]. How to efficiently and fairly schedule a set of un-
modified applications on these architectures constitutes an important problem; this
has been one of the main problems we strived to address in this thesis.

Most previous proposals on scheduling for AMPs (as we do in this thesis) target
workloads consisting of long-running compute-intensive applications [24, 172, 111,
183, 182, 164, 167]. Recent research on this domain has highlighted that to optimize
fairness, system throughput or energy efficiency the scheduler must consider the
speedup factor (SF) of the various threads when making decisions [111, 183, 164, 167,

159]. A thread’s SF is defined as
IPSbig

IPSsmall
, where IPSbig and IPSsmall are the thread’s

instructions per second (IPS) ratios achieved on big and small cores respectively
when running alone on the system.

In the remainder of this section we first describe the techniques proposed to deter-
mine the speedup factor at runtime. Next, we cover scheduling proposals that seek
to optimize throughput, and then move on to outline strategies designed to improve
fairness. Finally, we recap previous work that seeks to optimize other goals beyond
fairness and throughput optimization or target non compute-intensive workloads.

2.2.1. Determining the speedup factor

On commercial processors, the system software can leverage hardware performance
monitoring counters (PMCs) to determine a thread’s speedup factor online. Overall,
two different techniques have been explored to do so. The first one is to measure
the SF directly [114, 24], which requires running each thread on big and small
cores to track the IPC on both core types. Previous work has shown that this
approach, also known as IPC sampling, is subject to inaccuracies that naturally
come from using IPC values from different program phases to approximate the
SF [172, 167]. The second approach relies on predicting a thread’s SF using its
runtime properties collected on the current core type using PMCs [111, 164, 152,
167]. This approach removes the need from potentially costly migrations required
to measure the performance of a thread on the various core types, and it has been
shown to provide more accurate SF estimates than IPS sampling. Unfortunately, SF
prediction requires building an estimation model specifically tailored to the AMP
platform in question. In chapter 4 we elaborate on the drawbacks associated with
the reliance on platform-specific estimation models.

Other researchers have proposed the inclusion of new hardware monitoring fa-
cilities on the processor to provide the process scheduler with accurate SF esti-
mates [183, 182]. Performance Impact Estimation (PIE) [183] constitutes an exam-
ple of this kind of hardware support; unfortunately PIE poses certain shortcomings
that complicate its integration on real hardware [152]. Despite the practical limi-
tations of PIE, we strongly believe that devising hardware extensions for accurate

2.2 Asymmetry-aware scheduling 19

SF estimation on AMPs is a promising research avenue that could bring important
benefits.

2.2.2. Throughput optimization

To maximize throughput in multi-application scenarios, previous research has demon-
strated that the scheduler must follow the High-SPeedup (HSP) approach, namely
it must preferentially run on big cores those applications that derive a higher big-
to-small SF or speedup. The main difference between the available variants of the
HSP approach [114, 24, 168, 164, 111, 152] lies in the mechanism employed to ob-
tain threads’ speedup factors online. For example, scheduling proposals presented
in [114, 24] leverage IPC sampling, whereas those proposed in [168, 164, 111] rely
on estimation models.

Recent research has highlighted that making scheduling decisions based on per-
thread SFs only may lead to serious throughput degradation when multithreaded
programs are included in the workload [165, 164]. This stems from the fact that the
SF does not approximate the overall benefit that a multithreaded application as a
whole derives from using the big cores in an AMP [16, 83]. Catering to application-
wide speedups, as we do in this thesis, is the key to optimizing throughput in these
workload scenarios. Previous research [164, 166] has devised analytical formulas to
approximate the speedup for several types of multithreaded applications based on
the runnable thread count (a proxy for the amount of thread-level parallelism in the
applications), the SF of the application threads and the number of big cores in the
AMP. We turned to these formulas to approximate the speedup for multithreaded
applications in the implementation of our OS-level scheduling proposal.

Other researchers have proposed specific support to accelerate multithreaded pro-
grams on AMPs [16, 164, 97, 98, 129]. These proposals make use of big cores as
acceleratators for different types of scalability bottlenecks in parallel applications
by employing software [16, 164] or hardware-aided approaches [97, 98, 129]. Our
OS-level scheduling proposal is largely orthogonal to these approaches.

2.2.3. Delivering fairness

To enforce fairness, equal-priority applications must experience a similar perfor-
mance degradation or slowdown when running together relative to their solo ex-
ecution. Notably, optimizing fairness usually comes at the expense of degrading
throughput and energy efficiency substantially, as these three aspects constitute
largely conflicting optimization goals on AMPs [159].

The first fairness-aware scheduler for AMPs was an asymmetry-aware Round-Robin
(RR) scheme that simply fair-shares big cores among applications by triggering
periodic thread migrations [24]. Fair-sharing big cores has proven to provide better
performance and more repeatable completion times across runs on AMPs [165,
120] than default schedulers in general-purpose OSes, which are largely asymmetry

20 Chapter 2. Background

agnostic. For this reason, RR has been widely used as a baseline for comparison [24,
165, 104]. Unfortunately, RR constitutes a suboptimal fairness solution [167], since
it does not consider per-thread big-to-small speedups when distributing big-core
cycles.

The asymmetry-aware completely fair scheduler (ACFS[167]) was considered the
state-of-the-art OS-level fairness-aware scheduling scheme for AMPs. In [167] the
authors experimentally demonstrated that ACFS clearly outperforms previous fairness-
aware schedulers, such as RR [24], Equal-Progress [182], and A-DWRR [120], for
a wide range of workloads running on real AMP hardware. To optimize fairness,
ACFS leverages per-thread SF values to continuously track the relative progress that
each thread in the workload makes on the AMP, and enforces fairness by evening
out the slowdown observed across applications. The main limitation of ACFS [167]
(also present in earlier schemes [182, 120]) is the fact that the scheduler does not
take shared-resource contention effects into consideration. As our experiments in
Chapter 4 reveal, failing to cater to these effects leads the scheduler to exhibit unfair
behavior when multiple memory-intensive programs are included in the workload.
Our proposed scheduling algorithm effectively improves fairness in this scenario.

2.2.4. Other optimization goals and workload types

Specialized schedulers have been also proposed to properly deal with non compute-
intensive workloads on AMPs, such as those including latency-sensitive applica-
tions [149, 77], programs with irregular non-scalable parallelism [96] or multimedia
applications [107]. In [77] they propose a scheduling framework to manage in-
teractive services on multicore servers by exploiting both software and hardware
heterogeneity. They emulate Dynamic Voltage and Frequency Scaling (DVFS) and
AMP configurations by using duty-cycling threads. In a nutshell, they leverage
DVFS and the high energy efficiency of AMP configurations to ensure that service
providers fulfil their tail latency targets while obtaining significant savings in energy
consumption. Following a slightly different approach that is solely based on AMPs,
Octopus-Man [149] uses a feedback-control mechanism to assign latency-critical
threads to the least power-consuming core possible on the asymmetric platform. In
this way, they seek to minimize quality of service violations while improving the en-
ergy efficiency of warehouse-scale computers. It is worth noting that they evaluated
their approach on real asymmetric hardware by using the exclusive Intel Quick IA
prototype [43]. Aside from that, their main difference is that Octopus-Man uses a
single core type configuration at the same time, while in [77] they mix core types
and assign short requests to slow cores.

Other researchers have devised ways to reduce energy and power consumption on
AMPs [199, 150, 135, 115]. Mogul et al. [135] proposed using small cores in asym-
metric multicores to execute system calls. They modified an operating system to
switch the execution to a less powerful core when a thread invokes a system call.
The effectiveness of this scheme relies on the observation that system calls and
OS code in general use big high-performance cores inefficiently. In a similar vein,

2.2 Asymmetry-aware scheduling 21

Kumar and Fedorova [115] proposed binding the control domain dom0 of the Xen
hypervisor to slow cores. These approaches are orthogonal to our proposal.

The PRIM [199] and EEF-Driven [159] scheduling strategies strive to optimize the
system’s energy efficiency for compute-intensive workloads. Specifically, PRIM is a
rule-set-guided scheduling algorithm that performs thread-to-core mappings based
on the values of different performance metrics (such as the IPC or the LLC miss
rate) gathered with hardware counters. At high level PRIM works as follows, when
a thread is created, it is mapped to a random core type in the system in order
to preserve load balance. Every so often, the scheduler randomly selects a certain
number of thread pairs consisting of a thread running on a big core (TB) and another
thread running on a small core (TS). For each randomly-selected pair, the scheduler
estimates whether swapping TB with TS would result in energy savings by means of
a set of platform-specific rules. If that is the case, the scheduler swaps both threads.
The main limitation of PRIM is the fact that platform-specific rules do not quan-
tify the actual energy savings resulting from a thread swap, but instead indicate
whether a specific thread swap would be beneficial or not in terms of energy con-
sumption. This leads PRIM to making suboptimal thread-to-core mappings [159].
This shortcoming is addressed by the EEF-Driven [159] scheduler, which relies on
a thread’s energy-efficiency factor (EEF), a novel metric that indicates the relative
energy efficiency that comes from assigning a thread to a big core, relative to a
small one. An application’s Energy-Efficiency Factor (EEF) is defined as follows:

SF
EPIbig

, where EPIbig denotes the Energy per instruction consumed on a big core.

The EEF-Driven scheduler devotes big cores to running preferentially those threads
with a high EEF value. This enables to improve throughput (by up to 20%) and
reduce the energy-delay product (EDP) (by up to 15%) relative to PRIM.

For embedded workloads further energy-related optimizations are possible, since
threads may exhibit more predictable execution patterns. Petrucci et al. [150]
proposed a global optimization scheme that targets embedded thread sets with
periodic characteristics. Their user-level scheduling proposal is able to determine
energy-efficient thread assignments by leveraging an ILP (Integer Linear Program-
ming) model. This scheduler enforces thread-to-core mappings by imposing thread
affinities via system calls.

22 Chapter 2. Background

Chapter 3

Experimental setup

In this chapter we present the specifications of the different platforms used to gather
experimental results. Moreover, we detail the linux-based software stack on which
this thesis has been built.

3.1. Hardware

3.1.1. Asymmetric Multicore Platforms

For the experimental evaluation on real hardware of asymmetry-aware schedulers,
we used three asymmetric platforms: the ARM Juno development board [19], which
integrates a big.LITTLE ARM processor (64 bits); the Odroid XU-4 board [78],
equipped with another big.LITTLE ARM processor (32 bits); and the Intel QuickIA
prototype1 [43], which integrates a high-performance Xeon processor, alongside a
low-energy Atom processor. Table 3.1 summarizes the specifications of these sys-
tems. Figure 3.1 depicts the the memory hierarchy as well as the number of cores
of each kind in the AMP configurations explored.

Table 3.1: Features of the AMP systems of this thesis

System 2B-4S-Juno 4B-4S-Odroid 2B-2S-QuickIA
Core types Cortex A57 Cortex A53 Cortex A15 Cortex A7 Xeon E5450 Atom N330

Core count 2 4 4 4 4(∗) 2
Frequency 1.10GHz 850 MHz 2.0 Ghz 1.4 Ghz 1.2 Ghz 1.6 Ghz
Pipeline Out of order In order Out of order In order Out of order In order
Cache L2 2MB/16-ways 1MB/16-ways 2MB/16-ways 512KB/8-ways 6MB/16-ways 512KB/8-ways
DRAM 8GB DDR3 @ 800MHz 2GB DDR3 @ 933MHz 16GB DDR2 @ 677MHz

(*) For our experiments in Chapter 4.4, two high-performance cores were disabled to achieve a comparable

topology to the ARM systems.

1This prototype was donated to our research group by Intel Labs (Hillsboro, OR, USA).

24 Chapter 3. Experimental setup

Cortex A57 cores

L2 (2MB)

Cortex A53 cores

L2 (1MB)

Cache Coherent Interconnect (CCI)

DRAM controller

2B-4S (ARM Juno Board)

ACE
interface

ACE
interface

Cortex A15 cores

L2 (2MB)

Cortex A7 cores

L2 (512KB)

Cache Coherent Interconnect (CCI)

DRAM controller

4B-4S (Odroid XU Board)

ACE
interface

ACE
interface

Xeon E5450 cores

L2 (6MB)
L2

512KB
L2

512KB

Atom N330 cores

Off-chip DRAM controller

2B-2S (Intel QuickIA)

Front Side
Bus (FSB)

Front Side
Bus (FSB)

Figure 3.1: Experimental configuration of the asymmetric platforms

Table 3.2: Features of the various platforms used equipped with Intel RDT

Platform Name Broadwell-EP Skylake
Proc. Model Xeon E5-2620 v4[90] Xeon Gold 6138[91]

Proc. Frequency 2.1GHz 2.0 GHz
Core count 8 20

LLC (L3) cache 20MB/20-way 35MB/11-way
Main Memory 32GB@2133 MHz 96GB@2666 MHz
CAT enabled Yes Yes

3.1.2. Symmetric multicore platforms

To carry out simulations with our PBBCache tool as well as the evaluation of various
cache partitioning policies we used different platforms. Table 3.2 summarizes the
features of the two hardware platforms that support hardware extensions for cache
partitioning. The topology of these platforms is summarized in Figure 3.2. They are
referred to as Skylake and Broadwell-EP (Section5.6.2). Broadwell-EP integrates a
Xeon E5-2620 v4 processor and Skylake incorporates a Xeon Gold 6138 processor.
They include distinct memory hierarchy organizations (e.g. the former uses an
inclusive LLC whereas the later does not) and different cache partition granularities
(i.e. the smallest partition we can create on Skylake – 2.5 megabytes – is 2.5 times
bigger than on Broadwell-EP).

For the evaluation of the accuracy and scalability of the PBBCache simulator we
used two additional platforms (Section 5.6.3), whose features are summarized in
Table 3.3. The first platform, referred to as Haswell, is a dual-socket server equipped
with two Intel Xeon E5-2695 v3 processors. The second one is a cluster consisting of
four 16-core nodes, each node integrates two Intel Xeon E5-2650 processors (referred
to as SandyBridge-EP in Table 3.3).

3.2. Software

3.2.1. Scheduling Framework for AMPs

To deliver the potential benefits of AMPs to unmodified applications on Linux
or most general-purpose operating systems, substantial modifications in the OS

3.2 Software 25

Broadwell-EP: Intel Xeon E5-2620 v4

Package 0 (32GB)

Core #0

L2 (256KB)

L1d (32KB)

LLC (2.5 MB)

PU 0 PU 1

Core #1

L2 (256KB)

L1d (32KB)

LLC (2.5 MB)

PU 0 PU 1

Core #7

L2 (256KB)

L1d (32KB)

LLC (2.5 MB)

PU 0 PU 1

Core #6

L2 (256KB)

L1d (32KB)

LLC (2.5 MB)

PU 0 PU 1

LLC (20MB)

(a) Broadwell-EP.

Skylake: Intel Xeon Gold 6138

Package 0 (96GB)

Core #19

L2 (1024KB)

L1d (32KB)

LLC (1.75 MB)

PU 0 PU 1

LLC (1.75 MB)

Core #18

L2 (1024KB)

L1d (32KB)

PU 0 PU 1

Core #0

L2 (1024KB)

L1d (32KB)

LLC (1.75 MB)

PU 0 PU 1

Core #1

L2 (1024KB)

L1d (32KB)

LLC (1.75 MB)

PU 0 PU 1

LLC (35MB)

(b) Skylake.

Figure 3.2: Architecture layout of the hardware platforms Broadwell-EP and Skylake presented
in Table 3.2.

Table 3.3: Features of the various platforms used for the assessment of the simulator’s accuracy
and scalability.

Platform Name Haswell SandyBridge-EP
Proc. Model 2 x Xeon E5-2695 v3[89] 2 x Xeon E5-2650[88]

Proc. Frequency 2.3 GHz 2.0GHz
Core count 28 16

LLC (L3) cache 35MB/20-way 20MB/20-way
Main Memory 64GB@1600 MHz 64GB@1600 MHz
CAT enabled No No

26 Chapter 3. Experimental setup

scheduler are usually necessary. On top of all the development complications that
might arise at kernel level, leading to countless reboots, this is on itself quite a
challenging task. So as to implement contention-aware scheduling algorithms on
Linux, we took advantage of previous work from our research group and used the
scheduling framework for AMPs developed in [169, 151]. Originally, this framework
was designed to work on the OpenSolaris process scheduler but, after Oracle took
over Sun Microsystems in 2007, the support for this open source operating system
was discontinued. The framework port to Linux entailed a significant amount of
effort and it ended up taking 15000 lines of code.

Within the Linux scheduler, multiple scheduling classes exist, each one implement-
ing a different policy. This design allows to simultaneously manage different pro-
cesses with specific scheduling policies. All scheduling classes must react to com-
mon events in a thread’s life cycle, such as picking a new task to run or assigning
a thread to a specific core. Besides, they include different per-CPU runqueues so
active threads can be accounted for and scheduled based on the metrics and priority
that each algorithm considers.

The AMP scheduling framework [169, 151] makes it possible to implement and eval-
uate different scheduling strategies in a realistic scenario, by using a general-purpose
operating system on top of real asymmetric hardware. The main component of
this framework is the operating system process scheduler and a fork of the default
scheduling class (CFS), which was used as a foundation to build an AMP-aware
scheduling class.

In its early version, the scheduling framework’s code directly gathered information
from hardware counters to guide some scheduling policies with specific performance
metrics. Unfortunately, the interaction with hardware counters varies from one
architecture to another – and even differ across processor models –, giving rise to the
necessity for an architecture-independent mechanism that enabled the interaction
with the monitoring hardware in various experimental platforms. Further down
the road, the requirement for this functionality crystallized in the development
of PMCTrack [162], which allowed the operating system and the user to access
performance monitoring information through a architecture independent API.

3.2.2. PMCTrack

PMCTrack is an open source performance monitoring tool that directly gathers
information from hardware counters [162]. As mentioned above, it was originally
developed to facilitate the implementation of scheduling algorithms in the Linux
kernel that base their decisions by gathering online information from PMCs (Per-
formance Monitoring Counters). Afterwards, different components were added to
allow monitoring applications at runtime from userspace and exploit other hardware
monitoring facilities beyond PMCs.

Previous work [160, 162] dissect the inner workings of PMCTrack and dive deeply
into the advantages of using it over other performance monitoring tools. Notably,

3.2 Software 27

PMCTrack supports monitoring of both sequential and parallel applications and,
more importantly, has the ability to calculate high-level metrics and perform event
multiplexing.

The pmctrack command line tool is the more direct way of interacting with PMC-
Track from userspace. This command includes three basic use cases:

Time-Based Sampling (TBS): this mode allows the user to periodically gather
information from PMCs and virtual counters for a specific application within
a certain sampling interval.

Event-Based Sampling (EBS): this mode makes it possible to gather informa-
tion from PMCs and virtual counters whenever a certain performance counter
reaches a certain threshold, specified by the user.

Time-Based system-wide monitoring mode: this mode is a variant of TBS that
gathers information for each CPU (core), instead of a specific application.

To illustrate the behavior of pmctrack tool, we analyse a sample command that
monitors the SPEC CPU 2017 application roms using the TBS mode:
$ pmctrack -c instr ,cycles ./ roms17

[Event -to-counter mappings]

pmc1=instr

pmc2=cycles

[Event counts]

nsample pid event pmc1 pmc2

1 8554 tick 2653440734 1255443685

2 8554 tick 2572409764 1286580986

3 8554 tick 2367460876 1234683457

4 8554 tick 2479662345 1234603218

5 8554 tick 2235759874 1268959764

6 8554 tick 2486452456 1267962456

7 8554 tick 2545742652 1267809345

8 8554 tick 2584730986 1280471675

...

This command provides the user with the number of retired instructions and cycles
per second. The command line argument -c is used to specify a set of hardware
events to monitor. As it is shown in the example, event mnemonics are accepted like
in any other monitoring tools [93, 46, 147], but the events can be expressed as well
in their respective hexadecimal architectural codes. The last argument contains
the full command that launches the application to be monitored – for instance,
./roms17. Note also that the sampling period can be specified with the argument
-T, by default it is set to 1 second. The command output starts with an event-
to-counter mapping section that shows which physical counter corresponds to each
requested event. Afterwards, the Event counts section contains a table that reflects
in each row the sampler number, the process ID and each counter’s value.

3.2.3. Scheduling mode and monitoring modules

The core of PMCTrack is implemented in a kernel module that is in charge of gath-
ering performance information from the available hardware counters on the platform

28 Chapter 3. Experimental setup2 Saez et al.

Scheduler implementation
(uses PMCTrack kernel API)

Monitoring mod.
Platform B

Monitoring mod.
Platform C

Monitoring mod.
Platform A

PMCTrack architecture-independent PMC access layer

Performance monitoring backends (platform specific)

Performance Monitoring Counters

O
S
ke
rn
el

ke
rn
el

m
od

u
le

FIGURE 1. Interaction between the OS scheduler and
PMCTrack’s monitoring modules

hardware PMC events that may di↵er substantially
across processor models and architectures [9, 10].
Unfortunately, public-domain PMC monitoring tools,
which are largely userspace oriented, do not provide
an architecture-independent mechanism that enables
feeding PMC-based OS scheduling schemes with
the necessary high-level monitoring information they
require to function. Due to the limited support
for in-kernel monitoring in public-domain PMC tools,
some researchers have employed architecture-specific
ad-hoc code to access performance counters in the
scheduler implementation [4, 9, 10]. However, this
approach still leads the scheduler to be tied to certain
processor models. Other researchers have resorted
to evaluating their proposals by means of simplistic
userspace scheduling prototypes [6, 8, 11, 14] that rely
on existing userspace-oriented PMC tools.

To overcome these limitations, we propose PMC-
Track, an OS-oriented PMC tool for the Linux ker-
nel. PMCTrack’s novelty lies in the monitoring mod-
ule abstraction, a platform-specific component that is
responsible for collecting the necessary high-level met-
rics that a given OS scheduling algorithm requires to
function. This abstraction makes it possible to cre-
ate architecture-independent implementations of OS
scheduling algorithms that leverage PMC data. Fig-
ure 1 illustrates the interaction between the scheduler
and PMCTrack’s monitoring modules. Essentially, the
scheduler does not access or deals with performance
counters or hardware events directly, but instead uses
the PMCTrack kernel API to retrieve the necessary per-
thread or per-application performance metrics from the
underlying monitoring module. In this way, ensuring
that a PMC-based thread scheduler works on a new pro-
cessor model or architecture comes down to developing
the associated platform-specific monitoring module in
a loadable kernel module. More importantly, the mon-
itoring module developer does not have to deal with

the low-level code to access PMCs directly on a given
architecture, since PMCTrack o↵ers an architecture-
independent interface to easily configure events and
gather PMC data, which greatly simplifies the imple-
mentation. Furthermore, due to the flexibility of PMC-
Track’s monitoring modules, any kind of insightful mon-
itoring information provided by modern hardware but
not modeled directly via performance counters, such as
power consumption or an application’s cache footprint,
can also be exposed to the OS via the PMCTrack ker-
nel API and to user applications via PMCTrack’s virtual
counters.
Despite being an OS-oriented tool, PMCTrack is

also equipped with a set of command-line tools and
userspace components to assist OS-scheduler designers
during the entire development process. These userspace
tools complement existing kernel-level debugging tools
with PMC-related o✏ine analysis and tracing support.
As shown in this paper, these tools can be of great
value to researchers when it comes to assessing the
potential benefits of novel OS scheduling policies.
Although the main focus of this paper is on illustrating
how PMCTrack can aid the OS scheduler, the tool
could potentially be used to perform PMC-based
optimizations in other OS components as well (e.g.,
memory management).
To demonstrate the e↵ectiveness and flexibility of

PMCTrack we analyze three case studies on real
multicore hardware. In doing so, we make the following
contributions:

• We perform an experimental analysis of the
throughput and fairness of state-of-the-art thread
schedulers for asymmetric single-ISA multicore
systems [9, 12, 15, 16, 17] implemented in
a real operating system. Most of these
algorithms require the collection of di↵erent sets
of hardware events across platforms to determine
the high-level metrics necessary to drive scheduling
decisions. PMCTrack enabled us to create
platform-independent implementations of these
schemes. Notably, some of the schemes studied
were evaluated before using emulated asymmetric
hardware [16] or simulators [17]. Instead,
we performed an extensive evaluation on real
asymmetric hardware, which enabled us to detect
important benefits and drawbacks of the various
schemes.

• We also showcase the ability of PMCTrack to sam-
ple performance counters and energy-consumption
registers/sensors in a fully coordinated fashion
on di↵erent architectures. Notably, this func-
tionality is missing in standard Linux monitoring
tools [18, 19] on some platforms, as discussed in
Section 2. PMCTrack fills this gap, thus making
it possible to measure insightful high-level metrics
that factor in information on performance counters
and energy consumption. By using this feature, we

The Computer Journal, Vol. ??, No. ??, ????

Figure 3.3: PMCTrack monitoring module architecture

at the user’s request. In order to be able to independently gather information for
each thread on the system, the kernel module must be aware of different events that
occur in a thread’s life cycle, such as context switches or blocking events. Because
the Linux kernel does not offer an API to capture these events from loadable ker-
nel modules in every architecture, this support has to be necessarily added via a
simple and portable kernel patch for easy adoption across different kernel versions.
For instance, our first experiments on this thesis were performed using the Linux
version was the v3.10 (Chapter 4.4) and we have constantly updated to newer ver-
sions and experimented with up to v4.9.104 (Chapter 6.4). We have also upgraded
PMCTrack for more recent kernels, the latest being v5.4.35.

The PMCTrack kernel API not only allows the PMCTrack kernel module to receive
the necessary notifications or callbacks to manage the monitoring hardware, but
also implements a set of functions to enable any scheduling class of the Linux ker-
nel to access performance monitoring data in an architecture-independent manner.
PMCTrack’s scheduler mode enables kernel-level scheduling algorithms to collect
per-thread performance metrics. The scheduler mode for a specific thread can be
easily activated by enabling a special flag inside the thread’s descriptor.

Figure 3.3 depicts the PMCTrack monitoring module architecture. The tool’s func-
tionality can be easily extended via plugins called monitoring modules. They are
implemented in a separate .C file that and loaded as a kernel module. They interact
with the PMCTrack kernel module via its API, as depicted in Figure 3.3. These
monitoring modules make visible to the OS and the user any kind of HW monitor-
ing information provided by modern processors, even if it is not readily available
through regular performance counters. Some examples of information that can be
gathered are the energy consumption or cache space that an specific application

3.2 Software 29

uses, which makes this functionality specially useful for the prototyping and de-
velopment of new algorithms that take advantage of this information for resource
management and scheduling. In order to provide complex performance metrics to
the different components of PMCTrack, a software abstraction known as virtual
counters is used; unlike regular hardware counters from the Performance Monitor-
ing Unit (PMU), they are able to account for compound metrics to the operating
system or the user. These counters may also expose complex metrics to the user
like IPC or LLCPKI, and expose information from other sources than hardware
counters. Like the one provided by recent cache partitioning and monitoring func-
tionalities bundled in Intel Resources Director Technology suite.

3.2.4. Intel Resource Director Technology

The Intel Resource Director Technology (Intel RDT) is a set of technologies available
in modern Intel processors that provides support for monitoring shared-resource
usage and performing dynamic resource allocations. Even though the different
technologies existed earlier separately, Intel unified them to be a collection of related
hardware extensions, commercially referred to as Intel RDT. Specifically, the various
technologies that make up Intel RDT are as follows:

Intel Cache Monitoring Technology (CMT) offers information about
how much cache space each application is consuming.

Intel Memory Bandwidth Monitoring (MBM) gives access to infor-
mation directly measured from the memory controller and accounts for the
memory bandwidth that each applications consumes.

Intel Cache Allocation Technology (CAT) provides access to the way-
based cache-partitioning utilities present in modern Intel processors.

Intel Memory Bandwidth Allocation (MBA) enables to restrict the
memory bandwidth consumption of a specific application by throttling mem-
ory requests.

3.2.4.1. Shared-resource monitoring technologies

The Intel RDT technology enables the operating system or virtual machine monitor
(VMM) or hypervisor to determine the memory bandwidth consumption or cache
usage of a specific level of the memory hierarchy (usually the LLC), even when
multiple applications run on the system simultaneously. Second generation Intel
Xeon scalable processors were one of the first processor family that fully supported
these technologies.

At a high level, Intel RDT assigns a given identifier(ID) to each application or
virtual machine process; that is known as Resource Monitoring ID (RMID). The
hardware that supports Intel RDT monitors the LLC space used by each RMID,

30 Chapter 3. Experimental setup

Figure 3.4: The MSR IA32 PQR ASSOC, present in every CPU, allows to track each application’s
RMIDs through context switches and CPU migrations

Figure 3.5: The MSRs IA32 QM EVTSEL and IA32 QM CTR in charge of selecting and reading
a specific event supported by Intel RDT

making it possible for the operating system or VMM to read the LLC occupancy
or memory bandwidth consumption for every application at any given moment. A
full description of the Intel RDT functionality can be found in [9].

In order to track each application’s LLC occupancy or memory bandwidth, the user
of the Intel RDT interface must keep track of every thread’s RMID that is monitored
on the system. The RDT hardware interface exposes multiple privileged registers
known as Model Specific Registers (MSRs) [141, 8], which are accessed through the
assembly instructions rdmsr and wrmsr. For each core there is a register known
as IA32 PQR ASSOC that allows to keep track of which RMID is assigned to a
thread that runs on a specific core. When a context switch happens, the operating
system must update the RMID field of this CPU register with the RMID of the
currently running thread.

At any given time, the interface user can query the cache space or memory band-
width usage for any running application by manipulating two registers in a specific
order. First, the register IA32 QM EVTSEL must be written with the specific
RMID we wish to consult alongside the corresponding event code (EvtID=0 for
cache occupancy). Afterwards, it is possible to read the monitoring data by retriev-
ing the least significant bits of the register IA32 QM CTR. Figure 3.5 shows the
bit layout of both of them.

3.2.4.2. Shared-resource allocation technologies

The main focus of Cache Allocation Technology is to enable resource allocation
based on application priority or Class of Service (COS/CLOS). The processor ex-
poses a set of COS, which can be used by multiple applications or individual threads.
In other words, multiple RMIDs can be assigned to the same COS. This function-
ality allows to group different applications to share the same memory bandwidth
cap or cache partition.

3.3 Metrics 31

Figure 3.6: Capacity bitmasks used to establish which cache ways are shared by each CoS. Note
that all the active ways in a CBM must be adjacent.

The allocation for the respective applications or threads is then restricted based on
the class they are associated with. Each COS can be configured using a capacity
bitmask (CBM) which indicates the cache ways that are enabled/disabled in the
corresponding partition of the LLC. Hence, CBMs establish the degree of overlap
and isolation between classes. For each logical processor a register exists (referred
to as the IA32 PQR ASSOC MSR or PQR) enabling the OS/VMM to specify a
COS of the active thread/VM on a CPU. Figure 3.6 shows an example of cache
allocations for different capacity bitmasks.

Recently in [36], PMCTrack functionality was further improved by implementing
a monitoring module that provides support for accessing Intel RDT technologies
[143]. Thanks to this support, we were able to access Intel RDT interface via
wrapper functions provided by the Linux kernel, that basically makes use of inline
assembly code to allow running the privileged instructions from C code.

There is another allocation technology apart from Intel CAT that is included in
Intel RDT. The Memory Bandwidth Allocation (MBA) [14] technology allows the
system software to limit the off-core access rate – to the LLC and, indirectly, to
main memory of a specific application. The interface to Intel MBA works in a
similar way to the one we have detailed in this section, but we will not give further
details since this technology has not been used in any of the proposals made by this
thesis.

3.3. Metrics

In this section we describe the metrics we considered in the evaluation of cache
partitioning algorithms and asymmetry aware schedulers. Note that some of the
metrics used on CMPs to measure throughput and fairness had to be adapted to
work on AMPs.

3.3.1. Metrics on CMPs

Previous research on fairness for multicore systems [54, 171] defines a scheme as fair
if equal-priority applications in a workload suffer the same slowdown as a result of
sharing the system. To cope with this notion of fairness, we employ the unfairness

32 Chapter 3. Experimental setup

metric, which has been extensively used in previous work [54, 192, 160, 69]. For
a workload consisting of n applications, this metric (lower-is-better) is defined as
follows:

Unfairness = MAX(Slowdown1,...,Slowdownn)
MIN(Slowdown1,...,Slowdownn)

(3.1)

Notably, according to the definition of the unfairness metric, we could improve its
value just by slowing down certain applications to achieve similar but potentially
high slowdown figures. Clearly, this is unacceptable, as it may come at the expense
of high throughput degradation. Therefore, the value of the unfairness metric must
be always reported along with system throughput figures, as we do in this thesis.

To measure the performance degradation of an individual application in a multi-
program workload we consider the Slowdown metric, defined as follows:

Slowdownapp =
CTpart,app

CTalone,app
(3.2)

where CTpart,app denotes the completion time of application app when it runs sharing
the system under a given cache-partitioning scheme, and CTalone,app is the comple-
tion time of the application when running alone on the CMP system.

The slowdown of a single-threaded application can be also defined in terms of the
average number of instructions per cycle observed when it runs alone with all cache
space available (IPCalone,app) and that achieved when it runs with other applications
in the workload under a certain cache-partitioning scheme (IPCpart,app):

Slowdownapp =
IPCalone,app

IPCpart,app

(3.3)

To quantify throughput on CMPs, previous works [171, 61] have employed the
System ThroughPut (STP), which is defined as follows:

STP =
n∑

i=1

(
CTalone,ai

CTpart,i

)
=

n∑
i=1

(
1

Slowdownai

)
(3.4)

In order to measure global throughput, we discarded those metrics that depend on
Instructions Per Second (IPS) or Instructions Per Cycle (IPC), since they might turn
out to be misleading in the context of multithreaded applications. In specific, some
parallel applications use active wait loops (spinning) to enforce synchronization;
which may result in extremely high IPC figures and unrealistic throughput values
reported during spinning periods in which no useful work has been done. Due to the
IPC limitations, we did not use previous metrics such as Weighted Speedup [174]
or Harmonic Mean Speedup [116].

3.3 Metrics 33

3.3.2. Metrics on AMPs

Equations 3.1 and 3.3 are also valid for asymmetric systems. In this work, we
assume that the IPSalone on an AMP is maximized when a thread runs on a big core
in isolation; that is the case across all the applications explored in our experimental
platforms.

In quantifying throughput on AMPs, we turned to the Aggregate Speedup (ASP)
metric [167, 159, 151], defined as follows:

ASP =
n∑

i=1

(
CTsmall,i

CTsched,i

− 1

)
(3.5)

where n is the number of applications in the workload, CTsmall,i represents the
execution time of application i when it runs on slow cores alone on the system.
Besides, CTsched,i is the execution time of application i when it is executed under a
specific scheduling algorithm in the context of a multi-application workload. There
have been similar metrics used by other authors, such as STP [183]. However, as
pointed out in [151], ASP is better equipped to capture the differences in global
throughput provided by the different scheduling algorithms on AMPs. Since ASP
takes into account the global benefit that all applications in the workload gather
when using the high performance big cores of the asymmetric platform.

34 Chapter 3. Experimental setup

Chapter 4

CAMPS: a Contention-aware
scheduler for AMPS

The work summarized in this chapter primarily explores how to fairly schedule, at
the OS level, a mix of unmodified applications on an AMP system, and does so
by paying special attention to the impact of shared-resource contention on these
architectures. To deliver fairness in this context, the scheduler must even out the
progress made by the various applications as they run on the different core types
throughout the execution [182, 167]. This requires the scheduler to be equipped
with a mechanism enabling to measure the performance degradation accumulated
by an application at runtime with respect to its solo execution (aka. slowdown). On
AMPs, the slowdown depends on two main factors: (1) performance asymmetry and
(2) shared-resource contention. Performance asymmetry refers to the fact that most
applications derive a non-negligible speedup from using high-performance big cores
relative to running on low-power small ones. When a thread runs on a small core,
it slows down in proportion to its big-to-small speedup, which may differ greatly
across applications and may vary over time through different program phases [24].
Shared-resource contention may also lead to substantial performance degradation.
In current AMP hardware, clusters of cores of the same type (big or small) typically
share a last-level cache [19, 78, 43] and other memory-related resources with the
remaining cores. Applications running on the various cores may compete with
each other for these shared resources, which could degrade their performance in
an uneven and unpredictable way, as the hardware itself does not guarantee a fair
usage of these resources [28, 192, 205, 197, 196, 54].

Previous scheduling proposals for AMPs, such as Equal-Progress [182] or ACFS [167],
attempt to enforce fairness by just catering to performance asymmetry aspects, but
they do not take shared-resource contention effects into account. As we demon-
strate in this chapter, this leads to substantial performance/fairness degradation
when several memory-intensive applications are present in the workload. Con-
versely, contention-conscious approaches that aim to deliver fairness [192, 63, 205]
or strive to improve performance isolation [197, 194, 11] are not designed to work
on systems that combine high-performance cores with low-power cores with differ-

36 Chapter 4. CAMPS

ent microarchitectural features. Hence, these schemes do not factor in performance
asymmetry.

To fill this gap, we propose CAMPS, an OS-level contention-aware scheduler for
AMPs, which seeks to optimize fairness while maintaining acceptable system through-
put. Our scheduler also exposes a configurable parameter enabling the user to
trade fairness for throughput. As the vast majority of schedulers proposed for
AMPs [24, 111, 164, 183, 182, 98, 167], our proposal primarily targets long-running
compute-intensive workloads. In particular, in this thesis chapter we make the
following main contributions:

We devised a novel runtime mechanism to predict the slowdown that a thread
in the workload experiences as it runs on the various cores of an AMP. Specif-
ically, our scheduler approximates the current slowdown by monitoring var-
ious runtime metrics via performance monitoring counters (PMCs), and by
comparing that information with the thread’s past history gathered in low
contention scenarios.

Unlike other OS-level schedulers for AMPs [111, 167], CAMPS does not rely
on platform-specific speedup prediction models, which typically entail the
monitoring of a specific set of hardware PMC events that may differ substan-
tially across processor models and architectures [111, 164, 152, 167]. Instead,
our proposal employs a small and fixed set of performance metrics that can
be easily gathered using PMCs available in commercial AMP hardware, thus
making the scheduler portable across architectures.

We implemented CAMPS in the Linux kernel, on top of the Completely Fair
Scheduler (CFS), which is largely asymmetry agnostic. As we demonstrate in
this chapter, the completion time of an application under the stock Linux
scheduler may vary substantially across multiple runs of the same work-
load on an AMP. As a result, CFS and the HMP (Heterogeneous Multi-
Processing) scheduler [154] –an extension of CFS for big.LITTLE platforms–
constitute unfair scheduling schemes for asymmetric multicores, especially
when compute-intensive applications are present in the workload. Notably,
CAMPS delivers more consistent performance from run to run and higher
degree of fairness for a wider spectrum of workloads.

For our experimental evaluation, we employed the Intel QuickIA prototype [43]
as well as commercial ARM-based asymmetric multicore platforms [19, 78].
We performed an extensive experimental comparison with previously proposed
asymmetry-aware schemes [111, 164, 167]. Our analysis reveals that CAMPS
improves fairness by up to 11% compared to a state-of-the-art fairness-aware
scheduler [167], and at the same time improves throughput by up to 17%.

The remainder of this chapter is organized as follows. Firstly, Section 4.1 pro-
vides a brief rundown of the key aspects and background of this research topic
and motivates our work. Section 5.2 discusses related work. Section 4.3 outlines

4.1 Motivation 37

the design and implementation of our asymmetry-aware scheduling proposal. Fi-
nally, Section 4.4 showcases our experimental results and Section 4.5 presents the
conclusions of this chapter.

4.1. Motivation

In this section we first introduce the notion of fairness employed in our work, and
discuss the challenges associated with determining the slowdown at runtime. We
then present an experimental study that showcases the main observation we exploit
to determine the slowdown on-line on AMPs.

4.1.1. Fairness on AMPs

Delivering fairness entails ensuring that the slowdown accumulated by the various
application threads throughout the execution remains as even as possible [54, 192,
167, 182], while maintaining acceptable throughput. To this end, the scheduler
must be equipped with a mechanism to determine a thread’s slowdown online. As
defined in Equation 3.3, measuring the Slowdown requires knowing the IPS of a
given application when running under a specific scheme. Notably, measuring the
slowdown at runtime by using is difficult in practice; while a thread’s IPSscheme can
be easily obtained via PMCs, accurately determining IPSalone online is a challeng-
ing task, even on symmetric CMPs [205, 192]. For that reason, existing scheduling
algorithms for symmetric CMPs typically rely on estimation models to approxi-
mate IPSalone [192], or employ heuristics to determine the degree of performance
degradation indirectly via contention-related metrics [205], such as the last-level
cache (LLC) miss rate [28, 192]. Unfortunately, these scheduling algorithms are
not designed to work on systems featuring different core types. Moreover, adapting
them to AMP systems represents a challenging task, as these schedulers assume
that the value of key performance metrics used to drive scheduling decisions (e.g.
IPC or LLC miss rate) do not vary across cores when the application runs alone.
On current AMP hardware [18, 19, 43], this assumption is not valid, as cores may
exhibit different microarchitectural features and cache sizes [111, 167]. This fact
further complicates determining the slowdown on an AMP.

4.1.2. Impact of shared resource contention on AMPs

Recently proposed fairness-aware schedulers for AMPs [182, 167] implicitly rely on
the assumption that a thread’s slowdown is 1 (no performance degradation) when
it runs on a big core, even if it runs simultaneously with other threads. In a similar
vein, the thread’s Speedup Factor is used by these schedulers to approximate the
slowdown when the thread runs on a small core.

Assuming that a thread’s slowdown is negligible when it runs on a big core (as done
in [182, 167]) is unrealistic under shared resource contention. To illustrate this fact

38 Chapter 4. CAMPS

eon00
sixtrack00

mesa00

sjeng06

cactusADM06

wupwise00

h264ref06

hmmer06

gamess06

facerec00

mgrid00

namd06

perlbmk00

fma3d00

perlbench06

astar06
gobmk06

dealII06

apsi00
gap00

xalancbmk06

lbm06
soplex06

vpr00
bzip206

bwaves06

mcf06
GemsFDTD06

parser00

galgel00

swim00

equake00

ammp00

art00
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

S
lo

w
do

w
n

1-aggressor-small

2-aggressors-small

3-aggressors-small

4-aggressors-small

1-aggressor-big

(a) 2B-4S-Juno

perlbench06

galgel00

eon00
soplex06

bwaves06

ammp00

fma3d00

vpr00
lbm06

bzip206

sixtrack00

gobmk06

dealII06

GemsFDTD06

parser00

mesa00

facerec00

mgrid00

art00
wupwise00

apsi00
gamess06

perlbmk00

mcf06
sjeng06

h264ref06

namd06

gap00
hmmer06

cactusADM06

astar06
xalancbmk06

equake00

swim00

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

S
lo

w
do

w
n

1-aggressor-small

2-aggressor-small

3-aggressor-small

4-aggressor-small

1-aggressor-big

(b) 4B-4S-Odroid

eon00
sixtrack00

bwaves06

mesa00

namd06

gamess06

hmmer06

sjeng06

apsi00
dealII06

gobmk06

wupwise00

perlbmk00

perlbench06

fma3d00

gap00
cactusADM06

h264ref06

mgrid00

GemsFDTD06

ammp00

facerec00

astar06
swim00

bzip206

parser00

galgel00

mcf06
vpr00

soplex06

lbm06
xalancbmk06

equake00

art00
1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

S
lo

w
do

w
n

1-agressor-small 2-agressor-small 1-aggressor-big

(c) 2B-2S-QuickIA

Figure 4.1: Average slowdown relative to solo execution experienced by various benchmarks when
mapped to a big core and run simultaneously with several instances of an aggressor. The error
bars report the minimum and maximum values gathered across the various runs (five executions).
A suffix (“00” or “06”) was appended to the application name to indicate the benchmark suite it
belongs to (CPU2000 or CPU2006, respectively).

4.1 Motivation 39

we experimented with diverse AMP platforms. Our analysis allowed us to draw two
major insights:

1. Performance degradation due to resource sharing among big cores can be
substantial on current AMP hardware (up to 2.98x on our experimental plat-
forms), and should be accounted for when tracking the slowdown of a thread
to enforce fairness as well as to ensure effective utilization of big cores. In fact,
for some programs, the benefit that comes from running on a big core with
respect to a small one could be substantially reduced – or even completely
eliminated – due to the contention-related performance degradation.

2. Monitoring a thread’s IPS when it runs on a big core, and in a low contention
scenario across the neighboring big cores (i.e. those sharing the LLC) is typ-
ically a good estimate for IPSalone. Essentially, the performance penalty that
a thread mapped to a big core may suffer from placing multiple memory-
intensive aggressors on small cores is usually very low compared to the one
that comes from interference with memory-intensive threads running on neigh-
boring big cores. This has to do with the memory-hierarchy organization on
current AMP hardware, as well as with the fact that small cores typically
utilize less memory bandwidth than big cores.

We draw these conclusions from experiments in which we measured the slowdown
experienced by SPEC CPU applications when mapped to a big core, and running
simultaneously with several instances of a memory-intensive aggressor application.
We used benchmarks from both the CPU2000 and CPU2006 1 suites to consider a
wider diversity of working set sizes. As the aggressor, we used the bandwidth bench-
mark [196], which accesses memory in sequence with no data dependency between
consecutive accesses. This allows the CPU generate multiple memory requests in
parallel, maximizing memory level parallelism (MLP). This benchmark introduces
substantial contention on the LLC, shared buses and DRAM controller. On our
platforms, we observed that bandwidth causes even a higher degree of contention
than that generated by highly memory-intensive programs from SPEC CPU, such
as lbm.

A detailed explanation of the asymmetric platforms topologies and characteristics
can be found in Section 3.1.1. Figure 4.1 shows the slowdown (relative to the solo
execution) that different applications experience when running simultaneously with
several instances of bandwidth. For each benchmark, which is always assigned
to a big core in our experiments, we explored different scenarios. In the first one,
denoted as “1-aggressor-big”, the benchmark runs simultaneously with one instance
of bandwidth, which is mapped to a different big core; the small cores remain idle
in this case. In the other scenarios, labelled as “N -aggressors-small”, N instances
of bandwidth are mapped to small cores; thus, in leaving the remaining big cores

1Note that the SPEC CPU 2017 benchmarks did not exist when the proposal made by this
chapter was created. We incorporated them to our experiment base and used them on later
chapters.

40 Chapter 4. CAMPS

unused, we remove contention on the LLC and the bus interface of the big core
cluster, but not on the DRAM controller.

It is worth mentioning that a full-detailed description of the asymmetric platforms
used in this thesis can be found in Section 3.1.1. For simplicity, we employ the
nB-mS-platformtag notation to refer to each configuration, where n and m denote
the number of big and small cores, respectively. On 2B-4S-Juno and 4B-4S-Odroid,
the set of cores of the same type (big or small), which make up a cluster, share a
last-level cache (L2) and a bus interface with the remaining cores in the cluster.
On 2B-2S-QuickIA (a dual-socket system) a bus interface is shared between cores
of the same cluster; a shared LLC exists on the big core cluster only. All platforms
feature a single DRAM controller. Note that the big core cluster is made up of
out-of-order cores, in contrast to the simpler and more energy-efficient small core
cluster that features an in-order pipeline.

As is evident, the slowdown can be substantial (up to 1.9x on 2B-4S-Juno, up
to 2.65x on 4B-4S-Odroid, and up to 2.98x on 2B-2S-QuickIA) when both the
benchmark and a single aggressor run simultaneously on big cores, even though
small cores are unused. By contrast, when one aggressor runs on a small core the
slowdown drops significantly; for most benchmarks it is below 10% in this case.
Actually, if we populate all the small cores with aggressor instances, slowdown
values are no greater than 26%, still much smaller than those obtained when the
aggressor runs on a big core. There are two main reasons associated with this
behavior. First, the contention on the LLC and on the shared bus (big-core cluster)
is removed completely in the “N -aggressors-small” scenarios. Second, we observed
that the pressure a single aggressor puts on the shared resources is higher when it
runs on a big core than on a small one. This has to do with the fact that in-order
small cores cannot handle multiple outstanding cache misses, leading to a lower bus
and memory bandwidth utilization, and as a result to a smaller degree of contention.

Finally, we should highlight that not every application experiences noticeable slow-
down due to contention when executed together with highly memory-intensive
benchmarks such as bandwidth. For example, this is the case of sixtrack, eon
or mesa. As pointed out in previous work [28, 205], CPU-intensive applications
with a very small working set (which fits in a reduced portion of the LLC) and
good cache locality, or those that do not put a lot of pressure on the memory hi-
erarchy, do not experience significant performance penalty due to contention. As
in [192], our scheduling proposal uses the bus transfer rate (BTR) to identify sce-
narios where threads are unlikely to suffer from contention when running on a big
core cluster. In our platforms, the BTR is measured as follows:

BTR =
bus ra ∗ LLC cls ∗ freq

cycles
(4.1)

where bus ra is the amount of bus read accesses, LLC cls represents the last level
cache line size, freq depicts the processor frequency and cycles is total cycle count.

4.2 Related Work 41

4.2. Related Work

The closest fairness-aware proposals to our CAMPS scheduler are the Equal-Progress [182]
and ACFS [167] scheduling strategies. Both schedulers take per-thread SF values
into consideration when tracking the slowdown that each thread in the workload
experiences at run time and tries to enforce fairness by evening out observed slow-
downs. Equal-Progress and ACFS exhibit important differences that are worth
discussing. First, when determining a thread’s slowdown, Equal-Progress does not
factor in the past speedup phases the thread underwent. Instead, the slowdown is
approximated by taking into account the total cycle count that the thread has con-
sumed on each core type thus far and the current SF [182]. ACFS, on the contrary,
maintains a per-thread counter that accumulates the total thread’s progress based
on the current and the past speedup application phases. In Section 4.3, we describe
this progress-tracking mechanism in detail and illustrate the differences with the one
used by CAMPS. Second, Equal-Progress was designed to achieve equal slowdown
across threads, and so it only takes into account the SF of individual threads when
computing slowdowns. ACFS, by contrast, takes into account the application-wide
speedup to guarantee equal slowdowns among applications. This feature makes it
possible for ACFS to provide a better support when multithreaded applications are
included in the workload [167]. Third, ACFS supports user-defined priorities, while
the Equal-Progress scheduler does not. Finally, note that Equal-Progress relies on
either IPC sampling or PIE to obtain SFs online [182]. Since PIE is not available on
existing asymmetric hardware, –as done in [167]– we evaluated the history-based
variant of Equal-Progress, which is based on IPC sampling.

The main limitation of ACFS and previous proposals [167, 182, 120, 24] is the fact
that they do not take shared-resource contention effects into consideration. As our
experiments in Section 4.4 reveal, failing to cater to these effects leads the scheduler
to exhibit unfair behavior when multiple memory-intensive programs are included
in the workload.

Our scheduling proposal, predicts a thread’s cross-core relative performance by
measuring its actual IPS, and by comparing it with an estimate of the IPSalone –
approximated with big-core IPS values collected for different program phases in low-
contention scenarios. This makes it possible to avoid the phase-related inaccuracies
of IPC sampling [172], and allows us to cater to the potentially high variability of the
IPS under different contention levels. Notably, the strategy proposed in this thesis,
CAMPS, does not employ platform-specific SF prediction models, as ACFS does,
but instead relies on the monitoring of a fixed set of high-level performance metrics
(the same across platforms). This removes the need for conducting non-trivial
offline analyses on each system to build speedup prediction models, thus improving
the scheduler portability. In fact, training prediction models for different metrics
could be a possible avenue for future work; considering the amount of possibilities
in offline analysis offered by promising machine learning techniques such as deep
learning.

To the best of our knowledge, the only existing contention-aware scheduling algo-
rithms for AMPs are those proposed in [62] and [22]. Unlike CAMPS, which was de-

42 Chapter 4. CAMPS

signed from the ground up as an OS-level scheduler, the strategies proposed in [62]
and [22] constitute user-level scheduling prototypes, which perform thread-to-core
mappings by leveraging CPU-affinity system calls. The scheduler proposed by Fan
et al. [62] strives to improve the system throughput when using workloads consist-
ing of single-threaded programs. It relies on two prediction models –specific to each
application and platform– enabling the scheduler to approximate the degradation
that the application suffers at runtime due to contention. Generating these predic-
tion models requires to go through an offline training phase that entails running
80 workloads where the application is included. Our proposal –primarily designed
to optimize fairness rather than throughput– does not rely on platform-specific or
per-application prediction models, thus preventing the user from conducting the
extensive offline profiling required to build those models [62]. Moreover, as opposed
to our approach, [62] assumes that an application speedup factor is known before-
hand (e.g. determined offline); this assumption is unrealistic on most practical
scenarios. Barati et al. [22] propose a fairness-aware scheduler specifically tailored
to asymmetric systems where cores differ in processor frequency only. It is well
known that an application’s degree of memory intensity is enough to approximate
its slowdown when it runs on cores with the same microarchitecture but different fre-
quency [172, 167]. For that reason, relying exclusively on the memory access rate is
effective under frequency-based asymmetry [111]. However, previous work [111, 164]
has demonstrated that this form of performance asymmetry differs substantially
from that of commercial AMP hardware available today, where the various cores
may exhibit profound microarchitectural differences and diverse cache sizes. In this
scenario, other aspects beyond an application’s degree of memory intensity must
be taken into consideration for effective scheduling [111, 183, 167]. Unlike [22], our
approach is implemented in the OS kernel and does not make any assumption about
the form of performance asymmetry of the platform. This enables us to perform an
extensive comparison with recent fairness-aware approaches [182, 167] by employing
real AMP hardware.

Many of the research proposals that tackle contention have been evaluated as user-
level prototypes. Even if they are completely valid approaches that may be adopted
in production systems, they do not consider a completely realistic scenario. Some
of the algorithms rely on complex statistical models that use costly floating point
operations, that would not be viable at the operating system level. Even if you are
able to access the partitioning interface from userspace, you get the overhead penalty
of context switches every time. Given the fact that this approach entails making
several system calls to access privileged resources such as performance monitoring
and cache partitioning hardware. Besides, by operating at user level you miss
important events from a thread’s life cycle, such as fault pages and other blocking
operations that might affect parallel applications. These issues complicate applying
certain optimizations in scheduling schemes, since you are unable, for instance,
to detect and accelerate critical sections. All in all, we consider that the system
software is the most natural place to implement scheduling policies that gather
online performance metrics or might make use of partitioning hardware extensions,
allowing to minimize the impact that their implementations might have in the
system latency and improving its responsiveness.

4.3 The CAMPS scheduler 43

The CAMPS scheduler architecture

Sample

Performance Monitoring Counters

Performance Monitor

Approximate slowdown via history table

Platform-specific kernel module

Detect low-contention scenarios

Core Scheduler

Track progress

System-wide load balance

Fairness-enforcing migrations

CAMPS scheduling class (kernel level)

Figure 4.2: Diagram of the CAMPS architecture that summarizes the functionality of the the core
scheduler and the performance monitor.

4.3. The CAMPS scheduler

CAMPS consists of two components: the performance monitor and the core sched-
uler. The performance monitor gathers the value of various runtime metrics for
each thread in the workload using performance counters (PMCs), and feeds the
core scheduler with critical information it needs, such as estimates of threads’ slow-
downs. The core scheduler assigns threads to big and small cores so as to preserve
load balance, and swaps threads between cores when necessary to ensure that ap-
plications achieve similar progress on the AMP.

In this section we first present general aspects regarding our implementation of
CAMPS in the Linux kernel. Then we outline the progress tracking mechanism and
discuss how fairness is enforced via thread swaps. Next, we cover the non-work-
conserving (NWC) mode of CAMPS, which may be triggered on special occasions
to aid the performance monitor in approximating the slowdown of specific threads.
Finally, we describe special features included in the scheduler to effectively deal with
multithreaded applications and a special parameter that allows to trade fairness for
throughput.

4.3.1. CAMPS in the Linux kernel

The Linux scheduler is equipped with multiple scheduling algorithms (CFS, FIFO,
etc.), which are implemented as independent scheduling classes. CAMPS’s core
scheduler was bundled as a new scheduling class in the kernel. In creating this
class, we started off with a fork of CFS (fair class), and implemented CAMPS’s core
scheduler on top of it. By contrast, the performance monitor (platform specific)
was implemented in a loadable kernel module –bundled as a monitoring module of
the PMCTrack tool [160]. Figure 4.2 depicts the CAMPS architecture, showing the
main functions of both the core scheduler and the performance monitor.

44 Chapter 4. CAMPS

It is worth noting that Linux CFS is largely asymmetry agnostic; as we show in
Section 4.4.2, CFS may randomly assign an application to different core types in
subsequent runs of the same workload, which leads to inconsistent performance
across executions on an AMP system. Moreover, CFS is contention unaware [206]
and does not feature any mechanism to keep track of the progress that a thread
makes as it runs on the different core types throughout the execution. (Actually,
to CFS, a tick consumed on a big core is worth the same as a tick consumed on a
small core [120].) As a result, and unlike CAMPS, CFS does not guarantee similar
progress (fairness) across applications on AMPs.

Our scheduling class just relies on the stock Linux scheduler for two main tasks:
(1) to enforce load balance between cores of the same type (big cores and small
cores separately), and (2) to multiplex CPU usage among threads assigned to the
same CPU (i.e. the CFS algorithm is applied on a per-CPU basis). CAMPS’s core
scheduler, by contrast, takes care of enforcing system-wide load balance, and evens
out relative progress among applications, by assigning threads to the different core
types and by triggering migrations if necessary. Since CAMPS is based on CFS,
it maintains per-CPU run queues of runnable threads. In addition, it employs
two linked lists of runnable threads, with threads assigned to big cores and to small
cores, respectively; each list is protected with a read-write spinlock. Note that these
lists are manipulated much less often than per-CPU run queues (e.g. when a thread
is migrated onto a different core type). We observed that this design approach is
not subject to scalability issues on current AMPs which feature a limited number
of cores (up to 8). Notably, previous research [140] has demonstrated that even
relying on a single global run queue delivers more than sufficient scalability on
current AMP platforms. Nevertheless, to make CAMPS more scalable for future
AMPs with a higher core count, the scheduler could be reimplemented by leveraging
the core-partition approach described in [172].

4.3.2. Determining the slowdown at runtime

The performance monitor approximates a thread’s current slowdown by using Eq. 3.3;
the actual IPS is measured with PMCs, and the IPSalone is estimated by using a
history table maintained for each thread at runtime. This table stores IPS values
observed in past execution phases when the thread ran on a big core in a low-
contention scenario. As shown in Section 4.1, on a big-core cluster, the performance
degradation that comes from interference with threads running on the small core
cluster is typically very small. Based on this observation, big-core low-contention
IPS values recorded in the table are used to approximate IPSalone.

To detect low-contention scenarios on a big core, we leverage the heuristics based
on the bus transfer rate (BTR) metric proposed in [191, 192]. Essentially, a thread
whose BTR is smaller than a given low btr threshold is not likely to suffer noticeably
from contention. In a similar vein, when the aggregate BTR in a core cluster falls
below a given high btr threshold the degradation due to contention is typically very
low [192]. As shown in [191, 192], the thresholds can be easily determined for

4.3 The CAMPS scheduler 45
7

Monitoring interval completed

Has the thread run on a big core
in a low-contention scenario?

Slowdown = 1

Phase hit?

Does the history table already
hold any information
on the current phase?

Update the table entry
for the current phase

with the running average of the IPS

Create new table entry

Slowdown =

IPScur phase

CurrentIPS

Slowdown =

IPSbig

CurrentIPS

Yes

Yes

Yes

No

No

No

Fig. 3: Mechanism used by CAMPS for approximating a thread’s
slowdown with help from the history table

slowdown is 1 (no degradation). If these scenarios do not
occur naturally as a result of the contention-aware thread
assignments performed by CAMPS, the core scheduler will
enter a non-work-conserving mode (described in Section 4.4),
which introduces low-contention scenarios artificially.

Indexing a thread’s history table, which is necessary to
approximate the slowdown and to record new IPS samples,
requires the performance monitor to figure out whether
information on the current execution phase already exists
in the table or not. To this end, we leverage a variant
of the phase-detection mechanism employed in previous
work [46]. Overall, the scheduler continuously monitors
the percentage of instructions of different types (int/FP,
load, store, branches, etc.) retired during the last monitoring
interval, which make up a instruction type vector (ITV). If
the Manhattan distance of the ITVs for two performance
samples (collected at different intervals) is smaller than a
threshold, both samples are assumed to belong to the same
execution phase. Note that the Manhattan distance of two n-
dimensional vectors (X and Y) is defined as

P
n

i=1|Xi

�Y
i

|.
Unfortunately, this phase-detection scheme, whose ef-

fectiveness was evaluated on a simulator [46], cannot be
implemented in the real AMP platforms we used (presented
in Section 2.2), as the performance monitoring unit is not
equipped with the necessary performance events or with
enough physical PMCs. To overcome this issue, we adapted
the phase-detection approach by monitoring the thread’s
BTR and its IPS (required for our scheduling policy) along
with two alternative control metrics: the number of L1 cache
accesses per 1K instructions, and the percentage of branches
retired over the total instruction count. As the ITV, the value
of these control metrics for a specific phase remain the same
under different levels of shared resource contention, and
they do not vary significantly across core types. Notably,
the value of these metrics changes dramatically when an
application enters a new phase exhibiting a different degree
of memory intensity and branch-prediction related behavior.
These two aspects have a great impact on cross-core relative
performance on AMPs [10], [11]. These observations make
the selected control metrics very suitable to index the table.

Fig. 3 depicts how the performance monitor estimates a
thread’s slowdown and maintains its history table. The table
is updated at the end of a monitoring interval in which the
thread ran on a big core cluster in a low-contention scenario.

If the table does not already hold information on the current
phase, that IPS value is recorded in a new entry; otherwise
the existing table entry is updated with a running average
of the IPS values recorded for that phase. In either case, the
scheduler estimates the slowdown to be 1 (no degradation).
When the thread runs on a small core, or on a big core under
potential contention, CAMPS accesses the history table to
estimate the slowdown. If the IPS for the current phase is
found in the table (i.e. phase hit), the slowdown is estimated
with the ratio of the IPS value retrieved from the table
(IPScur phase) and the current IPS value measured in the last
monitoring interval. In case that no information is found for
the current phase (i.e. phase miss), the estimated slowdown
is the ratio of the average IPS across samples stored in the
history table (IPS

big

) and the current IPS value.
To determine the most suitable size for the history table

we conducted a sensitivity study by analyzing performance
traces gathered with PMCs for SPEC CPU applications. This
sensitivity study can be found in Appendix B. Based on
the results of our analysis we opted to use history tables
of 22 entries. This choice provides a good trade-off between
slowdown estimation accuracy and memory utilization.

4.3 Progress tracking and enforcing fairness
CAMPS’s core scheduler maintains a progress counter for
each thread referred to as amp_progress. This counter
tracks how much progress the thread has made thus far
relative to the progress that would have resulted from
running it on a big core the whole time in complete isolation
(no contention). When a thread runs for a clock tick on a
given core type, the scheduler increments amp_progress
by �amp_progress, defined as follows:

�amp_progress = 100·Wdef
CS·Wt

(3)

where W
t

is the thread’s weight, derived directly from the
application priority (set by the user); Wdef is the weight of
applications with the default priority; and CS is the thread’s
current slowdown as estimated by the performance monitor.

To illustrate the main idea behind the definition of
�amp_progress, let us analyze the following example. A se-
quential program with the default priority (i.e. Wt = Wdef)
runs on an AMP system, and its single runnable thread
is mapped to a big core. Suppose further that the thread
is not currently suffering from contention. In this scenario,
CS would be 1 (no degradation), so �amp_progress would be
equal to 100. This indicates that the thread is now making
100% of its maximum attainable progress, as it runs on
a big core without contention. Let us now consider that
the thread is eventually migrated onto a small core, where
it experiences a relative slowdown (CS) of 2.5; this hypo-
thetical slowdown comes from running on a less powerful
core coupled with the potential degradation due to sharing
resources with other threads. Under these circumstances,
�amp_progress would be equal to 40; namely, the thread only
makes 40% of its maximum attainable progress (achieved
when running on a big core in isolation). Therefore, in
general, the lower the slowdown (CS), the faster a thread’s
amp_progress counter will be incremented.

When a new thread enters the system, the core scheduler
assigns it to the least loaded core on the AMP, so that the
load balance across cores is preserved. In doing so, CAMPS

Figure 4.3: Mechanism used by CAMPS for approximating a thread’s slowdown with help from
the history table

any platform by using synthetic benchmarks. Essentially when the thread runs on
a big core in this kind of low-contention scenarios we assume that its slowdown
is 1 (no degradation). If these scenarios do not occur naturally as a result of the
contention-aware thread assignments performed by CAMPS, the core scheduler will
enter a non-work-conserving mode (described in Section 4.3.4), which introduces
low-contention scenarios artificially.

Indexing a thread’s history table, which is necessary to approximate the slowdown
and to record new IPS samples, requires the performance monitor to figure out
whether information on the current execution phase already exists in the table or
not. To this end, we leverage a variant of the phase-detection mechanism employed
in previous work [15]. Overall, the scheduler continuously monitors the percentage
of instructions of different types (int/FP, load, store, branches, etc.) retired during
the last monitoring interval, which make up a instruction type vector (ITV). If the
Manhattan distance of the ITVs for two performance samples (collected at different
intervals) is smaller than a threshold, both samples are assumed to belong to the
same execution phase. Note that the Manhattan distance of two n-dimensional
vectors (X and Y) is defined as

∑n
i=1|Xi − Yi|.

Unfortunately, this phase-detection scheme, whose effectiveness was evaluated on a
simulator [15], cannot be implemented in the real AMP platforms we used (described
in Section 3.1.1), as the performance monitoring unit is not equipped with the
necessary performance events or with enough physical PMCs. To overcome this
issue, we adapted the phase-detection approach by monitoring the thread’s BTR
and its IPS (required for our scheduling policy) along with two alternative control
metrics : the number of L1 cache accesses per 1K instructions, and the percentage
of branches retired over the total instruction count. As the ITV, the value of
these control metrics for a specific phase remain the same under different levels

46 Chapter 4. CAMPS

of shared resource contention, and they do not vary significantly across core types.
Notably, the value of these metrics changes dramatically when an application enters
a new phase exhibiting a different degree of memory intensity and branch-prediction
related behavior. These two aspects have a great impact on cross-core relative
performance on AMPs [111, 167]. These observations make the selected control
metrics very suitable to index the table.

Figure 4.3 depicts how the performance monitor estimates a thread’s slowdown
and maintains its history table. The table is updated at the end of a monitoring
interval in which the thread ran on a big core cluster in a low-contention scenario.
If the table does not already hold information on the current phase, that IPS value
is recorded in a new entry; otherwise the existing table entry is updated with a
running average of the IPS values recorded for that phase. In either case, the
scheduler estimates the slowdown to be 1 (no degradation). When the thread runs
on a small core, or on a big core under potential contention, CAMPS accesses the
history table to estimate the slowdown. If the IPS for the current phase is found in
the table (i.e. phase hit), the slowdown is estimated with the ratio of the IPS value
retrieved from the table (IPScur phase) and the current IPS value measured in the
last monitoring interval. In case that no information is found for the current phase
(i.e. phase miss), the estimated slowdown is the ratio of the average IPS across
samples stored in the history table (IPSbig) and the current IPS value.

To determine the most suitable size for the history table we conducted a sensitivity
study by analysing performance traces gathered with PMCs for SPEC CPU appli-
cations. This sensitivity study can be found in Section 4.4.1. Based on the results
of our analysis we opted to use history tables of 22 entries. This choice provides a
good trade-off between slowdown estimation accuracy and memory utilization.

4.3.3. Progress tracking and enforcing fairness

CAMPS’s core scheduler maintains a progress counter for each thread referred to
as amp progress. This counter tracks how much progress the thread has made
thus far relative to the progress that would have resulted from running it on a big
core the whole time in complete isolation (no contention). When a thread runs
for a clock tick on a given core type, the scheduler increments amp progress by
∆amp progress, defined as follows:

∆amp progress = 100·Wdef

CS·Wt
(4.2)

where Wt is the thread’s weight, derived directly from the application priority (set
by the user); Wdef is the weight of applications with the default priority; and CS is
the thread’s current slowdown as estimated by the performance monitor.

To illustrate the main idea behind the definition of ∆amp progress, let us analyse the
following scenario illustrated by Figure 4.4. Two sequential applications with the
default priority (i.e. Wt = Wdef) run on an AMP system with no contention present
and their single runnable threads – A and B – are mapped to a big core and a small

4.3 The CAMPS scheduler 47

Big
core

Small
core

Slowdown=1 (SBS = 3)
WA = Wdef

∆amp progress = 100

App. A

Slowdown=1 (SBS = 1)
WB = Wdef

∆amp progress = 100

App. B

Big
core

Small
core

Slowdown=1 (SBS = 3)
WA = Wdef

∆amp progress = 100

App. A

Slowdown=2.5 (SBS = 2.5)
WB = Wdef

∆amp progress = 40

App. BApp. A App. B

Figure 4.4: Example that illustrates CAMPS design when scheduling two applications at different
points of their execution on an AMP system.

core, respectively. At a specific point of the execution, application A goes through
a execution phase with (SBS = 3), running three times faster on a big core relative
to a small one. On the contrary, application B rubs on a small core and would not
make any more progress on a big core(SBS = 1). In this scenario, the CS for both
applications would be 1 since there is no performance degradation, so ∆amp progress

would be equal to 100. This indicates that an application is now making 100% of
its maximum attainable progress, as it would achieve by running on a big core in
isolation. Let us now consider a time where application B goes through a different
program phase with a current slowdown of 2.5. In these circumstances, ∆amp progress

would be equal to 40; namely, the application only makes 40% of its maximum
attainable progress that is achieved when running on a big core in isolation. There-
fore, the lower the slowdown (CS), the faster a application’s amp progress counter
will be incremented. Eventually, the difference between the amp progress counters
will increase over time and, upon reaching a certain threshold, the applications will
be swapped to preserve fairness on the AMP system.

When a new thread enters the system, the core scheduler assigns it to the least
loaded core on the AMP, so that the load balance across cores is preserved. In do-
ing so, CAMPS picks big cores first, since this contributes to maximizing through-
put [120, 165]. Notably, the amp progress counter of a newly created thread is
set to the maximum value for this counter observed among threads in the system
at that point. This initial value enables a fair progress comparison among threads
that entered the system at different points in time. Every thread also has to go
through a warm-up period (10 sampling intervals in our experimental setting) right
after being spawned. The first two samples collected during the warm-up period are
discarded for slowdown estimation, so as to mitigate mispredictions associated with
cold-start effects (e.g. the number of cache misses typically spikes intermittently at
the beginning of the execution).

Note that the approach used by CAMPS to enforce fairness via progress tracking
has several aspects in common with that of the ACFS scheme [167]. Despite the fact
that both schedulers maintain per-thread progress counters, they employ different
mechanisms to determine a thread’s current slowdown (denoted as the CS factor
in Eq. 4.3) at runtime. While CAMPS does take shared resource contention into
consideration, as described in Section 4.2, ACFS does not. In fact, ACFS assumes

48 Chapter 4. CAMPS

that a thread’s slowdown is always 1 when it runs on a big core, and uses the
thread SF (predicted via a platform-specific estimation model) to approximate its
slowdown when the thread runs on a small core.

Like ACFS, CAMPS may also trigger thread swaps between cores every so often
to enforce fairness. Essentially, threads mapped to big cores usually make faster
progress than threads running on small ones, which causes unfairness. To even
out the progress among threads via thread swaps, CAMPS follows a similar ap-
proach to that of ACFS [167]. Specifically, a thread running on a big core will be
swapped with another thread running on a small core only when the difference of
their progress counters exceeds a given threshold, referred to as amp threshold.
Specific instructions are provided in [167] for selecting the most appropriate value
of this threshold for a given platform. For our experiments, we chose a value of
this threshold so as to achieve an average migration rate of 400ms, which ensures
negligible overheads in current AMP hardware [167].

It is worth highlighting that special care is taken with sleeper threads (i.e. those that
wake up after a potentially long suspension). Essentially, the progress counter of a
sleeper thread that just woke up could be much smaller than that of other threads
in the system, as the thread’s progress counter remains unmodified while it sleeps.
This situation could lead sleeper lagging threads to monopolize big cores when
waking up after a very long pause. To address this issue, CAMPS resets a thread’s
progress counter when it realizes that it has been blocked for a certain time period,
which is application specific. This period corresponds to the time that it would take
this thread when just migrated to a small core (due to a fairness-oriented swap) to
be swapped back to a big core. This time period depends on amp threshold and on
the thread’s average slowdown, which is maintained by CAMPS. The reset value for
the counter is the minimum value for the progress counter observed among threads
on the system.

We found that relying on the progress counters alone (as ACFS does) is ineffective
in case that aggressor applications and contention-sensitive programs are mapped
to the big-core cluster simultaneously. As shown in Section 4.1, this mapping may
severely degrade the performance of contention-sensitive applications, which may
backfire by decreasing the benefits from using a big core. To mitigate this issue,
CAMPS uses the BTR-based heuristics proposed in [192] to detect potentially con-
tentious scenarios, and favors those threads swaps that contribute to avoiding con-
tention on the big core cluster. Algorithm 4.1 illustrates how CAMPS’s core sched-
uler selects threads to be swapped. The algorithm is executed as soon as the sched-
uler detects that swap candidates exist on both core types (i.e. the progress counters
of two threads running on opposite core types exceed amp threshold). Specifically,
CAMPS always selects the thread with the highest amp progress counter running
on a big core –denoted as TB– to be migrated to a small core. In choosing its
swap partner, small-core threads with a lower value of the amp progress counter
are considered first. If a contention-friendly swap is found (i.e. it leads to a low
contention scenario on the big core cluster), the swap is performed. Otherwise, the
thread with the lowest BTR is the one selected as the swap partner; this contributes
to reducing the degree of shared-resource contention on the big core cluster as a

4.3 The CAMPS scheduler 49

Algorithm 4.1: Selection of swap candidates in CAMPS.
Input: TB is the runnable thread with the highest progress counter mapped to

the big core, S is the set of runnable threads (TS , i) assigned to small
cores that constitute potential swap partners for TB (i.e.
amp progress(TB)−amp progress(TS , i)≥amp thresh). Note that S 6= ∅,
and threads in S are sorted in ascending order by their amp progress
counter.

1 min btr ←∞; Tmin-BTR ← NIL;
2 swap performed ← false;
3 do
4 TS , i← Get first thread in S ;
5 if Swapping TB and TS , i leads to a low-contention scenario on the big core

cluster || (amp progress(TB)−amp progress(TS , i) ≥ 2∗amp threshold) then
6 Swap TB and TS ;
7 swap performed ← true;
8 else
9 Remove TS , i from S;

10 if BTR(TS , i) < min btr then
11 min btr ← BTR(TS , i); Tmin-BTR ← TS , i ;
12 end
13 end
14 while !swap performed && S 6= ∅;

15 if !swap performed then
16 Swap TB and Tmin-BTR;
17 end

result of the reduction in the cluster’s aggregate BTR [192]. Note also that the
scheduler forces the selection as a swap candidate of those threads that are lagging
considerably behind the rest, namely, when the difference between TB’s progress
counter and the thread’s progress counter is greater than 2∗amp threshold. This
enables aggressor threads to eventually have a chance to run on big cores when the
workload includes multiple memory-intensive applications.

4.3.4. Non-work conserving mode

As discussed earlier, CAMPS populates a thread’s history table while it runs on a
big core cluster during low contention scenarios. Unfortunately, when the number of
memory-intensive threads in the workload is high, low contention scenarios might
not occur that often for contention-sensitive programs. In these cases, CAMPS
may transition into a non-work-conserving (NWC) mode, in which low contention
scenarios are created artificially. To control transitions into this special mode,
CAMPS operates as follows. Every time that a thread completes n − intervals
consecutive monitoring intervals, the scheduler retrieves the thread’s phase hit rate
as well as the number of IPS samples that have been inserted into the history table
over that time period. If the phase-hit rate falls below 80%, and no IPS samples
have been inserted in the history table during that period, the scheduler enters the
NWC mode. We will refer to the thread that caused the transition into this mode
as the NWC thread.

50 Chapter 4. CAMPS

When in the NWC mode, fairness-oriented thread swaps are not performed. During
this special mode, the main goal is to collect as many low contention big-core IPS
samples as possible for the NWC thread. To this end, if the NWC thread was not
running on a big core already, it will be swapped with a big-core thread. In doing so,
CAMPS tries to select a memory-intensive (high-BTR) thread as the swap partner,
so as to reduce contention on the big core cluster as a result of the swap. Once the
NWC thread is mapped to the big core, CAMPS will attempt to gather big-core
IPS samples for this thread. If at this point a low-contention scenario does not
yet occur on the big core cluster, the scheduler will temporarily disable (for a very
short period of time) as many big cores as necessary to create such a scenario. In
practice, making this possible comes down to disabling only a few big cores: those
where memory-intensive threads are currently running. Note that during the NWC
mode, other threads (in addition to the NWC thread) may leverage low-contention
scenarios to populate the history table.

The scheduler will transition back into the normal operating mode when (1) the
NWC thread’s phase hit rate is over 80% –after inserting a number of IPS samples
in the history table–, or (2) when the NWC thread blocks or terminates. Notably,
when in the NWC mode, CAMPS still keeps updating thread progress counters.
This allows threads that did not benefit the NWC mode (e.g. those assigned to
big cores that were temporarily disabled), to be compensated later accordingly.
In addition, to prevent that specific threads force the transition into the NWC
mode systematically, we take progress counters into consideration when controlling
transitions; threads progressing much further ahead than the rest at some point
cannot become NWC threads.

Note that throughout the entire warm-up period, a thread is not allowed to trigger
the activation of CAMPS’s NWC mode (described in Sec. 4.3.4). This is a control
measure to remove the potentially negative interference caused by the presence of
multiple short-lived memory-intensive threads, which could otherwise activate the
NWC mode ineffectively; that would lead to unnecessary overheads without reaping
any benefits, as CAMPS discards a thread’s history table when it terminates.

In our implementation in the Linux kernel, big cores are temporarily disabled in
the NWC mode (when needed) by selecting the idle task to run forcefully on the
corresponding core (this action is performed in the pick next task() operation of
our scheduling class), and by temporarily binding to that core any thread previ-
ously assigned to it. We found that using short core disabling periods, such as the
100ms setting used in our experimental platforms (2 monitoring intervals), allows
the scheduler to have a fine-grained control when in the NWC mode. Essentially,
this enables CAMPS to better adjust to the number of core disabling operations
required by the current NWC thread.

Although CAMPS was designed primarily for long-running compute-intensive work-
loads, latency-sensitive memory-intensive applications could be negatively affected
by core disabling actions in the NWC mode. To deliver more consistent tail la-
tencies, CAMPS could be seamlessly modified to map this kind of applications to
small cores, which are never disabled when in the NWC mode.

4.3 The CAMPS scheduler 51

4.3.5. Special support for multithreaded applications

On AMPs, an application can be developed so as to explicitly leverage the features
of the various cores by dividing the computation into multiple tasks or threads
specifically designed to run effectively on a particular core type. These applications
are typically run by manually binding the various threads/tasks to the core type
where they are meant to run. CAMPS supports the execution of those applications,
as it respects user-enforced CPU affinities. Nevertheless running such an applica-
tion along with other programs would not guarantee system-wide fairness; CAMPS
strives to deliver fairness only across those (unmodified) applications whose threads
are allowed to run on different core types. Notably, affinities in general greatly limit
the schedulability in most OS-level schedulers [40], not only that of CAMPS.

To provide better support for multithreaded programs that do not rely on affinities,
CAMPS leverages two mechanisms: spin notifications and per-application history
tables.

Spin notifications enable the scheduler to be aware of those situations where threads
in a multithreaded program busy wait (or spin) rather than blocking while waiting
in synchronization primitives, such as barriers. Busy waiting enables to substan-
tially reduce the number of context switches performed by the OS scheduler [121],
and it may also reduce the number of thread migrations on AMP systems [165].
Nevertheless, spinning threads must be properly handled by the scheduler. The
main issue is that busy-waiting threads may achieve a high IPS despite not doing
useful work 2. Using these misleading IPS values under CAMPS, would lead to
polluting the history table and, in turn, to serious slowdown mispredictions.

To address this issue, we leverage spin notifications from user space to the OS by
using a variant of the technique proposed in previous work [165]. In our imple-
mentation, we maintain a memory region shared between each application thread
and the OS. When a thread begins to spin, it activates a flag in the shared memory
region, which is later disabled as soon at the thread stops spinning. We opted to use
a shared memory region rather than system calls (as in [165]) for spin notifications,
since the former approach provides negligible overhead. When a thread is spinning,
the performance monitor discards the associated IPS samples, and always estimates
the slowdown for the thread to be 1, as it is not doing useful work. In a similar
vein, CAMPS’s core scheduler avoids migrating spinning threads to big cores. No-
tably, issuing spin notifications from user space does not require making changes in
the applications as long as they use the synchronization primitives provided by the
threading library or the underlying runtime system.

As a proof of concept we implemented this mechanism in the OpenMP runtime
system provided by GCC, by instrumenting the code of synchronization primitives.
For applications that do not use standard, library-based synchronization primitives,
spin notifications could be exploited by leveraging hardware-aided spin-detection
approaches [121] or by manually instrumenting the code.

2Best practices in implementing spin locks dictate using algorithms where a thread spins on a
local variable [121]; this leads to a high IPC, due to the effective utilization of the CPU pipeline.

52 Chapter 4. CAMPS

In many multithreaded applications, the various threads do the same kind of pro-
cessing but with different data. In this scenario, we can leverage the IPS samples
stored in a thread’s history table to aid in predicting the slowdown for the re-
maining threads in the application. To this end, we maintain two levels of history
tables for multithreaded applications: the per-thread table (L1) –presented in Sec-
tion 4.3.2, and a per-application history table (L2). Essentially, when a thread
creates a new phase entry in its own table, it inserts this new entry into the per-
application table too. In doing so, other threads in the application that incur a L1
phase miss, can potentially retrieve information for the current phase by accessing
the L2 (application-wide) table. If a L2 phase hit occurs, the entry is copied onto
the thread’s private table (L1). This way we avoid future accesses to the same L2
table entry. Note that in limiting the number of read and write operations on the L2
table, we reduce potential contention that comes from accessing the L2 table (pro-
tected with a lock) simultaneously from multiple CPUs. Although using two levels
of history tables is specially well suited to applications where all threads run the
same code with different data, the scheme could be trivially augmented to other
kind of multithreaded programs (such as those following the pipeline paradigm)
where a few threads perform a specific task cooperatively, where others do a differ-
ent kind of processing. In that case, a L2 history table would be shared by threads
that do the same kind of processing, which could be identified by the function that
they execute.

Lastly, we should highlight that, for multithreaded applications, CAMPS down-
scales the CS factor in Eq. 4.3 in proportion to the number of runnable threads
in the application. Note that this is a proxy for the amount of thread-level paral-
lelism and ACFS also employs this technique [167]. Previous work [164, 167] has
demonstrated that, when multithreaded programs are included in the workload,
this approach enables the scheduler to provide better performance and fairness
than making decisions based exclusively on per-thread slowdowns (or SFs).

4.3.6. Trading fairness for throughput

The progress tracking mechanism used by CAMPS is inspired by that of the ACFS
scheduler. One of the potential benefits that comes from factoring in applica-
tion weights in progress tracking just like ACFS does, is that this approach has
already proven effective when it comes to enforcing user priorities on real asymmet-
ric hardware [167]. Another powerful feature of ACFS’s progress-tracking mecha-
nism is that it can be augmented with a configurable parameter (referred to as the
unfairness factor) that allows the scheduler to gradually increase throughput on
the AMP system in scenarios where fairness constraints are relaxed. At the same
time, using high values of this parameter enables us to configure the scheduler to
optimize throughput rather than fairness.

To allow the system administrator to trade fairness for throughput when needed,
we augmented the base implementation of CAMPS (described in Section 4.3) with
the unfairness factor (UF) knob. In order to fully understand the differences

4.3 The CAMPS scheduler 53

between CAMPS’s and ACFS’s implementation of this knob, we first outline the
common aspects. To improve system throughput on the AMP, the scheduler must
grant a higher share of the available big core cycles to those applications that derive
a high speedup from using this kind of cores. To this end, we employ a dynamic
priority scheme, where a thread’s actual priority depends upon its static priority or
weight (set by the user) and the big-to-small speedup of the application (SBS).

∆amp progress =
100 ·Wdef

CS ·Wt

(4.3)

Implementing this scheme comes down to replacing the static weight (Wt) in Eq. 4.3
from Section 4.3 (or in the corresponding equation for ACFS [167]) with its dynamic
weight (DWt), which is defined as follows:

DWt = Wt ·
(

1 +
(UF− 1) · (SBS − Smin)

Smax − Smin

)
(4.4)

where Smax and Smin are the maximum and minimum speedups observed among
applications in the workload.

When the UF knob is set at its default and lowest possible value (1.0), we have that
DWt = Wt, so the scheduler behaves as the base implementation, hence attempting
to optimize fairness. For UF values > 1, the scheduler increases throughput at the
expense of degrading fairness gradually. Essentially, by replacing the static weight
(Wt) with its dynamic counterpart (DWt), the progress counter of high-speedup
threads is incremented at a slower pace than that of low-speedup threads, which
results in a higher big-core share for high-speedup applications and, in turn, in
higher system throughput.

In order to make it possible for the scheduler to calculate a thread’s dynamic
weight (DWt), it must be equipped with a mechanism to determine the big-to-
small speedup online. As described in [167] ACFS relies on platform-specific mod-
els to approximate a thread’s speedup using hardware performance counters. This
approach could be adopted in CAMPS as well, but that would greatly limit the
portability of the scheduler. Essentially, relying of this kind of estimation models
entails monitoring a specific set of performance events that largely depends on the
form of performance asymmetry in the platform [164], and which is typically tied
to the processor models present in the AMP system [111, 167].

To guarantee that our scheduler remains portable across AMP platforms, we use the
IPS values collected on both core types for the thread to approximate its speedup.
Notably, to improve the accuracy of the prediction, we leverage information in a
thread’s history table by using IPS values from the same phase whenever available.
To this end, we add a new field in each entry of the history table, referred to as
IPSmax,small, which stores the maximum IPS value observed for the program phase
in question when the thread runs on a small core. Because a thread’s performance is
usually lower under contention, IPSmax,small is just a lower bound for the IPS that
would be observed when running the program phase alone on a small core. At the
end of each monitoring interval, the performance monitor accesses the history table,

54 Chapter 4. CAMPS

Table 4.1: Table that gathers CAMPS parameters used for the experiments on this chapter.

Name Value
sampling period 50 ms
warmup period 10 sampling intervals
low btr/high btr thresholds established with synthetic benchmarks
amp threshold Tuned to ensure 1 migration/400 ms in average
uf (unfairness factor) 1

and updates it if necessary. In the event of a hit in the history table, the thread’s
speedup is approximated as IPScur phase/IPSmax,small. Otherwise, the speedup is
estimated as IPSbig/IPSsmall, where IPSsmall is the average of the IPS values
gathered for a thread on a small core.

4.4. Experimental evaluation

We begin in Section 4.4.1 by analyzing how varying the CAMPS history table size
affects its performance, measured by the phase hit rate.

In Section 4.4.2 we compare the degree of fairness and other aspects of our schedul-
ing proposal with that of the stock Linux scheduler (CFS) and with its extension
for ARM big.LITTLE platforms (HMP [154]). To this end we experimented with
a broad spectrum of workloads (long and short-running CPU-bound programs, IO-
intensive and latency-sensitive benchmarks, etc.).

Afterwards, Section 4.4.3 studies the usefulness of the knob that allows to exchange
fairness for throughput.

Finally we present in Section 4.4.4 the effectiveness of CAMPS with that of previ-
ously proposed asymmetry-aware schedulers [24, 111, 182, 167], which, as CAMPS,
primarily target long-running compute-intensive applications. The schedulers were
implemented as a scheduling class in the Linux kernel v3.10.104. By the time we
started the implementation, that was the latest stable kernel version with official
manufacturer support for the Odroid XU4 board. Variants of the vanilla v3.10.104
kernel were used on the other AMP systems considered, to maintain a common
scheduler code base. Finally, Table 4.1 summarizes the set of CAMPS parameters
that were experimentally established.

4.4.1. Determining the history table size

The effectiveness of our scheduling proposal is sensitive to the choice of the size of
the thread’s history table (maximum number of entries). As discussed in Section
4.2, this table is maintained by the performance monitor to approximate a thread’s
slowdown at runtime. Notably, in choosing this parameter, a trade-off must be
made between memory utilization and accuracy in the slowdown prediction. An

4.4 Experimental evaluation 55

2 6 10 14 18 22 26 30
entries in history table

0

20

40

60

80

100
hi

tr
at

e
%

bzip2
parser
mcf
sjeng
soplex
astar
dealII
wupwise
perlbmk
bwaves
gamess
namd
h264ref
galgel
swim
hmmer

(a) 20% of the samples for training

2 6 10 14 18 22 26 30
entries in history table

0

20

40

60

80

100

hi
tr

at
e

%

bzip2
parser
mcf
sjeng
astar
soplex
dealII
wupwise
perlbmk
bwaves
gamess
namd
h264ref
galgel
swim
hmmer

(b) 40% of the samples for training

Figure 4.5: Phase hit rate for different maximum number of entries in history table.

important aspect is how to select the right size of the history table to achieve
an acceptable phase hit rate for most applications, while eliminating unnecessary
memory overhead.

To determine the most suitable size for the history table, we analysed performance
traces gathered with hardware counters for 52 different applications in the SPEC
CPU suite while running alone on a big core of the various AMP platforms used
for our experiments. Since the conclusions of our study are largely similar on these
platforms, we discuss the results for the 2B-4S-Juno configuration (ARM Juno
Board) only. To factor in the potential impact of shared resource contention in
slowdown prediction –recall that, in potentially contentious scenarios, big-core IPS
values are discarded by CAMPS–, we used only a fraction of the samples in the
trace to populate the history table (i.e., training samples) and left the remaining
ones (i.e. test samples) to approximate the phase hit rate for a particular table
size. Note that training and test samples in our analysis are distributed all over the
trace, and all samples are processed in order, to closely mimic the actual behavior
of CAMPS’s performance monitor.

Figures 4.5a and 4.5b show the phase hit rate for different applications and table
sizes when using 20% and 40% of the samples for populating the history table,
respectively. These two scenarios represent situations with a different degree of
shared resource contention (a different fraction of samples is discarded). For the
sake of clarity, the figures only display the data associated with 16 representative
applications, which cover a wide range of trends observed during our analysis. The
results reveal that for each program, a point can be reached in which increasing
the size of the history table further does not provide any benefits. However, that
point is application specific. For example, programs such as hmmer or swim can do
just fine with a history table consisting of 2 entries (hit rate>99.4%), whereas for
other programs, such as mcf or bzip, more than 16 entries are required to reach
the saturation point.

In light of the results of our analysis, we opted to use 22-entry history tables in
our experiments. That choice for the number of entries provides a good trade-off
between the hit rate and memory utilization. When using 22 entries in the history
table, 95% of the applications considered in the full set (52 programs) achieve a
phase hit rate greater than 92% in the scenarios considered. Moreover, when the
fraction of samples used to populate the history table is no smaller than 40%, 98% of

56 Chapter 4. CAMPS

Table 4.2: Average reduction in unfairness and increase in throughput achieved by CAMPS over
the other schemes on the Odroid XU4 board.

CAMPS vs. others Reduct. in Unf. Increase in throughput
HSP 32.75% -16.03%
RR 16.89% 16.53%
Equal-Progress 18.67% 12.05%
ACFS 7.17% 4.51%

the applications considered obtain hit rates greater than 94.2%. For the remaining
applications (e.g. bzip), using 22 entries in the history table guarantees a phase hit
rate of at least 87.6%. Notably, such a history table occupies 1016 bytes on 64-bit
platforms (e.g. Juno board) and 820 bytes on 32-bit platforms (e.g. Odroid XU4),
which is roughly 15% of the size of the task structure.

4.4.2. CAMPS vs CFS and HMP

We now illustrate how CAMPS compares with the stock Linux scheduler (CFS)
and with HMP [154] in terms of performance variability across runs. In doing so,
we consider diverse workloads, beyond those which CAMPS was optimized for. For
the comparison against HMP, we employed the Odroid XU4 board (4B-4S-Odroid),
as the kernel provided by the board’s manufacturer uses HMP. To experiment with
CFS, we used the 2B-2S-QuickIA platform; CFS is the default scheduler on this
platform (to the best of our knowledge, no implementation for HMP is currently
available for x86 systems).

To measure how an application’s completion time varies across multiple runs of the
same workload, we used different types of programs: gamess, bzip2 and crafty

– long-running compute-intensive sequential applications; kernbench [4] – a kernel
compilation benchmark that creates a mix of short-lived compute- and I/O-intensive
single-threaded processes; scp – a sequential I/O intensive benchmark that trans-
fers a 200MB file over the local network; and several multithreaded HPC programs
(semphy, kmeans, RNAseq, FFTW3D and EP) with different scalability and synchro-
nization patterns. We also experimented with ebizzy [4]–a micro-benchmark de-
signed to generate a web server like workload (performance reported in terms of
transactions per second)–, and with schbench –a benchmark [64] that measures
the scheduler’s tail (p99) latency.

In running these applications, we considered three homogeneous workload scenar-
ios: Full or F –the total thread count (NT) matches the number of CPUs (NCPUS)–,
Half or H (NT=NCPUS/2), and Double or D (NT=2·NCPUS). For single-threaded
programs we launched multiple simultaneous program instances to match the to-
tal thread count desired. Notably, for HPC compute-intensive parallel workloads,
which are typically run with a total thread count that matches the number of CPUs,
we experimented with full load only.

Figures 4.6a and 4.6b show the slowdown distribution of the various workloads under
CAMPS, CFS and HMP on 2B-2S-QuickIA and 4B-4S-Odroid, respectively. For

4.4 Experimental evaluation 57

gamess (H)

gamess (F)

gamess (D)

bzip2 (H)

bzip2 (F)

bzip2 (D)

crafty
(H)

crafty
(F)

crafty
(D)

kernbench (H)

kernbench (F)

kernbench (D)
scp (H)

scp (F)
scp (D)

semphy (F)

kmeans (F)

FFTW3D (F)

RNAseq (F)
EP (F)

1.0

1.5

2.0

2.5

3.0

3.5

4.0
S

lo
w

do
w

n
di

st
rib

ut
io

n CFS
CAMPS

(a) 2B-2S-QuickIA

gamess (H)

gamess (F)

gamess (D)

bzip2 (H)

bzip2 (F)

bzip2 (D)

crafty
(H)

crafty
(F)

crafty
(D)

kernbench (H)

kernbench (F)

kernbench (D)
scp (H)

scp (F)
scp (D)

semphy (F)

kmeans (F)

FFTW3D (F)

RNAseq (F)
EP (F)

1

2

3

4

5

6

7

S
lo

w
do

w
n

di
st

rib
ut

io
n HMP

CAMPS

(b) 4B-4S-Odroid

Figure 4.6: CFS vs. CAMPS on the Intel QuickIA (a) and HMP vs. CAMPS on the Odroid 4
XU board (b) when running the different benchmarks

each workload, we ran the program at least 20 times so as to capture the variance
of the performance distribution under each scheduler. The slowdown is normalized
with respect to the fastest run registered when running the program alone on the
system.

We begin by discussing the results of the CFS scheduler (Figure 4.6a). In the
H scenario, CFS provides worse performance (higher slowdown) and significantly
higher variability than CAMPS across the board. This stems from the fact that
CFS is asymmetry agnostic, and it randomly maps threads to any of the idle cores
regardless of its type. Moreover, CFS tries to keep a thread running on the same
CPU for as long as possible (to reduce the number of migrations), even if the thread
is mapped to a small core. By contrast, CAMPS maximizes big core utilization so
it maps all threads to big cores in this case (NT=NBigCores). As a result, it optimizes
performance and evens out the slowdown (fairness).

In the F and D scenarios, both CFS and CAMPS evenly distribute threads across
cores. The results, however, largely depend on the nature of the benchmark. For
long-running compute-intensive programs CAMPS delivers repeatable completion
times and similar unfairness values across runs, thanks in part to fairness-oriented
thread swaps. By contrast, CFS exhibits a huge slowdown variability here; for
instance, under the gamess (D) workload the slowdown ranges between 1.37x and
4.22x. That is because CFS does not make any effort to guarantee that threads make
equal progress on an AMP, as discussed in Section 4.3.1. In fact, CFS may map an

58 Chapter 4. CAMPS

application to a big core in a whole run, and to a small core in another run. Our
overarching conclusion is that for long-running compute-intensive workloads (like
those considered in Section 4.4.4), the stock Linux scheduler does not constitute
a good baseline for comparison due to its enormous performance variability. We
should highlight that the root causes of this high variability, which we already
discussed (i.e., a thread may be randomly mapped to any core type, no effort is
made to accurately track and balance the progress on AMPs, etc.), are still present
in the stock Linux scheduler implementation from kernel versions that are more
recent than the one we used (v3.10.104). Despite the various changes made to
the Linux scheduler in newer kernels, none of these changes was made to address
these AMP-related issues. Note that we also conducted the same set of experiments
with CFS on Linux v4.16.1 –the latest stable version available at the time these
experiments were performed–, and observed the same huge performance variability.

For the scp benchmark, CAMPS and CFS yield similar slowdown figures in the F
and D scenarios. We found that the (modest) variation in this case is not up to the
OS scheduler itself (the benchmark is I/O intensive), but instead has to do with the
disparities in the network bandwidth achieved by the different co-running instances
of scp.

For the HPC workloads (last five groups of boxes in Figure 4.6a) both schedulers
provide very similar slowdown (in a 2% range), with only one exception: the semphy
program. This program goes through parallel phases and long-term serial execution
phases, wherein the application exposes a single runnable thread to the OS. During
sequential phases, CAMPS maps the single runnable thread to a big core, and
as a result, it effectively mitigates this scalability bottleneck [83, 165]. CFS only
accelerates serial phases in the event that the thread responsible from running serial
code happened to be already mapped to a big core (by chance).

We now turn our attention to the results of the HMP scheduler on 4B-4S-Odroid
(Figure 4.6b). On this system, we could not gather the results for the bzip (D)
and kernbench (D) workloads due to exceeding the platform’s memory constraints
(as discussed in Section 4.4.4.2). Unlike CAMPS, HMP is not designed to enforce
system-wide fairness, but instead it extends CFS to provide a good trade-off between
performance and energy consumptions for mobile workloads on ARM big.LITTLE
systems. To this end, it devotes big cores to run compute-intensive code, and uses
small cores for interactive or I/O intensive applications. While CAMPS exhibits
a similar (low variability) profile as that observed on 2B-2S-QuickIA, HMP does
not behave exactly as CFS. In particular, in the H scenario, it nearly matches the
slowdown distribution of CAMPS, as it uses big cores to run the various threads as
soon as it detects they are going through a compute-intensive phase. In the F and D
scenarios, HMP makes no effort to guarantee equal progress as opposed to CAMPS;
HMP is subject to high variability, making it specially unsuitable to be considered
as a baseline for comparison under long-running compute-intensive workloads.

For the I/O intensive workloads (scp), HMP delivers a smaller variance than our
scheduling proposal (CAMPS was not optimized for I/O benchmarks), but it clearly
delivers worse performance than CAMPS in the D scenario.

4.4 Experimental evaluation 59

ebizzy (H)

ebizzy (F)

ebizzy (D)

0

20

40

60

80

100

120

K
ilo

tra
ns

ac
t.

pe
rs

ec
.

CFS
CAMPS

(a) 2B-2S-QuickIA
ebizzy (H)

ebizzy (F)

ebizzy (D)

0

25

50

75

100

125

150

175

K
ilo

tra
ns

ac
t.

pe
rs

ec
.

HMP
CAMPS

(b) 4B-4S-Odroid

Figure 4.7: CFS vs. CAMPS on the Intel QuickIA (a) and HMP vs. CAMPS on the Odroid 4
XU board (b) when running the ebizzy benchmark

As for the multithreaded HPC programs (last five group of boxes), HMP yields very
poor performance and is subject to large performance variability in some cases.
Essentially, in these workloads HMP always maps all threads to big cores, thus
introducing oversubscription (2 threads per big core) while leaving small cores idle.
This mapping is very inappropriate in this context, as threads in some of these
applications synchronize with each other frequently.

We now proceed to analyze the results of ebizzy on both platforms (Figures 4.7a
and 4.7b). Since CAMPS performs no worse than HMP and CFS in the H scenario,
we focus on the discussion of the remaining cases. Note that threads of this web-
server-like application do not synchronize with each other, but instead attempt
to complete as many requests as possible in parallel. In the F and D scenarios,
CFS effectively utilizes both core types. The fact that threads do not make equal
progress does not affect throughput; big-core and small-core threads do effective
work, but at a different pace. CAMPS, which is not optimized for this workload
type, delivers a slightly inferior throughput (1.6% less) than CFS under F and
D. Because ebizzy threads are CPU bound, HMP assigns them all to big cores,
leading to poor performance. CAMPS is able to outperform HMP by 21% and 37%
on average in the F and D scenarios.

Finally, we examine the tail scheduler latency numbers (Figures 4.8a and 4.8b)
obtained with multiple runs of schbench. To fully understand the results, it is
worth recalling that CAMPS attempts to maximize big core utilization, and, to
this end, it quickly moves threads to under-loaded big cores. In the H scenario,
CAMPS maps all threads to the available big cores, while CFS and HMP may leave
some threads running on small cores. Big core’s superior performance translates
into smaller latencies, thus enabling CAMPS to outperform the other schedulers:
it achieves a 65% and 45% latency reduction vs. CFS and HMP, respectively. Our
results also register more consistent tail latencies under CAMPS across different
executions relative to CFS, but they also reveal a slightly worse tail latency (around
7% higher) under oversubscription (D). Lastly, we also observe that CAMPS’s load
balancing decisions in the F and D scenarios allow it to impressively reduce tail

60 Chapter 4. CAMPS

schbench (H)

schbench (F)

schbench (D)

2
4
6
8

10
12
14
16

Ta
il

la
te

nc
y

(m
s)

CFS
CAMPS

(a) 2B-2S-QuickIA
schbench (H)

schbench (F)

schbench (D)

0
5

10
15
20
25
30
35
40
45
50

Ta
il

la
te

nc
y

(m
s)

HMP
CAMPS

(b) 4B-4S-Odroid

Figure 4.8: CFS vs. CAMPS on the Intel QuickIA (a) and HMP vs. CAMPS on the Odroid 4
XU board (b) when running the schbench benchmark

0.7 0.8 0.9 1.0
Norm. unfairness

0.80

0.85

0.90

0.95

1.00

N
or

m
.

A
S

P

1

1.5
2 3 4

5

HSP

W2

0.6 0.7 0.8 0.9 1.0
Norm. unfairness

0.850

0.875

0.900

0.925

0.950

0.975

1.000

N
or

m
.

A
S

P

1

1.5

2
34 5

HSP

W3

0.75 0.80 0.85 0.90 0.95 1.00
Norm. unfairness

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
.

A
S

P

1

1.5

2

3 4 5HSP

W8

0.7 0.8 0.9 1.0
Norm. unfairness

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
.

A
S

P

1

1.5

2

3
4

HSP
5

W10

0.4 0.6 0.8 1.0
Norm. unfairness

0.85

0.90

0.95

1.00

N
or

m
.

A
S

P

1

1.5
2

3

4

5

HSP

W17

Figure 4.9: Normalized unfairness and throughput for different workloads and values of the UF
parameter under ACFS

latencies (by up to 53%) w.r.t. HMP, which overloads big cores with compute-
intensive threads.

4.4.3. Trading fairness for throughput

In previous work [167], ACFS’s unfairness factor was evaluated without consid-
ering the impact of cache and bus contention effects. We now assess the impact
of varying the UF on fairness and throughput under ACFS and CAMPS running
on the 2B-4S-Juno AMP configuration, where applications may suffer performance
degradation due to shared resource contention. For our experiment we selected
those workloads considered in Section 5.1.1 where the HSP scheduler achieved con-
siderably higher throughput than ACFS or CAMPS (see Figure 4.11 in the chapter).
This way, as we gradually increase the unfairness factor under a particular work-
load, we would expect to see that the throughput figures provided by the CAMPS
and ACFS schedulers get closer to those of HSP (as illustrated in [167] for ACFS).

Figures 4.9 and 4.10 show how the choice of the UF parameter (ranging between
1 to 5)3 affects the unfairness and the system throughput for various workloads
running on the 2B-4S-Juno configuration under ACFS and CAMPS, respectively.
The results reveal that throughput gains are obtained as we gradually increase the

3For most of the investigated workloads, increasing the UF value beyond 5 does not translate
into noticeable throughput gains.

4.4 Experimental evaluation 61

0.7 0.8 0.9 1.0
Norm. unfairness

0.85

0.90

0.95

1.00

1.05
N

or
m

.
A

S
P

1

1.5 2

3
4

5

HSP

W2

0.6 0.7 0.8 0.9 1.0
Norm. unfairness

0.875

0.900

0.925

0.950

0.975

1.000

N
or

m
.

A
S

P

1

1.5

2

34
5

HSP

W3

0.6 0.7 0.8 0.9 1.0
Norm. unfairness

0.85

0.90

0.95

1.00

N
or

m
.

A
S

P

1

21.5
3

4 5

HSP

W8

0.7 0.8 0.9 1.0
Norm. unfairness

0.80

0.85

0.90

0.95

1.00

N
or

m
.

A
S

P

1

1.5

2
3

4

5

HSP

W10

0.4 0.6 0.8 1.0
Norm. unfairness

0.900

0.925

0.950

0.975

1.000

1.025

N
or

m
.

A
S

P

1

1.5
2

3

4

5

HSP

W17

Figure 4.10: Normalized unfairness and throughput for different workloads and values of the UF
parameter under CAMPS

value of the unfairness factor; this also comes at the expense of increased fairness
degradation. Moreover, as we increase the UF, the throughput and fairness figures
of both schedulers get closer to those of the HSP scheme, which strives to optimize
throughput.

We also observe that under a few workloads (W2, W3 and W17) CAMPS is capable
to slightly outperform the HSP scheduler (up to 5% increase in throughput) when
using high values of the UF parameter. This is clearly not the case under ACFS. To
fully understand these results, it is worth recalling that HSP and ACFS do not deal
with shared-resource contention effects. In the aforementioned program mixes, the
applications with the highest big-to-small speedups in the workload are also sub-
ject to high contention-related performance degradation. We found that the HSP
scheduler maps these contention-sensitive applications to big cores simultaneously
for longer periods of time than CAMPS and ACFS when using the default setting
of the unfairness factor (1.0). As we increase the unfairness factor, both
fairness-aware schedulers grant a higher big-core share to high-speedup applica-
tions (the contention-sensitive programs in this case). Clearly, a modest increase of
the big-core share of high-speedup memory-intensive applications results in higher
performance for these application and, in turn, in throughput gains. However, in-
creasing too much the amount of time that these applications spend on the big cores
(what happens as a result of increasing the unfairness factor beyond a certain
point), lead high-speedup memory-intensive applications to be mapped simulta-
neously to big cores more often, which backfires by degrading the performance of
individual applications. Unlike ACFS (contention unaware), CAMPS is able to deal
with this issue effectively as it favors thread swaps that contribute to minimizing
contention on the big core cluster. In other words, CAMPS reduces the amount
of time that contention-sensitive high-speedup applications run together on the big
core cluster. This aspect coupled with a high setting of the UF parameter (e.g.
5), which increases the big-core share allotted to high-speedup programs, enables
CAMPS to obtain throughput improvements over a contention-unaware scheduler
that strives to optimize throughput (HSP).

To sum up, our study has demonstrated that the unfairness factor knob effec-
tively enables us to improve system throughput in scenarios where fairness con-
straints are relaxed. Moreover, by using high values for this parameter as those
used in our experiments, CAMPS can be configured to approximate the behavior of
the HSP scheduler. In several cases, CAMPS is able to outperform this scheduler
in both fairness and throughput. Hence, the main takeaway from our study is that
CAMPS constitutes a versatile contention-aware scheme, as it enables the system

62 Chapter 4. CAMPS

administrator to pursue two optimization goals with a single scheduling algorithm.

4.4.4. CAMPS vs. other asymmetry-aware schedulers

To assess the effectiveness of CAMPS we compared it with three previously-proposed
fairness-aware schedulers for AMPs: ACFS [167], Equal-Progress [182] and an
asymmetry-aware Round-Robin (RR) scheme [24]. We also experimented with a
scheduler that attempts to optimize throughput by preferentially running on big
cores those applications that derive a higher big-to-small speedup [111, 164]. We
will refer to this scheduler as HSP (High SPeedup).

All the schedulers considered (except for RR) rely on performance monitoring coun-
ters (PMCs) to function. HSP and ACFS determine threads’ SFs on-line by contin-
uously monitoring different PMC events, and by feeding an estimation model with
the obtained event counts. (More information on the mechanism employed to build
the estimation model and to determine the associated events on our ARM-based ex-
perimental platforms can be found in [159].) The Equal-Progress scheduler [182], by
contrast, leverages PIE [183] or IPC sampling [24] to determine thread SFs at run-
time. Since the required hardware extensions for PIE are not available in commer-
cial AMP hardware, we evaluate the history-based variant of Equal-Progress [182],
based on IPC sampling. Under all schedulers, PMCs are sampled on a per-thread
basis every 50ms; this sampling period enables the OS to detect coarse-grained
program phases and to filter out many spikes in performance metrics that become
apparent when using smaller sampling periods (due to fast oscillations in some
metrics). Notably, we observed that the overhead associated with PMC-related
processing at this rate becomes negligible for most applications (for a few programs
we observed up to a 0.28% overhead). To reach a 1% overhead, the sampling period
has to be reduced to a value as low as 5ms.

For our experiments, we used the 2B-4S-Juno and 4B-4S-Odroid AMP configu-
rations presented in Section 3.1.1. Our evaluation targets workloads consisting of
long-running compute-intensive benchmarks from diverse suites: SPEC CPU, PAR-
SEC, Minebench and the NAS Parallel benchmarks. We also experimented with
FFTW3D - a program performing the FFT. All programs were compiled with GCC
(-O3 switch) and by employing the -mtune=cortex-a15.cortex-a7 (2B-4S-Juno
only) and the -mtune=cortex-a57.cortex-a53 (2B-4S-Juno only) compiler op-
tions to apply common big.LITTLE optimizations. The total thread count in each
workload was set to match the total number of cores in the platform (including
both big and little cores), as in previous work on AMPs [111, 164, 182]. We en-
sure that all applications in the mix are started simultaneously and when one of
them terminates it is restarted repeatedly until the longest application in the set
completes three times. We then measure unfairness and throughput, by using the
geometric mean of the completion times for each program. To assess throughput
we employed the Aggregate Speedup (ASP) metric as explained in Section 3.3.2. We
ran each experiment five times, and report the average, minimum and maximum
values of the unfairness and throughput in each case.

4.4 Experimental evaluation 63

Table 4.3: Multi-application workloads for the 2B-4S-Juno AMP configuration.

Name Applications
W1 GemsFDTD,equake,soplex,milc,ammp,bzip2
W2 galgel,soplex,hmmer,lbm,fma3d,bzip2
W3 galgel,equake,gamess,lbm,bzip2,astar
W4 twolf,bwaves,equake,soplex,astar,gobmk
W5 GemsFDTD,bwaves,equake,povray,fma3d,astar
W6 bwaves,equake,gamess,lbm,fma3d,bzip2
W7 GemsFDTD,applu,perlbmk,sixtrack,astar,gzip
W8 bwaves,perlbmk,povray,fma3d,astar,gzip
W9 galgel,perlbmk,sixtrack,mgrid,astar,libquantum
W10 GemsFDTD,vortex,perlbmk,fma3d,astar,gzip
W11 bzip2,equake,hmmer,vortex,crafty,astar
W12 gamess,hmmer,soplex,art,astar,gzip
W13 GemsFDTD,bwaves,gamess,hmmer,crafty,astar
W14 bzip2,bwaves,hmmer,lucas,gobmk,gzip
W15 soplex,art,vortex,lbm,fma3d,gobmk
W16 galgel,equake,hmmer,lbm,fma3d,h264ref
W17 bwaves,equake,gamess,povray,astar,libquantum
W18 GemsFDTD,galgel,gamess,hmmer,astar,libquantum
W19 swim,mcf,perlbench,h264ref,gobmk,gzip
W20 galgel,equake,hmmer,povray,mgrid,gobmk
W21 galgel,equake,hmmer,bzip2,perlbench,h264ref
W22 galgel,equake,gamess,hmmer,sixtrack,povray
W23 gamess,art,bzip2,gobmk,sixtrack,vortex
W24 galgel,gamess,hmmer,povray,perlbench,gobmk

64 Chapter 4. CAMPS

W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
8

W
9

W
10

W
11

W
12

W
13

W
14

W
15

W
16

W
17

W
18

W
19

W
20

W
21

W
22

W
23

W
24

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

no
rm

al
iz

ed
un

fa
ir

ne
ss

HSP RR Equal-Progress ACFS CAMPS

W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
8

W
9

W
10

W
11

W
12

W
13

W
14

W
15

W
16

W
17

W
18

W
19

W
20

W
21

W
22

W
23

W
24

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

no
rm

al
iz

ed
th

ro
ug

hp
ut

Figure 4.11: Unfairness (top) and throughput (bottom) for the workloads in Table 4.3 running on
2B-4S-Juno under the various scheduling algorithms

In evaluating the various schedulers we built two different sets of workloads, shown
in Tables 4.3 and 4.5. In the first one, each program mix is made up of six single-
threaded applications running on the 2B-4S-Juno configuration. The second set,
which we ran on 2B-4S-Juno, includes mixes consisting of both single-threaded and
multithreaded programs.

4.4.4.1. Workloads for the 2B-4S configuration

We begin by analyzing the results of the first workload set, shown in Figure 4.11.
The unfairness and throughput (ASP) values reported in the charts are normal-
ized with respect to the results of the HSP scheduler. In building the workloads
(Table 4.3), we divided SPEC CPU applications into two groups: light-sharing
programs, whose performance does not suffer noticeably under contention; and
memory-intensive programs, which are subject to high contention-related degra-
dation or put significant pressure on the shared resources. We then generated 24
random program mixes by combining 29 SPEC benchmarks that cover a wide spec-
trum of speedup factors. Table 4.3 shows these program mixes which are displayed
sorted in descending order by the number of memory-intensive programs included
in the workload.

The results illustrate that optimizing one metric may lead to substantial degradation
of the other one. This trend was also observed in previous work [167, 159], which
illustrates that fairness and throughput are largely conflicting optimization goals on
AMPs. As is evident, HSP, which strives to optimize throughput, achieves the best
ASP values for most workloads, at the expense of the worst unfairness numbers (the
higher, the worse) across the board. Conversely, the remaining schedulers (fairness
aware), achieve substantial reductions in unfairness vs. HSP (up to a 72% reduction
– CAMPS under W17), at the cost of potentially high throughput degradation (up

4.4 Experimental evaluation 65

Table 4.4: Average reduction in unfairness and increase in throughput achieved by CAMPS over
the other schemes on 2B-4S-Juno.

CAMPS vs. others Reduct. in Unf. Increase in throughput
HSP 50.96% -12.24%
RR 17.08% 13.19%
Equal-Progress 23.64% 3.31%
ACFS 10.71% 4.48%

to 38% – RR under W19).

The results of ACFS, RR and CAMPS exhibit a clear trend across the board.
Specifically, for the vast majority of workloads ACFS delivers better throughput
and higher reductions in unfairness than RR. This is the expected behavior since
ACFS takes applications’ big-to-small speedups into consideration when distribut-
ing big-core cycles among applications, whereas RR does not. Despite the higher
throughput, the fact that ACFS does not factor in contention effects when making
decisions, leads ACFS to similar unfairness figures to those of RR in some cases (e.g.
W4-W6, W15 or W17). By contrast, our proposal is able to reduce unfairness even
further: by up to 11% with respect to ACFS (W17) and by up to 28% relative to RR
(W19). In addition, CAMPS is capable of reaping higher throughput gains: up to
a 17% increase vs. ACFS (W19). Notably, under those workloads including a small
number of memory-intensive applications (W20-W24), we observe that CAMPS
and ACFS perform very similarly. This suggests that CAMPS is also suitable for
low-contention scenarios, as it delivers similar unfairness and throughput figures to
ACFS, the state-of-the-art fairness-aware scheme providing the best results under
these circumstances [167]. All in all, as summarized in Table 4.4 CAMPS achieves
an average 10.7% reduction in unfairness with respect to ACFS while improving
throughput by 4.48%.

Now we zoom in on the results of the Equal-Progress scheme, which, as our proposal,
also strives to optimize fairness. We observe that this scheduler is not able to obtain
lower unfairness than CAMPS or ACFS for most workloads. More importantly,
Equal-Progress’s results reveal significant divergences across the board: for a few
workloads, such as W4, W12 or W18, it obtains throughput and fairness figures
closer to those of CAMPS and ACFS, whereas for others it exhibits a much unfairer
behavior along with either throughput degradation relative to CAMPS (e.g. W2,
W8-W10, W14, etc.) or with overall performance gains in some cases (e.g. W1,
W19 or W20). As discussed in detail in [167], this somewhat inconsistent behavior
of Equal-Progress stems from two main factors: (1) the inaccuracies associated with
the mechanism it employs to track thread progress on AMPs, and (2) the fact that it
relies on IPC sampling to determine thread’s SFs online on commercial AMPs [182].
IPC sampling has been shown to lead to inaccurate SFs, since IPC values collected
on each core type may belong to different program phases [172]. We observed
that inaccuracies in the SF –obtained when measuring the IPC directly on both
core types– are more frequent under contention, as the IPC may suffer profound
oscillations (even within the same program phase) based on the degree of contention
a thread is suffering. Inaccuracies prevent Equal-Progress from delivering even

66 Chapter 4. CAMPS

progress across applications, and the performance it delivers is heavily affected by
these inaccuracies: throughput increases when the scheduler happens to grant a
higher big-core share to high-speedup applications. Although CAMPS also relies
on measuring the IPC to determine a thread’s slowdown, the reference values used
to approximate run-alone performance (IPSalone, stored in the history table for
the different phases) are collected under low contention scenarios, as explained in
Section 4.3. This makes it possible for CAMPS to overcome the aforementioned
issue of Equal-Progress. On average, our proposal reduces unfairness by 23.6%
compared to Equal-Progress.

The results also reveal that for some workloads CAMPS and ACFS achieve through-
put values similar (in a 3% range) to those of HSP. Overall, we observe that the
throughput degradation achieved by fairness-aware schedulers is significantly lower
for workloads where the number of applications that experience a higher-than-
average speedup exceeds the number of big cores (two). Under these circumstances
(e.g. W1, W3, W13 or W17), CAMPS and ACFS grant a substantial amount of
big core cycles to these specific applications (by triggering periodic swaps), whereas
HSP usually maps only two high-speedup programs to big cores for a long time
period. This leads ACFS and CAMPS to reduce unfairness in a greater extent than
HSP (e.g. W13 and W5), while yielding a low throughput degradation.

Lastly, we should highlight that HSP is especially affected by contention effects un-
der the W5 and W13-W15 workloads, where the two applications with the highest
speedup (those listed at the beginning of each row in Table 4.3) are both highly
memory intensive or constitute a pair consisting of a memory-intensive and a cache-
contention sensitive program. The benefit that these applications derive from run-
ning on a big core comes in part due to the fact that this core type features a larger
shared L2 cache than the small core. Unfortunately, when the scheduler maps two
memory-bound programs on the big cores simultaneously, threads compete with
each other for space in the shared cache as well as for bus bandwidth, which leads
to non-negligible performance degradation for both applications, and in turn de-
grades system throughput. Specifically, under the aforementioned workloads, HSP
maps memory-bound applications to big cores simultaneously for longer periods of
time than fairness-aware schedulers, which –by contrast– swap threads between core
types every so often. Swapping threads reduces the amount of time that the conflict-
ing applications are mapped together to big cores, which contributes to improving
both throughput and fairness. Specifically, the results reveal that all fairness-aware
schedulers reap high normalized throughput figures under these program mixes
(W5, W13-W15). More importantly, our proposal, is able to outperform HSP for
some of these conflicting workloads (W5 and W15). This is possible thanks to the
fact that CAMPS swaps threads based on their observed progress and by catering
to the degree of contention.

4.4.4.2. Workloads for the 4B-4S-Odroid configuration

We now proceed with the discussion of the results for workloads we ran on the
4B-4S-Odroid configuration. On this system, we attempted to analyse workload

4.4 Experimental evaluation 67

Table 4.5: Multi-application workloads for the 2B-4S-Juno AMP configuration.

Name Applications
M1 art,galgel,libquantum,sixtrack,gamess,hmmer,soplex,gzip
M2 galgel,libquantum,hmmer,mcf,mgrid,crafty,parser,gzip
M3 mcf,lucas, galgel, soplex,h264ref,povray,perlbmk,gobmk
M4 galgel,mcf,h264ref,povray,perlbmk,crafty,gobmk,astar
M5 gamess,hmmer,mcf,mgrid,lucas,applu,namd,gobmk
M6 art,galgel,gamess,hmmer,mgrid,lucas,h264ref,astar
M7 hmmer,mcf,mgrid,lucas,soplex,applu,h264ref,gzip
M8 mgrid,lucas,soplex,fma3d,applu,ammp,h264ref,astar
M9 art,libquantum,sixtrack,h264ref,semphy(4)
M10 gamess,applu,povray,crafty,swaptions(4)
M11 soplex,povray,namd,gobmk,semphy(4)
M12 fma3d,h264ref,povray,equake,kmeans(4)
M13 FFTW3D(4),kmeans(4)
M14 semphy(4),EP(4)
M15 blackscholes(4),EP(4)
M16 blackscholes(4),kmeans(4)

scenarios with a wide diversity of SFs among applications and a varying degree of
competition for the available big cores. Note that, in building the program mixes,
we had to pay special attention to the aggregate memory footprint of the workload,
which should not exceed the limited amount of physical memory available on the
Odroid XU4 board (2GB) to prevent Linux’s Out-of-Memory killer from kicking in
during the experiments. Due to this constraint, we had to discard some application
mixes for the different categories considered.

Overall, the workloads we explored –shown in Table 4.5– can be grouped in three
broad categories. The first one combines 8 single-threaded programs (M1-M8) that
exhibit a varying degree of memory intensity and cover a wide spectrum of SF values.
Workloads in the second category (M9-M12) couple 4 single-threaded applications
with a parallel program. Notably, the sequential programs derive a higher benefit
from using a single big core most of the time than the multithreaded program.
Catering to the amount of TLP (thread-level parallelism) in the application under
these circumstances is crucial to identify those application phases that really benefit
from using a handful of big cores (e.g. serial execution phases) [165, 164]. Finally,
workloads in the third category (M13-M16) combine two parallel applications with
different scalability features. Specifically, the FFTW3D, semphy and blackscholes

programs exhibit sequential phases that span over 20% of their execution time,
whereas EP and kmeans constitute highly parallel applications.

Figure 4.12 shows the results for workloads in Table 4.5. Despite the profound
differences between the composition of these workloads and those evaluated on the
2B-4S-Juno configuration, the results exhibit very similar trends to those discussed
earlier. Essentially, CAMPS achieves the highest reduction in unfairness (up to 55%

68 Chapter 4. CAMPS

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
M11

M12
M13

M14
M15

M16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
no

rm
al

iz
ed

un
fa

ir
ne

ss

HSP RR Equal-Progress ACFS CAMPS

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
M11

M12
M13

M14
M15

M16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

no
rm

al
iz

ed
th

ro
ug

hp
ut

Figure 4.12: Unfairness (top) and throughput (bottom) for the workloads in Table 4.5 running on
4B-4S-Odroid under the various scheduling algorithms

vs. HSP) for the vast majority of workloads. At the same time, ACFS is usually the
scheme that provides closest fairness figures to those of CAMPS, followed by RR
and Equal-Progress. Again, we observe that ensuring fairness comes at the expense
of significant throughput degradation in some cases (up to 45% - M12).

Results in Table 4.2 indicate that CAMPS still achieves substantial average re-
ductions in unfairness w.r.t. the other schemes on 4B-4S-Odroid (32.7% w.r.t.
HSP, and 7% relative to ACFS). These overall gains are slightly smaller than those
achieved on 2B-4S-Juno (see Table 4.4). This has to do with the lower degree
of memory intensity of the workloads we ran on 4B-4S-Odroid, which stems from
the impossibility (due to the memory constraints) to consider mixes with multiple
highly memory-intensive programs with a large memory footprint.

In spite of obtaining more modest fairness improvements in this scenario, CAMPS
reaps considerably higher throughput gains relative to RR and Equal-Progress –
over 16% and 12% respectively. This is due to the higher speedup diversity present
in these program mixes, which stems from two factors. First, the SF range across
sequential programs is significantly wider on this platform (from 1.36x to 6.63x)
than on 2B-4S-Juno (from 1.5x to 4.4x). RR does not take SFs into considera-
tion when making scheduling decisions, thus failing to obtain decent throughput
figures in this context. Second, some program mixes combine single-threaded pro-
grams, which derive non-negligible benefits from using a single big core, with multi-
threaded programs that only derive significant benefits from big cores in the event
that all of its active threads are mapped simultaneously to big cores for some time

4.5 Conclusions 69

(due to synchronization). Under these circumstances, devoting big cores to run low-
TLP phases (e.g. serial code) brings higher benefits than mapping threads-to-cores
based on the per-thread slowdown [83, 165, 167]. Unlike RR and Equal-Progress,
the other schedulers (including CAMPS) take this aspect into consideration indi-
rectly by downscaling the thread’s slowdown factor (or speedup [164]) with the
number of runnable threads in the application (a proxy for the amount of TLP), as
stated in Section 4.3.5. Failing to cater to the amount of TLP in the application
leads RR and Equal-Progress to high throughput degradation in some cases (e.g.
over 40% degradation under M16).

4.5. Conclusions

In this chapter, we have proposed CAMPS, an OS-level fairness-aware scheduler
for asymmetric single-ISA multicores. Unlike other fairness-conscious asymmetry-
aware schemes [24, 182, 167], our approach effectively caters to the performance
degradation that comes from contention on the shared resources among cores, such
as the last-level cache or the memory bus. CAMPS accurately tracks the progress
that the various threads in the workload make when running on the different core
types throughout the execution, and enforces fairness by evening out the progress
across threads.

CAMPS’s progress tracking scheme relies on approximating the current slowdown
of an application thread by comparing its actual performance with the performance
observed in the past for the thread when it ran on a big core in a low contention
scenario. In doing so, the scheduler factors in the contention-related performance
degradation as well as the slowdown that the thread normally experiences when it
is mapped to a small core rather than to a big one. Notably, our approach does
not require special hardware extensions [183, 182] or platform-specific speedup-
prediction models [111, 167] to function. Instead, CAMPS relies on the gathering
of a set of performance metrics that can be easily measured online in commercial
AMP hardware via performance counters. This makes the scheduler highly portable
across different processor models and CPU architectures.

We implemented CAMPS in the Linux kernel and assessed its effectiveness on real
asymmetric hardware. An extensive comparison was performed with other existing
schemes that aim to optimize fairness [24, 182, 167]. Our experimental results reveal
that CAMPS outperforms the state-of-the-art fairness-aware scheme for AMPs –the
ACFS scheduler [167]– in both fairness and throughput.

Another important contribution of this work is the analysis provided in 4.4.2. The
results illustrate the high variability delivered by CFS and HMP on AMPs for
long-running compute-intensive workloads. Besides, these experiments reveal that
CAMPS is more capable of handling various application types on AMPs than CFS
and HMP.

70 Chapter 4. CAMPS

Chapter 5

PBBCache: A parallel simulator
for rapid prototyping and
evaluation of cache-partitioning
policies

Cache clustering constitutes a generalization of strict cache partitioning, where each
partition can be shared by a group of applications (aka cluster). Partitioning the
cache optimally for a certain optimization objective is an NP-hard problem [133],
but determining the optimal cache-clustering solution adds a new level of complex-
ity, as a decision must be made on how to best group applications into clusters, and
how to optimally distribute cache space across clusters. Previous work has pointed
out that cache clustering proves more effective than strict cache partitioning as the
number of applications increases [171], specially on systems supporting a reduced
number of coarse-grained cache partitions (i.e., in the order of megabytes). This is
partly due to the finer grained distribution of the cache space that naturally results
from sharing cache ways between applications.

To aid in the rapid design and evaluation of cache-clustering policies we have de-
signed and implemented PBBCache, an open-source [68] parallel simulator that is
described in this chapter. PBBCache relies on offline-collected application perfor-
mance data (e.g., instructions per cycle, memory bandwidth consumption, etc.) to
approximate the degree of throughput, fairness or other relevant metrics for a work-
load under a particular partitioning approach. Our simulator has been designed to
achieve two main goals. Firstly, it is meant to serve as a tool for rapid prototyp-
ing and evaluation of partitioning policies. To increase programming productivity,
PBBCache has been implemented in Python, which is one of the most widely used
programming languages today [38]. Secondly, the simulator allows researchers to
guide the design process of their algorithms and, more importantly, to easily discard
unpromising approaches without having to go through the tedious development pro-
cess in the system software. The simulator has been built to enable the assessment
of the real potential of partitioning algorithms and to identify their limitations,

72 Chapter 5. PBBCache

by providing a comparison with the optimal solution. Even though many cache-
partitioning and clustering approaches have been proposed [171, 153, 58, 195], it
still remains unclear how close they perform relative to the optimal solution. To
fill this gap, PBBCache has the ability to efficiently determine the optimal solution
for different optimization objectives.

In designing and implementing PBBCache we made the following main contribu-
tions:

Our simulator is equipped with a slowdown-prediction model enabling to de-
termine the performance degradation that an application suffers due to cache-
sharing and memory-bandwidth contention. To approximate bandwidth con-
tention for a certain distribution of cache space across applications in a work-
load, we extended the probabilistic model proposed in [136] to factor in how
sensitive an application is with its effective bandwidth consumption at run-
time.

To determine the optimal cache space distribution in a reasonable amount
of time, the simulator implements a novel parallel branch-and-bound (B&B)
solver that effectively distributes the computation across cores on one or mul-
tiple computing nodes. This solver has been specifically designed for the
optimization problems that arise in the context of cache partitioning. A key
design aspect is the mechanism used to break down the work to be done
in parallel into tasks (referred to as subnodes) with a similar computational
complexity, which provides good scalability. The effectiveness of the bound-
ing functions we devised for various optimization objectives, also contributes
to the success of the B&B approach. These bounding functions are able to
prune over 95% of the search space, for big problem sizes.

To the best of our knowledge, our proposal is the first parallel approach
to solve the optimal cache-partitioning problem by factoring in both cache-
sharing and memory-bandwidth contention. Specifically, we studied two op-
timization objectives – fairness and throughput optimization, and found that
each associated optimization problem can be expressed as a mixed-integer
non-linear program. Notably, state-of-the-art non-linear solvers [6, 2, 1, 5]
fail to provide a solution.

To evaluate the effectiveness of PBBCache we implemented existing partition-
ing policies [153, 58, 195] on top of it, and compared the results it provides
with the actual figures observed on commercial hardware equipped with cache
partitioning support. Moreover, to assess the performance and scalability of
the parallel B&B algorithm we conducted experiments using single-node and
multi-node machine configurations.

The remainder of the chapter is organized as follows. Section 5.1 presents back-
ground on cache partitioning. Section 5.2 discusses related work. Section 5.3 intro-
duces PBBCache’s design. Afterwards, Section 5.4 formalizes the optimal cache-
partitioning problem. Section 5.5 showcases our strategy to determine the optimal

5.1 Background 73

cache-partitioning solution via parallel B&B. Finally, Section 5.6 covers the exper-
imental evaluation, and Section 5.7 summarizes the chapter.

5.1. Background

In this section we formally introduce the problems of optimal cache partitioning
and optimal cache clustering.

5.1.1. Optimal cache-partitioning problem

Before presenting a formal problem definition, it is worth describing how current
cache-partitioning algorithms typically operate. For simplicity in the explanation
we focus on way-partitioning, since this is the specific hardware implementation
found in our experimental platforms (Intel CAT). Essentially, a partitioning algo-
rithm has to distribute the available cache ways among applications based on their
runtime properties so as to accomplish the objective it was designed to achieve (e.g.,
maximizing throughput, minimizing energy consumption, etc.). Notably, this kind
of algorithms, as well as the corresponding optimization problem we describe next,
just determine the number of ways that are allotted to each application, but not
which exact ways are assigned. An important challenge is that certain applications
may go through different program phases, which may lead to time-changing cache
behavior. Under these circumstances, partitioning the cache statically (i.e. fixed
cache way distribution throughout the execution) may not constitute the best solu-
tion. To cope with application’s phase changes, partitioning algorithms are usually
invoked periodically [171, 153, 58]. Specifically, the system software continuously
monitors application behavior by using (for example) performance counters; the
more recent values of the gathered performance metrics are used as input to the
partitioning algorithm (invoked every so often) so as to determine the partitioning
for the next execution interval, where the applications are likely to exhibit a similar
behavior to that reflected by the recent collected data.

Our goal is to determine the optimal cache partitioning for a workload in a certain
execution interval where the applications exhibit a stable behavior Researchers can
use the optimal solution generated off-line with our simulator for a certain optimiza-
tion objective to quickly assess the effectiveness of their algorithms. Determining
an optimal solution for a workload considering program phases is a much more com-
plex problem, especially because phase transitions do not happen at the same time
in multiple applications. That would require to break down the whole workload ex-
ecution into stages of stable behavior across applications, and apply our proposed
method to detect the optimal solution for each and every “stable stage”. Making
a comparison with multiple application mixes enables to quickly assess the real ef-
fectiveness of a partitioning algorithm. More importantly, this allows to identify
potentially conflicting workload scenarios where the algorithm fails to achieve good
results, thus providing valuable insights to guide the algorithm’s design process.

74 Chapter 5. PBBCache

The optimal cache-partitioning problem can be generally formulated as a Mixed In-
teger Program (MIP). LetA be a workload consisting ofN applications {a1, a2, · · · , aN}
that run on a system featuring a W -way last-level cache with W ≥ N , and let K
be {1..W}. The set DV of decision variables is defined as {wa,k | ∀a ∈ A, k ∈ K},
where each decision variable wa,k is a binary variable indicating whether an ap-
plication a ∈ A is assigned k ways or not. The associated MIP is formulated by
considering a generic optimization function f , as follows:

Minimize: f(DV) (5.1)

Subject to: ∑
k∈K

wa,k = 1,∀a ∈ A Only 1 way assignment per application (5.2)∑
a∈A

∑
k∈K

k · wa,k = W No cache ways remain unused (5.3)

1 ≤
∑
k∈K

k · wa,k ≤W −N + 1,∀a ∈ A Each application gets at least 1 way (5.4)

In this work we focus on two specific optimization problems, whose definition entail
incorporating non-linear constraints to the set of Equations 5.1 to 5.4. The first
problem, referred to as Opt-STP, is system throughput optimization, and it comes
down to maximizing the STP metric. The second one, denoted as Opt-Unf, strives
to find the cache space distribution that minimizes the Unfairness metric, so as
to optimize system-wide fairness. As stated in Section 3.3, both the STP and
Unfairness metrics depend on the slowdown experienced by each application; the
Slowdown in turn depends on the cache-way distribution (decision variables in the
generic MIP). Notably, Opt-STP and Opt-Unf constitute non-linear optimization
problems. This stems from the fact that evaluating either optimization function
(STP or Unfairness) for any feasible cache-way distribution requires determining
the slowdown of each application by means of a prediction model that factors in the
combined performance degradation due to cache and bandwidth contention. In our
proposed model, this entails solving a set of non-linear equations, as we describe
in Section 5.3.2. The detailed formalization of Opt-STP and Opt-Unf as Mixed
Integer Non-Linear Problems (MINLPs) can be found in Section 5.4. Notably, we
created AMPL implementations 1 for these problems and tested them with different
state-of-the-art non-linear solvers [6, 2, 1, 5], but found that all of them failed to
provide a solution. More importantly, even for small workloads – where PBBCache
finds the optimal solution sequentially in less than one minute – they also failed
to find a local minima after 1 hour of execution. We also tried feeding the solvers
with an initial solution determined earlier via a heuristic algorithm, which was
unable to provide the optimal solution for the workloads considered. In this case,
the solvers were not even able to find a better solution in one hour of execution
(we configured the solvers so that the execution was aborted automatically if a

1A Mathematical Programming Language, is a modelling language used to formalize optimiza-
tion problems and implement highly complex mathematical algorithms.

5.1 Background 75

1 2 3 4 5 6 7 8 9 10 11
Number of applications

0

50

100

150

200

250
Po

ss
ib

le
 p

ar
tit

io
ns

(a) 11 ways

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of applications

0

20000

40000

60000

80000

Po
ss

ib
le

 p
ar

tit
io

ns

(b) 20 ways

Figure 5.1: Number of possible ways to partition a LLC as we increase the number of applications
for 11 and 20 cache ways, respectively. The number of ways and applications considered are based
on the features of Platforms A and B, described in Section 3

near-optimal solution was not found within that time period). By contrast, for the
largest workloads we explored on our experimental platforms (see Section 5.6), our
simulator is capable of finding an optimal solution in less than 9 minutes by using
a sequential algorithm, and in less than 34 seconds by leveraging a parallel B&B
strategy on a 28-core server platform.

For the sake of completeness, the following recursive definition provides the number
of possible ways P to partition a W-way LLC for N applications:

P (W,N) =

1 W = N or N = 1

N W = N + 1∑W−N+1
i=1 P (W − i,N − 1) otherwise

(5.5)

As shown in Figure 5.1, the P function reaches the maximum when N = dW/2e.
The number of possible ways to partition the LLC rapidly increases with the ap-
plication count (N), but it drops back symmetrically towards 1 when N > dW/2e.
Due to the vast search space when W is high, determining the best solution via
extensive exploration becomes largely impractical.

5.1.2. Optimal cache-clustering problem

Optimal cache clustering constitutes a generalization of the optimal cache-partitioning
problem. When cache clustering is used, applications in the workload are grouped
into a number of sets, each one referred to as a cluster ; the cache space is divided
into separate partitions, one for each cluster. So, applications in the same cluster
share the same cache partition.

To formally define the optimal cache clustering for a certain workload A consisting
of N applications, we first introduce some basic terminology. We use the term
cluster set to refer to any possible way to break down A into clusters so that the
available cache space (W ways) can then be distributed across clusters (i.e. each
cluster gets at least one way). A cluster set CS is one of the possible partitions

76 Chapter 5. PBBCache

of the A set (i.e. grouping of the set’s elements into non-empty subsets) with a
number of items ≤ W . Let CA be the set with all possible cluster sets of A. Note
that |CA| ≤ BN , where BN denotes the Bell number, namely the number of possible
partitions of the A set. Let f be the objective function to be minimized in the
optimization problem. We define OPTCS,f for a certain cluster set CS ∈ CA, as the
value of f associated with the distribution of cache ways across clusters in CS that
minimizes f .

For workload A and a certain optimization function f , we define the optimal cache
clustering as the cluster set in CA that exhibits the optimal (minimal) OPTCS,f

value. A potential way to determine the solution to the optimal cache-clustering
problem is to generate CA and then identify the optimal solution by comparing
the OPTCSi,f values for each CSi ∈ CA. In turn, determining OPTCSi,f for any
CSi constitutes an instance of the optimal cache-partitioning problem, where cache
space is distributed among clusters rather than among applications. Given the non-
linear nature of Opt-STP and Opt-Unf, determining the optimal cache clustering
for the throughput and fairness optimization objectives is also a non-linear problem.

5.2. Related Work

In discussing related work we first consider partitioning policies. Next, we cover
previous research on parallel B&B.

5.2.1. Cache-partitioning and cache-clustering policies

A large body of work has studied the cache-partitioning problem and proposed dif-
ferent approaches to determine promising solutions using approximate algorithms [153,
58, 195, 137]. A recent survey [133] discusses the most effective approaches for var-
ious optimization objectives, such as maximizing throughput or reducing energy
consumption. Specifically, in our simulator we implemented the UCP [153] and
Yu-Petrov [195] algorithms – described in Section 5.3.4, which primarily strive to
optimize system throughput. More recently, different cache-clustering algorithms
have been proposed [171, 58]. We implemented the KPart [58] in PBBCache. This
policy is also described in detail in Section 5.3.4. We should highlight that none of
these works [171, 153, 58, 195] provide an explicit comparison of the corresponding
proposal with a reference optimal cache-partitioning solution.

5.2.2. Parallel Branch-and-Bound

The B&B method constitutes a classical approach to solve combinatorial optimiza-
tion problems. It can be considered a search space enumeration that explores a
subset of feasible solutions. The effectiveness of an implementation of the B&B
method for a specific problem largely depends on several design aspects, such as

5.2 Related Work 77

Algorithm 5.1: Sequential B&B algorithm. (variant of the one defined
in [50]).

1 incumbent← initial solution provided by a heuristic algorithm
2 upper bound← incumbent.Cost();
3 prio q ← [root node];
4 while prio q is not empty do
5 node← pop highest priority node from prio q
6 foreach child of node do
7 if child.isSolution() && child.Cost() < upper bound then
8 (incumbent, upper bound) ← (child, child.Cost());
9 Remove nodes from prioq whose cost > upper bound;

10 else
11 lower bound← bounding function (child);
12 child.setLowerBound(lower bound);
13 if child is a feasible node && lower bound < upper bound then
14 prio q.append(child);
15 end
16 end
17 end
18 end

the bounding function used for pruning, the rule to select the next node to be pro-
cessed, or the mechanism to determine the initial solution [72]. In minimization
problems, the bounding function returns a lower bound of the cost (i.e. value of
the optimization function used) of the best solution reachable from a specific node.
B&B algorithms for minimization problems maintain a variable with the cost of
the best solution found thus far (aka incumbent), which is an upper bound of the
cost of the optimal solution. Conversely, in maximization problems, the bounding
function returns an upper bound of the cost of the best solution reachable from a
node, and a variable is used to maintain a lower bound of the cost of the optimal
solution.

As an illustrative example, Algorithm 5.1 depicts the pseudo-code of a sequential
implementation of the B&B method for a minimization problem. A heuristic algo-
rithm is used to determine the initial solution, which is used for the initialization
of the upper bound (lines 1-3). A priority queue is used to keep nodes as they are
expanded during the search (line 14). Specifically, the node in the queue with the
smallest lower bound is processed first.

An important contribution of this work is the parallel B&B implementation that our
simulator leverages to determine the optimal cache-partitioning solution. As we ex-
plain in Section 5.5, it is a distributed-memory strategy that follows a master-slave
pattern. The parallelization of B&B has been widely studied [72, 50, 55]. There are
critical implementation challenges that must be faced [50, 55], such as: the initial
definition of the search space, the choice of the work allocation policies, the com-
munication of key information between processes, the minimization of idleness and
the maximization of useful work. Our parallel strategy has been carefully designed
to cope with many of these challenges that also arise in context of the Opt-STP and
Opt-Unf non-linear problems. To the best of our knowledge, ours constitutes the
first attempt to efficiently solve the optimal cache-partitioning problem via parallel

78 Chapter 5. PBBCache

B&B when factoring in both cache-sharing and memory-bandwidth contention.

Crainic et al. [50] group parallel B&B algorithms into two main categories: tree-
based and node-based strategies. Algorithms in the first category aim to build and
explore the search space tree in parallel. By contrast, node-based approaches aim
to accelerate a particular operation mainly at the node level, such as evaluation or
bounding. The vast majority of the proposed parallel B&B algorithms exploit a
tree-based strategy or a combination of node and tree parallelization [73, 148, 82,
118, 131]. Many frameworks have also been proposed to simplify the development of
parallel B&B algorithms [50]. A well-known example is Bobpp [82, 131, 67], which
allows the implementation of combinatorial problem solvers on both shared and
distributed-memory architectures. Notably, the use of a framework is not always
the best approach when dealing with a specific problem since custom solutions can
take into account some problem-specific characteristics that contribute to improve
performance [82]. Indeed, our implementations feature specific optimizations tai-
lored to the Opt-Unf and Opt-STP problems. A key aspect of our approach is the
fact that it considers subnodes as the work unit. As we explain in Section 5.5.3,
the subnode abstraction allows us to break down the associated processing of a
single node into tasks with similar computational complexity. This and many other
design aspects of our strategy are motivated by the high computational cost as-
sociated with evaluating the bounding and optimization functions, which require
solving a set of non-linear equations.

5.3. Design of the PBBCache simulator

In this section we provide an overview of the simulator design. We begin by intro-
ducing the structure of the simulator’s input data and the interaction with it via the
command line. Then, we describe the technique used to approximate the slowdown
for each application in a workload based on the amount of cache space allotted and
the degree of memory-bandwidth contention. Finally, we outline the partitioning
algorithms implemented in our cache-partitioning simulator, and showcase some
implementation details.

5.3.1. Input data and command-line options

PBBCache is a command-line tool. As depicted in Figure 5.2 it accepts as input
two text files: a workloads file and a metrics file. The workloads file specifies the
composition of the workloads that will be used in the simulation; each workload (one
per line) is encoded as a comma-separated list of application names. The metrics file
stores a table, where each row contains the values of various runtime metrics (e.g.
instructions per cycle, cache miss rates on different cache levels, memory bandwidth
consumption, memory-related stall cycles, etc.) for a specific application, which
have been gathered offline with PMCs when the application runs alone on a certain
platform with a fixed number of cache ways. Essentially, this file summarizes the

5.3 Design of the PBBCache simulator 79

metrics.csv workloads.csv

sphinx306,lbm06,libquantum06,applu00,soplex06,milc06
bzip206,equake00,swim00,omnetpp06,applu00,gobmk06
hmmer06,gamess06,bwaves06,gobmk06,astar06,libquantum06
namd06,hmmer06,gamess06,bwaves06,soplex06,libquantum06
omnetpp06,lbm06,sphinx306,hmmer06,vortex00,h264ref06
GemsFDTD06,leslie3d06,cactusADM06,soplex06,povray06
...

BENCH,NR_WAYS,ipc,llcrpki,llcmpki,bandwidth_mbps,stalls
lbm06,1,1.865047,31.873903,29.647035,7224.522222,0.2064
lbm06,2,1.870109,31.915122,26.065821,6379.943102,0.2048
lbm06,3,1.872671,31.913001,23.272892,5630.221235,0.2040
lbm06,4,1.87643,31.906207,21.167986,5111.108885,0.2027
lbm06,5,1.878432,31.909316,19.736662,4838.692666,0.2019
...

Simulator

$./test/sim.py	-C	-f	table	-a	lfoc,yu-petrof,eqp,kpart,ucp	-s	./data/metrics.csv	./data/workloads.csv

W# Algorithm Name Mask STP Slowdown
W1 ucp sphinx306 0x600(2) 0.90054 1.11045
W1 ucp lbm06 0x1(1) 0.98892 1.0112
W1 ucp libquantum06 0x180(2) 0.91338 1.09484
W1 ucp applu00 0x1(1) 0.95252 1.04984
W1 ucp soplex06 0x7e(6) 0.9158 1.09194
W1 ucp milc06 0x1(1) 0.97283 1.02793
W1 ucp OVERALL 0.063377s 5.644 1.09815
W1 yu-petrov sphinx306 0x700(3) 0.92682 1.07895
W1 yu-petrov lbm06 0xc0(2) 0.99308 1.00697
W1 yu-petrov libquantum06 0x30(2) 0.91338 1.09484
W1 yu-petrov applu00 0xc(2) 0.96032 1.04132
W1 yu-petrov soplex06 0x2(1) 0.70131 1.4259
W1 yu-petrov milc06 0x1(1) 0.97458 1.02608
W1 yu-petrov OVERALL 0.000634s 5.46948 1.41603
W1 equal-part sphinx306 0x600(2) 0.90054 1.11045
W1 equal-part lbm06 0x180(2) 0.99308 1.00697
W1 equal-part libquantum06 0x60(2) 0.91338 1.09484
W1 equal-part applu00 0x18(2) 0.96032 1.04132
W1 equal-part soplex06 0x6(2) 0.75889 1.31772
W1 equal-part milc06 0x1(1) 0.97458 1.02608
W1 equal-part OVERALL 0.000003s 5.50078 1.30859
W1 kpart sphinx306 0x6(2) 0.90054 1.11045
...

4.6 4.8 5.0 5.2 5.4 5.6 5.8
STP

1.1

1.2

1.3

1.4

1.5

1.6

U
nf

ai
rn

es
s

W1

W2

W3

W4

W5

W6

W1

W2 W3W4

W5

W6

W1

W2

W3
W4

W5

W6

W1

W2

W3W4

W5

W6

equal-part
kpart
yu-petrov
ucp

Figure 5.2: Simulator’s diagram that shows an example of the user interaction with the simulator
via command line, the data input and the generated output.

behavior of each application with every possible cache way count. The various
metrics, which can be easily gathered on Intel processors that support Intel CAT,
are used as input to different partitioning algorithms (as discussed in Section 5.3.4
each algorithm uses different metrics), and are also required to determine both the
slowdown (see Section 5.3.2) and the amount of cache space each application gets
inside a cluster (see Section 5.3.3). In creating the metrics file, the user may decide
to include the information only for a particular program stage (e.g. first K billion
instructions), a specific execution phase or the average registered for each metric
throughout the application’s execution.

The simulator text output, which can be presented in different formats (-f option),
shows the amount of cache ways allotted by each partitioning algorithm considered
for the simulation (as indicated with -a) as well as other values, such as the per-
application slowdown. In using the sample command of Figure 5.2, where the
-C option is used, a chart is also generated making it possible to compare the
effectiveness of the various algorithms regarding fairness and throughput at first
glance2. Simulations are performed sequentially by default, but because they are
independent from one another they can be also launched in parallel (when the
-P option is provided) by leveraging multiple slave processes running on one or

2Because the value of the unfairness metric only depends on the maximum and minimum
slowdown observed across applications, reporting the value of the STP metric as well is crucial to
properly assess the effectiveness of a partitioning approach.

80 Chapter 5. PBBCache

multiple machines; details on our parallel programming framework can be found in
Section 5.3.5. A complete discussion of PBBCache’s command-line options can be
found in [68].

5.3.2. Determining the slowdown under cache-partitioning

For each workload and partitioning algorithm indicated by the user in the command
line, PBBCache determines the slowdown of each application in a workload, which
is necessary to assess the degree of fairness and throughput delivered. Each parti-
tioning algorithm decides how the various LLC cache ways are distributed among
applications in a workload. The cache space distribution has an important impact
on performance, but also determines the level of bandwidth contention present on
the system, which may lead to performance degradation. Therefore, to accurately
determine the slowdown of each application both the allotted cache ways and the
degree of bandwidth contention should be considered. Specifically, let A be a work-
load consisting of N applications [a1, · · · , aN] running on a system that features a
W -way last-level cache, and under a certain cache-partitioning algorithm part. Our
simulator approximates the slowdown of each application ai as follows:

Slowdownai = SCpart,ai · SBpart,ai (5.6)

where SCpart,ai indicates how much the application slows down due to the amount
of cache space granted by part to it (wi ways); SBpart,ai is the slowdown that ai
suffers exclusively due to bandwidth contention (see Section 5.3.2.1).

PBBCache approximates SCpart,ai with the ratio of instructions per cycle (IPC)
observed for ai when using W and wi ways:

SCpart,ai =
IPCai(W)

IPCai(wi)
(5.7)

Determining SBpart,ai is a more challenging task for two reasons. First, the amount
of memory bandwidth consumed by ai at runtime depends on wi and on the band-
width consumption of the remaining programs [136]. So, the behavior of each
application under the cache-way distribution made by part has to be taken into
consideration to determine SBpart,ai . Second, we found that this performance degra-
dation (slowdown factor) depends on how sensitive the application is to bandwidth
contention. We now proceed to describe the bandwidth model that PBBCache
leverages to approximate SBpart,ai .

5.3.2.1. Modeling Memory Bandwidth Contention

To illustrate the effects of bandwidth contention on our experimental platforms, we
conducted several experiments where an application runs simultaneously with an
increasing number of aggressor benchmarks; for the aggressor we used the band-
width benchmark also used in Section 4.1.2. For each application we measured how

5.3 Design of the PBBCache simulator 81

(a) omnetpp (b) libquantum

Figure 5.3: Memory bandwidth vs. slowdown observed for omnetpp and libquantum as increasing
the total memory bandwidth consumption. The slowdown prediction provided by Morad’s model
(Bai

/B′ai
) and PBBCache’s model (SBpart,ai

) is also reported.

its bandwidth and slowdown – w.r.t. the solo execution – varies as we add more in-
stances of the aggressor application (increasing the total bandwidth consumption of
the workload). To effectively track the slowdown that comes primarily from mem-
ory bandwidth contention in the experiments, we assigned separate cache partitions
for the application under study and for the aggressors. Figure 5.3 shows the results
for two SPEC CPU2006 applications gathered on the Skylake platform (which is
described in Chapter 3). Note that Bai denotes the bandwidth consumption of the
application when it runs alone on the platform (constant), and B′ai represents its
actual bandwidth when running with the remaining applications in the workload.

As shown in Figure 5.3, B′ drops as we increase the total bandwidth consumption,
whereas the slowdown increases. Clearly, the observed slowdown is not negligible
(e.g., up to 1.12x for omnetpp), so bandwidth-contention related degradation must
be factored in to accurately determine the slowdown for individual applications.
Notably, on the Broadwell-EP platform, where we also conducted the same exper-
iments we observed considerably higher slowdowns due to bandwidth contention
(up to 1.7x). As pointed out in Section 5.6.2, Broadwell-EP has roughly half the
available bandwidth of Skylake, hence the larger observed slowdowns.

To properly account for bandwidth contention effects, PBBCache employs a variant
of the probabilistic model proposed by Morad et al. [136]. Essentially, this model
enables to approximate – from offline-collected information of individual applica-
tions running alone – (i) the bandwidth that each application would exhibit when
running simultaneously with others and (ii) the slowdown that comes exclusively
from memory-bandwidth contention. Essentially to determine (i) for a workload
consisting of N applications, the following system of N + 1 non-linear equations
must be solved:

{
B′

2

ai
·
(

1− 1

Bai

)
+ B′ai ·

(
1− 1

T

)
·
(

1− 1

Bai

)
+ 1− 1

T
= 0

}N

i=1

(5.8)

∑N
i=1 B

′
ai = T (5.9)

82 Chapter 5. PBBCache

where Bai is the bandwidth observed for each application ai when running alone
on the platform (with the same amount of cache space as that allotted in the
workload), B′ai is the actual bandwidth for ai when running simultaneously with
the other applications in the workload, and T is the total bandwidth consumption
of the workload. Note that Bai , B

′
a,i and T are normalized to the maximum memory

bandwidth of the platform.

To determine the application slowdown due to bandwidth contention (ii) Morad’s
model uses the ratio Bai/B

′
a,i, which is based on the observation that the ap-

plication bandwidth consumption and its performance naturally decreases due to
contention, and so does its performance. We observed that this approach to approxi-
mate the slowdown is accurate for highly bandwidth-intensive applications (i.e., over
90% of its stall cycles are dominated by long-latency demand cache misses) such as
omnetpp (see Figure 5.3a). However, for the remaining applications, the reduction
in memory bandwidth consumption does not correlate linearly with the performance
degradation, thus obtaining inaccurate slowdown estimates with the model (such
as on Figure 5.3b). Essentially, some applications can generate a lot of prefetching-
related memory requests and cache write-back operations, which may result in high
memory bandwidth consumption; however, a reduction of the bandwidth consump-
tion of these applications due to contention does not directly translate into linear
performance degradation. To mitigate this issue in calculating the slowdown of an
application ai, PBBCache factors in the stall cycles due to long-latency demand
cache cycles (MSai) and the total number of stall cycles (TSai) observed in the solo
execution as follows:

SBpart,ai =
TSai + MSai ·

(
Bai

B′
ai

− 1
)

TSai

(5.10)

5.3.3. Determining the slowdown for cache-clustering poli-
cies

As explained in Section 5.1.2, cache-clustering policies group applications into clus-
ters; each cluster is assigned a separate cache partition with a certain size. To apply
the slowdown prediction model presented in Section 5.3.2 (Equations 5.6-5.10), the
simulator must determine first how much cache space each application gets inside
the assigned cluster. This is a challenging task, as the effective cache space an
application gets largely depends on its co-runners in the cluster [205].

Caches in modern processors typically implement a variant of the pseudo-LRU
replacement policy [205, 25]3. Under these circumstances, the amount of cache space
that an application gets is usually proportional to its rate of demand (frequency of
cache misses) in competition with the rate of demand of the co-runners [153]. Based
on this observation Mukkara et al. [137] proposed a simple model to rapidly estimate
the effect in the cache miss rate curves when several applications share a cache, and

3The last-level cache, however, may incorporate specific optimizations to increase effective
associativity without adding ways [25].

5.3 Design of the PBBCache simulator 83

to approximate the cache space that each application would get for different way
counts. The KPart clustering policy relies on this model [58], which leverages per-
application MPKI (cache Misses Per Kilo-Instruction) tables. Essentially, for each
number of cache ways the model determines the fraction of that cache space that will
be assigned to each application. Intuitively, the higher the MPKI of an application
for a certain way count, the more space the application gets when sharing a portion
of cache with that number of ways.

By comparing the prediction provided by Mukkara’s model with the actual cache
usage reported by the Intel Cache Monitoring Technology on our experimental
platforms, we observed that using the MPKI for the cache space prediction may
lead to substantial inaccuracies that stem from the fact that the MPKI is not a
good proxy of the rate of cache demand. Specifically, two applications with the
same MPKI value but different performance (IPC) have a different rate of cache
demand (in terms of misses per cycle). The application with the higher IPC in this
case has a higher rate of demand, and so it typically obtains more cache space.

To overcome this shortcoming, our simulator employs a variant of Mukkara’s model
that uses MPKC (Misses Per Kilo Cycles) tables instead of MPKI tables. We refer
to this model as the cache-space model. Note that the predicted amount of cache
space for an application in a cluster may not be a multiple of the way size (e.g. 1.5
ways). In this case, linear interpolation (as in [58, 137]) is used to determine the
value of the different metrics (i.e. IPCai , Bai , TSai and MSai) required to apply our
slowdown-prediction model. So for example, if an application is expected to receive
1.5 ways of cache space inside a certain cluster, the value of each metric would be
obtained via linear interpolation based on the corresponding metric values for 1 and
2 ways, which can be found in the metrics file.

5.3.4. Partitioning policies

The initial version of our PBBCache simulator implemented four cache-partitioning
schemes: Equal-Part, UCP [153], Yu-Petrov [195], KPart [58]. PBBCache employs
the offline-collected metrics found in the metrics file as input to each partition-
ing algorithm. Note that real implementations in the system software of most of
these approximate algorithms may gather runtime application metrics online using
performance counters.

The Equal-Part approach is a naive approach used only for comparison purposes
that assigns all applications a separate partition with the same size. As we prove
later on in Section 5.6, this partitioning policy does not gauarantee fairness or
throughput on the system, since it fails to cater to the specific degree of cache
sensitivity that each application shows.

UCP aims at improving fairness and overall throughput by minimizing the total
number of misses incurred by all applications in the workload on the shared last-level
cache. UCP does not attempt to determine the optimal solution but instead employs
an approximate algorithm referred to as lookahead [153], which uses as input the

84 Chapter 5. PBBCache

Algorithm 5.2: Pseudo-code of the lookahead partitioning algorithm
Input: apps represents the set applications that will receive a cache partition

and nr ways is the number of ways of the LLC available to assign.

1 function lookahead(apps,nr ways)

2 remaining = nr ways;
3 while remaining > 0 do
4 for (app, i) in apps do
5 alloc = allocations[i];
6 max mu[i] = get the max marginal utility by estimating for every alloc ;
7 ways req[i] = min ways required to get max mu[i] for the app;
8 end
9 winner = application with greater max mu;

10 allocations[winner]+ = ways req[winner];
11 remaining− = ways req[winner];
12 end
13 return allocations

MPKI table of each application. This table stores the application’s MPKI value for
any possible cache size. Lookahead behaves in a similar way to a greedy algorithm,
it iteratively selects the best next way assignment based on their marginal utility ; an
estimation of how beneficial two different assignments are for a specific application
that is based on the number of misses they incur. A pseudo-code of the original
algorithm can be observed in Algorithm 5.2.

The algorithm proposed by Yu and Petrov [195] strives to reduce system band-
width pressure. To this end, it partitions the LLC so as to minimize the total
bandwidth. The algorithm relies on per-application bandwidth consumption mea-
surements with different cache sizes gathered offline.

KPart [58] constitutes a cache-clustering approach designed for throughput opti-
mization. KPart implements an iterative algorithm that creates and merges appli-
cation clusters via hierarchical clustering. To decide which clusters must be merged
on each iteration of the loop and how to distribute the available ways among clusters
(inter-cluster way-partitioning), the scheme leverages the distance metric proposed
in [137] as well as the UCP’s lookahead algorithm [153]. The application of UCP
and the evaluation of the distance metric relies on the ability to determine MPKI
tables and IPC tables (i.e. number of Instructions Per Cycle for different cache
sizes) online for each application.

5.3.5. Notes on the simulator implementation

PBBCache has been completely implemented in Python and relies on libraries avail-
able for multiple operating systems, hence, it is a multi-platform tool.

To leverage parallelism in the simulator implementation we use ipyparallel [10].
This framework, which relies on Python’s multiprocessing module, enables us to
perform master-slave distributed-memory parallel processing. The main features of
ipyparallel are as follows:

5.3 Design of the PBBCache simulator 85

Master and slave (aka engine) processes do not share memory.

The framework allows the master process to submit work (tasks) to be exe-
cuted by one or several engines. Two complementary mechanisms are avail-
able to do so: the Load Balanced and the Direct view. With the first one,
the set of engines is treated as a pool of workers; the programmer does not
have to explicitly determine which engine ultimately executes the task. In-
stead, an underlying scheduling algorithm is in place to assign tasks to engines
dynamically and to quickly assign tasks to idle engines. The second mecha-
nism, by contrast, exposes individual engines to the programmer. Regardless
of the mechanism used, ipyparallel allows the master to submit tasks in a
synchronous or an asynchronous way (i.e., in the latter the master does not
remain blocked until the task or the set of tasks submitted completes).

In ipyparallel’s programming model, engines do not communicate with each
other. However, other Python modules can be used to establish explicit inter-
engine communication. Because this kind of communication is required in
PBBCache, we turned to the ZeroMQ messaging library [7], which is also
used in ipyparallel’s implementation.

The ipyparallel framework allows applications based on it to seamlessly distribute
the computation across cores present in one or several machines, while maintaining
a single implementation. Notably, using this approach to leverage parallelism (i.e.,
multiple processes that cooperate with one another) in our simulator provides much
better performance and scalability on a shared-memory machine than using an
ad hoc Python multithreaded application. This stems from the fact that, due to
implementation issues in CPython –the reference implementation of the Python
interpreter–, the truly parallel execution of multiple CPU-bound threads is not
allowed within the interpreter [23]. The execution of CPU-bound threads is instead
serialized, thus making multithreading an unsuitable choice for applications like our
simulator.

We should highlight that Jython –an alternative Python implementation written
in Java– is not subject to this multithreaded-related issue. Unfortunately, its JyNi
compatibility layer [3], which enables the utilization of a few Python modules writ-
ten for CPython from Jython, does not currently support the pandas or matplotlib
modules. Because these two widely-used modules are key building blocks of our
open-source simulator [68] for seamless visualization and data manipulation, we
opted to use CPython, the default Python implementation.

Finally, it is worth noting that, to solve the set of non-linear equations required for
the evaluation of our bandwidth-contention model (see Section 5.3.2.1, we use the
simpy library. This library offers a high-level and flexible mechanism to specify sets
of equations in the source code; hence, making it easier to others to create and test
their own models.

86 Chapter 5. PBBCache

5.4. Formalization of Opt-STP and Opt-Unf as

MINLPs

Here we provide a detailed formalization of the Opt-STP and Opt-Unf problems
for a workload A consisting of N single-threaded applications {a1, a2, · · · , aN} that
run on a system featuring a W -way last-level cache with W ≥ N .

We first present the parameters and decision variables which are common to both
optimization problems. The parameters represent performance metrics of each
application in the workload. These values are gathered offline as an application
runs alone on the system under different way assignments:

IPCa∈A,k∈K IPC alone (5.11)

Ba∈A,k∈K Bandwidth alone (5.12)

TSa∈A,k∈K Total stalls (5.13)

MSa∈A,k∈K Memory stalls (5.14)

Other parameters are calculated internally based on the others:

pIPCa = IPCa,W , ∀a ∈ A IPC with all available ways (5.15)

pSc
a,k = pIPCa

IPCa,k
,∀a ∈ A,∀k ∈ K Relative performance degradation (5.16)

The decision variables are the following:

wa∈A,k∈K ∈ {0, 1} Way assignment (5.17)

vBa∈A ∈ R Effective Bandwidth alone (5.18)

vB’a∈A ∈ R Bandwidth shared (5.19)

vT ∈ R Total bandwidth shared (5.20)

vSCa∈A ∈ R Effective slowdown due to cache-sharing (5.21)

vSBa∈A ∈ R Bandwidth Slowdown (5.22)

vTSa∈A ∈ R Effective total stalls (5.23)

vMSa∈A ∈ R Effective memory stalls (5.24)

vSa∈A ∈ R Effective Slowdown (5.25)

The Opt-STP problem can be formulated as follows:

Maximize :
∑

a∈A
1

vSa
(5.26)

5.5 Determining the optimal solution 87

subject to these linear constraints:

vT =
∑

a∈A vB’a (5.27)∑
k∈K wa,k = 1, ∀a ∈ A (5.28)∑

a∈A
∑

k∈K k · wa,k = W (5.29)

1 ≤
∑

k∈K k · wa,k ≤W −N + 1, ∀a ∈ A (5.30)

vBa =
∑

k∈K Ba,k · wa,k, ∀a ∈ A (5.31)

vSCa =
∑

k∈K pSc
a,k · wa,k, ∀a ∈ A (5.32)

vTSa =
∑

k∈K TSa,k · wa,k, ∀a ∈ A (5.33)

vMSa =
∑

k∈K MSa,k · wa,k, ∀a ∈ A (5.34)

And also subject to the following set of non-linear constraints for the evaluation
of the bandwidth model. Specifically, ∀a ∈ A, we have that:

(vB’a)2 ·
(

1− 1

vBa

)
+ vB’a ·

(
1− 1

vT

)
·
(

1− 1

vBa

)
+ 1− 1

vT
= 0 (5.35)

vSBa =
vTSa + vMSa ·

(
vBa

vB’a
− 1
)

vTSa
(5.36)

vSa = vSCa · vSBa (5.37)

The Opt-Unf problem can be formulated as a MINLP, as follows:

Minimize : Smax

Smin
, Smax ≥ vSa,∀a ∈ A, Smin ≤ vSa,∀a ∈ A (5.38)

subject to the constraints specified by Equations 5.27 to 5.37.

5.5. Determining the optimal solution

This section describes the features of the various B&B algorithms used by PBB-
Cache to determine the solution of the Opt-STP and Opt-Unf optimization prob-
lems. Currently, four B&B algorithms exist: Opt-STP-S, Opt-STP-P, Opt-Unf-S
and Opt-Unf-P. The name of each algorithm encodes the optimization problem the
algorithm solves (Opt-STP or Opt-Unf) and indicates whether the algorithm is
sequential or parallel (via the -S and -P suffixes, respectively). Opt-STP-S and
Opt-Unf-S follow the structure of the sequential B&B algorithm depicted in Al-
gorithm 5.1. They are primarily used to assess the effectiveness of the proposed
bounding functions, and as a baseline to quantify the scalability of the correspond-
ing parallel version.

All these B&B algorithms have several things in common. First, they all use best-
first search. Second, the sequential and parallel algorithms for the same optimiza-
tion problem share the same bounding function and the same heuristic approach to

88 Chapter 5. PBBCache

3 4 5 6 7 8
Application count

1.0

1.2

1.4

1.6

1.8
M

ax
. n

or
m

al
ize

d
un

fa
irn

es
s

Equal-Part
Opt-Unf
UCP
UCP-Slowdown

3 4 5 6 7 8
Application count

0.90

0.92

0.94

0.96

0.98

1.00

M
in

. n
or

m
al

ize
d

ST
P

Equal-Part
Opt-STP
UCP
UCP-Slowdown

Figure 5.4: Comparison of various approximate algorithms and the optimal solution.

determine the initial solution. Third, despite the fact that we identify four B&B
algorithms – for the sake of clarity in the explanation – two generic functions of our
simulator are used to implement them. Among other things, these two functions
accept as a parameter the bounding function to be applied and a flag that indicates
whether it is a maximization or minimization problem. This allows us to implement
the Opt-STP-P and Opt-Unf-P algorithms by invoking a single generic function;
the same applies to Opt-STP-S and Opt-Unf-S. Note that this also makes it easier
to extend the PBBCache with support for optimal cache partitioning under other
optimization objectives (e.g., energy efficiency minimization).

In the remainder of this section we first discuss the approach to determine the
initial solution (Section 5.5.1), and then proceed to present the bounding functions
we use for the Opt-STP and Opt-Unf optimization problems (Section 5.5.2). Next,
we describe the generic distributed-memory parallel approach used by Opt-STP-P
and Opt-Unf-P (Section 5.5.3). Finally, we discuss different strategies to determine
the solution of the optimal cache-clustering problem (Section 5.5.4).

5.5.1. Initial solution for B&B

To find a suitable strategy to determine the initial solution in the B&B algo-
rithms, we considered 3 simple partitioning approaches: Equal-Part, UCP and
UCP-Slowdown. The first two schemes were described in Section 5.3.4; UCP-
Slowdown is a variant of UCP [153] that uses per-application slowdown tables (i.e.
slowdown for different number of ways) instead of per-application MPKI tables.
In using slowdown tables, UCP-Slowdown attempts to minimize the summation of
slowdown across applications, by considering exclusively the performance degrada-
tion that comes from cache sharing.

Figure 5.4 illustrates how the three approaches perform relative to the optimal
solution for the Opt-STP and Opt-Unf optimization problems when using workloads
with different application counts. Each point in the chart represents the worst
value obtained for the metric in question (normalized Unfairness or STP) across
10 randomly generated workloads with the same application count (indicated on
the y-axis). In light of the results, we opted to choose UCP to obtain the initial

5.5 Determining the optimal solution 89

[]

[1] [2] [3]

[1,1] [1,2] [1,3]

[1,1,1] [1,1,2] [1,1,3]

[1,1,1,3] [1,1,2,2] [1,1,3,1]

[1,2,1] [1,2,2]

[1,2,1,2] [1,2,2,1]

[1,3,1,1]

[2,1] [2,2]

[2,1,1] [2,1,2]

[2,1,1,2] [2,1,2,1]

[2,2,1,1]

[3,1,1,1]

Figure 5.5: Search space tree for the optimal cache-partitioning problem with 4 applications and
6 ways. Equation 5.5 indicates the different cases to be considered in expanding each node based
on W (remaining ways) and N (remaining applications). A node has only one child (leaf) when
W=N or N=1. Otherwise it has as many as W−N+1 children, that come from inserting a
number ∈ {1 .. W−N+1} at the end of the node’s list.

solution in the Opt-Unf-S and Opt-Unf-P B&B algorithms, as it exhibits the closest
behavior to the solution of the Opt-Unf optimization problem. By contrast, for the
Opt-STP-S and Opt-STP-P algorithms we employ UCP-Slowdown instead, as the
STP it provides is in less than a 0.3% range of that of Opt-STP, thus clearly
outperforming the other approaches. Note that both UCP and UCP-Slowdown,
employ the lookahead algorithm, which, as reported in [153] has a worst-case time
complexity of W 2

2
, where W denotes the total number of cache ways.

5.5.2. Bounding functions

Before describing the bounding functions, we introduce the notation used to rep-
resent solutions in the optimal cache-partitioning problem. Figure 5.5 shows the
corresponding search-space tree for 4 applications and 6 ways. The leaf nodes of
the tree represent the complete, feasible solutions available; intermediate nodes rep-
resent partial solutions. For simplicity, each solution is represented as a list where
each i-th item indicates the number of ways allotted to application i. So for exam-
ple, the solution associated with the leftmost node of the tree is [1,1,1,3], namely,
the first three applications in the workload get 1 way and the last one gets 3.

Henceforth, we will refer to the bounding function used by the OPT-STP-S/P
algorithms as bound stp, and to that of the OPT-Unf-S/P algorithms as bound unf.
Both bounding functions accept as a parameter the partial solution (PS) associated
with the node being explored, as well as the number of remaining ways to assign
(R). The bound stp function determines an upper bound of the STP value for the
best solution for throughput reachable from PS; bound unf provides a lower bound
of the Unfairness metric for the best solution for fairness reachable from PS. Several
factors make determining these bounds a very complex problem. First, both metrics
(see Section 3.3.1) are defined in terms of the slowdown of each application in a
workload. Note that an application’s slowdown depends on both the number of
cache ways allotted to it, and on the degree of bandwidth contention on the system,
which, in turn, varies with the distribution of the remaining cache ways among
the rest of applications in the workload. Second, determining the fraction of the
slowdown that comes from bandwidth contention alone entails solving the set of
non-linear equations of our model (Equations 5.8 and 5.9). In our setting, this may

90 Chapter 5. PBBCache

take hundreds of milliseconds, so exploring multiple candidate solutions reachable
from PS to determine a bound is largely impractical; the costly bandwidth model
would have to be applied multiple times (one for each candidate solution) thus
incurring the associated overhead.

In defining the bounding functions, we rely on the observation that the slowdown
of an application decreases as we assign more cache ways to it. Hence, the higher
the number of ways available on the platform (W), the higher the value of the
STP metric; a higher way count also contributes to reducing unfairness in most
cases. Due to the complexity of determining the bounds, coupled with the high
cost associated with the bandwidth model evaluation, we opted to relax the cache
partitioning problem (just for this purpose) by removing the constraint on the total
number of ways that can be allotted. Specifically, both bounding functions rely
on determining an ideal solution reachable from PS that optimizes STP. The ideal
solution is a feasible solution for the relaxed cache-partitioning problem, where the
total number of ways assigned to the applications may be greater than W .

The ideal solution is obtained by allotting each and every application not considered
in the partial solution PS, the maximum amount of ways found in any feasible
solution reachable from PS. Specifically, let S be the number of applications to be
considered for the distribution of those remaining ways. In any possible distribution
of R ways, any application gets R − S + 1 ways at the most. Hence, the ideal
solution results from completing PS by assigning R− S + 1 ways to the remaining
R applications. For example, let us consider a system consisting of a 10-way LLC
and a workload made up of four applications. For PS=[3,2], the ideal solution
would be [3,2,4,4].

The upper bound provided by bound stp is the STP value of that ideal solution. To
determine a lower bound in bound unf for the Unfairness metric –defined in Equa-
tion 3.1– we have to follow a different approach. A trivial lower bound L for a node
can be obtained as follows: L = M

m
, where M and m are the maximum and mini-

mum slowdowns, respectively, observed across applications in PS (partial solution
of the node). The unfairness of any solution reachable from PS will be ≥ L since,
in assigning ways to the rest of applications, the new maximum slowdown will be
≥M and the new minimum slowdown will be ≤ m. Notably, bound unf determines
a less optimistic lower bound L’ defined as M ′

m
, where M ′ is the maximum slowdown

found in the aforementioned ideal solution (i.e., PS filled with R − S + 1 values).
Note that L′ ≥ L, and L′ is still a lower bound, as the ideal solution guarantees
the lowest possible slowdown for the remaining applications, hence minimizing the
ratio, as we keep the same denominator m.

Despite the simplicity of the bounding approach, our experimental results in Sec-
tion 5.6.3 reveal that the bound stp and bound unf functions lead to very effective
pruning. Moreover, because the bandwidth model has to be evaluated just once,
the approach is affordable in terms of computational cost.

5.5 Determining the optimal solution 91

5.5.3. Parallel distributed-memory B&B algorithms

The Opt-STP-P and Opt-Unf-P algorithms follow the same parallel strategy. For
the sake of simplicity in the explanation, we describe the strategy assuming a min-
imization problem, as it is done in [50].

We begin by discussing the main challenges that arise in attempting to solve the
Opt-Unf and Opt-STP problems via parallel B&B. First, as shown in Figure 5.5,
the search space tree is largely unbalanced. A possible approach to parallelizing the
search consists in breaking down the full tree into subtrees – preferably with a similar
node count, and processing these subtrees in parallel. However, this approach
does not necessarily provide good scalability due to the unpredictable effect of
pruning; the number of nodes of a particular subtree that ultimately have to be
processed depend on the pruning effectiveness in that area of the search space.
Therefore, considering an entire subtree as the work unit for parallel processing
does not constitute a good approach, as it leads to load imbalance. Secondly,
calculating the cost of a solution (leaf node of the tree) or determining the lower
bound of any node entails solving the set of non-linear equations of the bandwidth
model, which, as stated earlier, may have a substantial overhead (in the order of
hundreds of ms.). Note that when processing a node of the tree, these tasks usually
have to be performed several times. Because this kind of processing by itself has
substantial computational load, treating one individual node (rather than a subtree)
as the work unit for parallel computation constitutes a promising approach. Our
strategy is based on this idea.

Our implementation uses a distributed-memory master-slave pattern. The work
unit to be processed by slave processes is the subnode; we use this term to denote
the processing that has to be done for a subset of children of a certain node in
the tree. Recall that in processing a node, the B&B method has to determine the
lower bound for all of its children; children nodes with a lower bound greater than
the upper bound are pruned, and the remaining nodes are either considered when
updating the upper bound (leaf nodes) or left for further processing. We observed
that using the node as the work unit leads to load imbalance, as the higher the
number of children – which largely varies across nodes of the tree – the higher the
computational cost associated with processing the node. To overcome this problem,
we divide the node-level processing into groups of children, each one with a children
count not greater than max children – a configurable parameter of our algorithm.
Specifically, a node consisting of C children is divided into d C

max children
e subnodes.

Breaking down the node-level processing in this manner allows us to create smaller
tasks with similar granularity, which enable a more even distribution of the work
especially when pruning is working very effectively (just a few nodes to process). To
illustrate this fact, Figures 5.6a and 5.6b show the task granularity that comes from
using the node and the subnode as the work unit. Clearly, using subnodes leads
to a higher number of smaller, more uniform tasks. This contributes to reducing
load imbalance and improves performance. The default value of the max children

parameter is 3, which makes it possible to obtain fine-grained tasks but with enough
computational load so that it is worth it to send them to slaves for processing even

92 Chapter 5. PBBCache

1

2

3

4

0 s 7.12 s

(a) Node-based processing

1

3

4

0s 5.41s

2

(b) Subnode-based processing

Figure 5.6: Traces for Opt-STP-P obtained with Paraver [33] (6 applications and 4 slave processes).
Tasks in blue denote node (a) and subnode (b) processing; idle periods appear in gray; light-green
tasks represent the parallel initialization of the subnode queue.

on a different computing node, like the setting explored in Section 5.6.

Algorithm 5.3: Simulator’s master B&B code.
Input: A is the workload considered for cache partitioning, W is the number of cache ways

available on the platform, slave count is the number processes in slave pool

1 incumbent← initial solution for A provided by heuristic algorithm (see Section 5.5.1)
2 upper bound← incumbent.Cost();
3 U ← slave count ∗ initial load ; queue limit← slave count ∗ 2 ; pending ← []; prio q ← []
4 Send A and other global data to slave pool

// Initialization of the subnode queue (prio q)
5 NS← unroll a number of nodes no smaller than U from A’s tree via breadth-first traversal
6 Calculate lower bound in parallel for each node Ni ∈ NS using slave pool
7 Remove nodes from NS whose lower bound≥ upper bound (those will not be processed)
8 foreach node ni in NS do prio q.concat(break into subnodes(ni,W,max children)) end

9 while !prio q.isEmpty() || !pending.isEmpty() do
// Submit subnodes to the slave pool asynchronously

10 while !prio q.isEmpty() && len(pending) ≤ queue limit do
11 subnode← pop highest prio subnode from prio q
12 ptask ← slave pool.async submit(subnode, subnode.lower bound)
13 pending.append(ptask, subnode.lower bound)
14 end
15 completed tasks← Remain blocked until at least one task in pending list completes
16 (local ub, local inc)← (upper bound, incumbent)

// Retrieve remote upper bounds (ZeroMQ), update and prune if necessary
17 (incumbent, upper bound)← process remote info(prio q, pending, local ub, local inc)

// Process completed tasks
18 foreach ti in completed tasks do
19 foreach subnode sj in ti.promising child subnodes() do append sj to prio q if

sj .lower bound < upper bound end
20 Remove ti from pending
21 end
22 end

Algorithms 5.3 and 5.4 outline the behavior in a minimization B&B of the master
process and the subnode processing by a slave. The master submits subnodes to
the slave pool; upon completion of a subnode processing request the slave process
returns a list of promising child subnodes back to the master – to be processed later.
The distributed algorithm terminates when there are no subnodes left to process.
Because master and slave processes do not share memory, each process keeps a
local copy of the upper bound; when any process finds a better solution, the new
identified upper bound is notified to the rest of the processes by using the publish-
subscribe communication pattern of the ZeroMQ messaging library [7]. Specifically,
each process acts as an independent publisher and, in turn, is subscribed to the
notifications issued by the remaining processes. Upon receiving a notification, if
the remote upper bound is better than the local one, the process updates the local

5.5 Determining the optimal solution 93

Algorithm 5.4: Simulator’s slave B&B code for subnode processing.
Input: A: workload considered for cache partitioning; W is the number of cache ways available

on the platform; subnode to be processed, LB: lower bound of subnode. (Note that
upper bound and incumbent are global variables, but local to each slave process)

1 promising ← [] // Initialize list of promising subnodes to be returned to master
2 if subnode.isSolution() || subnode.ReachableSolutions() == 1 then
3 (solution, cost)← subnode.getSolution()
4 if cost < upper bound then
5 (incumbent, upper bound) ← (solution, cost)
6 zeromq publish(incumbent, upper bound)
7 end
8 else
9 foreach child in subnode.getChildren() do

10 (local ub, local inc)← (upper bound, incumbent)
// Retrieve remote upper bounds (ZeroMQ), update and prune if necessary

11 (incumbent, upper bound)← process remote info(promising, [], local ub, local inc)
12 if LB > upper bound then return []
13 if child.isSolution() || child.ReachableSolutions() == 1 then
14 (solution, cost)← child.getSolution()
15 if cost < upper bound then
16 (incumbent, upper bound) ← (solution, cost)
17 zeromq publish(incumbent, upper bound)
18 end
19 else
20 lower bound← bounding function (child);
21 child.setLowerBound(lower bound);
22 if lower bound < upper bound then
23 (incumbent, upper bound) ← (solution, cost)
24 promising q.concat(break into subnodes(child,W,max children))
25 end
26 end
27 end
28 end
29 return promising

94 Chapter 5. PBBCache

upper bound, which will be used for pruning from then on. Note that using ZeroMQ
for this task provides a simple and efficient implementation, and does not create
additional library dependencies for our simulator, as ipyparallel’s implementation
already relies on ZeroMQ.

As it is shown in Algorithm 5.3, the master process maintains a priority queue of
subnodes yet to be submitted (line 8), and a list with pending subnodes currently
being processed by slaves (line 13). Subnodes in both data structures are sorted
in ascending order by its lower bound, so as to perform pruning operations more
efficiently. To follow a best-first approach, the most promising subnode, located at
the front of the queue is submitted first. When the upper bound is updated in the
master process unpromising subnodes in the queue are simply pruned by removing
them from the queue (line 17). The master may also prune unpromising subnodes
being currently processed by slaves; the corresponding task in the slave process is
immediately cancelled remotely and the associated subnode is removed from the
pending list (line 20).

As shown in Algorithm 5.3, the master process continuously submits subnodes to
the slave pool asynchronously. The load balancing algorithm of the ipyparallel
framework [10] automatically maps work to specific slaves so as to balance the load
in the slave pool. The submission of subnodes is temporarily stalled by the master
when the total number of subnodes being processed by slaves exceeds twice the num-
ber of slave processes. We found that increasing the number of pending subnodes
beyond that point leads to submitting a higher number of potentially unpromising
subnodes, that would have been otherwise pruned locally by the master, rather
than cancelled. This degrades performance as it may keep slave processes busy for
a longer period of time doing useless work. Conversely, considering fewer pending
subnodes causes slaves to go idle more frequently, as they wait more often for the
master to submit new work, thus negatively impacting scalability. Therefore, our
choice of the maximum number of pending tasks provides a good trade-off between
pruning effectiveness and scalability.

Finally, we zoom in on the initialization of the subnode queue (lines 3-8 – Algo-
rithm 5.3). A simple way to initialize it would be to insert the root node of the
tree only, as done in the sequential algorithm depicted in Algorithm 5.1. However,
using this approach here degrades scalability substantially as it does not keep all
slave processes busy from the beginning of the execution. Specifically, it takes some
time to expand enough subnodes to make this happen. Our algorithm instead un-
rolls a certain number of tree nodes via breadth-first traversal (line 5). In doing
so, the master builds a list of nodes that belong to a certain level of the tree l
or to two consecutive levels (l and l + 1); nodes in the upper levels of the tree
(< l) are automatically discarded by the B&B algorithm so as to remove the sub-
stantial overhead associated with the evaluation of the bounding function in the
master process. Nodes on the list are submitted to slave processes so as to compute
their lower bound in parallel; nodes whose lower bound is higher than the upper
bound are pruned. Finally, promising nodes are broken down into subnodes (line
8), which are used to populate the queue. Note that the number of nodes unrolled
is no smaller than initial load ∗ slave count, where slave count denotes the

5.6 Experiments 95

number of slave processes, and initial load is a configurable parameter of the
algorithm, whose default value is 2. That value typically ensures that the queue is
initialized with enough subnodes to keep slaves busy.

5.5.4. Determining the optimal cache-clustering solution

To determine the optimal clustering for a workload A, we must consider all cluster
sets of A. For each cluster set, the optimal distribution of the cache space among
clusters must be determined. The optimal solution is the best one observed across
cluster sets.

In this problem, each possible cluster set can be explored in parallel. In turn, we
may also exploit parallelism to determine the optimal cache partitioning for a given
cluster set. Exploiting these two complementary levels of parallelism, however, is
not possible with ipyparallel, as nested parallelism is not currently supported. PB-
BCache implements a master-slave algorithm that evaluates multiple cluster sets in
parallel. The master generates every possible cluster set for the workload and sub-
mits them to the slave pool for processing by leveraging a mechanism to restrict the
number of pending tasks similar to the one described in Section 5.5.3. Slaves em-
ploy the Opt-Unf-S or Opt-STP-S algorithms to sequentially determine the optimal
cache partitioning for a given cluster set under the fairness and STP optimization
objectives, respectively. Finally, it is worth highlighting that the exploitation of the
outermost level of parallelism (what we do here) is generally more effective than
considering the inner one, because in many of the cluster sets that must be explored,
the corresponding search space tree for the optimal cache-partitioning problem is
very small. Processing these small trees in parallel does not bring substantial per-
formance gains relative to doing it sequentially.

5.6. Experiments

5.6.1. Experimental Setup

In this chapter we turned to platforms Broadwell-EP and Skylake for the simula-
tor’s validation, since they are the only ones that support cache partitioning (via
Intel CAT technology). To preserve comparability among platforms, all experi-
ments were conducted with workloads of up to 8 applications, as it is the maximum
number of cores of platform Broadwell-EP. Besides, we experimented with platforms
Haswell and SandyBridge-EP to assess the simulator scalability on machines with a
higher core count. Note that the experiments were performed with hyperthreading
(SMT) and turbo boost disabled. A full description of the platforms used in these
experiments can be found in Chapter 3).

96 Chapter 5. PBBCache

0.7 0.8 0.9 1.0 1.1 1.2
Real Unfairness

0.7

0.8

0.9

1.0

1.1

1.2
Si

m
ul

at
or

 U
nf

ai
rn

es
s

0.90 0.93 0.95 0.97 1.00 1.02 1.05 1.07 1.10
Real STP

0.90

0.93

0.95

0.97

1.00

1.02

1.05

1.07

1.10

Si
m

ul
at

or
 S

TP

(a) Broadwell-EP

0.7 0.8 0.9 1.0 1.1 1.2
Real Unfairness

0.7

0.8

0.9

1.0

1.1

1.2

Si
m

ul
at

or
 U

nf
ai

rn
es

s

0.90 0.93 0.95 0.97 1.00 1.02 1.05 1.07 1.10
Real STP

0.90

0.93

0.95

0.97

1.00

1.02

1.05

1.07

1.10

Si
m

ul
at

or
 S

TP

(b) Skylake

Figure 5.7: Real vs. simulator-provided values for the STP and Unfairness metrics on Broadwell-
EP (left) and Skylake (right), normalized to the results of the Equal-Part scheme.

5.6.2. Validation of the simulator

For the validation experiments we used 25 randomly generated workloads consist-
ing of 6 and 8 programs each. In building the workloads, which exhibit a different
degree of shared-resource contention, we used 25 different benchmarks from SPEC
CPU. For each workload we collected the STP and Unfairness values provided by
PBBCache for various partitioning algorithms: UCP [153], Yu-Petrov [195], Equal-
Part and KPart [58]. We also gathered the corresponding values for the optimal
solutions provided by PBBCache for the Opt-Unf and Opt-STP problems. To vali-
date these results we compared them with those observed when applying the same
partitioning statically on the real machine where the corresponding performance
information for the simulation was obtained (Broadwell-EP and Skylake).

For the experiments on the actual machine, we rely on the PMCTrack tool [160],
which makes it possible to establish per-process cache partitions from user-space on
systems equipped with Intel CAT. Essentially, prior to the execution of the workload
under a certain partitioning approach we run the simulator to retrieve the associated
cache partitioning provided by the algorithm, and map each application in the
workload to its corresponding partition. Note that, for simplicity, the partitions
remain the same (static) throughout the workload’s execution. We ensure that all
applications in the mix are started simultaneously and when one of them terminates
it is restarted repeatedly until the longest application in the set completes three
times. We then measure unfairness and STP, by using the geometric mean of the
completion times for each program.

5.6 Experiments 97

Figures 5.7a and 5.7b show the comparison of the real vs. simulator-provided val-
ues for the STP and Unfairness metrics on Broadwell-EP and Skylake, respectively.
Both metrics have been normalized to the results of the Equal-Part policy. We
observe that the Unfairness and STP values provided by the simulator closely
track those of the actual platforms. Specifically, the average error rate observed
on Broadwell-EP is 3% and 1% for Unfairness and STP respectively, and on the
Skylake is 2% and 0.4%. We found that the main reason behind the less accu-
rate simulations on Broadwell-EP has to do with inaccuracies in the bandwidth
model that became apparent for some bandwidth-intensive applications. In par-
ticular, these model inaccuracies are due to the fact that PBBCache was fed with
the average bandwidth registered across the execution to predict the slowdown due
to contention. In some cases, this average does not represent the benchmark be-
havior in certain program phases where we find spikes in bandwidth consumption
that are substantially higher than the average. Consequently, the actual slowdown
is underpredicted due to serious bandwidth contention in these cases, leading to
lower Unfairness and STP values. Additionally, the theoretical maximum memory
bandwidth on Broadwell-EP is 68.3GB/s, whereas on Skylake this bandwidth is
128GB/s. As a result, bandwidth contention is substantially higher on the first
platform and this issue contributes to exacerbate the previously discussed model
inaccuracies.

A potential way to address this issue, which did not prevent us from gathering good
predictions on Skylake, would be to make PBBCache aware of the different program
phases of bandwidth-intensive applications. Because phase transitions do not occur
at the same time in multiple programs, this would require to break down the whole
workload execution into stages of stable behavior across applications, and apply the
particular partitioning scheme on each stage. Unfortunately, this approach would
make it difficult to obtain a solution in a reasonable amount of time, which stands
in contrast with the main goal of the simulator: a tool for rapid prototyping and
evaluation. Note that to determine an exact solution the B&B algorithm for the
Opt-STP (or Opt-Unf) non-linear optimization problem would have to be invoked
for each execution stage one after another, as the progress each application makes
(which must be determined to detect the next phase change) depends in turn of the
partitioning applied in the previous stage.

Figure 5.8 shows the accuracy of the simulator predictions on Broadwell-EP and
Skylake for some representative workloads, which summarize the trends observed
in all our experiments. The results are reported separately for each individual par-
titioning scheme. Clearly, PBBCache is capable of capturing the relative benefit in
STP and Unfairness that a partitioning scheme obtains over the others, and enables
us to identify the best performing schemes in each scenario. Notably, dividing the
LLC into same-sized partitions (Equal-Part) does not constitute a good approach
regarding fairness or throughput, as, in doing so, we do not cater to the degree of
cache sensitivity of each application. For instance, when assigning the same cache
space to an application whose data can fit entirely on the private cache levels, you
are effectively removing it from the rest of the applications in the system that could
take a real advantage of this space. Even if the Yu-Petrov’s algorithm provides

98 Chapter 5. PBBCache

Equal-Part
Kpart

Opt-STP
Opt-UNF

UCP
Yu-Petrov

Simulator

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
0.5
0.6
0.7
0.8
0.9
1.0
1.1

No
rm

al
ize

d
UN

F

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
0.90

0.95

1.00

1.05

No
rm

al
ize

d
ST

P

(a) Broadwell-EP

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
0.5
0.6
0.7
0.8
0.9
1.0
1.1

No
rm

al
ize

d
UN

F

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
0.90

0.95

1.00

1.05

1.10

No
rm

al
ize

d
ST

P

(b) Skylake

Figure 5.8: Real vs. simulator-provided values for the STP and Unfairness metrics on Platforms
Broadwell-EP and Skylake, normalized to the results of Equal-Part.

5.6 Experiments 99

Application count 3 4 5 6 7 8
Number of nodes 357 2056 8295 24955 58071 106963

Table 5.1: Number of nodes of the search space tree for different workloads on Broadwell-EP.

better results in a few cases, the offline-collected bandwidth consumption measure-
ments do not prevent it from suffering from high fairness/throughput degradation
– remaining close with the naive Equal-Part approach for workloads V1,V6 and
V7. Moreover, we observe that UCP and KPart are more effective in general, but
are still far from the optimal cache-partitioning solutions Opt-Unf and Opt-STP
in most cases. As pointed out in previous work [171], cache-clustering policies can
outperform strict cache-partitioning policies. This is the case for workloads V9-V12
on Skylake, where the KPart cache-clustering policy provides better throughput and
fairness than Opt-STP and Opt-Unf.

5.6.3. Effectiveness of the bounding functions

One of the key aspects of the proposed B&B algorithms is the effectiveness of the
bound stp() and bound unf() bounding functions, described in Section 5.5.2, and
used for the Opt-STP and Opt-Unf problems, respectively. To compare the efficacy
of both bounding functions and analyse their impact in performance we randomly
built 66 workloads consisting of a number of applications that range between 3
and 8 (the core count of Broadwell-EP). Eleven workloads were considered for each
application count. For these experiments we fed PBBCache with data gathered on
Broadwell-EP where the number of possible solutions is substantially higher than
on Skylake (see Section 5.1.1).

Figure 5.9 shows the pruning rate and the completion time for the different workload
sets (one for each application count) and optimization metrics (i.e. STP and Un-
fairness) obtained by the Opt-STP-S and Opt-Unf-S sequential B&B algorithms.
The pruning rate is defined as the percentage over the total number of nodes in
the search space tree that were discarded by pruning. The results reveal that the
pruning rate largely depends on the nature of the workload. For example, for 3-
application workloads under Opt-STP-S, the pruning rate ranges between 65% and
94.7%. We also observe that, as we increase the number of applications in the work-
load, the variability decreases, and the average pruning rate improves substantially;
it is greater than 96.7% when the application count is >5. This indicates that the
effectiveness of the bounding functions increases with the problem size, which is a
good property of our proposed B&B algorithms.

As expected, the pruning rate has an enormous impact on the completion time. In
particular, the slight superiority of bound unf() over bound stp() for 6-8 applications
(see Figure 5.9a) leads to substantially smaller completion times due to pruning
(Figure 5.9b). Notably, because the number of nodes in the search space tree
– shown in Table 5.1 – grows exponentially with the application count, a small
increase in the pruning rate may have a significant impact on the completion time.

100 Chapter 5. PBBCache

3/STP
3/Unf

4/STP
4/Unf

5/STP
5/Unf

6/STP
6/Unf

7/STP
7/Unf

8/STP
8/Unf

65

70

75

80

85

90

95

100

Pr
un

in
g

Ra
te

 %

(a)

3/STP
3/Unf

4/STP
4/Unf

5/STP
5/Unf

6/STP
6/Unf

7/STP
7/Unf

8/STP
8/Unf

100

101

102

Co
m

pl
et

io
n

tim
e

(s
ec

on
ds

)

(b)

Figure 5.9: Pruning rate (a) and completion time (b) for sequential B&B algorithms under different
sets of workloads. Labels X axis, with format n/target indicate the number of applications in the
workload (n) in the corresponding set, and the optimization metric.

5.6 Experiments 101

1 3 5 7 9 11 13 15 17 19 21 23 25 27
Number of cores

0

5

10

15

20

25
Sp

ee
du

p
Linear Speedup
W36
W39
W40

(a) 6 applications

1 3 5 7 9 11 13 15 17 19 21 23 25 27
Number of cores

0

5

10

15

20

25

Sp
ee

du
p

Linear Speedup
W47
W49
W55

(b) 7 applications

1 3 5 7 9 11 13 15 17 19 21 23 25 27
Number of cores

0

5

10

15

20

25

Sp
ee

du
p

Linear Speedup
W56
W61
W66

(c) 8 applications

Figure 5.10: Scalability for different workload sets consisting of 6, 7 and 8 applications

Specifically, an increase of 0.5% of the pruning rate for an 8-application workload
can accelerate the execution by a factor of 2x. All in all, we observe that for the
workloads explored the Opt-Unf-S algorithm provides the optimal solution in less
than 2 minutes, and the Opt-STP-S algorithm in less than 9 minutes. Even though
this execution time is relatively low for a single workload, greater workload sizes
would exponentially increase the execution time. Hence, the quick evaluation and
prototyping of cache partitioning strategies would become largely impractical.

5.6.4. Scalability of the distributed-memory parallel B&B
strategy

To assess the scalability of proposed parallel B&B strategy on a single multicore
server we used Haswell (as shown in Table 3.2). Specifically, we focused on the
study of a subset of the workloads explored in Section 5.6.3 where the Opt-STP-S
effectiveness of the bounding function, along with the pruning, is not capable of
providing an optimal solution.

Figure 5.10 shows the speedup achieved with the Opt-STP-P algorithm for the
different application mixes explored (consisting of 6, 7 and 8 applications, respec-
tively) as we vary the number of cores from 1 to 28. As stated in Section 5.5.3, the
max children and initial load parameters of the algorithm were set to 3 and 2,
respectively. Note that the speedup is reported relative to the completion time of
the sequential B&B algorithm. The linear speedup was also included in the charts
for comparison purposes.

The results reveal that the maximum speedup registered is 25.2x (W55 with 28
cores), which corresponds to a parallel efficiency of 0.9. Overall, we also observe
that the speedup of our parallel approach gets closer to the linear speedup as the
workload size increases. This is a positive trend, since the parallel strategy becomes
more effective in utilizing multiple cores as the sequential B&B algorithm begins
to exhibit substantially longer completion times (up to 9 minutes as shown in Fig-
ure 5.9b for the STP metric). Hence, by leveraging parallelism on this platform
our proposed simulator is able to determine the optimal solution for any of these
workloads in less than 34s. Finally, we should highlight that the reason of the lower
scalability observed for 6-application workloads (Figure 5.10a) has to do with the
fact that at the end of the execution of the parallel algorithm the number of remain-
ing subnodes to process is smaller than the number of cores, leaving a few cores idle

102 Chapter 5. PBBCache

1 16 32 48 64
Number of cores

1
5
9

13
17
21
25
29
33
37
41
45
49
53
57
61
65

Sp
ee

du
p

Linear speedup
W56
W59
W61
W66

(a)
(b)

Figure 5.11: (a) Speedup for different workload sets using from one to four nodes (16 cores each)
on SandyBridge-EP . (b) Excerpt of the execution trace for W66 with 64 cores. Note that idle
periods are denoted in grey as in traces shown in Section 5.5.3

for a short time period of time. As the problem size increases (higher application
count) the fraction over the total execution affected by this imbalance scenario is
smaller, which provides better scalability. We next elaborate on this aspect as it
also becomes apparent in our multi-node experiments.

For the performance evaluation of the parallel simulator using multiple computing
nodes, we used a cluster consisting of four identical 16-core server system, each one
following the specifications of SandyBridge-EP. Figure 5.11a reports the speedup
observed for different workloads as we increase the number of cluster nodes from 1
to 4 (i.e. from 16 to 64 cores).

The results reveal that the parallel strategy is capable of obtaining substantial per-
formance gains relative to the sequential approach by effectively utilizing multiple
cores on different nodes. We also observe that the speedup achieved for up to two
nodes (32 cores) is very close to the linear speedup, but it drops slightly when using
3 or more nodes. Specifically, for three nodes (48 cores) the parallel efficiency for
the various workloads ranges between 0.8 and 0.87. We found that this trend is
caused by the issue of load imbalances described previously; as the number of cores
increase, some of them remain idle for a short period of time at the end of the exe-
cution due to the shortage of subnodes to process. Figure 5.11b illustrates this fact
by means of a sample execution trace of the algorithm with 64 cores. We observed
that in increasing the problem size, the speedup gets closer to its linear counterpart.
A potential approach to obtain higher scalability in maintaining the problem size
constant is to start using finer-grained subnodes as the algorithm begins to reach
the end of the execution. That would entail (1) maintaining a counter in the master
process that keeps track of the number of feasible solutions remaining to explore –
by leveraging Equation 5.5 – and (2) devising a policy to adjust the value of the
max children parameter dynamically as we get closer to the end of the execution.
We plan to implement that promising optimization as part of a future release of
our open-source simulator [68].

5.7 Conclusions 103

5.7. Conclusions

In this chapter we have presented PBBCache, an open-source [68] parallel simulator
written in Python whose primary goal is to enable rapid prototyping and evalua-
tion of cache partitioning and clustering policies. PBBCache allows researchers
to quickly compare novel approaches with the optimal solution or with existing
cache-partitioning schemes, making it possible to determine if a new approach is
promising even before starting its implementation in the system software and the
associated evaluation on real hardware, which can be a time-consuming task.

A key aspect of our simulator is the mechanism it employs to determine the rel-
ative performance degradation (i.e. slowdown) that an application suffers when
running simultaneously with others on a multicore system. This mechanism factors
in the slowdown that comes from contention on two critical shared resources: the
last-level cache and memory bandwidth. To account for memory bandwidth con-
tention we extended the model proposed in [136] with awareness on how sensitive
application performance is to a reduction of the available bandwidth. Evaluating
this model entails solving a set of non-linear equations, which is computationally
expensive, and makes determining the optimal cache partitioning that maximizes
system throughput or fairness a mixed-integer non-linear problem. To efficiently
solve these optimization problems by exploiting parallelism, PBBCache implements
a distributed-memory branch-and-bound (B&B) algorithm specifically tailored for
optimal cache partitioning. The load-balancing strategy coupled with the effective-
ness of the bounding functions specifically designed for the optimization problems
considered, gives rise to a scalable simulator that effectively utilizes multiple cores
on one or several computing nodes, as we demonstrate in our experiments.

For the validation of PBBCache’s simulation model we conducted experiments on
commercial platforms that support Intel CAT and Memory Bandwidth Monitoring.
Our analysis reveals that the simulator succeeds in identifying what partitioning
approach is the most effective for particular workloads. After all the insights ex-
posed in this chapter an important question arises, is this simulator helpful enough
to design a novel cache-partitioning policy?

104 Chapter 5. PBBCache

Chapter 6

LFOC: A lightweight
fairness-oriented cache clustering
policy for commodity multicores

In this chapter we show how we take advantage of PBBCache to guide the design
and implementation of LFOC, a Lightweight Fairness-Oriented Cache-clustering
OS-level policy. LFOC employs Intel CAT’s hardware extensions to dynamically
create a number of LLC partitions (clusters) based on the features of the workload,
and maps applications to different clusters by catering to their degree of cache
sensitivity and contentiousness. Our policy continuously monitors applications’
runtime metrics with hardware performance counters and classifies applications into
different categories based on cache behavior. The collected performance information
is used as input to an efficient clustering algorithm.

By proposing LFOC, we make the following contributions:

LFOC leverages a lightweight online mechanism to approximate the degree
of cache sensitivity of an application that avoids costly periodic monitoring
operations (i.e. measuring application performance for different cache sizes at
runtime) used by other approaches [58], whenever possible.

We conduct a theoretical analysis of the cache-clustering problem that opti-
mizes fairness for different workload scenarios. The insights from this analysis
revealed that the key to enforce fairness lies in identifying contentious cache-
insensitive (aka streaming) applications and confine them to a reduced set of
small cache partitions.

LFOC attempts to approximate the cache clustering enforced by the optimal
solution provided by PBBCache. So as to devote the vast majority of space
in the LLC to cache-sensitive applications.

We implemented LFOC in the Linux kernel and evaluated it on a real sys-
tem featuring an Intel Skylake processor. In our experiments, we compare

106 Chapter 6. LFOC

its effectiveness to that of two previously proposed policies –Dunn [171] and
KPart[58]–, which optimize fairness and throughput, respectively. Our analy-
sis reveals that LFOC is able to deliver up to a 20.5% reduction in unfairness
(9% on average) relative to Dunn (fairness-oriented clustering), and deliv-
ers higher throughput and fairness than every analyzed scheme for the vast
majority of the workload scenarios considered.

The remainder of the chapter is organized as follows. Section 6.1 presents back-
ground on cache partitioning and also discusses related work. Section 6.2 presents
the analysis of the optimal solution that motivates our proposal. Section 6.3 out-
lines the design and inner workings of LFOC. Section 6.4 covers the experimental
evaluation, and Section 6.5 concludes the chapter.

6.1. Background

6.1.1. Related Work

Many researchers have attempted to mitigate the contention problem in the LLC
via software and hardware techniques [205, 133, 124, 58, 171, 202, 161]. A large
body of work has addressed this problem via cache-partitioning or cache-clustering
approaches equipped with approximate algorithms [153, 195, 58, 137]. A recent
survey [133] discusses the most effective solutions available to target various opti-
mization objectives.

Cache partitions can be created on systems with specific hardware support (such
as Intel CAT) or by means of software-based solutions, most of which rely on page-
coloring [173, 193, 198, 170]. While page-coloring can be applied to off-the-shelf
multicore platforms [196] is known to be subject to a number of limitations, which
can be overcome by using hardware-based cache partitioning [171]. Among the
different hardware alternatives, the main differences essentially lie on how to manage
the number of ways for the different applications: some proposals are based on the
cache replacement policy [127, 102, 185] while others use set sampling and duplicate
cache tags to guide cache partitioning [153, 179]. In this work we propose an OS-
level (also extensible to the virtual machine monitor) cache-clustering scheme that
leverages hardware-based way-partitioning.

In the remainder of this section we discuss the cache-partitioning and cache-clustering
policies closer to our LFOC approach.

6.1.1.1. Cache partitioning proposals

One of the algorithms that has had major influence on the design of cache parti-
tioning algorithms is UCP, presented in Section 5.3.4, relies on hardware extensions
to determine per-application MPKI tables at runtime. Unfortunately, more than a

6.1 Background 107

decade later of the original proposal, these hardware extensions have not yet been
adopted in commercial platforms. Our LFOC approach relies on the lookahead
algorithm to distribute the vast majority of the space in the LLC among cache-
sensitive applications, by using the per-application slowdown tables (i.e., slowdown
for different number of ways relative to using the total way count) as input to the
algorithm instead of MPKI tables; this enables us to provide better system-wide
performance.

As we pointed out in 5.3.4, The Yu and Petrov [195] cache-partitioning algorithm
strives to reduce system bandwidth pressure. However, it relies on bandwidth
consumption measurements with different cache sizes gathered offline for the various
applications. As opposed to this approach, LFOC does not require offline-collected
application data to function.

6.1.1.2. Cache clustering proposals

More recently, different cache-clustering algorithms have been proposed [58, 171]
as a more flexible alternative to strict cache-partitioning. As pointed out in Sec-
tion 5.3.4, KPart is a partitioning policy based on hierarchical clustering that strives
to optimize throughput. This algorithm, heavily relies on the ability to determine
MPKI and IPC tables online for each application. By contrast, LFOC requires to
gather a smaller amount of performance information than KPart while avoiding to
perform costly cache way sweeps periodically, thus effectively reducing the sampling
overhead. Further details on this technique are specified in Section 6.3

Selfa et al. [171] propose the Dunn cache-partitioning policy, designed to improve
fairness. This strategy groups applications into clusters by applying the k-means
clustering algorithm, using the fraction of core stalls caused by L2 cache misses
incurred by the applications as the metric to guide clustering. In our experimental
platform this information can be obtained with the STALLS L2 MISS performance
counter event. We should highlight that this strategy does not strictly constitute a
pure cache-clustering approach as defined in Section 5.1.2, since the cache partitions
it creates may overlap with each other. This overlapping can create unpredictable
interactions between applications that belong to different clusters [58].

In our experimental evaluation, we compare the effectiveness of LFOC to the Dunn
and KPart approaches, and demonstrate that LFOC delivers higher reductions in
unfairness than these policies across the board. We should highlight that Dunn and
KPart are user-level clustering approaches, unlike LFOC, which was implemented
in the OS kernel. User-level solutions may incur higher overheads since they make
extensive use of system calls to access privileged resources such as performance
monitoring hardware and cache partitioning facilities, which are handled by the
OS. LFOC, by contrast, accesses these facilities directly via a lightweight kernel-
level API. Moreover, because using floating-point (FP) is problematic at the kernel
level [126], our implementation of LFOC is free of any FP operations, as opposed
to KPart’s [57], which heavily relies on it.

108 Chapter 6. LFOC

Table 6.1: Classification of applications based on cache behavior

Type Criterion

Streaming (Slowdown ≤ 1.03 and LLCMPKC ≥ 10)
in at least one way assignment, and
Slowdown < 1.06 in all way assignments

Sensitive If not streaming and Slowdown ≥ 1.05
for a number of ways ≥ 2

Light sharing Not streaming and not sensitive

6.2. Analysis of the optimal cache-clustering so-

lution

The design of our approach is inspired by the behavior of the optimal cache-
clustering solution that optimizes fairness. In this section we provide an analysis on
the optimal solution, which we could approximate for different workload scenarios
by using the PBBCache simulator [68].

To carry out our analysis with the simulator, we used performance counters to
gather the average value of different runtime metrics with varying cache sizes for
applications from the SPEC CPU2006 and CPU2017 suites running alone on a real
system featuring an Intel Skylake processor with an 11-way 27.5MB LLC. As well
referred to as platform Skylake, more information on this platform can be found in
Chapter 3. The offline-collected metric values, which correspond to the execution
of the first 150 billion instructions of the aforementioned benchmarks, are used as
input to the simulator. This information is used to determine the optimal clustering
solution for fairness, namely, the solution to the optimal cache-clustering problem
that obtains the optimal (minimal) unfairness value for the maximum throughput
(STP) attainable.

For our experiments we considered randomly-generated multiprogram workloads
including different number of SPEC CPU applications (from 4 to 16). According
to the performance data collected offline we classify applications into three classes
based on their degree of cache sensitivity and contentiousness: Cache-sensitive, light
sharing and streaming programs. At a high level, the cache-sensitive category is
used for those programs that experience significant performance drops as we reduce
the number of cache ways allotted to them; this is not the case for light sharing
and streaming applications. Streaming programs are characterized by exhibiting a
low slowdown for almost all way allocations, while incurring a high number of LLC
misses per cycle. Applications of this kind are cache insensitive, and typically act
as aggressor programs to cache-sensitive applications co-located on the same cache
cluster, as the performance of the latter can be degraded substantially. Light-
sharing programs are neither cache sensitive nor aggressive to others (the working
set typically fits in the per-core private cache levels). Table 6.1 summarizes the
criteria we followed to make this classification on our experimental platform, which
is based on two offline-collected metrics: the application slowdown –relative per-

6.2 Analysis of the optimal cache-clustering solution 109

1 3 5 7 9 11
Number of ways

1.0

1.2

1.4

1.6

1.8

S
lo

w
do

w
n

0

10

20

30

40

50

L
L

C
m

is
se

s
p

er
1k

.
cy

cl
es

lbm-Slowdown
lbm-LLCMPKC
xalancbmk-Slowdown
xalancbmk-LLCMPKC

Figure 6.1: Slowdown and LLCMPKC for different way counts

formance with respect to using the entire LLC space– and the number of LLC
Misses Per Kilo Cycles (LLCMPKC). Figure 6.1 illustrates the behavior differences
of a streaming application (lbm) and that of a cache-sensitive one (xalancbmk). It
highlights how the slowdown and the LLCMPKC varies with the amount of ways
allocated to each application.

After a thorough analysis of the optimal cache-clustering and optimal cache-partitioning
solutions provided by the simulator for the various workloads, we draw the following
major insights:

In most cases, the cache-clustering solution that optimizes fairness isolates
all streaming applications in a reduced set of ways (no greater than 2 in any
workload). In many scenarios, a single 1-way cluster is used to confine all
streaming programs.

This same solution maps light-sharing programs onto different clusters follow-
ing a hardly predictable pattern. More importantly, by conducting additional
analyses with the simulator, we observed that moving individual light-sharing
applications to different clusters has very little impact on throughput and
fairness.

As expected, the amount of ways assigned to cache-sensitive applications is
critical for both throughput and unfairness. Recall that the unfairness metric
factors in the maximum slowdown observed across applications in the work-
load, and sensitive benchmarks typically experience a very high performance
degradation if their cache size requirements are not fulfilled.

The benefit that comes from assigning separate cache partitions (even op-
timally) to individual applications decreases dramatically as the number of
applications gets closer to the number of cache ways. As an illustrative ex-
ample, Figure 6.2 shows the average unfairness delivered by the optimal par-
titioning solution, normalized to that of the optimal clustering solution for

110 Chapter 6. LFOC

4 5 6 7 8 9 10 11

Number of applications

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

U
n

fa
ir

n
es

s

Optimal clustering

Optimal partitioning

Figure 6.2: Comparison of optimal clustering vs optimal partitioning.

different workload sizes. As observed, optimal cache-partitioning suffers from
increased unfairness as the workload size grows. When the application count
matches the number of ways, each application can be assigned only one way
under strict cache-partitioning – this is the only feasible option, which gives
rise to high unfairness in most workloads. Our overarching conclusion is that
cache-clustering policies are clearly superior to cache-partitioning approaches
as the ratio of the number of ways to the number of applications decreases.

To further illustrate the general behavior of the optimal clustering solution, Fig-
ure 6.3 reports the average application count per cluster size, as well as the total
number of clusters –grouped by its size (in ways)– that the solution builds for a
subset of the workloads we explored: 20 randomly selected program mixes made
up of 10 applications each. The data reported in the figure confirms the first three
aforementioned observations. First, streaming applications are typically confined in
clusters with just one way allocated to them. In relative numbers, more than 87%
of streaming application instances are assigned to this kind of clusters, while the
remaining ones are allocated to 2-way clusters. Second, we can observe that light
sharing applications are mapped to clusters with very different size; however, the
vast majority of these programs are mapped to 1-way clusters. Third, the results
reveal that cache-sensitive applications are predominantly present in big cache clus-
ters. Specifically, more than 77% of the sensitive application instances are assigned
to clusters with 4 or more ways. Finally, as is evident, 1-way clusters with a high
number of applications are often present in the optimal solution for the various
workloads.

6.3. Design and Implementation

In this section we begin by describing how our clustering algorithm works at a high
level. Then we proceed to indicate how applications are classified at runtime by
leveraging data from hardware performance monitoring counters.

6.3 Design and Implementation 111

1 2 3 4 5 6 7 9 10

Cluster size (ways)

0

1

2

3

4

5

A
ve

ra
ge

ap
p

lic
at

io
n

co
u

n
t

Light

Streaming

Sensitive

0

5

10

15

20

25

C
lu

st
er

co
u

n
t

Cluster count

Figure 6.3: Cluster count and breakdown of applications into the different categories for each
cluster size.

6.3.1. Algorithm outline

LFOC has been implemented on Linux as an extension of the OS scheduler. Specif-
ically, it has been bundled in a loadable kernel module as a monitoring plugin of
the PMCTrack tool [160], described in Section 3

LFOC classifies applications at runtime into three classes based on its cache behavior
–light sharing, streaming and sensitive– and assigns each application to a certain
cache partition whose size is determined dynamically based on the properties of the
workload.

When an application enters the system its cache behavior is unknown. To this end,
a special unknown class is assigned to the application right after being spawned.
At the beginning of the execution, each thread has to go through a warm-up period
(3 sampling intervals in our experimental setting). Any performance information
gathered with hardware counters during the warm-up period is not used to classify
applications, so as to mitigate mispredictions associated with cold-start effects.

Periodically, our scheduling extension activates the partitioning scheme depicted
in Algorithm 6.1, which relies on the conclusions of the analysis presented in Sec-
tion 6.2. Overall, the algorithm reserves up to two cache ways to map streaming
programs. The remaining cache ways are distributed among cache sensitive appli-
cations, which are then assigned to separate cache partitions. The size of these
partitions is determined by means of the lookahead algorithm [153], using as in-
put the slowdown curve for each application built by using IPC values obtained
online (i.e., slowdown registered for different cache ways). With this cache-way
distribution for cache-sensitive applications, LFOC attempts to fulfil their cache
requirements based on the degree of cache sensitivity. Finally, light sharing ap-
plications are distributed among the various partitions, by attempting to populate
partitions with streaming applications first, as the optimal solution typically does.

112 Chapter 6. LFOC

Algorithm 6.1: Cache-clustering algorithm used by LFOC
Input: ST , CS, and LS represent the sets of streaming, cache-sensitive and

light-sharing applications, respectively; max streaming way and
gaps per streaming are configurable parameters of LFOC (default value
5 and 3, respectively), nr ways is the number of ways of the LLC.

1 function LFOC partitioning(ST ,CS,LS,nr ways):
2 if |CS| == 0 then
3 Create a single cluster S consisting of nr ways;
4 Map all applications in ST ∪ LS to S;
5 return {S}
6 end
7 Clusters← ∅;
8 ways for streaming ← min(2, |ST |/max streaming way);
9 r = d|ST |/ways for streaminge;

10 for i← 1 to ways for streaming do
11 Add a new 1-way cluster C to Clusters;
12 Map up to r apps from ST to C;
13 Remove assigned apps from ST ;
14 end
15 { Use slowdown tables of CS apps. as input to lookahead }

W ← lookahead(CS, nr ways− ways for streaming);
16 for i← 1 to |CS| do
17 Add a new cluster C with W [i] ways to Clusters;
18 Map application i in CS to C;
19 end
20 idx← 0;
21 while |LS| > 0 and idx < ways for streaming do
22 TargetC ← Clusters[idx] ;
23 gaps available← r − |TargetC| ∗ gaps per streaming;
24 if gaps available > 0 then
25 Map up to gaps available apps from LS to TargetC;
26 Remove assigned apps from LS;
27 end
28 end
29 Distribute remaining applications in LS in a round-robin fashion among

non-streaming clusters;
30 return Clusters

6.3.2. Application Classification

Once the warm-up period for a particular application has finished, LFOC enters
a sampling mode whose goal is to determine the application class based on its
performance sensitivity to the amount of space assigned in the LLC. This is crucial
to decide on the share of the total cache space to be allotted to the application, as
well as to determine what co-runners in the workload (if any) must be assigned to
the same cache partition [133].

The sampling mode is inspired by the technique proposed in [58], which operates as
follows. Two non-overlapping complementary cache partitions covering the entire
LLC space are created; the first one, referred to as the sampling partition, is re-
served for the application that triggered the transition into sampling mode, and the
other one is devoted to the remaining applications. To determine the application
class –based on the classification criteria presented in Section 6.2– the value of var-

6.3 Design and Implementation 113

Figure 6.4: LLCMPKC captured at the beginning of the execution of fotonik3d.

ious hardware events (i.e., number of instructions retired, cycles and LLC misses)
is gathered with PMCs as we vary the size of the sampling partition. Notably,
for sensitive applications we also obtain the slowdown curve, which is required to
create partitions for these applications, as depicted in Algorithm 6.1. Once the sam-
pling process terminates, LFOC transitions back into the normal operating mode
described earlier.

In the original approach [58], the size of the first partition is varied from the number
of ways minus one to 1, whereas the size of the other partition (complementary) in-
creases accordingly. This full sweep is required by the dynamic version of the KPart
clustering approach [58], which relies on the ability to accurately determine the IPC
and the number of LLC Misses Per Kilo Instructions (LLCMPKI) for each way
count and for every application in the workload. We observed that this approach
introduces substantial overheads due to the fact that the cache assignment en-
forced during the sampling mode is typically suboptimal. The sampling application
receives a progressively smaller amount of cache space, while the remaining applica-
tions share a increasingly bigger cluster. This usually leads to performance/fairness
degradation especially when cache sensitive applications and streaming programs
are included in the workload.

To overcome these shortcomings, LFOC immediately puts a stop to the sampling
process –performed in the opposite direction (i.e. the size of sampling partition
increases gradually rather than decreasing)– in scenarios where varying the size
of the sampling partition further provides no useful information to the clustering
algorithm. Firstly, when the LLC miss rate falls below a certain low threshold,
performance does not increase much when allotting more cache space to the ap-
plication, so we expect IPC values –used to construct slowdown tables– to remain
very close beyond that point. Secondly, streaming applications typically exhibit
a very low increase in performance when granting more cache space to them. In
these scenarios, LFOC interrupts the sampling process and proceeds to determine
the application class. In practice, to successfully identify many streaming and light
sharing applications –whose slowdown curves are not needed by LFOC– only a few
way counts must be explored. When the sampling process is cancelled (due to the
first criterion) for a sensitive application, LFOC uses the last IPC sample gathered
to approximate the performance with higher way counts, which is necessary to build
the entire slowdown table.

Because an application may exhibit different program phases at runtime, the ini-
tial classification may not be representative throughout the execution. For example,

114 Chapter 6. LFOC

Figure 6.4 shows the behavior of the LLCMPKC metric of the streaming fotonik3d

application over time, where a short light-sharing phase precedes the streaming be-
havior that the program exhibits for the vast majority of the execution. Failing to
determine application classes accurately could lead to suboptimal cache-partitioning
for certain time periods, and hence to unfairness. Triggering the sampling mode pe-
riodically helps to mitigate this issue, but, unfortunately, it backfires by introducing
substantial overheads.

To determine application classes at runtime in a lightweight manner, LFOC trig-
gers a transition into the sampling mode only in the event that the application
class has likely changed. To this end, the OS continuously monitors for each appli-
cation the value of the LLCMPKC metric and the fraction of pipeline stall cycles
incurred due to long-latency memory accesses 1, and leverages a few heuristics to
capture class changes. In particular, a class change is signalled for a light sharing
application if it enters a memory-intensive phase, namely, the average LLCMPKC
measured over the last five monitoring periods exceeds a high threshold (10 in
our experimental setting, as reported in Table 6.1 for streaming-like behavior) or
the average fraction of long-latency memory-access stalls is greater than 25%. This
approach filters out spikes in the aforementioned metrics while effectively identi-
fies memory-intensive phases. Conversely, for streaming programs, which LFOC
typically assigns to cache clusters consisting of one way, the sampling mode is en-
gaged if its average LLCMPKC falls below a low threshold (defined as 30% of
high threshold). Finally, for sensitive applications, LFOC associates a critical
size, defined as the amount of cache space where the slowdown falls below 5%.
The critical size is determined during the last sampling period triggered by the
application. Essentially, a class change is signaled for sensitive applications when
they enter a stable non-memory intensive phase (inverse of the criterion presented
earlier for light-sharing applications) for effective cache allocations2 smaller than
the critical size, or when the average LLCMPKC is higher than high threshold

for an amount of cache space bigger than the critical size.

6.4. Experiments

To assess the effectiveness of our OS-level cache-clustering approach we implemented
it in the Linux kernel v4.9.160. For the experiments we used the Skylake platform.
The processor of this platform integrates an 11-way 27.5MB last level (L3) cache
that supports way-partitioning; each core features a 64KB L1 cache and a 1MB L2
cache (private levels). More details of this platform can be found in Chapter 3

On this platform we carried out a experimental comparison of LFOC with the
stock Linux kernel –it does not partition the LLC–, and with the Dunn [171] and
KPart [58] cache-partitioning policies, specifically designed to optimize fairness and

1approximated via the STALLS L2 MISS performance counter event, also used in [171].
2The amount of cache space used by an application is gathered by leveraging the Intel Cache

Monitoring Technology.

6.4 Experiments 115

as
ta

r0
6

bz
ip

20
6

ca
ct

ub
ss

n1
7

ca
ct

us
ad

m
06

de
ep

sj
en

g1
7

ex
ch

an
ge

21
7

fo
to

ni
k3

d1
7

ga
m

es
s0

6

ge
m

sf
dt

d0
6

go
bm

k0
6

gr
om

ac
s0

6

h2
64

re
f0

6

hm
m

er
06

im
ag

ic
k1

7

lb
m

06

lb
m

17

le
el

a1
7

le
sl

ie
3d

06

lib
qu

an
tu

m
06

m
cf

06

m
ilc

06

na
b1

7

na
m

d0
6

om
ne

tp
p0

6

om
ne

tp
p1

7

p
ov

ra
y0

6

p
ov

ra
y1

7

sj
en

g0
6

so
pl

ex
06

sp
hi

nx
30

6

to
nt

o0
6

xa
la

nc
bm

k0
6

xa
la

nc
bm

k1
7

xz
17

S1
S2
S3
S4
S5
S6
S7
S8
S9

S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11
P12
P13
P14
P15

0

1

2

N
um

b
er

of
instances

Figure 6.5: Multiprogram workloads used for our experiments. Each matrix cell indicates the
number of instances of a benchmark (x-axis) in a workload (y-axis)..

system throughput respectively. To perform a fair comparison with previous ap-
proaches we used a similar methodology as that described in the corresponding
articles [171, 58]. Essentially, we conduct experiments with HPC multiprogram
workloads consisting of a mix of single-threaded benchmarks from SPEC CPU, and
run each program for a fixed number of instructions (150 billion instructions in
our setting). Specifically, we ensure that all applications in the mix are started
simultaneously, and when one of them completes the corresponding instructions,
the program is restarted repeatedly until the longest application in the set com-
pletes three times. We then measure unfairness and STP (throughput), by using
the geometric mean of the completion times for each program.

Figure 6.5 depicts the composition of the 36 randomly generated workloads we used
in our experiments, which are made of benchmarks from the SPEC CPU2006 and
CPU2017 suites. Note that we selected applications from both suites to experiment
with a wider range of streaming and cache-sensitive programs, as most benchmarks
in both suites exhibit a light sharing, cache-insensitive execution profile on Skylake.
This is caused in part due to the coarse granularity of the cache partitions we can
create on this system: the smallest partition is as big as 2.5MB. We considered
workloads of 8, 12 and 16 applications each, so as to analyze the impact that the
workload size has on the fairness improvement achieved by each approach.

In this section we first evaluate the effectiveness of the cache-clustering algorithms
associated with the KPart, Dunn and LFOC policies. We then proceed to analyze
how well dynamic clustering techniques deal with the time-changing behavior of the
applications in different workloads.

6.4.1. Evaluation of Clustering Algorithms

Our goal is to measure the degree of fairness and throughput delivered by a certain
clustering strategy alone (i.e. how applications are grouped into shared or separate

116 Chapter 6. LFOC

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21
0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or

m
al

iz
ed

U
nf

ai
rn

es
s

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21
0.94

0.96

0.98

1.00

1.02

1.04

1.06

N
or

m
al

iz
ed

S
T

P

Stock-Linux Dunn KPart LFOC Best-Static

Figure 6.6: Normalized unfairness and STP values obtained by the static version of the various
clustering algorithms.

clusters according to their runtime properties) putting aside the associated over-
heads due to algorithm execution, performance monitoring and cache allocation.
We do account for these overheads in the experiments of the next section.

To assess the effectiveness of each clustering algorithm, we consider workloads con-
sisting of applications whose behavior falls in a clear class (cache sensitive, stream-
ing or light sharing) for the vast majority of the execution (Si workloads in Fig-
ure 6.5). For the analysis, we implemented the clustering algorithms used by KPart,
Dunn and LFOC on top of the PBBCache simulator, which accepts as input the
average value of various performance metrics gathered offline for different cache
sizes. To conduct the corresponding experiments, we launch the simulator prior
to the execution of each workload to retrieve the cache-partitions and application-
to-partition mappings imposed by a certain clustering strategy. Then, we enforce
the corresponding cache partitions on a per-process manner from user-space, using
the PMCTrack tool [160], and proceed to launch the workload, which will use the
same static cache configuration throughout the execution. For comparison pur-
poses, we have also gathered the results of an ideal cache-clustering policy, referred
to as Best-Static, which establishes the cache-partitions and application-to-cluster
mappings based on the optimal fairness solution determined by the simulator.

Figure 6.6 shows the degree of unfairness and throughput delivered by the different
clustering strategies; the values have been normalized to the results of Stock-Linux
(no cache partitioning). The results reveal that the Dunn approach, designed to
optimize fairness, exhibits a non-uniform behavior across workloads; for some pro-
gram mixes it is capable to reduce unfairness up to 15.5% , but for others it causes
substantial fairness degradation (by a factor of up to 1.14x) relative to Stock-Linux.
We found that this is due to its exclusive reliance on the STALLS L2 MISS perfor-
mance event; the higher the value of this event, the higher the number of cache
ways allotted by Dunn to the application [171]. More specifically, we observed
that some streaming (aggressor) cache-insensitive applications, such as GemsFDTD

or fotonik3d exhibit high values of this event, as their performance is greatly af-

6.4 Experiments 117

fected by memory accesses. These applications can be mapped together to the same
(or overlapping) cache partitions with highly sensitive programs, such as soplex

or omnetpp, for which the event reaches similar figures, leading to performance
degradation and unfairness. Based on this insight, we conclude that using the
STALLS L2 MISS event alone is not enough to drive fairness-aware partitioning poli-
cies.

We also observe that KPart’s clustering algorithm, designed to optimize throughput,
brings modest throughput gains3 in the workloads we explored (up to 3%). How-
ever, this approach does bring substantial unfairness reductions (8.6% on average).
Nonetheless, we observe that LFOC’s simpler and more lightweight partitioning
algorithm provide substantially better fairness than KPart for the vast majority
of the workloads (up to 27.3%, and 14% on average relative to Stock Linux). At
the same time, LFOC achieves higher throughput than KPart across the board,
and performs in a close range (1.8% on average) of the Best Static approach (our
approximation to the optimal policy in these workload scenarios).

6.4.2. Study of the dynamic policies

For the evaluation in this section we used our OS-level implementation of LFOC, and
also created a user-level implementation of Dunn, as it was originally proposed [171]
as a user-level cache-clustering policy. A good property of Dunn is the fact that
it only requires the continuous monitorization of the STALLS L2 MISS performance
event for the various applications over time. The simplicity of the Dunn approach
stands in contrast to the higher complexity of KPart, which relies on the ability to
accurately gather a substantial amount of performance information online for each
application (LLCMPKI and IPC values for every possible cache-way count) in order
to apply the clustering algorithm.

Table 6.2: Average execution time (in ms) of the KPart and LFOC algorithms

#Apps. 4 5 6 7 8 9 10 11

LFOC 0.00151 0.00154 0.00163 0.00174 0.00174 0.00182 0.00191 0.00216

KPart 0.51800 0.79600 1.21800 1.48100 2.01200 2.74200 3.32000 4.14000

In an attempt to evaluate the dynamic version of KPart –referred to as KPart-
Dynaway [58]– we considered the user-level implementation created by the au-
thors [57]. Unfortunately, this implementation, which consists of roughly 4K lines
of C++ code and makes intensive use of the Armadillo linear algebra library, was
specifically tailored to the hardware platform where the authors conducted the ex-
periments [58], and makes numerous assumptions that do not apply to our experi-
mental setting (e.g., the number of cache ways should be no smaller than the number
of applications in the workload). Due to these platform-specific assumptions and
other issues – as yet unidentified, the execution of KPart-Dynaway crashes shortly

3In the original paper [171], the authors report a 24% average increase in throughput on a
different platform, with workloads whose composition was not disclosed.

118 Chapter 6. LFOC

P1 P2 P3 P4 P5 S1 S2 S3 P6 P7 P8 P9 P10 S8 S9 S10 P11 P12 P13 P14 P15 S15 S16 S17
0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or

m
al

iz
ed

U
nf

ai
rn

es
s

P1 P2 P3 P4 P5 S1 S2 S3 P6 P7 P8 P9 P10 S8 S9 S10 P11 P12 P13 P14 P15 S15 S16 S17
0.94

0.96

0.98

1.00

1.02

1.04

1.06

N
or

m
al

iz
ed

S
T

P

Stock-Linux Dunn LFOC

Figure 6.7: Normalized unfairness and STP values delivered by the dynamic cache clustering
approaches

after the partitioning algorithm is executed for the first time, preventing us from
launching any of the workloads we considered for the evaluation. We leave for future
work the adaptation of this somewhat complex implementation for our platform,
and its complete evaluation. Nevertheless, to highlight the enormous difference be-
tween the complexity of KPart’s partitioning algorithm and the one used by our
approach for different number of applications, Table 6.2 shows the execution time
for both algorithms (compiled with aggressive optimizations) for different workload
sizes. We were able to gather that information from KPart’s implementation by
instrumenting the code of the partitioning algorithm that completes successfully
(for workloads with less than twelve applications) right before the program’s crash.
As it can be seen, LFOC’s execution time (2µs) is up to three orders of magni-
tude smaller than KPart’s, which can take over 4ms to complete for 11 applications
(slightly longer than the default timer tick in the Linux kernel). As we showed in
the previous section, this increased complexity does not enable KPart to provide
better fairness than our lightweight approach.

In our OS-level implementation of LFOC we sample performance counters every
100M instructions during the normal operation mode (see Section 6.3) and every
10M instructions during the sampling mode. Using a shorter instruction window
for the sampling mode makes it possible to reduce the time required to complete
sampling. Notably, we observed that in most cases full cache-way sweeps are not
required during LFOC’s sampling mode as the partitioning algorithm (as explained
in Section 6.3) does not require detailed per-way metrics for all applications, as
opposed to KPart. In our experiments, the partitioning algorithm for both Dunn
and LFOC is executed every 500ms, as this is the setting used in the original
evaluation of the Dunn approach [171].

Figure 6.7 shows the normalized unfairness and throughput values delivered by
the Dunn and LFOC (dynamic) approaches for different workloads. Note that
in this case, we considered additional program mixes (Pi workloads) that include
applications such as xz, astar, mcf or xalancbmk, which exhibit distinct long-

6.5 Conclusions 119

term program phases with varying degree of memory intensity. Some of these
applications go through highly cache sensitive phases, so Stock-Linux delivers higher
unfairness values in these scenarios. That is the reason why Dunn exhibits a slightly
fairer behavior under these circumstances relative to the scenario considered in the
previous section. Yet, LFOC is capable to provide better throughput than Dunn,
and improves fairness over Dunn across the board (up to 20.5% for P4, and 9%
on average). With respect to Stock-Linux, LFOC reduces unfairness by 16.7% on
average.

6.5. Conclusions

In this chapter we have presented LFOC, an OS-level cache-clustering approach
that leverages cache-partitioning support in Intel-CAT enabled multicore proces-
sors to improve fairness while maintaining acceptable throughput. LFOC classifies
applications into three categories according to their degree of memory-intensity and
cache sensitivity, and ensures that streaming aggressor benchmarks are confined to
small cache partitions so they are isolated from cache-sensitive benchmarks, which
are assigned an amount of cache space in accordance to its sensitivity. In doing so,
LFOC tries to mimic the behavior of the optimal cache clustering solution, which
we approximated by means of a simulator. We implemented LFOC in the Linux
kernel and assessed its effectiveness on a commercial multicore platform featuring
an Intel Skylake processor. Our experiments reveal that LFOC is able to deliver
an average 16.7% fairness improvement relative to stock Linux. At the same time,
LFOC clearly outperforms two other existing cache-clustering approaches, one of
which was specifically designed to deliver fairness [171].

Key aspects of LFOC are its lightweight clustering algorithm, the online heuristics
it leverages to classify applications online, and its ability to fairly share the space
on the LLC among applications by using limited monitoring information, which can
be obtained at runtime without collecting performance data for every possible way
count.

120 Chapter 6. LFOC

Chapter 7

Conclusions

Chip multicore processors (CMPs) have spread across a wide range of general-
purpose computing systems. Cores in a CMP typically share a last-level cache
(LLC) and other memory-related resources with the remaining cores, such as a
DRAM controller or an interconnection network. This may induce co-running ap-
plications to intensively compete for their use, leading to substantial and uneven
performance degradation. Despite the increasing core counts and cache sizes of ev-
ery new technological iteration, the issue of shared-resource contention, which has
been present since the advent of multicores, still poses a big challenge.

Previous research [205, 134] has proved that the system software can be extremely
useful in mitigating contention. This thesis tackles the negative effects of shared-
resource contention at the OS-level by taking advantage of scheduling and resource
management techniques, leveraging the specific features available on different mul-
ticore platforms.

One of the main proposals of this thesis focuses on Asymmetric single-ISA Multi-
core Processors (AMPs), which combine high-performance big cores with low-power
small cores. On these platforms contention not only comes from applications com-
peting for big core usage but also from the shared resources. Previous research
proposed asymmetry-aware schedulers that strived to optimize system throughput,
fairness and energy efficiency; nonetheless, none of these existing proposals take
shared-resource contention effects into account. To fill this gap, this thesis proposes
CAMPS, a contention-aware fair scheduler for AMPs that does not require spe-
cial hardware extensions or platform-specific prediction models to function. Our
scheduler accurately tracks the progress that the various threads of a workload
make when running on different core types, and enforces fairness by evening out
the progress across threads throughout the execution. Our main contributions to
contention-conscious scheduling for AMPs are as follows:

We conduct an exhaustive experimental study to assess the impact on con-
tention on real asymmetric multicore platforms that integrate high-performance
out-of-order big cores and low-power in-order small cores, where cores of the

122 Chapter 7. Conclusions

same type are grouped into clusters sharing a last-level cache (LLC). An im-
portant insight from our analysis is the fact that factoring in the contention
that arises on high-performance big-core clusters is fundamental when trying
to improve fairness and system throughput on AMPs.

We devised a novel runtime mechanism to predict the slowdown that a thread
in the workload experiences as it runs on the various cores of an AMP. Specif-
ically, our scheduler approximates the current slowdown by monitoring var-
ious runtime metrics via performance monitoring counters (PMCs), and by
comparing that information with the thread’s past history gathered in low
contention scenarios.

For the experimental evaluation of CAMPS, we employed the Intel QuickIA
prototype [43] as well as commercial ARM-based asymmetric multicore plat-
forms [19, 78]. We performed an extensive experimental comparison with pre-
viously proposed asymmetry-aware schemes [111, 164, 167]. The experiments
reveal that CAMPS outperforms the state-of-the-art fairness-aware scheme
for AMPs –the ACFS scheduler [167]– in both fairness and throughput. Be-
sides, we prove that CAMPS ensures consistent performance and repeatable
completion times for a wide range of application types, and also show that this
repeatability and consistency is not present under the default Linux sched-
uler (i.e. CFS) even with the HMP patch, which specifically extends CFS for
commercial AMP platforms.

In this thesis we also investigated how to reduce the negative impact of shared-
resource contention by leveraging cache-partitioning techniques. After years of
research on cache-partitioning [133], hardware manufacturers like Intel [142] or
AMD [12] finally added hardware support for partitioning the LLC in some of
their commercial multicore processors. To advance the state of the art on cache-
partitioning, we first tried to devise means to determine the optimal solution for
strict cache-partitioning (i.e., assigning a separate LLC partition to each applica-
tion) and for cache-clustering (i.e., creating separate LLC partitions, which may
be shared by several applications) considering different optimization objectives.
Previous work has pointed out that cache clustering (aka. partition sharing [32])
proves more effective than strict cache partitioning as the number of applications
increases [171], and especially on current CMPs, which support a reduced number
of coarse-grained cache partitions (i.e., in the order of megabytes). While parti-
tioning the cache optimally with separate LLC partitions for each application is
an NP-hard problem [133], determining the optimal cache-clustering solution adds
a new layer of complexity. After all, under cache-clustering a decision must be
made not only on how to best group applications into clusters, but also on how to
optimally distribute LLC space across clusters. This complexity coupled with the
exponential growth of the search space that increases with greater workload sizes,
makes its very difficult to obtain the optimal solution in a reasonable amount time.

To make it possible to efficiently determine the optimal solution (for both strict
cache-partitioning and cache-clustering), and to enable rapid prototyping and eval-
uation of cache partitioning and clustering policies, we developed the PBBCache

123

simulator. This open-source simulator [68] is equipped with parallel algorithms
that make it possible to obtain the optimal cache-partitioning and cache-clustering
solution for different optimization objectives. The ability to quickly compare novel
approaches with existing cache-partitioning schemes or with the optimal solution
is a key feature of PBBCache. In designing and evaluating the simulator we made
the following contributions:

PBBCache is equipped with a slowdown-prediction model enabling to deter-
mine the performance degradation that an application suffers due to cache-
sharing and memory-bandwidth contention. To approximate bandwidth con-
tention for a certain distribution of cache space across applications in a work-
load, we extended the probabilistic model proposed in [136] to factor in the
degree of sensitivity to bandwidth contention that an application has, which
does not depend on its effective bandwidth consumption only.

The optimal strict-cache partitioning problem (for both system throughput
and fairness optimization) constitutes a mixed-integer non-linear optimiza-
tion problem. To determine the optimal solution in a reasonable amount of
time, PBBCache implements a novel parallel branch-and-bound (B&B) solver
that effectively distributes the computation across cores on one or multiple
computing nodes. To the best of our knowledge, our proposal is the first par-
allel approach to solve the optimal cache-partitioning problem by factoring
in both cache-sharing and memory-bandwidth contention. Notably, we found
that state-of-the-art non-linear solvers [6, 2, 1, 5] fail to provide a solution to
this optimization problem.

A key design aspect of our B&B algorithm is the mechanism used to break
down the work to be done in parallel into tasks (referred to as subnodes) with
a similar computational complexity, which provides good scalability. The
effectiveness of the bounding functions we devised for various optimization
objectives, also contributes to the success of the B&B approach.

To evaluate the effectiveness and accuracy of PBBCache we implemented ex-
isting partitioning policies [153, 58, 195] on top of it, and compared the results
it provides with the actual figures observed on commercial hardware equipped
with cache partitioning support. Moreover, to assess the performance and
scalability of the parallel B&B algorithm we conducted experiments using
single-node and multi-node machine configurations.

After carrying out an extensive study of the optimal cache-clustering solution on
different scenarios, we proceeded to design LFOC, a novel OS-level cache-clustering
policy that leverages cache-partitioning support to improve fairness while maintain-
ing acceptable throughput. LFOC classifies applications into differently categories
according to their degree of memory-intensity and cache sensitivity. To deliver fair-
ness, LFOC ensures that applications that may be potentially aggressive to others
in terms of LLC contention are confined in small cache partitions, thus ensuring
that they are effectively isolated from cache-sensitive programs. In designing, im-
plementing and evaluating LFOC we made the following contributions.

124 Chapter 7. Conclusions

We conducted a profound analysis of the optimal (fairness-wise) cache-clustering
solution obtained for a wide range of multi-program workloads with PBB-
Cache. This analysis enabled us to identify key patterns observed in the
optimal solution, which were crucial to guide the design of LFOC’s cache-
clustering algorithm. Specifically, one of the key aspects to enforce fairness
is to effectively identify contentious cache-insensitive (aka streaming) appli-
cations and confine them in a reduced set of small LLC partitions.

LFOC leverages a lightweight online mechanism to approximate the degree of
cache sensitivity of an application that avoids costly periodic monitoring oper-
ations (i.e. measuring application performance for all possible LLC sizes [58]),
whenever possible.

We implemented LFOC in the Linux kernel and evaluated it on a real sys-
tem featuring an Intel Skylake processor. Our experiments reveal that LFOC
is able to deliver an average 16.7% fairness improvement relative to stock
Linux. At the same time, LFOC clearly outperforms two other existing cache-
clustering approaches, one of which was specifically designed to deliver fair-
ness [171].

7.1. Future work

This thesis has proposed multiple techniques that contribute to mitigating shared-
resource contention effects on multicore processors. However, there are still many
challenges that remain unsolved and so they represent promising avenues for future
research. Some of the most relevant ones are as follows:

Mitigating shared-resource contention effects in upcoming architec-
tures. Due to their outstanding energy efficiency, mobile devices have re-
cently pushed forward asymmetric multicore configurations and some of them
are seeping through to the desktop market, especially on the laptop segment.
There is still work to do on this topic. Of special attention would be to as-
sess the impact of contention on recent AMP platforms, such as the Intel
Lakefield SoC (System on Chip) or the Apple M1 SoC [17]. Likewise, de-
signing cache-clustering approaches for recent AMD server processors –such
as EPYC Rome and Milan– would be also very interesting. On these pro-
cessors multiple logically independent LLCs –each one shared by a different
subset of cores– are present on the same chip [13]. Although contention-aware
thread-to-LLC mapping schemes have been proposed [29, 205, 69], no previ-
ous proposal have yet addressed fairness-optimized cache-clustering coupled
with effective thread-to-LLC mapping. Optimizing fairness on these AMD
processors is a more complex problem than on single-LLC CMPs–the ones
considered in the thesis–, so this constitutes a promising research avenue.

Dealing with bandwidth contention. In distributing LLC space, our
LFOC cache-clustering strategy prioritizes cache-sensitive applications over

7.1 Future work 125

streaming aggressor programs, which are granted a small portion of the LLC.
We observed that in this context, if the workload aggregate bandwidth con-
sumption is very high, these streaming applications may begin to suffer signif-
icant performance degradation as a result of bandwidth contention. A promis-
ing way to improve our cache partitioning strategy would be to factor in the
effects of applying per-application memory-bandwidth consumption caps via
hardware mechanisms, such as the recent Intel Memory Bandwidth Allocation
(MBA) technology. Using this technology would enable to have greater con-
trol over bandwidth contention, and would make it possible to design policies
that simultaneously exploit the Intel CAT and MBA features.

Other optimization goals. The parallel algorithms enabling to deter-
mine the optimal solution in PBBCache for both strict cache-partitioning and
cache-clustering, can be configured to optimize many different optimization
objectives. The ability to explore the optimal solution for other optimization
targets beyond fairness – such as maximizing system throughput or deliv-
ering better energy efficiency – creates opportunities to guide the design of
additional cache-clustering policies that strive to improve these aspects. At
the same time, this PBBCache support would also enable to assess the im-
pact that optimizing a specific metric has on other metrics, thus opening up
opportunities for research on multiobjective optimization.

Improving the performance of the parallel methods to determine
the optimal solution under both strict cache partitioning and cache-
clustering. It would also be interesting to explore alternative ways to de-
termine optimal solutions more efficiently in PBBCache. This would allow to
study the behavior of the optimal for bigger problem sizes, which becomes
something necessary on future platforms, where the core count is expected
to increase and so will the workload size. Of special attention is the case of
the optimal cache clustering problem, whose parallel method in PBBCache
currently requires a complete enumeration of all possible ways to group appli-
cations into clusters. Designing an efficient method to reach a near-optimal
solution in this context would be extremely helpful.

Add cache-partitioning support for multithreaded applications. Mul-
tithreaded applications introduce another level of complexity to cache-partitioning;
a joint decision should made on both the inter-application LLC-space distri-
bution, and the intra-application LLC partitioning – whether to partition the
LLC among threads from the same application or not, and, if so, how to dis-
tribute the cache space among these threads. In this context, some ideas from
our proposed cache-clustering method could be applied. However, it would be
also necessary to conduct an extensive study to assess the potential rewards
of applying cache-partitioning to multithreaded programs.

126 Chapter 7. Conclusions

Resumen en Español

Los procesadores multinúcleo o CMPs (Chip Multicore Processors) son actualmente
la arquitectura más usada por la mayoŕıa de sistemas de computación de propósito
general, y muy probablemente se mantendrán en esa posición dominante en el fu-
turo cercano. Los avances tecnológicos han permitido integrar progresivamente
en el mismo chip más cores y aumentar los tamaños de los distintos niveles de
cache. No obstante, la contención de recursos compartidos en CMPs –presente
desde la aparición de estas arquitecturas– todav́ıa representa un reto importante
que afrontar. Los cores en un CMP comparten en la mayor parte de los diseños
una cache de último nivel o LLC (Last-Level Cache) y otros recursos, como el con-
trolador de DRAM o una red de interconexión. La existencia de dichos recursos
compartidos provoca en ocasiones que cuando se ejecutan dos o más aplicaciones
simultáneamente en el sistema, se produzca una degradación sustancial y poten-
cialmente desigual del rendimiento entre aplicaciones.

En investigaciones previas [205, 134] se ha demostrado que el software del sistema
puede ser de gran ayuda a la hora de mitigar estos problemas. En esta tesis se han
desarrollado diversas estrategias a nivel del sistema operativo –implementadas en el
kernel Linux– para lidiar de forma eficaz con los efectos adversos de la contención
y optimizar la justicia global del sistema.

La primera aportación importante de la tesis ha sido un planificador consciente
de la contención para procesadores multicore asimétricos o AMPs (Asymmetric
Multicore Processors). Estas arquitecturas combinan en la misma plataforma cores
complejos (big) de alto rendimiento, con cores más simples (small) de bajo consumo,
funcionando todos ellos bajo un mismo repertorio de instrucciones. Aunque en
las últimas décadas se han propuesto diversas técnicas para mitigar los efectos
adversos de la contención, ninguna de ellas es espećıfica para AMPs. En estas
arquitecturas, a diferencia de los multicore tradicionales, una aplicación puede sufrir
una degradación sustancial del rendimiento, relativa a su ejecución aislada, debido
al efecto combinado de la competición por el uso de cores big y de la contención de
recursos compartidos. En esta tesis proponemos CAMPS, un planificador consciente
de la contención que optimiza justicia en sistemas asimétricos. Las principales
contribuciones de la tesis en este ámbito son las siguientes:

Se ha realizado un estudio experimental extenso donde se demuestra la impor-
tancia de considerar la contención en los cores big de alto rendimiento para
mejorar la justicia y el rendimiento global en AMPs.

128 Chapter 7. Conclusions

Se ha diseñado un mecanismo ligero y eficiente –basado en el uso de contadores
hardware– que permite registrar el progreso de cada aplicación en los distintos
tipos de core y bajo distintos niveles de contención. Con esta información,
CAMPS distribuye de forma justa el tiempo de uso de los cores big entre las
distintas aplicaciones.

Se ha realizado una evaluación experimental exhaustiva utilizando distintas
arquitecturas asimétricas de ARM [19, 78], aśı como el prototipo experimen-
tal QuickIA de Intel [43]. Dicha evaluación demuestra que CAMPS es capaz
de gestionar cargas de trabajo con distintos tipos de aplicaciones más efi-
cientemente que el planificador por defecto de Linux (CFS), e incluso que su
variante más extendida espećıfica para dispositivos móviles con procesadores
asimétricos (parche HMP). Además, CAMPS es capaz de superar también a
todas las estrategias que se hab́ıan propuesto hasta la fecha en la literatura
para mejorar justicia en AMPs, como es el caso del planificador ACFS [167].

A nivel micro-arquitectónico se han propuesto diversos mecanismos para mitigar los
problemas de contención derivados de la interferencia entre aplicaciones. Entre los
que han venido despertando mayor interés investigador destacan los mecanismos y
estrategias de particionado de cache [133]. Los primeros trabajos de particionado
exploraron técnicas en el software de gestión de memoria basadas en el coloreado
de páginas de memoria y pusieron de manifiesto las ventajas de reducir la inter-
ferencia por el uso de los niveles compartidos de memoria. Posteriormente se han
ido diseñando y evaluando diferentes mecanismos hardware adicionales para sopor-
tar el particionado. Este interés ha llegado ya a los propios fabricantes, que han
empezando a incorporar dicho soporte en algunos de los procesadores comerciales
recientes, especialmente para los procesadores del segmento de servidores [142, 12].

En esta tesis hemos explorado este soporte hardware y hemos analizado la utilidad
de estrategias de particionado basado en clusters, donde se permite el uso compar-
tido por varias aplicaciones de una misma partición. Propuestas anteriores [171]
han demostrado que las ventajas del particionado en clusters son mayores al au-
mentar el número de aplicaciones en la carga de trabajo. Además, estas ventajas
son especialmente notables en los sistemas actuales, que soportan la creación de un
número reducido de particiones de grano grueso (en el orden de megabytes). No ob-
stante, encontrar la solución optima de particionado –lo cual es esencial para guiar
el diseño de nuevas estrategias– es un problema dif́ıcil de resolver. De hecho, en-
contrar una solución óptima, incluso para poĺıticas de particionado estricto –donde
cada partición es asignada a una sola aplicación– es ya un problema NP-hard [133].
Permitir la compartición de una o varias particiones entre varias aplicaciones (par-
ticionado en clusters), amplia aún más las dimensiones del espacio de búsqueda, y
dificulta aún más encontrar soluciones óptimas al problema.

Tras estudiar algunas de las propuestas existentes [153, 58], nos preguntamos cuánto
se aproximaban a las estrategias óptimas. Para poder responder a esa pregunta
desarrollamos PBBCache, un simulador paralelo de código abierto que permite ag-
ilizar el proceso de diseño y evaluación de poĺıticas de particionado de cache, tanto
estrictas como en clusters.

7.1 Future work 129

Las principales contribuciones de PBBCache son las siguientes:

PBBCache es capaz de estimar la degradación del rendimiento relativa (slow-
down) que sufren diferentes aplicaciones que se ejecutan simultáneamente bajo
una estrategia de particionado determinada. Dicha estimación tiene en cuenta
no solo la degradación proveniente por la contención de la LLC, sino también
por la contención por el ancho de banda con memoria. Para tener en cuenta
este segundo factor se extendió un modelo de estimación no lineal propuesto
en la literatura [136].

Para reducir los tiempos de simulación, PBBCache implementa la primera
estrategia paralela de memoria distribuida que permite determinar de forma
efectiva la solución óptima de particionado estricto para diferentes objetivos
de optimización. La eficiencia paralela de dicha estrategia es satisfactoria,
consiguiéndose buenos resultados incluso en máquinas con múltiples nodos.

Para validar la precisión de PBBCache se implementaron varias estrategias
de particionado propuestas recientemente [153, 58, 195], y se compararon los
resultados con datos reales obtenidos en procesadores comerciales de Intel
con soporte hardware para particionado. Los resultados obtenidos han sido
satisfactorios.

Gracias a PBBCache y a un análisis intensivo de las soluciones óptimas propor-
cionadas por este simulador, fuimos capaces de guiar el diseño de LFOC, una nueva
estrategia de particionado en cluster a nivel del sistema operativo que optimiza la
justicia manteniendo un buen rendimiento global en la plataforma. LFOC clasi-
fica en tiempo de ejecución las aplicaciones en varias categoŕıas en base a su grado
de sensibilidad a la contención cache, y a su demanda efectiva de espacio en ésta.
Para mejorar la justicia, LFOC prioriza las aplicaciones de tipo cache-sensitive en
el reparto de espacio en la LLC, y confina aquellas aplicaciones que tienen un com-
portamiendo de tipo streaming (aplicaciones agresoras) en un conjunto reducido de
particiones pequeñas de cache. Las principales contribuciones asociadas al diseño,
implementación y evaluación de LFOC son las siguientes:

Se ha realizado un exhaustivo análisis basado en simulación del problema
de particionado de cache en clusters. Este estudio revela que la clave para
optimizar la justicia recae en (1) identificar aquellas aplicaciones insensibles
a la contención de la LLC pero que a su vez logran atesorar mucho espacio
en ésta, y (2) aislar estas aplicaciones en un conjunto reducido de particiones
de la LLC de pequeño tamaño. De este modo puede dedicarse una mayor
fracción de espacio en la LLC a las aplicaciones cache sensitive.

LFOC emplea un mecanismo ligero que permite aproximar en tiempo de eje-
cución el grado de sensibilidad que una aplicación tiene al compartir la LLC
con otras. Con este mecanismo se reduce la frecuencia de las costosas opera-
ciones de monitorización empleadas en otras estrategias de particionado [58],
que requieren recopilar múltiples métricas de cada aplicación para distintos

130 Chapter 7. Conclusions

tamaños de cache realizando un barrido de todas las asignaciones de v́ıas
posibles.

Implementamos LFOC en el kernel Linux y lo evaluamos en un sistema que
incorpora un procesador Intel Skylake con soporte de particionado de cache.
Nuestro análisis experimental revela que LFOC mejora la justicia en un 16.7%
en media, con respecto a Linux (sin particionado de la LLC), y además ofrece
un mayor grado de justicia que la estrategia de particionado en clusters prop-
uesta más recientemente para optimizar la justicia [171].

Bibliography

[1] BARON: A general purpose global optimization software package. http://

archimedes.cheme.cmu.edu/?q=baron. Accessed: 2019-07-15.

[2] BONMIN: Basic open-source nonlinear mixed integer programming. https:

//www.coin-or.org/Bonmin/. Accessed: 2019-07-17.

[3] JyNI – jython native interface:compatibility/wish list. https://jyni.org/

#compatibility-wish-list. Accessed: 2019-11-21.

[4] Linux test project. https://github.com/linux-test-project/ltp.

[5] The NEOS server. https://neos-server.org/neos/. Accessed: 2019-07-18.

[6] SCIP: solving constraint integer programs. https://scip.zib.de/. Accessed:
2019-07-18.

[7] Zeromq: An open-source universal messaging library. https://zeromq.org/.
Accessed: 2019-9-4.

[8] Intel R© 64 and ia-32 architectures developer’s manual: Vol. 3b, 2014.
http://www.intel.com/content/www/us/en/architecture-and-technology/

64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html.

[9] Intel R© 64 and ia-32 architectures software devel-
oper’s manual: Volume 3, 2018. https://www.

intel.es/content/www/es/es/architecture-and-technology/

64-ia-32-architectures-software-developer-system-programming-manual-325384.

html.

[10] IPyparallel. using IPython for parallel computing. https://ipyparallel.

readthedocs.io/, 2018. Accessed: 2019-03-19.

[11] A. Alhammad and R. Pellizzoni. Trading cores for memory bandwidth in real-
time systems. In 22nd Real-Time Embedded Tech. and Applications Symp.
(RTAS 16), pages 1–11, April 2016.

[12] AMD. AMD64 technology platform quality of service extensions. Accessed:
2019-09-19.

http://archimedes.cheme.cmu.edu/?q=baron
http://archimedes.cheme.cmu.edu/?q=baron
https://www.coin-or.org/Bonmin/
https://www.coin-or.org/Bonmin/
https://jyni.org/#compatibility-wish-list
https://jyni.org/#compatibility-wish-list
https://github.com/linux-test-project/ltp
https://neos-server.org/neos/
https://scip.zib.de/
https://zeromq.org/
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://www.intel.es/content/www/es/es/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.es/content/www/es/es/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.es/content/www/es/es/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.es/content/www/es/es/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://ipyparallel.readthedocs.io/
https://ipyparallel.readthedocs.io/

132 BIBLIOGRAPHY

[13] AMD. High Performance Computing: Tuning guide for AMD EPYC
7002 series processors. https://developer.amd.com/wp-content/resources/

56827-1-0.pdf, 2020. Accessed: 2021-05-21.

[14] J. Herdrich Andrew. Introduction to memory bandwidth allocation,
2019. https://software.intel.com/content/www/us/en/develop/articles/

introduction-to-memory-bandwidth-allocation.html.

[15] Arunachalam Annamalai, Rance Rodrigues, Israel Koren, and Sandip Kundu.
An opportunistic prediction-based thread scheduling to maximize through-
put/watt in amps. In Proceedings of the 22nd International Conference on
Parallel Architectures and Compilation Techniques, pages 63–72, 2013.

[16] M. Annavaram, E. Grochowski, and J. Shen. Mitigating amdahl’s law through
epi throttling. In 32nd International Symposium on Computer Architecture
(ISCA’05), pages 298–309, 2005.

[17] Apple. Apple m1 chip. https://www.apple.com/mac/m1/, 2020. Accessed:
2020-12-5.

[18] ARM. Benefits of the big.LITTLE Architecture. http://www.arm.com/files/
downloads/Benefits_of_the_big.LITTLE_architecture.pdf. Accessed: 2015-
01-10.

[19] ARM. Juno platform. http://infocenter.arm.com/help/topic/com.arm.

doc.subset.boards.juno/index.html. Accessed: 2017-3-9.

[20] R. Balasubramonian, D. Albones, A. Buyuktosunoglu, and S. Dwarkadas.
Memory hierarchy reconfiguration for energy and performance in general-
purpose processor architectures. In Proceedings 33rd Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO-33 2000, pages 245–
257, 2000.

[21] M. Banikazemi, D. Poff, and B. Abali. Pam: A novel performance/power
aware meta-scheduler for multi-core systems. In SC ’08: Proceedings of the
2008 ACM/IEEE Conference on Supercomputing, pages 1–12, 2008.

[22] S. Barati and H. Hoffmann. Providing fairness in heterogeneous multicores
with a predictive, adaptive scheduler. In 2016 Int’l Parallel and Distrib.
Processing Symp. Workshops, pages 38–49, 2016.

[23] David Beazley. Understanding the python GIL. In In PyCON’10 Python
Conference, 2010.

[24] Michela Becchi and Patrick Crowley. Dynamic Thread Assignment on Hetero-
geneous Multiprocessor Architectures. In 3rd Int’l Conf. Computing Frontiers
(CF 06), pages 29–40, 2006.

[25] N. Beckmann and D. Sanchez. Modeling cache performance beyond lru. In
2016 IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), pages 225–236, March 2016.

https://developer.amd.com/wp-content/resources/56827-1-0.pdf
https://developer.amd.com/wp-content/resources/56827-1-0.pdf
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-memory-bandwidth-allocation.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-memory-bandwidth-allocation.html
https://www.apple.com/mac/m1/
http://www.arm.com/files/downloads/Benefits_of_the_big.LITTLE_architecture.pdf
http://www.arm.com/files/downloads/Benefits_of_the_big.LITTLE_architecture.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.subset.boards.juno/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.subset.boards.juno/index.html

BIBLIOGRAPHY 133

[26] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated management of multiple
interacting resources in chip multiprocessors: A machine learning approach. In
2008 41st IEEE/ACM International Symposium on Microarchitecture, pages
318–329, 2008.

[27] S. Blagodurov, A. Fedorova, S. Zhuravlev, and A. Kamali. A case for numa-
aware contention management on multicore systems. In 2010 19th Inter-
national Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 557–558, 2010.

[28] Sergey Blagodurov, Sergey Zhuravlev, and Alexandra Fedorova. Contention-
aware scheduling on multicore systems. ACM Trans. Comput. Syst.,
28(4):8:1–8:45, December 2010.

[29] Sergey Blagodurov, Sergey Zhuravlev, and Alexandra Fedorova. Contention-
aware scheduling on multicore systems. ACM Trans. Comput. Syst.,
28(4):8:1–8:45, December 2010.

[30] M. T. Bohr and I. A. Young. CMOS scaling trends and beyond. IEEE Micro,
37(6):20–29, 2017.

[31] Mark T. Bohr, Robert S. Chau, Tahir Ghani, and Kaizad Mistry. The high-k
solution. IEEE Spectrum, 44(10):29–35, 2007.

[32] Jacob Brock, Chencheng Ye, Chen Ding, Yechen Li, Xiaolin Wang, and Ying-
wei Luo. Optimal cache partition-sharing. In 2015 44th International Con-
ference on Parallel Processing, pages 749–758, 2015.

[33] BSC. Paraver: a flexible performance analysis tool. https://tools.bsc.es/

paraver, 2018. Accessed: 2019-03-19.

[34] T. Burd, N. Beck, S. White, M. Paraschou, N. Kalyanasundharam, G. Donley,
A. Smith, L. Hewitt, and S. Naffziger. ”Zeppelin”: An soc for multichip
architectures. IEEE Journal of Solid-State Circuits, 54(1):133–143, 2019.

[35] Doug Burger, James R. Goodman, and Alain Kägi. Memory bandwidth lim-
itations of future microprocessors. In Proceedings of the 23rd Annual Inter-
national Symposium on Computer Architecture, ISCA ’96, page 78–89, New
York, NY, USA, 1996. Association for Computing Machinery.

[36] Jorge Casas Hernán. Infraestructura de simulación para evaluación de estrate-
gias de particionado de caché en procesadores equipados con la tecnoloǵıa intel
rdt. 2019.

[37] Calin Cascaval, Luiz DeRose, David A. Padua, and Daniel A. Reed. Compile-
time based performance prediction. In Larry Carter and Jeanne Ferrante,
editors, Languages and Compilers for Parallel Computing, pages 365–379,
Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

https://tools.bsc.es/paraver
https://tools.bsc.es/paraver

134 BIBLIOGRAPHY

[38] Stephen Cass and Parthasaradhi Bulusu. Interactive: The Top
Programming Languages 2020. https://spectrum.ieee.org/static/

interactive-the-top-programming-languages-2020, 2020. Accessed: 2020-
09-19.

[39] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Hasel-
man, S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo, T. Massengill,
K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger.
A cloud-scale acceleration architecture. In 2016 49th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), pages 1–13, 2016.

[40] Felipe Cerqueira, Arpan Gujarati, and Björn B. Brandenburg. Linux’s pro-
cessor affinity API, refined: Shifting real-time tasks towards higher schedula-
bility. In 2014 IEEE Real-Time Systems Symposium, pages 249–259, 2014.

[41] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting
Inter-Thread Cache Contention on a Chip Multi-Processor Architecture. In
HPCA ’05.

[42] X. E. Chen and T. M. Aamodt. A first-order fine-grained multithreaded
throughput model. In 2009 IEEE 15th International Symposium on High
Performance Computer Architecture, pages 329–340, 2009.

[43] Nagabhushan Chitlur, Ganapati Srinivasa, Scott Hahn, P K Gupta, Dheeraj
Reddy, David Koufaty, Paul Brett, Abirami Prabhakaran, Li Zhao, Nelson
Ijih, Suchit Subhaschandra, Sabina Grover, Xiaowei Jiang, and Ravi Iyer.
QuickIA: Exploring heterogeneous architectures on real prototypes. In IEEE
International Symposium on High-Performance Comp Architecture, pages 1–
8, 2012.

[44] Kallia Chronaki, Miquel Moretó, Marc Casas, Alejandro Rico, Rosa M. Badia,
Eduard Ayguadé, and Mateo Valero. On the maturity of parallel applications
for asymmetric multi-core processors. Journal of Parallel and Distributed
Computing, 127:105–115, 2019.

[45] Kallia Chronaki, Alejandro Rico, Rosa M. Badia, Eduard Ayguadé, Jesús
Labarta, and Mateo Valero. Criticality-aware dynamic task scheduling for
heterogeneous architectures. In Proceedings of the 29th ACM on International
Conference on Supercomputing, ICS ’15, page 329–338, New York, NY, USA,
2015. Association for Computing Machinery.

[46] W. Cohen. Tuning programs with oprofile. Wide Open Magazine, 1:53–62,
2004.

[47] Cynthia A. Colinge, Jean-Pierre Colinge, and Isabelle Ferain. Multigate tran-
sistors as the future of classical metal-oxide-semiconductor field-effect tran-
sistors. Nature, 479:310–6, 11 2011.

https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020

BIBLIOGRAPHY 135

[48] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian,
Karthik Gururaj, and Glenn Reinman. Accelerator-rich architectures: Oppor-
tunities and progresses. In 2014 51st ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6, 2014.

[49] R. Courtland. Intel now packs 100 million transistors in each square millime-
ter. IEEE Spectrum, March 2017.

[50] Teodor Gabriel Crainic, Bertrand Le Cun, and Catherine Roucairol. Parallel
branch-and-bound algorithms. Parallel combinatorial optimization, 1:1–28,
2006.

[51] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and M. J.
Irwin. Scheduler-based dram energy management. In Proceedings 2002 Design
Automation Conference (IEEE Cat. No.02CH37324), pages 697–702, 2002.

[52] R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V.L. Rideout, E. Bassous, and
A.R. LeBlanc. Design of ion-implanted mosfet’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974.

[53] Jack Dongarra. Report on the sunway taihulight system. Tech Report Uni-
versity of Tennessee: UT-EECS-16-742, 2016. Accessed: 2020-09-24.

[54] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. Fairness
via source throttling: A configurable and high-performance fairness substrate
for multi-core memory systems. In Proceedings of the Fifteenth International
Conference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS XV, pages 335–346, New York, NY, USA, 2010.
Association for Computing Machinery.

[55] Stefan Edelkamp and Stefan Schroedl. Heuristic Search: Theory and Appli-
cations. Morgan Kaufmann, 2012.

[56] D. Eklov, D. Black-Schaffer, and E. Hagersten. Statcc: A statistical cache
contention model. In 2010 19th International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), pages 551–552, 2010.

[57] N. El-Sayed et al. Source code of kpart. https://github.com/Nosayba/kpart,
2018. Accessed: 2019-02-20.

[58] Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, Harshad Kasture, Xiaosong
Ma, and Daniel Sanchez. KPart: A hybrid cache partitioning-sharing tech-
nique for commodity multicores. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pages 104–117, 2018.

[59] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger.
Dark silicon and the end of multicore scaling. In 2011 38th Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 365–376, 2011.

[60] Daniel Etiemble. 45-year cpu evolution: one law and two equations, 2018.

136 BIBLIOGRAPHY

[61] S. Eyerman and L. Eeckhout. System-level performance metrics for multipro-
gram workloads. IEEE Micro, 28(3):42–53, May 2008.

[62] X. Fan, Y. Sui, and J. Xue. Contention-aware scheduling for asymmetric mul-
ticore processors. In Proc. 2015 Int’l Conf Parallel and Dist. Syst. (ICPADS
15), pages 742–751, Dec 2015.

[63] Josué Feliu, Julio Sahuquillo, Salvador Petit, and José Duato. Perf fair: A
progress-aware scheduler to enhance performance and fairness in smt multi-
cores. IEEE Transactions on Computers, 66(5):905–911, 2017.

[64] Matt Fleming. A survey of scheduler benchmarks. https://lwn.net/

Articles/725238/, 2017. Accessed: 2018-01-20.

[65] R. C. Frye, K. L. Tai, M. Y. Lau, and T. J. Gabara. Trends in silicon-on-silicon
multichip modules. IEEE Design Test of Computers, 10(4):8–17, 1993.

[66] L. Funaro, O. A. Ben-Yehuda, and A. Schuster. Ginseng: Market-driven llc
allocation. In Proceedings of the 2016 USENIX Annual Technical Conference,
USENIX ATC ’16, pages 295–308, 2016.

[67] François Galea and Bertrand Le Cun. Bob++: a framework for exact com-
binatorial optimization methods on parallel machines. In International Con-
ference High Performance Computing & Simulation, pages 779–785, 2007.

[68] A. Garcia-Garcia, J. Casas, and J. C. Saez. PBBCache: A
parallel branch-and-bound based cache-partitioning simulator.
https://github.com/pbbcache/cachesim, 2019. Accessed: 2019-05-10.

[69] A. Garcia-Garcia, J. C. Saez, and M. Prieto-Matias. Contention-aware fair
scheduling for asymmetric single-ISA multicore systems. IEEE Transactions
on Computers, 67(12):1703–1719, Dec 2018.

[70] Adrian Garcia-Garcia, Juan Carlos Saez, Fernando Castro, and Manuel
Prieto-Matias. LFOC: A lightweight fairness-oriented cache clustering policy
for commodity multicores. In Proceedings of the 48th International Conference
on Parallel Processing, ICPP 2019, New York, NY, USA, 2019. Association
for Computing Machinery.

[71] Adrian Garcia-Garcia, Juan Carlos Saez, José Luis Risco-Martin, and Manuel
Prieto-Matias. PBBCache: An open-source parallel simulator for rapid pro-
totyping and evaluation of cache-partitioning and cache-clustering policies.
Journal of Computational Science, 42:101102, 2020.

[72] Bernard Gendron and Teodor Gabriel Crainic. Parallel branch-and-branch al-
gorithms: Survey and synthesis. Operations research, 42(6):1042–1066, 1994.

[73] J. Gmys, M. Mezmaz, N. Melab, and D. Tuyttens. A GPU-based branch-
and-bound algorithm using integer–vector–matrix data structure. Parallel
Computing, 59:119 – 139, 2016. Theory and Practice of Irregular Applications.

https://lwn.net/Articles/725238/
https://lwn.net/Articles/725238/

BIBLIOGRAPHY 137

[74] Samuel Greengard. The future of semiconductors. Commun. ACM,
60(3):18–20, February 2017.

[75] L. Gwennap. TSMC 7nm approaches Intel’s prowess. Microprocessor Re-
port.The Linley Group, January 2017.

[76] Linley Gwennap. TSMC ships first 5nm processors. https://www.

linleygroup.com/mpr/article.php?id=12347, 2012. Accessed: 2020-09-28.

[77] Md E. Haque, Yuxiong He, Sameh Elnikety, Thu D. Nguyen, Ricardo Bian-
chini, and Kathryn S. McKinley. Exploiting heterogeneity for tail latency and
energy efficiency. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-50 ’17, page 625–638, New York,
NY, USA, 2017. Association for Computing Machinery.

[78] Hardkernel. Odroid XU4 board. http://odroid.com/dokuwiki/doku.php?id=

en:odroid-xu4, 2016. Accessed: 2016-6-22.

[79] A. Hartstein and Thomas R. Puzak. The optimum pipeline depth for a mi-
croprocessor. SIGARCH Comput. Archit. News, 30(2):7–13, May 2002.

[80] John L. Hennessy and David A. Patterson. A new golden age for computer
architecture. Commun. ACM, 62(2):48–60, January 2019.

[81] John L. Hennessy and David A. Patterson. A new golden age for computer
architecture. Commun. ACM, 62(2):48–60, January 2019.

[82] Juan F. R. Herrera, José M. G. Salmerón, Eligius M. T. Hendrix, Rafael
Asenjo, and Leocadio G. Casado. On parallel branch and bound frameworks
for global optimization. Journal of Global Optimization, 69(3):547–560, Nov
2017.

[83] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. IEEE
Computer, 41(7):33–38, 2008.

[84] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Desktop Platforms
Group, and Intel Corp. The microarchitecture of the pentium 4 processor.
Intel Technology Journal, 5, 2001.

[85] M. Horowitz. 1.1 computing’s energy problem (and what we can do about
it). In 2014 IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), pages 10–14, 2014.

[86] Lisa R. Hsu, Steven K. Reinhardt, Ravishankar Iyer, and Srihari Makineni.
Communist, utilitarian, and capitalist cache policies on cmps: caches as a
shared resource. PACT ’06, pages 13–22, New York, NY, USA, 2006. ACM.

[87] Ibrahim Hur and C. Lin. Adaptive history-based memory schedulers. In
37th International Symposium on Microarchitecture (MICRO-37’04), pages
343–354, 2004.

https://www.linleygroup.com/mpr/article.php?id=12347
https://www.linleygroup.com/mpr/article.php?id=12347
http://odroid.com/dokuwiki/doku.php?id=en:odroid-xu4
http://odroid.com/dokuwiki/doku.php?id=en:odroid-xu4

138 BIBLIOGRAPHY

[88] Intel. https://ark.intel.com/content/www/es/es/ark/products/64590/

intel-xeon-processor-e5-2650-20m-cache-2-00-ghz-8-00-gt-s-intel-qpi.

html, 2012. Accessed: 2021-09-21.

[89] Intel. https://ark.intel.com/content/www/es/es/ark/products/81057/

intel-xeon-processor-e5-2695-v3-35m-cache-2-30-ghz.html, 2014. Ac-
cessed: 2021-09-21.

[90] Intel. https://ark.intel.com/content/www/es/es/ark/products/92986/

intel-xeon-processor-e5-2620-v4-20m-cache-2-10-ghz.html, 2016. Ac-
cessed: 2021-09-21.

[91] Intel. https://ark.intel.com/content/www/es/es/ark/products/120476/

intel-xeon-gold-6138-processor-27-5m-cache-2-00-ghz.html, 2017. Ac-
cessed: 2021-09-21.

[92] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, and J. Emer.
Adaptive insertion policies for managing shared caches. In 2008 International
Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 208–219, 2008.

[93] S. Jarp, R. Jurga, and A. Nowak. Perfmon2: a leap forward in performance
monitoring. Journal of Physics: Conference Series, 119:042017, 2008.

[94] Yunlian Jiang, Xipeng Shen, Jie Chen, and Rahul Tripathi. Analysis and
approximation of optimal co-scheduling on chip multiprocessors. pages 220–
229, 01 2008.

[95] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and
P. Sadayappan. Gaining insights into multicore cache partitioning: Bridg-
ing the gap between simulation and real systems. In 2008 IEEE 14th In-
ternational Symposium on High Performance Computer Architecture, pages
367–378, 2008.

[96] Ivan Jibaja, Ting Cao, Stephen M. Blackburn, and Kathryn S. McKin-
ley. Portable performance on asymmetric multicore processors. In 2016
IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), pages 24–35, 2016.

[97] Jose Joao, Aater Suleman, Onur Mutlu, and Yale Patt. Bottleneck identifica-
tion and scheduling in multithreaded applications. ACM SIGPLAN Notices,
47:223–234, 03 2012.

[98] José A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt. Utility-based
acceleration of multithreaded applications on asymmetric CMPs. SIGARCH
Comput. Archit. News, 41(3):154–165, June 2013.

[99] Norman P. Jouppi, Cliff Young, Nishant Patil, and David Patterson. A
domain-specific architecture for deep neural networks. Commun. ACM,
61(9):50–59, August 2018.

https://ark.intel.com/content/www/es/es/ark/products/64590/intel-xeon-processor-e5-2650-20m-cache-2-00-ghz-8-00-gt-s-intel-qpi.html
https://ark.intel.com/content/www/es/es/ark/products/64590/intel-xeon-processor-e5-2650-20m-cache-2-00-ghz-8-00-gt-s-intel-qpi.html
https://ark.intel.com/content/www/es/es/ark/products/64590/intel-xeon-processor-e5-2650-20m-cache-2-00-ghz-8-00-gt-s-intel-qpi.html
https://ark.intel.com/content/www/es/es/ark/products/81057/intel-xeon-processor-e5-2695-v3-35m-cache-2-30-ghz.html
https://ark.intel.com/content/www/es/es/ark/products/81057/intel-xeon-processor-e5-2695-v3-35m-cache-2-30-ghz.html
https://ark.intel.com/content/www/es/es/ark/products/92986/intel-xeon-processor-e5-2620-v4-20m-cache-2-10-ghz.html
https://ark.intel.com/content/www/es/es/ark/products/92986/intel-xeon-processor-e5-2620-v4-20m-cache-2-10-ghz.html
https://ark.intel.com/content/www/es/es/ark/products/120476/intel-xeon-gold-6138-processor-27-5m-cache-2-00-ghz.html
https://ark.intel.com/content/www/es/es/ark/products/120476/intel-xeon-gold-6138-processor-27-5m-cache-2-00-ghz.html

BIBLIOGRAPHY 139

[100] D. Kanter. Samsung 10nm takes density crown. Microprocessor Report.The
Linley Group, January 2017.

[101] Harshad Kasture and Daniel Sanchez. Ubik: Efficient cache sharing with
strict qos for latency-critical workloads. SIGARCH Comput. Archit. News,
42(1):729–742, February 2014.

[102] Samira Khan, Alaa R. Alameldeen, Chris Wilkerson, Onur Mutluy, and
Daniel A. Jimenezz. Improving cache performance using read-write parti-
tioning. In 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), pages 452–463, 2014.

[103] S. Khushu and W. Gomes. Lakefield: Hybrid cores in 3d package. In 2019
IEEE Hot Chips 31 Symposium (HCS), pages 1–20, 2019.

[104] Changdae Kim and Jaehyuk Huh. Fairness-oriented OS scheduling support
for multicore systems. In Proc. 2016 Int’l Conf. Supercomputing (ICS 16),
pages 29:1–29:12, 2016.

[105] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning in
a chip multiprocessor architecture. In Proceedings. 13th International Con-
ference on Parallel Architecture and Compilation Techniques, 2004. PACT
2004., pages 111–122, 2004.

[106] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. Atlas: A scal-
able and high-performance scheduling algorithm for multiple memory con-
trollers. In HPCA - 16 2010 The Sixteenth International Symposium on
High-Performance Computer Architecture, pages 1–12, 2010.

[107] Y. G. Kim, M. Kim, and S. W. Chung. Enhancing energy efficiency of mul-
timedia applications in heterogeneous mobile multi-core processors. IEEE
Transactions on Computers, 66(11):1878–1889, Nov 2017.

[108] Rob Knauerhase, Paul Brett, Barbara Hohlt, Tong Li, and Scott Hahn. Using
os observations to improve performance in multicore systems. IEEE Micro,
28(3):54–66, May 2008.

[109] J. U. Knickerbocker, F. L. Pompeo, A. F. Tai, D. L. Thomas, R. D. Weekly,
M. G. Nealon, H. C. Hamel, A. Haridass, J. N. Humenik, R. A. Shelleman,
S. N. Reddy, K. M. Prettyman, B. V. Fasano, S. K. Ray, T. E. Lombardi,
K. C. Marston, P. A. Coico, P. J. Brofman, L. S. Goldmann, D. L. Edwards,
J. A. Zitz, S. Iruvanti, S. L. Shinde, and H. P. Longworth. An advanced
multichip module (mcm) for high-performance unix servers. IBM Journal of
Research and Development, 46(6):779–804, 2002.

[110] Masaaki Kondo, Hiroshi Sasaki, and Hiroshi Nakamura. Improving fair-
ness, throughput and energy-efficiency on a chip multiprocessor through dvfs.
SIGARCH Computer Architecture News, 35:31–38, 03 2007.

140 BIBLIOGRAPHY

[111] David Koufaty, Dheeraj Reddy, and Scott Hahn. Bias scheduling in hetero-
geneous multi-core architectures. In Proceedings of the 5th European Con-
ference on Computer Systems, EuroSys ’10, pages 125–138, New York, NY,
USA, 2010. ACM.

[112] R. Kumar, K.I. Farkas, N.P. Jouppi, P. Ranganathan, and D.M. Tullsen.
Single-isa heterogeneous multi-core architectures: the potential for proces-
sor power reduction. In Proceedings. 36th Annual IEEE/ACM International
Symposium on Microarchitecture, 2003. MICRO-36., pages 81–92, 2003.

[113] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core architecture optimization
for heterogeneous chip multiprocessors. In 2006 International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages 23–32,
2006.

[114] R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi, and K.I. Farkas.
Single-isa heterogeneous multi-core architectures for multithreaded workload
performance. In Proceedings. 31st Annual International Symposium on Com-
puter Architecture, 2004., pages 64–75, 2004.

[115] Viren Kumar and Alexandra Fedorova. Towards better performance per
watt in virtual environments on asymmetric single-ISA multi-core systems.
SIGOPS Oper. Syst. Rev., 43(3):105–109, 2009.

[116] Kun Luo, J. Gummaraju, and M. Franklin. Balancing thoughput and fairness
in smt processors. In 2001 IEEE International Symposium on Performance
Analysis of Systems and Software. ISPASS., pages 164–171, 2001.

[117] Antony Leather. Intel’s surprise ryzen killer: Alder lake hy-
brid processors offer biggest performance leap in 14 years.
https://www.forbes.com/sites/antonyleather/2020/08/13/

intels-surprise-ryzen-killer-alder-lake-hybrid-processors-offer-biggest-performance-leap-in-14-years/

#42ed29f24f5f, 2020. Accessed: 2020-08-20.

[118] L. Li, H. Liu, H. Wang, T. Liu, and W. Li. A parallel algorithm for game tree
search using gpgpu. IEEE Transactions on Parallel and Distributed Systems,
26(8):2114–2127, Aug 2015.

[119] Tong Li, Dan Baumberger, David A. Koufaty, and Scott Hahn. Efficient oper-
ating system scheduling for performance-asymmetric multi-core architectures.
In In Proc. of SC ’07, pages 53:1–53:11, 2007.

[120] Tong Li, Paul Brett, Rob Knauerhase, David Koufaty, Dheeraj Reddy, and
Scott Hahn. Operating system support for overlapping-ISA heterogeneous
multi-core architectures. In HPCA - 16 2010 The Sixteenth International
Symposium on High-Performance Computer Architecture, pages 1–12, 2010.

[121] Tong Li, Alvin R. Lebeck, and Daniel J. Sorin. Spin detection hardware
for improved management of multithreaded systems. IEEE Trans. Parallel
Distrib. Syst., 17(6):508–521, June 2006.

https://www.forbes.com/sites/antonyleather/2020/08/13/intels-surprise-ryzen-killer-alder-lake-hybrid-processors-offer-biggest-performance-leap-in-14-years/#42ed29f24f5f
https://www.forbes.com/sites/antonyleather/2020/08/13/intels-surprise-ryzen-killer-alder-lake-hybrid-processors-offer-biggest-performance-leap-in-14-years/#42ed29f24f5f
https://www.forbes.com/sites/antonyleather/2020/08/13/intels-surprise-ryzen-killer-alder-lake-hybrid-processors-offer-biggest-performance-leap-in-14-years/#42ed29f24f5f

BIBLIOGRAPHY 141

[122] C. Liu, Anand Sivasubramaniam, and M. Kandemir. Organizing the last line
of defense before hitting the memory wall for cmps. In 10th International
Symposium on High Performance Computer Architecture (HPCA’04), pages
176–185, 2004.

[123] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan,
and Christos Kozyrakis. Heracles: Improving resource efficiency at scale.
In Proceedings of the 42nd Annual International Symposium on Computer
Architecture, ISCA ’15, page 450–462, New York, NY, USA, 2015. Association
for Computing Machinery.

[124] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan,
and Christos Kozyrakis. Heracles: Improving resource efficiency at scale.
In Proceedings of the 42nd Annual International Symposium on Computer
Architecture, ISCA ’15, page 450–462, New York, NY, USA, 2015. Association
for Computing Machinery.

[125] G. H. Loh. 3d-stacked memory architectures for multi-core processors. In 2008
International Symposium on Computer Architecture, pages 453–464, 2008.

[126] R. Love. Linux Kernel Development. Addison-Wesley Professional, 3rd edi-
tion, 2010.

[127] R. Manikantan, K. Rajan, and R. Govindarajan. Probabilistic shared cache
management (prism). In Proceedings of the 39th Annual International Sym-
posium on Computer Architecture, ISCA ’12, pages 428–439, 2012.

[128] T. Marinakis and I. Anagnostopoulos. Performance and fairness improve-
ment on cmps considering bandwidth and cache utilization. IEEE Computer
Architecture Letters, 18(2):1–4, 2019.

[129] Nikola Markovic, Daniel Nemirovsky, Osman Unsal, Mateo Valero, and
Adrian Cristal. Thread lock section-aware scheduling on asymmetric single-
ISA multi-core. IEEE Computer Architecture Letters, 14(2):160–163, 2015.

[130] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques
for storage hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

[131] Tarek Menouer. Solving combinatorial problems using a parallel framework.
Journal of Parallel and Distributed Computing, 112:140 – 153, 2018.

[132] Andreas Merkel, Jan Stoess, and Frank Bellosa. Resource-conscious schedul-
ing for energy efficiency on multicore processors. In Proceedings of EuroSys
10, pages 153–166, Paris, France, 13-16 April 2010. ACM, New York.

[133] S. Mittal. A survey of techniques for cache partitioning in multicore proces-
sors. ACM Comput. Surv., 50(2):27:1–27:39, May 2017.

[134] Sparsh Mittal. A survey of techniques for architecting and managing asym-
metric multicore processors. ACM Comput. Surv., 48(3):45:1–45:38, February
2016.

142 BIBLIOGRAPHY

[135] Jeffrey C. Mogul, Jayaram Mudigonda, Nathan Binkert, Parthasarathy Ran-
ganathan, and Vanish Talwar. Using Asymmetric Single-ISA CMPs to Save
Energy on Operating Systems. IEEE Micro, 28(3):26–41, 2008.

[136] Tomer Y. Morad, Noam Shalev, Idit Keidar, Avinoam Kolodny, and Uri C.
Weiser. EFS: Energy-friendly scheduler for memory bandwidth constrained
systems. Journal of Parallel and Distributed Computing, 95:3–14, 2016. Spe-
cial Issue on Energy Efficient Multi-Core and Many-Core Systems, Part I.

[137] A. Mukkara, N. Beckmann, and D. Sanchez. Whirlpool: Improving dynamic
cache management with static data classification. In Proc. of the 21st Int’l
Conf. on Arch. Support for Programming Lang. and Oper. Syst., ASPLOS
’16, pages 113–127, 2016.

[138] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling for
chip multiprocessors. In 40th Ann. IEEE/ACM Int’l Symp. on Microarchi-
tecture (MICRO 07), pages 146–160, 2007.

[139] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: Enhancing
both performance and fairness of shared dram systems. In 2008 International
Symposium on Computer Architecture, pages 63–74, 2008.

[140] Mohannad Nabelsee, Anselm Busse, Helge Parzyjegla, and Gero Mühl. Load-
aware scheduling for heterogeneous multi-core systems. In Proceedings of
the 31st Annual ACM Symposium on Applied Computing, SAC ’16, page
1844–1851, New York, NY, USA, 2016. Association for Computing Machinery.

[141] K. Nguyen. Intel’s cache monitoring technology software-visible
interfaces. https://software.intel.com/en-us/blogs/2014/12/11/

intel-s-cache-monitoring-technology-software\-visible-interfaces,
2014. Accessed: 2015-02-10.

[142] K. Nguyen. Introduction to cache allocation technology in the intel
xeon processor e5 v4 family. https://software.intel.com/en-us/articles/

introduction-to-cache-allocation-technology, 2016. Accessed: 2019-03-
20.

[143] K. Nguyen. Introduction to the intel(r) resource di-
rector technology features in intel(r) xeon(r) proces-
sors e5 v4. https://software.intel.com/en-us/articles/

introduction-to-the-intel-resource-director-technology-features-in-intel-xeon-processors-e5,
2016. Accessed: 2016-12-27.

[144] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips.
GPU computing. Proceedings of the IEEE, 96(5):879–899, 2008.

[145] Els Parton and Peter Verheyen. Strained silicon — the key to sub-45 nm
CMOS. III-Vs Review, 19(3):28 – 31, 2006.

https://software.intel.com/en-us/blogs/2014/12/11/intel-s-cache-monitoring-technology-software\-visible-interfaces
https://software.intel.com/en-us/blogs/2014/12/11/intel-s-cache-monitoring-technology-software\-visible-interfaces
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-the-intel-resource-director-technology-features-in-intel-xeon-processors-e5
https://software.intel.com/en-us/articles/introduction-to-the-intel-resource-director-technology-features-in-intel-xeon-processors-e5

BIBLIOGRAPHY 143

[146] J. M. Perez, P. Bellens, R. M. Badia, and J. Labarta. Cellss: Making it easier
to program the cell broadband engine processor. IBM Journal of Research
and Development, 51(5):593–604, 2007.

[147] Perf. Perf wiki tutorial on perf. https://perf.wiki.kernel.org/index.php,
2015. Accessed: 2015-01-20.

[148] Tiago Pessoa, Jan Gmys, Francisco de Carvalho-Junior, Nouredine Melab,
and Daniel Tuyttens. GPU-accelerated backtracking using cuda dynamic
parallelism. Concurrency and Computation: Practice and Experience,
30(9):e4374, 2018.

[149] Vinicius Petrucci, Michael A. Laurenzano, John Doherty, Yunqi Zhang, Daniel
Mossé, Jason Mars, and Lingjia Tang. Octopus-man: Qos-driven task man-
agement for heterogeneous multicores in warehouse-scale computers. In 2015
IEEE 21st International Symposium on High Performance Computer Archi-
tecture (HPCA), pages 246–258, 2015.

[150] Vinicius Petrucci, Orlando Loques, Daniel Mossé, Rami Melhem, Neven Abou
Gazala, and Sameh Gobriel. Energy-efficient thread assignment optimization
for heterogeneous multicore systems. ACM Trans. Embed. Comput. Syst.,
14(1):15:1–15:26, January 2015.

[151] Adrián Pousa. Optimización de rendimiento, justicia y consumo energético
en sistemas multicore asimétricos mediante planificación. PhD thesis, Uni-
versidad Nacional de La Plata, 2017.

[152] Mihai Pricopi, Thannirmalai Somu Muthukaruppan, Vanchinathan
Venkataramani, Tulika Mitra, and Sanjay Vishin. Power-performance
modeling on asymmetric multi-cores. In Proceedings of the 2013 Interna-
tional Conference on Compilers, Architectures and Synthesis for Embedded
Systems, CASES ’13, pages 15:1–15:10, Piscataway, NJ, USA, 2013. IEEE
Press.

[153] M.K. Qureshi and Y.N. Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches.
In Proceedings of MICRO 06, pages 423–432, 2006.

[154] Morten Rasmussen. Task placement for heterogeneous MP systems. https:

//lwn.net/Articles/517250/, 2012. Accessed: 2016-07-06.

[155] Dheeraj Reddy, David Koufaty, Paul Brett, and Scott Hahn. Bridging func-
tional heterogeneity in multicore architectures. SIGOPS Oper. Syst. Rev.,
45(1):21–33, February 2011.

[156] Rakesh Reddy and Peter Petrov. Eliminating inter-process cache interfer-
ence through cache reconfigurability for real-time and low-power embedded
multi-tasking systems. In Proceedings of the 2007 International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, CASES

https://perf.wiki.kernel.org/index.php
https://lwn.net/Articles/517250/
https://lwn.net/Articles/517250/

144 BIBLIOGRAPHY

’07, page 198–207, New York, NY, USA, 2007. Association for Computing
Machinery.

[157] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D.
Owens. Memory access scheduling. In Proceedings of the 27th Annual In-
ternational Symposium on Computer Architecture, ISCA ’00, page 128–138,
New York, NY, USA, 2000. Association for Computing Machinery.

[158] Ganesh T. S. Memory frequency scaling on intel’s skull canyon
nuc - an investigation. https://www.anandtech.com/show/10602/

memory-frequency-scaling-on-skull-canyon, 2016. Accessed: 2020-05-
20.

[159] J C Saez, A Pousa, A E de Giusti, and M Prieto-Matias. On the interplay
between throughput, fairness and energy efficiency on asymmetric multicore
processors. The Computer Journal, 61(1):74–94, 2018.

[160] J. C. Saez, A. Pousa, R. Rodríıguez-Rodríıguez, F. Castro, and M. Prieto-
Matias. PMCTrack: Delivering performance monitoring counter support to
the os scheduler. The Computer Journal, 60(1):60–85, 2017.

[161] J.C. Saez, J.I. Gomez, and M. Prieto. Improving priority enforcement via
non-work-conserving scheduling. In ICPP ’08: Proceedings of the 2008 37th
International Conference on Parallel Processing, pages 99–106, 2008.

[162] Juan Carlos Saez, Jorge Casas, Abel Serrano, Roberto Rodŕıguez-Rodŕıguez,
Fernando Castro, Daniel Chaver, and Manuel Prieto-Matias. An OS-oriented
performance monitoring tool for multicore systems. In Proc. of Euro-Par
2015: Parallel Processing Workshops, pages 697–709, Cham, 2015. Springer
International Publishing.

[163] Juan Carlos Saez, Fernando Castro, and Manuel Prieto-Matias. Enabling
performance portability of data-parallel openmp applications on asymmetric
multicore processors. In 49th International Conference on Parallel Processing
- ICPP, ICPP ’20, New York, NY, USA, 2020. Association for Computing
Machinery.

[164] Juan Carlos Saez, Alexandra Fedorova, David Koufaty, and Manuel Prieto.
Leveraging core specialization via OS scheduling to improve performance on
asymmetric multicore systems. ACM Trans. Comput. Syst., 30(2), April 2012.

[165] Juan Carlos Saez, Alexandra Fedorova, Manuel Prieto, and Hugo Vegas.
Operating system support for mitigating software scalability bottlenecks on
asymmetric multicore processors. In Proceedings of the 7th ACM Interna-
tional Conference on Computing Frontiers, CF ’10, page 31–40, New York,
NY, USA, 2010. Association for Computing Machinery.

[166] Juan Carlos Saez, A. Pousa, F. Castro, D. Chaver, and M. Prieto-Matias.
Exploring the throughput-fairness trade-off on asymmetric multicore systems.

https://www.anandtech.com/show/10602/memory-frequency-scaling-on-skull-canyon
https://www.anandtech.com/show/10602/memory-frequency-scaling-on-skull-canyon

BIBLIOGRAPHY 145

In Proceedings of Euro-Par 14: Parallel Processing Workshops, pages 326–
337, Porto, Portugal, 25-26 August 2014. Springer-Verlag, Berlin.

[167] Juan Carlos Saez, Adrian Pousa, Fernando Castro, Daniel Chaver, and
Manuel Prieto-Matias. Towards completely fair scheduling on asymmetric
single-isa multicore processors. Journal of Parallel and Distributed Comput-
ing, 102:115–131, 2017.

[168] Juan Carlos Saez, Daniel Shelepov, Alexandra Fedorova, and Manuel Prieto.
Leveraging workload diversity through OS scheduling to maximize perfor-
mance on single-ISA heterogeneous multicore systems. J. Parallel Distrib.
Comput., 71:114–131, January 2011.

[169] Juan Carlos Sáez Alcaide. Planificación de procesos en sistemas multicore
asimétricos = Thread Scheduling on Asymmetric Multicore Systems. PhD
thesis, Madrid, May 2011. Tesis de la Universidad Complutense de Madrid,
Facultad de Informática, Departamento de Arquitectura de Computadores
y Automática (Arquitectura y Tecnoloǵıa de Computadores e Ingenieŕıa de
Sistemas y Automática), léıda el 22-02-2011.

[170] A. Scolari, D.B. Bartolini, and M.D. Santambrogio. A software cache par-
titioning system for hash-based caches. ACM Trans. Archit. Code Optim.,
13(4):57:1–57:24, December 2016.

[171] Vicent Selfa, Julio Sahuquillo, Lieven Eeckhout, Salvador Petit, and Maŕıa E.
Gómez. Application clustering policies to address system fairness with Intel’s
cache allocation technology. In 2017 26th International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 194–205, 2017.

[172] Daniel Shelepov, Juan Carlos Saez Alcaide, Stacey Jeffery, Alexandra Fe-
dorova, Nestor Perez, Zhi Feng Huang, Sergey Blagodurov, and Viren Kumar.
HASS: A scheduler for heterogeneous multicore systems. SIGOPS Oper. Syst.
Rev., 43(2):66–75, April 2009.

[173] T. Sherwood, B. Calder, and J. Emer. Reducing cache misses using hard-
ware and software page placement. In Proceedings of the 13th International
Conference on Supercomputing, ICS ’99, pages 155–164, 1999.

[174] Allan Snavely and Dean M. Tullsen. Symbiotic jobscheduling for a simultane-
ous multithreaded processor. In Proceedings of the Ninth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS IX, page 234–244, New York, NY, USA, 2000. Association
for Computing Machinery.

[175] S. Srikantaiah, R. Das, A. K. Mishra, C. R. Das, and M. Kandemir. A case for
integrated processor-cache partitioning in chip multiprocessors. In Proceedings
of the Conference on High Performance Computing Networking, Storage and
Analysis, pages 1–12, 2009.

146 BIBLIOGRAPHY

[176] Shekhar Srikantaiah, Mahmut Kandemir, and Mary Jane Irwin. Adaptive set
pinning: Managing shared caches in chip multiprocessors. In Proceedings of
the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XIII, page 135–144, New York,
NY, USA, 2008. Association for Computing Machinery.

[177] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning of cache memory.
IEEE Transactions on Computers, 41(9):1054–1068, Sep. 1992.

[178] L. T. Su, S. Naffziger, and M. Papermaster. Multi-chip technologies to un-
leash computing performance gains over the next decade. In 2017 IEEE
International Electron Devices Meeting (IEDM), pages 1.1.1–1.1.8, 2017.

[179] Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu. The application slowdown model: Quantifying and control-
ling the impact of inter-application interference at shared caches and main
memory. In 2015 48th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 62–75, 2015.

[180] G. E. Suh, S. Devadas, and L. Rudolph. A new memory monitoring scheme
for memory-aware scheduling and partitioning. In Proceedings Eighth In-
ternational Symposium on High Performance Computer Architecture, pages
117–128, 2002.

[181] Kai Tian, Yunlian Jiang, and Xipeng Shen. A study on optimally coscheduling
jobs of different lengths on chip multiprocessors. pages 41–50, 01 2009.

[182] Kenzo Van Craeynest, Shoaib Akram, Wim Heirman, Aamer Jaleel, and
Lieven Eeckhout. Fairness-aware scheduling on single-isa heterogeneous multi-
cores. In Proceedings of the 22nd International Conference on Parallel Archi-
tectures and Compilation Techniques, pages 177–187, 2013.

[183] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and
Joel Emer. Scheduling heterogeneous multi-cores through performance im-
pact estimation (PIE). In 2012 39th Annual International Symposium on
Computer Architecture (ISCA), pages 213–224, 2012.

[184] Pablo Viana, Ann Gordon-Ross, Edna Barros, and Frank Vahid. A table-
based method for single-pass cache optimization. In Proceedings of the 18th
ACM Great Lakes Symposium on VLSI, GLSVLSI ’08, page 71–76, New York,
NY, USA, 2008. Association for Computing Machinery.

[185] R. Wang and L. Chen. Futility scaling: High-associativity cache partitioning.
In Proceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-47, pages 356–367, 2014.

[186] S. Wang and L. Wang. Thread-associative memory for multicore and mul-
tithreaded computing. In ISLPED’06 Proceedings of the 2006 International
Symposium on Low Power Electronics and Design, pages 139–142, 2006.

BIBLIOGRAPHY 147

[187] X. Wang, S. Chen, J. Setter, and J. F. Mart́ınez. Swap: Effective fine-grain
management of shared last-level caches with minimum hardware support. In
2017 IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), pages 121–132, 2017.

[188] Jonathan Weinberg and Allan Edward Snavely. Accurate memory signatures
and synthetic address traces for hpc applications. In Proceedings of the 22nd
Annual International Conference on Supercomputing, ICS ’08, page 36–45,
New York, NY, USA, 2008. Association for Computing Machinery.

[189] X. Xiang, B. Bao, C. Ding, and Y. Gao. Linear-time modeling of program
working set in shared cache. In 2011 International Conference on Parallel
Architectures and Compilation Techniques, pages 350–360, 2011.

[190] Yuejian Xie and Gabriel Loh. Pipp: promotion/insertion pseudo-partitioning
of multi-core shared caches. volume 37, pages 174–183, 01 2009.

[191] Di Xu, Chenggang Wu, and Pen-Chung Yew. On mitigating memory band-
width contention through bandwidth-aware scheduling. In 19th Int’l Conf.
Parallel Arch. Compilation Tech. (PACT 10), pages 237–248, 2010.

[192] Di Xu, Chenggang Wu, Pen-Chung Yew, Jianjun Li, and Zhenjiang Wang.
Providing fairness on shared-memory multiprocessors via process scheduling.
In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint In-
ternational Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’12, page 295–306, New York, NY, USA, 2012. Association for
Computing Machinery.

[193] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. COLORIS: A dynamic
cache partitioning system using page coloring. In 2014 23rd International
Conference on Parallel Architecture and Compilation Techniques (PACT),
pages 381–392, 2014.

[194] Ying Ye, Richard West, Jingyi Zhang, and Zhuoqun Cheng. Maracas: A real-
time multicore vcpu scheduling framework. In 2016 IEEE Real-Time Systems
Symposium (RTSS), pages 179–190, 2016.

[195] C. Yu and P. Petrov. Off-chip memory bandwidth minimization through
cache partitioning for multi-core platforms. In Proceedings of the 47th Design
Automation Conference, DAC ’10, pages 132–137, 2010.

[196] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. PAL-
LOC: Dram bank-aware memory allocator for performance isolation on mul-
ticore platforms. In 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 155–166, 2014.

[197] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha.
Memory bandwidth management for efficient performance isolation in multi-
core platforms. IEEE Transactions on Computers, 65(2):562–576, 2016.

148 BIBLIOGRAPHY

[198] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page coloring-
based multicore cache management. In Proceedings of the 4th ACM European
Conference on Computer Systems, EuroSys ’09, pages 89–102, 2009.

[199] Ying Zhang, Lide Duan, Bin Li, Lu Peng, and Srinivasan Sadagopan.
Cross-architecture prediction based scheduling for energy efficient execution
on single-ISA heterogeneous chip-multiprocessors. Microprocess. Microsyst.,
39(4):271–285, June 2015.

[200] Yutao Zhong, Xipeng Shen, and Chen Ding. Program locality analysis using
reuse distance. ACM Trans. Program. Lang. Syst., 31(6), August 2009.

[201] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman,
Yuanyuan Zhou, and Sanjeev Kumar. Dynamic tracking of page miss
ratio curve for memory management. SIGARCH Comput. Archit. News,
32(5):177–188, October 2004.

[202] H. Zhu and M. Erez. Dirigent: Enforcing qos for latency-critical tasks on
shared multicore systems. In Proc. of the 21st Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’16,
pages 33–47, 2016.

[203] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Address-
ing Cache Contention in Multicore Processors Via Scheduling. In 15th Int’l
Conf. Architectural Support Programming Lang. and Oper. Syst. (ASPLOS
10), pages 129–142, 2010.

[204] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing
shared resource contention in multicore processors via scheduling. volume 45,
pages 129–142, 03 2010.

[205] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexandra Fedorova,
and Manuel Prieto. Survey of scheduling techniques for addressing shared
resources in multicore processors. ACM Comput. Surv., 45(1), December
2012.

[206] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexandra Fedorova,
and Manuel Prieto. Survey of scheduling techniques for addressing shared
resources in multicore processors. ACM Comput. Surv., 45(1), December
2012.

	Tesis Adrián García García
	Portada
	Contents
	Abstract
	Chapter 1. Introduction
	Multicore architectures
	Heterogeneity and Asymmetric multicore processors
	Thesis contributions
	Thesis structure

	Chapter 2. Background
	Shared-resource contention
	Asymmetry-aware scheduling
	Determining the speedup factor
	Throughput optimization
	Delivering fairness
	Other optimization goals and workload types

	Chapter 3. Experimental setup
	Hardware
	Asymmetric Multicore Platforms
	Symmetric multicore platforms

	Software
	Scheduling Framework for AMPs
	PMCTrack
	Scheduling mode and monitoring modules
	Intel Resource Director Technology
	Shared-resource monitoring technologies
	Shared-resource allocation technologies

	Metrics
	Metrics on CMPs
	Metrics on AMPs

	Chapter 4. CAMPS: a Contention-aware scheduler for AMPS
	Motivation
	Fairness on AMPs
	Impact of shared resource contention on AMPs

	Related Work
	The CAMPS scheduler
	CAMPS in the Linux kernel
	Determining the slowdown at runtime
	Progress tracking and enforcing fairness
	Non-work conserving mode
	Special support for multithreaded applications
	Trading fairness for throughput

	Experimental evaluation
	Determining the history table size
	CAMPS vs CFS and HMP
	Trading fairness for throughput
	CAMPS vs. other asymmetry-aware schedulers
	Workloads for the 2B-4S configuration
	Workloads for the 4B-4S-Odroid configuration

	Conclusions

	Chapter 5. PBBCache: A parallel simulator for rapid prototyping and evaluation of cache-partitioning policies
	Background
	Optimal cache-partitioning problem
	Optimal cache-clustering problem

	Related Work
	Cache-partitioning and cache-clustering policies
	Parallel Branch-and-Bound

	Design of the PBBCache simulator
	Input data and command-line options
	Determining the slowdown under cache-partitioning
	Modeling Memory Bandwidth Contention

	Determining the slowdown for cache-clustering policies
	Partitioning policies
	Notes on the simulator implementation

	Formalization of Opt-STP and Opt-Unf as MINLPs
	Determining the optimal solution
	Initial solution for B&B
	Bounding functions
	Parallel distributed-memory B&B algorithms
	Determining the optimal cache-clustering solution

	Experiments
	Experimental Setup
	Validation of the simulator
	Effectiveness of the bounding functions
	Scalability of the distributed-memory parallel B&B strategy

	Conclusions

	Chapter 6. LFOC: A lightweight fairness-oriented cache clustering policy for commodity multicores
	Background
	Related Work
	Cache partitioning proposals
	Cache clustering proposals

	Analysis of the optimal cache-clustering solution
	Design and Implementation
	Algorithm outline
	Application Classification

	Experiments
	Evaluation of Clustering Algorithms
	Study of the dynamic policies

	Conclusions

	Chapter 7. Conclusions
	Future work

	Resumen en español
	Bibliography

