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ABSTRACT

HIGH PERFORMANCE CLOUD COMPUTING ON MULTICORE
COMPUTERS

by
Jianchen Shan

The cloud has become a major computing platform, with virtualization being a key

to allow applications to run and share the resources in the cloud. A wide spectrum of

applications need to process large amounts of data at high speeds in the cloud, e.g.,

analyzing customer data to find out purchase behavior, processing location data to

determine geographical trends, or mining social media data to assess brand sentiment.

To achieve high performance, these applications create and use multiple threads

running on multicore processors. However, existing virtualization technology cannot

support the efficient execution of such applications on virtual machines, making them

suffer poor and unstable performance in the cloud.

Targeting multi-threaded applications, the dissertation analyzes and diagnoses

their performance issues on virtual machines, and designs practical solutions to

improve their performance. The dissertation makes the following contributions. First,

the dissertation conducts extensive experiments with standard multicore applications,

in order to evaluate the performance overhead on virtualization systems and diagnose

the causing factors. Second, focusing on one main source of the performance

overhead, excessive spinning, the dissertation designs and evaluates a holistic solution

to make effective utilization of the hardware virtualization support in processors to

reduce excessive spinning with low cost. Third, focusing on application scalability,

which is the most important performance feature for multi-threaded applications,

the dissertation models application scalability in virtual machines and analyzes how

application scalability changes with virtualization and resource sharing. Based on the

modeling and analysis, the dissertation identifies key application features and system



factors that have impacts on application scalability, and reveals possible approaches

for improving scalability. Forth, the dissertation explores one approach to improving

application scalability by making fully utilization of virtual resources of each virtual

machine. The general idea is to match the workload distribution among the virtual

CPUs in a virtual machine and the virtual CPU resource of the virtual machine

manager.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Cloud computing has become main stream with virtualization being a cornerstone

technology. With virtualization, virtual machines (VMs) are created as an abstraction

of physical resources and complete execution environments for applications; appli-

cations from different users can be encapsulated into different virtual machines and

be consolidated on the same physical machine to reduce cost and improve efficiency.

In this multi-core era, with increasing core count and memory size, the

computational capacity of a physical machine keeps growing. At the same time,

the demand for computing power in the cloud keeps increasing. A wide spectrum of

applications need to process large amounts of data at high speeds in the cloud, e.g.,

analyzing customer data to find out purchase behavior, processing location data to

determine geographical trends, or mining social media data to assess brand sentiment.

To satisfy the demand for increasing computing power in each VM and to utilize the

growing computational capacity of underlying physical machines, virtual machine

sizes also grow steadily. For example, Amazon EC2 platform now provides virtual

machines with 128 virtual CPUs and 3904 GiB memory.

To achieve high performance on virtual machines, similar to the executions

on physical machines, applications usually create multiple threads and distribute

computation to these threads. These threads run on multiple virtual CPUs in the

VM, which are in turn scheduled on multiple cores in the physical machine, in order

to utilize the computing power of multiple cores. Most VMs in the cloud are now with

multiple virtual CPUs, and this percentage still keeps increasing. It is imperative to
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study how multi-threaded applications perform in such VMs and ensure that high

performance can really be achieved in the cloud.

Despite the similarity in the architectures (e.g., a VM with multiple virtual

CPUs vs. a physical machine with multiple physical CPUs/cores) and execution

environments (e.g., OSs and libraries), the execution and the performance of a multi-

threaded application on a VM can be substantially different from those on a physical

machine. It has been noticed that multi-threaded applications suffer serious and

unpredictable performance degradation on VMs. The causes of such difference and

performance issues include an additional layer of software (i.e., overhead introduced

by virtualization) and the resource sharing and resource contention between the VMs

hosted on the same physical machine. While these factors also affect the executions

of single-thread applications, performance impact is particularly significant for multi-

threaded applications, because of the special execution features of multi-threaded

applications (e.g., synchronization and communications during their executions).

The performance issues with multi-threaded applications on VMs are also due

to the lack of support at different system layers to fully consider the execution

features of these applications. For example, at the hardware layer, many efforts

have been paid to implement various hardware assistance to eliminate virtualization

overhead for single-thread executions. However, the virtualization overhead caused

by multi-threaded executions, such as the virtualization overhead associated with

synchronization and communication, has not received enough attention, and there is

little hardware assistance to effectively reduce such virtualization overhead.

At the virtual machine manager layer, virtual CPUs are not built to provision

CPU resource to applications in an efficient way. For example, a virtual CPU is

now implemented as an entity that is independently scheduled on a physical core

and time-share the core with other virtual CPUs on the core. Thus, the virtual CPU

cannot run continuously, and its computational capacity varies over time. This makes
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it being unable to meet the expectation of multi-threaded applications for threads

making continuous and steady progress. Also, virtual CPUs in a virtual machine are

built to have symmetric performance. But such symmetry doesn’t necessarily fit the

application’s resource demand. All these factors can significant impact the execution

of multi-threaded applications on virtual machines.

Inside virtual machines, task scheduling at the guest OS layer is designed for

physical cores, and is not aware of the non-continuity and varying computing capacity

of the virtual CPUs. It cannot distribute workloads to virtual CPUs based on their

activity and capability, and thus cannot fully utilize the allocated CPU resource to

achieve high performance.

Targeting multi-threaded applications, the dissertation analyzes and diagnoses

their performance issues on virtual machines, and designs practical solutions to

improve their performance. First, focusing on the execution features of multi-threaded

applications, the dissertation conducts extensive experiments with standard multicore

applications, in order to evaluate the performance overhead on virtualization systems

and diagnose the causing factors. The dissertation identifies the hardware assistance

required to eliminate the virtualization overhead for multi-threaded applications

to achieve high performance on virtual machines. Second, one of main sources

of the performance overhead for multi-threaded applications is excessive spinning

caused by spin-based synchronization, such as spin-locks. Focusing on excessive

spinning, the dissertation designs and evaluates a holistic solution to make effective

utilization of the hardware virtualization support in processors to reduce excessive

spinning with low cost. Third, focusing on application scalability, which is the

most important performance feature for multi-threaded applications, the dissertation

models application scalability in virtual machines and analyzes how application

scalability changes with virtualization and resource sharing. Based on the modeling

and analysis, the dissertation identifies key application features and system factors
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that have impacts on application scalability, and reveals possible approaches for

improving scalability. Forth, the dissertation explores one approach to improving

application scalability by making fully utilization of virtual resources of each virtual

machine. The general idea is to match the workload distribution among the virtual

CPUs in a virtual machine and the virtual CPU resource of the virtual machine

manager.

The research contributions are summarized in the following sections.

1.2 Contributions of Dissertation

1.2.1 Diagnosing the Virtualization Overhead in the Multicore VMs

Hardware-assisted virtualization, as an effective approach to low virtualization

overhead, has been dominantly used. However, existing hardware assistance mainly

focuses on single-thread performance. Much less attention has been paid to facilitate

the efficient interaction between threads, which is critical to the execution of

multi-threaded computation on virtualized multicore platforms. We aim to answer

two questions: 1) what is the performance impact of virtualization on multi-threaded

computation, and 2) what are the factors impeding multi-threaded computation

from gaining full speed on virtualized platforms. Targeting the first question,

we measure the virtualization overhead for computation-intensive applications that

are designed for multicore processors. We show that some multicore applications

still suffer significant performance losses in virtual machines. Even with hardware

assistance for reducing virtualization overhead fully enabled, the execution time may

be increased by more than 150% when the system is not over-committed, and the

system throughput can be reduced by 6x when the system is over-committed. To

answer the second question, with experiments, we diagnose the main causes for the

performance losses. Focusing the interaction between threads and between VCPUs,

we identify and examine a few performance factors, including the intervention of the
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virtual machine monitor (VMM) to schedule/switch virtual CPUs (VCPUs) and to

handle interrupts required by inter-core communication, excessive spinning in user

space, and cache-unaware data sharing.

1.2.2 Reducing the Synchronization Overhead in Multicore VMs

Spin-locks are widely used in software for efficient synchronization. However, they

cause serious performance degradation on virtualized platforms, such as the Lock

Holder Preemption (LHP) problem and the Lock Waiter Preemption (LWP) problem,

due to excessive spinning by virtual CPUs (VCPUs). The excessive spinning occurs

when a VCPU waits to acquire a spin-lock. To address the performance degradation,

hardware facilities, such as Intel PLE and AMD PF, are provided on processors to

preempt VCPUs when they spin excessively. Although these facilities have been

predominantly used on mainstream virtualization systems, using them in a manner

that achieves the highest performance is still a challenging issue. There are two core

problems in using these hardware facilities to reduce excessive spinning. One is to

determine the best time to preempt a spinning VCPU (i.e., the selection of spinning

thresholds). The other is which VCPU should be scheduled to run after the spinning

VCPU is descheduled. Due to the semantic gap between different software layers, the

virtual machine monitor (VMM) does not have information about the computation

characteristics on VCPUs, which is needed to address the above problems. This

makes the problems inherently challenging. We propose a framework named AdPtive

Pause-Loop Exiting and Scheduling (APPLES) to address these problems. APPLES

monitors the overhead caused by excessive spinning and preempting spinning VCPUs,

and periodically adjusts spinning thresholds to reduce the overhead. APPLES also

evaluates and schedules “ready” VCPUs in a VM by their potential to reduce the

spinning incurred by the spin-lock synchronization. The evaluation is based on the

causality and the time of VCPU preemptions. The implementation of APPLES
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incurs only minimal changes to existing systems (about 100 lines of code in KVM).

Experiments show that APPLES can improve performance by 3% - 49% (14% on

average) for the workloads with frequent spin-lock operations.

1.2.3 Analyzing the Application Scalability in the Multicore VMs

Virtual machine (VM) sizes keep increasing in the cloud. However, little attention

has been paid to analyze and understand the scalability of multicore applications on

big VMs with multiple virtual CPUs (VCPUs), assuming that application scalability

on VMs can be analyzed in the same ways as that on physical machines (PMs). We

demonstrate that, since hardware CPU resource is dynamically allocated to VCPUs,

the executions of multicore applications on VMs show different scalability from those

on PMs. We systematically study how the virtualization of CPU resource changes

execution scalability, identifies key application features and system factors that

affect execution scalability on VMs, and investigates possible directions to improve

scalability.

We present a few important findings. First, the execution scalability of

applications on VMs is determined by different factors than those on PMs. Second,

virtualization and resource sharing can improve scalability by nature. Thus,

applications may show better scalability on VMs than on PMs. Linear scalability

can be achieved even when there is substantial sequential computation. Third, there

is still much space to further improve execution scalability by enhancing system

designs. Better scalability can be achieved by increasing allocation period length

and/or matching resource allocation and workload distribution.

1.2.4 Improving the Application Scalability in the Multicore VMs

Hosting big virtual machines (VMs) with multiple virtual CPUs (VCPUs) on

multicore servers has become a norm in modern cloud computing infrastructures.
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However, multicore programs may suffer significant performance degradation and

unpredictable performance variation on such VMs, when the VMs are co-located

with other VMs. One of the major causes is the CPU utilization problem of

the computation on such VMs, i.e., low CPU utilization causing performance

degradation and unpredictable CPU utilization causing performance variation. The

CPU utilization problem is in turn caused by the mismatch between the allocation of

CPU time to VCPUs and the demand for CPU time of the computation distributed

on the VCPUs.

We proposes dynamically adjusting the performance features of the VCPUs in

each VM, including the amount of CPU time distributed to the VCPUs and the

responsiveness of the VCPUs, based on the CPU time demand of the computation

on each VCPU. The objective is to match the allocation of CPU time to VCPUs

with the demand for CPU time, such that the computation in the VM can

proceed at the highest speed possible, which is usually determined by the fair

share of CPU time made available to the VM. We provides a system solution to

adjust VCPU performance features, evaluates it with extensive experiments using

PARSEC and TPC-W-like workloads, and demonstrates that it can effectively

avoid performance degradation and performance variation of multicore programs on

virtualized platforms, and can also improve overall system throughput.

1.3 Structure of Dissertation

The rest of the dissertation is organized as follows. Chapter 1.3 analyzes and identifies

the virtualization overhead for the multicore applications in the cloud. Chapter 2.6

focus on the synchronization overhead in cloud. It introduces the APPLES framework

to efficiently handle the spin-lock synchronization and reduce the excessive spinning.

Chapter 3.5 reveals how scalability is affected by the virtualization system in the cloud

and the directions to improve it. Chapter 4.6 describes how dynamic asymmetric
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virtual CPUs matches the resource allocation and workload distribution for desired

scalability in the cloud. We conclude this dissertation in Chapter 6.
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CHAPTER 2

DIAGNOSING VIRTUALIZATION OVERHEAD FOR
MULTI-THREADED COMPUTATION ON MULTICORE

PLATFORMS

2.1 Introduction

Applications usually have lower performance on virtual machines than on physical

machines, due to the overhead introduced by virtualization. Virtualization overhead

is one of the major concerns when people consolidate their workloads using virtual

machines (VMs) or migrate their workloads into virtualized clouds. Processors,

as primary system resources, are usually first evaluated before other resources.

Thus, identifying and reducing CPU virtualization overhead are a main focus of

virtualization technology [1, 2, 3, 4, 5, 6].

Hardware-assisted virtualization is an effective method to reduce virtualization

overhead, and has been widely used in almost all mainstream virtualization platforms.

Hardware assistance, especially that from hardware processors (e.g. Intel VT-x [7]

and AMD-V [3]), makes virtual devices behave and perform identically to the corre-

sponding hardware devices for improved performance. However, existing hardware

assistance for CPU virtualization is mainly focused on single thread performance.

While various types of hardware support has been developed to accelerate each

individual thread (e.g., the support for nonfaulting accesses to privileged states

and the support for accelerating address translation), little attention has been paid

to efficient multi-threaded execution on virtual machines, especially the efficient

interaction between threads. CPU virtualization usually incurs minimal performance

penalty for single-thread applications on latest processors. But, as this chapter will

show, multi-threaded applications may suffer substantial performance losses, even

with the hardware assistance for reducing virtualization overhead fully enabled.
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For example, due to the lack of facilitates to efficiently coordinate VCPUs,

a multicore processor is usually virtualized into a set of single-core virtual CPUs

(VCPUs) that are scheduled independently by the virtual machine monitor (VMM).

This mismatch between multicore processors and virtual CPUs may not slow down

single-thread applications. But it penalizes multi-threaded applications, which are

designed and optimized for multicore processors and expect VCPUs to behave

identically to real computing cores.

This chapter measures and diagnoses the execution overhead of multi-threaded

applications on virtualized multicore platforms with the latest hardware assistance for

virtualization. With the maturity of hardware-assisted virtualization, virtualization

overhead has been significantly reduced for single-thread executions, and the intent of

further reducing the virtualization overhead for computation-intensive applications is

losing its momentum recently. With the measurement, we want to motivate architects

and system designers to further reduce virtualization overhead for multi-threaded

applications, and with the diagnosis, we want to find out a few promising directions

for developing new techniques and/or optimizing existing designs. The contributions

of this chapter are as follows.

First, this chapter shows that, while single-thread computation has decent

performance on virtual machines, multi-threaded computation still suffer significant

performance losses. The execution time may be increased by more than 150%, even

when the host system is not over-committed. The performance loss is not due

to resource sharing or contention. When the host system is over-committed, the

overhead increases significantly and the system throughput may be reduced by as

much as 6x. This clearly shows that there is still strong demand for further reducing

the virtualization overhead for computation-intensive applications.

Then, with experiments, this chapter reveals a few factors degrading the

performance of multi-threaded computation on virtualized multicore platforms. As
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far as we know, some factors have not been identified or studied in other literatures.

Specifically, this chapter identifies the following performance-degrading factors: 1)

VCPU rescheduling/switching overhead incurred by VCPU state changes; 2) the

overhead incurred by handling inter-processor interrupts (IPIs) cannot be eliminated

even with hardware support such as Advanced Programmable Interrupt Controller

virtualization (APICv) [8]; 3) excessive VCPU spinning in user space cannot be

eliminated with hardware support such as Pause-Loop Exiting (PLE) [9]; 4) VCPU

rescheduling/switching overhead incurred by preempting spinning VCPUs; 5) opaque

cache architectures in virtual machines prevent efficient data sharing among threads.

Finally, this chapter discusses a few techniques that can be used to reduce

the overhead caused by the above factors. To our best knowledge, this is the first

work that systematically measures the virtualization overhead and diagnoses the

performance degradation of multi-threaded applications on the systems with the latest

hardware assistance for efficient virtualization.

2.2 Experimental Settings and Methodology

We conducted our experiments on two Dell PowerEdge servers. One is a R720 server

with 64GB of DRAM and two 2.40GHz Intel Xeon E5-2665 processors, each of which

has 8 cores. The other is a R420 server with 48GB of DRAM and a 2.50GHz

Intel Xeon E5-2430 V2 processor with 6 Ivy Bridge-EN cores. We created virtual

machines on the servers. The VMM is KVM [10]. The host OS and the guest OS

are Ubuntu version 14.04 with the Linux kernel version updated to 3.19.8. CPU

power management can reduce application performance on VMs [11]. To prevent

such performance degradation, in the experiments, we disabled the C states other

than C0 and C1 of the processors, which have long switching latencies.

We selected the benchmarks in PARSEC 3.0 and SPLASH2X suites in the

PARSEC benchmark package [12]1. We compiled the PARSEC and SPLASH2X
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benchmarks using gcc with the default settings of the gcc-pthreads configuration in

PARSEC 3.0. We used the parsecmgmt tool in the PARSEC package to run them

with native inputs. In the experiments, unless stated otherwise, When we ran a

benchmark in a VM we set the minimum number of threads in each benchmark equal

to the number of VCPUs in the VM with the “-n” option. We pre-warmed the buffer

cache in the guest operating system to minimize I/O operations. Please note that

the memory capacity (16GB) of a VM is large enough to buffer the input and output

data sets of the benchmark and to provide the memory space for its execution.

We carried out two groups of experiments. In the first group of experiments, we

ran benchmarks with default system settings. The hardware assistance for reducing

virtualization overhead (e.g. Extended Page Tables (EPT) and Pause-Loop Exiting

(PLE)) was fully enabled in KVM. We ran each benchmark under three different

scenarios: 1) on a VM with dedicated hardware resources, 2) on multiple VMs sharing

hardware resources and with one instance of the benchmark running in each VM, and

3) on the physical machine hosting the VMs. With these experiments, we want

to compare the performance of the benchmark under these scenarios and show the

overhead incurred by virtualization.

In the second group of experiments, we reran the benchmarks suffering

large performance degradation. We want to diagnose the root causes for the

performance degradation and reveal the factors causing virtualization overhead. In

the experiments, we used the following methods to diagnose the executions. In

some experiments, we temporarily changed some system settings when we execute

a benchmark. We selected the settings that can remove or alleviate certain types of

virtualization overhead. For example, by disabling PLE support, we can reduce the

overhead due to handling the VM EXITs triggered by PLE events. In some other

experiments, we used the perf tool for Linux and KVM to profile the executions [13].

1We did not select benchmark cholesky in SPLASH2X since its execution time is too short
(less than 0.01s) and varies significantly across different runs.
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Figure 2.1 Slowdowns of PARSEC benchmarks and SPLASH2X benchmarks in a
16-VCPU virtual machine relative to their executions on the 16-core R720 server.

In some cases, neither of the above methods could identify the root causes. In these

cases, we tried to manually modify the benchmarks and examine the performance

difference.

2.3 Measuring Virtualization Overhead

This section shows the virtualization overhead of the benchmarks under two different

scenarios. First, we measure the virtualization overhead when the physical machine is

not over-subscribed. Only one VM was launched in the experiments, and the number

of VCPUs was equal to the number of cores on the physical machine hosting the

VM. We compare the performance of the benchmarks on the VM against that on the

physical machine.

Figure 2.1 shows the slowdowns of the benchmarks due to virtualization on

the R720 server for both single-thread executions (i.e., -n 1) and multi-threaded

executions (16 threads are used, i.e., -n 16). The figure clearly shows that

multi-threaded executions were slowed down on virtual machines by much larger

percentages than single-threaded executions. On average, these benchmarks were

slowed down by 4% with single-thread executions and by 21% with 16-thread
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executions. The slowdowns of multi-threaded executions vary across the benchmarks

in a very large range, from less than 1% (canneal, radiosity, and lu ncb) to more than

150% (dedup). While half of the benchmarks were slowed down slightly by less than

10%, seven benchmarks were slowed down substantially by more than than 20%, and

three benchmarks were slowed down by more than 50%.

Then, we measure the virtualization overhead when the physical machine is

over-subscribed. We launched multiple VMs and run an instance of the benchmark

in each VM. We set the number of VCPUs in each VM equal to the number of cores

in the physical machine and set the number of threads in each instance equal to the

number of the VCPUs in a VM. Since we launched multiple VMs, the physical cores

were time-shared by VMs. Thus, instead of using the performance of each individual

benchmark instance, we use system throughput to analyze virtualization overhead.

Specifically, we use Weighted-Speedup to measure the system throughput, which is

the aggregated speedup of the benchmark instances. The speedup is relative to the

execution of the benchmark on a VM when the system is not over-subscribed. Thus,

the scenario with only one VM launched and one instance running on the VM serves

as the baseline, and the throughput under the baseline scenario is 1. For example,

if there are two instances of the benchmark running on two VMs and the execution

time of the benchmark is doubled, the Weighted-Speedup is also 1 (i.e., 0.5+0.5),

indicating that the throughput is the same as that under the baseline scenario. A

weighted-speedup larger than 1 indicates higher throughput than the baseline.

In the experiments, we gradually increased the number of VMs (and the number

of benchmark instances) from 1 to 4 before the physical memory is filled. Figure 2.2

shows how the system throughput changes for the benchmarks which suffer high

virtualization overhead (slowed down by more than 20% when the system is not

over-subscribed). Since VCPUs might not be always active when these benchmarks

ran, the system was not fully loaded when there were fewer active VCPUs than
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Figure 2.2 Throughput of PARSEC benchmarks and SPLASH2X benchmarks when
the number of VMs was increased from 1 to 4

physical cores. Increasing the number of VMs helped making a full utilization of the

hardware resources and thus led to higher throughput. We observed this trend with

some benchmarks. For example, the system throughput was increased by 74% for

facesim when the number of VMs was increased to 4.

However, we also observed that, with a few benchmarks, the system throughput

reduced dramatically when there was more than one VM. For example, when

the number of VMs was increased to 2, surprisingly the throughputs of dedup,

streamcluster, and volrend, were reduced by about 6x, 2x, and 3x, respectively. Please

note that, since the baseline is the performance with the system hosting 1 VM, the

performance degradation is in addition to that incurred by the virtualization overhead

in the baseline scenario.

Under both scenarios, the performance degradation was measured when the

same amount of physical resource was used (i.e., all the resource on the physical

machine). Thus, the performance degradation was due to virtualization overhead,

instead of short of physical resource. The experiments evidently show that the

virtualization overhead is still high for some multicore applications and must

be effectively reduced. While some execution overhead is expected on virtual
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machines, the large performance degradation observed in the above experiments is not

normal and makes virtualized platforms an inefficient choice for some multi-threaded

workloads.

To better understand the virtualization overhead, we have investigated the

possible causes for the performance degradation. Since I/O operations are minimized

and memory resources are not oversubscribed, we concentrate on examining the

factors related to the virtualization of hardware resources on processors. Because

only some multi-threaded executions show large slowdowns, we do not investigate the

factors that affect both single-thread and multi-threaded applications (e.g., increased

pressure on TLBs due to the adoption of techniques such as EPT). Instead, we focus

on the factors related to the interaction between threads and between VCPUs.

2.4 Diagnosing Virtualization Overhead

In this section, we analyze and diagnose the performance degradation of the multi-

threaded applications running on virtual machines. We want to find out the factors

degrading performance and to what degree they can degrade performance. Thus, we

select the workloads with large performance degradation in the experiments in the

previous section.

We focus our investigation on the interaction between threads and between

VCPUs. Specifically, threads may interact with each other using various types

of IPCs. They may also share or exchange data through shared memory space.

Processors/cores usually rely on Inter Processor Interrupts (IPIs) to coordinate with

each other. They access shared data in shared caches. If there are multiple caches

holding multiple copies of shared data, they must keep the copies consistent. With

experiments, we reveal that IPCs, IPIs, and data sharing can incur high virtualization

overhead in different ways on virtual machines. In the following several subsections,

we first isolate the factors degrading performance and examine their overhead when

16



the system is not over-subscribed. Then we analyze the executions with the system

over-subscribed with multiple VMs.
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Figure 2.3 Slowdowns of the benchmarks are reduced after the overhead incurred
by switching/rescheduling idle VCPUs and spinning VCPUs is removed.

2.4.1 Overhead Due to Switching/Rescheduling Idle VCPUs

Multi-threaded computation usually runs on multiple VCPUs in a virtual machine.

Some VCPUs become idle when there lacks runnable tasks, and are activated when

some tasks become runnable. To make efficient utilization of hardware resources, the

VMM must be notified to handle these state changes of VCPUs. The overhead is

thus incurred.

Frequent VCPU state changes can be caused by blocking synchronization, with

which a thread waiting for an event blocks itself by giving up its execution resources

(mainly the CPU) spontaneously. A blocked thread relies on the operating system

to wake it up when the event happens. Blocking makes the number of active threads

in a virtual machine change dynamically. The number of VCPUs employed by these

threads also changes accordingly. When the number of active threads drops below

the number of active VCPUs, some VCPUs will become idle. When the number of

active threads increases beyond the number of active VCPUs, idle VCPU must be
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activated. For example, when a thread calls pthread mutex lock() to request a mutex

that is held by another thread, it will block itself through appropriate library/system

calls, waiting for the release of the mutex. If there are no other threads ready to run

in the system, the VCPU running the thread becomes idle. In the guest OS, an idle

VCPU executes the idle loop, which typically calls a special instruction (e.g., HLT on

Intel 64 and IA-32 architecture (“x86”) platforms). When the mutex is released, the

threads waiting for it are woken up. To maximize throughput, the guest OS may

activate idle VCPUs to schedule waking threads onto them.

In a virtualized environment, the special instruction and the operations to

activate idle VCPUs must be handled by the VMM, even though they would be

carried out directly by hardware in a non-virtualized environment. When software

issues the special instruction to place a particular VCPU into the idle state, the core

running the VCPU will raise an exception and trap into the VMM. The VMM may

take this opportunity to reschedule other VCPUs onto this idling core. When a thread

is ready to run on an idle VCPU, the VMM must activate the VCPU and reschedule

it onto a physical core. These operations incur much higher cost (e.g., usually a few

microseconds) than those required in a non-virtualized environment to switching an

idle core back (e.g., switching from C1 to C0 states takes no more than 1 microsecond

on contemporary Intel Xeon CPUs).

To evaluate the overhead caused by switching and rescheduling idle VCPUs, we

change the idling operation in the guest OS. Instead of having an idle VCPU call HLT

instruction, we make it enter a polling idle loop. In this way, the overhead incurred

by descheduling and rescheduling idle VCPUs can be avoided. Thus, the overhead

can be indicated by comparing the performance of the benchmarks before and after

the change.

We select the benchmarks with slowdowns larger than 20% with the default

idling operation, and re-run them with polling idle loop. Figure 2.3 compares
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the slowdowns of the benchmarks with different idling operations. By removing

the overhead of descheduling and rescheduling idle VCPUs (polling idle loop), the

slowdowns of the benchmarks can be significantly reduced2. The average slowdown

is reduced from 59% to 35%. Among these benchmarks, dedup receives the largest

performance improvement, and its slowdown is reduced from 173% to 103%. The

slowdown of volrend is reduced by the largest percentage (about 2/3 of the slowdown

is removed).

In real practice, the performance degradation due to handling idle VCPUs

can be reduced by reducing the cost of context switches. There have been some

enhancements adopted in KVM to reduce such cost (e.g., by reducing the cost of

saving and restoring FPUs) [14]. For this reason, compared to the measurement

that we performed earlier [15], handling idle VCPUs now causes smaller performance

degradation. This shows the effectiveness of these enhancements. However, the

experiments in this section also show that the overhead of handling idle VCPUs

can still cause significant performance degradation to some applications and should

be further reduced.

2.4.2 Overhead Due to Switching/Rescheduling Spinning VCPUs

After the overhead to handle idle VCPUs has been removed, the benchmarks still

suffer some performance losses. To identify the causes, we continued to examine the

overhead caused by switching and rescheduling spinning VCPUs.

VCPU spinning is usually caused by spinning synchronization, with which a

thread repeatedly checks some condition (e.g., the value of a shared variable) to

determine if it can continue. The spinning may be initiated explicitly by the program,

and the thread remains in user space during spinning. It may also be initiated by

2Note that system setting changes in this section are for diagnosis purposes and cannot be
applied to general practice. While some changes may be used to improve performance in
some specific scenarios (e.g., when the system is under-subscribed), they may cause serious
performance degradation in other scenarios (e.g., when the system is over-subscribed).
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the OS kernel when the execution of the thread traps into the kernel. On virtual

machines, spinning may cause the Lock-Holder Preemption problem (LHP). LHP

happens when a VCPU is descheduled from the host platform while it is holding

a lock. Since the VCPU is descheduled, it cannot proceed and the lock cannot

be released quickly. Thus, other VCPUs that are waiting on the lock must spin

until this descheduled VCPU is rescheduled. The spinning, however, prevents the

descheduled VCPU from being rescheduled quickly. This forms a situation of live-lock

and significantly reduces system throughput. This live-lock situation may also be

caused by spinning in synchronization primitives other than spinlocks (e.g., barriers)

on virtualized platforms. For brevity, we use LHP-like problems to refer to the lock

holder preemption problem and other similar problems caused by spinning3.

To deal with LHP-like problems, hardware solutions (such as Intel pause-loop-

exiting (PLE) support [16]) have been implemented on processors. They detect

VCPUs that have been spinning for a while and preempt these VCPUs. Thus, the

VMM can involve to reallocate the resources to other VCPUs that can make progress,

e.g., the VCPUs holding the locks.

However, spinning is usually used to replace blocking in synchronization

primitives for higher performance. Preempting spinning VCPUs actually changes

spinning back to blocking. Since the hardware support, such as PLE, preempts

VCPUs only based on the lengths of spinning periods, it may degrade performance if

spinning VCPUs are preempted when there are not LHP-like problems. For example,

when CPU cores are not over-subscribed, LHP-like problems will not happen. Even

on an over-subscribed system, it is still possible that spinning VCPUs are preempted

3Synchronization primitives may combine spinning and blocking operations — a thread spins
for a period of time, and if the expected event has not happen, it blocks itself. Usually,
the spinning lasts only a brief period of time. Thus, the spinning will not cause LHP-like
problems, and the hardware support (e.g. PLE) dealing with LHP-like problems does
not detect or interrupt such short-period spinning. Since only blocking operations incur
virtualization overhead with this combined approach, we does not consider the spinning in
these synchronization primitives.
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when they are about to finish spinning. In such cases, preempting spinning VCPUs

introduces unnecessary overhead.

To test whether the PLE support causes any performance degradation, we

disabled PLE support in KVM and re-ran the experiments. The slowdowns of

the benchmarks (relative to their executions on the physical machine) are shown in

Figure 2.3. When PLE support is disabled, the performance is only slightly improved.

When polling idle loop is used, the average slowdown is lowered to 29% (from 35%)

by disabling PLE support. With the default idling operation, disabling PLE reduces

the average slowdown to 56% (from 59%). Disabling PLE support is most effective

for ocean ncp, which only suffers the virtualization overhead caused by preempting

spinning VCPUs. By disabling PLE, its slowdown can be reduced from 28% to 8%.

The experiments show that preempting spinning VCPUs can slightly reduce

performance in the cases where there are no LHP-like problems. For a small number

of applications such as ocean ncp, it may substantially degrade performance. When

the number of VCPUs in a VM keeps increasing in the future (e.g., Amazon EC2 now

provides instances with 40 VCPUs), synchronization will become more frequent and

lock contention will also be more intensive. This may increase the chances of spinning

VCPUs being preempted, as well as the performance degradation. For example,

people have observed that it takes 369s to boot a 80-VCPU VM with PLE enabled,

while it takes only 25s with PLE disabled [17].

2.4.3 Overhead Due to Inter-VCPU Coordination

We notice that, after removing the virtualization overhead caused by handling idle

VCPUs and spinning VCPUs, though the slowdowns are substantially lowered (from

59% to 29% on average), the selected benchmarks still suffer some performance

degradation on virtual machines. The average slowdown is higher than that of

their single-thread executions (7%). This is largely due to dedup, which suffers a
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108% slowdown with 16-thread executions but only 10% slowdown with single-thread

executions. For the selected benchmarks other than dedup, though their 16-thread

executions are also slowed down by larger percentages than their single-thread

executions, the differences between the slowdowns are not as significant as dedup.

Without dedup, the average slowdown is 15% for 16-thread executions and 6% for

single-thread executions.

To identify the factors causing the remaining slowdowns, especially that of

dedup, we used perf to profile the executions of the benchmarks, and found that

most VM EXITs were caused by the accesses to Advanced Programmable Interrupt

Controller (APIC). These APIC accesses are mainly incurred by sending and receiving

rescheduling inter-processor interrupts (IPIs) and TLB shutdown IPIs. A rescheduling

IPI is for a CPU to notify another CPU to perform rescheduling. This usually happens

when there is a thread to be activated on the recipient CPU. A TLB shutdown IPI

is for a CPU to notify other CPUs to flush TLB entries (i.e., ”TLB shutdown” This

usually happens when a CPU flushing a TLB entry needs to flush the TLB entries

on other CPUs. When a CPU receives an IPI, it must acknowledge (ACK). Then,

it signals End-Of-Interrupt (EOI) at the completion of the interrupt service. On a

physical machine, the OS sends and receives IPIs, as well as the ACKs and EOIs,

by accessing APIC registers, and the APIC hardware delivers them. But on virtual

machines, the VMM must intercept the accesses, process the requests, and deliver

the IPIs/ACKs/EOIs. This makes the operations much more expensive on virtual

machines than on physical machines.

With existing hardware design and system software design, the overhead

caused by APIC accesses cannot be completely isolated. To estimate the overhead,

we leverage the APIC virtualization (APICv) support introduced recently in Ivy

Bridge-EP processors [8]. The support reduces the overhead of hardware interrupts

on virtual machines by processing some operations relating interrupts and APIC (e.g.,
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read accesses) in hardware without triggering VM EXITs. Since the APICv support

is not available on the R720 server, we repeat the experiments on the R420 server.

To clearly demonstrate the overhead of APIC accesses, the PLE support is turned off

in KVM, and the polling idle loop is selected in the VM. With the experiments, we

compare the performance of the benchmarks with APICv turned off and on.
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Figure 2.4 Slowdowns of dedup and the numbers of VM EXITs per second incurred
by APIC accesses when APICv is turned off and on. The number of VCPUs in the
VM and the number of threads in dedup are 4.

We are most interested in the performance of dedup, since it has the largest

slowdown and can show the overhead incurred by APIC accesses more clearly than

other benchmarks. Figure 2.4 shows the slowdowns of dedup and the numbers of

VM EXITs per second due to APIC accesses. With APICv enabled, the number

of VM EXITs is reduced by 52%. The slowdown of dedup is reduced roughly

proportionally by 47%. However, even with APICv enabled, dedup still incurs

frequent VM EXITs (about 20K VM EXITs per second on each core) due to frequent

APIC accesses, and thus still suffers substantial performance degradation. The

experiments show that the VM EXITs caused by APIC accesses can significantly

reduce application performance on virtual machines. Though APICv can help

reducing the cost, there is still much space for further improvement.
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Figure 2.5 Throughput of dedup, streamcluster, and volrend when the system is
oversubscribed.

2.4.4 Overhead Due to Spinning in User Space

In this subsection, we investigate the throughput degradation when the system is

over-subscribed with multiple VMs running dedup, streamcluster, or volrend. We were

surprised to observe their dramatic performance degradation shown in Figure 2.2. By

carefully profiling the execution of these benchmarks, we found a significant portion

of execution time was spent on spinning with streamcluster and volrend, though the

PLE support was enabled. It turned out that PLE only detects and preempts VCPUs

spinning in kernel mode (CPL=0) [9]. For spinning synchronization in user space (e.g.,

pthread spin lock), PLE cannot help preventing LHP-like problems.

To isolate the performance degradation due to the spinning in user space,

we manually modified the source code of these three benchmarks and replaced

spinning synchronization with blocking synchronization. As shown in Figure 2.5,

the throughput of streamcluster is increased to 1.04 with 2 VMs and 1.06 with

4VMs, indicating that the performance degradation with the stock streamcluster

benchmark is mainly caused by VCPU spinning in user space. Though the throughput

of volrend is increased by almost 2x, it is still much lower than 1. This indicates that

VCPU spinning at the user level is one of the major factors for the throughput
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degradation. For dedup, VCPU spinning is not the major cause for the degradation.

its throughput is only increased by 30% after the modification. Profiling shows that

dedup spends over 85% of its execution time inside the guest OS kernel calling function

smp call function many, which sends IPIs to VCPUs to do operations such as TLB

shootdowns. The main cause of the throughput degradation of dedup is that the

system is overwhelmed by processing APIC accesses and routing IPIs.

2.4.5 Overhead due to Cache-Unaware Virtualization

Existing virtualization technology gives little consideration or support to cache

optimization and management on virtual machines. For example, the actual

architecture of hardware caches is not available on virtual machines. The information

about cache resources available to a VCPU is either opaque or misleading. Although

this simplifies the design of VMMs, it complicates cache optimization in virtual

machines or makes it impossible to do cache optimization. For example, cache-aware

scheduling in Linux [18] and cache-aware task group [19] need concrete knowledge on

cache structure. With existing virtualization technology, these techniques can hardly

be performed on virtual machines.
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To illustrate the performance loss caused by cache-unaware virtualization, we

perform the following experiments. We launch two instances of the same benchmark

and run them in parallel. The minimum number of threads in each instance is set

to 8. We run the instances in three scenarios: (1) on the 16-core R720 server with

one instance on each processor; (2) on a 16-VCPU virtual machine with the threads

in the same instance scheduled on the VCPUs running on the cores of the same

physical processor, and (3) on a 16-VCPU virtual machine without any restriction on

the VMM scheduling VCPUs or the guest OS scheduling threads. In scenario 2, the

threads in the same instance can share the last level cache (LLC) on the processor,

while in scenario 3 they may not.

For each benchmark, we calculate the slowdowns of its executions in scenario

2 and scenario 3, relative to its execution in scenario 1. Figure 2.6 compares the

slowdowns. In scenario 2, by sharing the last level cache, the threads in the same

benchmark instance can exchange data more efficiently and incur less traffic between

the two CPU sockets. Thus, the executions show higher performance in scenario 2.

Among these benchmarks, dedup’s slowdown is reduced by the largest percentage.

This is because dedup uses a pipelined programming model and most of its data is

shared by the threads working at different pipeline stages. In scenario 3, without

cache sharing information, the threads in the same benchmark instance cannot be

scheduled to the VCPUs sharing the LLC. They cannot exchange and share data

efficiently. Thus, the executions have larger slowdowns in scenario 3.

2.5 Summary and Discussion

The experiments show that multi-threaded computation still suffers significant

performance degradation on SMP VMs. Even when the system is not over-subscribed,

the execution of a multi-threaded application can be slowed down by over 150%.

When the system is over-subscribed, the throughput can be reduced by as much as 6x.
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Recently, reducing the virtualization overhead of I/O operations attracts increasingly

more attention, and reducing the virtualization overhead of CPU resources is losing its

momentum. The measurement in this chapter show that CPU virtualization can incur

larger overhead than I/O virtualization (about 35% for I/O-intensive workloads [20]).

Thus, reducing the virtualization overhead of CPU resources should be paid more

attention, especially for multi-threaded applications.

Reducing CPU virtualization overhead is important not only because there are

workloads suffering dramatic performance loss, but also because an increasing number

of applications will be multi-threaded and computation-intensive. With the growing

density and dropping prices of DRAM, it becomes cost-effective to build commodity

servers with hundreds of gigabytes even terabytes of DRAM. With such memory

capacities, the data sets of most applications can be completely saved or mostly

buffered in memory. New memory types, e.g, phase-change memory, will be non-

volatile and have even higher densities than DRAM. In the future, memory may save

all the data sets and become the “new disk” for a large proportion of workloads. This

trend is reflected by the rapid advancement of in-memory computing technology.

With minimal I/O operations, the performance of these workloads will be largely

determined by how they utilize multicore processors to process their data in memory.

Minimizing virtualization overhead for multi-threaded computation is critical for their

performance in the cloud.

With experiments, we show that, though single-thread executions have

decent performance on virtual machines, the interaction between threads incurs

large overhead, which dramatically degrades multi-threaded executions on virtual

machines. On one hand, due to the lack of appropriate hardware support, the

interaction between threads involves the intervention from the VMM. Specifically,

the VMM needs to handle the state changes of VCPUs and other events (e.g., IPIs)

incurred by inter-thread interaction and synchronization, while the corresponding
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events on physical machines are handled by hardware. On the other hand, the

behavioral differences between VCPUs and real CPUs make conventional optimization

for efficient interaction and synchronization between threads (e.g., spinlocks, data

sharing through shared caches) ineffective on virtual machines. Existing virtualization

technology lacks effective methods to address these problems. For example, even

though PLE is used to address the LHP problem, it may incur some performance

degradation in some cases, and cannot be used to stop excessive spinning in user

space.

The performance degradation of multi-threaded computation on virtual

machines would be more serious if care is not taken. With the core count on each

CPU socket keeping increasing, applications must split their work and distribute tasks

among more threads to get performance improvement. However, this may incur more

frequent synchronization to coordinate the tasks and more interaction between the

tasks, which in turn cause higher performance degradation to the executions in the

cloud.

Though software approaches (e.g., smarter VCPU scheduling algorithms) may

alleviate the performance degradation, fundamentally addressing the problems (e.g.,

that with APIC accesses) is beyond the capability of software approaches. The most

effective approach would be the enhancements in hardware CPU designs. While

there are a few factors degrading the performance of multi-threaded executions,

the root cause is that software must explicitly coordinate CPU resource sharing

(e.g., deschedule idle/spinning VCPU, routing IPIs to idle VCPUs, etc). Thus, a

fundamental solution would be using hardware to coordinate the resource sharing

among VCPUs. For example, a physical core can be designed to have multiple “logical

cores”, one for each VCPU, and share the hardware resources on the physical core

among these logical cores. Similar ideas have been used in I/O virtualization (e.g.,

SR-IOV allows an I/O device to function as multiple separate physical devices). The
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idea is also used in SMT processors to hide memory latencies. But different with

SMT design, which allows hardware threads to share CPU resources in a fine time

granularity at the instruction level, the “logical cores” for virtualization can share

CPU resources at coarse granularities (e.g., microseconds) to simplify the design and

improve scalability.

2.6 Related Work

A number of early studies have identified the performance issues associated with VMM

intervention and management complexity, such as privilege instructions and memory

address translation [1, 7]. Most of these issues have been addressed or effectively

alleviated with the enhancements in hardware designs.

Regarding CPU virtualization, most recent studies focus on the overhead caused

by the lock holder preemption (LHP) and other similar problems [4, 21, 5, 6, 22,

16, 23, 24]. On current platforms, approaches with hardware assistance (e.g. Intel

PLE [16] and AMD PF [25]) to detect and preempt spinning VCPUs have become de

facto standard solutions. This chapter does not focus on LHP or LHP-like problems.

Instead, it studies the virtualization overhead incurred by the solutions and the

performance losses due to the limitation of the solutions.

The virtualization overhead caused by blocking synchronization is identified and

analyzed in [15, 26, 27]. This chapter quantifies the overhead in more situations and

with the newer software system that has integrated a few enhancements for reducing

the overhead [14]. Besides the overhead caused by blocking synchronization, this

chapter also quantifies the overhead caused by other factors.

In this chapter, we show that the opacity of hardware cache architecture on

VCPUs leads to slow memory accesses and degrades performance. Regarding memory

accesses in virtual machines, research has been conducted to reduce the overhead of

address translation [2, 28]. The non-uniformity of memory latencies was found to
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affect the performance of virtualized systems [29]. Memory space overhead is another

consideration in memory virtualization. For example, ballooning and deduplication

techniques have been developed to reduce the space overhead [30, 31].

Virtualization overhead is a major consideration for people choosing virtualized

platforms. There are studies to measure and identify virtualization overhead for

different workloads, e.g., HPC workloads [32, 33, 34] and databases [28], to compare

the performance of different virtualization infrastructures [35, 36], or to compare

virtualized and non-virtualized infrastructures [37]. We focuses on the overhead

caused by CPU virtualization for multi-threaded computation-intensive workloads.

Some studies focus on the overhead incurred by I/O operations [20, 29, 38, 39].

They are remotely related with the work.
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CHAPTER 3

APPLES: EFFICIENTLY HANDLING SPIN-LOCK
SYNCHRONIZATION ON VIRTUALIZED PLATFORMS

3.1 Background and Motivation

In this section, we first introduce the problems caused by spin-locks in virtual

machines. Then, we introduce the hardware facilities in processors for dealing with

these problems, and explain how existing virtualization systems utilize these facilities,

using Kernel-based Virtual Machine (KVM) and Intel PLE support as examples. We

show that these hardware facilities must be better utilized by VMMs to achieve higher

performance1.

3.1.1 Problems Caused by Spin-locks in VMs

Spin-locks are usually used to protect short critical sections. While waiting to acquire

a spin-lock, a thread repeatedly checks the availability of the lock, because the waiting

is expected to be brief. With spinning, a lock can be acquired as soon as it is

released. At the same time, because the thread does not block itself, the costly

overhead associated with context switches is avoided.

Ticket spin-lock is a special type of spin-lock that guarantees the order of lock

acquisitions to provide fairness and avoid starvation among lock requests. A ticket

spin-lock uses a queue to manage the requests for the lock and schedules the requests

accordingly. Thus, a lock waiter cannot acquire the lock until the lock waiter before

it on the queue releases the lock.

In a virtualized environment, because of the scheduling of VCPUs, a thread

running on a VCPU may not be able to continuously make progress as it does on

1Although the description in this section and the APPLES design later in the chapter are
mainly based on Intel PLE, they can be applied directly or with slight modification to the
systems with AMD PF or other similar hardware utilities, which detect and stop spinning
based on the thresholds set by the VMM.
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a PCPU. When a VCPU is preempted, the thread running on it also stops. Thus,

if a thread is holding a spin-lock and the VCPU is preempted, the spin-lock cannot

be released quickly until the VCPU is rescheduled. Thus, other threads waiting for

the lock have to spin for unexpected long time. This is the lock holder preemption

(LHP) problem. The spinning causes a live-lock situation, where spinning VCPUs

hold CPU resources and wait for the lock, and the lock holder VCPU waits for CPU

resources to resume execution. If the spinning cannot be stopped promptly, system

throughput may be significantly reduced.

With ticket spin-lock, the situation is more complex. The live-lock situation

may be caused by not only lock-holders but also lock-waiters. When the VCPU of a

lock waiter is preempted, all the subsequent lock waiters on the queue have to spin for

unexpected long time until the lock waiter is rescheduled, even though the lock itself

may be released during the spinning. This is defined as the lock waiter preemption

(LWP) problem.

3.1.2 Hardware Facilities in Processors to Control Excessive VCPU

Spinning

Modern processors provide hardware support for virtualization to reduce overhead.

On these processors, PLE and other similar facilities are designed to control excessive

VCPU spinning. With PLE, a processor first detects spinning VCPUs by examining

the instructions executed by the VCPUs. On X86 architecture, spin-lock primitives

usually repeatedly call PAUSE instructions to implement spinning. To detect

spinning, the processor checks the intervals (in number of CPU cycles) between

consecutive PAUSE instructions executed by a VCPU. For a spinning VCPU, the

intervals are very short, since the VCPU only checks the condition for stopping

spinning between PAUSE instructions. Thus, the processor compares the lengths

of the intervals against a pre-set parameter PLE gap. If the lengths do not exceed
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PLE gap, it determines that the VCPU is spinning. If no PAUSE instruction is

executed in an interval of PLE gap, it determines that the spinning stops.

When the spinning is continuing, the processor needs to determine whether the

spinning should be stopped. For this purpose, it keeps track of the length of the

spinning by counting the number of cycles spent on PAUSE instructions and the

intervals between PAUSE instructions. If the length of the spinning exceeds a pre-set

spinning threshold PLE window, the processor will trigger a VM EXIT to stop the

spinning and transfer the control to the VMM, so that the VMM can deschedule the

spinning VCPU and reschedule another VCPU.

AMD Pause Filter (PF) functions similar to the Intel PLE. It also checks

intervals between consecutive PAUSE instructions and considers PAUSE instructions

with intervals smaller than PAUSE Filter Threshold to be in the same loop. It

interrupts and reports to the OS the spin loops exceeding PAUSE Filter Count

intervals. Both PAUSE Filter Threshold and PAUSE Filter Count are pre-set by

software. For AMD PF, PAUSE Filter Count acts as the spinning threshold. Because

of the similarity, we pick one — Intel PLE for our APPLES design and experiments.

But APPLES applies equally well to the systems with AMD PF.

3.1.3 The Utilization of the Hardware Facilities in VMM

With PLE, when the two parameters PLE gap and PLE window are set, the processor

detects and interrupts spinning VCPUs autonomously. The VMM controls the PLE

facility by adjusting these parameters. It is relatively easy to find an adequate value

for PLE gap since PAUSE instructions are called much more frequently in spin-locks

than in other scenarios. For example, KVM sets PLE gap to 128 cycles by default,

which proves to be effective in practice. Thus, we does not discuss the adjustment

of PLE gap parameter, and focuses only on how to find an adequate value for the

spinning threshold PLE window.
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Besides adjusting the parameters, the VMM must also handle VM EXITs

caused by PLE facilities. The VMM takes the chances to preempt spinning VCPUs,

put them onto the “ready” VCPU list, and schedule other VCPUs. For example,

when a spinning VCPU of a VM is preempted, KVM examines the “ready” VCPUs

in the same VM. If it can find a “ready” VCPU, which was not preempted due

to spinning, KVM schedules the VCPU. For brevity, this case is called “successful

yielding”, since the spinning CPU “yields” the processor to a VCPU that can make

progress. Otherwise, KVM reschedules the VCPU that is just preempted. This case

is called “unsuccessful yielding”.

The adjustment of spinning thresholds and the selection of VCPUs to schedule

in are two key problems that a VMM must solve to make effective utilization of the

hardware facilities controlling VCPU spinning. As we will show later using KVM as

an example, these two problems are challenging, and many ad-hoc methods have been

tested in existing VMMs. However, workloads with frequent spin-lock synchronization

still suffer substantial performance degradation on virtualized platforms.

Methods to Adjust Spinning Thresholds in KVM In the past, KVM would

use a system-wide spinning threshold and set it to a fixed value selected empirically

based on the normal spinning time under some typical workloads. The spinning time

is measured when the VCPUs running the workloads are not preempted. Thus, a

threshold can be set slightly higher than the normal spinning time, and any spinning

longer than this threshold is considered as abnormal, indicating the occurrence of

LHP or LWP problems.

A problem with a fixed spinning threshold was noticed. When physical CPUs

(PCPUs) are under-subscribed, preempting spinning VCPUs cannot improve the

utilization of PCPUs, and thus incurs unnecessary overhead. The overhead can

be very high with large VMs. For example, experiments have shown that it takes
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369s to boot a 80-VCPU VM with PLE enabled, while it takes only 25s with PLE

disabled [17].

To improve the performance when physical CPUs (PCPUs) are not over-

subscribed, attempts have been made to dynamically adjust spinning thresholds. The

objectives are to increase the spinning threshold when PCPUs are under-subscribed

and to restore the threshold when PCPUs are over-subscribed. For example, one

of such attempts increases the threshold on “unsuccessful yieldings” and decreases

it on “successful yieldings” [40]. The rationale is that “successful yieldings”

indicate that there have been some non-spinning VCPUs preempted (i.e., PCPUs

are over-subscribed) and “unsuccessful yieldings” indicate that there is not a “ready”

VCPU waiting to be scheduled (i.e., PCPUs are under-subscribed).

In the latest design, KVM maintains a spinning threshold for each VCPU. If a

VCPU is preempted and switched out because the VCPU runs out of the time slice,

KVM determines that the VCPU is sharing a PCPU with other VCPUs, and quickly

reduces the threshold of the VCPU to improve the utilization of the PCPU. This is

to deal with the situation in which the PCPU is over-subscribed. For the situation

in which the PCPU is under-subscribed, increasing the spinning threshold helps

improving performance because this reduces the interruption to VCPU execution.

Thus, when a VCPU is preempted because it spins and reaches the spinning threshold,

KVM gradually increases its spinning threshold [41].

The above methods improve the performance when PCPUs are under-

subscribed. But CPU over-subscription is a common practice [42]. These methods

cannot appropriately adjust spinning thresholds when PCPUs are over-subscribed.

We provide a quantitative illustration of the above problem using a few representative

experiments. We select two benchmarks, ebizzy and dbench, and run them on a

16-core machine. (Please refer to Section 3.3 for benchmark description and machine

configuration.) We use two 16-VCPU VMs. For each benchmark, we run two
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instances of the benchmark in parallel on the two VMs, one on each VM, and collect

the performance reported by the benchmark (throughput for dbench and execution

time for ebizzy). We first run the benchmarks using the default KVM setting with

the mechanism adjusting spinning thresholds enabled. We use this configuration as

baseline. Then, we disable the mechanism. We use the same spinning threshold for

the VCPUs in the two VMs and vary the spinning threshold from 512 cycles to 32768

cycles. We repeat the experiments for each of the different threshold values, and

show the normalized performance relative to that with the baseline configuration in

Figure 3.1.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

512
1024

2048
4096

8192
16384

32768

KVM
 default

P
e
rf

o
rm

a
n
ce

ebizzy
dbench

Figure 3.1 Normalized performance of ebizzy and dbench when the spinning
threshold is varied from 512 cycles to 32768 cycles, relative to the performance with
the default KVM configuration.

The figure clearly shows that the performance of the two benchmarks changes

with the threshold. The performance of benchmark dbench varies from 0.98 to 1.17,

and the performance of ebizzy varies from 0.88 to 1.13. At the same time, different

benchmarks achieve the best performance with different spinning thresholds (4096

cycles for dbench and 16384 cycles for ebizzy). The experiments show that, to achieve

optimal performance, spinning thresholds must be carefully tuned based on workloads.

36



However, the current KVM system cannot adjust the thresholds adequately, leading

to suboptimal performance.

Candidate VCPU Selection in KVM When a VCPU is preempted because the

spinning threshold is reached, the VMM must select a VCPU and schedule it on

the vacated computing core. In KVM, a directed yield approach is used [43]. All

the VCPUs in the same VM form a circle. The KVM searches the VCPUs other

than the VCPU that is just preempted, following the circle. During the search, only

“ready” VCPUs are considered, which include two types of VCPUs — the VCPUs

preempted due to the depletion of time slices and the VCPUs preempted due to

excessive spinning. For brevity, we call the first type of VCPUs resource-waiter

VCPUs and the second type of VCPUs lock-waiter VCPUs2.

Resource-waiter VCPUs are more likely to make progress than the lock-waiter

VCPUs after rescheduled (i.e., granted with resources). In KVM, resource-waiter

VCPUs are more preferred than lock-waiter VCPUs. When a resource-waiter VCPU

is found, it is selected to run unconditionally. But, when a lock-waiter VCPU is

found, it is selected to run if it is labeled as “checked”; otherwise, it is labeled as

“checked” to be selected next time. The “checked” label is removed when the VCPU

is scheduled.

When a VCPU is selected, its location in the circle is marked. Later, when more

spinning VCPUs are preempted, new searches will start from this location. Thus,

consecutive searches will traverse the circle and schedule resource-waiter VCPUs in

the first round. Then, in the second round, lock-waiter VCPUs are also considered,

2It is possible that a VCPU depletes its time slice while it is spinning and waiting for a
spin-lock. In such a case, the VCPU is “misclassified” as a resource-waiter VCPU. However,
the possibility of such “misclassification” is slim, because spinning is capped by the spinning
threshold and is very brief (usually shorter than 10 microseconds), and a time slice is much
longer (at least a few milliseconds). At the same time, with existing hardware support, the
VMM is not aware of VCPU spinning until it reaches the spinning threshold. Thus, it is
not able to put spinning VCPUs into the lock-waiter category if they are preempted before
they reach the spinning threshold.
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because the mechanism assumes that the preempted lock holders have been scheduled

in the first round and the lock-waiter VCPUs can continue to make progress when

scheduled. If there are not VCPUs ready to run, KVM reschedules the VCPU that

is just preempted (i.e., “unsuccessful yielding”).

The main problem of the method is with the quality of the candidate VCPUs

selected by the method. First, it checks the VCPUs in a VM based on the order in

which they are organized in the circle, instead of the possibility of the VCPUs being

the causes of excessive spinning. Excessive spinning is usually caused by waiting for

preempted VCPUs, which are either holding spin-locks or waiting in ticket spin-lock

queues before other VCPUs. These preempted VCPUs should be rescheduled before

the VCPUs waiting for them and other VCPUs making new requests for the same

spin-lock, so as to avoid additional spinning. Thus, quickly rescheduling these VCPUs

is the most effective method to prevent excessive spinning.
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Figure 3.2 Candidate VCPU selection in KVM.

The current method in KVM cannot select VCPUs that are more likely to reduce

excessive spinning. Even worse, though the method gives a slightly higher priority to

resource-waiter VCPUs, there is still a high probability that lock-waiter VCPUs are
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selected and they continue spinning after being rescheduled. This further decreases

the quality of the candidate VCPUs selected. This problem is caused because there

may be concurrent searches from the same location on the VCPU circle of a VM —

a search starting earlier labels lock-waiter VCPUs as “checked” and another search

starting later selects a “checked” VCPUs as a candidate VCPU before the earlier

search finds and reschedules a resource-waiter VCPU.

This problem is as shown in Figure 3.2. In a VM with 8 VCPUs, VCPU #0 and

VCPU #1 run on two different PCPUs. VCPU #0 is preempted and then VCPU #1

is preempted before a VCPU is selected to replace VCPU #0. Thus, both the PCPUs

(i.e., the ones running and then preempting these two VCPUs) start searching from

the same location (marked as “start point” in the figure). The PCPU preempting

VCPU #0 starts earlier than the PCPU preempting VCPU #1. It checks VCPU

#3 and VCPU #4, which are lock-waiter VCPUs, and labels them as “checked”.

Thus, the PCPU preempting VCPU #1 can select VCPU #3 as candidate VCPU

and schedule it. With the low quality of VCPU candidates, potential VCPU spinning

cannot be effectively reduced.

3.2 APPLES Design and Implementation

As we have introduced earlier, to utilize the spinning suppression hardware facilities

equipped on current processors, there are two problems that must be solved: 1) the

VMM must carefully adjust spinning thresholds for VMs; and 2) when the hardware

facilities preempt a spinning VCPU, the VMM must select an appropriate VCPU to

occupy the vacated PCPU. To address these problems, APPLES uses two components:

APLE (Adaptive Pause-Loop Exiting) to dynamically adjust spinning threshold; and

HVS (Heuristic VCPU Selection) to select candidate VCPUs when spinning VCPUs

are preempted.
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In this section, we introduce each component by first analyzing the problems and

challenges and then describing its design. After that, we introduce the implementation

of APPLES based on KVM and Linux.

3.2.1 APLE for Adjusting Spinning Thresholds

The adjustment of spinning threshold must make a difficult trade-off between different

types costs and benefits, which makes it a challenging problem. On one hand, setting

high thresholds increases excessive spinning and leads to low resource utilization. On

the other hand, setting low thresholds may interrupt normal spinning prematurely.

Spin-locks are used to protect short critical sections. Spinning ensures that a lock

can be acquired as soon as it is released. At the same time, since spinning is

expected to be brief, it incurs lower overhead than blocking, which is considered to be

expensive because of the high cost of the context switches associated with blocking

operations. Interrupting normal spinning increases synchronization overhead since

it actually turns spin-based synchronizations into block-based synchronizations. If

spinning thresholds are set too low, the VCPUs that are spinning normally may

be preempted prematurely just before the lock holder is about to release the lock,

incurring costly context switches between VCPUs. This can significantly increase

synchronization overhead and reduce system throughput.

Possible Approaches and APLE Basic Idea When setting spinning thresholds,

the VMM struggles between two conflicting objectives. One is to stop VCPU spinning

as early as possible in case spinning VCPUs are waiting for other VCPUs temporarily

preempted. The other is to avoid stopping VCPU spinning too early for efficient

synchronization in case suspended VCPUs are not blocking spinning VCPUs from

making progress.

An intuitive approach for adjusting spinning thresholds is to first determine

the amount of time that a VCPU usually spends on spinning when the lock holding
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VCPU is not preempted and then set the thresholds slightly higher than this amount.

However, due to the semantic gap between system layers, it would be “mission

impossible” to estimate the amount online. There are several reasons. Firstly, the

VMM does not have information about lock operations in virtual machines. Thus, it

is not possible for the VMM to predict the amount of spinning time (e.g., by profiling

and modeling the execution of the workloads). Secondly, the VMM is not aware of

VCPU spinning until it is notified when a processor stops the spinning exceeding the

threshold. Thus, it is not possible for the VMM to determine adequate thresholds

by measuring the amount of spinning3. Finally, when a processor stops a spinning

VCPU, though the VMM knows the amount of spinning, it cannot determine whether

the VCPU is waiting for a preempted VCPU or not. Thus, it still cannot estimate

the amount of spinning when the LHP or LWP problem does not happen.

APLE is based on the following observations. If spinning thresholds are set

too low, some overhead is caused because the time spent on spinning is wasted and

extra time is used on descheduling spinning VCPUs and rescheduling other VCPUs.

The overhead decreases if the thresholds are increased. If spinning thresholds are set

too high, spinning VCPUs are preempted late. Overhead is caused by excessive

spinning and descheduling and rescheduling VCPUs. The overhead decreases if

smaller thresholds are used. Thus, optimal thresholds can be approached by varying

the thresholds and choosing those leading to lower overhead.

APLE assumes that each workload runs in a VM and assigns a spinning

threshold to each VM. It does not use a system-wide spinning threshold for all the

VMs on the same physical machine, because different workloads have different locking

behaviors and different spinning time before getting a lock. A threshold that achieves

optimal performance for some workloads may cause serious performance degradation

3The spinning time may be measured with the collaboration from guest OSs [44], which is
not available on public cloud.
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Figure 3.3 Overhead from wasteful spinning and wasteful VCPU switches under
three scenarios, using the LHP problem as an example. The figure only shows the
VCPU requesting a spin-lock. The lock-holding VCPU is not shown in the figure, but
its status is shown in the boxes. A “pause” symbol (parallel vertical bars) indicates
that the corresponding VCPU is preempted.

for other workloads. It does not use a per-VCPU spinning threshold because VCPUs

sharing the same lock have similar locking behavior, e.g., every VCPU spins for longer

time for longer critical section to finish. APLE also dynamically adjusts spinning

thresholds to respond to workload changes in VMs.

Wasteful Spinning and Wasteful VCPU Switches We use the LHP problem

as an example to explain the rationale behind APLE. In Figure 3.3, we compare the

executions of a VCPU under three different scenarios: (a) when the spinning threshold

is adequately set (Figure 3.3(A); (b) when the spinning threshold is set too low

(Figure 3.3(B)); and (c) when the spinning threshold is set too high (Figure 3.3(C)).

In the middle of the execution, the VCPU requests a spin-lock that is currently held
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by another VCPU (not shown in the figure). Thus, it spins before it enters the critical

section. However, the spinning incurs different overhead depending on the spinning

threshold and whether the lock-holding VCPU has been preempted or not.

As illustrated in Figure 3.3(A), with the spinning threshold adequately set (T1),

if the lock holding VCPU is not preempted, the spinning will not be interrupted before

the lock is acquired. The spinning is considered normal spinning. In this case, the

execution is exactly the same as that on a physical machine, and there is no overhead

incurred. However, if the lock holding VCPU is preempted, the spinning will be

stopped when it reaches the threshold, and the spinning VCPU is preempted. When

the VCPU is rescheduled later, it still needs to spin and wait for the release of the lock.

Since the spinning before the VCPU is preempted does not lead to a lock acquisition,

it is considered wasteful spinning. Compared to the execution on a physical machine,

the execution on the virtual machine incurs additional overhead due to the VCPU

switch (i.e., descheduling the spinning VCPU and rescheduling another VCPU). Thus,

the VCPU switch is a wasteful VCPU switch.

As illustrated in Figure 3.3(B), if the spinning threshold is set too low (T2),

the VCPU may be stopped prematurely, even when the lock holding VCPU is not

preempted. This incurs the overhead through wasteful spinning and wasteful VCPU

switches. Compared to the scenario shown in Figure 3.3(A) (the spinning threshold is

adequately set), setting the threshold too low increases the chance that the spinning

VCPU is preempted. If the spinning VCPU is preempted, next time when it is

scheduled, the lock may still not be available, though the lock-holder may have

changed. Thus, the VCPU must start over to wait for the release of the lock. With a

low threshold, it may be preempted prematurely again. It is possible that the VCPU

is descheduled and rescheduled multiple times before it gets the lock, incurring more

wasteful spinning and VCPU switches.
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If the spinning threshold is set too high (T3), as shown in Figure 3.3(C),

the execution is similar to that in scenario (A), when the lock-holding VCPU is

not preempted. But, if the lock-holding VCPU is preempted in the case when the

spinning threshold is set higher than that in scenario (A), the VCPU spins for longer

time before its is preempted. Compared to scenario (A), the spinning incurs higher

overhead from wasteful spinning.

Among these three scenarios, no matter whether the threshold is set too low or

too high, higher overhead will be caused, compared to an adequately set threshold.

Therefore, the overhead can be a reliable indicator of the level of the threshold.

Both wasteful spinning and wasteful VCPU switches are visible to and handled

by the VMM. Thus, their overhead can be accurately measured in the VMM with low

cost. This is one of the advantages of APLE. Specifically, the overhead of wasteful

spinning can be determined by spinning thresholds and the number of times the

thresholds reached. The overhead of each VCPU switch is the time between the

corresponding VM EXIT and VM ENTRY events.

The Calculation of Inefficiency as a Metric To adjust the threshold, APLE

measures the overhead caused by wasteful spinning and wasteful VCPU switches for

each VM. However, the amount of overhead cannot be directly used in the adjustment,

because the overhead is affected by the factors other than the spinning threshold.

For example, the resources allocated to a VM change over time on a over-committed

system. With more resources (e.g., more PCPUs) allocated to a VM, the workload

on it makes faster progress and incurs higher overhead at the same time.

APLE calculates inefficiency, which is the ratio between the time spent on

wasteful spinning and wasteful VCPU switches and the PCPU time consumed by the

VCPUs. APLE calculates inefficiency periodically and uses it as the metric for the

adjustment. Each time period is called an epoch. In each epoch, APLE collects the
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CPU time allocated to the VM. It also maintains a counter counting PLE events,

which it resets at the beginning of each epoch. Each time spinning reaches the

threshold, in the VM EXIT event handler (for PLE events), APLE increments the

counter, and timestamps the beginning and end of PLE event handling. At the end

of each epoch, APLE calculates the overhead of wasteful spinning by multiplying

the spinning threshold with the value in the counter, and calculates the overhead of

VCPU switches by adding the time spent by PLE event handling. Then, it divides

the sum of the two types of overhead by the total CPU time allocated to the VM,

the result being the inefficiency of the VM in the epoch.

APLE Algorithm To achieve the best performance, with APLE, the VMM

periodically measures the inefficiency, and adjusts the spinning threshold to minimize

the inefficiency using the APLE Algorithm below.

When a VM is launched, this algorithm sets an initial value of the desired

threshold Td (e.g., 8192 in our experiments). While running, the VM tries the

desired threshold and the thresholds slightly lower and slightly higher than the desired

threshold, once for an epoch. For fast adjustment, the difference between these

thresholds δ cannot be too small. However, to keep the threshold close to the optimal

value, δ cannot be too large either. Based on our experiments, a value between 512

and 2014 works best for the adjustment. At the end of each epoch, APLE calculates

the inefficiency of the epoch. When these epochs with different thresholds finish,

APLE compares the inefficiency of these epochs. It uses the threshold of the epoch

with the smallest inefficiency to update the the desired threshold. Then, the desired

threshold is used for the next round of adjustment.

Epoch lengths vary dynamically based on the frequency at which VCPUs are

preempted due to excessive spinning (i.e., the frequency of VM EXITs incurred by

PLE events on Intel platforms). Specifically, each epoch corresponds to a fixed
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Algorithm 1 APLE Algorithm
Td: desired spinning threshold of a VM

T0: initial spinning threshold of the VM

Tu: upper bound for the spinning threshold of the VM

Tl: lower bound for the spinning threshold of the VM

Td ← T0

while the VM is running do

set the spinning threshold of the VM to Td

wait for the finish of an epoch E1, and calculate the inefficiency of the VM in E1

set the spinning threshold of the VM to min(Tu, Td + δ)

wait for the finish of an epoch E2, and calculate the inefficiency of the VM in E2

set the spinning threshold of the VM to max(Tl, Td − δ)

wait for the finish of an epoch E3, and calculate the inefficiency of the VM in E3

compare the inefficiency of epochs E1, E2, and E3

Td ← the spinning threshold of the epoch with smallest inefficiency
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number of spinning VCPU preemptions. For example, in our experiments, an

epoch corresponds to 1000 preemptions of spinning VCPUs. Actual epoch lengths

vary for different workloads. When the VM rarely uses spin-locks or the server is

under-subscribed, spinning VCPU preemptions are rare, and thus epochs are long

time intervals; when the VM is spinlock-intensive and is competing for CPU resources

with other VMs, spinning VCPU preemptions are frequent, and thus epochs are short

time intervals. With short epochs, APLE can quickly respond to execution phase

changes. With long epochs, APLE can minimize runtime overhead. At the same

time, this way of setting epoch lengths also guarantees that there are enough sample

events in each epoch so that the inefficiency can be reliably calculated.

3.2.2 Heuristic VCPU Scheduling (HVS)

The selection of candidate VCPUs has direct impact on performance. Excessive

spinning is usually caused by waiting for preempted VCPUs. As explained in

Section 3.1, for the best performance, these VCPUs should be rescheduled as quickly

as possible to avoid additional spinning on the VCPUs that are currently waiting for

them or may wait for them in the future before they are rescheduled. Specifically, if

excessive spinning is caused by the LHP problem, the VCPU holding the spin-lock

should be selected and rescheduled first; if excessive spinning is caused by the LWP

problem, the VCPU waiting at the beginning of the ticket-lock queue should be

rescheduled first. However, due to the semantic gap between the VMM and VMs, the

VMM does not have information to diagnose the root causes of the excessive spinning

or distinguish such VCPUs from other preempted VCPUs. This make VCPU selection

a challenging problem.

This chapter proposes a Heuristic-based VCPU Scheduling (HVS) algorithm to

address candidate VCPU selection problem. The HVS algorithm assumes that the

spinning thresholds have been appropriately set. Thus, spinning VCPUs will not be
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preempted prematurely. While HVS can be implemented to work independently, it

achieves better performance when utilized together with APLE, as we will show in

Section 3.3.

The basic idea behind HVS is to evaluate and rank VCPUs based on the

possibility and effectiveness to reduce spinning if they are rescheduled immediately.

Similar to the methods in KVM, we first categorize “ready” VCPUs into two

categories. Resource-waiter VCPUs are those preempted because of the depletion

of their time slices and are waiting for CPU resources to resume execution; and

lock-waiter VCPUs are those waiting for a spin-lock and preempted because of

excessive spinning. A natural reason for such categorization is that resource-waiter

VCPUs are ready to make progress and rescheduling them before lock-waiter VCPUs

causes less spinning. A more important reason is that HVS needs to rank and schedule

VCPUs in these two categories in different ways, as we will explain below.

HVS ranks the VCPUs in the same VM based on two heuristics. One is

the causality heuristic, which schedules resource-waiter VCPUs before lock-waiter

VCPUs. The rationale of the heuristic is that, when there are VCPUs preempted

due to excessive spinning, they are directly or indirectly waiting for other VCPUs

that have been preempted due to the depletion of time slices (i.e., resource-waiting

VCPUs).

In a LHP problem, a spinning VCPU is preempted when it is waiting for the

preempted lock holder, which can be found in the resource-waiter category. The cases

with spin-lock holders spinning in critical sections are rare.

When the spinning-suppression hardware facilities are used, the LWP problem

becomes more complex. As shown in Figure 3.4, in a LWP problem, a ticket-lock

waiter may be preempted in a few scenarios. First, a ticket-lock waiter is preempted

because it ran out of its time slice. In this case, the ticket-lock waiter can be found in

the resource-waiter category. Second, a ticket-lock holder has been preempted, and
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Figure 3.4 Three different scenarios of the LWP problem. The preempted ticket-lock
waiter in each scenario is illustrated using a solid circle in thick line. A “pause” symbol
in red color indicates that the corresponding VCPU is preempted due to the depletion
of its time slice, and a “pause” symbol in green color indicates that the corresponding
VCPU is preempted due to excessive spinning.

thus the ticket-lock waiter spins before it is preempted due to excessive spinning. In

this case, the ticket-lock holder must be scheduled first, which is in the resource-waiter

category. The ticket-lock waiter is in the lock-waiter category. Third, a ticket-lock

waiter W2 is preempted because another ticket-lock waiter W1 located before it in

the queue has been preempted. In this case, W1 should be scheduled before W2. W1

is in the resource-waiter category (as in the first scenario), or is in the lock-waiter

category waiting for another VCPU in the resource-waiter category (as that in the

second scenario). W2 is in the lock-waiter category.

Based on the analysis above, no matter whether the excessive spinning problem

is caused by preempted lock holder or preempted ticket-lock waiter, a VCPU in the

resource-waiter category should be scheduled before the VCPUs waiting for it in

the lock-waiter category are scheduled. However, due to the semantic gap between

the VMM and VMs, the VMM cannot identify which resource-waiter VCPUs are
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blocking other VCPUs from making progress. Thus, a safe choice is to schedule all

the resource-waiter VCPUs before scheduling the lock-waiter VCPUs.

The other heuristic, preemption-time heuristic, is used to rank the VCPUs in

each category. When a VCPU is preempted, it is time-stamped. The timestamps keep

increasing. HVS ranks resource-waiter VCPUs with larger preemption timestamps

before the ones with smaller timestamps; and ranks lock-waiter VCPUs with smaller

preemption timestamps before the ones with larger timestamps. This heuristic is

based on the following observations.

When a VCPU (A) is preempted due to excessive spinning and resource-waiter

VCPUs are examined, the resource-waiter VCPU (B) causing A to spin is more likely

to be the one that is preempted recently. Critical sections and normal spinning

in spin-lock synchronizations are much shorter than time slices. They are usually

shorter than a few microseconds, while time slices are longer than a few milliseconds.

Thus, the chance that spin-lock holders or spin-lock waiters are preempted due to

depleted time slices is small if spin-locks are not frequently requested; and LHP

and LWP problems are usually incurred by the workloads with frequent spin-lock

synchronizations; for example, each VCPU many request a spin-lock multiple times

in a time slice. Therefore, when A is preempted, B must have been preempted

recently, later than the time when last time A requests the lock.

When all the “ready” VCPUs are lock-waiter VCPUs and there is still a VCPU

being preempted due to spinning, the VCPU must be waiting for another VCPU,

which shares the same ticket-lock with it and has been preempted earlier due to

spinning. This corresponds to the third scenario in the LWP. Because all the VCPUs

in the same VM use the same spinning threshold, the order in which the VCPUs

are preempted by the hardware facilities reflects the order in which they request the

ticket lock, which in turn determines their positions in the queue. Thus, these VCPUs

should be scheduled in the same order as they are preempted.
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Based on these two heuristics, the HVS maintains two lists, resource-waiter

list and lock-waiter list, to organize resource-waiter VCPUs and lock-waiter VCPUs,

respectively. HVS ranks the VCPUs on each list based on their preemption

timestamps and ranks the resource-waiter VCPUs higher than lock-waiter VCPUs.

When a VCPU needs to be selected, it just selects the VCPU with the highest rank4.

3.2.3 APPLES Implementation

We have implemented APPLES based on KVM and Linux. The implementation of

APLE in KVM adds only about 80 lines of source code to 4 existing files, and the

implementation of HVS adds about 30 lines of source code to one existing file. Most

changes are made inside the PLE event handler of KVM. Other changes are mainly

to collect event times and other needed information (e.g., the preemption time of

VCPUs, the number of times that the VCPUs have been preempted due to excessive

spinning in each epoch, etc).

Every time when the spinning-suppression hardware detects excessive VCPU

spinning, the PLE event handler is called to handle this issue. Inside the handler,

APPLES first uses HVS to select a candidate VCPU. Then, it checks whether an

epoch is finished or not. If an epoch is finished, it adjusts the spinning threshold and

changes the Virtual Machine Control Structure (VMCS) of the VCPU accordingly,

before it schedules in the VCPU.

One issue we addressed in the implementation is to adapt HVS to the method

currently used in KVM to reschedule VCPU candidates. Linux and KVM uses virtual

run time to schedule VCPUs. When a VCPU runs, its virtual run time increases

monotonically. When the virtual run time exceeds any other VCPU’s virtual run

time by a time quantum (usually very small), the VCPU is preempted. In KVM,

4Though preferentially scheduling spinning VCPUs with larger preemption timestamps
degrades performance (as shown in Figure 3.13), the “misclassification” of spinning VCPUs
as resource-waiter VCPUs hardly hurts performance, due to its low possibility of happening.
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when a spinning VCPU (A) is preempted and another VCPU (B) is selected, it uses

a “yield to” mechanism to temporarily boost the priority of B, such that B can be

rescheduled as soon as possible. The virtual run time of B still keeps increasing. In

HVS, the latest preempted VCPU is selected first. Since the latest preempted VCPU

already has a large virtual run time (larger than that of any other VCPUs when it is

preempted). Thus, it may be preempted again shortly after it is rescheduled. Then,

it may be selected again by HVS when another spinning VCPU is preempted, though

it is not blocking the progress of other VCPUs. This forms a loop preventing HVS

from selecting VCPUs that can effectively reduce spinning. In the loop, a VCPU

is selected by HVS repeatedly as a candidate VCPU. Since its virtual run time is

large and keeps increasing, it is preempted shortly every time when it is scheduled,

giving it a higher probability of being selected again by HVS. This not only lowers

the quality of the candidate VCPUs selected by HVS, but also reduces the chances

of other VCPUs getting rescheduled, and may cause starvation problem in the worst

case.

To address this issue, the implementation in KVM prevents a VCPU from being

selected as a candidate VCPU repeatedly. For this purpose, the implementation marks

a VCPU as “yielded” when it is selected as a candidate VCPU. When a VCPU is

preempted because its virtual run time is too large, its “yielded” mark is checked.

If there is not a “yielded” mark, the VCPU is put onto the resource-waiter list.

Otherwise, the mark is removed, and the VCPU is put onto a “yielded” VCPU list.

The VCPUs on the “yielded” list are selected by HVS as candidate VCPUs when the

resource-waiter list and lock-waiter list are empty. They may also be selected to run

when their virtual run time is surpassed by that of other VCPUs.
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3.3 Evaluation

This section evaluates APPLES with a collection of multi-threaded benchmarks.

We first present the overall performance of APPLES. Then, for each component in

APPLES, we carry out experiments to show its performance advantage and study in

detail how it improves performance.

3.3.1 Experimental Setup

We conducted our experiments on a Dell PowerEdge R720 server with 64GB of DRAM

and two 2.40GHz Intel Xeon E5-2665 processors. Each processor has 8 cores. There

are 16 cores in total. On the server, we created 4 VMs with 16 VCPUs. Each VM

has 16GB of memory. The VMM is KVM [10]. The host OS and the guest OS are

Ubuntu version 14.04 with the Linux kernel version updated to 3.19.8. The VCPUs

in each VM are one-to-one pinned to physical cores. Our experiments show that

the benchmarks achieve better performance under this configuration than they do

without pinning the VCPUs. CPU power management can reduce the performance

of the applications running in VMs [11]. To prevent such performance degradation,

in the experiments, we disabled the C states other than C0 and C1 of the processors,

which have long switching latencies.

To evaluate APPLES, we used the benchmarks in PARSEC 3.0 suite [12],

including native PARSEC benchmarks and SPLASH2X benchmarks in the suite.

We attach a prefix ‘p.’ before the name of each native PARSEC benchmark, and

attach a prefix ‘s.’ before the name of each SPLASH2X benchmark, in order

to differentiate these two sets of benchmarks. We also refer to native PARSEC

benchmarks as PARSEC benchmarks for brevity. These benchmarks are mainly for

testing multicore processor designs in computer architecture area. Most of them

are computation-intensive and require minimal system support. Therefore, we also

selected a few other applications that have been frequently used to study LHP and
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LWP problems. Ebizzy [45] is multi-threaded and generates workloads similar to those

on common web application servers. Dbench [46] is derived from an industry-standard

benchmark NetBench. It is a utility that tests the ability of a file system to service

requests from clients. Hackbench [47] is a multi-threaded benchmark designed to test

Unix-socket (or pipe) performance. Kernbench [48] is a CPU and memory intensive

benchmark that measures and compares the time used to compile Linux kernels. We

selected these applications not only because they incur frequent system operations,

but also because they are representative workloads in diverse application domains.

We compiled the PARSEC and SPLASH2X benchmarks using gcc with the

default settings of the gcc-pthreads configuration in PARSEC 3.0. We built other

benchmarks using the make files/scripts coming with the benchmark packages.

The gcc compiler and the libraries required by the benchmarks are stock software

components in the Ubuntu Linux distribution. We used the parsecmgmt tool in

the PARSEC package to run the PARSEC and SPLASH2X benchmarks with native

input. In the experiments, we set the number of threads in each benchmark equal to

32. We ran each experiment five times and report the average result.

We ran the benchmarks using the default KVM configuration and use

their performance as the baseline performance. Since different benchmarks may

use different metrics (e.g., throughputs and execution times) and the absolute

performance numbers vary widely across benchmarks, we normalize the performance

measured in the experiments against the baseline performance. Thus, the baseline

performance is always 1. To be consistent, we use large values to represent higher

performance. Thus, if a benchmark reports throughput, we present its normalized

throughput. If a benchmark reports execution time, we present its speedup. For

brevity, we use “performance” to refer to both normalized throughput and speedup.

The LHP and LWP problems happen when PCPUs are over-subscribed. Thus,

we launch multiple VMs. We run multiple instances of the same benchmark in parallel
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on the VMs, one on each VM. different configurations, and compare the performance.

In our experiments with APLE enabled, for all the VMs, the initial value of the

desired threshold Td is 8192 cycles. The lower bound Tl is 4096 cycles (the same as

that in the default KVM setting). The upper bound Tu is 32768 cycles, and δ is 1024

cycles.

3.3.2 Overall Performance of APPLES

In this subsection, we first show the performance advantage of APPLES over the

stock KVM for spinlock-intensive benchmarks. Then, we compare the overhead of

APPLES and the stock KVM.

For each benchmark, we launch two VMs and run two instances of the

benchmark in parallel, one on each VM. We first run the benchmark using the

stock KVM with PLE disabled. Then, we enable the PLE support, and run the

benchmark with the stock KVM and APPLES, respectively. We also manually set

the PLE window to 512 cycles, collect inefficiency values during its execution, and

average the inefficiency values. If the average inefficiency value is greater than 5%,

the benchmark is considered to be spinlock-intensive. We use spinlock-intensive

benchmarks to evaluate the effectiveness of APPLES and non-spinlock-intensive

benchmarks to test the overhead of APPLES.
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Figure 3.5 shows the performance of spinlock-intensive benchmarks and their

average performance under three scenarios, i.e., (1) with the PLE support turned

off, (2) with the stock KVM (PLE enabled), and (3) with APPLES (PLE enabled).

APPLES performs consistently better than the stock KVM for these benchmarks.

Compared to the stock KVM, APPLES improves the performance of the benchmarks

by 14% on average and up to 49%.

Among these benchmarks, ebizzy, dbench, hackbench, and kernbench incur the

most frequent spin-lock operations. Their performance suffers significantly from LHP

and LWP problems. Though the PLE support in the stock KVM can significantly

improve their performance, APPLES is more effective and can further improve

performance. For p.canneal, p.bodytrack, p.raytrace, and p.streamcluster, with the

stock KVM, enabling PLE even degrades their performance, because the stock

KVM cannot set spinning thresholds adequately and preempts spinning VCPUs

prematurely. APPLES can avoid this problem. It achieves similar (for p.raytrace)

or higher (for the other three benchmarks) performance, relative to that with the

PLE support turned off. For the remaining benchmarks, the spin-lock operations in

their executions are not as frequent as those in the first four benchmarks. With PLE

support, the stock KVM improves their performance moderately, and APPLES can

improve the performance by larger percentages.

APPLES improves performance through the synergistic collaboration of APLE

and HVS, which significantly reduces the total cost incurred by excessive spinning

and preempting spinning VCPUs. We use ebizzy as an example to illustrate how

APPLES with its components reduces the cost and how the performance is affected

by the reduction of the cost. To test one component of APPLES, we disable the other

component and use the default mechanism in KVM.

As shown in Figure 3.6, compared to the stock KVM, the performance of ebizzy

is improved by 34% with APLE alone, and is improved by 9% with HVS alone.
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Figure 3.6 Normalized performance and average inefficiency of ebizzy with KVM,
APLE, HVS, and APPLES when 2 VMs co-run
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co-run. Prefixes ‘p.’ in benchmark names stand for PARSEC benchmarks, and
prefixes ‘s.’ stand for SPLASH2X benchmarks.

With APLE and HVS combined, the performance can be improved by 49%. The

percentage of improvement with APPLES is even higher than the sum of percentages

of improvement with APLE and HVS alone. This is because HVS is more effective

with APLE than it with the default mechanism in KVM to adjust spinning threshold,

as we will show later in subsection 3.3.4. The figure also compares the average

inefficiency values of ebizzy executions under these scenarios. APLE and HVS can

reduce inefficiency by 32% and 18% respectively, and reduce it by 58% when combined,

relative to the stock KVM. It is evident that performance is improved when the

inefficiency decreases.
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We measure the overhead of APPLES with two sets of experiments. The

first set studies its overhead on under-subscribed systems. For this purpose, we

launch one VM, and run spinlock-intensive benchmarks in the VM. On a system

that is under-subscribed, each VCPU gets a dedicated physical core. Thus,

lock holder/waiter VCPUs would not be preempted, and there is no need to

preempt spinning VCPUs. Descheduling and rescheduling spinning VCPUs degrades

performance. Thus, the performance measured with the PLE support disabled

represents the best performance these benchmarks can achieve. The performance

degradation caused by KVM and APPLES enabling and handling PLE events

represents their overhead. On average, the benchmarks achieve similar performance

with APPLES and the stock KVM, and the performance difference is not noticeable

(less than 2%). Compared to the executions with PLE support disabled, these

benchmarks show only slightly lower performance with KVM and APPLES (1%∼2%

on average and up to 8% for kernbench). The overhead of APPLES is similar to that

of the stock KVM and is acceptable when the system is under-subscribed.

The second set of experiments study the overhead of APPLES on over-

subscribed systems. We launch two VMs, on which we run the benchmarks that

do not incur frequent spinlock operations. Figure 3.7 shows the performance of these

benchmarks and their average performance. We use performance tested with the

stock KVM with PLE support disabled as baseline performance. Both APPLES

and the stock KVM show similar performance as that with PLE support disabled

(difference<1%), indicating that their overhead is very low for the benchmarks that

rarely incur spinlock operations.

3.3.3 APLE Performance

To study in detail how APLE improves system performance, we enable APLE and

disable HVS in APPLES. We select seven spinlock-intensive applications for the
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study. We select ebizzy, dbench, hackbench, and kernbench, because they are more

spinlock-intensive than other benchmarks, and their performance is more sensitive to

the management of PLE facility. We select p.raytrace and p.streamcluster, because

we want to investigate the reasons why APPLES can maintain and improve the

performance while the stock KVM degrades their performance when PLE support is

enabled. Benchmark p.dedup is selected because its performance is most sensitive to

the management of PLE facility among the remaining benchmarks, which are not as

spinlock-intensive as the first four benchmarks.

We carry out experiments to compare APLE against the mechanism which

uses a fixed system-wide spinning threshold. Since a benchmark shows different

performances with different spinning thresholds, we repeat experiments and test

different spinning thresholds from 512 cycles to 32768 cycles to get a scope of

performance variation. Thus, we can find the “best” performance and the “worst”

performance that the benchmark can achieve by selecting different fixed spinning

thresholds. In this section, we use “best” to represent the case in which the selected

spinning threshold leads to the best performance, and use “worst” to represent the

case in which the selected spinning threshold leads to the worst performance.

Please note that the “best” and “worst” performances are only those achieved

with fixed spinning thresholds. They do not represent the real best and worst

performance that can be achieved with any possible methods. However, we use the

“best” performance and the “worst” performance to show the potential of adjusting

the spinning threshold and how much performance degradation could be caused if the

spinning threshold was not adequately set.

We also want to compare the “best” and “worst” performances against the

performance that can be achieved with the dynamic method in APLE, and show

the necessity for adjusting the spinning threshold dynamically based on workloads.

During the execution of a benchmark, there may be different phases. A threshold
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leading to good performance in one phase may lead to bad performance in another

phase. Thus, it is possible that, with a spinning threshold adjusted dynamically, a

benchmark achieves better/worse performance than the “best”/“worst” performance

achieved with a fixed threshold used across different phases.
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Figure 3.8 Normalized performance of the benchmarks with KVM, “best”, “worst”,
and APLE when 2 VMs co-run.

Figure 3.8 shows the performance of these benchmarks when 2 VMs co-run. The

stock KVM cannot achieve the best performance. Especially, with p.streamcluster,

kernbench and p.raytrace, it even achieves lower performance than the “worst”

performance obtained with a fixed spinning threshold level. In contrast, APLE can

achieve better performance than “best” — the best performance that can be obtained

by smartly selecting a fixed spinning threshold. The average performance achieved

with APLE is 1.13, and the average performance achieved by smartly selecting a

fixed spinning threshold (i.e., “best”) is 1.10. APLE improves the performance of

ebizzy by the largest percentage (34% relative to the stock KVM and 19% relative to

“best”). For p.raytrace and p.streamcluster, the “best” performance is achieved when

the thresholds are high (32768 cycles). The stock KVM degrades performance because

it sets the thresholds too low, such that spinning VCPUs are preempted prematurely.

APPLES avoids this problem since premature VCPU preemptions increase wasteful
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VCPU switches and thus inefficiency. The figure also shows that, when selecting a

wrong spinning threshold level, the performance can be degraded by 16% on average

and up to 46% (for ebizzy), relative to that with spinning thresholds adequately set

by APLE.
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Figure 3.9 Normalized performance of the benchmarks with KVM, “best” and
“worst”, and APLE when 4 VMs co-run.

Figure 3.9 shows the performance of the benchmarks when 4 VMs co-run.

Compared to the executions with 2 VMs, the performance difference between the

stock KVM, “best”, and APLE is much smaller. However, if the spinning thresholds

are set inadequately, application performance still can be significantly reduced. For

example, with dbench, the performance difference between “best” and “worst” is 19%

when 2 VMs co-run, and the difference is increased to 35% when 4 VMs co-run.

To illustrate the correlation between system performance and the inefficiency

level and to show how adjusting spinning threshold can reduce inefficiency and

improve system performance, we use ebizzy as an example, and compare the average

inefficiency values along with normalized performances achieved by KVM, “best”,

“worst”, and APLE when 2 VMs co-run. The average inefficiency is the average
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Figure 3.10 Normalized performance and average inefficiency of ebizzy when a
system-wide spinning threshold is changed from 512 cycles to 32768 cycles, and when
the stock KVM and APLE is used to adjust the spinning threshold. Two VMs are
used.

of the inefficiency values measured in the epochs of the two VMs during the two

instances of ebizzy run in parallel in the VMs.

As shown in Figure 3.10, in general the average inefficiency reduces when the

spinning threshold is increased from 512 cycles to 16384 cycles. This is because

the overhead of wasteful VCPU switches caused by preempting spinning VCPUs

prematurely can be reduced with larger spinning thresholds. Meanwhile, with the

decreasing of the average inefficiency, the performance is improved accordingly.

However, when the spinning threshold is further increased, the average inefficiency

increases, since the overhead of wasteful spinning starts to dominate, and thus the

performance is degraded.

Figure 3.10 also clearly shows that, with a fixed spinning threshold, the “best”

performance is achieved when the average inefficiency is minimized by smartly

selecting the spinning threshold (16384 cycles in this case). The default KVM

mechanism cannot achieve the best performance since it cannot effectively reduce

inefficiency. In contrast, APLE reduces the average inefficiency by 32%, relative to

the stock KVM. Moreover, compared to “best”, APLE reduces the average inefficiency
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by 11%, which is the reason why APLE can achieve even higher performance than

“best”.
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Figure 3.11 Spinning threshold adjusted by the stock KVM when two VMs co-run
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Figure 3.12 Spinning threshold adjusted by APLE when two VMs co-run

In the above experiments, we also collected the spinning thresholds during

the execution of the ebizzy instances5. Figures 3.11 and 3.12 show how spinning

thresholds are adjusted respectively for the scenarios with default KVM mechanism

and APLE. With APLE, there are about 900 epochs in the execution, while with KVM

default mechanism there are about 1600 epochs. This is because fewer VM EXITs

are incurred by PLE events with APLE. With the default KVM mechanism, the

spinning threshold sticks round 4200, which leads to the poor performance similar to

the one with fixed spinning threshold of 4096. This shows that the stock KVM cannot

effectively adjust the spinning threshold to achieve optimal performance. However,

with APLE, the spinning threshold changes steadily around 12000, which leads to the
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performance that is even better than “best” performance achieved with fixed spinning

threshold of 16384.

3.3.4 HVS Performance

In this section, we want to understand how the heuristics in HVS help improve the

performance. For this purpose, we have implemented three variants of HVS, which

intentionally avoid selecting the candidate VCPUs suggested by a heuristic. The

name of the variants and their differences with HVS are:

• CPTH-R (Counter Preemption-Time Heuristic on Resource-waiters): when
selecting a candidate VCPU from resource-waiter VCPUs, the one with the smallest
preemption timestamp is selected.

• CPTH-L (Counter Preemption-Time Heuristic on Lock-waiters): when selecting a
candidate VCPU from lock-waiter VCPUs, the one with the largest preemption
timestamp is selected.

• CCH (Counter Causality Heuristic): lock-waiter VCPUs are selected before
resource-waiter VCPUs.

We select the same set of benchmarks as we do for testing APLE, and compare

the performance of HVS with its variants when we run the benchmarks in 2 VMs.

Figure 3.13 and Figure 3.14 show their performance, relative to the stock KVM. In

Figure 3.13, the data was obtained with the default mechanism in KVM to adjusting

spinning threshold. In Figure 3.14, the data was obtained with APLE adjusting

spinning thresholds.

As shown in Figure 3.13, HVS performs slightly better than its variants when the

default mechanism in KVM adjusting spinning threshold. The average performance

is 1.08, 1.05, 0.97, and 1.03 for HVS, CPTH-R, CPTH-L, and CCH, respectively.

5The default KVM mechanism does not use epochs and sets a spinning threshold for each
VCPU. For fair comparison, we define epoch in the same way as in APLE (i.e., 1000
VM EXITs caused by PLE events), and collect the average spinning threshold of all the
VCPUs in a VM for each epoch.
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Figure 3.13 Normalized performance of the benchmarks with the stock KVM, HVS,
and three variants of HVS when 2 VMs co-run. The default mechanism in KVM is
used to adjust spinning thresholds.

This indicates that the heuristics used in HVS do help improving the performance,

but they are not very effective. The figure also shows that the preemption-time

heuristic applied to lock-waiter VCPUs helps improving performance by the largest

percentage. This is because, for ticket spin-locks, the order in which lock-waiter

VCPUs are scheduled has great impact on performance.

We were surprised to see that the causality heuristic is not as effective as the

preemption-time heuristic. The benchmark dbench even shows the same performance

on HVS and CCH. Our investigation shows that the default mechanism in KVM tends

to adjust the spinning thresholds to very low values (Figure 3.11 and Figure 3.12),

which preempt spinning VCPUs prematurely even when LHP or LWP does not

happen. Thus, scheduling resource-waiter VCPUs first and scheduling lock-waiter

VCPUs first do not make much difference on performance. Note that lock-waiter

VCPUs are preempted when their spinning thresholds are reached. Thus, if spinning

thresholds are set too low, lock-waiter VCPUs are preempted even when they may

get the locks shortly.
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Figure 3.14 Normalized performance of the benchmarks with the stock KVM, HVS,
and three variants of HVS when 2 VMs co-run. APLE is used to adjust spinning
thresholds for HVS and its variants.

Thus, we repeated the experiments with APLE adjusting spinning thresholds of

the VMs. As shown in Figure 3.14, the heuristics in HVS become more effective when

spinning thresholds are adequately set. Not using these heuristics leads to serious

performance degradation. The average performance is 1.20, 1.09, 1.01, and 0.43

for HVS, CPTH-R, CPTH-L, and CCH, respectively. Specifically for the causality

heuristic, scheduling lock-waiter VCPUs before resource-waiter VCPUs reduces the

performance of dbench and hackbench by more than 10x. This on one hand shows the

importance of VCPU selection and confirms the effectiveness of causality heuristic,

and on the other hand demonstrates the effectiveness of APLE on selecting adequate

spinning threshold to accurately and promptly identify VCPUs waiting for preempted

lock holders or preempted lock waiters.

3.4 Related Work

A large number of studies have been focused on the lock holder preemption (LHP) and

the lock waiter preemption (LWP) problems. Various solutions have been proposed to

reduce performance degradation. Software-only solutions include sophisticated VCPU

scheduling algorithms [21, 49, 5, 6, 50, 22, 51, 52, 53, 54, 55], improved synchronization
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primitives [24], and paravirtualization [56, 57]. On current platforms, using spinning-

suppression hardware facilities, such as Intel PLE and AMD PF, has been dominantly

utilized on mainstream virtualization systems and become a de facto standard solution

[4, 16, 23, 25]. Our work does not provide an alternative solution to the LHP and

LWP problem. Instead, it improves the solutions with hardware facilities.

Targeting the problem of setting spinning thresholds for the hardware facilities,

there are studies showing that spinning thresholds must be adjusted based on

workloads to achieve best performance [58, 44]. Besides APLE [59], there are some

other efforts to adjust spinning thresholds dynamically. Zhang, Dong, and Duan [44]

proposed a profiling method that collects the average spin-lock cycles in guest OSs

and uses the information to adjust spinning thresholds. This approach requires the

VMM to have detailed and important information about guest OSs, such as OS

symbol tables, which should not be exposed to the VMM for security reasons on the

systems shared by multiple users, e.g., public clouds. This seriously limits the scope

of the solution. Thimmappa [40] proposed a method to adjust the spinning threshold

based on whether or not the resources freed by preempting spinning VCPUs can be

reallocated to other VCPUs for them to make progress. Recently, KVM implemented

a method to dynamically grow/shrink the spinning threshold for each VCPU [41].

These two methods focus mainly on improving the performance when the system is

under-committed.

Targeting the problem of which VCPUs should be scheduled to replace spinning

VCPUs, besides the directed yield method currently used in KVM [43], and another

Linux online patch [60], which relies on modified guest OSs to label VCPUs holding

spin-locks, we cannot find any research on selecting VCPUs for the efficient utilization

of spinning suppression hardware facilities.

The trade-off between busy waiting (spinning) and blocking in synchronization

primitives is a classic yet challenging problem, and has been intensively studied
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under different scenarios [61, 62, 63, 64]. The problem we target in this chapter

also needs to make a trade-off between busy waiting and blocking. But, compared

to the problems targeted in previous studies, the problem in this chapter is more

challenging, since the VMM has limited information and cannot directly control the

spinning in synchronization primitives.

3.5 Conclusion

Mainstream virtualization systems rely on hardware facilities, such as Intel PLE and

AMD PF, to alleviate the performance degradation due to excessive VCPU spinning.

However, it is still a challenging issue to effectively control these facilities to minimize

overhead and maximize throughput, which requires the knowledge on the locking

behaviors of guest systems that is unavailable at the VMM level, due to the semantic

gap between the host and the guests. Ineffective utilization of these hardware facilities

may even cause performance degradation.

This chapter addresses this issue with a holistic solution named APPLES. The

two components in it solve two core problems in the utilization of the hardware

facilities. Specifically, one component APLE maintains an adequate VCPU spinning

threshold for each VM, in order to promptly detect and preempt VCPUs when they

spin excessively. The key idea is to measure the execution efficiency of each VM

and adjust the threshold in a way to maximize the efficiency. The other component

HVS carefully selects VCPUs and schedules them in an order required by efficient

synchronization. The key idea is to evaluate and rank VCPUs based on the causality

and time of VCPU preemptions.

Our experiments show that APPLES can improve system performance by

as much as 49%. Its implementation incurs minimal modification to existing

virtualization system designs. We seek the adoption of APPLES in commercial and

open-source virtualization systems.
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CHAPTER 4

RETHINKING THE SCALABILITY OF MULTICORE
APPLICATIONS ON BIG VIRTUAL MACHINES

4.1 Introduction

In the cloud, virtual machine (VM) sizes increase steadily to meet the demand for

increasing computing power in each VM and to utilize the growing core counts in

underlying physical machines. For example, a X1 instance on Amazon EC2 platform

now has as many as 128 virtual CPUs (VCPUs) [65]. With increasing VM sizes, an

important question to answer is how well applications can scale and take advantage

of the computing power of bigger VMs to improve performance.

Common practice assumes that virtual machines have a similar architecture to

their hosting physical machines (PMs), and thus the execution scalability of multicore

applications on VMs can be analyzed in the same way as that on dedicated physical

machines. As an evidence, VMs with multiple VCPUs on x86 architecture are called

SMP-VMs or virtual SMPs [22], and Amdahl’s law is used to analyze scalability.

However, due to the sharing of physical CPU resource on virtualized platforms

and the dynamic CPU resource allocation for enabling the sharing, VCPUs show

substantially different behaviors and performance features than physical computing

cores. Thus, applications show different scalability on VMs than they do on physical

machines. For example, research has shown that some multicore programs may suffer

lower scalability on VMs, because the VCPUs in a VM may not make progress

continuously and simultaneously [22, 26].

Although a few scalability problems have been noticed on VMs and the specific

reasons have been analyzed, how the scalability of multicore applications in the cloud

is changed by the virtualization of CPU resource has not been systematically studied.

This chapter analyzes and verifies with experiments how CPU resource sharing in
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virtualization impacts application scalability, identifies key application features and

system factors affecting application scalability, and explore the potential and design

alternatives for improving application scalability.

First, by re-defining speedup based on resource utilization efficiency as a

measurement of scalability, this chapter analyzes and reveals the fundamental reasons

for multicore applications showing different scalability on VMs than they do on

PMs (Section 4.2). Second, based on the analysis, this chapter identifies two key

application features for scalability and shows with experiments how virtualization

affects scalability differently for the applications with different features (Section 4.3).

Though applications are usually considered to have similar or lower scalability on

VMs, this chapter shows that virtualization tends to improve scalability. However,

the improved scalability might be offseted by frequent synchronization and long

scheduling delay. Third, though some applications already show better scalability

on VMs than they do on PMs with existing system design, this chapter shows that

there is still much space to further improve scalability on VMs. Thus, this chapter

identifies the system factors that can be leveraged for improved scalability. This

chapter investigates two factors that have not been mentioned or studied before

in other literatures — allocation period length and the matching between resource

allocation and workload distribution. With experiments, this chapter demonstrates

that improved scalability can be achieved by increasing allocation period length or

matching resource allocation and workload distribution (Section 4.4).

4.2 Resource Sharing’s Impact on Scalability

Due to the sharing of CPU resource, the methods and models developed to analyze

the execution scalability of applications on dedicated hardware, e.g., Amdahl’s law,

cannot be used for understanding the execution scalability of applications on VMs.

This section first introduces how CPU resource is managed and shared on virtualized
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platforms. Then, it provides a new method which measures scalability based on

resource utilization efficiency. With the method, it explains how resource sharing

affects execution scalability on VMs.

4.2.1 Resource Sharing between VMs

On a physical machine hosting multiple VMs, a virtual machine monitor (VMM) is

used to manage and dynamically allocate hardware resource to each VM. For CPU

resource, a physical CPU (PCPU) is usually time-shared by multiple VCPUs. The

VMM treats VCPUs as independent schedulable entities and allocates CPU time to

them. Inside each virtual machine, threads are further scheduled onto VCPUs by the

guest OS. Thus, by having multiple VCPUs in each VM, the threads in the VM can

eventually run on multiple PCPUs, achieving higher performance than that with a

single VCPU.

When allocating CPU time, the VMM first allocates CPU time to VMs based

on their weights, and then distributes CPU time to VCPUs in each VM. As in typical

OS implementations, to guarantee responsiveness, CPU time is usually allocated

periodically to VCPUs as their timeslices in each period. For brevity, we refer to

the period in which CPU time is distributed to VCPUs as an Allocation Period.

A VCPU consumes its timeslice when it runs on a core. For improved efficiency,

a VCPU is descheduled when it stops making progress (e.g., when it becomes idle or

busy-waiting1), and stops consuming timeslice. If a VCPU is not rescheduled for long

time, it is possible that the VCPU cannot consume up its timeslice in an allocation

period. In such a case, the VMM usually does not roll over the unused timeslice or

a part of the unused timeslice to the next allocation period, in order to prevent a

VCPU from accumulating too much timeslice and starving other VCPUs on the same

core.

1Most multicore processors have equipped with mechanisms, such as Intel PLE and AMD
PF, to detect and interrupt busy-waiting.
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4.2.2 Efficiency-Based Scalability Measurement

To analyze scalability on VMs, we introduce a new method, which measures scalability

base on the utilization efficiency of CPU resource. Specifically, the scalability of an

application is determined by how efficiently the increased resource is utilized during

the execution of the application. The higher the efficiency (i.e., less waste) is, the

more the application can be accelerated, and the higher the scalability is.

Scalability is how much an application can be accelerated if allocated with more

resource, with speedup being a measurement. For CPU resource, the speedup of the

execution on N processing unit (PU, i.e., cores in PMs or VCPUs in VMs) against

that on 1 processing unit is as follows.

Speedup =
execution speed on N PUs

execution speed on 1 PU

=
work finished on N PUs in an unit of time

work finished on 1 PU in an unit of time

Without loss of generality, we assumes that the amount of work finished is

proportional to the CPU time utilized for effective computation. Since the total CPU

time available on N PUs is N times of that on 1 PU, the above equation can be

rewritten as follows.

Speedup

=
total CPU time utilized on N PUs in an unit of time

CPU time utilized on 1 PU in an unit of time

= N ×
total CPU time utilized on N PUs in an unit of time
total CPU time available on N PUs in an unit of time

CPU time utilized on 1 PU in an unit of time
CPU time available on 1 PUs in an unit of time

= N × overall utilization efficiency with N PUs

utilization efficiency with 1 PU

In the above equation, utilization efficiency is the ratio between the

amount of utilized CPU time and the amount of available CPU time, and
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the utilized CPU time is that consumed for effective computation. The CPU time

spent on busy-waiting does not count. Assume the utilization efficiency of 1 PU (i.e.,

serial execution) is 100%. The speedup with N PUs can be simplified as follows.

Speedup = N × overall utilization efficiency with N PUs

= N × CPU time utilized by computation

available CPU time during computation

= N −N × unutilized CPU time

available CPU time during computation

In the equation, unutilized CPU time refers to the CPU time that is not utilized

by the application to make progress.

The above definition of speedup is consistent with that based on execution time.

For example, based on Amdahl’s law, if in an application 20% of computation can only

be executed sequentially and 80% of computation can be fully parallelized without

overhead, when executed on a 4-core machine, the speedup against the execution on a

single core machine is 1/(0.2 + 0.8/4) = 2.5. The performance does not scale linearly.

This is because, when the sequential portion is executed on one core, other cores

are idle. This reduces the utilization efficiency to 50% on these cores. The overall

utilization of the 4 cores is (100% + 3× 50%)/4 = 62.5%, and the speedup based on

the above definition is 4× 0.625 = 2.5.

The above definition of speedup can be used to understand both the scalability

on physical machines with dedicated resources and the scalability on VMs with

shared resources. To highlight the reasons causing different scalabilities on these

platforms, we adapt the speedup calculation for physical machines and virtual

machines respectively as follows.
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For the executions on a physical machine, unutilized CPU time is the CPU time

wasted on idling and busy-waiting during the execution. Thus, the speedup of an

application on a physical machine with N cores can be calculated as follows.

Speedup PM = N −N × time on idling and busy-waiting

N × execution time

= N − time on idling and busy-waiting

execution time

The CPU resource for a virtual machine is its timeslice. For the executions on

a virtual machine, unutilized CPU time consists of two parts. The first part, unused

timeslice, is the timeslice that cannot be depleted by the VCPUs in an allocation

period and cannot be rolled over to later allocation periods (Section 4.2.1). The

second part is the CPU time used to handle idle VCPUs and spinning VCPUs. Due

to resource sharing, idleness and spinning are handled in a substantially different way

on VMs than on PMs. To improve the utilization of shared CPU resource, hardware

and the VMM usually try their best to detect and deschedule VCPUs that are not

making progress, including idle VCPUs and spinning VCPUs. Thus, CPU time is not

wasted on idling and busy-waiting. However, time must be spent to switch out these

VCPUs. Therefore, the speedup of the execution on a VM with N VCPUs (against

that on a VM with a single VCPU) can be calculated as follows2.

Speedup VM = N −N×

(
overhead of switching out idle/spinning VCPUs

timeslice allocated to the VM

+
unused timeslice of the VM

timeslice allocated to the VM
)

2With existing system designs, spinning that is very brief or at the user-level of VMs may
not be detected. Such spinning still consumes CPU time. We choose to neglect the CPU
time used by such spinning because 1) minimal CPU time is used by brief spinning and 2)
excessive spinning at the user-level should be prevented using co-scheduling or interrupted
using hardware facilities similar to Intel PLE and AMD PF.
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4.2.3 Virtualization’s Impact on Scalability

The impact of virtualization and CPU resource sharing on scalability can be identified

by comparing the equations for calculating Speedup PM and Speedup VM. On

a dedicated physical machine, resource provisioning is static. The scalability is

mainly determined by the behavior of the application, i.e., whether the application

can engage all the cores in useful work. Any idleness and busy-waiting are

translated into lower resource utilization and then lower scalability. The reduction

of scalability is proportional to the durations of idleness and busy-waiting. This

also explains Amdahl’s law and other models for analyzing execution scalability on

dedicated hardware, which co-relate scalability with the operations causing idleness

and busy-waiting, such as sequential computation, tasks on critical path, and

synchronizations.

Virtualization affects scalability in two ways. On one hand, dynamic resource

allocation helps improving scalability. For VCPUs, resource is not consumed if there

is not useful work on them. Thus, even if an application cannot always engage

the VCPUs in useful work, high scalability may still be achieved, as long as the

overhead incurred by VCPU switches is low and most of the timeslice of the VM

is eventually consumed by the end of resource allocation periods. An execution on

VM may achieve linear scalability even if there is substantial sequential computation.

Thus, conventional methods and models (e.g., Amdahl’s law) become inapplicable

when used to understand application scalability on VMs.

On the other hand, scalability on VMs is limited by new factors — VCPU switch

overhead and unused timeslice of the VM. These factors are determined not only by

the natures of the computation in applications but also the resource management at

the system level. Specifically, VCPU switch overhead is proportional to the frequency

of VCPU switches, which are usually incurred by the synchronizations on VCPUs.

The more frequent the synchronizations are, the lower the scalability is. A few
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factors affect the amount of unused timeslice. First, the amount of unused timeslice

is determined by whether there is enough workload in each resource allocation period

to consume timeslice. Second, timeslice and workload are distributed to each VCPU.

Thus, the amount of unused timeslice is also determined by the distribution of

workload and the distribution of timeslice to VCPUs. When a VCPU is allocated

with more timeslice than needed by the workload on it, some timeslice will not be

used. Finally, VCPU scheduling may also significantly affect the amount of unused

timeslice. If a VCPU is scheduled late, the workload on it may not have enough time

to consume the timeslice available to the VCPU by the end of a resource allocation

period, increasing unused timeslice.

In Section 4.3, we identify and experimentally verify the application features

affecting the scalability on VMs, and in Section 4.4, we investigate CPU resource

management in the VMM and identify system-level factors affecting execution

scalability.

4.3 Application Features Affecting Scalability

This section identifies two key application features for scalability and shows how these

features affect application scalability on VMs.

4.3.1 Key Application Features and Scalability Indications

Based on the analysis in Section 4.2, we have identified two key scalability features

of applications. One feature is workload parallelism, which describes to what degree

an application can parallelize its workload in order to utilize increased CPU resource.

During the execution of an application, its workload parallelism can be measured by

the number of threads in the application that are active and making progress. In a

time period, the higher the workload parallelism is, the more progress the application

can make if provided with more resource. An application with higher workload
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Table 4.1 Summary of Four Types of Applications Based on Their Key Scalability
Features on VMs

Type Work. Para. Sync. Freq. Scalability Benchmarks

1 high low high p.freqmine, p.swaption, p.x264, p.ferret, p.vips, s.water nsquared, s.barnes, s.lu ncb, s.raytrace, s.radix

2 low high low p.bodytrack, p.dedup, p.facesim, s.ocean cp, s.volrend, s.cholesky

3 high high mediocre p.fluidanimate, p.streamcluster, s.ocean ncp

4 low low mediocre p.canneal, p.raytrace, p.blackschole, s.fmm, s.radiosity, s.water spatial s.fft, s.lu cb

parallelism tends to show higher execution scalability on both physical machines

(because of less idle time) and virtual machines (because of less unused CPU time).

The other feature is the frequency of blocking synchronizations (referred to

as synchronization frequency for brevity). Blocking synchronizations can incur the

switches of VCPUs, which reduce scalability in two ways. First, when the threads

on a VCPU are blocked, the VCPU is descheduled, and another VCPU (probably

from another VM) is scheduled. The switch of VCPU incurs high overhead. Second,

when a thread on the descheduled VCPU is unblocked and becomes ready to make

progress, the VCPU may not be able to be rescheduled immediately. Due to this

rescheduling delay, the VCPU may not be able to fully utilize the timeslice allocated

to it by the end of allocation periods, increasing unutilized timeslice.

Based on these features, multicore applications can be categorized into four

types, as summarized in Table 4.1 Applications with high workload parallelism

and low synchronization frequencies (type 1) usually show high scalability on VMs;

applications with low workload parallelism and high synchronization frequencies (type

2) usually show low scalability on VMs; applications with high workload parallelism

and high synchronization frequencies (type 3) and applications with low workload

parallelism and low synchronization frequencies (type 4) show mediocre scalability.

4.3.2 Experimental Verification

To verify the scalability indications of the aforementioned application features through

experiments, we select the benchmarks in PARSEC 3.0 suite [12], including native
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PARSEC benchmarks and SPLASH2X benchmarks. We attach a prefix ‘p.’ before

the name of each native PARSEC benchmark, and attach a prefix ‘s.’ before the name

of each SPLASH2X benchmark, in order to differentiate these two sets of benchmarks.

We also refer to native PARSEC benchmarks as PARSEC benchmarks for brevity.

We used the parsecmgmt tool in the PARSEC package to run the benchmarks with

native input and to control the number of concurrent threads in each execution.

Experiments were conducted a Dell PowerEdge R720 server with 64GB of

DRAM and two 2.40GHz Intel Xeon E5-2665 processors. Each processor has 8 cores.

On the server, we created 4 VMs. Each VM has 16GB of memory and 16 VCPUs.

The VMM is KVM. The host OS and the guest OS are Ubuntu version 14.04 with

the Linux kernel version updated to 3.19.8. The VCPUs in each VM were laid out

on the cores in a way to prevent VCPU stacking for better performance [22].

We first profiled the benchmarks to obtain their scalability features when we run

them on the physical server. The number of thread in each execution is 16. During the

execution of each benchmark, we collected the number of active CPU cores involved

in the benchmark computation periodically and the number of voluntary context

switches3. The workload parallelism of the benchmark is the average number of

active cores during its execution, and its synchronization frequency is the number of

voluntary context switches per second.

Figure 4.1 shows the categorization of the benchmarks based on their scalability

features. If a benchmark keeps at least 75% of the cores (i.e., 12 cores in our

system) active on average during its execution, it is considered to have high workload

parallelism. If the time period between two consecutive synchronizations is shorter

than the timeslice allocated to a thread in an allocation period (i.e., a thread is

3Voluntary context switches are context switches caused by threads blocking their execution
voluntarily, i.e., blocking synchronizations.
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Figure 4.1 Types of the PARSEC benchmark and their scalability features. The
numbers are the indexes of the benchmarks, which are indexed as follows. 1: p.freqmine, 2:
s.water nsquared, 3: s.barnes, 4: s.lu ncb, 5: p.swaption, 6: p.x264, 7: p.ferret, 8: p.vips,
9: s.raytrace, 10: s.radix, 11: p.bodytrack, 12: p.dedup, 13: p.facesim, 14: s.ocean cp,
15: s.volrend, 16: s.cholesky, 17: s.ocean ncp, 18: p.streamcluster, 19: p.fluidanimate,
20: s.lu cb, 21: s.water spatial, 22: s.fmm, 23: p.canneal, 24: s.fft, 25: p.raytrace, 26:
p.blackschole, 27: s.radiosity
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Figure 4.2 Speedups of PARSEC and SPLASH2X benchmarks.

blocked at least once before it uses up its timeslice), the benchmark is considered to

have high synchronization frequency.

The benchmarks of each type are summarized in Table 4.1. Note that an

application with low workload parallelism only means that the application lacks

enough active threads to keep all the cores/VCPUs busy. As we will show later

that an application with low workload parallelism may still achieve decent scalability

on a VM. At the same time, the workload parallelism is relative to the scale of

the system (e.g., the number of cores/VCPUs in a server/VM). An application with

high workload parallelism may become one with low workload parallelism on a larger

system.

Then, we run the benchmarks in a VM consolidated with three other VMs

on the same physical server. To obtain stable measurement, we run a CPU-bound

program in each of three VMs, which keeps increasing a counter on all the VCPUs of

the VM. We show the speedups of the benchmarks in Figure 4.2. The concurrency

level (i.e., the number of threads in the benchmark, the number of VCPUs in each

VM, and the number of cores used in the PM) is 16. The speedup is relative to the

performance with concurrency level equal to 1.

The benchmarks of the first type show the highest scalability, and the speedups

are similar on the PM and the VM. The average speedups are both 13.9. Their high

speedups are achieved for two reasons: 1) high workload parallelism ensures that
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CPU resource is fully utilized; and 2) there are no factors reducing the utilization of

CPU resource.

Other benchmarks show different scalability behaviors on the VM than on the

PM. On the PM, the speedups are mainly determined by the workload parallelism.

The benchmarks of the third type also show high scalability, because they have high

workload parallelism. The average speedup is lower than that of the first type, because

their workload parallelism is lower (Figure 4.1). The benchmarks of the second type

and the benchmarks of the fourth type show similar scalability. The average speedups

are similar (6.5 and 6.3), despite the differences in synchronization frequency. The

average speedups are lower than those of the first and the third types.

Speedups are determined by both workload parallelism and synchronization

frequencies on the VM. Though benchmarks with higher workload parallelism still

achieve higher speedups than those with lower workload parallelism (e.g., the

benchmarks of the first type show higher scalability than those of the fourth type),

synchronization frequencies tend to have a larger impact on scalability than workload

parallelism. This is evidenced by the benchmarks of the fourth type achieving higher

speedups (9.7 on average) than those of the third type (5 on average), though the

benchmarks of the fourth type have lower workload parallelism. Synchronizations

also make the benchmarks show lower scalability on the VM than on the PM. The

average speedups of the benchmarks of the second and the third types are 6.5 and

8.7 on the PM, respectively, and are 3 and 5 on the VM, respectively.

Interestingly, the benchmarks of the last type achieve better scalability on the

VM than on the PM. The average speedups are 9.7 on the VM and 6.3 on the PM. This

confirms that virtualization inherently improves scalability when synchronizations

are infrequent. To better understand how virtualization improves scalability for

these benchmarks. We collected the resource utilization efficiencies during their

executions on the PM and the VM. Then, for each benchmark, we calculate the ratio
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Figure 4.3 Impact of virtualization on scalability for applications with different
workload parallelism.

between its speedup on the VM and its speedup on the PM, and the ratio between

the efficiencies. Figure 4.3 shows that, for the benchmarks with different workload

parallelism, their efficiency ratios are always greater than 1, and the speedup ratios

change consistently with the efficiency ratios. This indicates that the scalability

improvements are through making more efficient utilization of resources. Figure 4.3

also shows that the speedup ratios decrease with the growth of workload parallelism.

This is because, with the growth of workload parallelism, the space for increasing

scalability decreases.

4.4 Improving Scalability at the System Level

At the system level, the management of CPU resource has great impact on application

scalability on VMs. For best scalability, the system should allocate CPU time in a

way that each VM can maximize the utilization of its timeslice. In this section, we

first show that there is still much space for improving the existing system design to

achieve better scalability. Then, we identify two system factors that can be leveraged

to improve scalability.
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4.4.1 Potential for Improving Scalability on VMs

To understand the potential for achieving better scalability with improved system

designs, we estimated the resource utilization efficiencies that the benchmarks could

possibly achieve if the VMM could support the VM to utilize its timeslice as fully as

possible. We selected the benchmarks of the fourth type, because 1) we want to focus

on improving the allocation of CPU time, instead of reducing the overhead of VCPU

switches, and 2) there is space to further improve their scalability.

The estimation is based on profiling the benchmarks on the physical server. For

each allocation period during the execution of a benchmark, we collect the CPU time

utilization of the benchmark. If the utilization u is higher than the portion p of the

CPU time that a VM can obtain (e.g., a 60% utilization vs. 25% of CPU time that

a VM can obtain when it is co-located with another 3 VMs), we expect that, with

a well-designed VMM, the VM can deplete the timeslice allocated to it and achieve

an efficiency of 100% when the computation is executed on the VM. Otherwise, the

benchmark does not have enough computation to deplete the timeslice allocated to

the VM. Thus, in the period, the efficiency is the ratio between u (utilization) and p

(portion of CPU time allocated to a VM). The estimated resource utilization efficiency

is the average efficiency during the execution.

Figure 4.4 shows the actual resource utilization efficiency and the estimated

maximal efficiency of the benchmarks with a concurrency level of 16. On average,

the actual resource utilization efficiency is 62.1% (average speedup is 9.7), and the

estimated maximal efficiency is 87.5% (corresponding to a speedup of 16*87.5%=14).

The benchmark p.canneal shows the largest potential (from 43% to 100%). This

clearly shows that there is still much space to further improve the management of

CPU resource to achieve higher scalability.
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Figure 4.4 Actual resource utilization efficiency and estimated maximal resource
utilization efficiency of the benchmarks of the fourth type on a VM.

4.4.2 Possible Optimizations on CPU Time Allocation

Based on the analysis in Section 4.2, application scalability on a VM can be improved

by reducing the overhead incurred by VCPU switches and reducing unused timeslice.

Extensive research has been conducted on the techniques reducing the impact of

VCPU switches on application performance and scalability, such as improving VCPU

scheduling at the VMM level and improving task scheduling at the guest OS level [66,

21, 6, 22, 15, 26], or reducing scheduling latencies [53, 67, 68]. Thus, we focus on

investigating the factors in CPU time allocation to reduce unused timeslice.

•Longer allocation periods: A VCPU is allowed to use its timeslice within each

allocation period. If a VCPU has light workload in an allocation period, it may not

deplete its timeslice by the end of the period. The unused timeslice may not be rolled

over for the VCPU to handle possibly heavy workload later. Increasing allocation

period length can tolerate such workload fluctuation on VCPUs, and reduce unused

timeslice of the VCPUs when they have light workload.

To verify the impact of allocation period length on scalability, we repeated

the experiments described in section 4.3 for different allocation period lengths from
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Figure 4.5 Speedups when allocation period length is varied from 24ms to 192ms.

24ms (i.e., system default value) to 192ms, and show the speedups of benchmarks of

the fourth type in Figure 4.5. Increasing allocation period length does significantly

improve execution scalability for p.canneal and s.lu cb and slightly improve execution

scalability for s.radiosity, p.blackscholes, s.fmm, and s.water spatial. We also notice

that s.lu cb even achieves linear scalability when allocation period length is increased

to 192ms. Increasing allocation period length has different impact for different

benchmarks because the workloads may fluctuate on different time scales and with

different intensity. Though increasing allocation period length cannot increase

scalability for s.fft and p.raytrace, the average speedup of these benchmarks is

increased from 9.6 to 11.0 when the allocation period length is increased to 192ms.

These results confirm that longer allocation periods can really improve the

execution scalability of multicore applications on VMs. However, increased allocation

periods lengthen responding latencies, which may not be desirable for interactive

workloads. Thus, long allocation periods may only be applicable to throughput-

oriented workloads.
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•Matching resource allocation and workload distribution : In a VM,

workload is distributed to VCPUs for concurrent execution, utilizing the CPU

resource (i.e., timeslice) allocated to the VCPUs. Desirable performance can only

be achieved when the allocation of timeslice matches the distribution of workload.

Allocating more timeslice to a VCPU than what is needed by the workload on the

VCPU will cause some timeslice unused by the end of allocation periods. Allocating

insufficient timeslice to a VCPU with heavy workload delays the computing tasks on

the VCPU.

Matching workload distribution and CPU resource allocation can be done by

task scheduling either in guest OSs or applications. Existing VMM designs try

to allocate timeslice evenly to VCPUs within each VM. As we will show with an

illustrative example in Figure 4.6, task schedulers can evenly distribute workload on

the time scale of allocation periods to improve application scalability.

In the example, a program executes a loop, in which each iteration has 2 units of

sequential tasks followed by 4 units of parallel tasks. If the program runs on a 4-core

PM, the speed-up is 2 based on Amdahl’s law. Figure 4.6 shows the executions of

the program on a 4-VCPU SMP VM co-located with another VM, and compares the

executions with different methods of distributing workloads to VCPUs. We assume

that the length of an allocation period is 12 time units and each time unit can finish

one unit of task. Two VMs have the same weight. Thus, in an allocation period, each

VM is assigned with 50% of CPU time (i.e., 12*4/2=24 units of CPU time), and each

VCPU receives 6 units of CPU time.

Subfigure (A) shows the execution of the program on one VCPU. In an allocation

period, 6 units of tasks are finished since the VCPU has 6 units of CPU time.

Subfigure (B) shows the execution on four VCPUs with a conventional task scheduler.

Though parallel tasks can be evenly distributed to the VCPUs, sequential tasks

cannot, and are assigned to the same VCPU (VCPU0 in the figure). Thus, only
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VCPU0 VCPU1 VCPU2 VCPU3 
(6 units)(6 units)(6 units)(6 units) 

1 1 
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1 1 1 1 
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1 1 1 1 
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1 1 1 1 
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(C) 4 VCPUs with balanced workload 

VCPU0 
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2 

(A) Execution with 1 VCPU 

4 

Period = 12 units 

Amount of finished tasks: 12 units 
 
Speed-up = 12/6 = 2 
 
Efficiency = 50% 

Period = 12 units 

1 

1 

1 time unit of parallel task 

1 time unit of sequential task 

1 1 

VCPU0 VCPU1 VCPU2 VCPU3 
(6 units)(6 units)(6 units)(6 units) 

1 1 

2 

1 1 1 1 

2 

(B) 4 VCPUs with imbalanced workload 

Period = 12 units 

1 1 

Amount of finished tasks: 24 units 
 
Speed-up = 24/6 = 4 
 
Efficiency = 100% 

Amount of finished tasks: 6 units 
 
Efficiency = 100% 

Figure 4.6 An illustrative example to explain the benefit of evenly distributing
workload and how even workload distribution can be achieved.

two iterations can be finished within an allocation period. After the second iteration,

VCPU0 consumes up its 6 units of CPU time, though other VCPUs only consume 2

units of CPU time each and still have unused timeslice. These VCPUs finish only 12

units of tasks in total in the allocation period, which are 2 times as many as those

finished with one VCPU. Thus, the speedup is 2, the same as that on the PM.

Subfigure (C) shows the execution on four VCPUs with an improved task

scheduler assigning sequential tasks onto different VCPUs in different iterations.

Though the workload is not evenly distributed at every moment, the workload on

the VCPUs is balanced on the time scale of allocation periods. With such workload

distribution, every VCPU can consume its 6 units of CPU time and finish 6 units
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of tasks (four iterations) in an allocation period. With the improved task scheduler,

linear speed-up can be achieved, i.e., a speed-up of 4 with 4 VCPUs.

Matching workload distribution and CPU resource allocation can also be done

by adjusting the CPU time allocated to VCPUs based on the workload on them. The

benefits can be illustrated with the execution shown in Figure 4.6(B). If the VMM

can allocate 12 units of CPU time to VCPU0 and 4 units of CPU time to each of

the other three VCPUs in each allocation period, the program can still finish four

iterations in the period, achieving linear scalability (the figure only shows the first two

iterations). Note that the amount of CPU time received by the VM is not increased.

The increased scalability comes from distributing more CPU time to VCPU0, which

has heavier workload than other VCPUs.
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Figure 4.7 Speedups of the synthetic benchmark.

We tested the above approaches using a synthetic benchmark, which generates

the workload of typical fork-join multicore programs. Specifically, the benchmark

executes a loop, in which each iteration finishes eight units of computation that can be

fully parallelized and one unit of computation that can only be executed sequentially.

Each unit of computation takes about 1ms to finish. We developed two versions of

the synthetic benchmark. In the imbalanced version, sequential tasks are executed by
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the same thread, as that shown in Figure 4.6(B). In the balanced version, sequential

tasks in different iterations are assigned to threads in a round-robin manner. This

is to emulate the execution with a task scheduler trying to balance the workload on

VCPUs.

We first run both versions on a VM managed by the vanilla KVM, which tries

to allocate CPU time evenly to VCPUs, and compare their performance. The VM is

co-located with three other VMs, each of which runs an instance of the CPU-bound

program incrementing a counter. Then, specifically for the imbalanced version, we

tuned KVM settings to allocating CPU time to VCPUs proportionally to the workload

on them, and rerun the imbalanced version on the VM.

Figure 4.7 shows the speedups of the benchmark when the concurrency level is

increased from 1 to 16. The balanced version on vanilla KVM and the imbalanced

version on tuned KVM show higher scalability than the imbalanced version on

vanilla KVM. When the concurrency level is 16, the speedups are 5.9, 6.1, and 4.8,

respectively. This shows that both approaches to match resource allocation and

workload distribution are effective to improve scalability. The benchmark cannot

achieve linear scalability mainly because there are frequent synchronizations incurred

at the beginning and the end of the sequential computation in each iteration.

4.5 Related Work

To understand scalability, analytical models have been developed based on various

workload characteristics, such as synchronization and communication [69], critical

path [70], memory accessing traffic [71], and the amount of sequential computation.

These models target physical machines with dedicated hardware resource, and cannot

be directly applied to understand the execution scalability on virtual machines.

Various models have been developed in computer architecture area to study how

to distribute hardware resource, such as transistors and chip area, to the functional
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units in multicore processors to maximize application performance and scalability [72,

73, 74, 75]. They are remotely related with our work.

Targeting application performance on VMs, existing work mainly focuses on

characterizing the interference caused by the contention of the shared hardware

resource on memory hierarchy (e.g., processor cache and memory bandwidth) between

co-located VMs [76, 77, 78, 79, 80, 81]. The main purpose is to understand and

alleviate the performance degradation incurred by the interference. This chapter is to

identify the application features and system factors affecting the execution scalability

of applications on VMs. Existing research on application performance on VMs is

orthogonal to our research.

To improve the execution scalability of multicore applications on VMs, various

techniques have been attempted at all the system layers, from hardware support (e.g.,

PLE) [16, 25, 82], VMM [66, 21, 6, 22], guest OSs [26, 24, 57], to programming

framework [83]. These techniques only target the virtualization overhead on

communication/synchronizations between application threads. This chapter discusses

application scalability on VMs in a wider scope, with communication/synchronization

being one of the scalability factors.

4.6 Conclusion

This chapter aims to understand how virtualization and CPU resource sharing affect

the execution scalability of multicore applications. It does not mean to exhaustively

investigate all the factors affecting application scalability (e.g., memory latency, I/O

operations). It focuses only on the factors related to CPU time, which is the most

important resource for achieving high performance. With analysis and experiments,

this chapter shows that application scalability on VMs is mainly affected by a few

application features, including workload parallelism and synchronization frequencies,

and a few system factors in CPU resource management, including allocation period
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lengths and the matching between workload distribution and CPU resource allocation.

We hope the findings of this chapter can help cloud computing users gain better

understand on the performance of their programs in the cloud and make better

choices between physical machines and different types of VM instances. We also

hope our work help motivating system researchers and developers to consider the

factors limiting scalability and explore practical solutions ameliorating the impact of

these factors.
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CHAPTER 5

DYNAMICALLY ADJUSTING VIRTUAL CPU FEATURES TO
AVOID LOW AND UNSTABLE PERFORMANCE IN BIG VMS

5.1 Introduction

In accordance with the predominance of multicore processors, virtual machines (VMs)

are built to have multiple virtual CPUs (VCPUs) for programs to leverage the

aggregated computing power of multicore processors. For example, most virtual

instances in Amazon cloud are now with 2 or more VCPUs, and the largest instances

can have as many as 128 VCPUs. However, on such VMs, multicore programs may

suffer significant performance degradation, and their performance can vary widely in

an unpredictable way. This problem leads to frustrating user experience in the cloud.
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Figure 5.1 Performance and CPU utilization of bodytrack when it is executed on a
VM colocated with another VM running different benchmarks.

To illustrate this problem, Figure 5.1 shows the performance of bodytrack, a

program from PARSEC benchmark suite [12], when it is executed on a VM colocated

with another VM running different PARSEC benchmarks as labeled on x axis. Each

VM has 16 VCPUs. Detailed experiment settings can be found in Section 5.5.

Compared to the performance when the two VMs run two instances of bodytrack

(the first bar in the figure), the performance of bodytrack is degraded by 35%∼265%

when the other VM runs other benchmarks.
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The performance degradation is largely caused by low CPU utilization, and

performance variation is caused by the variation of CPU utilization. The CPU

utilization in a time period is defined as the ratio between the CPU time utilized

by the VCPUs of a VM in the period and the total CPU time on the computing

cores of the server. For example, for two colocated VMs, each should get a fair share

(50%) of the CPU time of the cores. For a VM, in a time period, the higher its CPU

utilization is, the more CPU time it consumes, and the more work it can finish. Thus,

high CPU utilization usually leads to high processing speed.

Figure 5.1 shows the CPU utilization of bodytrack during its execution and

demonstrates a strong corelation between execution time and CPU utilization. For

example, when bodytrack is colocated with freqmine, its execution time is increased to

164s since its CPU utilization is only 7%. The performance degradation and variation

can be avoided if the CPU utilization can be fixed to 50%.

Currently, the VCPUs in a VM are built with similar performance features and

scheduled with uniform policies, aiming to have similar computing capability. Such a

VM is named an SMP-VM or a virtual SMP [22]. For instance, an instance with the

largest size in Amazon EC2 has 128 VCPUs, each of which has a computing capacity

of 349 EC2 computing units (ECU) [84]. Though the actual computing capability of

the VCPUs in a VM may vary, the variation is determined by the colocated workloads

contending for CPU time, rather than the demand of the computation on the VCPUs.
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The chapter argues that this symmetric architecture of VMs in term of VCPU

management and scheduling is the major obstacle for achieving high and predictable

CPU utilization (and thus high and predictable performance). With this design, CPU

utilization is low for two reasons. First, the symmetric design of VCPUs is achieved

by the virtual machine monitor (VMM) trying to evenly distribute CPU time of a VM

to its VCPUs. However, low CPU utilization is caused if the workload on the VCPUs

is not evenly distributed. When this mismatch between CPU time distribution and

workload distribution happens, low CPU utilization is caused on the VCPUs with

light workload, since there is not enough computation to utilize much CPU time. At

the same time, for the VCPUs with heavy workload, the CPU time available to them

cannot be increased to improve the overall CPU utilization of the VM.

As an instance to show that the workload on VCPUs is not evenly distributed,

we profiled the execution of bodytrack on a 16-VCPU VM running on a dedicated

server, and show the workload distribution during the first 20 seconds of the execution

in Figure 5.2. In the figure, each color band represents a VCPU, and its width

represents the workload on the VCPU (wider bands showing heavier workload). An

extreme case for unevenly distributed workload is the sequential portion in a parallel

program, during the execution of which only one VCPU has workload and other

VCPUs are idle, leading to the lowest CPU utilization.

Second, with the symmetric design, VCPUs in a VM are equally treated by the

scheduler and are scheduled with similar priorities. Thus, the VCPUs executing the

tasks on critical paths may not be scheduled as early as possible when the tasks are

ready. If the tasks on critical paths are delayed, other VCPUs may spend more time

on waiting for these tasks to finish. This further reduces the CPU utilization.

Performance variation is caused, because the actual CPU time obtained by

each VCPU and how quickly a VCPU can be scheduled are also determined by other

VCPUs colocated with the VCPU on the same core, particularly the workload on
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these VCPUs. This makes the execution in a VM show different performance when

colocated with different workloads. For example, when a VCPU with heavy workload

is colocated with another VCPU with light workload (an idle VCPU being an extreme

case), the VCPU may get extra CPU time, because of the low CPU utilization of

the other VCPU; when a VCPU is colocated with another VCPU that yields the

core frequently due to idleness, the VCPU may get scheduled quickly, taking the

opportunities of the other VCPU giving up the core. The symmetric design of VCPUs

excludes the need to examine the VCPUs to be scheduled on the same core and group

the VCPUs carefully to avoid low CPU utilization.

Based on the above observations, this chapter proposes dynamic asymmetric

virtual CPUs, which have asymmetric performance features and computing

capabilities. The asymmetry is achieved by manipulating the amounts of CPU

time distributed to VCPUs and the scheduling priorities of the VCPUs based on

the demand for CPU time of the computation on the VCPUs. Specifically, more

CPU time is distributed to the VCPUs with heavy workload than the VCPUs with

light workload; the VCPUs with urgent tasks to finish are scheduled with smaller

delays than other VCPUs. Since the demand of the VCPUs may change over time

(refer to Figure 5.2), the asymmetry is dynamically adjusted.

Dynamic asymmetric VCPUs help improving the CPU utilization of multicore

programs in VMs in three ways. First, it improves the CPU utilization of the VCPUs

with heavy workload by assigning them with more CPU time. Second, it reduces

the time that VCPUs spend on waiting. Third, the VCPUs scheduled on the same

core are examined, and the schedules leading to low CPU utilization are avoided.

With improved CPU utilization, serious performance degradation can be avoided,

and performance becomes more predictable.

This chapter makes the following contributions. First, to our best knowledge,

this is the first work proposing and studying VCPUs with asymmetric performance
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features for the desired performance of multicore programs on VMs. Second,

this chapter provides a system solution and a set of techniques for building and

scheduling asymmetric VCPUs. Third, extensive performance evaluation with

PARSEC benchmarks and TPC-W-like workloads shows that the solution can signif-

icantly improve the performance and performance stability of multicore programs on

virtualized platforms, and can also improve overall system throughput.

The rest of this chapter is organized as follows. Section 5.2 first discusses the

related work. Then, the key ideas of creating asymmetric VCPUs are introduced in

Section 5.3. Section 5.4 describes the design of the system solution by introducing

three key components respectively. We then present the implementation and

evaluation of the asymmetric VCPUs. Finally, we conclude our work in section 5.6.

5.2 Related Work

Performance degradation may be caused by various virtualization overhead, e.g., traps

into the VMM, memory address translation, high communication/synchronization

cost, and overhead associated with increased software layers. To reduce virtualization

overhead and the caused performance degradation, various techniques have been

attempted at all the system layers, from hardware [16, 25, 82], VMM [66, 21, 6, 22],

guest operating systems [26, 24, 57], to programming framework [83]. These

techniques for reducing virtualization overhead are orthogonal to the proposed

solution and can work together synergistically.

Performance degradation and performance unpredictability due to the inter-

ference between colocated VMs have been widely noticed and analyzed [27, 76,

77, 85, 79, 80, 86, 87]. Most of the works focus on the contention for shared

resources on memory hierarchy, e.g., shared cache space, memory bandwidth, storage

bandwidth. There are proposals to enhance hardware and VMM designs to include

the management of these resources [88, 89, 90, 91, 92, 93, 94, 95, 96]. They are
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orthogonal to the research in this chapter. There are also solutions on selecting

colocating VMs [85, 97, 98, 87, 99, 79]. They target single-VCPU VMs, and cannot

be applied to the VMs with multiple VCPUs running multicore workloads.

Targeting colocated parallel applications, Callisto provides a runtime system to

reduce the performance interference between applications through reduced resource

sharing and synchronization overhead [100]. It requires that applications be developed

based on Callisto. Our solution is general and can be applied to any multicore

applications. A delayed preemption mechanism was proposed in [86] to reduce the

interference caused by the VCPUs in one VM frequently preempting the VCPUs in

another VM. However, the management of VCPUs are still symmetric.

Asymmetric systems are built to accelerate performance bottleneck and have

become a well-recognized approach to achieving high performance. On physical

machine, the techniques to achieve asymmetric performance on multicore processors

fall into two categories. First, asymmetric multicore processors (AMP) are designed

to have cores with the same instruction set architecture but different performance.

Compared to symmetric multicore processors, AMP show significant advantages in

performance and energy efficiency [72, 101]. Second, asymmetric performance can

be achieved on a symmetric multicore processor with techniques, such as DVFS and

turbo-boost, which dynamically increase the frequencies of specific cores to boost

their performance [102, 103]. Our solution follows the same direction, but applies to

virtual machines. On virtualized platforms, since CPU cores are shared by multiple

VMs and CPU time allocation is controlled by software, it is more effective and more

flexible to create and deliver asymmetric performance desired by applications than

on physical machines.

The virtual asymmetric multiprocessor design [104] shares some similar ideas as

our solution. It targets virtual desktop workloads and aims to improve user experience

by reducing the latency of interactive tasks. To achieve this objective, it detects the
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VCPUs running interactive tasks in each VM, and allocates more CPU time to these

VCPUs than other VCPUs in the VM. The solution aims to improve the performance

of interactive tasks. Our solution targets the overall throughput of a VM, and aims

to avoid performance degradation and unpredictable performance by making best

utilization of the CPU time available to the VM.

5.3 Key Ideas and General Approach

The objective of designing dynamic asymmetric VCPUs is to distribute the CPU

time of a VM to its VCPUs in a way that the CPU time can be fully utilized by

the computation on the VCPUs, so that the computation can proceed at the highest

speed1. The basic idea is to dynamically adjust the allocation of CPU time to VCPUs,

such that the allocation matches the demand of the computation tasks running on

the VCPUs2. Since CPU time is allocated to VCPUs periodically, the adjustment is

also made periodically. Specifically, at the beginning of each allocation period, the

VMM predicts the CPU time demand on each VCPU in this period and controls the

CPU time allocation accordingly.

Implementing the idea needs to address two key issues. One is how to

characterize the CPU time demand on VCPUs. The other is how to predict the

CPU time demand on VCPUs at the VMM level.

1We assume that more work can be finished with more CPU time and higher CPU utilization
leads to better performance, since on virtualized platforms busy-waiting on VCPUs is
monitored by hardware and minimized [105].
2Please note that, in our solution, the CPU time demand on each VCPU is not the demand
for the CPU time that can be used to complete all the unfinished tasks on the VCPU, or the
demand for the CPU time that can be used by the VCPU to complete the largest possible
amount of work itself locally in the forth-coming period. Instead, the CPU time demand on
each VCPU refers to the demand, by satisfying which the CPU utilization of the VM can
be maximized and the workload running in the VM can finish the largest possible amount
of work in the forth-coming period.
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5.3.1 Amount and Urgency of CPU Time Demand

A multi-threaded workload running on a VM can be considered as a set of tasks

distributed on the VCPUs of the VM. There are dependencies between tasks. A

task must wait for its dependencies to be satisfied before it can proceed. Thus, the

best performance relies on the tasks on all the VCPUs in the VM to make progress

concurrently and in a coordinated way (i.e., minimizing one VCPU waiting for another

VCPU). Thus, CPU time must be allocated to support such execution.

We use two features to characterize CPU time demand. One feature is amount,

i.e., how much CPU time is needed by the workload on each VCPU in a period to

achieve the best performance (i.e., highest CPU utilization). The amount of CPU

time needed by a VCPU depends on the amount of work the VCPU can finish if the

VCPUs in the VM make progress concurrently and in an coordinated way, which is

in turn determined by the workload distributed on the VCPU.

Different VCPUs may need different amount of CPU time because applications

may not be able to distribute workload evenly to VCPUs. More work needs more CPU

time to finish. For example, for the applications modeled in Amdahl’s law, parallel

computation is distributed evenly to all the VCPUs and sequential computation is

done by one of the VCPUs. Thus, the VCPU executing the sequential part receives

more work than other VCPUs. Some applications follow the pipeline model, in which

different pipeline stages may have different processing time. In these applications,

different VCPUs handle different stages and finish different amount of work.

The other feature is urgency, which describes how quickly the CPU time should

be made available when a VCPU becomes ready to run. A VCPU can use its CPU

time only when it is scheduled. On a virtualized platform, CPUs are time-shared by

multiple VMs. Thus, a VCPU may not be scheduled immediately when its task is

ready to run. For example, when all the cores are being used, a VCPU must wait for

another VCPU being descheduled before it is scheduled. This delays the task on the
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VCPU. We refer to the delay between the time when a VCPU becomes ready to run

and the time when CPU time is made available to the VCPU as VCPU scheduling

latency. VCPU scheduling latency may reduce the amount of work that VCPUs can

finish in a period, and lower CPU utilization.

The delay caused by VCPU scheduling latency can accumulate. For example,

for a chain of tasks with dependencies between them, the delay of scheduling one task

will postpone the scheduling of all the subsequent tasks; the last task will see all the

delays of its antecedent tasks.

Different VCPUs may tolerate different levels of latency. For example, if the task

on a VCPU is on critical path, the VCPU requires a low VCPU scheduling latency

to reduce the delay of subsequent tasks. If the task on a VCPU has much work to

finish, the VCPU may need a low VCPU scheduling latency to prevent the task from

becoming a task on critical path. If the task on a VCPU has only a small amount of

work or the task is not on the critical path, the VCPU may tolerate a relatively high

VCPU scheduling latency, i.e., the CPU time demand is of low urgency.

5.3.2 Predicting CPU Time Demand

Due to the semantic gap between applications and the VMM, at the VMM level,

it is challenging to obtain the CPU time demand information of applications. The

VMM only has the information on whether VCPUs are ready to run, which is used

to schedule ready VCPUs and deschedule idle VCPUs. (A VCPU becomes idle when

the dependencies of its task are not satisfied.) However, the information can hardly

be used for understanding the CPU time demand of computation tasks.

To address this issue, the VMM predicts the CPU time demand of VCPUs for

the forthcoming period based on how they utilize the CPU time allocated to them

in the past period, and adjusts the prediction in a direction that can make the VM

achieve a better utilization of its CPU time in the forthcoming period.
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For example, a VCPU is provided with an amount of CPU time in a period.

If the VCPU fails to fully utilize the CPU time at the end of the period, the fact

indicates that the CPU time demand of the VCPU is not that high. Thus, the CPU

time that the VCPU consumes in the current period is used to predict the amount

of CPU time it demands in the forthcoming period. This, on one hand, prevents the

VCPU from wasting CPU time in the forthcoming period, and, on the other hand,

makes more CPU time available to the VCPUs where CPU time can be better utilized.

If the VCPU has fully utilized the CPU time at the end of the current period, the

fact indicates that the CPU time demand of the VCPU is higher than what has been

predicted, and it should be allocated with more CPU time in the forthcoming period

to finish more work.

5.4 System Solution

This section introduces an integrated system solution for building dynamic

asymmetric virtual CPUs. The solution includes three key components: (1) a

CPU time allocation component component for predicting the amount of CPU time

demanded by the workload on VCPUs and allocating CPU time accordingly, (2)

a scheduling latency adjustment component for predicting the urgency level of the

demand on each VCPU and adjusting scheduling latency accordingly, and (3) a

resource conflict resolver for detecting conflicting demand of VCPUs and resolving

conflicts by migrating VCPUs between cores. For the first two components, we focus

on introducing how they predict CPU time demand, since satisfying the CPU time

demand is just to control the allocation of CPU time and VCPU scheduling based on

the prediction, and is system-dependent.
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5.4.1 CPU Time Allocation Component

The CPU time allocation component collects the amount of CPU time consumed by

each VCPU periodically and uses the amount of CPU time consumed by the VCPUs

in the previous period to adjust the prediction of the CPU time demand for the

upcoming period. Specifically, if a VCPU has been allocated with sufficient CPU

time in a period, the CPU time actually consumed by a VCPU indicates the amount

of work it finishes in the period. Thus, it is used to predict its CPU time demand in

the upcoming period. However, if a VCPU has been allocated with insufficient CPU

time in the period, the amount of work it finished in the period is limited by the

CPU time available to it, and cannot reflect its actual demand for CPU time. Since

it is not possible to accurately predict its actual demand, we gradually increase the

prediction until the VCPU is allocated with enough CPU time after a few periods. In

our implementation, we increase the prediction by 10% every time if a VCPU cannot

consume its CPU time.

To check whether a VCPU has been allocated with sufficient CPU time, the

CPU time allocation component looks at the status of the VCPU. If the VCPU is in

a “ready” state (i.e., it can still make progress), it is safe to assume that the demand

of the VCPU has not been satisfied and the VCPU needs more CPU time in the next

period.

It is possible that the aggregated CPU time demand predicted by the CPU time

allocation component is not equal to the total CPU time available to the VM. Thus,

when the predicted CPU time demand values have been determined, we use those

values as weights, and distribute the CPU time of the VM to the VCPUs based on

the weights. Then, we change the predicted VCPU time of each VCPU based on

the amount of CPU time distributed to it. For example, in a 2-VCPU VM, VCPU0

was assigned with 40ms CPU time, but consumed 35ms in a period; VCPU1 was

assigned with and actually consumed 40ms CPU time in the period; the predicted
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CPU demand values of two VCPUs are 35ms and 44ms (i.e., 40×1.1), respectively. If

the VM gets 80ms CPU time in each period, VCPU0 will get 35.4ms CPU time (i.e.,

80ms×35/(35+44)) and VCPU1 will get 44.6ms CPU time (i.e., 80ms×44/(35+44)).

Their predicted CPU demands are changed to 35.4ms and 44.6ms, accordingly.

5.4.2 Scheduling Latency Adjustment Component

To determine whether a VCPU has urgent CPU time demand, at the end each

period, the scheduling latency adjustment component looks at whether the VCPU

has consumed its allocated CPU time and whether the VCPU can still make progress.

If the VCPU has not consumed its allocated CPU time and the VCPU can still make

progress, it is possible that the CPU time is made available too late to the VCPU

during the period. Thus, the scheduling latency adjustment component determines

that the VCPU have more urgent CPU time demand than that predicted previously,

and decreases the scheduling latency of the VCPU3. If the VCPU has consumed its

allocated CPU time and the VCPU is idle at the end of the period, the scheduling

latency adjustment component determines that the demand of VCPU is not urgent

and increases its scheduling latency.

There are scenarios, in which a VCPU with a low scheduling latency has tasks

depending on the completion of the tasks on other VCPUs with high scheduling

latencies. Since the tasks on the VCPUs with high scheduling latencies complete

late, the task on the VCPU with a low scheduling latency cannot start early. Thus,

it is possible that the VCPU with a low scheduling latency still cannot consume

its CPU time, no matter how its scheduling latency is reduced. To detect such

scenarios, when the scheduling latency of a VCPU has been reduced to a minimal

value allowed by the system, if a VCPU still cannot consume its CPU time, the

3Low scheduling latency increases VCPU switches and the associated overhead. To address
this issue, we take the VCPU switch overhead caused by a VM as a penalty to charge the
CPU time allocated to the VM.
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scheduling latency adjustment component assumes that the VCPU may be delayed

by other VCPUs with high scheduling latencies. To pin-point these VCPUs, the

scheduling latency adjustment component uses wake-up inter-processor interrupts

(IPIs) sent to the VCPU as indicators to find out the source VCPUs sending out the

IPIs. Then it reduces the scheduling latencies of these source VCPUs.

Depending on system implementations, adjusting scheduling latency can

be implemented using different mechanisms, such as adjusting wake-up latency

parameters in KVM and Linux.

5.4.3 Resource Conflict Resolver

The adjustment of CPU time and scheduling latency of the VCPUs based on their

CPU time demand effectively make the VCPUs having asymmetric performance

features. When scheduling such VCPUs, care must be taken to avoid resource

conflicts. Resource conflicts arise when the total amount of CPU time demand of

the VCPUs scheduled on the same core exceeds the core’s capacity. For example, a

conflict arises when, in a time period of 80ms, two VCPUs scheduled on the same core

are allocated with 50ms CPU time each. VCPUs with urgent CPU time demand also

have conflict. Since a core is time-shared by VCPUs, it may not be able to satisfy

the urgent demand from multiple VCPUs simultaneously. A conflict arises when a

core is running a VCPU with urgent CPU time demand and another VCPU with

urgent CPU time demand becomes ready to run. If the former VCPU is preempted

promptly, its task cannot be finished quickly. If the former VCPU is not preempted

promptly, the latter VCPU cannot be scheduled quickly.

The resource conflict resolver detects resource conflicts. If there are conflicts

detected, it resolves conflicts by adjusting the layout of VCPUs on physical cores.

Since adjusting VCPU layout is costly, the resource conflict resolver does the

adjustment in a conservative way. Specifically, to detect and resolve conflicts caused
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by high demands for CPU time, after the CPU time allocation component has

adjusted the CPU time allocated to each VCPU, for each core, the resource conflict

resolver calculates an aggregated CPU time of the VCPUs scheduled on the core.

Then, the resource conflict resolver finds out the core with the largest aggregated CPU

time and the core with the smallest aggregated CPU time. If the largest aggregated

CPU time is greater than the smallest aggregated CPU time by 10%, the resource

conflict resolver tries to balance the aggregated CPU time by swapping some of the

VCPUs on the two cores.

To detect and resolve conflicts caused by urgent demands for CPU time, after

the scheduling latency adjustment component has adjusted the scheduling latency

of each VCPU, the resource conflict resolver categorizes the VCPUs into two groups

based on their scheduling latencies — VCPUs with high urgency demand and VCPUs

with low urgency demand. In each period, the resource conflict resolver monitors the

execution of the VCPUs with high urgency demand. It counts the number of times

that these VCPUs are preempted and the number of times that these VCPUs are

not scheduled after they become ready and have waited a long time exceeding their

scheduling latencies. After the period, it uses the total number as the number of

conflicts on the core caused by urgent demands for CPU time. Then, the resource

conflict resolver finds out the core with the most conflicts and the core with the fewest

conflicts. If the difference between the numbers of conflicts exceeds a threshold (2x

in implementation), the resource conflict resolver selects half of the VCPUs with high

urgency demand on the core with the most conflicts and half of the VCPUs with low

urgency demand on the cores with the fewest conflict, and then swaps the VCPUs.

Low thresholds increase VCPU migration overhead. High thresholds ”cripple” the

conflict resolver. Thus, we measured how VCPU migrations reduce with increased

thresholds, and selected the threshold values at knee points to make trade-off.
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5.5 Evaluation

To demonstrate the performance advantages of dynamic asymmetric VCPUs and test

our system solution, we have implemented a system software prototype based on

KVM and Linux (Section 5.5.1). Then, we run the benchmarks from PARSEC 3.0

suite [12] and DBT-1 from OSDL database test suite [106], on vanilla KVM and our

prototype, and compared their performance. The experiments show that dynamic

asymmetric VCPUs can significantly improve the performance (Section 5.5.3) and

scalability (Section 5.5.6) of multicore applications on VMs, reduce response time

(Section 5.5.5, and increase the overall system throughput of the physical server

(Section 5.5.4). With dynamic asymmetric VCPUs, the performance of a multicore

application becomes more stable/predictable when it is colocated with different

applications (Section 5.5.7). We also show how each component in our solution helps

improving application performance in Section 5.5.8.

5.5.1 Prototype Implementation

The solution described in Section 5.4 is based on conventional scheduler designs,

where CPU time is explicitly assigned to VCPUs periodically and the CPU time used

by VCPUs is book-keeped by the scheduler. In KVM, a VCPU is implemented as

an entity scheduled by the Complete Fair Scheduler (CFS) in Linux. CFS does not

maintain the CPU time used by each VCPU. Instead, it maintains a virtual runtime

for each VCPU, and schedules VCPUs based on their virtual runtimes. There is not

explicit CPU time allocation. A VCPU can run as long as its virtual runtime is low

enough. In our implementation, accounting feature of the cgroup [107] is used to

collect the CPU time usage of each VCPU. CPU time allocation is implemented by

adjusting the share parameter of each VCPU within a VM. To determine whether a

VCPU has depleted the CPU time allocated to it, the implementation compares the

CPU time allocated to it and the CPU time it has consumed (collected with cgroup).
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To adjust VCPU scheduling latencies, the implementation changes the

sched wakeup granularity ns parameters. With existing KVM/Linux design, a system

wide sched wakeup granularity ns parameter is used to tune how quickly a VCPU can

be scheduled when the task on it become ready to make progress. To enforce different

scheduling latencies for different VCPUs, the implementation creates and maintain a

private sched wakeup granularity ns for each VCPU in cgroup.
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Figure 5.3 Normalized performance with symmetric VCPUs and dynamic
asymmetric VCPUs. The number of threads that can run concurrently in each VM
is 16.

Please note that the mechanisms used to control CPU time allocated to each

VM, including the weights of VMs, are not changed in the prototype. Thus, the

performance improvements are mainly from the changes of the way in which CPU

time is distributed to VCPUs.

5.5.2 Experimental Setup

We conducted our experiments on a Dell PowerEdge R720 server with 64GB of DRAM

and two 2.40GHz Intel Xeon E5-2665 processors. Each processor has 8 cores. On the

server, we created 4 VMs with 16 VCPUs. Each VM has 16GB of memory. The VMM

is KVM. The host OS and the guest OS are Ubuntu version 14.04 with the Linux

kernel version updated to 3.19.8. The VCPUs in each VM were laid out on the cores

in a way to prevent VCPU stacking for better performance [22]. Low power modes
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of cores can reduce the performance of the applications running in VMs [11]. To

prevent such performance degradation, in the experiments, we disabled the C states

other than C0 and C1 of the processors, which have long switching latencies.

We used the DBT-1 in OSDL database test suite. It simulates the activities

of web users who browse and order items from an on-line bookstore. It generates a

database workload with the same characteristics as that in the TPC-W benchmark

specification [108]. The database generated for the experiments includes information

on 100,000 items and 2.9 million customers.

We also used the benchmarks in PARSEC 3.0 suite, including native PARSEC

benchmarks and SPLASH2X benchmarks in the suite. We excluded SPLASH2X’s

cholesky benchmark since its execution time was too short on our system to be

reliably measured. We attach a prefix ’p.’ before the name of each native PARSEC

benchmark, and attach a prefix ’s.’ before the name of each SPLASH2X benchmark,

in order to differentiate these two sets of benchmarks. We also refer to native PARSEC

benchmarks as PARSEC benchmarks for brevity. In addition to the benchmarks in

PARSEC 3.0 suite, we also selected a micro-benchmark named MatMul, which is a

multi-threaded CPU-bound program multiplying two matrices of 8000×8000 integers.

We compiled the PARSEC and SPLASH2X benchmarks using gcc with the

default settings of the gcc-pthreads configuration in PARSEC 3.0. The gcc compiler

and the libraries required by the benchmarks are stock software components in the

Ubuntu Linux distribution. We used the parsecmgmt tool in the PARSEC package

to run the benchmarks with native input. By default, we run each benchmark with

16 threads.

5.5.3 Performance Improvement

In this section, we show that dynamic asymmetric VCPUs can prevent the

serious performance degradation of multicore applications by substantially improve

108



their performance when they are colocated with other workload, particularly with

CPU-bound workload. We run DBT-1 and each of the PARSEC and SPLASH2X

benchmarks in the following scenarios:

• Four instances of the benchmark are run in the four VMs with symmetric VCPUs,
one in each VM. The VMs are managed by vanilla KVM and Linux.

• One instance of the benchmark is run in one of the four VMs with symmetric
VCPUs. Three instances of MatMul are run in the other three VMs, one on each
VM. The VMs are managed by vanilla KVM and Linux.

• One instance of the benchmark is run in one of the four VMs with dynamic
asymmetric VCPUs. Three instances of MatMul are run in the other three VMs,
one on each VM. The VMs are managed by our prototype implementation.

We compare the performance of the benchmark in the latter two scenarios to

show the performance advantage of asymmetric VCPUs. Since the absolute execution

times vary widely across different benchmarks, we normalize the performance

measured in these scenarios against the baseline performance, which is the

performance of the benchmark measured in the first scenario. To be consistent, we

use large values to represent higher performance.

We select the latter two scenarios because multicore applications usually show

the largest performance degradation when they are colocated with CPU-bound

applications (refer to the experiments in Section 5.5.7). Thus, the experiments can

demonstrate the greatest potential of dynamic asymmetric VCPUs on improving

performance and preventing performance degradation. We use the performance in

the first scenario as baseline performance, because, with similar workloads on the

VMs, the VMs can obtain the same amount of CPU time, i.e., a fair share of CPU

time. Thus, the performance represents a “normal” performance that can be achieved.

Figure 5.3 shows the normalized performance of the benchmarks in the latter

two scenarios. Since the baseline performance is always 1, it is not shown in the figure.

In the figure, the bars lower than 1 indicate performance degradation, compared to the
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“normal” performance, and the bars higher than 1 indicate performance improvement.

Out of the 27 benchmarks, 17 benchmarks show performance degradation by more

than 2% with symmetric VCPUs. The largest performance degradation is with

streamcluster, whose execution time is lengthened by almost 5x. On average, the

performance is dropped by 16% to 0.84 with symmetric VCPUs, compared with the

“normal” performance.

The performance degradation can hardly be found with dynamic asymmetric

VCPUs. Only two benchmarks show observable performance degradation. The

largest performance degradation is 8% with lu cb. Most benchmarks show

performance improvements. The largest performance improvement is with dedup

(4.8x). On average, the performance of these benchmarks is increased by 28% with

dynamic asymmetric VCPUs. The performance improvements are observed because

multicore applications may not achieve the best performance with symmetric VCPUs

even when they can obtain a fair share of CPU time (the first scenario).

Comparing the performance in the latter two scenarios, we find that the

benchmarks can always achieve better performance with dynamic asymmetric VCPUs

than they do on symmetric VCPUs. On average, the performance is increased by 52%

from 0.84 to 1.28. The largest performance improvement is 18.2x with p.dedup.

5.5.4 System Throughput Improvement

To show that dynamic asymmetric VCPUs can improve the overall system throughput

of the physical server shared by the VMs running multi-threaded workloads, we

run DBT-1 and each of the PARSEC and SPLASH2X benchmarks in the following

scenarios, and compare the performance. This is motivated by the observation from

the experiments in the previous subsection, which shows that multicore applications

may not achieve the best performance with symmetric VCPUs even when they can

obtain a fair share of CPU time. With dynamic asymmetric VCPUs improving
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Figure 5.4 Normalized performance and CPU utilization of PARSEC and
SPLASH2X benchmarks on symmetric VCPUs and dynamic asymmetric VCPUs.
The number of threads that can run concurrently in each VM is 16.

CPU utilization, each of the colocated applications can obtain a larger fair share

of CPU time, leading to a higher performance for each application and a higher

system throughput for the physical server.

• Four instances of the benchmark are run in the four VMs with symmetric VCPUs,
one in each VM. The VMs are managed by vanilla KVM and Linux.

• Four instances of the benchmark are run in the four VMs with dynamic asymmetric
VCPUs, one in each VM. The VMs are managed by our prototype implementation.

Since the instances of the same benchmark are run on the colocated VMs, the

instances show similar performance. The average performance of the instances is used

as the throughput of the physical server. To show that the improved throughput is

from increased CPU utilization, we also collected the overall CPU utilization of the

VMs. Figure 5.4 shows the normalized performance for all the benchmarks, using the

performance in the first scenario as the baseline performance. It also shows the CPU

utilization in these two scenarios.

As shown in the figure, all the benchmarks show better or similar performance

with dynamic asymmetric VCPUs, compared to that with symmetric VCPUs. Out

of 26 benchmarks, 16 benchmarks show observable performance improvements. The

111



largest performance improvement is with dedup (4.7x). On average, the performance

is improved by 26% for all the benchmarks with dynamic asymmetric VCPUs. The

performance improvements (scenario 2 vs. scenario 1) are similar to those achieved in

the experiments in the previous subsection (scenario 3 vs. scenario 1). This indicates

that with dynamic asymmetric VCPUs, performance can be improved consistently,

regardless of different co-located workloads.

The performance improvements are through improved CPU utilization. As

shown in the figure, all the benchmarks make better CPU utilization with dynamic

asymmetric VCPUs. On average, the overall CPU utilization is increased by 9%

from 81% to 88% with dynamic asymmetric VCPUs. The performance improvement

is higher than the increase of CPU utilization. This is because the total amount of

computation is reduced for dedup and volrend when executed on dynamic asymmetric

VCPUs, compared to the executions on symmetric VCPUs. This leads to lower CPU

utilizations with these benchmarks on dynamic asymmetric VCPUs. For the other 24

benchmarks, the performance is improved by 8% on average, and the CPU utilization

is increased by 7% on average. The largest increase in CPU utilization is 45% with

p.bodytrack. This is translated into a 44% performance improvement.

We also noticed that, even on dynamic asymmetric VCPUs, the overall CPU

utilization is not close to 100% for some benchmarks. There are two reasons.

First, some benchmarks are not computation-intensive (at least in some execution

phases, e.g., long time spent on sequential computation). Second, some virtualization

overhead, such as the time spent in VMM, are not counted as the CPU utilization of

the applications.

5.5.5 Reducing Response Time

For DBT-1, we also compared the average response time of different types transactions

of the last two scenarios in the experiments in Section 5.5.3 and the two scenarios in
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Figure 5.5 Average response time of different types of transactions in DBT-1.

the experiments in Section 5.5.4. As shown Figure 5.5, dynamic asymmetric VCPUs

can reduce the response times for all the types transactions across both scenarios.

When DBT-1 is colocated with MatMul, the average response time is significantly

reduced by 46% from 6.8s to 3.7s. When multiple instances of DBT-1 are colocated,

the average response time is slightly reduced from 6s to 5.7s. The solution shows more

potential for the scenarios with colocated DBT-1 and MatMul, since the lengthened

response time is largely caused by unavailability of CPU time. With dynamic

asymmetric VCPUs, DBT-1 shows longer response times when collocated with other

DBT-1 instances than it with MatMul, because multiple DBT-1 transactions may

compete the same type of hardware resources, such as cache spaces and memory

bandwidth.

5.5.6 Scalability Improvements

In the previous two subsections, the benchmarks were executed with a concurrency

level of 16. (The number of VCPUs in each VM, the number of cores used to

run these VCPUs, and the number of threads in each VM are 16.) To show that

dynamic asymmetric VCPUs can improve application performance consistently for

different concurrency levels, we conducted the third set of experiments, in which

each benchmark was ran in the following scenarios. For each scenario, we vary the

concurrency level from 1 to 16.
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• One instance of the benchmark is run in one of the four VMs with symmetric
VCPUs. Three instances of MatMul are run in the other three VMs, one on each
VM. The VMs are managed by vanilla KVM and Linux.

• One instance of the benchmark is run in one of the four VMs with dynamic
asymmetric VCPUs. Three instances of MatMul are run in the other three VMs,
one on each VM. The VMs are managed by our prototype implementation.

• Four instances of the benchmark are run in the four VMs with symmetric VCPUs,
one in each VM. The VMs are managed by vanilla KVM and Linux.

• Four instances of the benchmark are run in the four VMs with dynamic asymmetric
VCPUs, one in each VM. The VMs are managed by our prototype implementation.

Since we want to check whether dynamic asymmetric VCPUs can improve

performance for different concurrency levels, we selected six benchmarks, with which

dynamic asymmetric VCPUs can effectively improve performance. For each of the

benchmarks, we calculated its speed-up by dividing the execution time with the

concurrency level equal to 1 by the execution time with the concurrency level larger

than 1. We compare the speed-ups for the scenarios in which a multicore application

is co-located with CPU-bound workload and the application may not get a fair share

of CPU time (the first two scenarios). Then, we compare the speed-ups for the

scenarios in which a multicore application can get a fair share of CPU time (the last

two scenarios).

The speed-ups of the benchmarks in the first two scenarios are presented in

Figure 5.6, and the speed-ups in the last two scenarios are compared in Figure 5.7.

Both figures show that applications always achieve higher scalability on dynamic

asymmetric VCPUs than they do on symmetric VCPUs. We also observed that

the application performance on symmetric VCPUs may start to saturate at lower

concurrency levels. For example, as shown in both figures, on symmetric VCPUs, the

performance of s.ocean cp and volrend starts to drop at low concurrency levels of 4

or 8. However, on dynamic asymmetric VCPUs, their performance scales well when

the concurrency level is increased to 16. The largest scalability improvement is with
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Figure 5.6 Speedups of six benchmarks when concurrency level is varied from 1 to
16 (each benchmark is co-located with CPU-bound workload).
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Figure 5.7 Speedups of six benchmarks when concurrency level is varied from 1 to
16 (four instances of the same benchmark are colocated).
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p.dedup. At the concurrency level of 16, its performance is improved by 18x and 5x

for different scenarios. We also noticed that the benchmarks tend to achieve better

scalability when four instances of each benchmark are colocated than they do when

co-located with CPU-bound workloads.

5.5.7 Improvements on Performance Stability

To show that dynamic asymmetric VCPUs can improve the performance stability,

we conducted the fourth set of experiments in which the selected six benchmarks in

previous experiments were ran in the following scenarios:

• Two instances of the benchmark are run in the two VMs with symmetric VCPUs,
one in each VM. The VMs are managed by vanilla KVM and Linux.

• One instance of the benchmark is run in one of the two VMs with symmetric
VCPUs. Another instance of MatMul, streamcluster, or fluidanimate is run in
another VM. The VMs are managed by vanilla KVM and Linux.

• One instance of the benchmark is run in one of the two asymmetric VMs. Another
instance of MatMul, streamcluster, or fluidanimate is run in another VM. The VMs
are managed by KVM and Linux with our prototype implementation.

Performance variation is usually caused by the resource contention between

VMs (i.e., inter-VM interference). We show that the performance of the application

on the asymmetric VMs is more stable and resistant to interference than that in the

symmetric VM by comparing how the performance varies when the six benchmarks

are run in the latter two scenarios when the VM is co-located with another VM

running different types of workloads. Targeting CPU resource, we select three

co-running benchmarks to generate different level of resource contention. The MatMul

is computation intensive and provides persistent interference. Streamcluster and

fluidanimate both consist of synchronization and incur intermittent interference.

More specifically, streamcluster employs the fine-granular synchronization and its

computation tasks are evenly distributed over the VCPUs, and fluidanimate uses
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the coarse-granular synchronization and its computation tasks are spread in an

imbalanced way across the VCPUs. The results are shown in the Figure 5.8 and the

Figure 5.9. We use the performance in the first scenario as the baseline to normalize

the performance.
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Figure 5.8 Performance variations of the six benchmarks on symmetric VMs under
different interferences.
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Figure 5.9 Performance variations of the six benchmarks on asymmetric VMs under
different interferences.

As shown in the Figure 5.8 and the Figure 5.9, the benchmark performance on

the asymmetric VMs is more stable and better as well. On average, the standard

deviation of the performance on asymmetric VMs under different interferences is 2.6,

which shows much less variation compared to that (4.3) on symmetric VMs. The

reason is that dynamic asymmetric VCPUs can maximize the CPU utilization by

meeting the resource demand of the computation which makes itself more resistant

to the resource contention.
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In the Figure 5.8, we observed that most benchmarks perform best when

co-running with streamcluster, and perform worst when co-running with MatMul

program. The reason is that VCPU running urgent and resource-demanding task

cannot be quickly served with more CPU resource under more persistent interference.

Moreover, fluidanimate generates harmful asymmetric CPU resource contention on

cores with its imbalanced workload. For example, a core with higher resource

contention could significantly degrade the performance of a VCPU running critical

task, which hurts the overall performance of the benchmark. In the Figure 5.9,

we found that most benchmarks perform best when co-running with MatMul

program, and perform worst when co-running with streamcluster. The reason is that

when with CPU utilization being optimized on asymmetric VMs, the fine-granular

synchronization in streamcluster cause more costly VCPU switches which reduce the

overall available CPU resource. Also, imbalanced workload in fluidanimate creates

more flexibility and opportunities for the asymmetric VCPUs to reduce the resource

contention. For example, a critical task can be moved to a core with less resource

contention.

5.5.8 Performance Improvement Breakdown

To show how each component in the proposed system solution helps to improve the

performance, we conducted the fifth set of experiments in which the six selected

benchmarks were ran in the following scenarios:

• Four instances of the benchmark are run in the four symmetric VMs, one in each
VM. The VMs are managed by vanilla KVM and Linux.

• Four instances of the benchmark are run in the four asymmetric VMs, one in
each VM. The VMs are managed by KVM and Linux with asymmetric CPU time
allocation.

• Four instances of the benchmark are run in the four asymmetric VMs, one in
each VM. The VMs are managed by KVM and Linux with asymmetric scheduling
latency adjustment.
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• Four instances of the benchmark are run in the four asymmetric VMs, one in each
VM. The VMs are managed by KVM and Linux with both asymmetric CPU time
allocation and asymmetric scheduling latency adjustment.

• Four instances of the benchmark are run in the four asymmetric VMs, one in
each VM. The VMs are managed by KVM and Linux with asymmetric CPU time
allocation, asymmetric scheduling latency adjustment and resource conflict resolver.
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Figure 5.10 Performance Breakdown for the six benchmarks under the five scenarios

We breakdown the performance advantage of each component in the dynamic

asymmetric VCPUs solution by comparing the benchmark performance under the

above five scenarios. The reason to choose co-running identical workloads is that

they have similar resource demands and would cause more resource conflicts, which

can help us understand the advantage of resource conflict resolver in terms of reducing

conflicts. The performance is normalized using the performance in the first scenario

and presented in Figure 5.10.

As shown in the figure, the average performances with the five scenarios are 1,

1.25, 1.69 and 1.83, respectively. This indicates that all components contribute to the

performance improvement. For some benchmarks like p.dedup, p.streamcluster and

volrend, the asymmetric latency adjustment dominates the performance improvement.

For some benchmarks like bodytrack and facesim, the asymmetric CPU time

allocation dominates the performance improvement. For ocean cp, both asymmetric

CPU time allocation and asymmetric latency adjustment contribute to optimize

the performance, and higher performance is achieved when both components are
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employed. and can increase the performance up to 12.3x with p.dedup compared

to that in the SMP VM. Moreover, after resource is distributed in an asymmetric

way, the resource conflict resolver can further boost the performance by 12%, which

indicates that there do exists the resource conflicts and this component can effectively

reduce the conflicts to improve application performance on asymmetric VMs.

5.6 Conclusion and Future Work

This chapter addresses the performance degradation problem and performance

variation problem of multicore programs running on VMs with multiple VCPUs.

The approach is to dynamically adjust the performance features of VCPUs (and thus

their CPU time resource and their computing capacities) based on the features of

the computations on the VCPUs. Experiments show its effectiveness in improving

performance. An alternative approach would be moving computation tasks across

VCPUs inside each VM based on the computing capabilities of VCPUs. Though

this requires the modification of programs or guest OSs and addressing a few

other challenges, e.g., detecting VCPU computing capability and controlling the

overhead of migrating tasks, the approach has a few advantages in understanding the

resource demand of workload and avoiding the resource conflicts between VCPUs.

This approach can be complementary to the dynamic asymmetric VCPU solution.

Exploring this approach and integrating it with the dynamic asymmetric VCPU

design is our future work.
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CHAPTER 6

CONCLUSION

With virtualization technology, delivering computing resource as a utility through the

cloud has gone mainstream. In accordance to the growth of core counts in physical

machines, the number of virtual CPUs in a virtual machine also increases steadily.

In modern virtual machines with multiple virtual CPUs, multi-threaded applications

are run to achieve high performance, leveraging the aggregated computing power

of these virtual CPUs. However, virtualization technology has not evolved enough

to effectively support multi-threaded applications to achieve high performance.

The executions of multi-threaded applications on virtual machines suffer serious

performance issues. This causes the waste of resources and leads to frustrating user

experience.

To achieve high performance on modern virtual machines, the dissertation

identifies key issues and factors that have impact on the performance of multi-

threaded application, and optimizes virtualization at different layers. The dissertation

mainly targets CPU resource, which is the most important computing resource

determining application performance.

To identify and diagnose performance issues, we have conducted extensive

experiments, focusing on the CPU virtualization overhead incurred by synchro-

nization and communication. Our results show that, when the physical system is

not over-subscribed, the executions of multi-threaded applications can be slowed

down by over 150%, and, when the system is over-subscribed, the slow down can

be as much as 6x. We reveal that the main causes for these problems include the

overhead incurred by handling synchronization and communication and mis-handled

CPU resource sharing upon synchronization and communication.
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Targeting the performance issues caused by spin-based synchronization, we

designed and implemented the APPLES framework, which makes effective utilization

of hardware support in processors to effectively reduce excessive spinning. The design

of APPLES addresses two challenges. First, in order to promptly detect and preempt

VCPUs when they spin excessively, APPLES adjusts dynamically the VCPU spinning

threshold, based on the measurement of execution efficiency. Second, APPLES

carefully selects and schedules VCPUs based on a few heuristics. Our experiments

show that APPLES can improve system throughput by as much as 49%.

Targeting the most important performance factor for multi-threaded appli-

cations – scalability, we have analyzed key system factors and program features that

may impact application scalability on virtual machines. The analysis is based on

redefining scalability from the perspective of the CPU resource utilization efficiency.

We show that application scalability on virtual machines is largely determined by

how CPU time allocated to the virtual machine can be efficiently utilized (high

utilization leads to high scalability). Since applications may utilize CPU resource in

a different way on virtual machines than they do on physical machines, applications

show different scalability on virtual machines than on physical machines. In some

cases, applications may achieve better scalability on virtual machines. We have

investigated the potential to improve application scalability on virtual machines by

improving CPU resource utilization.

Motivated by the analysis, we have developed an effective solution to improve

the utilization of CPU resource and to eventually improve application scalability on

virtual machines. The solution creates dynamic asymmetric VCPUs, which have

computing capability matching the workload distributed to the VCPUs. We show

that the solution can effectively improve both the performance of individual VMs

and the overall system throughput.
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