
POSTER: Exploiting Asymmetric Multi-Core Processors
with Flexible System Sofware

Kallia Chronaki∗‡, Miquel Moretó∗‡, Marc Casas∗, Alejandro Rico+,
Rosa M. Badia∗†, Eduard Ayguadé∗‡,Jesus Labarta∗‡ and Mateo Valero∗

∗Barcelona Supercomputing Center, Barcelona, Spain
‡Universitat Politècnica de Catalunya - BarcelonaTech, Barcelona, Spain +ARM, Austin, Texas
†Research Institute (IIIA) - Spanish National Research Council (CSIC), Barcelona, Spain

ABSTRACT
Energy efficiency has become the main challenge for high
performance computing (HPC). The use of mobile asym-
metric multi-core architectures to build future multi-core
systems is an approach towards energy savings while keep-
ing high performance. However, it is not known yet whether
such systems are ready to handle parallel applications.

This paper fills this gap by evaluating emerging parallel
applications on an asymmetric multi-core. We make use
of the PARSEC benchmark suite and a processor that im-
plements the ARM big.LITTLE architecture. We conclude
that these applications are not mature enough to run on
such systems, as they suffer from load imbalance.

Furthermore, we explore the behaviour of dynamic schedul-
ing solutions on either the Operating System (OS) or the
runtime level. Comparing these approaches shows us that
the most efficient scheduling takes place in the runtime level,
influencing the future research towards such solutions.

1 Introduction
Energy efficiency has become the main challenge for future
parallel computing designs [14], motivating prolific research
to face the Power Wall. An interesting approach towards
energy efficiency is the use of asymmetric multi-core archi-
tectures [2, 17] with different types of cores targeting differ-
ent performance and power optimization points. Such sys-
tems have been successfully deployed in the mobile domain,
where simple in-order cores (little) have been combined with
aggressive out-of-order cores (big) to build these systems.

Many researchers are pushing towards building future par-
allel systems with asymmetric multi-cores [9, 10, 12, 13, 23]
and even mobile chips [20]. However, it is unclear if current
parallel applications will benefit from these asymmetric plat-
forms. Load balancing and scheduling are two of the main
challenges in utilizing such heterogeneous platforms, as the
programmer has to consider them from the very beginning
to obtain an efficient parallelization.

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

In this work we evaluate the suitability of modern asym-
metric multi-core platforms for highly parallel applications.
First, we demonstrate that out-of-the-box parallel applica-
tions do not run efficiently on asymmetric multi-cores as the
asymmetry of the system leads to load imbalance.

When load-balancing techniques are not included in the
original application, we evaluate alternative solutions that,
without relying on the programmer, can leverage the op-
portunities that asymmetric systems offer. These solutions
consist of dynamic schedulers on either the OS or on the
runtime system level. We use a state of the art dynamic OS
scheduler that is aware of the asymmetry of the platform.
Another approach is the use of a runtime system that is re-
sponsible to schedule the workload to the appropriate idle
cores dynamically. This is done with the use of a modern
task-based programming model that allows the specification
of inter-task dependences and lets the runtime system to
track dependences between tasks. We compare and anal-
yse the outcome of this evaluation in terms of performance,
power and energy.

Although there has been remarkable research on asym-
metric systems, we consider that their experimental eval-
uation is limited compared to our work. First, there are
many works that base their evaluation on a simulated or
emulated environment [1, 2, 11–13, 15–17, 19, 21–23, 25, 26],
in contrast to our real asymmetric system. Furthermore,
many works use either random task dependency graph gen-
erators or scientific kernels instead of real scientific applica-
tions [5,7,22,24]. Finally, many of the existing works do not
present power and energy results [5, 11,17,22,25,26].

2 The ARM big.LITTLE Architecture
The ARM big.LITTLE [6,10] is a modern asymmetric multi-
core architecture that has been successfully deployed in the
mobile market. In this work, we make use of one of the com-
mercially available development boards featuring a big.LITTLE
architecture: the Hardkernel Odroid-XU3 development board.
The Odroid-XU3 includes an 8-core Samsung Exynos 5422
chip with four ARM Cortex-A15 (big) cores and four Cortex-
A7 (little) cores. For the remainder of the paper, we refer
to Cortex-A15 cores as big and to Cortex-A7 cores as little.

Scheduling a set of processes on an asymmetric multi-
core system is more challenging than the traditional pro-
cess scheduling on symmetric multi-cores. An efficient OS
scheduler has to take into account the different characteris-
tics of the core types of the system. The ARM big.LITTLE
systems provide three mainstream OS schedulers: cluster

1



0

2

4

6

8

10

12

4 5 6 7 8

A
vg

 s
p

e
e

d
u

p

0

0.5

1

1.5

2

2.5

3

3.5

4

4 5 6 7 8

A
vg

 p
o

w
e

r 
(W

at
ts

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 5 6 7 8

A
vg

 n
o

rm
al

iz
e

d
 e

n
e

rg
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 5 6 7 8

A
vg

 E
D

P

02

57
Static threading GTS Task-based

Figure 1: Average results when running on 4 to 8 cores with 4 of them big. Speedup is over 1 little core,
static threading on 4 little cores is the baseline of energy consumption and EDP

switching [6], in-kernel switch [18] and global task schedul-
ing (GTS) [6]. GTS allows running applications on all cores
in the asymmetric multi-core and is considered as the most
sophisticated scheduler. In GTS, all cores are available and
visible to the OS scheduler, and this scheduler is aware of
the characteristics and each core type. GTS tracks the CPU
utilization of each process and dynamically schedules high
CPU utilization processes to big cores and low CPU utiliza-
tion processes to little cores. As a result, cores are active
according to the characteristics of the running processes.

3 Evaluation
The experiments of this work are performed on the Hard-
kernel Odroid XU3 described in Section 2. In these experi-
ments, we set the big cores to run at 1.6GHz and the little
cores at 800MHz through the cpufreq driver.

We measure the performance, power and energy of the
original PARSEC codes [3] together with a task-based im-
plementation of nine benchmarks1 of the suite [4]. For space
purposes we only show the average results among these bench-
marks. The original codes make use of the pthreads library
for all the selected benchmarks, while the task-based imple-
mentation is done using the OmpSs programming model [8].
The OmpSs applications follow the same parallelization strat-
egy implemented with OpenMP 4.0 task annotations.

In the search of the optimal solution, we compare three
different scenarios of parallel execution when transferring
the scheduling responsibility to different levels of the soft-
ware stack: (a) Static Threading: the scheduling responsibil-
ity is on the application level. (b) OS Scheduling (GTS): the
OS is responsible for performing the scheduling. Specifically
we use the GTS provided by ARM described in Section 2.
(c) Task-based: the runtime system is responsible for the
dynamic scheduling.

Figure 1 shows the average results among the evaluated
benchmarks. We refer to the system configurations as B+L
where B is the number of big cores and L is the number of
little cores. The speedup chart of Figure 1 shows that the
Static threading approach does not benefit from adding little
cores to the system. In fact, this approach brings an average
15% slowdown when adding four little cores (configuration
4+4). This is a result of the static thread scheduling; the
same amount of work is assigned to each core, so when the
big cores finish the execution of their part, they become idle
and under-utilized. GTS achieves a limited speedup of 5%

1The benchmarks used are: blackscholes, bodytrack, can-
neal, dedup, facesim, ferret, fluidanimate, streamcluster and
swaptions.

with the addition of four little cores to the 4+0 configuration.
The addition of a single little core brings a 22% slowdown
(from 4+0 to 4+1) and requires three additional little cores to
reach the performance of the symmetric configuration (con-
figuration 4+3). Finally, the Task-based approach always
benefits from the extra computational power as the run-
time automatically deals with load imbalance. Performance
improvements keep growing with the additional little cores,
reaching an average improvement of 16% over the symmetric
configuration when 4 extra cores are added.

The power chart of Figure 1 shows oppositional benefits
among the three approaches. We can see that Static thread-
ing and GTS benefit from asymmetry, effectively reducing
average power consumption. Static threading reduces power
consumption when moving from the 4+0 to the 4+4 system
by 23% while GTS does so by 6.2%. On the other hand,
the task-based approach keeps the big cores busy for most of
the time so it maintains the average power nearly constant.
By keeping the power stable, the energy consumption of the
task-based approach shown in the third chart of Figure 1 is
minimized since it only depends on the execution time.

To see the impact on both performance and energy effi-
ciency we plot the average energy delay product (EDP) on
the rightmost chart of Figure 1. In this chart the lower val-
ues are the better. We observe that the task-based approach
is the one that has the best performance-energy combina-
tion for the asymmetric configurations since it maintains
the lowest EDP for all cases. Static threading manages to
reduce the average EDP by 7% while GTS and task based
approaches do so by 10% and 37% respectively.

4 Conclusions
In this paper we examine the maturity of asymmetric multi-
core systems to support emerging parallel applications, show-
ing results for performance, power, energy and EDP. Through
our comparison of the three scheduling approaches, we con-
clude that the task-based approach is the optimal solution
to dynamically balance the load among the asymmetric re-
sources. Contrarily to the static and OS scheduling ap-
proaches, the task-based approach constantly improves per-
formance as asymmetry is increasing. Moreover, relying on
the runtime system for the efficient scheduling keeps power
static which results in energy savings. Finally, according to
the EDP results, the conclusion is that the task-based ap-
proach offers the optimal performance and energy trade-off
for asymmetric systems.

2



5 References

[1] A. Agarwal and P. Kumar. Economical Duplication
Based Task Scheduling for Heterogeneous and
Homogeneous Computing Systems. In IACC, 2009.

[2] S. Balakrishnan, R. Rajwar, M. Upton, and K. K. Lai.
The impact of performance asymmetry in emerging
multicore architectures. In ISCA, pages 506–517, 2005.

[3] C. Bienia. Benchmarking Modern Multiprocessors.
PhD thesis, Princeton University, January 2011.

[4] D. Chasapis, M. Casas, M. Moreto, R. Vidal,
E. Ayguade, J. Labarta, and M. Valero. PARSECSs:
Evaluating the Impact of Task Parallelism in the
PARSEC Benchmark Suite. Trans. Archit. Code
Optim., 2015.

[5] K. Chronaki, A. Rico, R. M. Badia, E. Ayguadé,
J. Labarta, and M. Valero. Criticality-aware dynamic
task scheduling for heterogeneous architectures. In
ICS, pages 329–338, 2015.

[6] H. Chung, M. Kang, and H.-D. Cho. Heterogeneous
Multi-Processing Solution of Exynos 5 Octa with
ARM big.LITTLE Technology. Technical report,
Samsung Electronics Co., Ltd., 2013.

[7] M. Daoud and N. Kharma. Efficient Compile-Time
Task Scheduling for Heterogeneous Distributed
Computing Systems. In ICPADS, 2006.

[8] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta,
L. Martinell, X. Martorell, and J. Planas. Ompss: a
Proposal for Programming Heterogeneous Multi-Core
Architectures. Parallel Processing Letters, 21, 2011.

[9] A. Fedorova, J. C. Saez, D. Shelepov, and M. Prieto.
Maximizing Power Efficiency with Asymmetric
Multicore Systems. Communications of the ACM,
52(12), 2009.

[10] P. Greenhalgh. big.LITTLE Processing with ARM
Cortex-A15 & Cortex-A7. ARM White Paper, 2011.

[11] M. A. Iverson, F. Özgüner, and G. J. Follen.
Parallelizing Existing Applications in a Distributed
Heterogeneous Environment. In HCW, 1995.

[12] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt.
Bottleneck identification and scheduling in
multithreaded applications. In ASPLOS, pages
223–234, 2012.

[13] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt.
Utility-based acceleration of multithreaded
applications on asymmetric CMPs. In ISCA, pages
154–165, 2013.

[14] P. Kogge, K. Bergman, S. Borkar, D. Campbell,
W. Carson, W. Dally, M. Denneau, P. Franzon,
W. Harrod, K. Hill, and Others. Exascale Computing
Study: Technology Challenges in Achieving Exascale
Systems. Technical report, University of Notre Dame,
CSE Dept., 2008.

[15] D. Koufaty, D. Reddy, and S. Hahn. Bias scheduling
in heterogeneous multi-core architectures. In EuroSys,
pages 125–138, 2010.

[16] R. Kumar, K. I. Farkas, N. P. Jouppi,
P. Ranganathan, and D. M. Tullsen. Single-isa
heterogeneous multi-core architectures: The potential
for processor power reduction. In MICRO, pages
81–92, 2003.

[17] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P.

Jouppi, and K. I. Farkas. Single-isa heterogeneous
multi-core architectures for multithreaded workload
performance. In ISCA, pages 64–75, 2004.

[18] Mathieu Poirier. In Kernel Switcher: A solution to
support ARM’s new big.LITTLE technology.
Embedded Linux Conference 2013, 2013.

[19] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero,
and E. Ayguade. Performance, power efficiency and
scalability of asymmetric cluster chip multiprocessors.
IEEE Comput. Archit. Lett., 5(1):4–17, Jan. 2006.

[20] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic,
A. Ramirez, and M. Valero. Supercomputing with
Commodity CPUs: Are Mobile SoCs Ready for HPC?
In SC, 2013.

[21] R. Rodrigues, A. Annamalai, I. Koren, and S. Kundu.
Scalable thread scheduling in asymmetric multicores
for power efficiency. In SBAC-PAD, pages 59–66, 2012.

[22] G. Sih and E. Lee. A Compile-Time Scheduling
Heuristic for Interconnection-Constrained
Heterogeneous Processor Architectures. IEEE Trans.
Parallel Distrib. Syst., 4(2), 1993.

[23] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N.
Patt. Accelerating critical section execution with
asymmetric multi-core architectures. In ASPLOS,
pages 253–264, 2009.

[24] H. Topcuoglu, S. Hariri, and M.-Y. Wu.
Performance-Effective and Low-Complexity Task
Scheduling for Heterogeneous Computing. IEEE
Trans. Parallel Distrib. Syst., 13(3), 2002.

[25] K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel,
and L. Eeckhout. Fairness-aware Scheduling on
single-ISA Heterogeneous Multi-cores. In PACT, 2013.

[26] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez,
and J. Emer. Scheduling heterogeneous multi-cores
through performance impact estimation (pie). In
ISCA, pages 213–224, 2012.

Acknowledgments
This work has been supported by the Spanish Government
(SEV2015-0493), by the Spanish Ministry of Science and
Innovation (contracts TIN2015-65316-P), by Generalitat de
Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272),
by the RoMoL ERC Advanced Grant (GA 321253) and the
European HiPEAC Network of Excellence. The Mont-Blanc
project receives funding from the EU’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement num-
ber 610402 and from the EU’s H2020 Framework Programme
(H2020/2014-2020) under grant agreement number 671697.
M. Moretó has been partially supported by the Ministry
of Economy and Competitiveness under Juan de la Cierva
postdoctoral fellowship number JCI-2012-15047. M. Casas
is supported by the Secretary for Universities and Research
of the Ministry of Economy and Knowledge of the Govern-
ment of Catalonia and the Cofund programme of the Marie
Curie Actions of the 7th R&D Framework Programme of
the European Union (Contract 2013 BP B 00243).

3


