Molecular-dynamics algorithms for systems of particles interacting through
discrete or "hard" potentials are fundamentally different to the methods for
continuous or "soft" potential systems. Although many software packages have
been developed for continuous potential systems, software for discrete
potential systems based on event-driven algorithms are relatively scarce and
specialized. We present DynamO, a general event-driven simulation package which
displays the optimal O(N) asymptotic scaling of the computational cost with the
number of particles N, rather than the O(N log(N)) scaling found in most
standard algorithms. DynamO provides reference implementations of the best
available event-driven algorithms. These techniques allow the rapid simulation
of both complex and large (>10^6 particles) systems for long times. The
performance of the program is benchmarked for elastic hard sphere systems,
homogeneous cooling and sheared inelastic hard spheres, and equilibrium
Lennard-Jones fluids. This software and its documentation are distributed under
the GNU General Public license and can be freely downloaded from
http://marcusbannerman.co.uk/dynamo