
On the Maturity of Parallel Applications for

Asymmetric Multi-Core Processors

Kallia Chronaki∗1, Miquel Moreto∗, Marc Casas∗, Alejandro Rico†,
Rosa M. Badia∗‡, Eduard Ayguadé∗, Mateo Valero∗

∗Barcelona Supercomputing Center,
†ARM,

‡Artificial Intelligence Research Institute (IIIA) -
Spanish National Research Council (CSIC)

Abstract

Asymmetric multi-cores (AMCs) are a successful architectural solution for
both mobile devices and supercomputers. By maintaining two types of cores
(fast and slow) AMCs are able to provide high performance under the facility
power budget. This paper performs the first extensive evaluation of how
portable are the current HPC applications for such supercomputing systems.
Specifically we evaluate several execution models on an ARM big.LITTLE
AMC using the PARSEC benchnark suite that includes representative highly
parallel applications. We compare schedulers at the user, OS and runtime
levels, using both static and dynamic options and multiple configurations,
and assess the impact of these options on the well-known problem of balancing
the load across AMCs. Our results demonstrate that scheduling is more
effective when it takes place in the runtime system level as it improves
the baseline by 23%, while the heterogeneous-aware OS scheduling solution
improves the baseline by 10%.

Keywords: parallel programming, scheduling, runtime systems,
asymmetric multi-cores, hpc

1Corresponding authors:
kallia.chronaki@bsc.es (Kallia Chronaki), miquel.moreto@bsc.es (Miquel Moreto),
marc.casas@bsc.es (Marc Casas), alejandro.rico@arm.com (Alejandro Rico)

Preprint submitted to Journal of Parallel and Distributed Computing December 18, 2018

© 2019 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 



1. Introduction

The future of parallel computing is highly restricted by energy efficiency [1].
Energy efficiency has become the main challenge for future processor designs,
motivating prolific research to face the power wall. Using heterogeneous
processing elements is one of the approaches to increase energy efficiency [2,
3]. Asymmetric multi-core (AMC) systems is an interesting case of heterogeneous
systems to utilize for energy efficiency. These systems maintain different
types of cores that support the same instruction-set architecture. The different
core types are designed to target different (performance or power) optimization
points [4, 5, 6].

AMCs have been mainly deployed for the mobile market. Mobile processors
are also utilized in HPC platforms aiming to energy savings [7]. Asymmetric
mobile SoCs combine low-power simple cores (little) with fast out-of-order
cores (big) to achieve high performance while keeping power dissipation
low. Another area where AMCs have been successful is the supercomputing
market. The Sunway TaihuLight supercomputer topped the Top500 list in
2016 using AMCs. In this setup, big cores, that offer support for speculation
to exploit Instruction-Level Parallelism (ILP), run the master tasks such as
the OS and runtime system. Little cores are equipped with wide Single
Instruction Multiple Data (SIMD) units and lean pipeline structures for
energy efficient execution of compute-intensive code.

Like in other heterogeneous systems, load balancing and scheduling are
fundamental challenges that must be addressed to effectively exploit all the
resources in AMC platforms [8, 9, 10, 11, 12, 13]. Mobile applications rely
on multi-programmed workloads to balance the load in the system, while
supercomputer applications rely on hand-tuned code to extract maximum
performance. However, these approaches are not always suitable for general-
purpose parallel applications.

In this paper, we evaluate several execution models on an AMC using the
PARSEC benchmark suite [14]. This suite includes parallel applications from
multiple domains such as finance, computer vision, physics, image processing
and video encoding. We quantify the performance loss of executing the
applications as-is on all cores in the system. The main challenge on executing
these applications on an AMC is to maintain load balance. These applications
were originally developed on homogeneous platforms and typically operate
by dividing the workload on even units. Executing these equal work units
on an asymmetric system is expected to suffer due to load imbalance.

2



To overcome this matter, we consider two possible solutions at the OS
and runtime levels to exploit AMCs effectively. The first solution delegates
scheduling to the OS. We evaluate the built-in heterogeneity-aware OS scheduler
currently used in existing mobile platforms that automatically assigns threads
to different core types based on CPU utilization. The main drawback of this
approach is the overhead introduced by the thread migration, thus resulting
in limited performance no matter the potential of the underlying system.

The second solution is to transfer the responsibility to the runtime system
so it dynamically schedules work to different core types based on work progress
and core availability. We evaluate the impact of using an inherently load-
balanced execution model such that of task-based programming models.
Recent examples [15, 16, 17, 18, 19, 20, 21, 22, 23] include clauses to specify
inter-task dependencies and remove most barriers which are the major source
of load imbalance on AMCs. Another approach of scheduling in the runtime
system is to change the existing statically-scheduled work-sharing constructs
for the applications implemented in OpenMP to use dynamic scheduling.

This paper provides the first to our knowledge comprehensive evaluation
of representative parallel applications on a real AMC platform: the Odroid-
XU3 development board with ARM big.LITTLE architecture. We analyze
the effectiveness of the aforementioned scheduling solutions in terms of performance,
power and energy. We show why parallel applications are not ready to run
on AMCs and how OS and runtime schedulers can overcome these issues
depending on the application characteristics. Further we point out in which
aspects the built-in OS scheduler falls short to effectively utilize the AMC.
Finally, we show how the runtime system approach overcomes these issues,
and improves the OS and static threading approaches by 13% and 23%
respectively.

The rest of this document is organized as follows: Section 2 describes the
evaluated AMC processor, while Section 3 provides information on scheduling
at the OS and runtime system levels. Section 4 describes the experimental
framework. Section 5 shows the performance and energy results and associated
insights.Finally, Section 6 discusses related work and Section 7 concludes this
work.

2. The ARM big.LITTLE Architecture

The ARM big.LITTLE [24, 10] is a state-of-the-art AMC architecture
that has been successfully deployed in the mobile market. ARM big.LITTLE

3



Big-core cluster

Little-core cluster

Cache Coherent Interconnect (CCI)

512KB L2-Cache2MB L2-Cache with ECC

Cortex-A15

32KB I-CACHE

32KB DATA CACHE
32KB I-CACHE
32KB D-CACHE

Cortex-A7
32KB I-CACHE
32KB D-CACHE

Cortex-A7

32KB I-CACHE
32KB D-CACHE

Cortex-A7
32KB I-CACHE
32KB D-CACHE

Cortex-A7

Cortex-A15

32KB I-CACHE

32KB DATA CACHE

Cortex-A15

32KB I-CACHE

32KB DATA CACHE

Cortex-A15

32KB I-CACHE

32KB DATA CACHE

Figure 1: Samsung Exynos 5422 processor with ARM big.LITTLE architecture.

combines simple in-order cores (little) with aggressive out-of-order cores (big)
in the same System-on-Chip (SoC) to provide high performance and low
power. Big and little cores support the same instruction set architecture
(ISA) so they can run the same binaries and therefore are easily combined
within the same system. The little cores in a big.LITTLE system are designed
targeting energy efficiency, while big cores are designed for high performance.
Current cores implementing the ARMv7-A and ARMv8-A ISA support big.LIT-
TLE configurations.

In this work, we use of one of the commercially available development
boards featuring a big.LITTLE architecture: the Hardkernel Odroid-XU3
development board. As shown in Figure 1, the Odroid-XU3 includes an 8-
core Samsung Exynos 5422 chip with four ARM Cortex-A15 cores and four
Cortex-A7 cores. In this SoC, there are two core clusters with caches that
are shared among the cores of each cluster [25]. The four Cortex-A15 share a
2 MB 16-way 64-byte-cache-line L2 cache, while the Cortex-A7 cores share a
512 KB L2 cache. A single cache coherent memory controller (CCI) provides
access to RAM to both clusters. The reason we use this platform instead of
the more up-to-date Juno platform [26] is that even if the latter features the
more advanced Cortex A53 [27] and Cortex A57 [28] cores, it is limited to
six cores instead of the 8 cores in Odroid-XU3.

The Cortex-A7 cores in this SoC support dual-issue of instructions and
their pipeline length is between 8 and 10 stages. The L1 instruction cache is
32KB two-way set associative, with virtually indexed and physically tagged
cache-lines that can hold up to 8 instructions. The L1 data cache is four-
way set associative with physically-indexed and physically-tagged cache lines
and uses a pseudo-random replacement policy [29]. Dynamic Voltage and
Frequency Scaling (DVFS) techniques adjust the frequency of the little cores

4



from 200MHz up to 1.4GHz.
The Cortex-A15 cores in this SoC support triple-issue of instructions and

their pipeline length is between 15 and 24 stages [30]. The L1 instruction
and data caches of the Cortex-A15 are both 32 KB and 2-way set-associative
with 64 byte cache lines [31]. DVFS techniques vary the frequency of the
big cores from 200 MHz up to 2 GHz. For the rest of the paper, we refer to
Cortex-A15 cores as big and to Cortex-A7 cores as little.

3. Scheduling in Asymmetric Multi-Cores

Scheduling a set of processes on an AMC system is more challenging
than the traditional process scheduling on SMCs. An efficient OS scheduler
has to take into account the different characteristics of the cores and act
accordingly [32]. There have been three mainstream OS schedulers for ARM
big.LITTLE systems: cluster switching, in-kernel switch and global task
scheduling, described in the next sections. In the case of parallel applications,
dynamic scheduling at the runtime system level can be exploited to balance
the workload among the different cores and is described in section 3.3. Finally,
when all the scheduling mechanisms are disabled, the thread scheduling
decisions are based on the static application-level scheduling.

3.1. Cluster Switching and In-Kernel Switch

In the Cluster Switching (CS) approach [24], only one of the clusters is
active at any given time: either the cluster with little cores or the cluster with
big cores executes. Thus, the OS scheduler operates on a de-facto symmetric
multi-core with only four cores, namely the cores of the current active cluster.
The policy to change the operating cluster is based on CPU utilization. When
idle, background processes are executed on the little cores. When CPU
utilization surpasses a threshold, all processes (foreground and background)
are migrated to the big cluster. When running on the big cluster, if CPU
utilization decreases below a given lower threshold, the entire workload is
moved to the little cluster.

In the In-Kernel Switch (IKS) approach [33], each little core is paired with
a big core and it is seen as a single core. On idle, background processes are
run on little cores. When the CPU utilization on a given little core surpasses
a threshold, the execution on that core is migrated to the big core. When
the CPU utilization decreases on that big core below a given threshold, the
execution migrates to the associated little core. Thus, at the same time,

5



little and big cores may co-execute, but only one of each pair is active at a
given point in time, effectively exploiting just half of the cores concurrently.
For both CS and IKS, an enhanced cpufreq driver manages the switching
within each core pair.

3.2. Global Task Scheduling

The Global Task Scheduling (GTS) [24] allows running applications on all
cores in the asymmetric multi-core. In GTS, all cores are available and visible
to the OS scheduler, and this scheduler is aware of the characteristics of the
core types. Each process is assigned to a core type depending on its CPU
utilization: high CPU utilization processes are scheduled to big cores and
low CPU utilization processes to little cores. GTS also migrates processes
between big and little cores when their CPU utilization changes. As a result,
cores are active depending on the characteristics of the workload.

The key benefit of GTS is that it can use all the cores simultaneously,
providing higher peak performance and more flexibility to manage the workload.
In GTS tasks are directly migrated to cores without needing the intervention
of the cpufreq daemon, reducing response time and minimizing the overhead
of context switches. As a consequence, Samsung reported 20% improvement
in performance over CS for mobile benchmarks [24]. Also, GTS supports
clusters with different number of cores (e.g. with 2 big cores and 4 little
cores), while IKS requires to have the same number of cores per cluster.

3.3. Dynamic Scheduling in the Runtime

Current programming models for shared memory systems such as OpenMP
rely on a runtime system to manage the execution of the parallel application.
In this work, we make use of two types of programming models: loop- and
task-based. Loop-based scheduling distributes the iterations of a loop among
the threads available in the system, following a traditional fork-join model.
OpenMP supports loop-based scheduling through its parallel for directives.
This clause implies a barrier synchronization at the end of the loop2, and
supports either static or dynamic loop scheduling.

With static loop scheduling, the iterations of a loop are divided to as
many chunks as the number of cores. Then, every core executes the assigned
chunk, leading to a low-overhead static scheduling. In addition, OpenMP

2unless specified otherwise with the nowait clause

6



supports dynamic loop scheduling. It generates more chunks than cores,
and assigns them to the available cores at runtime. This is more suitable to
asymmetric multi-core systems where the cores are not similar and a static
iteration assignment would cause load imbalance.

Recent advances in programming models recover the use of task-based
programming models to simplify parallel programming of multi-cores [16,
17, 34, 19, 21]. In these models the programmer splits the code in sequential
pieces of work (tasks) and specifies the data dependencies among them.
With this information the runtime system schedules tasks and manages
synchronization. These models ease programmability [16, 17, 34, 19, 21, 22],
and also increase performance by avoiding global synchronization points.

To evaluate this approach we make use of OpenMP tasking support [16].
OpenMP allows expressing tasks and data dependences between them using
equivalent code annotations. It conceives the parallel execution as a task
dependence graph (TDG), where nodes are sequential pieces of code (tasks)
and the edges are control or data dependences between them. The runtime
system builds this TDG at execution time and dynamically schedules tasks to
the available cores. Tasks become ready as soon as their input dependencies
are satisfied. The scheduling of the ready tasks is done in a first-come-
first-served manner, using a FIFO scheduler. Even though this scheduler is
not aware of the task computational requirements or the core type and its
performance and power characteristics, it can balance the load as long as
there are ready tasks available thanks to the lack of global synchronization.

3.4. Static Scheduling in the Application Level

When the OS and runtime schedulers are disabled scheduling relies on
the application. Current parallel applications generate software threads and
rely on the operating system for the efficient mapping of these threads on the
available cores. By disabling the operating system scheduler, each created
thread is pinned on one of the cores and it is not allowed to migrate to
another hardware component. Each pinned thread executes the work that
the application is assigning to it statically. In this scenario, the application
is responsible for the efficient parallelization, as it only depends on how the
application is statically assigning the work on each of the software threads.

To evaluate this approach, we make use of applications that are implemented
using the pthreads model. We then modify the code of the application so
that each created thread is pinned to the next available processor. This way,

7



Table 1: Benchmarks used from the PARSEC benchmark suite and their measured
performance ratio between big and little cores

Benchmark Input Parallelization Perf ratio

blackscholes native data-parallel 2.18
bodytrack native pipeline 4.16
canneal native unstructured 1.73
dedup 351 MB data pipeline 2.67
facesim native data-parallel 3.40
ferret native pipeline 3.59
fluidanimate native data-parallel 3.32
streamcluster native data-parallel 3.48
swaptions native data-parallel 2.78

threads are statically assigned to processors and the operating system is not
allowed to modify this.

4. Experimental Methodology

4.1. Metrics

All the experiments in this paper are performed on the Hardkernel Odroid
XU3 described in Section 2. In our experiments we keep the frequencies of
the cores static. This is in order to first, avoid machine overheating, and
second to prevent the DVFS governor to dynamically modify the frequency
of the cores during runtime, thing that would affect the reliability of the
results. We make use of the cpufreq driver to set big cores at 1.6GHz and
little cores at 800MHz.

We evaluate seven configurations with different numbers of little (L) and
big (B) cores, denoted L+B. For each configuration and benchmark, we report
the average performance of five executions in the application parallel region.
Then, we report the application speedup over its execution time on one little
core. The variability of the results among the five runs is very small and
the stdev of the speedup obtained ranges from 0 to 1.1, averaging at 0.85.
Equation 1 shows the formula to compute this speedup.

Speedup(L, B, method) =
Exec. time(1, 0, method)

Exec. time(L, B, method)
(1)

In this platform, there are four separated current sensors to measure, in
real time, the power consumption of the A15 cluster, the A7 cluster, the
GPU and DRAM. To gather power and energy measurements, a background
daemon reads the machine power sensors periodically during the application

8



execution with negligible overhead. Sensors are read at their refresh rate,
every 270ms, and the values of A7 and A15 clusters’ sensors are collected.
With the help of timestamps, we correlate the power measurements with the
application parallel region in a post-mortem process. The execution time
overhead of the running daemon is measured and verified to be less than 3%.
3 The reported power consumption is the average power tracked during five
executions of each configuration, considering the application parallel region
only. We then report average power in Watts along the execution.

Finally, in terms of energy and Energy Delay Product (EDP), we report
the total energy and EDP of the benchmarks region of interest. To facilitate
the explanation of these results and isolate the impact of the different system
configurations on the energy consumption we normalize these results to the
run on four little cores with static threading. Equations 2 and 3 show the
formulas for these calculations.

Normalized Energy(L, B, method) =
Energy(L, B, method)

Energy(4, 0, static-threading)
(2)

Normalized EDP(L, B, method) =
EDP(L, B, method)

EDP(4, 0, static-threading)
(3)

4.2. Applications

With the prevalence of many-core processors and the increasing relevance
of application domains that do not belong to the traditional HPC field,
comes the need for programs representative of current and future parallel
workloads. The PARSEC benchmark suite [14, 35] features state-of-the-
art, computationally intensive algorithms and very diverse workloads from
different areas of computing. In our experiments, we make use of the original
PARSEC codes together with a task-based implementation of nine benchmarks
of the suite [36].

Table 1 shows the benchmarks included in the study along with their
respective inputs, parallelization strategy and performance ratio between big
and little cores per application. We are using native inputs, which are real
input sets for native execution, except for dedup, as the entire native input
file of 672 MB and the intermediate data structures do not fit in the memory
system of our platform. Instead, we reduce the size of the input file to 351
MB.

3In most cases this overhead is 1% with some applications reaching 2%.

9



0

5

10

15

20

25

0 2 4 4 4 4 4 0 2 4 4 4 4 4 0 2 4 4 4 4 4 0 2 4 4 4 4 4 0 2 4 4 4 0 2 4 4 4 4 4 0 2 4 4 0 2 4 4 4 4 4 0 2 4 4 4 4 4 0 2 4 4 4 4 4

4 2 0 1 2 3 4 4 2 0 1 2 3 4 4 2 0 1 2 3 4 4 2 0 1 2 3 4 4 2 0 2 4 4 2 0 1 2 3 4 4 2 0 4 4 2 0 1 2 3 4 4 2 0 1 2 3 4 4 2 0 1 2 3 4

BLACKSCH BODYTRACK CANNEAL DEDUP FACESIM FERRET FLUID STREAMCL SWAPTIONS AVERAGE

Sp
e

e
d

u
p

 o
ve

r 
1

 li
tt

le
 (

b
ar

s)

Figure 2: Ideal speedup over 1 little core according to Equation 4. Numbers at the bottom
of x axis show the number of little cores, numbers above it show the number of big cores

The original codes make use of the pthreads parallelization model for
all the selected benchmarks. The taskified applications follow the same
parallelization strategy implemented with OpenMP 4.0 task annotations.
The task-based implementation is done following two basic ideas: i) remove
barriers where possible, by adding explicit data-dependencies; and ii) remove
application-specific load balancing mechanisms, such as application-specific
pools of threads implemented in pthreads and delegate this responsibility
to the runtime.

When running on the big.LITTLE processor, each benchmark exhibits
different performance ratios between big and little cores. These ratios tell us
how many times faster a big core is compared to a little core. We measure
the performance ratio of each application by executing it first on one big
core and then on one little core, which corresponds to Speedup(0, 1, task-
based) in Equation 1. Table 1 also includes the observed performance ratio
for each application. Bodytrack is the application that benefits the most
from running on the big core with a performance ratio of 4.16×. The out-of-
order execution of the big core together with an increased number of in-flight
instructions significantly improves the performance of this application. In
contrast, canneal is the benchmark with the lowest performance ratio, 1.73×,
as this is a memory-intensive benchmark that does not benefit as much from
the extra computation power of the big core. In general, performance ratios
are above 2.5× for seven out of nine benchmarks, reaching 3.03× on average.

Taking into account these performance ratios, we can estimate the ideal
speedup of the platform for each workload assuming a perfect parallelization
strategy. This metric is useful for understanding the potential of each application
irrespective of parallelization strategy and scheduling approach. It isolates

10



the computations of each application and shows its ideal performance for
each possible confuguration of the AMC. Equation 4 shows the equation for
the ideal speedup over 1 little core computation according to the number of
big (B) and little (L) cores.

Ideal speedup(workload, B, L) = B × Perf ratio(workload) + L (4)

Figure 2 shows the ideal speedup of the system for each application for
the varying numbers of cores. This speedup assumes that the applications are
fully parallel with no barriers or other synchronization points. Thus, these
speedups are an upper bound of the achievable application performance.

5. Evaluation

We measure execution time, power, energy and EDP of nine applications
from the PARSEC benchmark suite [35]. We compare these metrics for three
different scheduling approaches:

• Static threading : scheduling decisions are made at the application level.
The OS is not allowed to migrate threads between the clusters of big
and little cores.

• GTS 4: dynamic coarse-grained OS scheduling using the GTS scheduler
integrated in the Linux kernel [24, 37] using the default PARSEC
benchmarks.

• Task-based : dynamic fine-grained scheduling at the runtime level with
the task-based implementations of the benchmarks provided in PARSECSs [36].

5.1. Exploiting Parallelism in AMCs

This section examines the opportunities and challenges that current AMCs
offer to emerging parallel applications. With this objective, we first evaluate a
system with a constant number of four cores, changing the level of asymmetry
to evaluate the characteristics of each configuration. In these experiments,
all applications run with the original parallelization strategy that relies on
the user to balance the application (Static threading). We also evaluate the

4We choose to evaluate GTS instead of CS and IKS because it is the most advanced
scheduling approach supported in the Linux kernel.

11



0

2

4

6

8

10

12

14

0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4

BLACKSCHOLES BODYTRACK CANNEAL DEDUP FACESIM FERRET FLUIDANIMATE STREAMCLUSTER SWAPTIONS AVERAGE

Sp
e

e
d

u
p

 o
ve

r 
1

 li
tt

le

Static threading GTS Task-based

Figure 3: Execution time speedup over 1 little core for systems that consist of 4 cores in
total with 0, 2 and 4 big cores. Different schedulers at the application (static threading),
OS (GTS ) and runtime (task-based) levels are considered.

OS-based dynamic scheduling (GTS ) and the task-based runtime dynamic
scheduling (Task-based) for the same applications. The system configurations
evaluated in this section are: i) Four little cores (0+4); ii) Two big and two
little cores (2+2); and iii) Four big cores (4+0)

For these configurations, Figure 3 shows the speedup of the PARSEC
benchmarks with respect to running on a single little core. Figure 4 reports
the average power dissipated on the evaluated platform. Finally, Figure 5
shows the total energy consumed per application for the same configurations.
Energy results are normalized to the energy measured with four little cores
(higher values imply higher energy consumptions). Average EDP results are
also included in this figure.

Focusing on the average performance results, we notice that all approaches
perform similarly for the homogeneous configurations. Specifically, applications
obtain the best performance on the configuration 4+0, with an average
speedup of 9.5× over one little core. When using four little cores, an average
speedup of 3.8× is reached for all approaches. This shows that all the
approaches are effective for this core count. In the configuration 2+2, Static
threading slightly improves performance (5.0× speedup), while GTS and
Task-based reach significantly higher speedups: 5.9× and 6.8×, respectively.

Contrarily, in terms of power and energy, the most efficient configuration
is running with four little cores, as the performance ratio between the different
cores is inversely proportional to the power ratio [10]. On average, all the
approaches reach a power dissipation of 0.75W for the 0+4 configuration,
while Task-based reaches 3.5W for the 4+0 configuration which is the one

12



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4

BLACKSCHOLES BODYTRACK CANNEAL DEDUP FACESIM FERRET FLUIDANIMATE STREAMCLUSTER SWAPTIONS AVERAGE

A
ve

ra
ge

 p
o

w
e

r 
(W

at
ts

)

Static threading GTS Task-based

Figure 4: Average power measurements on a 4-core system with 0, 2, and 4 big cores.

0

0.5

1

1.5

2

2.5

3

0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4

BLACKSCHOLES BODYTRACK CANNEAL DEDUP FACESIM FERRET FLUIDANIMATE STREAMCL SWAPTIONS AVERAGE AVG EDP

N
o

rm
al

iz
e

d
 e

n
e

rg
y 

/ 
ED

P

Static threading GTS Task-based

Figure 5: Normalized energy consumption and average EDP on a 4-core system with 0, 2,
and 4 big cores. Static threading on 4 little cores is the baseline in both cases.

with the highest average power dissipation. In configuration 2+2, average
energy values for Static threading and Task-based are nearly the same, as
the increase in power from 1.6W to 2.1W is compensated by a significant
improvement in performance of 30%.

Finally, in terms of EDP using the four big cores is the optimal, as
the performance improvements compensate the increase in total energy. In
configuration 2+2, Task-based achieves the same EDP results as in 0+4,
but with 81% better performance. For the asymmetric configuration, Task-
based achieves the best performance-energy combination since its dynamic
scheduling is effectively utilizing the little cores.

Next, we focus on the obtained results per benchmark. For applications
with an extensive use of barriers (blackscholes, facesim, fluidanimate, streamcluster
and swaptions) or with a memory intensive pattern (canneal), the extra
computational power offered by the big cores in configuration 2+2 is not
exploited. As a result with Static threading performance is only slightly
improved by 1% on average when moving from 0+4 to the 2+2 configuration.

13



This slight improvement comes at the cost of much more power and energy
consumption (79% and 77% respectively). These results are explained three-
fold: i) load is distributed homogeneously among threads in some applications;
ii) extensive usage of barriers force big cores to wait until little cores reach the
barrier; and iii) high miss rates in the last-level cache cause frequent pipeline
stalls and prevent to fully exploit the computational power of big cores.
To alleviate these problems, the programmer should develop more advanced
parallelization strategies that could benefit from AMCs, as performed in
the remaining applications, or rely on dynamic scheduling at OS or runtime
levels.

GTS is a suitable alternative for barrier-synchronized applications (blackscholes,
facesim, fluidanimate, streamcluster and swaptions) when asymmetry is introduced.
GTS enhances performance as it is dynamically migrating the threads around
the cores depending on the CPU utilization. Thus it is expected that performance
will increase compared to static threading for the asymmetric configuration.
For these applications, the task-based approach further improves GTS for the
asymmetric configuration. This is because task-based schedules tasks among
threads which is much more efficient than scheduling threads among cores.

The three remaining applications are parallelized using a pipeline model
(bodytrack, dedup, and ferret) with queues for the data-exchange between
pipeline stages and application-specific dynamic load balancing mechanisms
designed by the programmer. As a result, Static threading with these applications
benefits from the extra computational power of the big cores in the configuration
2+2. Since Static threading can already maintain load balance for these
applications due to their implementation, there is no need for dynamic thread
migration that is introduced by GTS. Using the task based approach, the code
of the application is simplified allowing the application to express even more
parallelism as the runtime system automatically allows the overlapping of
the different pipeline stages. This can be verified by the fact that bodytrack
obtains higher performance with the task based approach even for the symmetric
configurations. On the asymmetric configuration, Task-based further improves
the obtained performance, reaching a 13% average improvement over GTS.
Clearly, these applications benefit in performance by the increased number
of big cores, while power and energy are increasing since the big cores are
effectively utilized.

Generally, relying on the programmer to statically schedule asymmetric
configurations does not report good results, as it is very hard to predict the
system’s behavior at application-level. Only applications that implement

14



advanced features with user-level schedulers and load balancing techniques,
can benefit from asymmetry, at the cost of programmability effort. Relying
on the OS scheduler is a suitable alternative without code modifications,
but relying on the runtime to dynamically schedule tasks on the asymmetric
processor achieves much better performance, power and energy results.

5.2. Adding Little Cores to an SMC

In the following experiments, we explore if an application running on a
symmetric multi-core (SMC) with big cores can benefit from adding small
cores that help in its execution. Having more computational resources increases
the ideal speedup a parallel application can reach, but it also introduces
challenges at application, runtime and OS level. Thus, we examine how
many small cores have to be added to the system to compensate the cons of
having to deal with AMCs.

To evaluate this scenario, we explore configurations 4+0, 4+1, 4+2, 4+3
and 4+4. In these experiments, the number of big cores remains constant
(four), while the number of little cores increases from 0 to 4. First we focus
on the average results of speedup, power, energy and EDP, shown in Figure 6.

The speedup chart of Figure 6 shows that Static threading does not
benefit from adding little cores to the system. In fact, this approach brings
an average 6% slowdown when adding four little cores for execution (4+4).
This is a result of the static thread scheduling; because the same amount
of work is assigned to each core, when the big cores finish the execution
of their part, they become idle and under-utilized. GTS achieves a limited
speedup of 8% with the addition of four little cores to the 4+0 configuration.
The addition of a single little core brings a 22% slowdown (from 4+0 to
4+1) and requires three additional little cores to reach the performance of
the symmetric configuration (4+3). Finally, the Task-based approach always
benefits from the extra computational power as the runtime automatically
deals with load imbalance. Performance improvements keep growing with
the additional little cores, reaching an average improvement of 15% over the
symmetric configuration when 4 extra cores are added.

The power chart of Figure 6 shows oppositional benefits among the three
approaches. We can see that Static threading and GTS benefit from asymmetry,
effectively reducing average power consumption. Static threading reduces
power consumption when moving from the 4+0 to the 4+4 system by 23%
while GTS does so by 6.2%. On the other hand, the task-based approach

15



0

2

4

6

8

10

4 5 6 7 8

A
vg

 s
p

e
e

d
u

p

0

1

2

3

4

4 5 6 7 8
A

vg
 p

o
w

e
r 

(W
at

ts
)

0

1

2

4 5 6 7 8

A
vg

 n
o

rm
al

iz
e

d
 e

n
e

rg
y

0

0.2

0.4

0.6

0.8

1

1.2

4 5 6 7 8

A
vg

 E
D

P

02

444
567856785678

Static threading GTS Task-based

Figure 6: Average results when running on 4 to 8 cores with 4 of them big. Speedup is
over 1 little core. Static threading on 4 little cores is the baseline of energy consumption
and EDP

0

2

4

6

8

10

12

14

16

4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 6 8 4 5 6 7 8 4 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8

BLACKSCHOLES BODYTRACK CANNEAL DEDUP FACESIM FERRET FLUID STREAMCLUSTER SWAPTIONS AVERAGE

Sp
e

e
d

u
p

 o
ve

r 
1

 li
tt

le

Static threading GTS Task-based

Figure 7: Speedup over 1 little core when running on 4 to 8 cores and 4 of them are big

keeps the big cores busy for most of the time so it maintains the average
power nearly constant.

The reduction in power, results to reduced average energy in the case
of Static threading in configuration 4+4, as shown on the energy chart of
Figure 6. As discussed in Section 5.1, little cores are more energy efficient
than big cores, at the cost of reduced performance. In all the approaches,
at least two extra little cores are needed to reduce energy. In configuration
4+4, energy is reduced by 14% for Static threading, 15% for GTS, and 16%
for Task-based. Consequently, we can state that asymmetry reduces overall
energy consumption.

To see the impact on both performance and energy efficiency we plot the
average EDP on the rightmost chart of Figure 6. In this chart the lower
values are the better. The task-based approach is the one that has the best
performance-energy combination for the asymmetric configurations since it
maintains the lowest EDP for all cases. Static threading manages to reduce
the average EDP by 6% while GTS and task based approaches do so by 24%
and 36% respectively.

Figure 7 shows a more detailed exploration of the performance results. As
Table 1 shows, the applications with barrier synchronization are blackscholes,

16



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 6 8 4 5 6 7 8 4 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8

BLACKSCHOLES BODYTRACK CANNEAL DEDUP FACESIM FERRET FLUID STREAMCLUSTER SWAPTIONS AVERAGE

A
ve

ra
ge

 p
o

w
e

r 
(W

at
ts

)

Static threading GTS Task-based

Figure 8: Average power when running on 4 to 8 cores and 4 of them are big

facesim, fluidanimate, streamcluster and swaptions. For these applications
the most efficient system configuration with the Static threading approach is
the 4+0. Little cores increase execution time due to load imbalance effects.
GTS and task-based approaches overcome these issues by scheduling the load
to the appropriate resources. The differences in the improvement of the task
based and GTS solutions for these applications relies on the nature of each
application and its parallel implementation. For example, swaptions, benefits
more from the task based and GTS approaches than streacmluster. This
is because the task graph of streamcluster presents multiple small parallel
regions that are spawned and synchronized. Due to the multiple synchronization
points, GTS and task-based cannot increase performance of streamcluster
as much. Contrarily, swaptions has less synchronization points, thing that
allows GTS and task-based to exploit asymmetry during its longer parallel
regions.

Applications with more advanced load balancing techniques like pipelined
parallelism (bodytrack, dedup and ferret), benefit of the asymmetric hardware
and balance the load among all the cores. As a result, the performance of
Static threading approach does not degrade when adding little cores as in
the previous set of applications. In the case of bodytrack, GTS reduces
performance by 15% when adding four little cores. We attribute this to
the cost of the thread migration from one core to the other in contrast
to the Static threading approach that does not add such overheads. Task
based approach also avoids these overheads and improves the performance of
bodytrack by efficiently scheduling the tasks among threads.

In the case of dedup, results show more variability. This benchmark
is very I/O intensive and, depending on the type of core that executes
these I/O operations, performance drastically changes. In order to deal with
this problem, a smarter dynamic scheduling mechanism would be required.

17



Finally, canneal does not scale according to its ideal speedup reported on
Figure 2 as it has a memory intensive pattern that limits performance.

Figure 8 shows the average power. The barrier-synchronized applications
(blackscholes, facesim, fluidanimate, streamcluster and swaptions) reduce
power because of their imbalance; since big cores have long idle times with
the Static threading approach, they do not dissipate the same power as GTS
and Task-based. For pipeline-parallel applications, both bodytrack and ferret
maintain nearly the same power levels among the configurations for each
scheduling approach. Dedup is an exception, as the results highly depend on
the core that executes the aforementioned I/O operations. Yet, the effect of
the lower power for Static threading is observed in all the benchmarks and is
because the big cores are under-utilized.

Discussion

Sections 5.1 and 5.2 explored the potential of different scheduling approaches
when used on various workloads on an AMC. It was proven that current
applications are not ready to utilize an AMC and that adding little cores
to an SMC with big cores presents significant challenges for the application,
OS and runtime developers. Little cores increase load imbalance and can
degrade performance as a result.

A dynamic OS scheduler such as GTS helps in mitigating load imbalance,
providing an average performance increase of 10%. Barrier synchronized
applications benefit more from the GTS approach as the applications with
more sophisticated scheduling techniques can utilize the little cores more
efficiently even with Static threading. Task based approach offers the optimal
performance results for all types of workloads. It improves Static threading
by 20% on average by effectively balancing the load among big and little
cores.

In terms of power and energy, the AMC provides significant benefits,
although the SMC with little cores remains the most energy-efficient configuration.
This is attributed to the differences of the designs of the big and little cores;
little cores have been optimized for power efficiency while the design of the
big cores targets higher performance levels at the cost of higher energy
consumption. The answer to the question of which system configuration
provides the best power-performance balance, can be found on the average
EDP chart of Figures 5 and 6, and is the use of the entire 8-core system with
the Task based approach.

18



0

2

4

6

8

10

12

14

4 5 6 7 8 4 5 6 7 8 4 8 4 5 6 7 8 4 5 6 7 8

BLACKSCHOLES BODYTRACK FLUID SWAPTIONS AVERAGE

Sp
e

e
d

u
p

 o
ve

r 
1

 li
tt

le

Static-Threading Loop-static Loop-dynamic Task-based

Figure 9: Speedup over 1 little core when running on 4 to 8 cores and 4 of them are
big. Four different programming models are considered: Static threading using pthreads,
parallel loops with static scheduling (loop static), parallel loops with dynamic scheduling
(loop dynamic), and a task-based solution with dynamic scheduling (task-based).

5.3. Programming Models for AMCs

As we saw in the previous section, current implementations of parallel
applications are not ready to fully take advantage of an AMC system. Applications
that are statically threaded using the low-level pthreads library usually
suffer from load imbalance since their implementations assume that the
work has to be equally distributed among the available cores. Implementing
advanced load balancing schemes, such as work pools, in pthreads requires
a significant development effort.

As an alternative, many parallel applications are implemented using loop-
based scheduling with the OpenMP parallel for directives. In this case, the
runtime library is in charge of scheduling work to the available threads in
the system, either statically or dynamically, as described in Section 3.3.

We compare these solutions to the task-based approach evaluated in
the previous sections. Figure 9 shows the results obtained from running
blackscholes, bodytrack, fluidanimate and swaptions on all the scheduling
models: static threading, static loop scheduling, dynamic loop scheduling
and task-based scheduling. We chose these applications as they are the only
ones implemented using the OpenMP loop directives.

Looking at the average results in Figure 9, we can observe that the task-
based solution achieves the best results when the system is asymmetric. Task-
based improves the static threading by up to 59% on 5 cores, while dynamic

19



loop scheduling improves by up to 54%. The OpenMP version with static
scheduling reaches an average 26% improvement over the static-threading
approach with pthreads. The main reason for this improvement is that the
OpenMP programming model by default allows the OS scheduler to migrate
threads to cores. Thus, in this case, GTS is allowed to move threads from
little to big cores or vice versa, which differs to the static threading that pins
the threads to the cores. Similarly, loop-dynamic allows dynamic iteration
scheduling as well as thread scheduling by GTS.

Taking a closer look to the results we observe that for bodytrack, an
application with sophisticated parallelization techniques, static-threading achieves
better results than loop-static. This is because the static-threading implementation
contains specific parallelization techniques that cannot be completely expressed
using the loop-static method. The loop-dynamic method improves performance
for bodytrack by up to 4% due to the runtime decisions of the iteration
execution, but the optimal solution is offered by the task-based approach that
achieves up to 16% improvement over static-threading, due to the flexibility
in expressing irregular parallelization strategies.

Blackscholes, fluidanimate and swaptions, consist of independent tasks
and are a good fit for loop parallelism. The first observation is that all three
applications benefit from the loop-static approach on an SMC with 4 big
cores. Moreover, the task-based approach is still the optimal for blackscholes
and fluidanimate, reaching up to 83% improvement over static threading for
5 cores, while for swaptions both task-based and loop-dynamic are efficient,
improving the baseline by up to 2.3×. Finally, fluidanimate, that is also
a fine-grained application that consists of 128 500 tasks, also benefits from
the task-based approach. For this benchmark, static and dynamic loop
scheduling achieve similar performance; this is due to the limited parallelism
per parallel region, as the loop-based implementation consists of multiple
barriers between small parallel regions, fact that diminishes the effect of
dynamic vs static scheduling.

6. Related Work

There has been a lot of studies on AMC systems. Some works focus on
the system design, while other works explore the challenges that appear in
efficiently utilizing such a heterogeneous system. Kumar et al [38] present the
idea of an AMC system and proposed a feedback-based way to dynamically
migrate processes among the different cores. To determine the core that

20



most effectively executed a workload, Kumar et al [4] proposed the use of
sampling. This method minimizes the execution time of each single thread
and increases performance. Other studies focused on the pipeline design of
such AMCs and the area that should be devoted to each component in the
system [5, 39]. Other works on AMCs focus on hardware support for critical
section detection [8] or bottleneck detection [11, 12]. These approaches are
orthogonal to the ones evaluated in this paper and could benefit from them
to further improve the final performance of the system.

Process scheduling on AMCs is one of the most challenging topics in this
area of study. Bias scheduling [40] is an OS scheduler that characterizes the
running threads according to their memory or execution intensity. It then
schedules the computation intensive threads to the big cores of the system
while the memory intensive threads to the little cores of the system. The
experimental evaluation is done on Intel Xeon processors and the heterogeneous
system is emulated by changing the configuration of three out of the four
cores of the processor. Cong et al propose the Energy-Efficient [41] OS
scheduler based on energy estimation. The evaluation is performed on the
Intel QuickIA [42] platform that integrates an Intel Xeon with an Atom
processor. Van Craeynest et al. [43] propose the fairness-aware OS scheduler
that focuses on AMC architectures. The performance impact estimation
(PIE) scheduler [44] is based on the impact of MLP and ILP on the overall
CPI and focuses on improving performance. The scheduler predicts the
impact of each different core-type of the system on the MLP, ILP and it
assumes hardware support for CPI. Rodrigues et al [45] propose a thread
scheduling technique that estimates power and performance when deciding
to assign a thread to a specific core of the heterogeneous system. Finally,
Energy-Aware Scheduling (EAS) is an on-going effort in the Linux community
to introduce the energy factor in the OS scheduler [46, 47]. It is based on
performance and power profiling to set performance and power capacities and
let the Linux completely fair scheduler assign slots to processes considering
the different core capacities. EAS is not yet part of the Linux kernel and,
therefore, GTS is the most sophisticated state of the art scheduling method
in production on current big.LITTLE processors.

Similar to OS scheduling approaches there have been many task scheduling
approaches that are directed for utilizing AMCs. The Levelized Min Time [48]
heuristic first clusters the tasks that can execute in parallel (levels) and then
it assigns priorities to them, according to their execution time. The Dynamic
Level Scheduling algorithm [49] assigns the tasks to the processors according

21



to their dynamic level (DL). Heterogeneous Economical Duplication (HED) [50]
duplicates the tasks in order to be executed on more than one cores but it
then removes the redundant duplicates if they do not affect the makespan.
CATS scheduler [51] is designed for AMCs like big.LITTLE and dynamically
schedules the critical tasks to the big cores of the system to increase performance.
Topcuoglu et al proposed the Heterogeneous Earliest Finish Time (HEFT)
scheduler that statically assigns each task to the processor that will finish it
at the earliest possible time. To do so, it keeps records with the task costs
for each processor type. They also proposed the Critical Path on a Processor
(CPOP) algorithm [52] that maintains a list of tasks and statically identifies
and schedules the tasks belonging to the critical path to the processor that
minimizes the sum of their execution times. The Longest Dynamic Critical
Path (LDCP) algorithm [53] identifies the tasks that belong to the critical
path and schedules them with higher priority.

All these works reflect the remarkable research that is taking place on
AMCs. However we consider that their experimental evaluation is limited
for three main reasons: i) The evaluation is done through a simulator or
emulation of an AMC [38, 39, 5, 40, 43, 44, 45, 49, 48, 50, 8, 11, 12]; ii) The
evaluated applications are either random task dependency graph generators
or scientific kernels and micro-benchmarks [49, 52, 53]. iii) Their evaluation
does not focus on power and energy consumption [4, 43, 44, 48, 51].

This paper includes a unique evaluation of performance, power and energy
on a real AMC of real parallel applications. This paper also reflects the
impact of using different big and little core counts which is not present in
previous works [41].

7. Conclusions

This paper presented the first to tour knowledge extensive evaluation of
highly parallel applications on an ARM big.LITTLE AMC system. The goal
of this study was to identify whether such applications are ready to efficiently
utilize an AMC system as well as finding the most appropriate software level
for performing scheduling in order to maintain the load balance of the system.
Quantifying such results requires a big effort in characterizing all parts of the
evaluation including the applications as well as the scheduling approaches.
The main findings of our work are the following:

• Current implementations of parallel applications using pthreads
are not ready to to fully utilize an AMC. Our analysis covered

22



a broad set of applications with different characteristics. From these,
applications with highly sophisticated parallelization strategies such
as parallel pipelines were able to exploit AMCs at the application
level. However, this requires a significant programming effort and is not
applicable to all workloads. The rest of the workloads are data-parallel
applications that when moved to an AMC introduce load imbalance
that limits their performance.

• A highly sophisticated asymmetry-aware OS scheduler is not
the ideal solution to schedule parallel applications on AMCs.
Our results demonstrated that GTS can only slightly improve performance
of data-parallel applications. For applications with sophisticated parallelization
strategies GTS fails to increase performance of the application as it
introduces high overheads due to thread migration.

• Even if it is asymmetry-unaware, the task-based solution is
the most appropriate as it allows dynamic load balancing
and eliminates the thread migration costs. We saw that with a
dynamic scheduling approach on the runtime system we have multiple
benefits. First, it improves performance for all types of applications.
In addition, there are cases where due to the increased programming
flexibility in expressing parallelism, performance is improved (bodytrack).
We further compared task-based solution against loop scheduling approaches
on the runtime system and highlighted the benefits of the task-based
solution.

As future work we aim to explore how the performance ratio between the
types of cores affects the performance of the evaluated scheduling approaches.
It is expected that increasing the performance ratio, the task-based approach
is going to achieve even better results, as the load would be balanced again
by dynamically assigning more work to the big cores. In this study, the
performance-energy trade-off is something that needs to be taken into account
as well.

Acknowledgements

This work has been supported by the RoMoL ERC Advanced Grant
(GA 321253), by the European HiPEAC Network of Excellence, by the
Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P),

23



by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-
1272), and by the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 671697 and No. 779877. M. Moretó
has been partially supported by the Ministry of Economy and Competitiveness
under Ramon y Cajal fellowship number RYC-2016-21104.

24



References

[1] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, K. Hill, Others, Exascale
Computing Study: Technology Challenges in Achieving Exascale
Systems, Tech. rep., University of Notre Dame, CSE Dept. (2008).

[2] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski,
T. F. Wenisch, S. Mahlke, Composite cores: Pushing heterogeneity into
a core, in: MICRO, 2012, pp. 317–328.

[3] Y. Wu, C. Gillan, U. Minhas, S. Barbhuiya, A. Novakovic,
K. Tovletoglou, G. Tzenakis, H. Vandierendonck, G. Karakonstantis,
D. Nikolopoulos, Heterogeneous servers based on programmable cores
and dataflow engines, in: EnESCE, 2017.

[4] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, K. I. Farkas,
Single-isa heterogeneous multi-core architectures for multithreaded
workload performance, in: ISCA, 2004, pp. 64–75.

[5] S. Balakrishnan, R. Rajwar, M. Upton, K. K. Lai, The impact of
performance asymmetry in emerging multicore architectures, in: ISCA,
2005, pp. 506–517.

[6] H. Wong, A. Bracy, E. Schuchman, T. M. Aamodt, J. D. Collins, P. H.
Wang, G. Chinya, A. K. Groen, H. Jiang, H. Wang, Pangaea: A tightly-
coupled ia32 heterogeneous chip multiprocessor, in: PACT, 2008.

[7] M. A. Laurenzano, A. Tiwari, A. Cauble-Chantrenne, A. Jundt, W. A.
Ward, R. Campbell, L. Carrington, Characterization and bottleneck
analysis of a 64-bit armv8 platform, in: ISPASS’16, 2016, pp. 36–45.

[8] M. A. Suleman, O. Mutlu, M. K. Qureshi, Y. N. Patt, Accelerating
critical section execution with asymmetric multi-core architectures, in:
ASPLOS, 2009, pp. 253–264.

[9] A. Fedorova, J. C. Saez, D. Shelepov, M. Prieto, Maximizing Power
Efficiency with Asymmetric Multicore Systems, Communications of the
ACM 52 (12).

[10] P. Greenhalgh, big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7, ARM White Paper.

25



[11] J. A. Joao, M. A. Suleman, O. Mutlu, Y. N. Patt, Bottleneck
identification and scheduling in multithreaded applications, in:
ASPLOS, 2012.

[12] J. A. Joao, M. A. Suleman, O. Mutlu, Y. N. Patt, Utility-based
acceleration of multithreaded applications on asymmetric CMPs, in:
ISCA, 2013, pp. 154–165.

[13] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez,
M. Valero, Supercomputing with Commodity CPUs: Are Mobile SoCs
Ready for HPC?, in: SC, 2013.

[14] X. Zhan, Y. Bao, C. Bienia, K. Li, Parsec3.0: A multicore benchmark
suite with network stacks and splash-2x, SIGARCH Comput. Archit.
News 44 (5) (2017) 1–16.

[15] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, G. Zhang, The design of OpenMP tasks,
IEEE TPDS 20 (3) (2009) 404–418.

[16] OpenMP architecture review board: Application program interface
(2013).

[17] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell,
X. Martorell, J. Planas, Ompss: a Proposal for Programming
Heterogeneous Multi-Core Architectures., Parallel Processing Letters
21.

[18] B. Ren, S. Krishnamoorthy, K. Agrawal, M. Kulkarni, Exploiting vector
and multicore parallelism for recursive, data- and task-parallel programs,
in: PPoPP ’17, New York, NY, USA, 2017, pp. 117–130.

[19] M. Bauer, S. Treichler, E. Slaughter, A. Aiken, Legion: Expressing
locality and independence with logical regions, in: SC, 2012.

[20] K. Dichev, H. Jordan, K. Tovletoglou, T. Heller, D. Nikolopoulos,
G. Karakonstantis, C. Gillan, Dependency-aware rollback and
checkpoint-restart for distributed task-based runtimes, 2017.

[21] H. Vandierendonck, G. Tzenakis, D. S. Nikolopoulos, A unified scheduler
for recursive and task dataflow parallelism, in: PACT, 2011.

26



[22] H. Vandierendonck, K. Chronaki, D. S. Nikolopoulos, Deterministic
scale-free pipeline parallelism with hyperqueues, in: SC, 2013.

[23] X. Tang, A. Pattnaik, H. Jiang, O. Kayiran, A. Jog, S. Pai, M. Ibrahim,
M. T. Kandemir, C. R. Das, Controlled kernel launch for dynamic
parallelism in gpus, in: HPCA’17, 2017, pp. 649–660.

[24] H. Chung, M. Kang, H.-D. Cho, Heterogeneous Multi-Processing
Solution of Exynos 5 Octa with ARM big.LITTLE Technology, Tech.
rep., Samsung Electronics Co., Ltd. (2013).

[25] L. Gwennap, Cortex-A75 Has DynamIQ Debut, Microprocessor Report
(2017).

[26] ARM, Juno ARM Development Platform.

[27] K. Krewell, Cortex-A53 is ARM’s next little thing (2012).
URL www.mpronline.com

[28] J. Bolaria, Cortex-A57 extends ARM’s reach (2012).
URL www.mpronline.com

[29] ARM, Cortex-A7 MPCore, revision: r0p3 (2011).
URL http://infocenter.arm.com/help/topic/com.arm.doc.

ddi0464d/DDI0464D_cortex_a7_mpcore_r0p3_trm.pdf

[30] J. Turley, Cortex-A15 eagle flies the coop (2011).
URL www.mpronline.com

[31] ARM, Cortex-A15 technical reference manual, revision: r2p0 (2011).
URL http://infocenter.arm.com/help/topic/com.arm.doc.

ddi0438c/DDI0438C_cortex_a15_r2p0_trm.pdf

[32] T. Cao, W. Huang, Y. He, M. Kondo, Cooling-aware job scheduling and
node allocation for overprovisioned hpc systems, in: IPDPS’17, 2017,
pp. 728–737.

[33] Mathieu Poirier, In Kernel Switcher: A solution to support ARM’s new
big.LITTLE technology, Embedded Linux Conference 2013 (2013).

27



[34] S. Zuckerman, J. Suetterlein, R. Knauerhase, G. R. Gao, Using a
“Codelet” program execution model for exascale machines: Position
paper, in: EXADAPT, 2011.

[35] C. Bienia, Benchmarking modern multiprocessors, Ph.D. thesis,
Princeton University (2011).

[36] D. Chasapis, M. Casas, M. Moreto, R. Vidal, E. Ayguade, J. Labarta,
M. Valero, PARSECSs: Evaluating the Impact of Task Parallelism in
the PARSEC Benchmark Suite, TACO.

[37] B. Jeff, big.LITTLE Technology Moves Towards Fully Heterogeneous
Global Task Scheduling, ARM White Paper.

[38] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, D. M. Tullsen,
Single-isa heterogeneous multi-core architectures: The potential for
processor power reduction, in: MICRO, 2003, pp. 81–92.

[39] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, E. Ayguade,
Performance, power efficiency and scalability of asymmetric cluster chip
multiprocessors, IEEE Comput. Archit. Lett. 5 (1) (2006) 4–17.

[40] D. Koufaty, D. Reddy, S. Hahn, Bias scheduling in heterogeneous multi-
core architectures, in: EuroSys, 2010, pp. 125–138.

[41] J. Cong, B. Yuan, Energy-efficient scheduling on heterogeneous multi-
core architectures, in: ISLPED, 2012, pp. 345–350.

[42] N. Chitlur, G. Srinivasa, S. Hahn, P. Gupta, D. Reddy, D. Koufaty,
P. Brett, A. Prabhakaran, L. Zhao, N. Ijih, S. Subhaschandra, S. Grover,
X. Jiang, R. Iyer, Quickia: Exploring heterogeneous architectures on real
prototypes, in: HPCA, 2012, pp. 1–8.

[43] K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, L. Eeckhout,
Fairness-aware Scheduling on single-ISA Heterogeneous Multi-cores, in:
PACT, 2013.

[44] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, J. Emer,
Scheduling heterogeneous multi-cores through performance impact
estimation (pie), in: ISCA, 2012, pp. 213–224.

28



[45] R. Rodrigues, A. Annamalai, I. Koren, S. Kundu, Scalable thread
scheduling in asymmetric multicores for power efficiency, in: SBAC-
PAD, 2012, pp. 59–66.

[46] M. Anderson, Scheduler Options in big.LITTLE Android Platforms.

[47] Ian Rickards and Amit Kucheria, Energy Aware Scheduling (EAS)
progress update, https://www.linaro.org/blog/core-dump/energy-
aware-scheduling-eas-progress-update (2015).

[48] M. A. Iverson, F. Özgüner, G. J. Follen, Parallelizing Existing
Applications in a Distributed Heterogeneous Environment, in: HCW,
1995.

[49] G. Sih, E. Lee, A Compile-Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architectures,
IEEE TPDS 4 (2).

[50] A. Agarwal, P. Kumar, Economical Duplication Based Task Scheduling
for Heterogeneous and Homogeneous Computing Systems, in: IACC,
2009.

[51] K. Chronaki, A. Rico, R. M. Badia, E. Ayguadé, J. Labarta,
M. Valero, Criticality-aware dynamic task scheduling for heterogeneous
architectures, in: ICS, 2015, pp. 329–338.

[52] H. Topcuoglu, S. Hariri, M.-Y. Wu, Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing, IEEE
TPDS 13 (3).

[53] M. Daoud, N. Kharma, Efficient Compile-Time Task Scheduling for
Heterogeneous Distributed Computing Systems, in: ICPADS, 2006.

29




