17 research outputs found

    Emerging physical unclonable functions with nanotechnology

    Get PDF
    Physical unclonable functions (PUFs) are increasingly used for authentication and identification applications as well as the cryptographic key generation. An important feature of a PUF is the reliance on minute random variations in the fabricated hardware to derive a trusted random key. Currently, most PUF designs focus on exploiting process variations intrinsic to the CMOS technology. In recent years, progress in emerging nanoelectronic devices has demonstrated an increase in variation as a consequence of scaling down to the nanoregion. To date, emerging PUFs with nanotechnology have not been fully established, but they are expected to emerge. Initial research in this area aims to provide security primitives for emerging integrated circuits with nanotechnology. In this paper, we review emerging nanotechnology-based PUFs

    Emerging physical unclonable functions with nanotechnology

    Get PDF
    Physical unclonable functions (PUFs) are increasingly used for authentication and identification applications as well as the cryptographic key generation. An important feature of a PUF is the reliance on minute random variations in the fabricated hardware to derive a trusted random key. Currently, most PUF designs focus on exploiting process variations intrinsic to the CMOS technology. In recent years, progress in emerging nanoelectronic devices has demonstrated an increase in variation as a consequence of scaling down to the nanoregion. To date, emerging PUFs with nanotechnology have not been fully established, but they are expected to emerge. Initial research in this area aims to provide security primitives for emerging integrated circuits with nanotechnology. In this paper, we review emerging nanotechnology-based PUFs

    Reliability And Computing Techniques For Nano Switching Arrays

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2015Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2015Ticari ve uygulama yönü ele alındığında, yukarıdan aşağıya litografik entegre-devre üretimi limitine ulaşmaktadır. Moore Yasası'nın öngörüsü geçerliliğini sürdürse de yeni ortaya çıkan ve alternatif teknolojiler göz önünde bulundurulmalıdır. En güncel Yarıiletkenler için Uluslararası Teknoloji Yol Haritası raporlarında da belirtildiği gibi alternatif teknoloji arayışları devam etmektedir.  Özellikle nano boyuta inildiğinde ortaya çıkan sızıntı, hatalı üretimin yüksekliği gibi transistor sorunları, CMOS teknolojisinin üstesinden gelmesi gereken zorlukların en önemlileridir. Bahsedilen konular bu alanlarda çalışan araştırmacıları hesaplama, hafıza gibi devre yapılarında kullanılmak üzere farklı yaklaşımlar ve mimariler tasarlamaya itmiştir. CMOS teknolojisi göz önünde bulundurulduğunda yeni ortaya çıkan teknolojiler fiziksel açıdan CMOS'a benzer ve benzer olmayan şeklinde iki kategoriye ayrılabilir.  Fiziksel açıdan CMOS teknolojisine benzer yapılar, silikon nano-teller ve karbon nano-tüpler kullanarak devre elemanlarını üretir. Çalışmada odaklanılan ızgara tabanlı nano dizinler bu yaklaşımın bir örneğidir.  Fiziksel açıdan CMOS teknolojisine benzer olmayan yapılar, kuantum hücresel otomat, spintronik, tek elektron transistörleri, moleküler elektronik, DNA ve biyolojik hesaplamadır.  Yeni ortaya çıkan teknolojilerin üretim teknikleri, yukarıdan aşağıya veya aşağıdan yukarıya yaklaşımlar şeklinde iki ana kategori altında toplanabilir.  Yukarıdan aşağıya teknikler klasik litografi üretiminin iyileştirilmesi şeklinde ilerlemektedir ve marjinal fayda gün geçtikçe azalmaktadır.  Aşağıdan yukarıya teknikler ise devre elemanlarının tek başına üretilip daha sonra montajlanmasına dayanır. Bu yaklaşımın avantajı yüksek derecede düzenli yapılar oluşturmaya elverişli olmasına rağmen elde edilen elemanların geleneksel üretim paradigmasına göre yüksek düzeyde hatalı eleman içermesidir. Tezde odaklanılan teknoloji ızgara yapısına benzer nano anahtarlamalı dizinlerdir.   Araştırmacıların gösterdiği gibi ızgara şeklinde üst üste yerleştirilmiş nano-tellerin kesişim (jonksiyon) noktaları yarı iletkenlik özelliklerine göre direnç, diyot veya FET benzeri yapılar ortaya çıkarmıştır. Bu özellikten yararlanan ızgara tabanlı nano anahtarlamalı dizinler, CMOS teknolojisinin eksikliklerinin üstesinden gelmeye veya eksiklerini tamamlayıcı bir enstrüman olma konusunda olası bir adaydır. Literatürdeki çalışmaların yoğunluğu bu iddiayı destekler niteliktedir.  Nano dizinlerler hesaplama gerçekleştirmek için ortaya atılan farklı mimariler ayrıntılı bir şekilde incelenmiş, aralarında farklar ve benzerlikler yapıya özgü karakteristik özellikleri göz önünde bulundurularak açıklanmıştır. Teorik bir şekilde modellenmiş yapıların yanı sıra fiziksel olarak gerçeklenmiş işlemci ve sonlu durum makineleri de anlatılmıştır. Tezin gövdesini, bu ızgara yapıların lojik sentezinde ve hesaplamada kullanılması, lojik fonksiyonların girdilerinin dağılımlarının belirlenmesi ve yapıda oluşan hatalara rağmen lojik fonksiyonun verilen ızgara yapıyla gerçeklenmesi oluşturur. Ayrıca, üretim sürecinden sonra ortaya çıkan geçici hataların devre üzerindeki etkileri ve güvenilirlik analizi de göz önünde bulundurulmuştur.   Nano üretim doğası gereği rasgele süreçler içerir ve üretilen yapılar hatalı elemanlar içermeye yatkındır. Tezin odak noktası üretimde oluşan hatalar sonucu çalışmayan anahtarların sürece nasıl dahil edileceğidir. Hem nano-tellerin üretilmesi hem de istenilen yapıların oluşturulması için gerekli teknoloji oldukça pahalı ve zaman alıcı olduğundan son ürünün hatalı olması sonucu ıskartaya çıkması söz konusu değildir. Bu yüzden hatalı ürünlerin dolaşıma yeniden sokulması gerekir.  Üretim öncesi ve sonrası ortaya çıkan hatalar iki ana başlık altında incelenebilir: kalıcı ve geçici hatalar. Bu hata çeşitleri ayrıca üç alt başlığa ayrılır: açık-durumda takılı kalmış, kapalı-durumda takılı kalmış hatalar ve nano-tel kırılmaları. Nano-tel kırılmalarının devreye etkilerinin büyüklüğü yüzünden araştırmanın içeriğine dâhil edilmemiştir. Kalıcı hataların telafisi için sunulan algoritma lojik fonksiyonu ve hatalı nano-dizini incelemek için matris modelini kullanmaktadır. Algoritmanın amacı iki matris arasında bir eşleme bulmaktır. Algoritmanın yaralandığı buluşsal (\textit{Heuristic}) yaklaşımlar indeks sıralaması, geri-izleme ve tek tek eleman çarpımlı matris çarpımı teknikleridir.  İndeks sıralaması, lojik ve nano-dizin matrisine eşlenmesi gereken elemanların sayılarına göre satır ve sütun değişimleri uygular. Geri-izleme önceden eşlenmiş bölümlerin takibini ve yeniden eşlemeye sokulmasını düzenler. Tek tek eleman çarpımlı matris çarpımı iki matris arasında eşleme olup olmadığını ortaya çıkarır. Kalıcı hataların telafisi için izlenen yol, lojik sentez yaparken hatalardan kaçınılması veya hataların kullanılması şeklindedir. Bu çalışmada hatalar lojik sentez işlemine dahil edilmiş bir başka ifadeyle kullanılmıştır. Deneysel sonuçlar için anahtar görevi gören kesişim noktalarına rasgele hata atamaları yapılmıştır. Daha sonra standart bençmark devrelerinin, hatalı dizinle gerçeklenmesi veya gereçeklenememesi incelenmiştir.  Sunulan algoritma tüm olasılıkları göz önünde bulunduran kaba kuvvet algoritmasıyla karşılaştırıldığında  \%99 doğruluk oranı elde edilmiştir.  Ek olarak algoritmanın her bençmark fonksiyonu için ihtiyaç duyduğu çalışma süreleri de deneysel sonuçlar kısmında belirtilmiş ve diğer algoritmalarla karşılaştırmaları sunulmuştur. Üretim sonrası gerçekleştirilen lojik tasarım, hatalı yapıların yol açtığı bireysel düzenlemeden ötürü tasarım algoritmalarının koşma sürelerine verimlilik açısından yakından bağlıdır. Bu yüzden yüksek performansa sahip hızlı çalışma süreleri tasarım açısından göz ardı edilemeyecek önemdedir.    Geçici hatalar lojik fonksiyonun nano dizinle gerçeklenip üretilmesinden sonra ortaya çıktığı için hataların etkileri incelenmiştir. Açık-durumda takılı kalmış ve kapalı-durumda takılı kalmış hataların devreye olan etkileri farklıdır.  Açık-durumda takılı kalmış hatalar devrede bulunan girdiyi devre dışı bırakırken, kapalı-durumda takılı kalmış hatalar devreye yeni bir girdi eklemektedir. Çalışmada kullanılan lojik fonksiyonlar minimum formda yazıldığı için açık-durumda takılı kalmış hataların telafisi mümkün değildir. Herhangi bir girdinin devre dışı bırakılması minimum formda işlem yapıldığı için fonksiyondan alınan çıktıyı değiştirir.   Kapalı-durumda takılı kalmış hataların bazıları fonksiyonun karakterine göre telafi edilebilir. Nano dizinle elde edilmiş lojik fonksiyona denk fonksiyonların bulunması, telafi edilebilir hataların yerini göstermektedir. Çalışmada sunulan metot verilen bir lojik fonksiyona denk fonksiyonların cebirsel işlemlerle bulunmasının içerir. Bu şekilde telafi edilebilen hatalar belirlenmiş ve güvenilirlik analizi yapılmıştır.  Deneysel sonuçlar kısmında sunulan algoritmanın diğer algoritmalarla karşılaştırması verilmiş ve çalışma süreleri incelenmiştir. Ayrıca verilen lojik fonksiyonun gerçeklenmesi için verilen nano dizinin boyutunun algoritmanın çalışma süresine etkileri gösterilmiştir. Lojik fonksiyonun boyutundan daha büyük nano dizinlerle gerçeklemenin çalışma süresinin önemli seviyede etkilediği görülmüştür. Algoritmada sunulan sıralama yaklaşımının etkinliği yapılan benzetim sonuçlarıyla açıklanmıştır. Nano-dizin boyutunun algoritmanın çalışma süresi üzerindeki etkisi farklı boyutların göz önünde bulundurulmasıyla gösterilmiştir.Lithographic top-down based production of integrated circuits are approaching the limits in a manner of both feasibility and commercial aspects. In spite of the fact that, Moore's Law keeps holding, emerging technologies need to be considered. Crossbar based nano switching arrays are shown to be a likely candidate to overcome shortcomings of current CMOS based paradigm or coexist as a complementary instrument. Abundant research papers in literature help to support this claim. Nano-arrays are produced with placing a group of nanowires  aligned parallel to each other on another group of nanowires orthogonally. Crosspoints present between top and bottom nanowires act as a switching device. According to the preference, switches might show resistor, diode or FET like characteristics. Computing with nano-arrays are similar to the Programmable Logic Arrays (PLA). Every switch can be appointed to the corresponding logic element found in the boolean function which is realized with the crossbar in question. Nevertheless, the nature of nano-fabrication contains random elements and devices obtained from the process are prone to have faulty components. As a result, realization of target logic functions with nano-arrays differ from PLA due to the number of considerable faulty components.  Since discarding faulty devices would not be practical and sustainable, fault tolerance and reliability of crossbar based nano switching arrays are extensively studied in this thesis.  Most common faults occur in described switches can be categorized under two main titles which are permanent and transient. Also, two categories have subtitles such as stuck-open, stuck-closed and nanowire break-downs. Because of the immense effect of nanowire break-downs, they are excluded from the body of study.  Permanent faults are taken into account by independently assigning stuck-open and stuck-closed defect probabilities into crosspoints. After obtaining defective array, following step is determining whether there is a valid mapping of a given logic function on defective array. In the presence of permanent faults, a heuristic algorithm using index sorting, backtracking and matrix multiplication techniques is proposed. The algorithm’s effectiveness is demonstrated on standard benchmark circuits that shows 99\% accuracy in accordance with the results of an exhaustive search algorithm. Runtime and success rate of algorithm is presented with experimental results of simulation using standard industry benchmark circuits. In the presence of transient faults, tolerance analysis is performed by recursively constructing equivalent sets of implemented logic functions. It is demonstrated that transient faults causing OFF-to-ON state changes in crosspoints do not necessarily cause the array to produce an incorrect output; they can be discarded. Difference between the assumed and the actual fault tolerance performances, which is obtained with the proposed algebraic method, is presented with standard benchmark circuits for several fault rates.Yüksek LisansM.Sc

    Reliability-aware circuit design to mitigate impact of device defects and variability in emerging memristor-based applications

    Get PDF
    In the last decades, semiconductor industry has fostered a fast downscale in technology, propelling the large scale integration of CMOS-based systems. The benefits in miniaturization are numerous, highlighting faster switching frequency, lower voltage supply and higher device density. However, this aggressive scaling trend it has not been without challenges, such as leakage currents, yield reduction or the increase in the overall system power dissipation. New materials, changes in the device structures and new architectures are key to keep the miniaturization trend. It is foreseen that 2D integration will eventually come to an insurmountable physical and economic limit, in which new strategic directions are required, such as the development of new device structures, 3D architectures or heterogeneous systems that takes advantage of the best of different technologies, both the ones already consolidated as well as emergent ones that provide performance and efficiency improvements in applications. In this context, memristor arises as one of several candidates in the race to find suitable emergent devices. Memristor, a blend of the words memory and resistor, is a passive device postulated by Leon Chua in 1971. In contrast with the other fundamental passive elements, memristors have the distinctive feature of modifying their resistance according to the charge that passes through these devices, and remaining unaltered when charge no longer flows. Although when it appeared no physical device implementation was acknowledged, HP Labs claimed in 2008 the manufacture of the first real memristor. This milestone triggered an unexpectedly high research activity about memristors, both in searching new materials and structures as well as in potential applications. Nowadays, memristors are not only appreciated in memory systems by their nonvolatile storage properties, but in many other fields, such as digital computing, signal processing circuits, or non-conventional applications like neuromorphic computing or chaotic circuits. In spite of their promising features, memristors show a primarily downside: they show significant device variation and limited lifetime due degradation compared with other alternatives. This Thesis explores the challenges that memristor variation and malfunction imposes in potential applications. The main goal is to propose circuits and strategies that either avoid reliability problems or take advantage of them. Throughout a collection of scenarios in which reliability issues are present, their impact is studied by means of simulations. This thesis is contextualized and their objectives are exposed in Chapter 1. In Chapter 2 the memristor is introduced, at both conceptual and experimental levels, and different compact levels are presented to be later used in simulations. Chapter 3 deepens in the phenomena that causes the lack of reliability in memristors, and models that include these defects in simulations are provided. The rest of the Thesis covers different applications. Therefore, Chapter 4 exhibits nonvolatile memory systems, and specifically an online test method for faulty cells. Digital computing is presented in Chapter 5, where a solution for the yield reduction in logic operations due to memristors variability is proposed. Lastly, Chapter 6 reviews applications in the analog domain, and it focuses in the exploitation of results observed in faulty memristor-based interconnect mediums for chaotic systems synchronization purposes. Finally, the Thesis concludes in Chapter 7 along with perspectives about future work.Este trabajo desarrolla un novedoso dispositivo condensador basado en el uso de la nanotecnología. El dispositivo parte del concepto existente de metal-aislador-metal (MIM), pero en lugar de una capa aislante continua, se utilizan nanopartículas dieléctricas. Las nanopartículas son principalmente de óxido de silicio (sílice) y poliestireno (PS) y los valores de diámetro son 255nm y 295nm respectivamente. Las nanopartículas contribuyen a una alta relación superficie/volumen y están fácilmente disponibles a bajo costo. La tecnología de depósito desarrollada en este trabajo se basa en la técnica de electrospray, que es una tecnología de fabricación ascendente (bottom-up) que permite el procesamiento por lotes y logra un buen compromiso entre una gran superficie y un bajo tiempo de depósito. Con el objetivo de aumentar la superficie de depósito, la configuración de electrospray ha sido ajustada para permitir áreas de depósito de 1cm2 a 25cm2. El dispositivo fabricado, los llamados condensadores de metal aislante de nanopartículas (NP-MIM) ofrecen valores de capacidad más altos que un condensador convencional similar con una capa aislante continua. En el caso de los NP-MIM de sílice, se alcanza un factor de hasta 1000 de mejora de la capacidad, mientras que los NP-MIM de poliestireno exhibe una ganancia de capacidad en el rango de 11. Además, los NP-MIM de sílice muestran comportamientos capacitivos en específicos rangos de frecuencias que depende de la humedad y el grosor de la capa de nanopartículas, mientras que los NP-MIM de poliestireno siempre mantienen su comportamiento capacitivo. Los dispositivos fabricados se han caracterizado mediante medidas de microscopía electrónica de barrido (SEM) complementadas con perforaciones de haz de iones focalizados (FIB) para caracterizar la topografía de los NP-MIMs. Los dispositivos también se han caracterizado por medidas de espectroscopia de impedancia, a diferentes temperaturas y humedades. El origen de la capacitancia aumentada está asociado en parte a la humedad en las interfaces de las nanopartículas. Se ha desarrollado un modelo de un circuito basado en elementos distribuidos para ajustar y predecir el comportamiento eléctrico de los NP-MIMs. En resumen, esta tesis muestra el diseño, fabricación, caracterización y modelización de un nuevo y prometedor condensador nanopartículas metal-aislante-metal que puede abrir el camino al desarrollo de una nueva tecnología de supercondensadores MIM

    Reliability-aware circuit design to mitigate impact of device defects and variability in emerging memristor-based applications

    Get PDF
    In the last decades, semiconductor industry has fostered a fast downscale in technology, propelling the large scale integration of CMOS-based systems. The benefits in miniaturization are numerous, highlighting faster switching frequency, lower voltage supply and higher device density. However, this aggressive scaling trend it has not been without challenges, such as leakage currents, yield reduction or the increase in the overall system power dissipation. New materials, changes in the device structures and new architectures are key to keep the miniaturization trend. It is foreseen that 2D integration will eventually come to an insurmountable physical and economic limit, in which new strategic directions are required, such as the development of new device structures, 3D architectures or heterogeneous systems that takes advantage of the best of different technologies, both the ones already consolidated as well as emergent ones that provide performance and efficiency improvements in applications. In this context, memristor arises as one of several candidates in the race to find suitable emergent devices. Memristor, a blend of the words memory and resistor, is a passive device postulated by Leon Chua in 1971. In contrast with the other fundamental passive elements, memristors have the distinctive feature of modifying their resistance according to the charge that passes through these devices, and remaining unaltered when charge no longer flows. Although when it appeared no physical device implementation was acknowledged, HP Labs claimed in 2008 the manufacture of the first real memristor. This milestone triggered an unexpectedly high research activity about memristors, both in searching new materials and structures as well as in potential applications. Nowadays, memristors are not only appreciated in memory systems by their nonvolatile storage properties, but in many other fields, such as digital computing, signal processing circuits, or non-conventional applications like neuromorphic computing or chaotic circuits. In spite of their promising features, memristors show a primarily downside: they show significant device variation and limited lifetime due degradation compared with other alternatives. This Thesis explores the challenges that memristor variation and malfunction imposes in potential applications. The main goal is to propose circuits and strategies that either avoid reliability problems or take advantage of them. Throughout a collection of scenarios in which reliability issues are present, their impact is studied by means of simulations. This thesis is contextualized and their objectives are exposed in Chapter 1. In Chapter 2 the memristor is introduced, at both conceptual and experimental levels, and different compact levels are presented to be later used in simulations. Chapter 3 deepens in the phenomena that causes the lack of reliability in memristors, and models that include these defects in simulations are provided. The rest of the Thesis covers different applications. Therefore, Chapter 4 exhibits nonvolatile memory systems, and specifically an online test method for faulty cells. Digital computing is presented in Chapter 5, where a solution for the yield reduction in logic operations due to memristors variability is proposed. Lastly, Chapter 6 reviews applications in the analog domain, and it focuses in the exploitation of results observed in faulty memristor-based interconnect mediums for chaotic systems synchronization purposes. Finally, the Thesis concludes in Chapter 7 along with perspectives about future work.Este trabajo desarrolla un novedoso dispositivo condensador basado en el uso de la nanotecnología. El dispositivo parte del concepto existente de metal-aislador-metal (MIM), pero en lugar de una capa aislante continua, se utilizan nanopartículas dieléctricas. Las nanopartículas son principalmente de óxido de silicio (sílice) y poliestireno (PS) y los valores de diámetro son 255nm y 295nm respectivamente. Las nanopartículas contribuyen a una alta relación superficie/volumen y están fácilmente disponibles a bajo costo. La tecnología de depósito desarrollada en este trabajo se basa en la técnica de electrospray, que es una tecnología de fabricación ascendente (bottom-up) que permite el procesamiento por lotes y logra un buen compromiso entre una gran superficie y un bajo tiempo de depósito. Con el objetivo de aumentar la superficie de depósito, la configuración de electrospray ha sido ajustada para permitir áreas de depósito de 1cm2 a 25cm2. El dispositivo fabricado, los llamados condensadores de metal aislante de nanopartículas (NP-MIM) ofrecen valores de capacidad más altos que un condensador convencional similar con una capa aislante continua. En el caso de los NP-MIM de sílice, se alcanza un factor de hasta 1000 de mejora de la capacidad, mientras que los NP-MIM de poliestireno exhibe una ganancia de capacidad en el rango de 11. Además, los NP-MIM de sílice muestran comportamientos capacitivos en específicos rangos de frecuencias que depende de la humedad y el grosor de la capa de nanopartículas, mientras que los NP-MIM de poliestireno siempre mantienen su comportamiento capacitivo. Los dispositivos fabricados se han caracterizado mediante medidas de microscopía electrónica de barrido (SEM) complementadas con perforaciones de haz de iones focalizados (FIB) para caracterizar la topografía de los NP-MIMs. Los dispositivos también se han caracterizado por medidas de espectroscopia de impedancia, a diferentes temperaturas y humedades. El origen de la capacitancia aumentada está asociado en parte a la humedad en las interfaces de las nanopartículas. Se ha desarrollado un modelo de un circuito basado en elementos distribuidos para ajustar y predecir el comportamiento eléctrico de los NP-MIMs. En resumen, esta tesis muestra el diseño, fabricación, caracterización y modelización de un nuevo y prometedor condensador nanopartículas metal-aislante-metal que puede abrir el camino al desarrollo de una nueva tecnología de supercondensadores MIM

    Reliability-aware circuit design to mitigate impact of device defects and variability in emerging memristor-based applications

    Get PDF
    In the last decades, semiconductor industry has fostered a fast downscale in technology, propelling the large scale integration of CMOS-based systems. The benefits in miniaturization are numerous, highlighting faster switching frequency, lower voltage supply and higher device density. However, this aggressive scaling trend it has not been without challenges, such as leakage currents, yield reduction or the increase in the overall system power dissipation. New materials, changes in the device structures and new architectures are key to keep the miniaturization trend. It is foreseen that 2D integration will eventually come to an insurmountable physical and economic limit, in which new strategic directions are required, such as the development of new device structures, 3D architectures or heterogeneous systems that takes advantage of the best of different technologies, both the ones already consolidated as well as emergent ones that provide performance and efficiency improvements in applications. In this context, memristor arises as one of several candidates in the race to find suitable emergent devices. Memristor, a blend of the words memory and resistor, is a passive device postulated by Leon Chua in 1971. In contrast with the other fundamental passive elements, memristors have the distinctive feature of modifying their resistance according to the charge that passes through these devices, and remaining unaltered when charge no longer flows. Although when it appeared no physical device implementation was acknowledged, HP Labs claimed in 2008 the manufacture of the first real memristor. This milestone triggered an unexpectedly high research activity about memristors, both in searching new materials and structures as well as in potential applications. Nowadays, memristors are not only appreciated in memory systems by their nonvolatile storage properties, but in many other fields, such as digital computing, signal processing circuits, or non-conventional applications like neuromorphic computing or chaotic circuits. In spite of their promising features, memristors show a primarily downside: they show significant device variation and limited lifetime due degradation compared with other alternatives. This Thesis explores the challenges that memristor variation and malfunction imposes in potential applications. The main goal is to propose circuits and strategies that either avoid reliability problems or take advantage of them. Throughout a collection of scenarios in which reliability issues are present, their impact is studied by means of simulations. This thesis is contextualized and their objectives are exposed in Chapter 1. In Chapter 2 the memristor is introduced, at both conceptual and experimental levels, and different compact levels are presented to be later used in simulations. Chapter 3 deepens in the phenomena that causes the lack of reliability in memristors, and models that include these defects in simulations are provided. The rest of the Thesis covers different applications. Therefore, Chapter 4 exhibits nonvolatile memory systems, and specifically an online test method for faulty cells. Digital computing is presented in Chapter 5, where a solution for the yield reduction in logic operations due to memristors variability is proposed. Lastly, Chapter 6 reviews applications in the analog domain, and it focuses in the exploitation of results observed in faulty memristor-based interconnect mediums for chaotic systems synchronization purposes. Finally, the Thesis concludes in Chapter 7 along with perspectives about future work.Este trabajo desarrolla un novedoso dispositivo condensador basado en el uso de la nanotecnología. El dispositivo parte del concepto existente de metal-aislador-metal (MIM), pero en lugar de una capa aislante continua, se utilizan nanopartículas dieléctricas. Las nanopartículas son principalmente de óxido de silicio (sílice) y poliestireno (PS) y los valores de diámetro son 255nm y 295nm respectivamente. Las nanopartículas contribuyen a una alta relación superficie/volumen y están fácilmente disponibles a bajo costo. La tecnología de depósito desarrollada en este trabajo se basa en la técnica de electrospray, que es una tecnología de fabricación ascendente (bottom-up) que permite el procesamiento por lotes y logra un buen compromiso entre una gran superficie y un bajo tiempo de depósito. Con el objetivo de aumentar la superficie de depósito, la configuración de electrospray ha sido ajustada para permitir áreas de depósito de 1cm2 a 25cm2. El dispositivo fabricado, los llamados condensadores de metal aislante de nanopartículas (NP-MIM) ofrecen valores de capacidad más altos que un condensador convencional similar con una capa aislante continua. En el caso de los NP-MIM de sílice, se alcanza un factor de hasta 1000 de mejora de la capacidad, mientras que los NP-MIM de poliestireno exhibe una ganancia de capacidad en el rango de 11. Además, los NP-MIM de sílice muestran comportamientos capacitivos en específicos rangos de frecuencias que depende de la humedad y el grosor de la capa de nanopartículas, mientras que los NP-MIM de poliestireno siempre mantienen su comportamiento capacitivo. Los dispositivos fabricados se han caracterizado mediante medidas de microscopía electrónica de barrido (SEM) complementadas con perforaciones de haz de iones focalizados (FIB) para caracterizar la topografía de los NP-MIMs. Los dispositivos también se han caracterizado por medidas de espectroscopia de impedancia, a diferentes temperaturas y humedades. El origen de la capacitancia aumentada está asociado en parte a la humedad en las interfaces de las nanopartículas. Se ha desarrollado un modelo de un circuito basado en elementos distribuidos para ajustar y predecir el comportamiento eléctrico de los NP-MIMs. En resumen, esta tesis muestra el diseño, fabricación, caracterización y modelización de un nuevo y prometedor condensador nanopartículas metal-aislante-metal que puede abrir el camino al desarrollo de una nueva tecnología de supercondensadores MIM.Postprint (published version

    Stochastic Memory Devices for Security and Computing

    Get PDF
    With the widespread use of mobile computing and internet of things, secured communication and chip authentication have become extremely important. Hardware-based security concepts generally provide the best performance in terms of a good standard of security, low power consumption, and large-area density. In these concepts, the stochastic properties of nanoscale devices, such as the physical and geometrical variations of the process, are harnessed for true random number generators (TRNGs) and physical unclonable functions (PUFs). Emerging memory devices, such as resistive-switching memory (RRAM), phase-change memory (PCM), and spin-transfer torque magnetic memory (STT-MRAM), rely on a unique combination of physical mechanisms for transport and switching, thus appear to be an ideal source of entropy for TRNGs and PUFs. An overview of stochastic phenomena in memory devices and their use for developing security and computing primitives is provided. First, a broad classification of methods to generate true random numbers via the stochastic properties of nanoscale devices is presented. Then, practical implementations of stochastic TRNGs, such as hardware security and stochastic computing, are shown. Finally, future challenges to stochastic memory development are discussed

    Towards Oxide Electronics:a Roadmap

    Get PDF
    At the end of a rush lasting over half a century, in which CMOS technology has been experiencing a constant and breathtaking increase of device speed and density, Moore's law is approaching the insurmountable barrier given by the ultimate atomic nature of matter. A major challenge for 21st century scientists is finding novel strategies, concepts and materials for replacing silicon-based CMOS semiconductor technologies and guaranteeing a continued and steady technological progress in next decades. Among the materials classes candidate to contribute to this momentous challenge, oxide films and heterostructures are a particularly appealing hunting ground. The vastity, intended in pure chemical terms, of this class of compounds, the complexity of their correlated behaviour, and the wealth of functional properties they display, has already made these systems the subject of choice, worldwide, of a strongly networked, dynamic and interdisciplinary research community. Oxide science and technology has been the target of a wide four-year project, named Towards Oxide-Based Electronics (TO-BE), that has been recently running in Europe and has involved as participants several hundred scientists from 29 EU countries. In this review and perspective paper, published as a final deliverable of the TO-BE Action, the opportunities of oxides as future electronic materials for Information and Communication Technologies ICT and Energy are discussed. The paper is organized as a set of contributions, all selected and ordered as individual building blocks of a wider general scheme. After a brief preface by the editors and an introductory contribution, two sections follow. The first is mainly devoted to providing a perspective on the latest theoretical and experimental methods that are employed to investigate oxides and to produce oxide-based films, heterostructures and devices. In the second, all contributions are dedicated to different specific fields of applications of oxide thin films and heterostructures, in sectors as data storage and computing, optics and plasmonics, magnonics, energy conversion and harvesting, and power electronics

    Nano-intrinsic security primitives for internet of everything

    Get PDF
    With the advent of Internet-enabled electronic devices and mobile computer systems, maintaining data security is one of the most important challenges in modern civilization. The innovation of physically unclonable functions (PUFs) shows great potential for enabling low-cost low-power authentication, anti-counterfeiting and beyond on the semiconductor chips. This is because secrets in a PUF are hidden in the randomness of the physical properties of desirably identical devices, making it extremely difficult, if not impossible, to extract them. Hence, the basic idea of PUF is to take advantage of inevitable non-idealities in the physical domain to create a system that can provide an innovative way to secure device identities, sensitive information, and their communications. While the physical variation exists everywhere, various materials, systems, and technologies have been considered as the source of unpredictable physical device variation in large scales for generating security primitives. The purpose of this project is to develop emerging solid-state memory-based security primitives and examine their robustness as well as feasibility. Firstly, the author gives an extensive overview of PUFs. The rationality, classification, and application of PUF are discussed. To objectively compare the quality of PUFs, the author formulates important PUF properties and evaluation metrics. By reviewing previously proposed constructions ranging from conventional standard complementary metal-oxide-semiconductor (CMOS) components to emerging non-volatile memories, the quality of different PUFs classes are discussed and summarized. Through a comparative analysis, emerging non-volatile redox-based resistor memories (ReRAMs) have shown the potential as promising candidates for the next generation of low-cost, low-power, compact in size, and secure PUF. Next, the author presents novel approaches to build a PUF by utilizing concatenated two layers of ReRAM crossbar arrays. Upon concatenate two layers, the nonlinear structure is introduced, and this results in the improved uniformity and the avalanche characteristic of the proposed PUF. A group of cell readout method is employed, and it supports a massive pool of challenge-response pairs of the nonlinear ReRAM-based PUF. The non-linear PUF construction is experimentally assessed using the evaluation metrics, and the quality of randomness is verified using predictive analysis. Last but not least, random telegraph noise (RTN) is studied as a source of entropy for a true random number generation (TRNG). RTN is usually considered a disadvantageous feature in the conventional CMOS designs. However, in combination with appropriate readout scheme, RTN in ReRAM can be used as a novel technique to generate quality random numbers. The proposed differential readout-based design can maintain the quality of output by reducing the effect of the undesired noise from the whole system, while the controlling difficulty of the conventional readout method can be significantly reduced. This is advantageous as the differential readout circuit can embrace the resistance variation features of ReRAMs without extensive pre-calibration. The study in this thesis has the potential to enable the development of cost-efficient and lightweight security primitives that can be integrated into modern computer mobile systems and devices for providing a high level of security
    corecore