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Abstract

During the last decades, the semiconductor industry has fostered a fast downscale in technology,
propelling this way the large scale integration of CMOS-based systems. The benefits of miniaturization are
numerous; faster switching frequency, lower voltage supply and higher device density, to name a few.
However, such aggressive scaling trend has not been possible without several challenges to overcome, such
as the leakage currents, yield reduction or the increase in the overall system power dissipation. New
materials, changes in the device structures and new circuit architectures are key to maintain this
miniaturization trend. It is foreseen that 2D integration will eventually come to an insurmountable physical
and economic limit, in which new strategic directions are required, such as the development of new device
structures, 3D architectures, or heterogeneous systems that take advantage of the best properties of different
technologies; i.e. both the ones already consolidated as well as the emergent ones that provide performance

and efficiency improvements for several applications.

In this context, the resistive switching devices (memristors) emerge as one of several candidate
device technologies in this eminent quest for the most “suitable” nanoelectronic devices for future
integrated circuits. Memristor, which is a blend of the words memory and resistor, is a passive device first
postulated by Leon Chua in 1971. Unlike the rest of fundamental passive elements, memristors have the
distinctive feature of modifying their resistance according to the charge that passes through them, which is
then kept unchanged when there is no charge flow. Even though there was no physical device evidence
when the concept of memristors was first published, the Hewlett Packard (HP) Labs claimed in 2008 the
fabrication of the first real memristor. This milestone triggered an unexpectedly high research activity in
the memiristor field, concerning both the search for new materials and structures as well as the use in a
variety of potential applications. Nowadays, memristors are not only appreciated in memory systems for
their nonvolatile storage properties, but in many other fields too, such as digital computing, signal
processing circuits, non-conventional (neuromorphic) computing, or in analog applications such as in
chaotic circuits. In spite of their very promising features, memristors still show some discouraging aspects:
they demonstrate significant device variation and limited endurance due to degradation, compared to other

device alternatives.

This Thesis explores the challenges that memristor variation and malfunction imposes to potential
applications. The main goal is to incorporate efficiently the variability in device modeling and explore
circuits design strategies to either avoid reliability problems or take advantage of variability for the benefit
of certain applications. Through a collection of different scenarios in which reliability issues are assumed
present, their impact is thoroughly studied by means of simulations and solutions are proposed for several
emerging applications of memristors. More specifically, this Thesis is first contextualized in Chapter 1,
where also the principal objectives are listed. In Chapter 2 the memristor device is introduced, both at
conceptual and experimental level, and all the necessary conceptual considerations are expressed, for the
comprehension of the content in the following chapters. Chapter 3 explores in depth the phenomena that

cause the lack of reliability in memristors, and introduces several device models that include such defects



in simulations. The rest of the Thesis is devoted to cover different emergent applications of memristors.
More specifically, Chapter 4 exhibits nonvolatile memory systems, and specifically an online test method
for faults in memory cells based on memristors. Digital computing is the focus of Chapter 5, where a
solution is provided for the yield reduction in in-memory logic operations with memristors owing to
variability. Finally, Chapter 6 reviews applications of memristors in the analog domain, and focuses on
the exploitation of results observed in faulty networks of memristors used as interconnect mediums for
chaotic systems, aiming to achieve synchronization. This Thesis concludes with Chapter 7 along with

some perspectives for future work.



Resumen

En las ultimas décadas, la industria de los semiconductores ha propiciado un répido escalado en la
tecnologia, propulsando la integracion a gran escala de sistemas basados en CMOS. Los beneficios de la
miniaturizacion son amplios, destacando el aumento de frecuencia y densidad de dispositivos, o la
disminucion del voltaje de alimentacion. No obstante, este ritmo de escalado agresivo no ha estado exento
de retos, como por ejemplo fugas de corriente, disminucién de la fiabilidad o el incremento potencia en los
sistemas. Nuevos materiales, cambios en las estructuras de los dispositivos y nuevas arquitecturas han sido
claves en aras de mantener el ritmo de la miniaturizacién. Se prevé gue la integracién en 2D llegara a un
limite fisico y econémico insalvable, en el que se deberan tomar otras direcciones estratégicas, como el
desarrollo de nuevas estructuras en los dispositivos, arquitecturas 3D o bien sistemas heterogéneos que
saquen partido a diferentes tecnologias, tanto aquellas consolidadas como otras de emergentes que mejoren

el desempefio y eficiencia de las aplicaciones.

En este contexto, el memristor se erige como un posible candidato en la carrera para encontrar
dispositivos emergentes adecuados. Acronimo de ‘memory’ (memoria) y ‘resistor’ (resistencia), el
memristor es un elemento pasivo postulado por Leon O. Chua en 1971. A diferencia de los otros elementos
pasivos fundamentales, los memristores tienen la particularidad de modificar la resistencia segun la carga
gue ha circulado a través de estos dispositivos, viéndose inalterada cuando esta circulacion se detiene.
Aunque en el momento de su concepcidn el memristor no tenia ninguna implementacion fisica, en 2008 los
laboratorios de HP afirmaron haber obtenido el primer memristor real. Este hito desencadené una actividad
en investigacién sin precedentes sobre los memristores, tanto en la blsqueda de materiales y estructuras
como en aplicaciones potenciales. Los memristores no solo son apreciados en sistemas de memoria por sus
capacidades de almacenamiento no volatil, sino en otros campos como por ejemplo la computacion digital,
circuitos de procesamiento de sefial o aplicaciones no convencionales como computacion neuromorfica. A
pesar de sus capacidades prometedoras, los memristores padecen de un principal inconveniente: muestran
una variacion de dispositivos y un tiempo de vida limitado debido a la degradacion comparado con otras

alternativas.

Esta tesis explora los retos que las variaciones y el fallo de memristores imponen en las aplicaciones
potenciales. El objetivo principal es la propuesta de circuitos y estrategias para evitar problemas de
fiabilidad, o bien sacar ventaja de ellos. A través de una coleccion de escenarios en los que los problemas
de fiabilidad son presentes, el impacto de éstos es estudiado mediante simulaciones. La contextualizacion
de la tesis junto a los objetivos se expone en el Capitulo 1. En el Capitulo 2 introduce el memristor a nivel
conceptual y experimental, y presenta diferentes modelos compactos usados posteriormente en
simulaciones. El Capitulo 3 profundiza en los fendmenos que provocan la falta de fiabilidad en los
memristores y provee de modelos para incorporar estos defectos en las simulaciones. El resto de la tesis
recorre diferentes aplicaciones mediante los tres capitulos restantes. Asi entonces, el Capitulo 4 expone los
sistemas de memorias no volatiles, y concretamente un método de test de celdas defectuosas. La

computacion digital se presenta el Capitulo 5, en el cual se propone una solucion a la reduccién de



fiabilidad en operaciones légicas debido a la variacion en los memristores. Por Gltimo, el Capitulo 6 revisa
las aplicaciones en el dominio analégico, y se centra en la explotacion los resultados derivados de defectos
en medios de interconexién basados en memristores para la sincronizacion de sistemas cadticos.

Finalmente, las conclusiones de la tesis se exponen en el Capitulo 7 junto a perspectivas de trabajo futuro.

vi
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Chapter 1 Introduction

This chapter highlights the increasing interest of the scientific community in the emergent resistive
switching devices (memristors), while also identifying the issues that motivate and justify the research
conducted in this Thesis. The initial emphasis is the urge of a new nanotechnology able to compete or
overcome the challenges the semiconductor industry is currently facing. The main objectives and the

organization of this Thesis are also provided at the end of this chapter.

1.1 Thesis Motivation

The so called “Moore's Law” from 1965 stated that the number of transistors in integrated circuits
would double every two years [1]. What initiated as a descriptive analysis of the industry advancements, it
finally proved to be the standard for the development of the semiconductor industry for several decades.
This trend eventually experienced some reviews due to the multiple difficulties appearing in the

manufacturing processes when scaling down the technology.

The technology roadmap for semiconductors (ITRS) [2], while recognizing that the Moore’s Law
would not stand indefinitely in the future, set multiple goals and designed specific roadmaps covering
diverse areas of research. So the focus has been divided in three domains aiming to overcome this scaling
slow-down: “More Moore”, “More than Moore” and “Beyond CMOS”. Fig. 1-1 presents all these roadmaps

and the potential solutions considered.
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Fig. 1-1. There are three directions fueling the continuous improvement in the nanoelectronics industry: direct miniaturization of
digital systems, assistance with non-digital subsystems and thinking beyond the eventual limits in CMOS. Adapted from [2].

More specifically, the “More Moore” domain refers to the efforts for further miniaturization of
CMOS circuits by the improvement of processes, research in new materials and device structures, as well
as the subsequent benefits in power and cost. In “More than Moore” the direction is to rely on non-digital
subsystems to help in the miniaturization of the technology, even if these parts do not scale down at the

same pace as the digital counterpart. Finally, “Beyond CMOS” is taken into account, which concerns a long



term vision that holds disruptive technologies to compete against the future-sighted limits of CMOS

technology scaling.

All these lines of action converge to a common point: research and industry must cooperate and
find suitable technologies and ideas to cope with the future challenges. In this direction, memristors could
hold the key to a new era in electronics, being a very promising technology for next-generation chips that

need to be highly reconfigurable, scalable and energy-efficient.

The term memristor was established by Leon Chua in 1971 for a conceptual device, being the fourth
passive circuit element along with resistor, capacitor and inductor, which related charge and flux variables
[3]. The term is a contraction of “memory” and “resistor”, because the history of the control/state variable
(charge of flux) determined the resistance value. At the time memristor was first defined, no real device
was found to match the expected behavior; for this reason, the topic remained virtually unexplored for some
decades. The fact is that resistive switching phenomena in different materials had been already studied from
the '60s, but this was not recognized to be a memristive behavior until 2008 [4]. Failing to establish a
practical connection was probably attributed to the fact that charge and flux were not necessarily involved
in physical device implementations. Eventually, many years passed until Hewlett Packard Laboratories (HP
Labs) matched for the first time in 2008 the theoretical memristor concept with a physical nanodevice,
which was a 5-nm TiO2 layer sandwiched between two metal electrodes [5]. This milestone unexpectedly
triggered the research activity around the memristors, pushing the development of several such devices and
exploration of applications.

Memristors demonstrate many promising features, such as plasticity, analog nature, non-volatility,
along with a low power consumption, high integration density, and excellent scalability. In summary, their

main characteristics of a memristor are as follows:

e Itis a passive element, i.e. no active elements are required to implement it. Furthermore, it is not

possible to build it using the other fundamental passive elements, resistors, capacitors or inductors.

¢ Itis normally a device with a non-volatile resistive state; without external stimulus the internal state
is kept intact. A non-volatile internal state is a key characteristic for the potential use as a storage

element.

e It is expected to achieve better device density than conventional transistors based on simple,

regular, and even multi-layer array structures such as the crossbar geometry.

e It’s compatible with the back-end-of-line (BEOL) CMOS fabrication processes.

The memristor-related scientific activity has increased enormously during the last decade. At this
stage, memristor is not any more just an idea from circuit theory, but technology and theory are reaching a
level of maturity so that the foundations of real circuit-level memristive applications can be established. In

order to illustrate the increasing interest for memristors in academia, the results per year in the Google



Scholar search engine of the keyword transistor and memristor (excluding patents and citations) are shown
in Fig. 1-2. Concretely, is clear that after 2008 the increase in research activity was triggered after the
achievement described in [5]. Although there is no doubt that transistor is still dominating the scene, it is
true that the nearly exponential increase in the memristor-related citations and also the inflection point in
the results concerning the transistors, both indicate the emergence of a new trend in electronics with an ever

growing variety of memristive applications.
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Fig. 1-2. Evolution of citations per year according to Google Scholar for the keywords (a) transistor and (b) memristor, from the
80's up to the present.

Owing to its unique characteristics, memristor is considered to be a suitable candidate to boost
several applications and provide them with low energy/area advantages combined with CMOS integration
compatibility. Memristor has been proposed for applications in several fields (Fig. 1-3) where, among

others, we consider memory, digital computing, analog signal processing, analog computing and security.

Definitely, the most straightforward application is as core elements in memory systems [6]. The
memristor itself can act as a memory cell, whose content can be read or programmed in the form of a
resistance. Its nonvolatile nature and potential high device density makes them suitable as storage elements
in dense, low-power resistive memories. The storage of information in a memristor can be binary or multi-
level, depending on the switching behavior of the device and other characteristics that we will have the

opportunity to comment extensively in the following Chapters.

Moreover, memristors can be used in digital computing applications using different approaches [7].
One such approach considers the memristor switching in a manner analogous to the well-known operation
of a transistor; i.e. behaving as a binary switch. In this sense, a memristor could be used as a pass gate. On
the other hand, memristor non-volatile nature allows the development of new computing paradigms. For
instance, in-memory computing allows computation and memory tasks taking place in the same devices,

where memristor acts both as memory cell and as part of a logic gate implementation.

On the other hand, given that some memristors can tune their state/memristance in an analog

manner, they could also be considered in analog applications [8]. Applicability of memristors is as simple



as it sounds: a memristor could essentially replace any resistor that has a particular role in a given circuit
(e.g. a feedback resistor in an amplifier or a reference resistor in a comparator, to name a few), thus
improving the overall functionality of signal processing circuits and/or upgrading the circuit from static to
programmable, leading for instance to programmable gain amplifiers, filters or analog-to-digital converters.

Signal processing is not the only application in the analog realm. Further (and more ambitious)
applications include the field of analog computing, which also includes neuromorphic computing [9].
Neuromorphic computing systems are designed to work in a similar way to the human brain, seeking high
savings in power while performing heavy computational tasks in massively parallel architectures.
Memristor has been recognized as the electrical equivalent of a biological synapse. On top of that, there are
considerable device features, such as the small footprint and nonvolatile storage, which makes memristor
a suitable candidate for the implementation of large scale artificial neural networks, taking advantage of
the crosshar geometry.

Finally, in the field of secure communications, there are applications of physical unclonable
functions (PUF) based on memristors, owing to the intrinsic variability they demonstrate in the switching
behavior [10]. Memiristor could also play a significant role in secure communications via chaotic system
synchronization, where memristors act as coupling elements between chaotic circuits in providing adaptive

synchronization properties [11].
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Fig. 1-3. Diagram of different applications benefited by memristor characteristics, classified in three main fields: nonvolatile
memories, digital computing and analog domain applications.

Nevertheless, besides the promising advantages offered by memristors in their potential
applications, there are some important “brick walls” to overcome on their way towards commercial
establishment, such as variability, aging and switching faults, which constitute well-known issues while
working in nanoscale devices. In the case of life aging, the memristor is limited in the number of switching
cycles it can perform (SET and RESET resistive transitions from a high resistive state to a low resistive
state, and vice versa). The degeneration of the resistive states with time (see Fig. 1-4a) may put significant
limitations for some applications [12]-[14]. On the other hand, the variability is not caused only by the

manufacturing processes, but it is known to be intrinsic of every device and demonstrated in various forms



[15]. As a result, the observed memristor characteristics can be related to stochastic behavior (see Fig.
1-4b). While some of these issues may put at risk the reliability of several applications, their impact has not
been widely considered so far in works published in the literature.
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Fig. 1-4. Transition metal oxide switching devices suffer from various limitations related with reliability. Regarding endurance, (a)
three types of failures were observed in a device due to electrode oxidation (type 1) or lack of adequate oxygen vacancies (type Il
and I11). The drawings show the effects of the degradation in high resistance state (HRS) and/or low resistance state (LRS) over
several switching cycles, until both states are not distinguished (extracted from [13]). Variation in measured parameters have been
also observed for Ni/HfO2-based resistive switching devices, in resistive state by means of (b) current measurements of HRS and
LRS for several switching cycles (inset shows i-v curves of the measured cycles) and (c) variation of the switching voltages Vser
and Vgeset (extracted from [15]).

1.2 Objectives

The present Thesis investigates the effect of different issues at device-level such as process and
cycle to cycle variability or failing memristors, and explores techniques to overcome these issues in
applications or alternatively to improve the performance by taking advantage of these issues rather than
trying to resolve them. Whenever necessary to clarify some points, experimental data are presented taken
from measurements on real device samples. This notwithstanding, the contributions rely mainly on
electrical simulations owing to the convenience they offer to incorporate the required type and amount of
faults, as well as to control variability in the devices. In this direction, the use of reliable memristor models
was considered critical in order to achieve an acceptable degree of certainty in the results of the simulation-

based study. The principal goals of this Thesis are:

e to develop testing strategies for memristors in the presence of variability and/or malfunctioning

devices.

o toanalyze the impact of variability on digital computing circuits and to propose variability-tolerant

circuit implementation techniques.



e to study applications where variability or malfunction of devices could improve the performance

and/or are favorable in some way to the operation of circuits.

1.3 Thesis Organization

This Thesis is organized as follows: Chapter 2 provides a thorough overview of the recent history
of the memristor, while reviewing the state of the art of real devices, the evolution in modelling techniques
and the wide application fields where memristors could be used. Chapter 3 introduces the concerns that
are key in this dissertation: variability and malfunction of memristors, along with some practical
experiences and their modelling for simulation purposes. Chapter 4 discusses memory applications and
presents a strategy to detect faulty memristor devices in memory arrays. Chapter 5 covers digital
computation applications, the outcome of taking into account variability issues and novel forms of
computation that are proved to be variability-tolerant. Chapter 6 presents applications where variability
and faults are not an issue but instead could be beneficial for circuit/system operation, while studying
alternative topologies to improve the performance of the synchronization of a number of chaotic circuits
targeting security applications. Finally, Chapter 7 concludes this thesis.



Chapter 2 Memristors: State of the Art and Preliminary Considerations

An unprecedented attention and extensive research activity on memristor device technology has
been observed only since 2008 after the first demonstration of the TiO2-based memristor by Hewlett-
Packard Laboratories (HP Labs), who managed to connect the nature of such devices with Chua's 1971
theory (although the hysteretic resistive switching property of oxides sandwiched between metal electrodes
was known from the "60s [16], [17]).

Nevertheless, even if we focus on these last few years, memristor has not been a purely monolithic
concept, with the relevant theory continuously changing with the new physical evidence reported by the
research community. The HP Labs invention in 2008 was soon followed by the identification of additional
material compounds which can be the basis of memristive devices and a wide variety of such materials are
being studied [18]. While this technology is continuously evolving/maturing, some commercially available
memristors were recently released by the Knowm Inc. company [19] bringing this technology closer to
researchers that might not have access to fabrication facilities. As typically happens with all new electronic
device technologies, modeling and simulation [20] are the first steps to exploring general attributes,

verifying theoretical aspects and studying innovative application prospects.

The main objective of this chapter is to give the “big picture” of memristors, starting with the
memristor as a concept, following with the state of the art of real devices and device models that were
developed to facilitate incorporation of memristors in current circuit designs for existing or new
applications. Next, the memristor crossbar topology is introduced, a geometry widely considered to be used
in memory and computing applications, permitting to take full advantage of certain characteristics of
memristor. Finally, the terminology and considerations that are applied/used in the rest of this Thesis are

presented.

2.1 Memristor: Definition and Evolution of the Concept

Today the term memristor usually refers to any resistive switching (RS) device that complies with
a set of certain properties known as ““fingerprints" [21]. However, the existence of the memristor was
originally proposed by Leon Chua in 1971 as a conceptual device (it was much later when it eventually was
related to a physical implementation), being the fourth fundamental circuit element [3]. At that time, it was
the result of the analysis of the three fundamental and well-known passive circuit elements; the resistor, the
capacitor and the inductor, each one providing a relationship between voltage-current, voltage-charge, and
current-flux, respectively. Chua inferred that a fourth fundamental element should exist, the memristor, to
relate the charge and flux variables, as shown in Fig. 2-1a. Back then, no physical device was found to
match the required properties, but it’s operation was successfully emulated by means of active circuit

elements.

The ideal memristor is defined by a relation of type g(q, ¢) = 0. The memristor is charge (flux)-

controlled if this relation can be expressed as a single valued function of the charge (flux). Equations (1) —



(4) show the explicit relation of charge (flux)-controlled memristors and their characteristic memristance

M (equivalent to resistance) or memductance W (equivalent to conductance).

v(t) = M(q(t))i(t) (1)

M(q) = d¢/dq 2
i(t) = W(p®)v(®) 3
W(q) = dq(p)/de (4)

The main properties that identify a memristor are the following:
e Itisa passive element.

e Memristance is not constant but instead it depends on the past history of charge and flux; otherwise

it would behave as a typical resistor

e Under certain conditions, the i-v plot shows a pinched hysteresis loop; high frequencies force this
loop to degenerate to a straight line (behavior of a linear resistor). As an example, Fig. 2-1b
illustrates a simulation of a linear memristor model [5] excited by a 1 V-amplitude sinusoidal
voltage using four different frequencies: 500 Hz, 800 Hz, 1 kHz and 5 kHz. Clearly, the loop is

narrowing as frequency goes up, losing the hysteretic properties.

Current (A)

-1 -0.5 0 0.5 1
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Fig. 2-1. Memristor, the fourth fundamental circuit element. (a) Among the four known magnitudes of current i, voltage v, charge
g and fluz ¢, the memristor was proposed to provide a flux-charge relationship through the memristance M (extracted from [5]).
(b) Current-voltage (i-v) curves of after excitation using sinusoidal voltage of 1 V amplitude and four different frequencies. Results
are obtained by means of simulations using the linear memristor model [5].

In 1976, a more general definition of memristors was presented in [22] aiming to incorporate
empirically observed phenomena that resembles a memristor, such as in thermistors at constant temperature
or the Hodgkin-Huxley axon model. A memristive system is defined in (5), where x is an internal state
variable, u is the independent control variable and y is the dependent (output) variable. If restricted to the

electrical variables v as voltage across the system and i as the current passing through the system, a voltage-



controlled memristor is considered when u=vandy =i. Likewise, a current-controlled memristor is defined
by settingu=iandy=v.

y=g(u,u ©)
dx/dt = f(x,u,t)

After the extensive scientific research conducted during all these years and the results presented
for real implementations of memristors, some doubts arose about whether the physical resistive switching
devices and their respective device models matched the definition of a memristor or memristive device, as
they were defined by Chua. In this direction, there have been some initiatives to generalize even more the
previous definitions [23]. For instance, in [24] we find an extended definition which includes the effect of
non-zero crossing, due to the electromotive force that appear in many resistive switching devices. The
definition of the extended system is shown in (6); the mathematical model starts with a voltage-controlled
version of equation (5), contained in the term iq and the state equation. The added term ii;n models a
nanobattery, which essentially consists in an electromotive force vems and a nonlinear resistor in series that
depends on the voltage. About the internal state x, it is bounded between the geometric limits of the active
layer thickness d. The state equation is governed by the iion current (which in turn is controlled by the input
v), while k is a constant.

i = lion(Vems, V) + ier(x,v) ©)
dx/dt = ki, O0<x<d

For the time being, the recent history of the memristor as a device is anything but a clear picture,
with constant redefinitions and adaptations of previously established criteria to embrace the appearance of
new physical evidences and new devices that are being developed and demonstrate a memristive behavior.
Memristors definitely constitute an emerging trend in modern electronics, but a deeper understanding of
memristive behavior is the only safe way towards maximum exploitation of the favorable properties and

the analog nature of this very promising device technology in innovative applications.

2.2Memristor Device Implementations

Even though any conversation about memristor devices can nowadays be thought of as being quite
“controversial”, owing to the contemporary discussion in the scientific community about the existence of
the ideal memristor concept and the extent to which real devices comply with the expected behavior,

hereinafter we use the term memristor in this Thesis to refer to several types of resistive switching devices.

After the TiO,-based bipolar memristor by HP in 2008, more material compounds were proposed
as the basis of memristor devices [25]. A wide variety of such materials have been studied so far aiming to
predict the switching profiles and manipulate them appropriately to achieve better on—off ratio, endurance,
and state retention, properties that we will discuss later in more detail. RS devices are normally fabricated

in metal-insulator-metal (MIM) structures in which the RS property is observed in the insulating material.



There is a wide range of materials used as electrodes and insulators. The latter can be a metal oxide [26]
such as HfOx [27], TiOx [28], AIOx [29], or Ta.0s [30], a chalcogenide such as GeSx [31], a nitride (e.g.
SiN [32]), a perovskite [33] or a graphene oxide [34]. It is worth noting though that using such materials as
the functional RS layer might not always be compatible with current integrated circuit (IC) industry
infrastructure, and this has also led to a focused interest in silicon and silicon oxide as well [35]. Moreover,
every material can behave in a different way when exposed to the electrical field induced by the applied
voltage.

First of all, in order to better comprehend memristive behavior, there are some terms that must be
defined. Memristor devices experience two switching events where resistance is modified: there SET and
RESET processes. SET process allow resistance to decrease from a high resistance state (HRS) to a low
resistance state (LRS). On the contrary, a RESET process rises the device resistance from LRS to HRS.
Usually, for threshold-type switching devices the Vser and Vreser threshold voltages are defined to localize
the minimum voltage at which the SET or RESET process is triggered, respectively. However, such
voltages are not absolute values, and their values fluctuate due to many factors, such as temperature,
external stimulus or device variability. Typically, in experimental results we observe an abrupt current
increase during the SET operation, whereas the RESET operation may be more gradual [36]. Moreover,
the i-v characteristics may be asymmetric w.r.t. the origin. Last, higher absolute voltage values not only
provoke higher resistance switching rates but also drive the device to saturation at different resistive levels,

as observed in a wide range of analog memristors [37].

Switching mechanism can be classified as unipolar or bipolar. Examples for the characteristic i-v
curve for both categories are shown in Fig. 2-2. For a bipolar device the SET and RESET processes occur
in opposite polarities. On the contrary, a unipolar device operates with one polarity only, and has SET and
RESET processes dependent on the applied voltage amplitude, rather than polarity. Devices with electrodes
made of noble metals like Pt, Cu or Ru, are unipolar, while a bipolar device may be built by replacing one

of the top or bottom electrode materials with an oxidizable material [6].

RESET COmpllanceI -----
J SET - Wi
E| HRs g
: s HRS
3 (3]
| O 0y - Compliance RESE LR$
LRS
Voltage Voltage
(@) (b)

Fig. 2-2. Memristor switching mechanisms: (a) unipolar switching and (b) bipolar switching. Compliance current is applied to limit
the maximum current during the SET process, to protect the device from damage. Extracted from [6].
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There are identified three types of memristors regarding the location and geometry of the atomic
reconfiguration in switching events: filament, interface and bulk type memristors [38]. In the first case, RS
has been identified as originating from the local formation/disruption of conductive filaments (CFs)
between the metallic electrodes [39] (see Fig. 2-3a). The filamentary type switching includes
thermochemical (TCM), electrochemical (ECM), and valance change (VCM) mechanisms. Such
memristors may be unipolar or bipolar and their switching is fast and abrupt, thus they are recommended
for digital computing applications. On the other hand, RS can be caused by an interfacial mechanism [40]
(see Fig. 2-3b) with distributed migration of traps at the metal-insulator interface (e.g. oxygen vacancies
distributed along an interface that controls the conductivity of the MIM structure). The interface-type
switching includes VCM, purely electronic and electrostatic effects, and ferroelectric polarization
mechanism. Unlike filamentary devices which generally show sharp conductance transitions, interfacial (or
homogeneous) switching devices change their resistance by a uniform interface effect, thus tend to respond
more slowly to the applied input signals, modifying their state in a more incremental manner, desired for
analog applications. For a proper analysis of the main differences resulting in filamentary versus interfacial
RS types, from a device performance viewpoint, see [41]. Finally, the bulk memristors typically consist in
a phase change effect inside the switching layer (see Fig. 2-3c).

i

o

(a) (b) (c)
Fig. 2-3. Types of switching mechanisms in memristors depending on the atomic reconfiguration. (a) Filamentary type, (b) interface
and (c) bulk type. Extracted from [38].

There are certain parameters which are normally used to evaluate the behavioral properties of
memristors. IRDS 2018 in [42] summarizes the potential different emerging memory devices. Table 2-1
gathers some of these conclusions for unipolar and bipolar filamentary memristors, bipolar interface
memristors, and phase change memories (PCM). Bipolar filamentary memristors show promising features
in many of the presented categories, especially in fabrication cost, retention and endurance, but the
variability and power are their weak points. On the other hand, bipolar interface memristors do better in
these two categories but with the trade-off of performing worse in other important factors such as retention
or endurance. A recent review on resistive switching device [43] shows how some of these technology

requirements have been surpassed for certain devices, achieving milestones such as endurance >10* cycles
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or switching times as low as 300 ps, and providing other interesting data as operating voltages as low as

0.5 V or power consumption of 0.1 pJ per switching.

Table 2-1. Potential of the emerging memory technology candidates (From [42])

Unipolar Filament Bipolar Filament Bipolar Interface PCM
Scalability Fmin <10 nm
MLC Possible Feasible
3D integration Feasible
Fabrication Cost Medium Low Medium
Retention Modest (> 1 yr) Long (> 10 yrs) Modest (> 1 yr) Modest (> 1 yr)
Latency Medium (0.3 — 10 ps)
Power Medium High Medium High
Endurance < 10% cycles < 10° cycles < 10% cycles
Variability Problematic Low Reasonable

Finally, it’s worth mentioning that, even with the good performance observed, there is still much
work to do in order to achieve the ultimately goal of transferring memristors into a real, competitive
solution. The good news is that nowadays there are companies working in this direction. Such examples
are Knowm Inc. [19], that commercializes memristors encapsulated in arrays or crossbars, Memryx [44], a
start-up that designs brain-inspired computer chips for Al applications, and MemComputing Inc. [45],

attempting to solve complex optimization problems using an innovative analog computing paradigm.

2.3Memristor Compact Device Models

Ever since the first nanoscale memristors appeared, the development of accurate models for
memristors emerged as a research topic of utmost interest. The scientific community was interested in using
memristor models to enable circuit design in simulation environments for the exploration of different
application prospects. Hence, there is a considerable demand for reliable compact models that capture the
rich dynamics and characteristics of these devices. Indeed, the development of compact behavioral models
has contributed significantly to the progress of research in memristor technology, being adequate to capture
the experimentally observed RS behavior. In this context, we next present a brief overview covering a wide
variety of models ranging from simple and preliminary ones to more complex physics-based models that
go deeper into device dynamics and also include certain additional characteristics such as variability,

temperature dependency, and stochasticity, to name a few.

A model should be as simple as possible, but also as complex as needed to capture essential
properties of the device. The HP Labs in 2008 presented a simplistic device model, which has been the

basis for several other models published later. Such model, based on a real device implementation, is the
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linear drift model [5] which was later developed in SPICE by Biolek et al. [46] and is described by equations
(7) and (8). It is a current-controlled model, where the memristance is a function of the state variable w and
the switching rate, given by (8), is proportional to the current flowing through the memristor and also
depends on some device-specific material/geometrical properties such as the dopant mobility x, and the
width of the metal-oxide structure D. The model considers that the semiconductor film of thickness D has
two regions: one populated with a high concentration of dopants and thus it has a low resistance Ron, and
another one with low concentration of dopants and thus with a high resistance Rore. The boundary between
the two aforementioned regions can be displaced based on the current passing through the device, according
to (8). The state variable w value is bounded between 0 and D. Fig. 2-4a depicts the device model along
with an equivalent model circuit. The equivalent circuit is a series connection of two variable resistors,
which their value is a fraction of Ron and Rore. These fractions depend on the size of the doped and undoped
regions. If the doped region is dominant, Ron fraction prevails while Rore fraction is lower; the opposite

happens when the undoped region is the dominant one.

t t
v(t) = <R0N ? + Rorr <1 - #)) i(t) (7
_ Ron
dw(t)/dt = u, Tl(t) (8)
PN

Doped Undopped P Wi

" :

¢ D > T‘% Tioz'l RS
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Ronw/D  Rypp(1-w)/D
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Fig. 2-4. Circuit schematics describing different model schemes. (a) HP linear drift model (adapted from [5]). (b) Simmons tunnel
barrier model (extracted from [47]).

The linear relationship with charge in (8) is an assumption that actually does not consider some
important effects occurring inside the devices. For instance, it was assumed that the ions are displaced
freely along the device. Likewise, in the majority of modeling works, the resistance switching mechanism
is not always known in all details, thus several models show limited accuracy [48], [49]. In this context,
empirical window functions (WFs) have been employed to enhance such models by encapsulating a
nonuniform rate of change of the resistance. WFs are dimensionless functions employed as a multiplicative

factor (normally 0 < wf(*) < 1) to slow down the change of a state variable as it approaches a boundary
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value. The HP Labs’ model used a WF to account for certain behavioral constraints; i.e. to incorporate
nonlinearity caused by very high electric fields and electric transport like in tunneling effects observed at
interfaces or high-field electron hopping [5]. WFs must be 0 in the boundaries of the internal state variable
whereas the value is maximum in the middle of the value range. Moreover, very similar memristor models,
differing only in their WF, may exhibit qualitatively different dynamics [50]. So, the selection of a WF is
of significant importance as well as it is the development of WFs for modelling of memristors.

Nevertheless, even with window functions incorporated, there are still nonlinear phenomena not
covered in the linear memristor model. The exponential model proposed in [51] takes into account the
electric field nonlinearity due to the electrode/oxide interface. The current in the model is expressed by (9).

i= x(t)”ﬁsinh(av(t)) + )((exp(yv(t)) — 1)
)

dx_ e
= v(t)

The hyperbolic sinusoidal function can be used to approximate quite well the i-v relationship of
metal-insulator-metal (MIM) memristive structures. Therefore, it was found reasonable to explore this kind
of expressions in several modeling works as detailed in [52], given that memristor devices are commonly
fabricated in a MIM structure. Moreover, the Simmons tunnel barrier model [47] is an alternative to the HP
linear drift-based model, consisting of a resistor Rs representing a low resistance channel and a tunneling

barrier of width w, as shown in Fig. 2-4b.

ff . h< i ) [ <W—aoff |l|> WI >0
Sin - ex —ex -_— -1, l
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L fonsmh<i—)exp —exp Tc_? -—, i<0

(10)

on WC

While incorporating more features in new models is desirable for reliable simulations, the computer
efficiency is also an important concern for computationally intensive models. Memristor models like
TEAM [53] (or its voltage-controlled version VTEAM [54]) make strong assumptions in order to reduce
the complexity during circuit simulations. In fact, the assumptions under consideration are the following:
(a) state is not changed for stimulus below thresholds, (b) the relationship between current (voltage) and

the derivative of the state variable(s) is polynomial instead of exponential.

( i(t) ot . .
koff — 1 foff(x)' 0< lOff <1
dw(t) o o
= 0, lon <1 <loff (11)
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Advanced models that rely on physical description of the devices and capture most of the device
behavioral characteristics, are also available in the literature, and may be better option to perform more
realistic circuit simulations. One of such model is the Stanford/PKU model [55], which is a physics-based
model describing the switching mechanisms of a bipolar memristor. The model assumes a CF growth
process described by a change of the CF geometry during the SET and RESET processes under various
bias conditions. The core of the model is a two-dimensional description of a unique CF (see Fig. 2-5a),
which includes both the CF gap region g and the CF width w as control variables. Therefore, the current is
composed by an ohmic contribution of the region occupied by the CF, whereas the rest corresponds to the
hopping current in the tunneling gap between the tip of the CF and the opposite electrode and the current
in the area surrounding the CF. Most importantly, the model includes parasitic effects (shown in Fig. 2-5b)
such as the parasitic resistance of the switching layer and the electrodes Ry and Ry, respectively, as well as
the parasitic MIM capacitance Cp. Furthermore, the model supports intrinsic variation effects, such as
statistical distribution of switching thresholds and resistance states, temperature dependency and dynamic
current fluctuations for the RESET process, thus supporting literally all the ReRAM device variation effects

known to date.

As far as operation is concerned, a positive applied voltage produces a SET process, where the
oxide layer suffers a soft-breakdown; the CF is formed and the device is found at a low resistive state (LRS).
In the model, the CF growth is performed in two steps: first the gap x is decreased to 0, and then the width
w is increased until reach its upper boundary. On the other hand, a negative applied voltage causes a RESET
process in which the CF is dissolved through ion diffusion or drift processes and the device is found at a
high resistive state (HRS); this rupture of the CF is modelled by increasing x. Because of the completeness
of this model and its verification using experimental data, it is our default choice in all simulations, unless
otherwise stated. For that purpose, the Verilog-A code in [56] is adopted. The default parameters

recommended for this model are listed in Table 2-2. Unless specified, these parameters will be used in the

simulations.
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Ry
Ru CP
1 2nd
1| &=
§ S
rupture ﬁ:xt |l:15t R,
Top electrode
(a) (b)

Fig. 2-5. Stanford-PKU memristor model. (a) Geometrical description of the CF in the model and evolution of the CF in SET and
RESET processes. The RESET process or rupture of the CF makes the tunneling gap x to increase. The SET process reduces x until
0 and then increases w to its maximum value. (b) The model is completed with a circuit comprising the memristor description along
with parasitic elements. Extracted from [55].
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Table 2-2. Default parameters of Stanford/PKU memristor model [56].

I, | 108 A/m? E, 0.7eV Ar | 0.5nm WCF | 5nm
gr | 0.4nm E, |082eV Ry | 5-10°KIW y |15

Vy |04V E, |112eV T, | 300K Ry | 200 MQ
p |19.64pQ'm | a; & ay | 0.75nm a |0.25nm RL |20Q

Ly | 3nm Z&e |1l&e f | 108 Hz Cr | 20fF

2.4Memristor Crossbar Architecture

A memristor crossbar is an assembly of memristors localized at the cross-points where a grid of
vertical and horizontal nanowires cross, as shown in Fig. 2-6a. Usually, vertical and horizontal nanowires
are also called column and row nanowires. Every memristor in a row is connected with a common nanowire,
and each memiristor in a column is connected through the other terminal with another common nanowire in
another level. Therefore, in order to access a single memristor, access to its column and row wires is

required.

The crossbar geometry has been identified as a key architecture for future resistive random access
memory (ReRAM) modules based on memristors. They offer several advantages such as simplicity, high
connectivity and maximum possible device integration density 4F2 (F is the feature size), as well as fault
tolerance in the context of memory applications. However, it is also considered a key topology for the
implementation of multi-layer neural networks in neuromorphic computing structures. Moreover, crossbar
allows pushing toward low-power applications due to the scaling possibilities and the benefits to certain
applications, e.g. the possibility to perform computation and storage operations in the same physical module
(in-memory computing). Crossbar architectures are able to provide this owing to vertical stacking and the

simple geometry of the architecture.

Nevertheless, crossbar structures impose certain limitations in the operation with the memristor
devices. For instance, when applying a voltage pulse to a specific cross-point where a memristor resides
(either for writing or reading purposes), the state of the rest of the memristors in the array could be affecting
the result of the readout process, or their state could be modified unwillingly. Consequently, smart driving
strategies are required to address the problem known as the “sneak current path problem”. In this context,
different solutions have been published so far; they can be divided into two different alternatives: those
achieved owing to external circuitry or to cross-point device modifications, and those achieved by using

memristors with highly nonlinear behavior.

Solutions brought by circuit-modifications involve adding more circuit elements, usually in every
cross-point cell, to mitigate or cut possible current paths. In this direction, 1T1R crossbars add a transistor

in series with each memristor (Fig. 2-6b), hence managing the circulation of current by controlling their gate
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terminals. However, this solution comes with a noticeable penalty in circuit area of about 8F2 to 12F? for
planar devices, according to [57]. Another solution concerns applying Complementary Resistive Switching
(CRS), where the cross-point cell is composed by two memristors connected in series with opposite polarity
[58], thus mitigating the sneak path currents by increasing the resistance in these paths (Fig. 2-6¢); in this
case, logic 0 and logic 1 consist in different resistive state combinations of the two memristors. In this
scenario, the memory cell shows a more complex behavior. However, both memory and digital computing

applications would be benefited by this technique, as shown in [59].

On the other hand, device-level solutions contemplate the use of passive crossbars composed of
memristors with high nonlinearity behavior in their current characteristics. In other words, when there is a
low voltage drop across the device, the current should be very low, thus mitigating sneak path currents in
an inherent manner. Only when a high enough voltage is applied directly to the memristor terminals, the
current increases significantly. When using memristors of this kind, the externally applied stimulus to the
crossbar array is strategically designed to take advantage of this nonlinearity in the device behavior. For
this reason, the V/2 and V/3 schemes have been proposed. In brief, for these schemes the row and column
of the target memristor to be written are driven with the proper voltage and ground signals, as usual.
However, the rest of rows and columns of the array are not left floating but instead are driven using an
intermediate voltage level (1/2 or 1/3 of the voltage applied to the target memristor), this way forcing the

rest of the devices to have significantly lower voltages across them than has the target memristor.
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Fig. 2-6. Memristor crossbar structure and different schemes regarding the elements in the cross-points. (a) Structure of a 1R

crosshar, or a crosshar with a memristor in the cross-point. (b) 1T1R crossbar (a memristors and a transistor in series) and (c)
complementary resistive switching crossbar (two memristors connected in anti-series).
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2.5General Terms and Considerations

For the sake of uniformity and clarity, simplified memristor characteristics are assumed when
explaining and discussing different applications and circuits in the following chapters of this Thesis. Such
device behavior does not intend to embrace all different kinds of devices, nor to take into account all the
richness of the switching dynamics. Therefore, when certain characteristics are required (because they are

central to the function or impact in some circuit or system), they will be particularly specified.

Fig. 2-7a depicts the v-i behavior of our simplified memristor. The memristor considered here is

bipolar, where the SET process occurs in the positive voltage region and the RESET process in the negative
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voltage region. The actual voltages where the SET and RESET events occur are the Vser and Vgeser voltage
thresholds, respectively. The only assumptions made about the dynamics in the switching processes are
about how far the memristor state evolves; when a voltage threshold is surpassed the resistance changes
until it reaches the resistance limits of the device or is limited by another circuit element (e.g. a current
compliance element). Hence, for further requirements about the dynamics (e.g. abrupt or gradual state
evolution, delay in an application, required programming pulses to control programming operations) need

an evaluation using simulations with realistic models.

About the resistance range demonstrated by the device, there are different values that are of
particular interest. For example, the extreme values of the resistance range are Ron and Rorr, corresponding
to the lowest and the highest value, respectively. In applications where memristor resistance must be
modified in a gradual manner (in discrete intermediate levels), it is useful to define these levels as resistance
bands rather than specific resistance values, as shown in Fig. 2-7b. For instance, when working with just
two states (binary switching behavior), the resistance bands are usually called Low Resistive State (LRS)
and High Resistive State (HRS). Each band covers part of the whole resistance range, representing a bit ‘1’
or a ‘0’. Additionally, a forbidden state band separates both HRS and LRS bands. Such resistance bands
are useful when dealing with sources of variability in the memristor states. When multi-bit codification per
device is needed and as long as the control of resistive states is accurate enough, multiple resistance bands
are defined. The scheme at the bottom of Fig. 2-7b shows how bands are organized in the memristor
resistance range. Assuming that the data stored in memristors is n-bit long, there are 2" bands separated by
2"-1 forbidden states.

A
i) l 1 RS Forbidden TIRS
\ logic level State logic level
'1' 'Xl rO'
Ron Rigrsn Riyrs; Rorr
Rion Ruan m=2"
State State o State
m-1 m-2 0
aar] ool L] fo..o0
Ron Ry Ro;  Ropr
(a) (b)

Fig. 2-7. Simplified memristor and terminology used. (a) i-v curve of the simplified memristor indicating SET and RESET
processes that lead to HRS and LRS. In (b), two examples of state codification for stored data in the memristor along the whole
resistance range between Ron and Rorr. At the top, binary data is codified by distinguishing between two different resistance states
(HRS and LRS), separated by a forbidden state gap. RiLrsh and Rurs, are the high and low limits of LRS and HRS bands,
respectively. At the bottom, n-bit data is codified by defining 2" resistance state bands separated by forbidden state gaps.

2.6Concluding Remarks

Memristor is a concept that already existed five decades ago, but the “modern” memristor (as a

resistive switching device) considered today is still a hot topic. The predictions tell that these devices can
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outperform conventional technologies in some aspects. Their simplicity beholds in their structure as two-
terminal devices and their fabrication. Crossbar structures exploit these virtues by arranging multiple
memristors in a regular and highly dense architecture. A diverse family of devices exist, each one with
different switching mechanisms and performance metrics. Memristor models, which are crucial in the
transference of fabrication advances to novel applications, exist to reproduce the different behaviors
observed and also to cover different necessities, from accuracy to fast computation in results.

Despite their promising characteristics, there is one concern that cannot be neglected: memristor
reliability. Previously, Table 2-1 has shown the limited endurance that in general all memristors have
compared with other technologies. Additionally, memristor variability is also worrisome in some of the
resistive switching alternatives. Endurance limits the switching cycles the devices can stand, while
variability limits the programming accuracy and the multi-bit codification. The next Chapter explains the
different sources of reliability issues and how to embed their effects in models aiming to take into account

in simulations.
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Chapter 3 Modeling Sources of Unreliability in Memristors

Unreliability is still one of the major challenges in the development of memristor technology, which
is also the reason why there are critical limitations for most of the potential future applications of
memristors. Furthermore, the inherent stochastic behavior of memristors is by itself a source of uncertainty

which should be taken into consideration.

This chapter discusses the three major reliability issues relevant to memristors, namely: (i) the
random behavior of memristors, (ii) the switching failures, and (iii) the switching endurance. First, a brief
review of the relevant literature is presented in order to explain the principal factors which affect the
reliability of operation of memristors. Next, some experimental data are shown concerning the cycle-to-
cycle variability in memristors. Finally, the strategy followed in the rest of this Thesis to model the

variability and switching faults in circuit simulations, is thoroughly presented.

3.1 Common Sources of Reliability Issues in Memristors and Their Classification

According to IEEE, the definition of “reliability” is the ability of an item to perform a required
function under certain conditions for a given period of time [60]. Therefore, what reliability is, in fact, it
depends on the specifications defined for a target application, and also on the expected timeframe when
these specifications must hold. By taking into account these two factors, three different types of unreliable
behavior can be established: (i) random behavior, (ii) failure, and (iii) endurance.

Random behavior refers to the uncertainty or lack of repeatability in a result of an action while
applying the exact same conditions. In applications where accuracy is a critical parameter, randomness
cannot be ignored. Three different characteristics related with random behavior are identified: state

variability, stochastic switching and random telegraph noise [61].

In the context of state variability, memristors suffer from device-to-device (D2D) variations owing
to the employed manufacturing processes, likewise it happens with other nanoelectronic devices as well.
However, single devices also demonstrate intrinsic variability in their behavior which is often called cycle-
to-cycle (C2C) variability. C2C variability is caused mainly by the inherent physical mechanism in the
device. For instance, filament type suffers for considerable C2C variability due to the randomness nature
in the creation and annihilation of the CF. The result is that when programming a LRS or HRS, instead of
achieving the same resistance states, these states fall inside the range of a resistance distribution. For
instance, in Fig. 3-1a several measurements of HRS and LRS after programming have been collected,

depicting a distribution rather than two invariant states [62].

Switching events in memristors seem to follow a stochastic behavior rather than being
deterministic, as being observed both in RESET [63] and SET processes [64]. The switching probability is
related with the externally applied stimulus, e.g. voltage amplitude and pulse width for a voltage pulse, to
change the resistive state of the cell. For instance, Fig. 3-1b shows measured RESET switching probabilities

in a CuOx device using different voltage pulses [63]; the higher the amplitude (or the longer the width) of
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the applied voltage pulse, the higher the probability to observe a switching event in the device. However,
an excessive amplitude also leads to more stressed devices; eventually this turns into a trade-off between
the successful switching of the device state and the device endurance.

The last effect related to variability is the random telegraph noise (RTN). RTN is described as
discrete fluctuations in the current-/voltage time traces whenever the charge transport through a solid state
device is controlled by the statistical capture/emission of electrons at electron trap sites or the statistical
transposition of single lattice defects [65]. Fluctuations caused by RTN may be larger in filament type
devices; current paths through the atomistic scale of the CF are more affected to trapping/detrapping
perturbations. Fig. 3-1¢ depicts the RTN fluctuations in current measurements in HRS and LRS after several
SET/RESET processes [66]. When charges are trapped or untrapped, we observe that some discrete jumps

in the current measurements according to these events.
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Fig. 3-1. Contributions to memristor random behavior. (a) State variability observed for (extracted from [62]) (b) Measured RESET
switching probabilities of a CuO2 MIM structure versus applied voltage pulse amplitude for a fixed pulse width (extracted from
[63]). (c) Random telegraph noise observed when sensing currents through memristors in LRS and HRS programmed in different
cycles (extracted from [66]).

As far as “failure” is concerned, it is a condition in which a device fails to behave as it is supposed
to. Permanent faults are mainly caused by defects in the manufacturing processes. Additionally, a potential
exposure of the device to conditions of extreme temperature or improper externally applied stimulation
(e.g. too high voltage or current) could lead to transient failures. Although there is not much information in
the literature at this moment about the reasons and the occurrence of permanent failures, some information
about the amount of HRS and LRS defects observed in a memristive crossbar array, can be found in [14].
The spatial distribution of faulty memristors appears to be random, as it can be observed in Fig. 3-2a.
Furthermore, the number of switching failures is much higher for the HRS (approximately equal to 80 %
of the total) than for the LRS. Apart from device-specific faults, layout defects in the peripheral circuitry
may be also considered. In this context, we distinguish the work in [67] which focuses on the defects across
a passive crossbar array architecture. Concretely, it considers open, bridge and short defects between
different conducting elements, like column and row nanowires or even in the transistor terminals in the
peripheral circuitry. Some examples both in row- and column-nanowires are depicted in Fig. 3-2b, as well

as around the periphery in Fig. 3-2C.
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Fig. 3-2. Defects in memristor-based crossbar arrays. (a) Normalized conductance shift from the expected programmed
conductance in a 64x64 memristor crossbar in [14]. The cross-points of the crossbar are represented by little colored squared tiles.
Green tile refers to memristors whose conductance is properly controlled, whereas yellow and blue tiles are memristors with a
sensed conductance larger or lower than expected, respectively. (b) Modelled defects inside the array of a crossbar architecture and
(c) in the peripheral circuitry driving the array [67].

Generally, in the first switching cycles the newly formed devices, i.e. devices that have recently
passed through the forming process, behave as expected. However, the total time while the devices will still
switch state as expected, is something important to consider; this is generally referred to as device
“endurance”. Likewise, it happens with other types of memory cells, memristors as well allow a limited
maximum number of writing cycles (where “cycle” refers to a SET followed by a RESET event, or vice
versa). Owing to the stress seen by the device during the writing operations, some of the device properties
gradually degrade and, at some point, the performance no longer meets the desired specifications for the
target application. Concretely, such degradation has been observed in the HRS and LRS levels. For
instance, in [13] the authors identified three degradation scenarios, which here are illustrated in Fig. 3-3. We
observe that the HRS and/or LRS levels degrade due to several different causes. In each case, after a certain
number of switching cycles, the HRS and LRS levels end up being indistinguishable (i.e. HRS ~ LRS).

3.2 Hands-on Experience with SDC Commercial Memristors

In order to demonstrate hands on experience in measurements of switching variability in real
memristor devices, as demonstrated in [68], we collected data from self-directed-channel (SDC) memristors
developed and commercialized in 16-pin ceramic DIP package by Knowm Inc. [19]. The target device was
a BS-AF-W bipolar memristor with tungsten (W) dopant on a chalcogenide material. The SDC memristors

[69] constitute an ion-conducting device type, a sub-class of electrochemical metallization (ECM) devices,
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which uses a metal-catalyzed reaction within the device active layer to generate conductive channels (Ag
ion transport routes) that contain Ag agglomeration sites, permanent under similar operating conditions.
Therefore, they are different from conductively bridged (CBRAM) devices, which are based on the
formation/dissolution of a conductive filament between the top and bottom electrodes in response to an
applied voltage [70]. The collected data offer valuable experience on observation of variability, as shown

next.
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Fig. 3-3. Different failure mechanisms for bipolar filamentary memristors: (a) both HRS and LRS levels approach each other at an
intermediate resistive level. (b) HRS degrades abruptly to LRS. (c) HRS degrades gradually towards LRS. Extracted from [13].

More specifically, the SDC Knowm memristor switching mechanism is bipolar; with a positive
applied voltage above a threshold value, the device resistance may decrease to a LRS level, whereas the
opposite polarity makes its resistance to rise to a HRS level. The device also has the property to phase
change when higher voltages and currents are used, which is purposely avoided in the measurements as it

provokes irreversible changes in the devices.

Knowm devices come fresh and they need an electroforming process to enhance their memristive
behavior. The procedure to obtain electroformed memristors is next explained and the overall setup is
illustrated in Fig. 3-4a. A slow voltage ramp rising from 0 V to 1 V was generated using the Agilent 4156C
Semiconductor Parameter Analyzer and applied directly to the memristor, while fixing the compliance
current to 1 A to protect the device when it switched abruptly to LRS. Once electroformed, the
experiments consisted in observing the behavior of several i-v cycles under the same stimulus. Concretely,
the 4156C device applied a voltage sweep between -0.7 V and 0.5 V, in small steps of 2 mV at a pace of
100 ms for each step, repeatedly until 200 cycles were performed. In this second phase during the switching

cycles, the current compliance was set to 10 pA, as recommended in the datasheet specifications.

Fig. 3-4b shows the obtained voltage and current data of a single memristor collected with the 4156C
instrument in the form of an i-v plot. While observing this plot, it is easy to recognize the characteristic i-v
hysteresis loops, although the left lobe is quite narrow. Further measurements on the same type of devices
can be found in [71]. The reason behind the asymmetry in the input stimulus lies in that the SET and RESET

processes are completely different. More specifically, while the SET process is abrupt and the device
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apparently switches completely before the applied voltage reaches to 0.3 V, the RESET process requires a

larger voltage span to complete, due to being a more gradual process with a slower resistance evolution.

There are some regions that are difficult to distinguish in the linear scale plots due to the Rore/Ron
ratio of memristors. Therefore, it is a common practice to present the i-v curves using the logarithmic scale
for the current, as shown in Fig. 3-4c, where current from both lobes can be clearly appreciated and thus can
be compared more easily. The negative lobe size is quite small compared to the other lobe. RESET process
starts at smaller voltage magnitudes compared to the SET process. However, the transition from LRS to
HRS is slower, thus requiring higher negative voltages to enable reaching to Rorr. Additionally, while the
SET process produces a single and abrupt current jump, the RESET process gradually drops the current in
several steps. Variability seems to be worst in the RESET process, where switching events are more
scattered. Finally, the current axis in Fig. 3-4c is converted to a resistance axis in Fig. 3-4d, by simply dividing
the voltage and current data points. This last plot is useful to illustrate the evolution of the resistance and/or
the HRS and LRS levels, with an Rore/Ron ratio higher than 100. It also shows how Rogr is not a purely
ohmic state, although it seems to be only lightly dependent on the voltage. On the other hand, ohmic
behavior for Ron is not properly shown here, because of the application of the compliance current by the
4156C instrument.

Moreover, some characteristic memristor parameters may be extracted from the measured data,
such as the Rorr, Ron Values, as well as the voltages required for SET and RESET, i.e. Vser and Vgeser. It
is worth mentioning also that the validity of the parameters obtained is bound to the conditions under which
the memristor(s) were formed and tested. Therefore, it is not guaranteed that these parameter values can be
directly included in a model to faithfully replicate the dynamic device behavior in generic simulations for
different conditions than the ones of these measurements. Nevertheless, the extracted parameters are useful
to have some insight about the magnitude of C2C variability for this device. For this reason, Rorr and Ron
values are calculated in each cycle through the current obtained at 50 mV (when decreasing) and -50 mV
(when increasing), respectively. Furthermore, Vser and Vgeser are defined as the voltages where the
measured resistance slope (in logarithmic scale) is maximum. Once obtained every parameter for each
cycle, mean and standard deviation is calculated for each parameter and the results are shown in Table 3-1.
Higher variability is observed in Rorr values compared to Ron. The parameter that is affected the most by
variability is Vreser, Which is something reasonably expected because of the increased randomness of the

RESET process observed in the measurements.

3.3 Incorporating Reliability Phenomena in Memristor Device Models

The ability to model precisely the memristor behavior is essential to demonstrate their usefulness
in several applications. However, being able to incorporate in memristor models different phenomena
related to variability, is also an essential tool so as to evaluate the impact, reliability or tolerance of an
application to some of these issues. Unfortunately, so far most memristor models do not include such

features, so they need to be incorporated separately applying different strategies. Therefore, in this section
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both memristor variability and failure modelling are discussed. On the other hand, device endurance (or

degradation) modelling is not covered.
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Fig. 3-4. Data measurements for i-v hysteresis loops on Knowm commercial SDC memristors as DUT. (a) Experimental set-up for
electroforming of memristors and to perform the C2C measurements. When electroforming, the DUT is supplied with a 1 pA
current-limited step voltage function that sweeps from 0 to 1 V. The measurement of i-v curves uses a 10 pA sweeping voltage
from -0.7 V to 0.5 V. Both sweeping voltages are stair-shaped signals with a step resolution less than 2mV and a duration of 100
ms per step. (b) i-v curves. (c) i-v curves in logarithm scale. (d) R-v curves.

Table 3-1. Parameter extraction from measurements on SDC Knowm memristors

Rony 29 kQ Vsery 206.9 mV
Ron.o 2.656 kQ Vsiro 32mV
Rofr 7388MQ | Veesery | -117.6 mV
Rorr.o 1.72MQ | Vresero | -80.6 mV

3.3.1 Modelling the Memristor Variability

As it has been reviewed previously, there are different factors that contribute to variability,
classified into C2C and D2D variability. Although each factor can be modelled separately, doing so is a

rather complicated task which is out of the scope of this work, mostly because of the need for deeper
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understanding on the physical background behind each contribution. Additionally, modelling each effect

separately may be impractical as it adds computational overhead in the simulation.

Our approach is based on the observation that all the contributions in variability are seen as random
uncertainty of parameters. Instead of focusing on modelling each contribution separately, all contributions
were wrapped up into two general terms; i.e. C2C and D2D variability, being the only random events. It is
important to distinguish how each type of variability should be implemented, so next we describe this in
more detail. D2D variability is permanent and implies a different behavior of the device from the very
beginning of its lifetime. Hence, in simulations of any device modeled with such effects, the latter have to
be applied at the instance of the netlist, or during the initialization at the beginning of the temporal
simulations. On the other hand, C2C variability generates uncertainty during the entire temporal simulation,
as we observed previously in measured currents that were affected by RTN. Therefore, the parameters of
the model affected by C2C variability must be altered constantly. The choice of model parameters that need
to be modified in order to incorporate D2D and C2C variability, will depend entirely on the selected device
model.

In this context, next we show how D2D and C2C variability can be introduced in the Verilog-A
Stanford/PKU model [56], which is the model chosen to be used in this study. As mentioned in the previous
chapter, this model already implements some variability features. However, they are minimal leaving us a

lot of space for improvements.

More specifically, the model takes into consideration C2C variability induced in the state variables
g (the tunneling gap distance between the electrode and the tip of the conductive filament (CF)) and w (the
CF width), which are not only determined by the change of state equations but also by random quantities
ogx(t) and ow+y(t), as shown in eq. (12) and (13). y(?) is a random variable that follows a zero-mean
Gaussian distribution with a standard deviation equal to 1, N(0,1). So, dg- () and dg-(z) are Gaussian
distributions N(0,0g) and N(0,6w), respectively. It should also be considered that different memristors
might demonstrate different amounts of variability, hence it is interesting to include different scales of
statistical distributions for different parameters. In this direction, in addition to the aforementioned
implementations, we included a factor k that multiplies the default standard deviations g and éw in order
to capture different levels of C2C variability. The results are new random quantities which follow a
Gaussian distribution N(0,k-0g) and N(0O,k-ow). This allows us to cope with higher levels of uncertainty
observed in other devices, like the Knowm memristors which were characterized experimentally in the
previous Section. For instance, Fig. 3-5 shows the resistance distributions after 5000 cycles of programming

HRS and LRS for different values of k. As k increases, the distributions are wider.

_ (‘49
g = ( ) E+8g-)((t))dt (12)
¢
w=<f d—W+8w-)((t)>dt (13)
o dt
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Fig. 3-5. Probabilistic distribution of 5000 total programming events of HRS and LRS using the Stanford/PKU model for different
values of k factor. The resulting standard deviation and the percentage of standard deviation with respect to the average are shown
for each distribution.

3.3.2  Memristor Fault Modelling
Fault modelling in memristor applications can be quite challenging because there are few

references reporting faults in memristor devices so far. When it comes to a defective memristor, there are
two possible scenarios: stuck-at faults and transient faults. Stuck-at faults have been discussed previously;
a memristor might accidentally get stuck at HRS or LRS permanently. On the other hand, transient faults
are important because they are not noticed initially. Instead, the device starts working properly as expected
but at some point it becomes faulty, i.e. stuck-at-OFF (SAOFF) or stuck-at-ON (SAON).

The modelling of stuck-at faults is quite straightforward. We provide two different options, as
illustrated in Fig. 3-6a. The first one concerns replacing the memristor by a linear resistor whose resistance
is equal to Rorr as equivalent to a SAOFF fault, and Ron as equivalent to an SAON fault. This solution is
convenient owing to its simplicity and does not impact the computational time in simulations. A second
alternative consists in using a modified memristor model as a faulty memristor. In this case, the dynamics
are removed, i.e. preventing it from changing its state. In other words, the resulting element is now a
nonlinear resistor. This last solution allows preserving the non-linear i-v relationships observed in the

device model without modifying the resistance value.

In the case of a transient fault, it is assumed that a memristor eventually appears to be in SAOFF
or SAON. Therefore, the model used for such fault must allow setting the moment when the fault is actually
provoked. To this end, a transient faulty memristor is modelled using a voltage-controlled switch, which
switches between a functional memristor and an SAOFF (or SAON) memristor, which is modelled as

explained previously. Fig. 3-6b shows the circuit schematics corresponding to this solution.
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Fig. 3-6. Two memristor faults modelled at circuit level. (a) Stuck-at-OFF and stuck-at-ON, modelled by either a fixed linear
resistor or a nonlinear resistor. (b) Transient stuck-at faults, modelled with a voltage-controlled switch that commutes between a
functional memristor and a faulty memristor.

3.4 Concluding Remarks

Memristors deal with defects and uncertainty phenomena, whose origin and the effects produced
by them have been reviewed in this chapter. Not only are caused by manufacture limitations, but their
physical mechanisms inherently cause variations in the behavior. If some of these issues are critical or not
for an application, it depends on the application requirements and the memristor characteristics. For
instance, if precise, fine-grained control of the memristor states is required by specification, it may be a

challenge for a device with significant variability.

Furthermore, we have exposed ways of model C2C and D2D variability, as well as zero-time and
transient faults. Now that all the tools required for simulation are known (memristor, memristor variability
and fault models), the next step is to use them to analyze the impact of uncertainty in applications. The
following chapters deal with different kind of applications and solutions to mitigate some of these unwanted
effects. Concretely, memory systems are covered in the next chapter, which is one of the earliest

applications where memristors have been involved, and how to detect faults in a memory cell.
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Chapter 4 Fault Testing in Memristor-Based Memory Systems

Memristors are devices whose resistive state is inherently nonvolatile, thus being potential
candidates to be used as memory cells for low-power purposes. Additionally, crossbar arrays are structures
that take advantage of the small footprint of memristors, allowing to achieve the maximum possible
integration density, thus to maximize storage density of memristive memories. Everything considered,
memristor gathers enough promising characteristics so as to be considered a key memory device candidate
for future applications. Unfortunately, the reliability issues discussed in the Chapter 3 remain one of the
major obstacles for this technology to make it to the market as a real and competitive alternative. Besides
expecting better and more reliable devices that alleviate these drawbacks, finding solutions to detect, correct
and/or tolerate errors in memristive memories is a mandatory issue. This Chapter presents a review of the
possibilities that memristors offer as part of memory systems. Next, a novel strategy to test faulty cells in
memristor-based memory arrays is presented (published in [72]). Such strategy spans the whole space from
the design of the memory circuit to the algorithm that detects different kinds of known faults for this type
of devices.

4.1Potential of Memory Systems Based on Memristors

The suitability of memristor as a potential candidate device compared to other emerging
technologies, has been projected in the near past according to [2], considering in such comparison both
conventional memories (DRAM, SRAM, NOR and NAND) as well as emerging memory devices (FeERAM,
STT-RAM, PCRAM and RRAM). Some predictions for 2020 highlight the smallest cell area of memristors
(4 F?), as well as the lowest writing voltages (< 0.5 V). Read and write/erase times (about 1 ns and < 1 ns,
respectively) are much better than in other emerging technologies but slightly slower compared to
performance of conventional SRAM (as low as 0.2 ns). The major challenges are situated in the write
endurance of the cells, where DRAM or SRAM may prevail by 4 orders of magnitude, and certainly the

memristors are far from being placed in the first band among other emerging technologies.

Furthermore, achieved memory density may reach beyond what is allowed by the physical footprint
in 2D structures. This, owing to multi-level storage in memories which store more than one bit of
information per memory cell (i.e. per memristor), allowing higher quantities of stored data in the same
crossbar array. To this end, careful distribution of the achieved resistance window is required, separated in
bands corresponding to different stored combinations, along with controlled programming processes and
variability of the different resistive states. In addition, a higher HRS to LRS ratio allows more states to be
allocated. For instance, recently it was reported that for some devices it is possible to store more than 6 bits
of information per memristor, using a proper programming methodology [73]. On the other hand, 3D-stack
technology allows to integrate two or more layers of crossbar arrays in a stacked manner, thus scaling
further down from planar cell area 4F2 to 4F?/N, if N is the number of total stacked crossbar arrays (layers)
[74].
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4.20nline Testing Strategy for Faults in 1T1R Crossbar Memory

This Section presents a procedure to test a one-transistor-one-memristor (1T1R) crossbar-based
memristive memory array during normal operation of the system, published in [72]. Such procedure focuses
specifically on the different malfunctions of the memory cells. To this end, it includes a simple fault model
for the 1T1R cell, as well as the interferences between cells when faults occur.

All the presented results and data in this Section were obtained by means of simulations only,
conducted with the Cadence Virtuoso ADE software tool. The memristor model used was the Stanford/PKU
RRAM model implementation in Verilog-A [56], using the all the default values listed in Table 2-2 in
Chapter 2. Regarding the transistor, a 65 nm predictive model was adopted from [75].

4.2.1 Read and Program Operation to a Single Cell
As a first step in the design process, we focus on the operation of the 1T1R cell, and the strategies

to follow in order to read and write information from/to it. In this direction, the cell behavior must be well-
studied and also the stimulus and circuitry used for these purposes must be chosen appropriately. The circuit
schematic of a 1T1R cell is shown in Fig. 4-1. A 1T1R memory cell contains a memristor in series with a transistor.. The
cell essentially consists of a memristor connected in series with an NMOS transistor which acts as a selector
device. Hence, the 1T1R cell has three terminals: the top electrode of the memristor r, the source terminal
of the transistor c, and the gate terminal of the transistor sel. Labels r, ¢ and sel we selected so as they stand
for row, column and select, in reference with the crossbar architecture and the corresponding function they

are used for.

The transistor allows the cell to be selected or unselected if sel is ‘1’ or ‘0’, respectively. Only
when selected, the transistor is conducting and the cell can be read or programmed. On the other hand, by
keeping the select transistor cut-off in an unselected cell, we prevent any read and program operations from
taking place in that cell, but most importantly, we also prevent sneak-path currents from passing through
it.

¢ — —nn-r
| M
sel

Fig. 4-1. A 1T1R memory cell contains a memristor in series with a transistor.

The read-out operation is such that makes the state of the memristor accessible to other subsystems,
without disturbing the stored data. Reading usually means that the resistive state of the memristor is
converted to another magnitude able to be sensed, such as voltage or current. So, the requirements for a
proper design of the read operation are as follows: (a.) the operation must not disturb the memristor state,

and (b.) the applied circuit must be able to distinguish between different levels of resistance, assuming that

32



data is codified in discrete resistive levels within the entire valid resistance window of the device [Rm,
Rmax].

There are different techniques proposed in the literature which could be applied to sense the
memristor state. We particularly used the scheme shown in Fig. 4-2. Schematic of the circuit used in the read operation
of a single memristor cell. RD_OUT is either ‘0’ or ‘1’ if Rm is HRS or LRS, respectively., which concerns a comparator
that senses the difference between a reference voltage, created via a voltage divider, and a read voltage
from a voltage divider between a resistor and the target memristor. Assuming that we only need to
distinguish between two states, namely ‘0’ and ‘1°, a comparator is sufficient and is considered a fast
enough solution. The read operation is performed by applying a voltage pulse across the voltage dividers.
Rrer acts as a threshold resistance to evaluate if the value of the resistance of the memristor Rw is HRS or
LRS. If Rm is higher than Rrer, RD_OUT outputs a ‘0’ logic level. Otherwise a ‘1’ logic level is given. In
order to carry out this state conversion during read-out without altering the stored cell content, it is required
that the applied voltage pulse complies with certain properties. For example, the pulse amplitude Vreao
needs to be low enough, so that the voltage drop on the memristor terminals is not high enough to cause
any significant change in the state of the memristor. Additionally, the pulse width must be only long enough
to cope with the parasitic capacitance of memristor, transistors and nanowires. Taking into account all these
specifications, in our circuit design the reading circuit used a resistor Rrer = 200 kQ and a voltage pulse

whose amplitude was Vreap = 1 V and its duration was 10 ns.
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Fig. 4-2. Schematic of the circuit used in the read operation of a single memristor cell. RD_OUT is either ‘0’ or ‘1” if Rm is HRS
or LRS, respectively.

The goal of programming a memristor is to precisely set the device state into a HRS or LRS. It is
worth repeating here that finding proper conditions for a reliable programming performance is a key factor.
Moreover, the programming can be dealt with as if it were two operations instead of one: i.e. the operation
to program a HRS state and a LRS state, respectively. Each one has different requirements as the SET and

RESET mechanisms are not exactly the same.

Fig. 4-3a shows the general programming schemes used in each case. On the left side, for the LRS
programming scheme, a positive voltage pulse with amplitude Von is applied to the memristor. Furthermore,
an additional series transistor is used in order to limit the current passing through the memristor for
protection purposes because too high currents could damage the device once it abruptly switches to LRS
during a SET process. In this direction, the gate voltage was selected Vecc = 1.28 V such that a 100 pA

compliance current was achieved. On the right side, for the HRS programming scheme, a negative voltage
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is applied to the memristor (note the different polarity of the memristor in this topology) by means of a
voltage pulse with amplitude Vorr. Unlike in the previous case, here there is no need for an extra transistor
to limit the current in the RESET process because, once the resistance of the memristor starts to increase,

at the same time the current will decrease and this way will never cause damage to the device.

Program LRS  Program HRS

500 ' !
—Von =2V ‘
— V=18V

Von

O 4
e 100 - 1
50 7
I— Vb '
— Voo
= Vece P75 00 15 20 25 a0 35 40
1 Vorr 03

Pulse width (ns)

() (b)
Fig. 4-3. (a) Programming schemes for HRS and LRS, concerning a memory cell that stores 1-bit of information. (b) The LRS
achieved after a SET operation considering different width and amplitude Von of the applied voltage pulse.

RLRS after programming (k)

In order to demonstrate how the applied programming voltage pulses should be tuned, several LRS
programming operations were performed using two different Von amplitudes, namely 1.8 V and 2 V, while
probing different pulse widths. After each programming event, a read operation was held. Read-out results
are shown in Fig. 4-3b. We observe that with lower amplitude Vwrite, larger pulse widths are needed in order
to reach the same LRS state. Nevertheless, we decided to use the same voltage pulse for both programming

schemes in order to simplify the circuitry; Von = Vore = Vwrite = 2 V with 120 ns width pulses was chosen.

Once the read and the read/program operations were designed, all circuits presented so far were
combined in a unique complete peripheral circuit for read/program operations to a single cell, as depicted
in Fig. 4-4. This circuit is able to perform all operations described previously, by enabling or disabling some
of the devices and blocks of the peripheral circuitry. More specifically, two inverter drivers provide 0 V
and Vwrite Voltage levels available on both cell terminals, needed for HRS/LRS program operations. When
input d = 0, then r and ¢ nodes are Vwrite and 0 V, respectively. Note that one driver is a tri-state inverter
and the aforementioned scenarios only occur with en = 1. Setting en = 0 disconnects the output of the tri-
state inverter from the voltage supplies, resulting in a high-impedance output node. Consider that it is
necessary that the output is kept in high-impedance when the PMOS transistor connected to node c is
conducting, i.e. when read = 0, to not interfere with the Vreap voltage. The rest of the circuit is adapted
from Fig. 4-2 with the exception that Rrer are implemented using PMOS transistor in the saturation region
with a properly tuned gate voltage Vep, to achieve channel resistance approximately equal to 200 k€. This

implementation has the advantage of disconnecting Vreap Voltage (setting read = 0) from node ¢ when the
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tri-state inverter output is enabled (en = 1). Using this scheme, read and program operations were performed

by setting signals to proper levels, as they are detailed in Table 4-1.

Table 4-1. Signal setting for each operation in a single 1T1R cell

OPERATION en|en|d | d |read

READ 0 111160 1

PROGRAM HRS 1 011160 0

PROGRAM LRS 1 0 [0]1 0

read

Veean =

Fig. 4-4. Complete peripheral circuitry for read/program operations performed to a single 1T1R cell.

4.2.2  Overview of target memory system
The complete memristor-based memory system considered in this study is shown in Fig. 4-5a, and

comprises of the 1T1R crossbar array described previously, along with the peripheral circuitry shown in
Fig. 4-4. As its core, the system has a 1T1R crossbar of size m x n (undetermined). The row nanowires are
labelled ry, ..., rm; they are connected to the top electrode of the cross-point memristors. Likewise, the
column nanowires c; ... €, connect to the source terminal of the select transistors. Additionally, all the gate
terminals of the select transistors found in the same row (the same memory word) are connected between
them by select nanowires labelled sel; ... selm. Using this notation, a cell is identified as (i,j) by its position

in the array defined in terms of the row r; and column c; where it is connected.

The peripheral circuitry consists of signal drivers and a sensing circuit. Regarding the signal
drivers, there are m row inverter drivers plus n column tri-state inverters. The inverters provide the Vwrite
voltage and ground that are required in program and read operations. Each inverter input terminal has a
different input, di1 ... dim and de: ... dem. The en signal for the column tri-state inverters is shared, making
it possible to enable all of them simultaneously. On the other hand, the sensing circuit contains n amplifiers,
each one sensing one column nanowire, whereas the Rger resistors shown in Fig. 4-2 are here implemented
using PMOS transistors. The reference voltage which is obtained from the voltage divider connected to the

positive input of the amplifier, is shared among all the amplifiers.
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All the memory cells belonging to the same row in the array are selected when enabling the
corresponding sel signal (seli = 1). The same occurs with the shared en signal for the column tri-state
inverters and the shared wire for the PMOS gates in the sensing circuit. This configuration for the crossbar
allows performing read, program HRS and LRS operations in every memristor of a row instead of a single
cell, in a single step for each operation. The array operations, which extend the operations previously
described in Table 4-1 for a single cell, and the set of signals required for each operation are listed in Table
4-2. All operations now use input arguments to determine the location of the cells to be read or
written/programmed. For instance, READ ROW i gives in the outputs the stored state in the n cells of row
i through the n amplifiers outputs, given the input argument i which is the target row number (1 <i < m).
Fig. 4-5b depicts in detail the logic levels of all the signals applied to the system to perform a READ ROW
operation. The input of each column inverter is fed with an ‘X’ logic level, which means a ‘don’t care’
value, i.e. the value is not important due to the inverter high-impedance state (en = 0). PROGRAM HRS b,
... bo ROW i and PROGRAM LRS by, ... bo ROW i operations program the memristors found in the row i at
HRS or LRS respectively. The cells to be programmed are indicated by the input arguments by ... bo. A b;
= 1 means a request to program the cell in position (i, j), whereas b; = 0 means the cell (i, j) to keep its
current state. In order to make sure that the memristors that are not supposed to change indeed keep their
state, the voltage drop across their terminals must be negligible. Hence, the column and row driver must
output the same voltage levels. Fig. 4-5¢ and Fig. 4-5d show some examples of the execution of PROGRAM
HRS and LRS operations in a particular row within a 5x5 crossbar, respectively. Again, ‘X’ logic levels
appear this time supplied in non-selected rows because transistors in those rows already prevent conduction
through these cells.

4.2.3 Cell faults considered in the circuit
The proposed online test strategy accounts only for faults occurring in the memory cells. Because

the cell is comprised of both transistor and memristor devices, faults in either of the devices are considered.
In Chapter 3, memristor faults Msaon and Maorr Were already described. Regarding the select transistor,
two faults are taken into account: when the transistor is stuck-at-on (Tsaon) and stuck-at-open (Tsaopen).
When a cell is faulty with a Tsaon, there is a short-circuit between drain and source. This case is modelled
at circuit level by substituting the faulty transistor with a resistor Rsaon Which represents a very low resistive
connection and practically connects directly the memristor to the column nanowire of the crossbar. This
way, the cell can be programmed and read, as it is kept permanently selected. On the other hand, a Tsaoren
fault means that the transistor is always cut-off. In this case, we model such fault by substituting the
transistor with a high value resistor Rsaopen. Both types of faults imply the loss of capability to deselect the
cell. However, whether read and program operations are feasible or not, it actually depends on the fault
type. The summary of all the faults considered is given in Table jError! No se encuentra el origen de la
referencia.. Another relevant assumption in this study is the single fault scenario, i.e. the case of having
only one fault at any moment in the entire crossbar. Next, the detection of every fault is discussed in order

to elaborate a strategy to enable detection of faults in a 1T1R crossbar-based memory system.
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Fig. 4-5. Schematics of the target 1T1R crossbar memory system. (a) The complete memory system overview. (b) READ ROW
operation. (c) PROGRAM HRS operation to row 3. (d) PROGRAM LRS operation to row 3.

Table 4-2. Signal setting for each operation in a single 1T1R crossbar memory system.

en read dr1 ... dii... dm et ... den
READ ROW i 0 1 1...1...1 X...X
PROGRAM HRS bp.1...00 ROW i 1 0 X...10 X bn1 ... bo
PROGRAM LRS by.1...oo ROW i 1 0 X...00 . X b1 ... bo

Table 4-3. Single faults considered in 1T1R memory cells.

Fault Name Description

Transistor stuck-at-on Tsaon Channel remains conductive; low resistance R between drain
and source

Transistor stuck-at-open TsaoreN Channel remains cut-off; high resistance R between drain and
source

Memristor stuck-at-ON Msaon Memristor kept in LRS; low resistance Ron

Memiristor stuck-at-OFF Msaorr Memristor kept in HRS; high resistance Rorr

4.2.3.1. Detection of TsaorEN and Msaorr faults

The detection of Tsaopen and Msaorr is quite straightforward. Both faults make the 1T1R cell to be
sensed as HRS, either because the transistor is cut-off (exhibiting a very high channel resistance) or the
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memristor is stuck-at a HRS. These resistance values are higher than the selected Rger, hence sensed as
HRS in a read operation independently of the state programmed in the memristor. Therefore, by
programming a memristor to LRS and then immediately reading it, it is easy to detect a Tsaopen OF Msaorr
fault if a HRS is sensed instead of the expected LRS

4.2.3.2. Detection of Msaon faults
Similarly, Msaon faults are also easy to detect. In fact, they follow the opposite behavior and

detection than what we described for Msaorr. More specifically, in this case the 1T1R cell is sensed as LRS
after a read operation regardless of any previous programming operations to store a particular state. The
detection of this fault is complementary to the Tsaoren and Msaorr detection; i.e., the cell is programmed
to HRS and then read, revealing a Msaon fault if the read operation senses a HRS instead of the expected
LRS.

4.2.3.2. Detection of Tsaon faults
Unlike the rest of fault types, Tsaon detection follows a completely different strategy. In this case,

the issue is the lack of control for accessing the 1T1R faulty cell; concretely, it is always selected.
Consequently, it can be successfully programmed to HRS or LRS and read without raising any
inconsistency. Nevertheless, since it is always selected, unfortunately it can interact with other cells and
operations.

To understand the interference of the Tsaon fault, Fig. 4-6 depicts a scenario consisting in a 3x3
crossbar array with a single Tsaon fault located in (2,2) position. The example also assumes that the
memristor in the faulty cell is in LRS. The system aims to read the content in row 1, i.e. the operation
READ ROW 1. Cells inrow 1, (1,1), (1,2) and (1,3), have their memristors in states HRS, HRS and LRS,
respectively. However, by applying the signal setting in Table 4-2, not only cells in row 1 are sensed but also
(2,2) is sensed due to the current path that the Tsaon fault allows and the 0 V supplied at r, node. Green
current paths mark the expected sensing currents while the red one is the current path allowed by the Tsaon
fault. Note that in column 2 the read circuit senses both cells (1,2) and (2,2) in parallel, showing an
equivalent resistance similar to a LRS of a memristor. The outcome in the read operation is cells (1,1) and
(1,3) are correctly senses as ‘0’ and ‘1°, respectively, while cell (1,2) is wrongly sensed as ‘1°. Although
this example covers the READ ROW 1 operation, READ ROW 3 outcome is the same: the sensing of cell
(3,2) is also interfered by cell (2,2), hence cell (3,2) reading may be misleading.

Before introducing the method to detect a Tsaon fault, there are two other situations to contemplate.
The first one is related to the previous assumption in which the memristors cell (2,2) is in LRS. Indeed, if
the memristor cell with the Tsaon is in HRS, an incorrect evaluation is not necessarily true as the read circuit
may be able to distinguish between a memristor in LRS and two parallel memristors. The second situation
is about performing the READ ROW operation in the row where the Tsaon fault is located. In this case, the

output is correct as there are no other faulty cells interfering (recall the single fault assumption).
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These three situations give hints that will help to develop a method to detect a Tsaon fault in an
unknown cross-point of the crossbar. The approach is to exploit the interference seen in Fig. 4-6, i.e.
misleading readings in different rows localized at the same column when the content of the cells is
previously known. The detection is possible by following the steps illustrated in Fig. 4-7, using as an example
the 3x3 crossbar shown in Fig. 4-7a. Each step is accompanied with the operation that is being performed, a
diagram of the crossbar state and an auxiliary external memory for the Tsaon fault detection. In the crossbar,
the cells are represented by dots at the cross-points of row and column nanowires. The border color of the
dot indicates if the cell is selected (blue), suffering a Tsaon fault (red) or non-selected (black), while the
inside color means the state of the memristor in the cell (orange for HRS and green for LRS). Regarding
the auxiliary external memory, its size matches the crossbar. It stores the results of the readings. When a

space is blank, it means that the content is not meaningful for the fault detection process.

As a first step, we want to program to LRS the memristor of the cell with the Tsaon, although its
localization is unknown. Because of the lack of controllability in the selector device (it is always turned
on), the fastest way to program the faulty cell is to slightly modify the PROGRAM LRS ROW operation.
Recall that the output of all the unselected row inverters is ‘X’, meaning there can be either ‘1’ (Vwrite) OF
‘0’ (0 V). If the ‘X’ is ‘07, as in the selected row, the faulty cell can be programmed to LRS. Of course, to
not miss the column where the faulty cell is, all the row must be programmed to LRS, i.e. perform a
PROGRAM LRS 11...11 ROW i.

The second step involves the HRS programming of the row we are about to read. Unlike the first
step, the programming of the faulty cell must be avoided, which is already programmed at LRS. In this
case, this is also achieved by modifying the ‘X’ values in the PROGRAM HRS ROW operation. However,
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in this occasion the ‘X’ is assigned a ‘1°, which is the opposite logic value that is supplied to the selected
row. Hence, when the operation PROGRAM HRS 11...11 ROW i is ordered all memristors in row i are
switched to HRS but any other memristor in other rows show a negligible voltage drop. Fig. 4-7¢ depicts
this step, where only the cells in the selected row 1 are programmed to HRS.

The third step consists in reading the contents of the row and store them in the external memory.
Expecting not faults, the reading output should be *00...00’. However, if a cell with Tsaon fault is present
in another row, that cell will interfere in the reading operation causing a misleading output ‘1’ instead of
an expected ‘0’. The situation is the same as shown in Fig. 4-6, and in the current example is illustrated in
Fig. 4-7d. These three steps are repeated for each row in the crossbar. For instance, the state of the crosshar
after reading row 2 and row 3 in the example is shown in Fig. 4-7e and Fig. 4-7f, respectively. Because the
fault is allocated in row 2, there is no interfere from other rows in this reading and the results is ‘000’. The

reading in row 3 is exactly the same as in row 1.

After all steps are completed for all rows, the readings stored in the external memory are checked.
A pattern consisting in a column full of ‘1°s and a single ‘0’ (while the rest of columns are ‘0”) indicates a
Tsaon fault, as shown in Fig. 4-7f (marked in red). Concretely, the single ‘0’ in that column comes from the
cell suffering the fault.

Step 1: Step 2:
PROGRAMLRS 111 ROW 1 PROGRAM HRS 111 ROW 1
€y Gz Cy I ALJ fl\cz ,I:
HRS
LRS @
(a) (b) (©) Selected cell O
Unselected cell O
Step 3: Repeat steps 1-2-3 for row 2: Repeat steps 1-2-3 for row 3: Cell with
READ ROW 1 READ ROW 2 READ ROW 3 TSAON o
1 rI\CI A\CZ )\Ca 1 ,I\C‘ ,lfz )\Ca 1 ¢ >3 €3

oo I I I oo oo
Iy Iy ololo Iz oloo
oo
Ty I3 Ty
\IJ

\II \II f Asingle '0" in a column full
of 'l's marks the Tgsq fault.

(d) (e) U]

Fig. 4-7. Method for detecting a single Tsaon fault in a cell using as an example a (a) 3x3 crosshar with cells already storing some
random data. Next to the crossbar, a grid represents an external auxiliary memory that stores read outputs. The steps for the methods
are (b) a PROGRAM LRS 111 ROW 1 operation (in which the cell (2,2) is also switched), (c) a PROGRAM HRS 111 ROW 1
operation, (d) a READ ROW 1 operation. These three steps are repeated for the rest of the rows. For instance, system picture after
reading row 2 and row 3 are shown in (e) and (f), respectively. After the last row is read, the memory content is used to detect a
Tsaon fault in cell (2,2), showing the content ‘0’ in a column full of ‘1’s.

4.2.4 A novel online test strategy
Combining all the detection methods previously explained, a compact strategy that checks the

memory for all the considered faults is presented. The online test strategy presented here was inspired by
built-in self-test (BIST) strategies [76] and constitutes a robust process capable of checking all cells in the
1T1R crosshar and of detecting different types of faults (listed in Table 4-3), given the assumption of a single

fault in the system. According to the proposed testing concept, some known states are programmed in
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certain cells and are read immediately afterwards. Any inconsistency found between the expected states

previously programmed and the read-out results are gathered, being valuable information in order to

determine if there is any faulty cell.

The complete procedure for the proposed online testing method is shown in the form of pseudo-

code in Algorithm 4-1, mixing both specific operations of the crosshar memory as well as logic operations

involving data stored in external memory elements. Regarding these memory elements, two of them are

present in the system: a register named s (of size n), and an array named a (of size m x n), serving for

different purposes explained later. More specifically, the algorithm performs the following steps at each

row i of the target crossbar array:

1)

2)

3)

4)

5)

6)

7)

Read the content of row i and store their states temporarily in register s = sp.1 ... So (line 2).
Program all memristor in row i to LRS. as in the example of Fig. 4-7b (line 3).

Read again row i, store output in the auxiliary memory a, and check if the content of the entire row
is ‘1’ by reading again row i. A cell sensed as a ‘0’ in the read output is successfully detected to

suffer a Msaorr Or Tsaopen (Iines 4-9)

Program all memristor in row i to LRS (line 10). No other cells (even a cell with a Tsaon fault) is
programmed (as shown in example Fig. 4-7c).

Read again row i, store output in the auxiliary memory d and check if the content of the entire row
is ‘0’ by reading again row i. A cell sensed as a ‘1’ in the read output is may be interpreted as a cell
suffering a Msaon fault or an interference (recall Fig. 4-6) caused by another cell with Tsaon fault
(lines 11-16).

Retrieve previous content of row i, which is stored in register s, by performing LRS and HRS

programming operations in row i according to the data stored (lines 17-18).

By consulting the auxiliary memory, a check for a column with n-1 cells interpreted as faulty (ajj =
‘1’) in the step 5. If so, the only cell not detected as faulty is actually the one faulty (exemplified in
Fig. 4-7f); the other cells in the columns are not faulty, when sensed they were interfered by the

faulty cell. Otherwise, the any detected fault is due a Msaon fault (lines 20-24).

Algorithm 4-1. Online Testing Procedure

1
2
3
4
5
6
7
8
9

10

forifromOtom-21do // forevery row

Sn-1... So«— READ ROW i //store in s the data stored in the row
PROGRAM LRS 1..1 ROW i //a cell with Tsaon fault in other rows is also programmed
ain-1 ... aio — READ ROW i
forjfromOton—1do //forevery column

if ajj= ‘0’ then // check for any cell sensed as HRS instead of LRS

cell (i,j) is faulty  // Mspore Or Tsaopen fault detected

end if
end for
PROGRAM HRS 1.1 ROW i // other cells are not programmed
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11 aint ... 8o « READ ROW i

12 forjfromOton—1do //forevery column

13 if aj= ‘1" then // check for any cell sensed as LRS instead of HRS

14 cell (i,j) is faulty  // Mspon or interference due a Tspon fault is detected
15 end if

16 end for

17 PROGRAM LRS s,,_4 ... s ROW i //retrieve original data of row i

18 PROGRAM HRS 5,77 ... S, ROW | /I retrieve original data of row i

19 end for

20 forjfromOton—-1do //foreverycolumn

21 if (n-1 cells in column j are faulty except cell (k,j)) then

22 cell (k,j) is faulty  // Tspon fault detected

23 other cells in column j are not faulty  // sensed as faulty due to cell (k,j) interference
24 end if

25 end for

Although not mentioned in the algorithm to simplify the whole explanation, further registers are
necessary to keep track of which cells are detected as faulty or are candidates. Size of all memory elements
(especially array a) will increase as the memory array size increases. In this context, the algorithm could
be modified to overcome this issue, e.g. by only storing information about the locations of the cells detected
or interpreted as faulty (lines 7, 14, 22 and 23), thus avoiding the storage of all the outputs from read

operations.

4.2.5 Simulation results and discussion
We designed the different parts of the 1T1R crosshar memory system shown in Fig. 4-5a. Inverters

and pass transistors were built using a predictive transistor model for 65 nm node [75]. Moreover, the
comparators and the multiplexer were implemented using Verilog-A behavioral description. Parameter
values used in simulations were Vwrite = 2 V, Vreap = 1V, Rrer = 200 kQ and Rsaon = 1 kQ, where Rsaon
is the resistance of the transistor when a Msaon is simulated. Memristors were always initialized in high
resistive state (HRS). In order to check the effectiveness of the suggested online testing procedure, rather
than simulate a whole system, it sufficed to check specific parts and cases. Two different temporal
simulations were performed: one for the verification of a single cell and the peripheral circuitry, and another

to illustrate the interference of a Tsaon fault in a reading operation.

The first simulation concerned the circuit that reads and programs a single 1T1R cell, shown in Fig.
4-4. The inverters were properly designed such as to drive enough current to program successfully the
memristor. The overall circuit operation is depicted in Fig. 4-8; although not explicitly shown, sel = ‘1’
through all the simulation. As mentioned previously, the state of the memristor in the 1T1R cell is initialized
at HRS at the beginning of the simulation. Therefore, a first READ operation (read = ‘1’,en=°0’,d= 1"
and d = ‘X’) confirms that the cell is at HRS. Next, a PROGRAM LRS operation is performed (read = 0’,

en="‘1",d=°0"and d = ‘1”), achieving a voltage similar to Vwrite across the memristor, and the READ
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operation again shows that the memristor was programmed successfully at LRS. Finally, a HRS is
programmed (read = ‘0’, en= ‘1", d = ‘1" and d = ‘0’) and the read output is HRS again, as expected. The
program pulse width was 120 ns, long enough to permit the memristor to switch completely its state. On
the other hand, the read pulse width was 10 ns, short enough to make sure the device state is not altered
during the read phase. Given the aforementioned properties of the applied read/program voltage pulses, the
HRS value was 1.5 MQ and the LRS was 21 kQ (see memristor model details in Chapter 2).
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Fig. 4-8. Temporal simulation of the verification of circuit in Fig. 4-4, in which operations READ, PROGRAM LRS, READ,
PROGRAM HRS and READ are sequentially performed. RD_OUT logic level is also displayed in READ operations.

Given that all the single cell program/read operations in simulation worked as expected, we
proceeded to simulated specific cases related to the faults to be detected. More specifically, the most
interesting case of fault testing concerns the detection of Tsaon faults at the select transistors, since in such
case the corresponding memristor interfere with another cell found in the active crossbar row. Instead of
simulating the entire system including just one faulty cell, in the simulated circuit we included only the
target cell to be read and the interfering faulty memory cell. Thus, based on the scenario shown in Fig. 4-6,
only the cells (1,2) and (2,2) were simulated using the equivalent circuit for the second column of the

crossbar shown in Fig. 4-9a, where the Tsaon fault was modelled using the resistor Rsaon.

The time-evolution of all the signals related to this simulation are detailed in Fig. 4-9b. Recall that
both memristors were initialized at HRS. The simulation starts by reading the content of the cell (1,2).
Therefore, since cell (2,2) is in HRS, the interference is not significant/harmful and the sensed output
RD_OUT = ‘0’ confirms that memristor in this cell is in HRS. Then, the cell (1,2) is programmed to LRS;
additionally, cell (2,2) is also switched to LRS because it suffers from a Tsaon fault. The next read operation
is also successful sensing LRS (RD_OUT = “1°). In fact, the interfering device is in fact contributing to the
correct sensing of a LRS, decreasing the equivalent resistance sensed by the read circuit. Finally, the cell
(1,2) is programmed back to HRS. Unlike the program LRS, cell (2,2) remains in LRS and does not switch
(due to the modification of the PROGRAM HRS ROW operation as explained in the previous subsection).
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When checking for the new programmed state of cell (1,2), in the read operation cell (2,2) interferes and as

a result the cell (1,2) is wrongly marked as faulty due to the unexpected sensing output RD_OUT = “1".

As the algorithm repeats this procedure with the rest of the rows, at the end all cells found in column
2 will be wrongly marked as faulty (as proved in the simulation with the cell (1,2)) except cell (2,2).
Consequently, if this is the case (see lines 20-25 in pseudo-code), then the last instruction should swap the

marks for faulty and non-faulty cells in column 2, to eventually identify the cell with the Tsaon fault.

VWRITE VWR_[TE

dr,l rl I'2 dr,z
M1,2
en
Vrite :Il_ sel,
d S
c,2 RD_OUT
en =
VREAD . 4E 4
read VREAD =
()
READ PROGRAM READ PROGRAM READ
v o LRS HRS
write
e H
0 :
Vread H
read P H ﬂ
0 ; H
V } - H H
write i :
dr] , H
0
drz Vwrite H r
Vwri(t)e
dc2
0
ry write[
0 : H
r write]
c Vwri?e J L
2 : E
RD OUT "%l 1" 11t
- 0[ H ) ! f_i‘ ! . :[_
0 50 100 150 200 250
Time (ns)
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Fig. 4-9. Verification of the interference caused by a cell suffering a Tsaon fault, based on the example of Fig. 4-6. (a) Equivalent
circuit of the column 2 in Fig. 4-6, where M1z and Mz are the memristors of cells (1,2) and (2,2), respectively. (b) Temporal
simulation when applying the sequence of operations READ, PROGRAM LRS, READ, PROGRAM HRS and READ. RD_OUT
logic level is also displayed.

4.3Concluding Remarks

Memories are one of the main applications in which memristors are expected to be a decisive

technology. Memristors provide multiple advantages to compete with conventional technologies: crossbar
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structures that provide massive device density, 3D structures that and multi-bit memories. All these features

have been covered in the first part of this Chapter.

In the context of the reliability issues that face memristors, an on-line test strategy has been
presented here able to detect a single fault in a 1T1R crossbar-based memory systems. The testing procedure
can be performed when required, halting the normal operation. The algorithm proposed is able to detect
four different types of faults presented in the 1T1R, while preserving the data stored in the memory. In
particular, the simulation results confirm the interference from a cell with a Tsaon fault, which is the unique
fault that induces two different cells to interact. Once known and verified the behavior of this fault, the

whole algorithm of the test is confirmed to be effective.

In the next Chapter, memristor-based digital computing applications are covered. One of their most
interesting features is the use of a crossbar memory where the data is not only stored but also computed.
Hence, fault detection methods like the one presented before may apply to memristor-based digital
computing systems. Instead of considering faults in the system, the focus is on the sensitivity of C2C and
D2D variability in memristors when evaluating different logic gates.

45






Chapter 5 Addressing Variability Issues in Memristor-based Digital
Computing Circuits

Besides digital memories, another application field where memristors were quickly identified as
promising candidate devices, is in digital logic circuits. In fact, the memristor can be viewed as a two-
terminal programmable resistive switch, thus being an element that can be used to build logic gates and
digital computing systems. However, memristor offers other interesting features too. For instance, the
nonvolatile data storage capability opens new possibilities to nonconventional forms of computing. In spite
of such new possibilities, there are certain challenges that memristor-based logic might face, some of them
being in common with other memory system technologies; e.g. limited write endurance and variability
issues. In this Chapter, some widely known memristor-based logic styles of the recent literature and their
relevant issues, are reviewed. Next, a set of selected logic styles are further explored at circuit level and
analyzed, with respect to the impact of variability of memristors on their performance. Finally, a novel logic
style is thoroughly described, that addresses design limitations owing to variability and thus it represents a
viable solution to future memristor-based in-memory computing systems. Such works have been previously
presented in [77], [78] and [79].

5.1 Review of Memristor-based Digital Computing Circuits

Since the claim of the fabrication of the first “modern” physical memristor in early 2008 by Hewlett
Packard Labs., digital logic circuits based on memristor is a topic that has been extensively explored by the
research community. In general, the contributions relevant to constructing logic circuits using memristors
as switching elements, have been mostly focused on developing different logic design styles with results
based primarily on SPICE simulations using behavioral (phenomenological) device models other than

models based on device physics.

By logic style we refer to a design methodology that can produce all kinds of logic functions, and
primarily universal ones such as NAND, NOR, or complex ones such as XOR. In the realm of MOSFETs,
some examples of logic styles are static CMOS logic, ratioed logic, or pass transistor logic. Memristor-
based logic is not much different from such conventional logic styles, and there are various proposed logic
styles; each one aims to provide different functionalities, as to simplify the design of the circuitry, to reduce
the latency to compute a function or to lessen the stress in the devices by using low voltages in the
computation. that aimed to improve performance and synthesis results or address specific problems, to
name a few. Memristor-based logic styles can be classified with respect to different features. Two
classification criteria were used in Table 5-1, concerning stateful or non-stateful logic, and compatibility

with the crossbar geometry.
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Table 5-1. Classification of known memristor-based logic design styles.

Crossbar Non-crossbar

Stateful Logic Implication [80] Memristors As Drivers [84]
Converse Non-Implication [81] Memristor-Aided Logic (other gates) [82]
Memristor-Aided Logic (NOR) [82] CMOS-like Logic [85]

Scouting Logic [83]

Non-stateful - Memristor Ratioed Logic [86]

We call stateful all the logic style families where memristors fulfill two functions: on one hand,
they hold the input data used in the computation encoded in their resistive state; one the other hand, they
are directly involved in the circuit that performs the logic computation taking into account their internal

resistive state. The common characteristics of this form of logic are as follows:
e Memristors are previously programmed codifying input data in the form of resistance.

e The computation consists in the voltage/current stimulation of a circuit that includes memristors

storing the input data; the output may be obtained in two ways:

o Sensing a voltage/current produced by the circuit; such magnitude contains information
about the output. This output can be subsequently stored by programming a memristor.

o Conditional programming of a memristor due to the voltage/current stimulation used

during the computation, which eventually holds the output data.
e Output data can be retrieved, i.e. its content can be read, by other subsystems.

e |tis essentially sequential logic, where each step constitutes either a memory or a logic operation.

In Von Neumann computer architectures (see Fig. 5-1a) computing and memory tasks take place
in separate modules which communicate through a common bus. Moreover, because CPU operates at a rate
which is higher than the throughput achieved between memory and CPU modules (what is known today as
the memory wall problem), the communication bus became a real bottleneck in such systems. On the
contrary, stateful logic enables non-conventional computing styles and architectures where computing and
memory operations are held in the same physical place. This new paradigm is called Computing in-memory
(CIM) and its scheme is generally described in Fig. 5-1b. In CIM, memory and computing are not performed
in separate modules connected by a bus, but instead both functions are performed in the same physical
space and are practically controlled by a memory controller/CPU. However, usually not all the computing
performance is exclusively located inside the CIM block, but there are functions that are held using
dedicated peripheral circuit blocks. These architectures are called near Computing In-Memory (see Fig. 5-1¢)
and usually concern the fact that data goes in and out the nonvolatile memory module, while still avoiding

the bottleneck of the Von Neumann architecture.
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As it has been widely discussed previously in Chapter 2, crossbar structures can take full advantage
of the favorable memristor features. Therefore, reasonably several logic styles proposed in the literature
aimed at supporting crossbar compatibility, meaning that they can be performed inside a crossbar array.
Hence, rather than using a special/dedicated circuit topology for exclusive memory/computing tasks, in fact
the crosshar array serves multiple purposes, ranging from memory to digital computing while taking
advantage of different compatible logic styles. Therefore, crossbar compatibility is a valuable characteristic
of a logic style, given that the crossbar array is the most promising circuit architecture for future resistive
memories. However, it is also known that crossbar arrays require the operations to be highly controlled due
to the sneak-path currents or parasitics that could become dominant in large crossbar arrays.

Core 1 Coren f':;"-‘ Core
[ Oecache | | Licache Eathe cache
I
L2 cache L2 cache
|
L3 cache=
|
on o
]
Computation-in
Ny Memory NAM Core
(@) (b) (©)

Fig. 5-1. Computing architectures and strategies related to the distance between computing and memory subsystems. (a) CPU-
centric approach, (b) Computing-In-Memory and (c) Near Computing-In-Memory.

5.1.1 Logic Implication (IMPLY Logic)
One of the first logic design styles proposed in the field of digital computing applications of

memristors, was the logic implication or material implication (or simply IMPLY logic) [80]. This style is
called after the logic operator that has the same name: IMPLY, which is a binary operator written asy = p
— ¢ whose truth table is shown in Table 5-2. The output variable y is ‘1’ if p=‘0’, otherwise y = q. Therefore,
it can also be described as y = =p + g. Unlike other typical logic operators, such as AND, OR, NOR, NAND,

XOR..., ETC.,, logic implication is not commutative, i.e. p — ¢ and g — p has different outcomes.

Table 5-2. Logic Implication truth table

p q y=p—q
0 0 1
0 1 1
1 0 0
1 1 1

Logic implication can be implemented as an stateful logic operation using a circuit shown in Fig.
5-2a. The memristors m, and mq represent the inputs p and q, respectively, which are assumed to be

previously stored in these devices, where ‘1’ is encoded as LRS and ‘0’ is encoded as HRS. Memristors
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bottom terminals are tied to a R¢ resistor and top terminals are connected to the driver circuit, where Rg is

a resistor whose value is selected between HRS and LRS of the memristors.

The circuit operates as follows: both m, and mq drivers apply voltage pulses of positive amplitude
Vconoand Viue, respectively. Vconp is lower than Vser, preventing m, to be switched, whereas Vive is higher
than Vser, thus providing mq the possibility to be programmed to LRS. However, mq is only switched to
LRS if mp is in HRS (p = “0”), when most of Vconp falls across m, (Rurs > Re) and also most of Viwe falls
across mq. In any other case mq should not switch, either because mq is already in LRS or m, is LRS, forcing
a high voltage in G node that makes the voltage drop in mq insufficient to switch. As a result, the logic
implication operation is performed on the two memristors and its result is stored in mq, i.e. ¢’ =p — q,
where q’ refers to ¢ content after the evaluation of the operation. With a proper design of the applied voltage
pulses, the circuit operates as it is described in Fig. 5-2b, i.e. m, keeps its state but mq switches from HRS
to LRS only if both m, and mq are initially both at HRS.

s INITIAL FINAL 3
V V 10 10°
£ 10° 10° S
COND IMP CASE 1: a;a 10" 0 0 0 l 10, §
S oL | ! | 10"

10\ P Q P Q 10,
m < 10° 10°
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P mq CASEZ: E .o l l o' §
10” 10” B
£ 10 10° <
A § e l 0 l 0 . g
[$] O

R 10° — —— 10"

P Q P Q

G 10" 10” .
< 10° 16° %
CASE 4: €40 107 &
(&) o

— 10" 10°

- P Q P Qe

(a) (b)

Fig. 5-2. IMPLY operation. (a) Schematic of the circuit that performs the IMPLY logic operation. (b) Experimental verification of
an IMPLY logic operation using Ni/HfO2/Si unipolar devices. Sensing currents before (initial) and after (final) the operation
according to the four cases in the logic implication truth table (see Table 5-2). Extracted from [87].

The selection of the input voltage pulse properties is critical for the correct function of the IMPLY
operations. In this direction, we explore the design constraints for Vcono and Vime analyzing the circuit in
Fig. 5-2a according to the expected m, and mq states before and after the IMPLY operation, while assuming
that Rurs >> Rg >> Rirs. Prior to discussing further each case in the corresponding truth table, the voltage
drop across every memristor is calculated. Applying Kirchoff Current Law in node G, voltage V¢ is obtained
as follows:

_ (1/Rp)Veonp + (1/Rg)Vimp
7 (1/Rp) + (1/Ry) + (1/Re) (14)

Hence, voltages across m, and mq, V, and Vg, are immediate and are given by the following equations:
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_ (/R +1/R)Veonp — (1/Rg)Vimp

o = Veono =V = T(/R,) + (/R + (/Ro) (15)
Vo= Ve — Vo = —(1/Rp)Veonp + (1/Rp + 1/Rg)Vimp
@7 SETTTC T (1/Ry) + (1/Rg) + (1/Rg) (16)

Next, all cases in the truth table of Table 5-2 are evaluated to meet the design constraints for Vcono
and Viue amplitudes. For each case, one condition related with the evolution of m, and mq in the IMPLY
operation is given. Taking into account that m, keeps their state throughout the IMPLY operation, one
condition must ensure that V, at the beginning of the operation does not surpass Vser or Vreser (depending
on m, state) and m, does not switch. Meanwhile, mq state evolution in the circuit reflects the differences
between q to g’ in the truth table; therefore, a second condition must force Vq the evolution from g to g’ at
the beginning of the operation. For each condition, (15) and (16) are used and the assumption Rurs >> Rg
>> Rigs is used to simplify the resulting constraints. Depending on the input combination, we have the

following cases:
e Casel:p=q=0,resultingin g’ = 1. my keeps its state and mq experiences a SET process:

(1/RHRS + 1/RG)VCOND - (1/RHRS)VIMP

V. < Vepp = ~V, < Vepr =
p o= SET (1/Rurs) + (1/Rpurs) + (1/R¢) COND = TSET
= Veonp < Vser (17)
—(1/Ryrs)Vconp + (1/Rygrs + 1/Rg)V,
V, > Vegr = HR ND HR IMP Vigp > Vepr =

(1/Rurs) + (1/Ryrs) + (1/R¢)
= Vimp > Vser (18)

e Case2:p=0andq=1,resultinging’ = 1. Both my and mq keep their state:

(1/Rprs + 1/Rg)Veonp — (1/Rirs)Vimp

vV, <V = =V -V <V =
P USET (1/Rurs) + (1/Rpgs) + (1/Rg) COND - TIMP SET
= Veono — Vimp < Vsgr (19)
—(1/Ryrs)Vconp + (1/Rugrs + 1/Re)Vimp
Vv, >V, = = 0>V, =
a7 TRESET (1/Rurs) + (1/Rirs) + (1/R5) RESET

e p=1andq=0,resultingin g’ = 0. Both mp, and mq keep their state:
(1/Ruygs + 1/R¢)Veonp — (1/Rurs)Vimp
(1/Rygrs) + (1/Rygs) + (1/R¢)

= 0> Vegser (21)

Vo > Vegser = ~ 0> Vegser =

—(/Rirs)Veonp + (1/Rigs + 1/Rc)Vimp Veoo_v <V
(1/Rirs) + (1/Rugrs) + (1/R¢) e TN e

‘/q < VSET =
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= Vimp —Vconp < Vser (22)

e p=q=1,resultinging’ = 1. Both my and mq keep their state:

(1/RLRS + 1/RG)VC0ND - (1/RLRS)VIMP ~ VCOND - VIMP

V, >V, = = >V, =
P RESET (1/Rpgs) + (1/Rpgs) + (1/Rg) 2 RESET
= Vconp — Vimp > 2V REser (23)
—(1/Rirs)Veonp + (1/Rirs + 1/Re)Vimp ~ Vimp — Veonp
v, >V, = = >V,
1 RESET (1/Rpgs) + (1/Rpgs) + (1/Rg) 2 RESET
= Vimp — Veonp > 2Vreser (24)

Among the above mentioned conditions found through our analysis, some of them result redundant
or do not give any relevant information (e.g. that resulting in Vser > 0, which is known by default). The set
of conditions (17), (18), (22) and (23) (marked in bold) are enough to define Vconp and Viuwe. Another
important aspect in the design of this logic style is that a high Rorr/Ron ratio is very desirable for the
memristors so that the IMPLY operation becomes feasible.

The key characteristic of this logic style is that the IMPLY operator plus the FALSE operator (i.e.
the RESET process of a memristor), form a universal/complete set of functions. Therefore, any complex
logic function can be built using sequential IMPLY and FALSE operations. During the computation of a
logic function, the number of memristors needed for it can be quite different. Moreover, there are three
possible roles that memristors can adopt: being input, output and auxiliary devices. More specifically, input
memristors store the input data, whereas output memristors store the result of computation, i.e. the output
of the logic operation. Auxiliary memristors mainly store intermediate operations required during the
execution of complex logic functions that consist of several sequential (cascaded) operations. A NORn gate
(i.e. a NOR gate of n inputs) needs N+1 memristors to be implemented, corresponding to N inputs and 1
output; it requires t. On the other hand, a XOR2 function may be built using 4 or 5 memristors, depending
if we are interested in preserving the input data after completing the function computation or not. By

preserving the data, here we mean that the memristors holding the input data will keep their resistive states.

Furthermore, high fan-in IMPLY operations, i.e. using more than two inputs, have been also studied
[88]. In such case, there are multiple inputs stimulated with a Vcono pulse, whereas the memristor to hold
the output is stimulated with a Viue pulse, as shown in Fig. 5-3. If every input memristor is in HRS, the logic
output is ‘1°. However, if at least one input memristor is in LRS, the output memristor should not switch to
LRS (similar to what happens in a conventional IMPLY, for m, being a single input and mq treated as an
output memristor). The operation performed now is y = OR(x1, Xz, .., Xn) — Y, or y = NOT(OR(X1, X2, **,
Xn)) *+ Y. The main difference is that the selected parameters Vcono, Vser and Rg may depend on the number
of inputs used in the operation. The high fan-in IMPLY allows to involve several input data in one operation
and compute a the NOR logic function, which is a useful complement to the logic implication. For instance,

a NORn is performed in at least 2 + 2n steps using IMPLY + FALSE operations, while using high fan-in
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IMPLY only needs 2 steps. Therefore, these high fan-in IMPLY operations can be combined with binary
IMPLY operation of Fig. 5-2 and the complementary representation of input data to drastically improve the
number of steps required in a computational task [88].

VCOND VCOND VIMP

Fig. 5-3. Multi-input IMPLY logic gate. In the example, memristors m1 to ms4 store inputs x1 to x4. By applying Vcono at m: and
m2 top terminals, Vime at m4 top terminal and avoiding significant current to pass through ms (HZ stands for high impedance output
provided by a driver), the logic function performed is Xx4> = OR(X1, X2) — Xa.

The IMPLY logic scheme suffers from an issue often called state-drift [81] [89] [90]. More
specifically, when the conditional SET occurs, the memristor mq starts to switch from HRS to LRS. As the
resistance decreases, the voltage drop across the mq also decreases. Eventually, the voltage drop falls below
the voltage threshold of the device and, given that it is Rc >> Rrs, the memristor does not complete the
switching process towards LRS, thus being kept in an unwanted intermediate resistive state. For example,
Fig. 5-4a depicts the final state of mq after an IMPLY operation was performed for different initial m, and
mq states, in a simulation using the VTEAM model [54] and resistance parameters Ron =1 kQ and Rorr = 1
MQ. The final Rq is stuck at values between 200 kQ to 400 kQ, instead of ending in lower levels,
corresponding to the LRS region. Some solutions to this problem have already been proposed in the
literature so as to avoid this limitation. For instance, one alternative is the inclusion of a voltage keeper
circuit, depicted in Fig. 5-4b, in parallel with Rg [89]. When the circuit senses that the voltage at node G is
too low, it enables the transistor that connects node G directly to ground and thus helps to maintain the
voltage across mgq until it successfully finishes the SET process. The downside is certainly the increase of
circuit area. Another solution is to use a complementary logic operation with a RESET process instead of

the problematic SET process, suggested in [81]. The latter is further explained in the following Section.

5.1.2  Converse Non-Implication (CNIMP)
As it can be figured out, the conditional SET process in the IMPLY operation is limited by the

existence of Rg. Therefore, an alternative to bypass this limitation and still not increase the circuit area is
to use an operation with a conditional RESET process instead. In this direction, we have the converse
nonimplication (CNIMP) [81] being a variant of the IMPLY that makes possible addressing the state drift
issue. It is named after the binary operator that it computes, whose truth table is shown in Fig. 5-5a. This

new operation is written asy = p « g or alternatively y = (=p)q.
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Fig. 5-4. The state-drift problem observed in IMPLY logic operations. (a) Simulation of the IMPLY logic gate of Fig. 5-2a
initializing resistance state of mp (see legend) and mq (x-axis) to different levels. The switching to the new mq state (Rqfinar) is
plotted (y-axis), using the VTEAM model [54] and resistance parameters Ron =1 kQ and Rorr = 1 MQ. (b) One solution to the
state-drift problem is to keep the voltage Ve grounded using a voltage keeper while sensing the G node.

The corresponding circuit, depicted in Fig. 5-5b, remains the same as the IMPLY logic style; the

main difference concerns the used voltage pulses. More specifically, the amplitudes of the voltage pulses

now applied, i.e. Vcono+ and Veono-, have different characteristics. Concretely, it is 0 < Vcono+ < Vser and

Vreser < Veono- < 0. With a careful design of the circuit, the memristor mq experiences a RESET process

only if both memristors are in HRS. Likewise in the case of IMPLY, the operation performed is the g” =p

« @, where the mq memristor stores the logic output.

Plafy [ M Mq mg’

00| 0] HRS | HRS | LRS
0|11 HRS | LRS | LRS
1(0]1] HRS | HRS | HRS
1(1]1]LRS | LRS|LRS
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m,

(b)

VCOND-

mq

Fig. 5-5. Converse Non-implication logic style. (a) CNIMP truth table and (b) the circuit scheme used.

Although the design is similar to the one shown for the IMPLY logic gate, the conditions must

abide for the truth table of the CNIMP operator. As before, it is important to figure out the expressions

corresponding to the the voltages across the memristors m, and mq for this analysis, which we can adapt

from (15) and (16) just by substituting Vcono and Vive by Veono+ and Veono-, respectively, as follows:

_ (1/Rq +1/R)Veonp+ — (1/Rg)Veonp-
(1/Rp) + (1/Ry) + (1/R¢)

p

_ —(1/Rp)Veonp+ + (1/Ry +1/R6)Veonp-

g =

(1/Rp) + (1/Rq) + (1/R¢)
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For each input data combination, V, and Vq are bound to conditions to determine whether m, and
mq must switch or not. The relationship Rurs >> Re >> Rirs is assumed and therefore a high Rorr/Ron ratio
is very desirable for the design to rely on the conclusions of this analysis, shown in detail for every input

combination, as follows:
e Case 1: p=q=0,resulting in g’ = 0. Both my and mq keep their state:

(1/RHRS + 1/RG)VCOND+ - (1/RHRS)VCOND—

V, < Vepr = =V, < Vepr =
o SE (1/Rugs) + (1/Ryrs) + (1/R¢) COND = TSET 27)
= Veonp+ < Vser
—(1/Ryrs)Vconp+ + (1/Rpps + 1/R)Veonp-
Vg <Vsgr = - ~ Veonp- < Vsgr =

(1/Rurs) + (1/Rurs) + (1/R¢) (28)

= Veonp- < Vsgr

e Case2:p=0andq=1,resulting in g’ = 1. Both my and mq keep their state:

(1/Rirs + 1/Re)Veonp+ — (1/Rirs)Veonp- (29)
V, < Vsgr = = V -V, _ < Vsgr =
P (1/Rurs) + (1/Rirs) + (1/Rg) COND - TCONDT

= Veono+ — Veono— < Vser

—(1/Ryrs)Vconp+ + (1/Rugrs + 1/R¢)Veonn- (30)
Vv, >V = = 0>V, =
a7 TRESET (1/Rurs) + (1/Rirs) + (1/Rg) RESET

= 0> Vegser

e Case3:p=1andq=0,resultingin g’ =0.Both m, and mq keep their state:
(1/Rurs + 1/Rg)Veonp+ — (1/Rurs)Veonp— 0>V N (31)
~ RESET
(1/Rrs) + (1/Rygrs) + (1/R¢) s
= 0> Vreser

—(1/Rigs)Veonp+ + (1/Rigs + 1/Rc)Veonp- v _v < Ve = (32)
(1/Rurs) + (1/Rurs) + (1/R¢) compm b = EE

= Veono- = Veonns < Vsgr

Vo > Vegser =

Vg <Vsgr =

e Case4:p=q=1,resultingin g’ = 0. mp keeps its state and mq experiences a RESET process:

VoSV N (1/Rprs + 1/Rg)Veonp+ — (1/Rirs)Veono- _ Veonn+ = Veonn- SV N (33)
a7 TRESET (1/Rirs) + (1/Rprs) + (1/R¢) 2 RESET
= Veonp+ = Veonp- > 2Vreser
—(1/Rirs)Veonp+ + (1/Rirs + 1/R6)Veonp- _ Veonn- = Veonn+ (34)

Vq < Veeser = < Vggser =

(1/Rirs) + (1/Rygs) + (1/Rg) - 2

= VCOND— - VCOND+ < 2VRESET

Not all the conditions (27)-(34) are useful for the design of the CNIMP operation. Unlike shown

previously for IMPLY, here some of the conditions are not giving explicit information and further
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mathematical manipulation is required. From (27) and (28), it’s clear that both Vconp+ and Vconp- are lower

than Vser. But from (34) and (30), Vconp+ and Veonp- relationship is more explicit:

Veonp— — Veonp+ < 2Vreser < 0 = Veonn- < Veonp+ (35)

This new relationship makes (28), (32) and (33) redundant. Hence, the conditions (27), (29), (34)
and (35) are enough to decide on the required Vcono+ and Vconp-. Apart from determining Veconp+ and Veonp-
, conclusions about the memristor desired characteristics can be also derived combining conditions (29)
and (34) as follows:

2|\Vreser| < Veono+ — Veonn- < Vser (36)

This last relationship is really important as it apparently relates both memristor voltage thresholds
for SET and RESET. Indeed, it is required that the SET threshold Vser is at least higher than twice the
absolute value of the RESET threshold Vreser. Therefore, the target memristors should comply with this
asymmetry condition for the CNIMP operation to be correctly executed. The larger this asymmetry is, the

larger the available distance between the Vconp+ and Veono- amplitudes to be selected.

5.1.3 Memristor-Aided Logic (MAGIC)
In this Section we describe the memristor-Aided Logic (MAGIC) [82], which is a stateful logic

style that makes possible building different logic gates by just using memristors in series or parallel
connection. The general structure of a logic gate comprises a set of input memristors connected to an output
memristor which is grounded, as shown in Fig. 5-6a. The logic function is generally performed when a
positive voltage pulse of amplitude V, is applied at the input terminal. The logic function that the logic gate
performs depends on the input memristor set and the output memristor polarity. More specifically, to
compute a logic AND of two or more inputs, the input memristors are put in series, whereas for a logic OR
of two or more inputs, the input memristors are put in parallel. The output memristor polarity/orientation
determines if the logic function output is inverted or not. When it is not inverted, the output memristor is
initialized at HRS before applying the input voltage pulse, otherwise it is initialized at LRS. For instance,
the NAND logic gate has all memristors in series and the output memristor is initially programmed to LRS
(representing logic “17) and it is reversely polarized. When a positive voltage pulse Vo is applied, the input
memristors should not switch their state, so that the input data are maintained, but the output memristor
should switch depending on the data stored in input memristors (i.e. the logic operation consists in a

conditional switch).
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Fig. 5-6. Memristor-Aided Logic style. (a) General structure of a MAGIC gate. The top block may consist of an array of paralle
memristor to compute an OR, or memristors in series to compute an AND. The bottom block consists on a single memristor that
stores the output and depending on the orientation, it may compute the complementary (NOT) version of the chosen function OR
or AND. (b) MAGIC NORn circuit implementation with n input memristors in parallel storing input data x1 ... Xn, and the output
memristor that stores the output y.

Unlike in IMPLY, the MAGIC scheme is able to compute in only one step logic functions such as
OR, NOR, AND, or NAND. Despite this improvement in throughput, there are two important
considerations. First, only NOR logic gates are implementable in crossbar structures. NOR is a universal
logic operator, thus any logic function can be implemented by sequential NOR operations. Hence, the
MAGIC logic style can be used to perform CIM in crossbar arrays by means of only NOR operations.
Second, the design of the Vo amplitude and duration depends strongly on Vser, Vreser, Rorr and Ron, and

memristors used in this logic style must fulfill certain parameters requirements [82].

For instance, the MAGIC NORn logic gate (see circuit schematic in Fig. 5-6b), i.e. a MAGIC
implementation of a n-input NOR gate, is analyzed next. The voltage across the output memristor Vy and
across the input memristors Vy at the beginning of the logic evaluation is obtained by applying a voltage
divider formula and taking into account that Ry is initially at LRS:

R RLRS
v, = z Vo = v,
Y (Rxlll---llen)+Ry 0 (Rxlll---llen)+RLRS 0

_ Rall-- ||Rxn
- 0
* Rxl”---”Rxn+RLRS

(37)

(38)

The logic outcome of NORn operation is ‘1’ (LRS) only if all inputs are ‘0’ (HRS) and 0’ if at least one

input is ‘1°.

e Casel:xi=...=xp=0andy =1, all memristors should keep their state:
RHRS / n ( nRLRS
= Vo <Vsgr=>Vy < |1+ )V 39
x RHRS/n +RLRS 0 SET 0 HRS SET ( )
= Rirs Vo < Vreserl = Vo < (1 + Rirrs ) |Vreser! (40)
¥ Ryps /M + Rigs NRRs
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e Case 2: at least one input memristor in LRS and y = 1, input memristors should keep their state and
my experiences a RESET process. The worst input combination is when only one input memristor
is at LRS, because it makes Vi to be higher and Vy to be lower:

~ (Rpgs||Rurs/(n — 1))
* " (Rprsl|Rugs/(m — 1)) + Rygs

U~ Ryps
Y (Ryrs||Rurs/(n = 1)) + Rygs

Rigs (41)
1+ (Rirs||Ryrs/(m — 1))> Vser

Rigs||Ryrs/(n — 1)
R [Vreser|
LRS

V0<VSET=>V0<<

(42)

Vo > |Vrgser| = Vo > <1 +

Combining conditions (39) to (42) and noticing that condition (39) is stricter than (41):

R R n—1 nR R
(1 + wes||Rirms/( )) [Vreser| < Vo < min <1 + LRS) Vser, (1 + ) [Vreser| (43)
Rips Rygs nR s

For n = 2 and Rurs >> Rirs, the boundaries of Vo is:

2|Vreser| < Vo < Vsgr (44)

Thus, interestingly this analysis shows that the Vo amplitude has the same boundaries as Vconp-+ -
Vconp- observed previously in (36). Furthermore, the target memristors implementing MAGIC NOR logic
operations must comply with exactly the same requirements, as in the CNIMP case, meaning that both

CNIMP and MAGIC could be implemented with the same memristor device technology.

5.1.4 Memristor-Ratioed Logic (MRL)
Memristor-Ratioed Logic (MRL) was proposed in [86] as an approach for building logic gates out

of memristors and CMOS devices, in a non-stateful logic style. It may be interpreted as a memristor-based
counterpart of the pass-transistor logic or the ratioed logic schemes. Fig. 5-7 presents the different possible
logic gates implemented based on this scheme. In this alternative, input signals are delivered in the form of
voltage, assuming Vpp for logic ‘1’ and 0 V for logic ‘0’. The output is obtained at Vour in voltage form,
using the same logic levels as the inputs. The initial state of memristors is irrelevant in this scheme, but
their orientation determines the logic function that the circuit performs. If all input voltages are equal, the
output is exactly equal to the input voltage. Otherwise, memristors switch their state in a determined way
which depends on the combination of input signals and the device polarity, since the memristors act as a
gate pass element, i.e. memristors in LRS let to “pass” the voltage in their input terminal, whereas
memristors in HRS block the voltage in their input terminal. For instance, in the AND (OR) gate, all
memristors directly connected to a ‘1’ input will switch to HRS (LRS) whereas those connected to ‘0’

inputs will switch towards LRS (HRS).

The output voltage level of the logic gate is neither V4 nor Vi, since it depends on the Rore/Ron

ratio. Furthermore, chaining computations may provoke logic failures because every output is gradually
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accumulating deviations from their expected logic levels. Hence, CMOS inverters are included in order to
regenerate the output signal to the Vy or Vi levels. Also, the inverters provide the complement operation
(NAND and NOR), which is necessary in the MRL scheme to enable computing any Boolean function in
NAND/NOR logic.

Vit Vinl Vin Vini
Vinz Vin2 Vi Vi
¢ VD'th out out
Vien Vien Vi Vi
AND NOR NAND
(@) (b) (c) (d)

Fig. 5-7. Circuit schematics for four different MRL logic style gates: (a) OR, (b) AND, (c) NOR and (c) NAND. A CMOS
inverter stage is put after the MRL logic gate to implement complementary logic functions.

5.1.5 Logic with Memristors As Drivers (MAD)
According to the “Memristors As Drivers (MAD)” logic scheme, proposed in [84], logic gates are

implemented in two separate sensing and programming stages. Fig. 5-8 shows some logic gate examples.
More specifically, at the left part of each circuit the sensing stage holds memristors storing input data (where
HRS stands for ‘0’ and LRS stands for ‘1’), whereas at the right part the programming stage is composed
of a memristor that stores the output of the computation and one or more voltage-controlled switches. A
low amplitude Vconp Vvoltage -insufficient to switch any of the memristors in the circuit- is applied to the
input memristors in the sensing stage; one or more intermediate nodes are sensed and are the input to one
or more voltage-controlled switches found in the programming stage. Consequently, if the voltages surpass
some threshold, the switches close and the output memristor sees a voltage drop high enough to switch its
state from a previously programmed one. This way, a logic gate evaluation is performed in one step. Logic
gates that perform operations such as AND, COPY, NOT and XOR may be built using MAD logic style
(see Fig. 5-8a, Fig. 5-8b, Fig. 5-8C and Fig. 5-8d, respectively). The OR can be computed using the AND gate
but modifying the threshold voltage for the voltage-controlled switch. Moreover, the MAD logic gates can
be chained to evaluate complex logic functions, such as the full-adder circuit in [84], which is able to

compute the function in two steps.

Everything considered, MAD is a stateful logic with two main advantages: (i) the required voltage
pulses are easy to design and also the logic gates, including the XOR and XNOR which were not present
directly in the other logic style alternatives, are here computed in just one step (without considering the
initialization of the output memristor before the logic gate computations). However, MAD scheme lacks a

regularity in the derived circuitry, which in turn impedes the implementation in a crossbar array.
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Fig. 5-8. Examples of gates implemented using Memristors As Drivers logic style. (a) AND, (b) COPY, (c) NOT and (d) XOR.

5.1.6 CMOS-like Memristor-based Logic
The CMOS-like logic style proposed in [85] is a logic design style which allows to build memristor-

based logic gates inspired on the conventional CMOS logic design. As it is well known, the CMOS logic
circuits are composed of two networks of NMOS and PMOS transistors, controlled by signals encoding the
input data. NMOS and PMOS networks are complementary, e.g. if NMOS devices are connected in series,
the corresponding PMOS devices are put in parallel. The latter is based on the fact that NMOS and PMOS
behave in a complementary way when they receive the same input signal. Likewise, the CMOS-like
memiristive logic gates consist in two complementary networks of memristors, connected between reference
and a low sensing voltage Vpp, as shown in Fig. 5-9. Inputs are not fed directly using external signals, but
are instead stored previously in the state of the input memristors. In the bottom net, inputs are stored
according to the usual convention using LRS for a ‘1’ and HRS for a ‘0’. However, the top net stores inputs
using the opposite convention, i.e. HRS fora ‘1’ and LRS for a ‘0’. Hence, when the Vpp voltage is applied,
the output voltage should get close to Vpp or 0 if the result of the logic gate is ‘1’ or ‘0, respectively,
without altering the state of the input memristors. Different examples of CMOS-like logic gates are shown
in Fig. 5-9, where the topology is inherited from the conventional CMOS gates while substituting transistors

for memristors.

The CMOS-like design provides a different way for computing for the stateful logic alternative
schemes. Instead of managing sensing and conditional programming in the same circuit, such as with the
IMPLY (or CNIMP) and MAGIC, the computation here is just a sensing operation. The output however is
delivered as a voltage; thus it must be stored in a memristor if it is supposed to be used as input to another

logic gate. The separation of sensing and programming tasks may add delay because there are two steps
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instead of one. However, the design of this logic style gets simplified compared to other alternatives,
offering more feasibility in the design regarding Voo and memristor characteristics, and reliability in
controlling the entire operation, which is the reason why such scheme served as inspiration for others
developed later. Finally, it is worth noting that CMOS-like is not compatible with crossbar structures, given
the large number of memristors assembled in a complex CMOS-like logic gate, and it also requires
considerable additional circuitry to program the inputs.

NOT NAND
<> =D
VDD
A --»@

A+B

GND

Fig. 5-9. Examples of logic gates built using CMOS-like logic style approach. From left to right, NOT, NAND2 and NOR2 gates.
Logic gates schematics are arranged to be related to their CMOS counterparts. The grey lines indicate where the inputs A and B
are stored; in the top reverse polarized memristors, the complemented input is stored. The node at the right side of each logic gate
indicate the logic function output (delivered in voltage form). The schematics don’t include the circuit to program the input
memristors (adapted from [85]).

5.1.7 Scouting Logic
The Scouting Logic [83] is another stateful logic style in which the computing task is performed

by just sensing the state of the input memristors. The basic principle is shown in Fig. 5-10. Memristors are
distributed in a topology compatible with a crossbar structure. Each one has a dedicated driver and holds
some input data. Drivers supply a sensing voltage Vs and the sensing amplifier (SA) connected to all the
memristors senses the input current li,, while comparing it with different reference currents l..r. Depending
on the input data, different current levels are obtained, as shown in the diagrams found on the right side of
Fig. 5-10. Most importantly, by using different I.s values, the SA is able to evaluate different logic functions.
Both current and voltage-based SA designs are provided, able to read the state of memristors and to compute
AND, OR or XOR logic functions. The work [83] also analyses the variability impact in this logic, proving
its reliability features. Likewise, in the CMOS-like case, the output is delivered in voltage form, whereas
inputs are in the form of resistance. Therefore, in order to use the output result in future operations, it has

to be previously written back to an available memristor.
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Fig. 5-10. Scouting Logic logic style. (a) Scouting logic scheme in a row or column of a crossbhar; Vs is applied to each memristor
involved in the operation and a sense amplifier (SA) compares the sensing current lin with a reference current lret. (b) Sensing and
logic functions implemented by using different reference currents Irer.

5.2 Impact of Variability in Memristive Logic inside Crossbar Memory Arrays

Most of the aforementioned memristor-based logic design styles were conceived, and also the
design guidelines were devised, while assuming that memristor characteristics are totally deterministic.
However, in Chapter 3 it was shown that there are several challenges for memristor reliability that are not
negligible. Therefore, this Section focuses on two logic styles, well-received so far by the relevant scientific
community, which are crosshar-compatible; namely MAGIC and IMPLY (concretely its CNIMP variant).
It further explores the logic design space in scenarios where both C2C and D2D variability exist in the
memristor devices. The memristor model adopted for simulations was the Stanford/PKU model, whereas
the MOS transistor models were from a realistic 0.35 um technology. All simulations were performed in
the Cadence Virtuoso suite. The major contributions of this Thesis can be found in relevant publications in
[77], [78] and [79].

5.2.1 Memristor Model Requirements for CNIMP and MAGIC
The majority of the memristor model parameters were kept at the default values listed in Table 2-2

in Chapter 2, except those directly affecting the switching thresholds, i.e. the average active energy of
oxygen vacancies (Ea), the hopping barrier of O2- (En) and the energy barrier between the electrode and the
oxide (E;). Tuning these parameters is recommended to adjust the overall device behavior according to the
target application requirements. For instance, in order to comply with the threshold voltage requirements
for MAGIC and CNIMP logic operations, previously mentioned in Subsections 5.1.3 and 5.1.4 (i.e. that is
should be Vser > 2%|Vreset|), these parameters were tuned as follows: E;=0.9eV,En=0.9eVand Ei=0.7
ev.

Fig. 5-11a demonstrates the i-v curves corresponding to 20 cycles under a triangular voltage
application to the memristor terminals. The compliance current (cc) is adjusted by tuning the gate voltage
of a series NMOS transistor. Since the memristor model does not include voltage thresholds directly as

parameters, we define as SET threshold Vser the voltage at which the current reaches to 90% of the cc.
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Likewise, we define as RESET threshold Vgeser the voltage when the current first experiences a sudden
decrease. These statistics give us the following mean values: Vser= 2 V and Vgeser = -0.5 V, which allow
establishing the appropriate amplitude of the programming/reading voltage pulses. Moreover, the
conduction of the model is purely ohmic for the conductive filament body (LRS) but non-linear for the
tunneling gap (HRS). This is observed in Fig. 5-11b which shows how the effective Rurs/Rirs ratio can
change depending on the applied voltage. The device is first SET to Ron, the lowest resistance value, and
then a positive voltage is applied without modifying its state. As expected, Rirs shows the ohmic conduction
of the CF. Nevertheless, when the device is RESET to Rorr, the highest resistive value, and a large negative
voltage is applied, again without disturbing its state, interestingly a highly nonlinear behavior is observed
in the effective Rurs owing to the hopping current through the tunneling gap. Therefore, such dependency
of the effective Rurs state on the voltage across the device marks a significant difference when compared
to other device models commonly used in memristive logic design, such as [48] or [53] This fact could
have a significant impact on the efficiency of memristive applications, thus it is an important consideration
also for logic circuit design, which is the context of this Chapter.
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Fig. 5-11. Simulation results to highlight memristor features. (a) i-v loops for 20 cycles with the default variability
applied, using a 400 ps- period triangular voltage pulse from -3 V to 2.5 V and a 100 pA compliance current for the
SET process. (b) Boundary states Rorr and Ron as a function of the applied voltage across the memristor (without
variability), illustrating the conduction modes in HRS and LRS states.

5.2.2 Reading and Programming Operations in Presence of Device Variability
Binary encoding of memristance is necessary for our target logic design styles. Given the used

parameter values, the memristor model exhibits a memristance range from 5 kQ (Ron) to 3 MQ (Rorr).
Taking into consideration the results in Fig. 5-11b, we defined values above 1 MQ as HRS and values below
100 kQ as LRS, whereas all values within the intermediate guard band are treated as undefined states (see
memristance map in inset of Fig. 5-12a). Reading of the memristor state is performed in voltage mode with
a 100 kQ series resistor by applying a small voltage pulse (Vread = 0.5 V, 20 ns- wide) which does not affect
the device state. For the purposes of our simulations, we implemented the state decoder shown in Fig. 5-12a
(adapted from [91].) The voltage read through the memristive voltage divider is compared with two

reference values that represent the upper bound of LRS, i.e. Rirsh = 100 kQ, and the lower bound of HRS,
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i.. Rursi = IMQ. So, depending on the result of this comparison, the output of the circuit is either logic ‘1’

for LRS, logic ‘0’ for HRS, or ‘X’ for any undefined intermediate resistive state.

Regarding the programming operation, variability adds uncertainty to the switching process, and
thus to the achieved target state. As introduced in Chapter 3, C2C variability is applied to the memristor
parameters in simulation and in our analysis we explore the reliability while considering different amounts
of variability; the latter is adjusted using factor k. For example, in Fig. 5-11a it is illustrated how the current
readings as well as the switching thresholds are modified while using k = 1. The circuit in charge of
programming and reading a memristors must guarantee that these operations are not affected by the
previous history of the device. There is an additional consideration for C2C variability when working with
the Stanford/PKU model. If the memristors are initialized to Ron or Rorr by setting the corresponding
parameter value in the netlist (for their initial LRS and HRS states, respectively), then C2C variability
modelling is not effective. This is because the Ron and Rorr are the state min/max boundaries in which the
programmed states is not further modified with variability injection.

As a solution, for our simulation purposes, a two-step initialization process was used instead, as
shown in Fig. 5-12b. More specifically, when programming the device to the LRS (HRS), this is done by
first performing a hard RESET (SET) and then a soft SET (RESET). Hard SET (RESET) completely forms
(destroys) the CF to thus eliminate the previous history of the memristor. On the contrary, the HRS or LRS
programming taking place right next (called soft programming) initializes the memristor to a value within
the LRS or HRS range, as desired, thus including the variability effect in the target memristance during the
programming phase. The voltage pulses applied for the HRS initialization concern: Von amplitude of 3 V,
200 ns width and 500 pA cc for hard SET; Vorrsort amplitude of — 2 V, and 100 ns width for soft RESET.
On the other hand, for the LRS initialization it is: Vorenaa amplitude of -2.5 V, 200 ns width for hard
RESET, and Von amplitude, 100 ns width and 50 pA cc for soft SET. Fig. 5-12c shows simulation results
for the memristance distribution of Rirs and Rugrs as it was read after such initialization process. It can be
observed that variability-aware simulations for HRS/LRS programming show normal distributions for the

device state whose std. dev. increases linearly with increasing values of factor k.

5.2.3 1T1R Crossbar Array and Peripheral Circuitry to Enable Memory and Logic Operations
The one transistor one resistor/memristor (1T1R) crossbar is the target memory topology in this

work and all considered logic design styles are crossbar-compatible. The crossbar memory array as well as
the entire peripheral circuitry were designed to make possible the proper programming and reading of the
devices (multi-level memory operations), and the realization of the logic operations of interest, according

to the selected logic styles described previously.
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Fig. 5-12. (a) Memristance binary coding and the read-out circuit that senses the state in voltage mode and compares with two

different reference voltages to decode the memristance as logic ‘0’, ‘1’ or undefined (badly written) ‘X’. (b) Two-Step programming
details for RESET and SET. (c) 5000 total HRS (left column) and LRS (right column) reading distributions for different k values.

The main unit of the simulated system is the crossbar array shown in Fig. 5-13a, where each cross-
point cell consists of a memristor and a series select transistor (1 T1R). 1T1R arrays are beneficial since the
selector-enhanced cross-points mitigate the sneak-path currents and also isolate the memristors involved in
memory/logic operations from the rest of the devices. However, compared with passive arrays that use
highly nonlinear memristors for the same purposes, the only drawback of the 1T1R structure is a penalty
on the cross-point area that can be nearly 2.5 times the passive cell area, according to [92]. However, such
area penalty may be compensated by the improvements in terms of reliability of memory operations. In this
context, it is assumed that the memristors are stacked directly on top of group-accessed select transistors,
which are placed at the bottom layer (fabricated as front-end transistors) to limit the influence of the
parasitic capacitance and resistance and also to minimize the area penalty (such as in the case of [57] with
the nano-pillar gate-all-around (GAA) transistors). The transistor in each row i are selected by setting the

signal sel..

Moreover, there are multiplexer (MUX) and demultiplexer (DEMUX) units to drive the selected
columns and rows of the array. The MUX, whose detailed implementation is shown in Fig. 5-13b, provides
different voltage levels to the rows or columns. It is primarily composed by a decoder whose outputs are
connected to the gate terminals of NMOS transistors, so as to selectively connect the output to any of the

input voltages according to the selection signals smr (for row multiplexers) and smc (for column
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multiplexers). Alternatively, it may disconnect completely the block from the crossbar (high impedance
node - HZ) using the enable signal emr (for row multiplexers) and emc (for column multiplexers). The input
voltage signals are divided in two groups; those concerning memory operations and those used in logic
operations with either of the three logic styles explored next. On the other hand, the DEMUX shown in Fig.
5-13c provides connection to extra circuitry whenever necessary. Such circuitry concerns the reading circuit
described in Fig. 5-12a, the transistor that limits the current in the LRS or HRS programming, and the Re
used in the CNIMP logic style. As with the multiplexers, there are selection signals sdr and sdc (for row
and column demultiplexers, respectively) and enable signals edr and edc (for row and column

demultiplexers, respectively)
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Fig. 5-13. Simulated system overview. (a) The crossbar memory array and its peripheral circuitry for the requirements of this study.

(b) Detailed schematic of the voltage multiplexer unit. (c) Detailed schematic of the demultiplexer unit, providing all the necessary
connections needed both for memory and logic operations.

The system was designed particularly to support all features necessary in MAGIC and CNIMP
logic styles (apart from the typical memory operations.) So, the area overhead of the peripheral circuitry is
not an issue here since it will be severely reduced if just one logic style is selected. Even though the system
is capable of performing different memory and logic operations, not all peripheral blocks and cells are used
in each operation. Therefore, input signals must be set in a predetermined configuration depending on the
desired operation to be performed. Table 5-3 shows the setting for all operations considered in the system.
For memory operations, i.e. READ ROW, PROGRAM HRS ROW and PROGRAM LRS ROW, the
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configuration follows the same pattern explained in Chapter 4, but it was adapted for this system (instead
of inverter drivers, there are multiplexers). In the case of logic operations, the different possibilities to
compute CNIMP and MAGIC NOR in the crossbar were first explored. It is certainly more versatile to be
able to compute having the input data aligned both in rows and columns.
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]
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Fig. 5-14. Examples of MAGIC NOR implementation depending on how the input data is spatially stored: (a) in row orientation
(one row each time) or (b) column orientation (all columns in parallel). The voltages required for the computation are required and
the current paths indicating the memristors involved in the operation are marked in red. CNIMP only admits (c) column orientation
(all columns in parallel) with the available voltages in the multiplexers.

In case of MAGIC NOR, there are two possible ways of computation. On one hand, all column-
wise operations can be realized in parallel, where two or more selected rows act as input data and an
additional selected row stores all outputs (see Fig. 5-14a). On the other hand, a single NOR operation is
realized using input data found in the same row and having the output stored in the same row as well (see
Fig. 5-14b). Note that, in order to do so, voltage polarity is reversed since the bottom terminals of the
memristors are connected to the multiplexers outputs; input memristors are connected to ground while the
output memristor is connected to Vo. Unlike MAGIC gates, there is only one option for CNIMP; parallel
computing for all columns, by selecting a row for the p memristors and another for the g memristors (see
Fig. 5-14c). Although the row operation could be also implemented, different voltage levels, unavailable in
the presented multiplexer block, are required. In any case, the parallel computation is the most attractive
solution, as it saves a considerable amount of operation steps. In addition, the system supports programming
and reading from cells in a row-wise manner. Hence, in such a system a row acts as a memory word, and

parallel column-wise computation performs operations between rows (words).

5.2.4 Piecewise Linear File Compiler Tool
In order to accommaodate a large number of logic operations involving several memristors, and to

simplify the configuration of every simulation, a Python script called “PWL Compiler” was developed
which works similarly to a compiler program. More specifically, it takes as inputs the crossbar size and an
instruction file that includes the list of operations to be performed in the system during the simulation, and

generates all the required input signals (e.g., enable and select signals for MUX/DEMUX blocks, enable
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signals applied to the gate terminal of the row select transistors, the PMOS transistors, etc.) in the form of
piecewise descriptions w.r.t. time, as required by the Cadence simulation environment. Once the piecewise
linear files are generated by the Python script, the Cadence tool incorporates them along with the
schematics, device models, variable values, and then the simulation is executed for the desired scenario.
Finally, the simulation results are exported, containing the state of all the memristors of interest, both before
and after the execution of the logic operation(s). It is worth mentioning that such “compiler” is versatile
enough to permit being extended in order to support more logic styles (by updating the peripheral circuitry
blocks), as well as to be optimized to support less logic styles, while incorporating different models of

memristors and transistors. The complete simulation flow is shown in Fig. 5-15a.

Table 5-3. Signal setting for all memory and logic operations

Operation sel emc smc emr smr edc sdc edr sdr
READ ROW i i-th=1 allo X all 1 011 all 1 00 all 0 X

others =0
PROGRAM OFF i-th=1 by-1...bo 001 all 1 100 all 0 X all 0 X
bn.1...b0 ROW i others =0
PROGRAM HRS i-th=1 bn.1...bo 010 all 1 100 al o X all 0 X
bn.1...b0 ROW i others =0
PROGRAM ON i-th=1 allo X all 1 000 bp-1...bo 10 allo X
bp-1...00 ROW i others =0
PROGRAM LRS i-th=1 allo X all 1 000 bn-1...bo 11 all 0 X
bn.1...b0 ROW i others =0
MAGIC n NOR r i ith=1 jiejn=1 | j1...jn=100 all 0 X all 0 X allo | X
j1 --- Jn Jout others =0 Jou=1 fout = 101

others =0 others = X

MAGIC n NOR ¢ i in=1 allo X ip...in=1 ip ... In =101 all 0 X all 0 X
i1 ... in out fou= 1 ou= 1 iou= 100

others =0 others =0 others = X
CNIMP ¢ iy iq ip,ig=1 allo X p,ig=1 ip =110 all 0 X all 1 01

others =0 others =0 ig =111

others = X

X : don’t care, i: row number, j: column number

The instruction file is a sequential list of all the different possible operations supported (i.e. HRS
and LRS programming, READ, MAGIC NOR, CNIMP and RATIOED NOR, which is described next in
this Chapter) along with several arguments related to the position in the array of the memristors that are
involved in every operation, or other specific features such as the number of inputs of a logic operation,
etc. The set of instructions admitted by the PWL Compiler are listed in Table 5-4, related with the ones
previously indicated in Table 5-3. An example of a simulation file for a MAGIC NOR2 with previous inputs

programmed at “01” and memristors read before and after the simulation, is given in Fig. 5-15b.
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Fig. 5-15. (a) Description of the simulation flow. (b) Example of an instruction file for a MAGIC NOR2 gate with previously
programmed inputs in “01”, where the sequence of operations is shown on the left. Some comments about the details of each
operation are given on the far right side, starting with //.

Table 5-4. Instruction set supported by the PWL Compiler script

Instruction Description

SETij Program cell (i,j) to LRS. Sequence of operations:
PROGRAM OFF 0...(1);...0 ROW i
PROGRAM LRS 0...(1);...0 ROW i

RESET i j Program cell (i,j) to HRS. Sequence of operations:
PROGRAM ON 0...(1)i...0 ROW j
PROGRAM HRS 0...(1);...0 ROW j

READTri Return content of cells in i-th row.
Operation: READ ROW i

MNORNTiji...jnjour | Compute n-input MAGIC NOR in i-th row for inputs in columns j1 j» ... j» and output
in column jout.

Operation: MAGIC nNOR i ji ... jnjout

MNORNC iy ... in out Compute n-input MAGIC NOR in j-th column for inputs in rows iy iz ... in and output
in row iout.

Operation: MAGIC N NOR C iy ... in iout

CNIMP cip iq Compute CNIMP in i-th for inputs in columns ji j2 j and output in column j.
Operation: CNIMP c iy iq

5.25 MAGIC Logic Gates
Regarding MAGIC, the proper design space for NOR2 and NOR4 was first explored and the impact

of variability was then evaluated for both gates, as well as for the AOI22 logic function. Note that the
AOI22 does not have to be designed as a separate logic operation, but it is designed instead using sequential
NOR?2 operations. In the proposed design process, the Vo input voltage value was swept while monitoring

the state of all the memristors after the logic operation. The applied V, voltage pulse width was 200 ns, time
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long enough to perform the switching of the output memristor. If any input memristor did not hold its initial
logic level, or if the logic level of the output memristor was not the expected one, then the specific Vo value
was not included in the design space. This process took place for every distinct input combination of the
states of the input memristors (“00”, “01/10” and “117).

Fig. 5-16a presents the results for NOR2, i.e. the resistance of the input and output memristors after
the logic operation. In the x-axis the valid Vo range is shown, extending from 1.89 V to 2.19 V. The initial
HRS (Rhrs,ini) and initial LRS (Rirs,ini) is marked by a black dashed line. The higher bound of the Vo range
is found in the “00” input case as the state of the input memristors enter the undefined region when Vo >
2.19 V. Likewise, the lower bound is found in the “11” input case, when the state of the output memristor
enters the undefined region when Vo < 1.89 V. Note that in the “00” input case, the input memristors do not
switch their state from HRS to LRS; however, we notice a state drift (see Fig. 5-11b) towards the undefined
region, due to the considerable voltage drop on the input memristors, which is insufficient to cause a
complete switching event but it is high enough to slightly modify their state while the Vo pulse is applied.
State drift is undesirable as it can cause wrong evaluations in subsequent computations that may use these

devices as input memristors.

Similarly, the design of the NOR4 gate is performed in the same way but involves checking more
input cases. Here Vj is bounded from 1.89 V (for any combination having two inputs at ’1°, such as “0011”")
up to 2.47 V (for the “0000” input case). Interestingly, Fig. 5-16b shows how the design space of NORn is
modified with increasing fan-in. The range of valid Vo values is different for different numbers of inputs,

first getting wider up to a particular point, and then apparently shrinking significantly.

Once the design space for the NORnN gate was defined, variability was injected to the involved
memristors. The error rate of NOR2 and NOR4 for variability factor k = 5 is displayed in Fig. 5-16C and Fig.
5-16d, respectively. The error rate is shown separately for each input case (equivalent input cases are
grouped in the same category; e.g. “10” and “01”, or “0001” and “0100”, since what is important is just the
number of logic ‘1’ in the input combination rather than the specific bit sequence). Apparently, the most
affected case is the “all-zero” input as Vo increases. We observed that, the higher the applied voltage, the
larger the state drift observed in the input memristors. Although all Vo values within the design process
should in principle be valid, it turns out that the error rate in some cases is unacceptable. The average error
rate is minimized for Vo = 1.95 V in NOR2 and for Vo = 2 V in NOR4, respectively, highlighting that
memristor device variability must be taken into account in the design process! Note that, in NOR4 the
average error rate seems more flat than in NOR2. This, owing to the fact that most input cases exhibit
similar low error rates, whereas the critical case is just the “all-zero” case, so it weighs less in the

computation of the average value.

Next, the error rate of AOI22 was computed. Since AOI22 was implemented via sequential NOR2
operations, the design space of the NOR2 gate was considered and only values around Vo = 1.95 V were
tested, i.e. around the value that minimized the error rate for NOR2. Fig. 5-16e shows the results for

variability factor k = 5. The error rate is detailed for each grouped input case. Equivalent input cases are
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grouped in pairs, each corresponding to the inputs of one of the two first-level NOR2 gates. For instance,
the “00|01” also includes “00|10”, “01]|00”, and “10]00”, which are equivalent. We observed that the most
error-prone cases are the ones with a “00” input pair. This was somehow expected since “00” is the input
combination with the highest error rate in NOR2 (Fig. 5-16b). Thus, in AOI22 the first-level NOR2 gates
produce quite unreliable outputs that are used next as inputs in the second level, to eventually produce an
even less reliable final output. Moreover, the average error rate, here minimized for Vo = 1.9 V, does not
change significantly with Vo. We also observe that the error rate curve, even for the most critical input case,
is not as steep as in previous results. Generally, in agreement with NOR2 and NOR4 functions, it seems
that using higher voltage amplitudes results in an increasing error rate. However, the error rate for AOI22
shows higher values than for the NOR2 or NOR4 operations, reflecting the undesired consequence of
chained logic operations. A logic operation with a minimum error rate of 15.6% (“00]00” input for Vo = 1.9
V) is clearly not feasible. It means that, after every NOR2 operation, the state of the output memristor

should be properly rewritten to minimize the propagated error rate.
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Fig. 5-16. Simulation results for MAGIC logic style. (a) Design space of NOR2 concerning all possible input combinations. (b)
Design space for NORn for different numbers of inputs. (c) Error rate of NOR2 after the evaluation of 1000 operations for each
possible input combination and Vo = {1.9, 1.95, 2, 2.05, 2.1, 2.15} V. (d) Error rate of NOR4 for each possible combination shown
grouped in the form Ox1y; i.e. combinations that involve x zeros and y ones in their binary representation, and Vo = {1.95, 2, 2.05,
2.1} V. (e) Error rate of AOI22 evaluated over 1000 operations for every possible input combination grouped as two-input pairs of
NOR?2 input combinations of interest, these being 00, 01/10 and 11, for Vo = {1.9, 1.95, 2} V.

5.2.6 IMPLY Logic Gates
For CNIMP, the only design necessary is that of the basic CNIMP operation which is used to
perform any other logic function. Once this is completed, the NOR2, NOR4 and AOI122 are simulated while

injecting the same amount of variability to finally compute the error rate. Contrary to the MAGIC case, in
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the CNIMP design there are three design parameters: Vcono+, Vcono- and Re. So, in order to keep the design
process as simple and short as possible, we reduced the test set of Vcono+ and Re values and rather swept
only Vcono-- The applied input voltage pulse width was again 200 ns as in the case of MAGIC logic
operations.

The corresponding results are shown in Fig. 5-17a. Different designs were obtained for different Rg
values. Then, NOR2, NOR4 and AOI22 operations were tested to obtain the error rate, as shown in Fig.
5-17b, Fig. 5-17¢ and Fig. 5-17d, respectively. The Rc = 10 kQ and Vconp+ = 1 V were fixed, whereas Vconp-
was tested for -1.1 V, -1.2 V, and -1.3 V. Likewise in the MAGIC case, once again the results prove that
the error rate is very much dependent on the design parameters. Also, we observe that the CNIMP NOR2
error rate is found lower than the MAGIC NOR2 but, as the number of inputs increases, the error rate of
the CNIMP gate results higher than the corresponding MAGIC gate (see for NOR4). We even note a set of
parameter values that leads to 100% error rate for the “0000” input combination. This is an undesirable
effect of state drift, since NOR4 is computed using a chain of four CNIMP operations. Furthermore, the
AOI22 results confirm the fact that, although the function is implemented with sequential NOR2 operations,
the error rate is not only higher than NOR2 but actually prohibitive. Generally, in CNIMP-based
implementations the chained operations are even more critical than in MAGIC as every NORn involves a
chain of basic CNIMP operations. Likewise, in NOR4, we confirmed that Vconp- = -1.3 V produces 100%
faulty results for certain input combinations. Unfortunately, it is not easy to establish any correlations
between NOR2 and AOI22 faulty input cases as it was for the MAGIC AOI22. However, it is noticeable
that input combinations with a high number of logic ‘0’ and also those including a few logic ‘1’ (for
instance, “1000”, “0100” or “1100™), evaluated in early stages of the computation, are the ones with the
highest error rate. Finally, the minimum average error rate was displaced here (w.r.t. that in CNIMP NOR2)
to Veonp-=-1.1 V.

All in all, MAGIC and CNIMP were proved quite sensitive to variability in memristor states even
after being properly designed, and while considering quite a large resistance window. What is more, since
large voltages are generally required, the state drift issue appears. So, chained operations may worsen the
situation by increasing the amount of faulty operations to prohibitive levels and thus requiring for extra

intermediate steps to restore the state of memristors in-between logic operations.

Furthermore, in Fig. 5-18we show simulation results for some of the scenarios shown previously,
while considering CMOS nonidealities and having all blocks in the peripheral circuit designed using 0.35
um standard CMOS models. Monte Carlo simulations were carried out including the best possible levels
of process variability to highlight the potential impact of CMOS device mismatch on the memristive logic
operations. Generally, the same trends are observed and the error rate now increases in both MAGIC and
CNIMP gates. So, the CMOS components could eventually worsen the performance of logic operations
and an optimized design of the driving circuit is required, along with a potential adjustment of other
parameters related to memristors (Vo, Vser, Vreser, Vcono+, Vcono-, -..) SO as to minimize the error rate.

Therefore, it is expected that a logic scheme which does not imply conditional switching of the memristor
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states, would most likely constitute a more viable and robust approach to follow for crossbar-based in-

memory logic computations.
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Fig. 5-17. Simulation results for the CNIMP logic style. (a) Design space of CNIMP operation using a set of Rg values of {10, 50,
100} kQ. (b) Error rate of NOR2 for Re = 10 kQ and Vcono+ = 1V, each input combination evaluated 1000 times for each Vcono-
. () Error rate of NOR4 for R = 10 kQ and Vconp+ = 1 V, each input combination evaluated 1000 times for each Vconp- (showing
only the input cases with higher error rates). (d) Error rate of AOI22 for Re = 10 kQ and Vcono+ = 1 V, showing only the input

cases with higher error rates.
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Fig. 5-18. Simulation results for error rate while considering CMOS mismatch for (a) MAGIC NOR2 and (b) CNIMP NOR2. 500
operations were realized in each case, with circuit parameters as described in Fig. 5-16¢ and Fig. 5-17b, respectively.

5.3 Variability-Aware Logic Design Style for Higher Reliability

The former Section highlights the sensitivity of MAGIC and CNIMP styles to variability and the

extra difficulty the latter imposes to the design parameters. Although the regeneration of the correct resistive

states after an amount of sequential logic operations might be an option, it adds undesirable delay in the

computation. In this direction, this Section presents a novel logic design style that is variability tolerant and

compatible with crossbar architectures, being also combined with a straightforward design procedure. The

improvements in operation yield, as shown through simulation results, prove its superiority against the rest

of logic design styles explored in this Chapter.
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5.3.1 Memristor-Based Ratioed Logic Style and Design Constraints
Memristor-based Ratioed Logic is a stateful logic style for building memristor-based logic gates,

inspired on the pseudo-NMOS logic design, whose logic gates are compatible with crossbar memory arrays.
It works similar to the CMOS-like logic [85] described previously in this Chapter, but it involves less circuit
complexity. Two different possible implementations of logic gates are shown in Fig. 5-19a, which concern
a resistor R connected to a pull-down (pull-up) memristor network (the version of the PMOS transistor
and the pull-down memristors is assumed in the rest of this Chapter). In fact, the memristors substitute the
transistors in the NMOS pull-down (or PMOS pull-up) block of a conventional ratioed logic gate.
Moreover, the memristors hold the input data; i.e. a memristor in LRS substitutes a turned-ON transistor,
whereas a memristor in HRS substitutes a turned-OFF transistor. The logic operation is performed by
applying a voltage Vreap across the entire circuit, while making sure that the voltage drop on the memristor
network is appropriate for sensing the input states without disturbing them. Contrary to MAGIC and
CNIMP, both of which have a resistive output, here the logic output corresponds to a voltage level Vou
whose value falls between Vreap and a reference voltage (which is ground by default). Vo is then compared
to a threshold value Vcowme, properly selected so that Vo outcomes are classified in ‘0’ and ‘1’ logic levels.
Vcome and R values depend on the built logic gate.

Vread Vread VDD %
S Yoo ! DD
R : memristor : _ 00" .
LRS t pull-up block RizRigs - 7T 1
! | > Veomp
A | — Ve 01710
L - : Vout 1
' memristor R input | output
' pull-down block LRS V.
G : REF
—_— — VREF
(a) (b)

Fig. 5-19. Memristor-based Ratioed Logic style. (a) General scheme of logic gates; (b) Example of a NOR2 gate using the
memiristor pull-down version and the expected voltage levels regarding all input combinations.

A particular example of a NOR2 gate is shown in Fig. 5-19b. The overall circuit works as a voltage
divider with an output voltage as described in (45), where Req is the whole memristor network equivalent
resistance and Ry is Rirs. Vcowme i set between (Viead)/2 and Vyes; output is ‘17 if Vour > Vcome and ‘0’
otherwise. When input is “00” the input memristors are both in Rugrs, SO Vout is roughly Viead, Which is
interpreted as logic ‘1°. On the other hand, if at least one input is ‘1° (Rirs) then Vou < (Vread)/2 falls in the
range corresponding to logic ‘0’. Avoiding the conditional switching of memristors during logic
computations is beneficial in many different aspects, and the advantages of the proposed ratioed logic
scheme are further demonstrated in the rest of this Section. Note that the result of computation is not

simultaneously stored in the memory array; so, it is reasonable to talk about near-memory computing in
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this case. However, the result can be stored back to a memory element right afterwards through an additional

programming step.

RRis
Vo o= RS

5.3.2 1T1R Crossbar Modifications
The 1T1R crossbar system shown in Section 5.2.3 can be adapted to perform successfully a ratioed

NORn logic gate. For instance, Fig. 5-20 shows a scheme concerning an implementation in a single 1T1R
crossbar row. The whole logic operation has been simplified using a control signal called “write/op”. This
signal controls most of the peripheral blocks. The logic operation is performed when “write/op” is ‘0°. A
pull-up PMOS transistor, in substitution of the resistor Ry, is turned ON and tuned to exhibit a channel
resistance Rigs since ratioed circuits depend on proper pull-up/down resistance for correct operation. The
use of a PMOS transistor allows to disconnect this element when performing other tasks in the row, such
as typical memory operations. However, in order for this logic scheme to work properly, a higher voltage
is used in the PMOS source, namely Vpp. For that reason, the reference voltage of the logic gate must shift
from 0 V to Vrer = Vb - Viead in Order to preserve the Viead Voltage drop in the entire circuit (logic gate). In
the same way, Vcowe is shifted by adding Voo - Viead t0 the previously selected voltage.

Hence, with write/op = ‘0°, Vrer and Vpp pulses are applied in the selected crossbar row (enable

(13

signals “en;” ... “en,” define which memristors are involved) and two different cases are observed
depending on the states of the input memristors: Vou < Vcomp OF Vout > Veowmp. After Vo is compared with
Vcome, the output logic level is stored temporarily in a flip-flop. Afterwards, the operation finalizes by
storing back the output into a memristor by setting write/op = 1’ and choosing the storing cell with the
enable “en” signal. The transmission gate also turns ON a PMOS transistor to limit the current when
programming the state of the memristor. Note that the implementation of Fig. 5-20 constitutes a
simplification of the modifications for the system described in Section 5.2.3; actually, in our real
implementation the voltage Vrer is supplied by means of the column multiplexer as another voltage
available, while the comparator and the flip-flop is another output of the row demultiplexer. Additionally,
a digital circuit that enables and selects the Vrer voltage for the selected memristor to store the output is
required. The flip-flop and the comparator certainly add some area and power overhead, whereas the rest

of the peripheral circuitry is in fact also required in the case of MAGIC and CNIMP gates.

After covering crossbar implementation, it is worth mentioning here some other dimensions in
which logic design could be benefitted via the proposed ratioed scheme. MAGIC and CNIMP allow for
row-wise and column-wise operations in the crossbar array, which could be executed in parallel if a 1R
passive array is considered. However, for the ratioed logic a 1T1R crossbar is preferred, because the logic
operation is equivalent to sensing a voltage level and this could be affected by the rest of the crossbar if no

select transistors are used in the cross-points. Moreover, if the selector transistors are connected in rows,
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then NOR operations can be performed in a row-wise or column-wise manner, but only column-wise

parallel operations are possible, as shown in Fig. 5-21.

Fig. 5-20. Implementation of a Ratioed NORn gate in the CIM system described in Section 5.2.3.

Furthermore, the ratioed logic scheme accepts several modifications to enable other useful logic
functions in a very compact way. For instance, ORn gates are possible just by including an inverter stage
after the comparator (or by using instead a parallel memristor pull-up block). With the ORn gate directly
available, a particular case for n = 1 is the COPY gate, allowing to copy the content of a particular cell in
another one in just one step, unlike MAGIC and CNIMP which would need two steps (two NOT operations)
and conditional switching of memristors. Therefore, assuming that NOR, OR, NOT and COPY are readily
available, Table 5-5 shows the cross-point area needed to compute a NOR, OR, AND or NAND gates for
each one of the three logic styles compared here, aiming to provide a perspective of the necessary resources
in terms of area. {IN, AUX, OUT?} columns correspond to memristors holding the input data (always 2 for
2-input gates), the number of auxiliary devices to hold intermediate results in chained operations, and
eventually a single memristors to hold the output value in all cases. Both aligned and not-aligned input
memristors are considered, depending on whether they share the same row or column. With aligned input
devices, the number of required AUX devices is less in most cases and thus it makes the difference in this
metric. Generally, it can be observed that the ratioed logic scheme outperforms the rest, hence it is proved
to be the most compact solution among the three.
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Fig. 5-21. Possible settings to perform a ratioed logic NORn in a 1T1R crossbar. (a) One row-wise NOR2, (b) An example of two
column-wise NOR2 done in parallel, giving Vout1 and Vout2 outputs. The voltage pulse levels, the involved PMOS devices, and the
selected rows, are indicated in the schematic.
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Table 5-5. Number of cross-points required for each logic style

Logic Style Input Position NOR OR AND NAND
IN AUX OuUT | IN AUX | OUT | IN | AUX | OUT | IN | AUX | OUT

Not aligned 2 2 1 2 3 1 2 2 1 2 3 1

MAGIC
Aligned 2 0 1 2 1 1 2 2 1 2 3 1
Not aligned 2 2 1 2 3 1 2 2 1 2 3 1

CNIMP
Aligned 2 0 1 2 1 1 2 2 1 2 3 1
Not Aligned 2 1 1 2 1 1 2 2 1 2 2 1

Ratioed Logic

Aligned 2 0 1 2 0 1 2 2 1 2 2 1

Finally, regarding scalability, the CNIMP (or IMPLY) and MAGIC mapping has been studied in
some recent works [93], [94]. Mapping relies on the capability of parallel row- and column-wise operations
with NOR and NOT gates, so optimized algorithms for faster and less area-/power-consuming logic
realizations have been proposed. Likewise, given the structural similarities in the circuits representing the
logic gates, the memristive ratioed logic style also has the same potential to allow efficient mapping, while
using slightly different strategies than for MAGIC or CNIMP.

5.3.3  Simulation results
The simulation results of the alternative ratioed-logic scheme, concerning the design exploration

and yield against memristor variability, are presented here and discussed/compared with those of MAGIC
and CNIMP. Regarding the specific design used in simulations, the voltage difference Vop — Vrer must be
selected low enough to not disturb the state of the input memristors. Using Vreap = 0.5 V as a non-disturb
voltage, we applied Vop = 3.3 V to operate the 0.35 um PMOS load transistor and set Vrer = 2.8 V.
Moreover, the PMOS channel resistance value was achieved very similar to the LRS resistance of
memristors, through proper sizing and by using a gate voltage of 1.6 V. Moreover, since no switching of
any memristor is required, the voltage pulse width was selected 20 ns, which is much shorter compared to
the pulses applied in the case of MAGIC and CNIMP gates.

Regarding the evaluation of the variability impact, it should be noted that the error rate of NOR2
is typically zero, since there is no conditional switching of any device here and the logic result is written
back to a memory device in a controllable way. So, it was meaningless to use the error rate as a metric of
evaluation in this case. Alternatively, the distributions of the Vo values for each different input
combination, was considered more illustrative for this logic style. The simulation results are shown in Fig.
5-22a. Each distribution is colored depending on the variability factor k used in the simulation, i.e. blue for
k =1, red for k = 5 and black for k = 10, whereas the insets show separately the details of each distribution.
As expected. in the “00” input case Vou falls near Vpp and has a very narrow distribution. On the other hand,

“01/10” and “11” input cases have broader distributions that are centered in particular values. The results

77



confirm that the three cases are clearly distinguishable and a comparison voltage Vcome can be easily
defined to interpret correctly the values corresponding to logic ‘1’ or logic ‘0’. The NOR4 results in Fig.
5-22b show similar performance. Indeed, as there are more input memristors in parallel, the Vo distributions
are displaced further from Vpp. So, Vcowme clearly separates the input cases that give a logic ‘1’ output from

those that give a logic ‘0’ output.
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Fig. 5-22. Simulation results for the ratioed logic style. (a) Histograms of Vout for NOR2 after the evaluation of 1000 operations for
each possible input combination when k = 1 (blue), k = 5 (red) and k = 10 (black). (b) Histograms of Vout for NOR4 after evaluating
1000 operations for each possible input combination for k = 1, 5 and 10. (c) Maximum fan in exploration for the NOR operation,
using k = 1, 5 and 10 (1000 evaluations for each distribution). The results concern the “all-zeros” input and those combinations
having only one input at logic ‘1°. The green line shows Vout When k = 0.

Next, Fig. 5-22¢ aims to underline the really high tolerance of the proposed scheme to device
variability. The graph shows the Vo range evolution with increasing number of inputs of the NOR gate.
The output is shown only for the all-zero input case (“00...00”) and for the combinations with only one
input storing a logic ‘1’ (indicated as “00...01”), since their results are closer to Vcome, as seen in Fig.
5-22a,b. The green line shows an extrapolation following the results without any variability for input
number n =2, 4, 8 and 16, whereas the simulation results shown were taken after the injection of variability.
It can be noticed that the two cases remain separated enough so as to be properly distinguished by the
comparator. Eventually, the “00..00” case theoretically intersects the Vcowme line approx. when n = 64!
However, such limitation could be erased by justifying accordingly the Vcowme level to the number of inputs.
Hence, only when the Vo values for these two extreme input combination cases are too close with each

other, then the error rate will be non-zero for the ratioed logic scheme.

We did not include any simulation results for AOI22 since the performance of the basic operation,
i.e. NORn, was found a priori superior than in the other logic schemes of interest and practically “error-
free”. On the other hand, since output here is expressed in voltage instead of memristance, conducting
chained operations in this scheme assumes adding an intermediate step to store the logic output to a
memristor state which will later act as input variable. Therefore, in principle the delay of computations in
the ratioed scheme would be higher. However, as commented before, unless an intermediate “regenerating”
step is included both in MAGIC and CNIMP gates, chained operations in either of these styles is
unacceptably error-prone. So, after all, requiring an extra step to store intermediate results in rationed logic

operations is not that much a disadvantage, considering the high gains in reliability and also the much
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shorter computation time which involves only sensing the memristor states. Finally, no simulation results
are shown here for the impact of CMOS non idealities to the ratioed logic scheme, since we found they
have no significant effect on the output voltage levels, thus the error rate was kept zero.

Relying on logic styles that assume frequent device switching, even for the implementation of
simple logic functions, actually poses a major concern for the endurance-limited memristor technology.
This is why the focus has been gradually moved to alternative schemes that implement logic using just read
operations, such as the Scouting Logic [83] seen earlier in this Chapter. The latter is also crossbar
compatible and is based on a modified sense amplifier for the implementation of different logic gates. It
shares some of the advantages with the proposed ratioed logic scheme, even though the design process is
iterative, similar to the one presented for MAGIC and CNIMP. On the other hand, the ratioed logic was
proved here robust and with a straightforward and noniterative design process, whereas proper functionality

was verified even when scaling the number of logic gate inputs.

5.4 Concluding Remarks

This Chapter analyzed the impact of the memristor variability of different logic styles in a CIM
system. Prior to the study, the Chapter reviewed memristor-based digital computing applications. Most of
the review material specially focused on CIM systems and logic styles which constitute a new paradigm of

computing, taking advantage of the favorable properties of non-volatile memory systems.

Regarding the study of the yield of logic operations, the results showed how two different logic
styles that rely on conditional switching/programming of the state of memristors holding the logic output,
namely CNIMP and MAGIC, are sensitive to memristor variability. Furthermore, a good control of the
design parameters could benefit the yield in the logic operations. Nevertheless, even with an improved
yield, problems still arise when chaining logic operations are used. The solution presented is a different
approach that avoids the conditional programming and it simply consists of a reliable reading operation,
followed by a controllable programming operation, if needed. Results showed how our proposal reaches a
notable yield for a smaller number of inputs in a NOR operation, while erroneous output calculations are
expected only for a very large number of inputs. Although this logic style alternative requires two steps in
order to store the output back to the crossbar, our design requires short pulses to perform the read operation

compared with the ones used in the programming operations. Hence, the delay overhead is not significant.
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Chapter 6 Analog Applications. Fast memristor-based adaptive
chaotic synchronization through fault memristor events

So far, previous chapters mostly focused on digital applications where memristors are treated either
as binary elements, or as multi-state elements with quantized memristance. However, the resistive state of
ideal memristors varies in an analog manner between the HRS and LRS boundaries, and some real devices
also demonstrate an analog switching behavior similar to such ideal switching behavior. This feature has
been appreciated in many analog-oriented applications, ranging from signal processing circuits to
unconventional forms of computing applied to the solution of complex problems in efficient ways, to name
a few. Reliability of memristors may impose additional challenges that can be surpassed in some cases by
using tolerant design strategies. There are other cases though where reliability may not be an issue, but

instead an asset.

This Chapter first presents a brief review of the most relevant memristor contributions in the field
of analog applications. Next, it focuses on the field of chaotic synchronization where contribution of
memristors is analyzed in terms of reliability, and a novel solution to accelerate the synchronization process
of an arbitrary number of interconnected chaotic circuits is presented. In the following paragraphs, this
Chapter introduces the principles of chaotic systems presenting the example of the “Chua’s circuit”, and
lays the foundations of the adaptive synchronization using memristors as coupling elements, information

necessary to study further Sections 6.3 and 6.4, previously presented in [95], [96] and [97].

6.1 Review of analog applications

This Section has been divided into four groups, covering very diverse topics which are:
programmable signal processing circuits, programmable oscillators, unconventional analog computing and
security. In each application group, memristors play different roles depending on the particular

characteristics that each application takes advantage of.

There are many signal processing circuit modules -for instance, comparators, amplifiers, filters, to
name a few- that use passive elements to tune their performance characteristics. It has been demonstrated
that memristors can be introduced in such circuits, mainly with the role of programmable resistors, so as to
upgrade functionality on these analog blocks [98]. Signal amplifying stages usually employ resistors to set
a closed-loop gain. A simple inverting amplifier can use a memristor to substitute one of the resistors used
in this configuration, as shown in Fig. 6-1a. Additionally, a programming circuit is also connected, to supply
positive or negative short pulses to smoothly decrease or increase the resistance of memristor m, and
effectively increase or decrease the close-loop gain. Likewise, comparators also can get benefited by adding
memristors. In such a case, using a memristor adds a programmable voltage threshold feature by simply
using a voltage divider in which a memristor takes the place of a resistor, as depicted in Fig. 6-1b. By
changing the memristor state the voltage threshold supplied to the comparator input is also modified.
Furthermore, a memristor can substitute a resistor in a Schmitt trigger comparator to change the hysteresis

thresholds, as shown in Fig. 6-1c. In all the aforementioned cases, a common rule must apply: the memristors
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should be exposed to low voltages in the circuits under normal operation, except when the programming

pulses have to be applied.

prog

o Voul

(a) (b) (c)
Fig. 6-1. Different programmable analog circuit modules. (a) Inverting amplifier with a capacitor for noise suppression, (b)
comparator with programmable threshold voltage, and (c) Schmitt trigger comparator with programmable hysteresis.

Oscillators are another type of circuits that can be realized using memristors. Fig. 6-2a shows an
example of a relaxation oscillator [98], where again a resistor was substituted by a memristor and a
programming circuit is in charge of tuning the memristor state which affects the frequency. In the same
direction, thinking of a more compact circuit design, a memristive Sisyphus concept was suggested in [99]
as explained in Fig. 6-2b. More specifically, by applying voltages at each memristive branch during the
different phases of operation, each memristor increases or decreases its resistance, with theSET process
being usually faster. Based on this scheme, a clock signal generator [99] was built as shown in Fig. 6-2¢c. The
OR gate output defines the operation of the circuit: when output is ‘0’, the resistance is rising as in phase 1

of the memristive Sisyphus, and when the output is ‘1°, the resistance decreases as in phase 2.

For the time being, one of the topics where a great deal of research is done around the world in the
field of memristors, has to do with unconventional analog computing paradigms. Although there are
different approaches proposed so far in this context, the central idea is to mimic in some degree the behavior
of biological systems such as the human brain or living organisms [100], [101], in order to solve complex
problems in more power-/time-efficient ways. In this direction, neuromorphic computing takes advantage
of the cerebral system, where a massively parallel architecture of neurons connected through a large number
of synapses is able to solve different problems avoiding currently known limitations in conventional
computing systems such as the Von Neumann bottleneck [102]. Memristor in fact resembles a biological
synapse at circuit level: it is a two-terminal component able to connect two elements (in this case neurons),
it is plastic, and its connection weight (resistance) can be regulated and it actually depends on the recent

activity of signals applied to its terminals.
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Fig. 6-2. Memristor-based oscillators schemes. (a) Relaxation oscillator, (b) memristive Sisyphus in which a (c) particular clock
signal circuit is based.

Moreover, the concept of “Reservoir Computing” is an extension of neural networks in which only
the output layer is trained after mapping the input into a fixed dynamical system called reservoir. In this
context, it has been shown that memristors could be used as structural elements of the reservoir due to the
dynamical behavior and richness they provide. The relevant works in the literature show some examples of
reservoirs and applications, such as using a random memristor-based reservoir to recognise signal patterns
or reproduce the so-called Pavlov conditioning experiment [103]. Other works have shown reservoirs made
of memristors with short-memory properties that recognize basic images and predict specific time-series
[104], or used random memristor networks formed by an unorganized fabric mesh for detecting isolated
digital speech signals [105]. As far as device variability is concerned, in [106] the memristor variability
impact in memristive reservoirs was tested, with more favorable results obtained using a regular mesh rather

than random meshes.

Nevertheless, although memristor variability is still a major concern for this device technology,
some applications have managed to take full advantage of this otherwise negative issue. Concretely, this
happened in hardware security applications for true random number generators (TRNGSs) or physical
unclonable functions (PUFs). These applications usually rely on different variability mechanisms: weak
PUFs based on D2D variability [107], strong PUFs built on variations in the memristor internal state and
nonlinear conduction [108], TRNGs enabled by RTN [109], stochasticity [110] or C2C variability [111].
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In general, memristor PUFs alternatives have shown great potential compared to their CMOS counterparts,

while the same is still not true for TRNG circuits [112].

Last, the development of chaotic oscillators constitutes an active research area in which memristors
are also involved. In the implementation of chaotic circuits, owing to the nonlinearity in its switching
behavior, the memristor has attracted considerable attention to be used to implement the active nonlinear
element in Chua’s circuits [113] [114]. In this context, chaotic synchronization is a promising technique
with applications in secure communications. Few recent works demonstrated how networks of several
Chua’s circuits [11] [115] could be synchronized using memristors to provide adaptive coupling properties
while being a low-complexity interconnect medium. Therefore, in the following Sections the application of
memristor-based chaotic synchronization is explored in detail. Although the chaotic circuit of interest is the

Chua’s circuit, the analysis exposed in this Chapter could be applied to other existing chaotic circuits.

6.2 Memristor-coupling Two-way Chaotic Synchronization

6.2.1 Chaotic Systems and Circuits
A chaotic system is a dynamical system described with differential equations and characterized by

a strong sensitivity to the initial conditions of certain variables. Although it is a deterministic system, its
state apparently evolves in an unpredicted way. In fact, their predictability is compromised by factors such

as the impossibility of infinite precision in measuring a system or computing a forecast, as shown in [116].

The general form of a chaotic system is shown in (46), where s contains the internal state variables
of the system and f(s) describes the dynamics. The phase space is the space representation where possible
states are found and the trajectory of the system is the temporal evolution of the system’s state in the phase

space.

ds
- f® (46)

Electrical circuits derived from chaotic systems began to appear in 1983 with the so-called Chua’s
circuit, which is probably one of the most widely-studied circuits in this field. Later, many other chaotic
circuits were proposed, such as the Lorenz or Rossler circuits, to name just a few of them [117]. Chaotic
circuits could find application in pseudo random number generators and in secure communications
performed via synchronization of chaotic circuits found in the sender and receiver modules. Nevertheless,

to the best of the author's knowledge, such applications are still not found in commercial solutions.

6.2.2  Chua’s circuit
The Chua’s circuit is considered the simplest electronic circuit that implements a chaotic system.

As shown in Fig. 6-3a, the circuit only uses four passive elements, i.e. a resistor R (with conductance G),
two capacitors Ci1 and Co, an inductor L, and a nonlinear active element labelled as Nr which is commonly

known as “Chua’s diode”. The Chua’s diode is an essential part of the Chua’s circuit which makes possible
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a chaotic response. The Chua’s diode v-i characteristic is defined by eq. (47) and it is depicted in Fig. 6-3b
with a black thick line. As it can be observed, it can be described as a piecewise linear negative resistance
divided in three regions. When vy is in the [-E1, +E1] interval, the Chua’s diode shows a conductance of G,

otherwise the conductance is Gy, where |Gp| < |Ga|.

i R=1/G
: VWA :
+ +

L C2 V> C] ==V NR

—4—

() (b)

Fig. 6-3. (a) Schematic of the Chua’s circuit, and (b) the Chua’s diode Nr i-v characteristics shown in black thick line. The blue
line represents the load R whereas P-, O and P- are the equilibrium points of the system.

Gpvy + (G, — G )E, if vy < —E;

iy(vy) =1{GaVn if vyl < Eq (47)
vaN + (Ga - Gb)E1 lf Un > E1

The dynamics of this system are described in the state equations of the circuit shown in (48484848),
that can be found in a straightforward way by applying Kirchhoff's laws. Note that these equations already

have the form seen in (46), where v1, v» and i_ are the state variables of the system.

dv 1

2t = ¢ (602 —v) —g@)]

dv 1

—= (6 — ) +] 48
2

di, 1

ac L7

A DC analysis gives more information about the equilibrium points of this dynamic system. In DC,
all derivatives of the state equations are 0, obtaining the equations in (49). This analysis is electrically
equivalent to substitute capacitors by open circuits and short-circuiting the inductor.

Gvy +9(v) =0
Uy, = 0 (49)

Equilibrium points must be evaluated in the three regions of Chua’s Diode: i.e. where v; < -E1, -E1
<v; < Eg, and E: < vi. In each region, an equilibrium point is found, P-, 0 and P-, as depicted in Fig. 6-3b.

The equilibrium points coordinates are described in Table 6-1.
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Table 6-1. Coordinates of the equilibrium points in Chua’s circuit system

Point P. (v1 < -E; region) Point 0 (-E1 < v1 < E; region) Point P+ (E1 < vy region)
_ Gb - Ga _ Gb - Ga
Vir-= "G 1g, Vip=0 Ve = GG,
Vop-=0 V2o =0 Vaopt =0
_Gb_Ga IL,0=0 _ Gb_Ga
lur- =373, ¢5 lure = =G5, GEn

The dynamics of this system are analyzed using the differential equations shown in (48) which
describe the temporal evolution in the 3-dimensional state space (vi, V2, iL). By choosing carefully all the
circuit parameters, the circuit will demonstrate a chaotic behavior known as a double-scroll attractor. This
behavior is described as spiral trajectories are centered in P+ or P- (the attractors) and are growing inwards.
When the trajectory is close to P+ and P., it is pushed towards the |vn| < E; region and subsequently is pushed
either to P+ or to P, generating again another spiral and repeating the same process. The results of a
MATLAB-based evaluation of the Chua’s circuit state equations, to illustrate its chaotic behavior, are
shown in Fig. 6-4. The Chua’s circuit parameters used (adapted from [118]) were R =1.67 kQ, C1 = 10 nF,
C,=100nF, L=18 mH, G,=-0.76 mS, G, = -0.41 ms and E; = 1.174 V. Fig. 6-4a depicts the space of the
state variables and the trajectory of the Chua’s circuit dynamics forming the so-called double-scroll attractor
shape and the spirals going towards P. and P.. The temporal evolution of the circuit signals is shown in
more detail in Fig. 6-4b. Although the dynamics are generated by a deterministic system, the number of
oscillations around an attractor and succession of spirals centered in P. and P- are seen as unpredictable and
non-periodical. Additionally, grey dashed lines mark the values of P+ and P. expected coordinates in v, and

iL (v2 is always 0).
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Fig. 6-4. () Simulation results for a double-scroll attractor’s behavior in the phase space. (b) Temporal evolution of v1, v2 and iL.

It is usual to transform the state equations in (48) to a dimensionless version for mathematical

manipulation purposes. It is possible by defining the transformations x= vi/Es, y = Vo/Es, z = i/(E1G), 7
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=tG/Cy, a = GJ/G, b = Gu/G, a = C,/C1 and = C,/(LG?). The dimensionless state equations are shown in
(4), where f(x)=bx+0.5(a-b)(]x+1|-|x-1[). From now on, the terms v or x, v, or y and i or z, referring to state
variables or signals, will be used interchangeably throughout this text.

x=aly —x—gx)]

y=x—y+z (4)
z=—By

6.2.3 Implementation of a Chua’s Circuit

Although the Chua’s circuit was presented as a quite simple and compact circuit, its implementation
is not straightforward. For instance, the Chua’s diode is not a real device; it needs to be formed using other
circuit elements. There are different options regarding the implementation of a Chua’s diode. This work
opts for one presented in [118], as it requires few elements and it has several options to tune the
characteristics of the Chua’s diode. Fig. 6-5a shows the circuit schematic of this alternative, using two
operational amplifiers and six resistors, grouped in two blocks connected in parallel. Each block acts as a
negative resistor, whose i-v characteristic is shown in Fig. 6-5b (top and middle); the resistors determine its
shape. The current contribution of each block is summed up and the overall i-v characteristic is a five-
segment piecewise linear graph shown in Fig. 6-5b (bottom) and the parameters depicted are tuned using the
egs. (50). Although there are two additional segments in this case than in the original graph of a Chua’s
diode, the three central ones match the characteristics. If vi never exceeds +E; the dynamic behavior of the
Chua’s circuit does not suffer any modification. Therefore, E> value must be designed to be high enough to
not affect the circuit dynamics. The design we have adopted follows the same example of [118], where Ry
=R2=220,R3=2.2kQ, R4 =Rs =22 kQ, Rs = 3.3 kQ, which leads to G, = -0.76 mS, G, =-0.41 mS, G, =
4.59 mS. Operational amplifiers used were TL082 supplied with £9V, expecting a £Esx = i, thus E; = 1.174
Vand E> =8.182 V.

Apart from the implementation of the Chua’s diode, the inductor may be another concern depending
on the context of the circuit application. When it is not convenient to use an inductor, there is the option to
build an inductorless Chua’s circuit. In such a case, the inductor is replaced by the emulator circuit from
[119] and shown in Fig. 6-6. Through eq. (51), the value of the emulated inductance may be tuned. Another
advantage in using such a circuit is that state variable i. can be easily determined indirectly by measuring

voltage v, and using the expression (52).
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Fig. 6-5. Physical implementation of a Chua’s diode adopted from [118]. (a) Circuit schematic of the implementation. (b) Separated
i-v characteristics for sub-circuits Nr1 and Nr2 (top and middle, respectively), and i-v characteristics of the whole circuit (bottom).

G, =—+— (50)

R, (51)
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Fig. 6-6. Circuit that emulates an inductor with an inductance that depends on R1, Rz, R3, R4 and C. Inductance current is indirectly
measured by sensing voltage across Ri.

We physically built a Chua’s circuit (Fig. 6-7a) following the above mentioned guidelines and the
same parameters used in simulations. Fig. 6-7b shows the v; and v, signals that this circuit generates, which
prove the double-scroll attractor behavior of the circuit. This implementation served as a verification for
our simulations, since observations found in the built circuit were taken into account for fixing the

parameters used in the simulated Chua’s circuit.

(b)

Fig. 6-7. Physical implementation of a Chua’s circuit. (a) Circuit in the protoboard. (b) capture of vi and vz signals.

6.2.4 Chaotic Synchronization
It is characteristic in such systems that the slightest variation of the initial conditions causes two

identical chaotic systems to show trajectories that rapidly evolve independently. Therefore, chaotic
synchronization techniques are mandatory when it is required for two or more chaotic circuits to operate in

an identical manner. Chaotic synchronization is the process where each chaotic system adjusts some
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property of their motion to a common behavior owing to a coupling force. There are different types of
synchronization techniques, divided into two main alternatives: one-way or unidirectional, and two-way or

bidirectional.

In a one-way synchronization, a system 1 receives as input the internal state of another system 2.
Two alternatives are usually mentioned for one-way coupling: those are complete replacement and master-
slave. Complete replacement consists in the replacement of at least one state variable of system 1 using
another from system 2. On the other hand, in master-slave synchronization the feeding of the state variable
is not that direct; instead, the difference between two internal state variables is fed into the slave system.
However, in the two-way synchronization both coupled systems interact by mutually exchanging their

internal states and achieving a common trajectory.

The details on the stability of the synchronization process are not mentioned as such analysis is out
of the scope of this Chapter. However, the chaotic synchronization is evaluated qualitatively by means of
the evolution of the system, but also quantitatively by using two metrics; the synchronization error and the
synchronization time [120]. Synchronization error e(t) is calculated using eg. (53), where N stands for the
number of systems and s is a vector that contains the state variables of the i-th system (in the specific case
of the Chua’s circuit, s = (X, Y, iL)T). Synchronization time t; is defined as the instant such that e(t) < ejim for
all t > ts, being e;im an upper bound for error close to zero. For all the simulations carried out in the context
of this Chapter, ejim was set at 0.01 V.

1
o® - jmzjnsi—%nz 9

6.2.5 Two-way synchronization of Chua’s circuits

Synchronization of Chua’s circuits can be done both in one-way and two-way. This Section is
focused on the two-way synchronization, following the work in [11]. Fig. 6-8 shows two alternatives of
Chua’s circuits bidirectional synchronization using a single coupling resistor R.. While in Fig. 6-8a the
coupling is done via vs, in Fig. 6-8b circuits are coupled through v.. From now on, each Chua’s circuit will
be called a “system” and will be numbered adequately, and all their internal state variables will include the

system’s number as a subscript.

The synchronization of coupling systems is analyzed in terms of the synchronization stability. The
state equations of the coupled Chua’s circuits, now modified by the added coupling part, is the starting
point of the analysis. By applying Kirchhoff circuit laws, the state equations of each circuit are obtained
and are shown in egs. (54) and (55) for the schemes in Fig. 6-8a and Fig. 6-8b, respectively. By comparing
them with the state equations of a Chua’s circuit in (48), we observe that a summation term has appeared
in the internal dynamics where kyx = ar/R. and ky = R/R. are called coupling strength. Indeed, the coupling
amplifies the error between the coupled state variables as a feedback information given to each system,
attempting to synchronize by minimizing the error. Fig. 6-9 synthesizes the whole synchronization process

in a scheme that highlights the feedback loop. A higher coupling strength guarantees a successful
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synchronization, whereas the opposite may end in erratic behaviors. Mathematical justification can be
found using Master-Stability Function theory [121] and according to [122], synchronization occurs when
kx > 6.274/2 or ky > 1.184/2 for two units. Either way, we will show these conclusions through electronic

circuit simulations.
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Fig. 6-8. Two-way synchronization schemes for Chua’s circuits, were Rc coupling can be located in (a) node vi or (b) node v2.

x1 = aly; —xg — f(x)] + kx(x; — x1)
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z; = =By,
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Fig. 6-9. Equivalent scheme for the bidirectional synchronization. Both systems output is the state variable x (or vi). Then, the
difference between these outputs e is amplified by factor k and fed back to each system to contribute to the internal dynamics.

Circuit simulations of the scheme shown in Fig. 6-8a were carried out using LTSpice software in
order to illustrate the synchronization stability. Synchronization stability depends on the coupling strength
kx, which in turn depends on o, R and R.. Parameters « and R can’t be easily modified, as the circuit may
easily lose the double-scroll attractor behavior. Hence, only R is modified to tune kx. By doing so, three
different behaviors are observed. More specifically, when Rc is high (100 kQ in Fig. 6-10a), all Chua’s
circuits show independent trajectories due to the poor coupling strength. Thus, the chaotic systems are not
synchronizing. The synchronization error also confirms this; there is no trend towards zero observed during
simulations. A second kind of behavior is found while decreasing R¢ (R = 25 kQ in Fig. 6-10b). The temporal
evolution towards null synchronization error confirms that both systems are finally synchronized. However,
the chaotic behavior of the Chua’s circuits is no longer exhibited. Instead, both systems start to oscillate
periodically within the operational amplifiers output voltage swing, clearly limited by their saturation
voltages. Certainly, it is an unstable response and an undesirable scenario that applications based on chaotic
synchronization must avoid. Finally, for R¢ selected sufficiently low (5 kQ in Fig. 6-10C), the Chua’s circuits
trajectories are rapidly synchronized (Fig. 6-10¢). The synchronization error is asymptotically reaching zero,

which is a sign of a complete chaotic synchronization process.

After testing the circuit scheme for different R. values, the boundaries of the behaviors previously
found in terms of R. value were explored. The results are shown in Fig. 6-10d: chaotic synchronization is
guaranteed for Rc < 5.5 kQ, whereas a periodic oscillation synchronization is experienced in the range Rc
c [5.5, 100] kQ and no synchronization at all is produced when Rc > 100 kQ. In the chaotic synchronization
region, the synchronization time is also shown. It can be observed that it decreases exponentially as R¢
decreases (or as the coupling strength increases). In conclusion, a higher coupling strength guarantees a
successful synchronization, whereas the opposite may end up in erroneous behavior or no synchronization

at all.
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Fig. 6-10. Temporal evolution of voltages at v and v2 nodes and synchronization error in a bidirectional synchronization scheme
of Fig. 6-8a for three different Rc values: (a) 100 kQ, (b) 25 kQ and (c) 5 kQ. A vertical black dashed line marks the instant when

both systems reach synchronization. In (d), different behaviors observed and synchronization times for the range Rc < [100, 1 M]
Q are shown.

6.2.6  Adaptive Synchronization of Chaotic Circuits Using Memristors

Adaptive synchronization (concretely “edge-based” adaptive synchronization) provides coupling
strength which is not fixed but varies with time [123]. This approach is more realistic, as many real-world
networks are characterized by evolving couplings, like in the behavior observed in some biological
networks [124]. The main difference with the bidirectional synchronization is that coupling elements react
to the divergence of two trajectories, adapting their coupling strength and ultimately achieving a stable
synchronization state. Formally, the network of identical systems is described in (56) [123], where gij(t)
stands for the adaptive coupling strength between system i and system j (with initial value ai‘}), h(s;) stands
for the output function of system i, ¢ is the set of coupling links between system i and other systems, i.e. j

€ ¢ and if there exists a coupling element between systems i and j, and a is a constant factor.

93



ds;
d_st =f(s) — Z a;;(t) (h(sj) - h(Si))
Jj€e (56)

doj;
> = alls; = i, 0y (©) = o]

dt

Recent works have shown that memristors can be used successfully to build adaptive coupling
elements, such as the one described here. Concretely, [11] proves the usefulness of the linear memristor
model in the implementation of bidirectional, adaptive synchronization of Chua’s circuits. To meet the
requirements of the coupling element in (56), the R coupling resistor mentioned earlier was substituted by
two memristors in antiparallel association. When two memristors connected in antiparallel are stimulated
with enough voltage across them, depending on the voltage polarity, one of them will switch towards LRS
whereas the other does the same towards HRS (and vice versa). In either case, one of the two memristors
will be in LRS, thus the equivalent resistance of the two will be in the levels of LRS. Fig. 6-11a shows a
network of two coupled Chua’s circuits using such antiparallel association. As mentioned previously, the
two Chua’s circuits are called systems and labeled with a number, for representation purposes. Each system
is only accessible via the node vi, and all couplings are done through it. When it is necessary to distinguish
circuit elements or magnitudes, the number of the system is included as a subscript. For instance, vi11 and
vi,2 refers to the v magnitude of system 1 and 2, respectively. Because the coupling is being done through

v1, the output function at (56) is the v node, i.e. h(s1) = x1.

The behavior of the adaptive synchronization in Fig. 6-11a is illustrated through simulations results.
Because our interest is to use the Stanford/PKU model as a realistic memristor model in simulations, but
[11] proved the memristor-based adaptive synchronization using linear memristor model [5], a simulation
with each model was performed for comparison purposes. The simulation setup can be described as follows;
both systems were initialized using different initial conditions: v11(0) =1V, vi12 (0) = 1.01 V, v21 (0) = vz
(0) =0V, i1 (0) =iL2 (0) = 0 A. Stanford/PKU model keeps its default parameters listed in Table 2-2 in
Chapter 2, but because it works at high switching times, the Chua’s circuit was adapted to this speed by
setting C1 = 100 fF and C, = 1 pF. At the same time, the linear memristor model was also adapted to work
at such high frequency by changing its parameters as follows: Ron = 20022, Rorr = 20KQ, 1y = 200e-9
m?/sV, D =10 nm, and p = 2. Memristors are both initialized at Rorr; otherwise at LRS the coupling strength
could be high enough to provoke a direct synchronization, and the adaptive evolution would not be

observed.

First, the results concerning the linear memristor model are shown in Fig. 11b. At the top, the
temporal evolution of vi1 and vi, show that systems are effectively synchronizing. In the middle, the
synchronization error also reveals the same information. But the most interesting part about the adaptive
synchronization lies in observing the evolution of the internal states of the memristors. At the bottom, the
integral of the currents passing through m12 and m21 are shown. We use the time integral of the current
rather than simply the device resistance as it captures in a more illustrative way the overall contribution of

every memristor during the synchronization process. The integrals start at low values (due to the HRS in
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memristors). However, a high synchronization error means a higher voltage drop across the memristors,
which triggers the SET process. Afterwards, the coupling strength increases and the error decreases until
synchronization is complete. Both memristors contribute evenly as both integrals of currents increase.
When using the Stanford/PKU model (see Fig. 6-11c), the outcome is also a complete synchronization
between the two systems. However, the whole picture is not identical: in fact, only one memristor
contributes to the synchronization. Furthermore, the error increase observed in Fig. 6-11c is higher than what
shown in Fig. 6-11b, and the resistance switching is more abrupt. We attribute this difference in the fact that,
while the switching speed of the devices when using the linear memristor model is proportional to the
current flowing through the memristors, the Stanford/PKU model exhibits a fundamentally different

behavior which depends on the applied voltage and also on the existence of switching thresholds.
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Fig. 6-11. Synchronization of two Chua’s circuits using an antiparallel memristor association. (a) Circuit schematic and simplified
scheme for Chua’s circuit systems and memristors. Simulation results in (b) concern the linear memristor model with parameters
Ron = 200 Q, Rorr = 20 KQ, v = 200e-9 m?/sV, D = 10 nm, and p = 2 in Biolek window function, and in (c) the Stanford/PKU
model with the default parameter values. The plots show the vi evolution in every circuit, along with synchronization error (the
synchronization time is marked with vertical dashed line), and the time integral of current through each memristor.

Finally, it is worth noting that crossbar structures can be used as a topology for coupling systems
[115]. In such a case, N systems are connected to each other through antiparallel memristors by means of a
N x N crossbar if the v node of every circuit is tied to a row and a column of the array; each row and column
must be used only once. Fig. 6-12a shows an example where the i-th system v; node is connected to the i-th
row and i-th column. While the memristors placed in the diagonal are not functional (both of their terminals
are short circuited), the other memristors are connected in antiparallel pairs. For instance, system 1 vi1 node
is connected to the top terminals of memristors in row 1 and to the bottom terminals of memristors in
column 1. The notation in memristors also helps to identify the antiparallel pairs: mi, is the memristor
whose top and bottom terminals are attached to system 1 and 2, respectively, whereas the top and bottom
terminals of my; are connected to system 2 and 1, respectively. Switches S; to S, allow or block some

systems from being synchronized, if this is required in the context of the application of interest.

The scalability of networks is an interesting topic that is addressed in subsequent Sections,
especially for the synchronization stability and the synchronization time. The synchronization time may
depend strongly on the initial conditions of the circuit. Hence, for a detailed quantization of the

synchronization time, instead of performing a single simulation using some fixed initial conditions, a Monte
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Carlo method was applied by performing several simulations, each time assigning to each system vi(0)
values selected arbitrarily between -1V and 1V, thus guaranteeing that the voltage drop on the functional
memristor will have both polarities and varying amplitudes. Initial values v-;(0) and i.i(0) are kept at 0.
Then, the synchronization times obtained by this method are averaged. Fig. 6-12b shows the average
synchronization times achieved using a nxn crossbar topology for an increasing number of interconnected
systems n. Indeed, synchronization is stable for all cases and the trend of the average synchronization time
is to steadily increase with n.
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Fig. 6-12. Adaptive synchronization of systems using a crossbar array as interconnect medium. (a) Scheme of the coupling
architecture. Each system is connected to a row and a column and switches S: ... Sn may define which systems are to be
synchronized. (b) Average synchronization time using a nxn crossbar topology and all n systems synchronizing, evaluated for 200
simulations using the Monte Carlo method when selecting initial conditions for v1(0) magnitudes randomly from -1V to 1V.

6.2.7 Impact of Mismatches Between Chua’s Circuits
Up to this point, complete synchronization has been proved for Chua’s circuits and memristors as

coupling elements, always under the assumption of identical systems. Although it is not the main topic of
this Thesis, a reasonable question may arise to the reader about the networks discussed so far: how do these
results change when the systems are not matching between them exactly? Here, we evaluate the
consequences of mismatches between the different components in the Chua’s circuits, while the impact of
memristor faults is covered in the next Section. As an answer to the aforementioned question, the scheme
of Fig. 6-11a is simulated again while forcing mismatches between the passive components of both systems,
one component at a time to gauge the impact of each fault separately. Concretely, we assumed that in each
mismatched pair one element has 10% higher value than the nominal value whereas the other has 10%
lower value. For instance, instead of using the element C, with nominal value of 1pF, system 1 has Ci11 =

0.9 pF and system 2 C,, = 1 pF, keeping the other circuit elements at their nominal values.

Fig. 6-13a shows the temporal evolution of voltage v1 in both systems for the mismatch scenarios
for R, C, L, R: and Rz, which are the ones where we observed the highest synchronization error.
Additionally, the synchronization error of the case without mismatches has been added for comparison
purposes, where we observed a rising error followed by a sudden steady decrease towards zero
asymptotically. Unlike that, when mismatches are present, the synchronization error experiences one or

more rising peaks and a decreasing trend after that, but without reaching to zero error. The higher peaks
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mean that switching events take place in the memristors. In all cases, the synchronization error is almost
never below the threshold defined previously. Nevertheless, the temporal evolution of v1 nodes for both
systems, shown in Fig. 6-13b, clearly demonstrates a good degree of synchronization, even if their
magnitudes are not as close as expected. Hence, in spite of not being in a complete synchronization state,
all temporal simulations lead to a satisfying synchronization regime, meaning that in the unlucky event of

having extreme device mismatches, as the ones assumed here, synchronization will still be possible.
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Fig. 6-13. (a) Temporal evolution of the synchronization error for the most relevant mismatch cases we observed in a network of
two Chua’s circuits, along with the case of no mismatch for comparison purposes. (b) Temporal evolution of vi,1 and vi,2 nodes in
R, C2 or L mismatch scenarios.

6.3 Study of Fault Tolerant Properties Exploration of the Crossbar Coupling
Medium

This section presents a collection of different worst-case scenarios in which it is assumed that
memristor faults are present in the coupling medium. They are mainly studied in terms of synchronization
stability and synchronization time. Ultimately, the results are compared with a non-faulty ideal crossbar to
explore the fault tolerant properties of the crossbar topology being used as a coupling interconnect medium.
The two types of memristor faults considered in this Section -faults and transient faults- were already

covered in Chapter 3.

6.3.1 Presence of Permanent Memristor SAOFF Faults
In the first scenario of interest, a coupling crossbar topology with permanent memristor faults is

considered. Since SAON faults correspond to the LRS state, in the context of this study, any coupling
memristor found in LRS would guarantee synchronization of the chaotic systems it connects. The same
applies for bridge defects that short-circuit two systems. Therefore, the SAOFF faults are far more
interesting in this context because the devices are permanently in HRS, so they will not contribute to
synchronization. Therefore, synchronization will depend on the contribution of the rest of existing

memristors (redundancy) in the interconnect medium.
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Note that we are only considering SAOFF faults caused by memristor malfunction, and not by other
defects. Therefore, we evaluate the synchronization performance in the presence of SAOFF faults while
modeling the faulty memristors in Spectre software as 1-MQ resistors, i.e. a device with a high resistance
equivalent to the memristor HRS. Even though this replacement is a rough simplification of the memristor
model, we confirmed that replacing a faulty memristor with a simple resistor rather than modifying the
state-change mechanism in the Stanford/PKU memristor model, practically led to identical simulation
results. First, we focus on a network of just two systems, as shown in Fig. 6-8a, where there are only two
memristors in an antiparallel configuration. An SAOFF fault is applied to one of the memristors, e.g. ma;
(this is equivalent to assuming an SAOFF fault in m12). We then evaluate the performance by means of the
synchronization time. We carried out Monte Carlo simulations, in order to select random initial values as
explained earlier, for 200 samples collecting results for the synchronization time. This time the average is
not calculated, but all synchronization times obtained are displayed in Fig. 6-14 in a histogram. In the same
figure we show the results when considering two functional memristors. We observe that synchronization
is achieved in both cases, so the antiparallel memristor association is not a strict requirement for coupling.

However, when only one memristor is functional, synchronization could take much longer to be achieved.
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Fig. 6-14. Monte Carlo simulation results for the synchronization time of two network, considering 200 samples with random v1
initial conditions. The red/dense histogram corresponds to having 2 functional memristors, whereas the blue/sparse histogram
corresponds to having mz1 in SAOFF fault.

Next, we extend this study to a network of three Chua’s circuits which we interconnect by means
of a 3x3 crossbhar array, following the general scheme proposed in [115] and shown in Fig. 6-12 for an
arbitrary number of circuits (a hxn array is required to connect up to n chaotic systems). We perform an
exhaustive analysis of all possible SAOFF fault distributions among the nine memristors of the crossbar,
while always assuming at least two remaining working devices. There are 46 interconnection schemes that
keep all chaotic systems interconnected via at least one functional memristor, which can be grouped into
12 families labelled as F1, F2 ... until F12 in Fig. 6-15a. For instance, the family F1 has only one SAOFF

memristor, whereas F2 to F5 have two, F6 to F9 have three, and F10 to F12 have four SAOFF memristors,
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respectively. Five or more faulty memristor distributions were not considered as we need at least two

functional memristive links to synchronize 3 systems.

200 Monte Carlo simulations were performed for every such family, as well as for the fault-free
crossbar case, while using the same configuration and initial conditions that were again normally distributed
for the three chaotic systems. Fig. 6-15b depicts the obtained average synchronization time where we
generally observe that some interconnect families perform better than the rest. Most importantly, we notice
that families with one, two or three SAOFF faulty memristors behave similarly or even better than the fault-
free crossbar case, with the best results corresponding to family F3. The worst results were observed for
families that have just two functional memristors, where the synchronization process lasted much longer.
The latter highlights the requirement for a minimum number of functional memristors in the coupling

interconnect medium.
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Fig. 6-15. (a) All possible distributions of interest for the SA-OFF faults in antiparallel memristors interconnecting three Chua’s

circuits, represented by white blocks. Faulty memristors are marked in red color. (b) Average synchronization time considering
200 samples of Monte Carlo simulations for each one of the fault distributions in (a).
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6.3.2 Presence of Transient Memristor SAOFF Faults
This scenario explores the evolution of a network after the systems are synchronized if the

memristors involved in the synchronization process are suddenly affected by a transient fault. We say a
memristor was involved in a synchronization process when it switched significantly towards LRS, while
the other memristors that were not involved were kept at HRS or their state was only slightly modified. The
interest is to check if the network is able to cope with transient faults and maintain its coupling
characteristics or, conversely, synchronization is lost; thus it is a qualitative test of the synchronization
stability.

The test has been performed in networks of 2 and 3 systems interconnected using a crossbar
topology, as shown in Fig. 6-16a and Fig. 6-16b, respectively. The simulations follow a common procedure.
First, synchronization process occurs as usual, using functional memristors. Some memristors experience
a larger decrease in their resistive state. In Fig. 6-16a, we referring to mi,, whereas in Fig. 6-16b the memristors
contributing the most are mi, and ms,. After waiting for enough time so as to guarantee a complete

synchronization, those memristors suffer a transient SAOFF failure (marked at 200 ns and 500 ns).
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Although the coupling was strong enough to force a common trajectory for each system, the fault provokes
an insufficient coupling strength and the systems eventually lose their initial synchronization. We observe
that after this moment, the error starts growing again until other memristors finally switch (in the 2-system
network it is myi, while in the 3-system networks are mainly msi and my), thus achieving the
synchronization again. Such results confirm that synchronization can be lost due to faults occurring to the
coupling elements on-line. Nevertheless, owing to the interconnect medium being fault-tolerant, the rest of

the functional memristors contribute to overcome this situation and synchronize again.
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Fig. 6-16. Temporal evolution of the synchronization error and current-time integral in a scenario of memristor transient SAOFF
faults after a synchronization process, in a network coupled via a crossbar topology. The faults occur in memristors that have
contributed to the synchronization process. Example for a (a) 2-system network and (b) 3-system network.

6.3.3  Evaluation of Coupling when Connecting Fewer Systems to a Crossbar
We explored further the redundancy of the crossbar topology simulating scenarios where nxn array

was used to interconnect a number of chaotic systems smaller than n, leaving the rest of columns and rows
as floating. In fact, we focused on just two chaotic systems connected to a nxn crossbar array with n > 2,
and initialized the two antiparallel memristors that directly connect the two systems at SAOFF. This way
we aimed to explore the role of every redundant cross-point device in the synchronization process. Fig. 6-17a
shows the equivalent circuit of the crossbar array highlighting the two SAOFF memristors and the rest of
main conducting paths generally observed in the simulation results. Most importantly, the synchronization
was successful in all Monte Carlo simulations for crossbar size ranging from 3x3 to 8x8. It can be concluded
that the current flowing through the rest of the cross-point devices eventually contributes so that the two
systems synchronize. However, by observing Fig. 6-17b we note that the mean synchronization time tends
to increase with the size of the crossbar array; similar to what was observed previously in Fig. 6-12b for the
mean synchronization time with a fully-functional nxn crossbar connecting n systems. So far we concluded
that the passive memristive crossbar array is a redundant and fault-tolerant interconnect medium that
guarantees synchronization, but synchronization time increases significantly with the size of the array.
However, the synchronization time was significantly improved while emulating SAOFF faults in the
crossbar array. Generally speaking, assuming that a memristor is stuck at HRS is equivalent to assuming it

is not present in the interconnect medium since in either case it does not contribute to the synchronization.
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Fig. 6-17. (a) Equivalent circuit schematic for an nxn crossbar array where two systems are connected, showing the faulty
memristors and highlighting the main alternative current paths observed in simulations. (b) Simulation results for the evolution of
the average synchronization time of two chaotic systems connected to a nxn crossbar, while varying n.

6.4 Exploration of Optimized Interconnect Topologies for Synchronization

In Section 6.3.1, the simulation results for a 3-system network in Fig. 6-15b show evidence that some
interconnection patterns that use less memristors seem to perform better than the full crossbar array in terms
of synchronization time. Therefore, in this Section we build upon such results towards finding an optimized
and scalable memristor-based interconnect medium for the fastest possible adaptive synchronization of an
arbitrary number of chaotic circuits. Several interconnect patterns could be considered for this purpose and

the memristors that were assumed SA-OFF in Fig. 6-15a are how simply removed from the network.

The proposed interconnect approach is described in Fig. 6-18. We show five different scaling
examples for a network of an increasing number of chaotic systems. The topologies 3, 4 and 5 are practically
inspired by the original form of the aforementioned F3 family. Every additional chaotic system is connected
to the rest in the network in such a way that the main properties of connectivity observed in F3 are locally
maintained. On the other hand, the topologies 1 and 2 are alternatives in which the connected systems form
a square-like grid. We explored both 1-D and 2-D scaling strategies, resulting in a more “stretched” or a
more “compact” grid, respectively. Finally, the topology 5 is an extended version of topology 3 with better

symmetry in the interconnection of the chaotic systems, located at the two extreme positions of the chain.

Topology 1: 1-D Square
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Fig. 6-18. Alternative interconnect topologies and scaling examples for an increasing number of chaotic systems (represented as
numbered squares).

We compared the five topologies in transient simulations for an increasing number of
interconnected systems. Overall, while scaling the grids to connect up to 10 systems we noticed that from
some point the chaotic behavior was lost and an undesirable periodic oscillation was observed, as shown in
Fig. 6-19a. We resumed our findings on the observed behavior in Fig. 6-19b. The topology 5 outperformed
the rest, supporting up to 13 connected systems before the chaotic behavior was lost. On the other hand, we
did not observe any such problem with the fully-functional crossbar topology, which could be scaled up to
support more systems than the rest of the examined topologies. In fact, we did not observe any upper bound
for that in all our circuit simulations for up to 20 systems. Therefore, the maximum number of

interconnected systems is a restriction to consider while using the proposed topologies.
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Fig. 6-19. (a) An example of the temporal evolution of vi in every circuit showing chaotic synchronization (left) and a periodic
oscillation (right) once an upper scaling limit is exceeded. (b) Summary of findings in temporal simulations using different
topologies and a varying number of interconnected chaotic systems. (c) Simulation results for the average synchronization time
while using alternative topologies 1 and 5, for a varying number of systems n. The plot includes the curve corresponding to a full
crosshar shown in Fig. 6-12b.

Moreover, from 200 Monte Carlo simulations we computed the average synchronization time for
an increasing number of interconnected systems, and the simulation results are shown in Fig. 6-19¢c, where
we also plot again the curve corresponding to the full crossbar array, shown previously in Fig. 6-12b. Some
of the five suggested topologies performed better (e.g. in a 9-system network the topology 1 had 140 ns and
the topology 5 had 225 ns average synchronization time), but the differences among them are negligible
compared to the performance of the full-crossbar (6.05 us). We show simulation results only for the
topologies 1 and 5 to keep the plot more readable. As a first conclusion, we distinguish the significant
improvement in the synchronization time compared to what was achieved using the crossbar architecture.
Additionally, the required synchronization time seems to be independent of the number of interconnected
systems, so time savings are higher for higher numbers of interconnected chaotic systems. After observing

the resistance evolution of all memristors in the alternative topologies, we attribute such increase in
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performance to the existence of what seems as “switching avalanches”; i.e. to the fact that certain SET
events provoke other subsequent SET events in a very short time, a behavior not observed in the fully
functional crossbar. Moreover, the five alternative topologies generally require a smaller number of
memristors compared to the full-crossbar array, thus savings in circuit area are important. Nevertheless, for
the same reason, the lower the number of memristors, the lower the redundancy and the fault-tolerance of
the system. For instance, Fig. 6-20a, Fig. 6-20b and Fig. 6-20c shows the average contribution of all the
memristors in the topologies crossbar, 1 and 5, respectively, for seven interconnected systems over 200
synchronization processes. We notice that topology 1 has just a few leading memristors that contribute
approx. 2xcompared to some of the rest. On the other hand, topology 5 consists of more memristors and
we observe a more uniform contribution of all the devices, similar to what we observe when a full crossbar
is used. Therefore, better fault tolerance is expected in this topology, but it is still inferior to the fault

tolerance offered by a full crossbar.
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Fig. 6-20. Average of the integral of currents of each memristor in three different network topologies of 7 coupled systems obtained
in the Monte Carlo simulations. Memristors contributions in (a) crossbar, (b) alternative 1 and (c) alternative 5 topologies.

6.5 Concluding Remarks

This Chapter moves from the range of applications where memristor states are discretized (covered
in Chapters 4 and 5) to the range of analog applications, where the whole resistance range is interpreted as

an analog internal state of memristors. In some cases, the memristor was used as a programmable element
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for tuning performance of analog circuits (such as amplifiers, filters, oscillators) whereas in other cases its
nonlinear switching characteristics were mostly appreciated, such as in the case of neuromorphic computing

circuits or chaotic circuits.

Among all the applications reviewed, this Chapter focused on the chaotic synchronization
evaluating the performance of the interconnection medium based on memristors. More specifically, the
impact of SAOFF memristor faults was studied using realistic, filament-type models instead of simplistic
models used in other relevant works of the recent literature. Different scenarios showed that the interconnect
medium composed of memristors is tolerant to permanent and transient faults. Furthermore, it was
discovered that in some cases the synchronization time could be decreased owing to such types of faults.
Because of this finding, different topologies were discovered and we were able to observe important
improvements in the required synchronization time. The downside for these novel interconnect topologies
was found when scaling them to include more systems for synchronization; In fact, as the topologies get
bigger to accommodate more systems, eventually the chaotic behavior of the circuits can be lost.
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Chapter 7 Conclusions & Future Work

This Chapter pretends to summarize the main ideas developed in the Thesis and the conclusions
reached based on the obtained results. Furthermore, some guidelines about future work addressing some of

the topics covered in the Thesis, are discussed.

7.1 Main Conclusions & Contributions

The results presented throughout this Thesis illustrate that memristor variability and defects are
very meaningful in memristor-based circuits and systems, and thus they have to be considered. The
development of fault/variability-tolerant circuit design, as well as of testing/detecting methods to avoid
malfunction, are really valuable. Indeed, another (and even more desirable) scenario concerns the eventual
reduction of such undesired issues through the research of better materials and device fabrication. However,
this is undeniably costly. As a consequence, in the meantime, smart approaches at device/circuit structure
and/or architecture level, are more affordable, even if this comes at expense of increasing circuit complexity
or lowering the device integration density. In this Thesis, the results and conclusions are limited to the
experience in simulations and the faithful recreation of memristor features in the models used. Experimental

verification would provide a further step to prove the validity of all the solutions proposed.

Chapter 1 introduces the Thesis topic contextualizing the reasons that led the industry to put efforts
in looking for new technologies like memristors. Memristor promising characteristics, potential
applications and their technology challenges are exposed, motivating the fulfillment of this dissertation.

The chapter ends with the goals of the Thesis.

Before entering into the main motivation of the Thesis, a clear understanding of the memristor is
required. Chapter 2 does not only provide this explanation, but instead a review on memristors from the
point of view of nonlinear circuits theory and the so far known experimental devices. From the circuit
theory point of view, the memristor definition has been evolving to accommodate different systems that
have similar features, although there is still an on-going discussion about whether the real devices claimed
as memristors can actually be called using this term. On the other hand, several resistive switching devices
have been identified as memristors as they share multiple common features with the mathematical
definitions, although their behavior is attributed to different physical mechanisms. These devices present
different specifications; the requirements of an application points towards specific devices that are more

adequate.

At this stage of development of memristor devices and related circuits and systems, it is crucial that
realistic physics-based models are available for simulation purposes. In this Chapter a reasonable
representation of the available memristor models is given. It is concretely interesting the fact that the
Stanford/PKU model, which is a physic-based model of memristors verified based on experimental data,
served as a solid basis for the conducted simulations throughout this Thesis. Finally, the Chapter concludes
with the presentation of crossbar arrays, which are circuit structures that further highlight the benefits of

using memristors, enabling the highest possible device integration density.
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Chapter 3 delves into the main motivation of this Thesis: the reliability issues in memristor
devices. Three main sources of such issues are identified: random behavior (which comes in different forms,
as RTN, stochasticity, or state variability), degradation, and faults. The causes and consequences for each
of these issues are explained. In this direction, some guidelines about how to include variability into
memristor models and model faults are proposed. Combined with memristor model(s), these are altogether
the principle tools that are used in the following Chapters to study search for solutions to cope with
applications where unreliable memristors are used. In this context, measurements of a real device to

illustrate state variability were published in:

e M. Escudero-Lopez, E. Amat, A. Rubio, and P. Pouyan, “An experience with chalcogenide
memristors, and implications on memory and computer applications,” in 2016 Conference on

Design of Circuits and Integrated Systems, DCIS 2016 - Proceedings, 2017, pp. 249-254.

More specifically, the first block of applications concerns memory systems covered in Chapter 4.
Memristor is recognized as a low-power (being non-volatile) and high density (owing to the crossbar
structures) option for such application. The data density can be further increased with multi-bit codification
in the memristor states while using crossbar as the target geometry. However, these such options are limited
by the existence of sneak-path currents and variability. Therefore, an objective of the research within this
Thesis was to focus on detecting faults in 1T1R-type crossbars. Assuming a set of possible faults, an on-
line procedure that tests the entire array is able to successfully detect such faults. The simulation results
presented in this Chapter are used to verify the design of the cell, the peripheral circuitry, and specific cases
in which a specific fault can interfere with other faults present simultaneously in the same array. The main

contributions of this Thesis in the context of this Chapter were published in:

e M. Escudero-Lopez, F. Moll, A. Rubio, and 1. Vourkas, “An On-line Test Strategy and Analysis
for a 1T1R Crossbar Memory,” accepted in 2017 IEEE Int. Symp. on On-Line Testing and Robust
System Design (IOLTS), Thessaloniki, Greece, July 03-05

The second type of applications reviewed in this Thesis concerns digital computing systems,
presented in Chapter 5. Many different logic design styles have appeared in the recent literature, mainly
classified regarding two criteria: crossbar compatibility and whether the logic is stateful or not. When a
specific style complies with these two features, it can be implemented in a CIM system, introducing a hew
paradigm for digital computing architectures, which reduces the latency between computation and memory

blocks by allocating both of them in the same physical structures.

In this direction, this Chapter studies the impact of memristor variability in a CIM system for the
logic styles CNIMP and MAGIC. Simulation results showed that the yield of logic operations is very
sensitive to the amount of variability injected to the involved memristors, even though the yield can be

optimized by applying a proper design process. In any case, chaining multiple logic operations reduces the
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yield to unacceptable values. Two alternatives can fix the yield: to regenerate the memristors holding the
output of a logic operation after it has been produced with a programming step, or use an alternative,
variability-tolerant logic style, as a solution for CIM systems. The latter was adopted in this Thesis and a
novel, simple, yet robust logic design style was proposed. The simulation results reveal that when this new
style is used, the variability cannot affect the yield unless the logic operation holds an extremely large
amount of inputs. The main contributions of this Thesis in the context of this Chapter were published in:

e Vourkas, G. Papandroulidakis, M. Escudero-Lépez, G. Ch. Sirakoulis, and A. Rubio, “Variability
Challenges in Emerging Memristor-based Logic Circuits,” workshop on Memristor Technology,
Design, Automation and Computing (MemTDAC) affiliated with the HIPEAC 2017 conference,
Stockholm, Sweden, January 23, 2017

e M. Escudero-Lopez, 1. Vourkas, A. Rubio, and F. Moll “Variability-Tolerant Memristor-based
Ratioed Logic in Crossbar Array,” IEEE/ACM Int. Symp. on Nanoscale Architectures
(NANOARCH 2018), Athens, Greece, July 18-19

e M. Escudero-Lopez, I. Vourkas, F. Moll, and A. Rubio, “On the Variability-aware Design of
Memristor-based Logic Circuits,” 2018 IEEE Int. Conf. Nanotechnology (NANO 2018), Cork,
Ireland, July 23-26

e M. Escudero, I. Vourkas, A. Rubio, and F. Moll, “Memristive Logic in Crossbar Memory Arrays:
Variability-Aware Design for Higher Reliability”, IEEE Trans. Nanotechnol., vol. 18, pp. 635-646,
2019

Lastly, Chapter 6 covers analog applications, where memristor resistance is not discretized in logic
levels but the state of the memristor is understood as a tunable parameter. Possible applications range from
amplifiers, oscillators and filters that use memristors as a programmable element to tune their properties,
to nonlinear elements required in chaotic circuits or for adaptive purposes in neuromorphic computing. In
this context, a review of the potential impact of memristors in several aspects of mixed-signal on-chip

application tasks, was published in:

e Vourkas, M. Escudero, G. Ch. Sirakoulis, and A. Rubio, “Ubiquitous memristors in multi-level
memory, in-memory computing, data converters, clock generation and signal transmission,” in: P.
Dimistrakis, 1. Valov (Eds.) “Metal oxides for non-volatile memory, materials, technology and

applications,” in press, Elsevier, 2019

From all such possibilities, an adaptive chaotic synchronization application where memristors form
an interconnect medium (inside an 1R passive crossbar) between all chaotic circuits to be synchronized,
was chosen to further study the impact of SAOFF faults. Through simulation results, the crossbar was found

tolerant to faults, both permanent or transient. Moreover, it was found that the synchronization time was
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shorter in crosshar arrays with faults rather than in fully functional arrays. Such results led to the further
exploration of alternative circuit topologies than the crossbar that improved the synchronization time. The
new topologies were indeed contributing to faster synchronization processes. However, while trying to
accommodate a larger network of chaotic circuits, an unstable behavior from the chaotic circuits arose,
unlike what noticed with the crossbar topology in use. The main contributions of this Thesis in the context
of this Chapter were published in:

e M. Escudero, I. Vourkas, and A. Rubio, “Alternative Memristor-Based Topologies for Chaotic
Circuit Synchronization,” 2019 Int. Conf. on Memristive Materials, Devices & Systems
(MEMRISYS), Dresden, Germany, Jul. 08-11.

e M. Escudero-Lopez, 1. Vourkas, and A. Rubio, “Stuck-at-OFF Fault Analysis in Memristor-Based
Architecture for Synchronization,” 2019 IEEE Int. Symp. on On-Line Testing and Robust System
Design (IOLTS), Rhodes Island, Greece, July 1-3.

e M. Escudero, I. Vourkas, and A. Rubio, “Alternative Memristor-based Interconnect Topologies for
Fast Adaptive Synchronization of Chaotic Circuits,” Chaos, Solitons & Fractals, under review
(revise & resubmit), 2019.

Throughout all these cases, variability and faults have shown deviations from the normal behavior
of a circuit; usually as an unwanted effect but sometimes enhancing somehow the circuit performance. In
any case, there is no doubt that uncertainty in memristors must be taken into account to guarantee reliable
functioning in emerging applications of memristors and to lead to the development of effective solutions
when such effects provoke malfunction. Indeed, the device models must include faithful behavior of all
such phenomena so as to contribute in this direction. The results provided in this Thesis highlight the
importance of considering variability and faults in circuit simulations via proper device modeling, revealed
possible malfunction in memristor-based circuits as it had never been presented in the relevant literature
before, and proposed solutions for testing of memristor-based memory systems, for robust CIM, and for
the proper exploitation of memristor variability in analog applications, thus paving the way for a more

realistic approach to emerging memristor-based digital and analog applications.

7.2 Future Work

This Thesis stimulated the inclusion of different phenomena related to memristor uncertainty,
especially in the very firsts steps of circuit design. Even though several interesting scenarios were studied

throughout this Thesis, there are certainly many more that are still to be analyzed.

First, this Thesis covered studies related to variability or faults, but not related to degradation state
mechanisms. It could be interesting to include such effects in similar studies to evaluate what level of

degradation a circuit can manage before it turns into a real concern.
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Chapter 3 presented other faults concerning the row and column nanowires in a crossbar array, as
well as the peripheral circuitry. Such faults could be also considered to improve the online testing strategy
in emerging memristor-based nonvolatile memory systems. Furthermore, multiple faults could be assumed

to eventually study how the algorithm could deal with such cases.

Regarding the proposed ratioed logic design style with memristors, only the NOR logic operation
was evaluated, since it was compatible with the crossbar array target topology. In this direction, the
feasibility to implement other operations in the crossbar could be further explored. Additionally, in order
to have the full picture about the suitability of this logic style for future CIM systems, the synthesis of
complex logic functions and their mapping to the memory array could be further studied and compared
with the results obtained from other logic style synthesis approaches proposed so far.

Finally, the results obtained from the analysis of the adaptive synchronization of chaotic circuits,
were particularly encouraging but still more work could be done. For instance, the quantization of the
synchronization time related to the faults found in the crossbar array used as interconnect medium, could
help to gain a better understanding of what occurs in such dynamical systems.
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